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GENERIC HOCKEY-STICK MODEL FOR ESTIMATING BENCHMARK DOSE
AND POTENCY: PERFORMANCE RELATIVE TO BMDS AND APPLICATION TO
ANTHRAQUINONE

Kenneth T. Bogen � Exponent Health Sciences, Oakland, California

� Benchmark Dose Model software (BMDS), developed by the U.S. Environmental
Protection Agency, involves a growing suite of models and decision rules now widely
applied to assess noncancer and cancer risk, yet its statistical performance has never been
examined systematically. As typically applied, BMDS also ignores the possibility of reduced
risk at low doses (“hormesis”). A simpler, proposed Generic Hockey-Stick (GHS) model
also estimates benchmark dose and potency, and additionally characterizes and tests objec-
tively for hormetic trend. Using 100 simulated dichotomous-data sets (5 dose groups, 50
animals/group), sampled from each of seven risk functions, GHS estimators performed
about as well or better than BMDS estimators, and a surprising observation was that BMDS
mis-specified all of six non-hormetic sampled risk functions most or all of the time. When
applied to data on rodent tumors induced by the genotoxic chemical carcinogen
anthraquinone (AQ), the GHS model yielded significantly negative estimates of net poten-
cy exhibited by the combined rodent data, suggesting that—consistent with the anti-leuke-
mogenic properties of AQ and structurally similar quinones—environmental AQ expo-
sures do not likely increase net cancer risk. In addition to its simplicity and flexibility, the
GHS approach offers a unified, consistent approach to quantifying environmental chem-
ical risk.

Key Words: Bootstrap, modeling, Monte Carlo, toxicity risk characterization

1. INTRODUCTION

Dose-response assessment is an essential step in characterizing the
extent to which environmental contaminants pose human health risks
(NRC, 1983, 1994). Benchmark Dose Model software (BMDS) and relat-
ed procedures (EPA 2000a, 2010a b) comprise a suite of dose-response
models and a related set of quasi-statistical and decision rules developed
by the U.S. Environmental Protection Agency (EPA) that are increasing-
ly broadly applied as an integral component of regulatory noncancer and
cancer risk assessment for environmental chemicals. In particular, this
approach is used to estimate “benchmark dose” (BMD) and correspon-
ding low-dose dose-response slope, or “potency,” exhibited by a set of
experimental toxicity data. This multi-model approach is first summa-
rized, some concerns about it are discussed in view of constraints on low-
dose dose-response information typically available from toxicity studies,
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and then its performance when applied to simulated sets of quantal (i.e.,
dichotomous-response) dose-response data is compared to that of a sim-
pler “Generalized Hockey-Stick” (GHS) model proposed to estimate
BMD and potency. Results of these analyses are presented, together with
an application of the GHS model, to estimate potential human cancer
risk posed by an environmental chemical contaminant known to both
increase and reduce cancer incidence in chronically exposed rodents.

1.1 BMDS Modeling Procedure

The BMDS approach is used to characterize toxicity risk for both non-
cancer and cancer endpoints based on quantitative analysis of either
quantal or continuous dose-response data, and is typically applied to
identify or characterize toxicity using data that exhibit a significantly ele-
vated toxicity response and, moreover, represent the most sensitive iden-
tified endpoint, species, sex, and strain (EPA 2000a, 2010a b). The result-
ing characterization is expressed in terms of estimated BMD and its lower
(typically one-tail 95%) confidence bound (BMDL), both of which per-
tain to a user-specified level of “benchmark response” (BMR), in excess
of background risk, that is estimated to lie within or near the observed
range of response. For many types of quantal toxicity data, BMR = 0.1 typ-
ically, by default, and corresponding BMD and BMDL estimates are
denoted BMD10 and BMDL10 (EPA 2000a, 2010b); for brevity, these esti-
mates are denoted herein as d10 and , respectively. The dose , in
particular, is used as a “point of departure” (POD) for calculating a cor-
responding acceptable dose (D*) (EPA 2000a, 2002, 2010b). For non-
cancer endpoints, a combined adjustment/uncertainty factor (UF)—
accounting separately for human inter-individual variability, animal-to-
human differences, data deficiencies, etc.—is applied to effectively
reduce by defining D* = /UF (EPA 2002). For endpoints with a
plausible or expected linear low-dose dose-response, acceptable dose D*
= R*/q* is typically defined instead in terms of an acceptable level of risk,
R*, and a corresponding upper confidence bound q* = BMR/BMDL on
toxic “potency,” which upper bound is also often referred to as a “slope
factor” and denoted SF, in view of the fact that it is the upper bound on
the slope of a straight line drawn from the POD to the origin, corrected
for background (EPA 2005, pp. 1-14, 3-23). The BMDS procedure has
been interpreted and applied widely to characterize potency (slope fac-
tors) defined in this way (e.g., Gaylor and Gold 1998; Gaylor 2000; NRC
2000; Gold et al. 2003; Brenner 2004; EPA 2005, 2010b c; Knafla et al.
2006; Simon et al. 2008, 2009; CalEPA DPR 2004; CalEPA OEHHA 2009;
Stern 2009). A corresponding implied best estimate of potency in this
context is here defined as q = BMR/BMD. Over 3,500 users of BMDS are
currently registered, approximately 30% of whom are outside the U.S.,

d10
*d10

*
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and roughly 25% of whom are in government agencies; among U.S.
users, about 20% are from academia (Gift 2009).

1.2 Some Drawbacks of the BMDS Approach

The six-step BMD “decision tree” recommended to evaluate BMDS
modeling output does not address or control for procedure-wise error
rates that result from its application of multiple statistical procedures. For
example, to evaluate output from fits of each of nine primary and/or
seven alternative quantal BMDS dose-response models to quantal
(dichotomous) data, the software provides multiple options for parame-
ter choices, the decision tree recommends how to interpret the estimates
and statistics generated in order to choose among the array of BMDL esti-
mates generated (EPA 2000a, 2010a b). These guidelines address neither
how well the recommended modeling procedure actually performs in
terms of accuracy or coverage by estimators used in the procedure, nor
whether simpler procedures might yield results of similar or greater reli-
ability, nor how the application of multiple statistical tests to multiple
model-specific fits affects the statistical interpretation of modeling results
obtained. Users are required simply to assume that returned results are
meaningful and reliable when applied to relatively small sample sizes like
those typical of toxicity data sets.

The BMDS approach relies exclusively on numerical methods to
obtain maximum likelihood estimates (MLEs) that have valid and opti-
mal asymptotic properties, but that may be biased when applied to realis-
tic data sets involving relatively few observations. EPA (2000b) recom-
mended “If asymptotic normality cannot be assumed either because the
sample size is too small ... or because MLEs were not (or could not) be
obtained, bootstrap methods should be employed [... as] a versatile non-
parametric method that can be used in a wide variety of situations to
obtain the sampling distribution of any model parameter.” Consistent
with this recommendation, particularly for small sample sizes (e.g., less
than ~30 to 50), parametric bootstrap methods (see DiCiccio and Efron
1996) have been applied as an alternative approach to estimate parame-
ters of quantal dose-response response models, (Portier and Hoel 1983;
Bailer and Portier 1988; Morris 1988; Smith and Sielkin 1988; Foster and
Bischof 1991; Bailer and Smith 1994; Al-Saidy et al. 2003; Nitcheva et al.
2007; Swartout 2007; Zhu et al. 2007). Bootstrap methods remain unavail-
able through BMDS to estimate model parameter values or confidence
limits, as do modified profile likelihood methods that can also reduce
bias and improve coverage accuracy for small samples (see, e.g.,
Barndorff-Nielsen 1983; Brazzale and Davison 2008).

None of models in the BMDS suite typically applied for routine
potency or BMD estimation are particularly suited to characterize a
hormetic dose-response relationship (i.e., one in which response at least
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initially declines with increasing dose). Rather, nearly all models assume
that risk or detriment in excess of background increases monotonically
with increasing dose. BMDS procedures include an analysis of residuals
that should identify any clearly anomalous set of data that is inconsistent
with this assumption of monotonically increasing risk. Although uncon-
strained polynomial models offered by BMDS for continuous or quantal
data could be applied in any such case, these particular models are not
typically considered in regulatory applications, in view of their essentially
arbitrary ability to fit a curve to any pattern of data without reference to
a plausible mechanistic or biological basis. To the extent there is no
intrinsic plausibility of quantal BMDS models applied, the BMDS proce-
dure amounts to an inefficient way to fit an arbitrary smooth curve and
confidence bounds through binomially distributed data. To the extent
that fits of meaningful BMDS models are affected by data at relatively
high dose(s), the modeling effort is effectively “wasted” by addressing
data that, by definition, are less relevant or irrelevant to the intended
BMD and/or potency (i.e., low-dose dose-response) measure(s) of inter-
est.

1.3 Generic Hockey-Stick (GHS) Model

By definition, only information about response at the lower end of
the dose-response curve bears most clearly and directly on BMD and
potency. Moreover, it is typically impossible from a statistical standpoint
to rule out the possibility that the observed data were sampled from a
dose-response relationship that either (1) contains a (non-zero) linear
coefficient in dose, or (2) reflects a mixture of two or more functions
(e.g., response patterns pertaining to two or more corresponding phe-
notypes and/or genotypes), one of which contains a (non-zero) linear
coefficient in dose. For any risk function R(d) of dose d that is monoton-
ically proportional to a polynomial in d, such as the traditional multistage
risk model (Anderson et al. 1983), a linear term q d of that polynomial
with q ≠ 0 must dominate in the limit as d → 0. Consequently, for data that
at some dose(s) exhibit significantly increased risk above background,
plausible BMD and potency estimates and their confidence bounds can
always be obtained using a suitably generic “hockey-stick” (GHS) version
of such a multistage-type risk model. By definition, such a model contains
an unconstrained linear coefficient in dose combined with enough addi-
tional non-negatively constrained polynomial terms to estimate both
BMD and potency aspects of increased risk.

The present study was undertaken to compare BMD and potency esti-
mates obtained using a relatively simple GHS model (described in
Methods) to those obtained using the BMDS approach, using quantal
dose-response data simulated at specified doses from six specified models
of net risk of extra response above corresponding assumed independent
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background rates of response. An additional “hormetic” risk function was
also considered, simply to illustrate the relative flexibility of a GHS
model, and also to characterize negative/hormetic dose-response rela-
tionships, and the straightforward approach it offers to test objectively for
such possible negativity, either as an attribute of one specific data set, or
as a net characteristic implied by a set of related data sets that exhibit a
combination of significantly positive and significantly negative dose-
response relationships. The latter GHS-model capability was illustrated
specifically as described below.

1.4 GHS Estimation of Net Anthraquinone Cancer Risk

Anthraquinone (AQ) increased the incidence of several types of
tumor in rats or mice chronically exposed by diet in a National
Toxicology Program (NTP) bioassay, but also markedly reduced the inci-
dence of mononuclear cell leukemia (MCL) in male and female rats
(NTP 2005). This reduction was considered a direct effect of AQ (NTP
2005; pp. 83, 86, 94):

Several drugs are based on the AQ ring system, including the anthra-
cycline glycosides doxorubricin and daunorubricin, which are used
extensively in cancer chemotherapy as well as newer chemotherapeu-
tic agents such as mitoxantrone.... The incidences of MCL were
markedly reduced in exposed male and female rats. Although splenic
toxicity is often correlated with reduced incidences of MCL ..., it is
unlikely that the mild nature of the lesions that occurred in the
spleen in the current study could account for the dramatic decrease
in incidences. This suggests that the reduction was due to a direct
effect of AQ or its metabolite(s) on the development of MCL. Similar
decreases have been observed in the 2-year studies of 1-amino-2,4-
dibromoanthraquinone and emodin.... Decreased incidences of MCL
in male and female rats were attributed to exposure to AQ.

It is noteworthy in this regard that, in 2009, NTP started using Harlan
Sprague-Dawley rats for its future studies, due to health-related concerns
about their F344N rat colony, including a high incidence of leukemia
(King-Herbert and Thayer 2006; King-Herbert et al. 2010). However, EPA
(2005) cancer risk assessment methods make no default assumption con-
cerning tumor site-concordance between species; rather, tumor potency
exhibited in available bioassay animal data is typically assumed to demon-
strate potential cancer potency in humans.

AQ-related compounds can induce apoptotic cell killing by a variety
of molecular mechanisms, including inhibition of protein kinase CK2
and/or topoisomerase II (Hartley et al. 1990; Sengupta 1993; De Moliner
et al. 2003; Koceva-Chyta et al. 2005), and can directly inhibit human
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tumor cell proliferation (Cichewicz et al. 2004). It is particularly note-
worthy that 1,4-diamino-substituted AQ antitumor agents are cytotoxic to
human leukemic cells, and that dose-response kinetics for cell killing
examined in detail for 1,5- and 1,8-diamino-substituted anthraquinones
in these cells, and in LoVo cells (a human Caucasian colon adenocarci-
noma cell line) and Chinese hamster ovary cells exposed to other substi-
tuted anthraquinones, clearly exhibit linear-no-threshold-like, “one-hit”
kinetics of induced cell killing (Kimler and Cheng 1982; Drewinko et al.
1983; Hartley et al. 1990). Such evidence for linear cell-killing kinetics for
AQ-related compounds was the basis for the present illustrative applica-
tion of a GHS model to characterize observed AQ-induced reductions in
rat MCL risk, in view of potential human cancer risk posed by environ-
mental AQ exposures (CalEPA 2006). Specifically, this information was
used to combine estimates of AQ-induced tumor induction and suppres-
sion in rodents to estimate the potential net carcinogenic potency of AQ
to environmentally exposed humans.

2. METHODS

All calculations described were performed using Mathematica® 7.0.1
software (Wolfram 2010) and related RiskQ software (Bogen 2002).

2.1 GHS Model

The GHS model described extends an earlier approach developed to
assess and model potential response reduction with increasing dose
(Nascarella et al. 2009), by adding polynomial flexibility to a hockey-stick
model of quantal-response data that provides quantitative estimates of
corresponding BMD and potency and associated estimation errors.
Specifically, the linearized multistage model (Anderson et al. 1983) was
modified as follows. BMDS software implements a BMD version of the lin-
earized multistage model referred to as the quantal Multistage Cancer
(MC) model. Specifically, the GHS function 1 – exp(–Σi qi di), i ∈ G for G
= any combination of ≤g elements of {0, 1, ..., g–1, g+1}, was used to model
the risk or probability R(d) of quantal (i.e., dichotomous) response
among ni individuals in the ith of g dose groups (including the control
group) as a function of dose d. Extra risk A(d) over an assumed inde-
pendent background risk p0 = R(0) was calculated using Abbot’s correc-
tion as A(d) = [R(d)–p0]/(1–p0). In the multistage model, Max(i) = g–1
and all the exponentiated polynomial coefficients qi are constrained to be
non-negative. In contrast, in the GHS model, Max(i) = g+1, and all coef-
ficients qi are constrained to be non-negative, except for the linear
(potency) coefficient, q1 (for convenience hereafter denoted simply as q),
which is constrained only to ensure that R(d) ≥ 0 for all d ≤ Max(dj),
where dj = denotes the jth dose (2 ≤ j ≤ g) included in the data set being
fit. The GHS model thus can have a slope that is negative as d→0, and
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otherwise has somewhat greater flexibility than the MC model to reflect
more abrupt (albeit, as with the MC model applied using its default
assumptions, only monotonically increasing) nonlinearity in dose-
response.

Parameters and confidence limits for the GHS model were calculated
using a modified version of the method for fitting a multistage model to
quantal data described previously (Bogen 1994; Bogen and Witschi
2002), whereby each transformed data set {dj, –ln(1–Rj)} is fit by com-
pletely analytic, nonnegativity-constrained weighted least-squares regres-
sions of all polynomials assuming binomial sampling error, with the best
fit defined as that fit (among all good fits obtained by this procedure)
which yields the minimum value of chi-square, χ2 = Σj (SRj)

2 = Σj [Rj – ni
R(dj) + 1/2]2/{nj R(dj)[1–R(dj)]}, with respect to observed data {dj, Rj},
where R(dj) = predicted response at dose dj, and SRj = the jth standardized
residual. The GHS model applies this method to all polynomials implied
by sets G defined above, and (as the only GHS procedure that may involve
numerical optimization, if necessary) solves one or more convex-polyno-
mial roots to impose the additional constraint mentioned concerning the
linear coefficient q. Good fits were defined as those with χ2 p-values >0.05
and Max(|SRj|) of < 2, where Max(|SRj|) = the maximum absolute squared
residual (MASR). As with the linearized multistage model (Anderson et
al. 1983), initially poor fits (if g > 2) were re-fit after sequential elimina-
tion of the highest dose group until a good fit was obtained. Each fitted
GHS model yielded a direct estimate of q, whereupon d10 was calculated
as the root in dose of BMR = 0.1 = A(d10). Distributions characterizing
estimation error in q and d10, from which were calculated the upper one-
tail 95% confidence limit (q*) on potency q and lower one-tail 95% con-
fidence limit ( ) on BMD d10, were obtained by the parametric boot-
strap method (Bogen 1994; Bogen and Witchi 2002), using 200 sets of
data simulated assuming binomial sampling error about the correspon-
ding GHS-predicted response. Best GHS fits to simulated data were each
defined as the minimum-χ2 fit conditional on a χ2 p-value >0.001 and
MASR < 3.

GHS fits could sometimes be improved (e.g., for data sets exhibiting
a relatively steep positive or negative initial slope) by imposing the addi-
tional constraint that a good fit must include an estimated non-zero lin-
ear coefficient, in which case the GHS model was referred to as being
“linearized.” Even the linearized GHS model can fail to provide a mean-
ingful estimate of potency if data happen to exhibit a steeply negative
dose-response. For quantal data points {dj, Rj} in such cases, an alternative
“complementary linearized GHS” procedure instead fits a standard one-
hit model R(d) = 1 – (1–r′)exp(–a d) to the complementary data {dj, 1–Rj},
and to then estimate the potency b of monotonic risk suppression as b = a

d10
*
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r/(1–r) pertaining to the original data, where non-complementary back-
ground risk r is, in this case, estimated by r = 1–r′ (see Appendix).

In the context of the GHS model, potency q (or q*) is the value (or
upper bound) of slope or derivative of A(d) with respect to d in the limit
as d → 0. Conditional on a linear (one-hit) model such as A(d10) = BMR
= 1 – exp(–q d10), and on q* > q > 0, it follows that d10 = –ln(1–BMR)/q and

= –ln(1–BMR)/q*.  Plots comparing the left and right sides of the lat-
ter equations were therefore used to assess the extent to which GHS esti-
mates of potency and BMD provide nearly equivalent (hence, essentially
redundant) information due to a linear contribution from GHS fits that
happen to dominate at doses ≤ d10.

2.2 Comparison of BMDS vs. GHS Estimates of BMD and Potency

The BMDS approach was implemented using EPA software and cor-
responding recommended “decision-tree” procedures for interpreting
BMDS ouput for fits to quantal data (EPA 2000a, 2010a b), except that
pertaining to visual inspection of plotted fits because this recommended
step could not be automated. BMDS methodology was applied (in auto-
mated batch-file mode) conditional on model-specific default assump-
tions, to fit each set of simulated data to the following eight BMDS quan-
tal models: quantal linear (QL), multistage cancer (MC), gamma (GM),
logistic (LG) probit (PR), Weibull (WB), log-logistic (logLG), and log-
probit (logPR). This subset of the current set of nine dichotomous mod-
els offered by BMDS was deemed adequate to characterize BMDS per-
formance for a relatively large set of quantal models typically applied.
The BMDS model subset used includes all six of the six non-hormetic risk
models used to simulate quantal data (as described below), and excludes
the dichotomous Hill model (added to BMDS in 2008) and seven
“dichotomous alternative” models offered that differ from corresponding
default dichotomous models only insofar as they estimate background in
a different way (e.g., background dose instead of background risk).
BMDS “decision-tree” steps 1–5 (EPA 2010b) were applied to each data
set by: (1) setting BMR = 0.1, (2) fitting each of the eight models listed
above (dropping the highest dose group), (3) retaining only “good” fits
defined as those with χ2 goodness-of-fit p-values >0.1; (4) collecting the
sorted BMDL and corresponding Akaike Information Criterion (AIC)
values (BMDLj and AICj, j = 1,...k with k ≤ 8) calculated for each jth

retained fit; and finally (5) selecting BMDL1 = Min(BMDLj) unless (a)
BMDL1 was excluded as an “outlier” or (b) BMDLmin ∈ BMDLs (for any
sorted BMDL subset specified by s = 1,...,m with m ≤ k) with
BMDLm/BMDL1 ≤ 3, in which case the BMDL associated with Min(AICs)
was selected, or if AICs values were all equal, then the geometric mean of
all BMDLs values was selected. In BMDS methodology, Step 5a is
addressed, but not defined explicitly (EPA 2010b). To implement Step 5a,

d10
*
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BMDL1 was defined as an outlier if a p-value of ≤0.001 was produced by
nested F-test for outliers (Selvin 1995) comparing the variance of the set
of log-transformed BMDLs values with vs. without BMDL1, provided that
m ≥ 3 and Max(AICs) – AIC1 < 2. That is, if m < 3 or the latter AIC differ-
ence was ≥2, then BMDL1 was accepted as a potentially meaningful
BMDL estimate. After applying the five steps described, the BMDS quan-
tal model(s) associated with the selected BMDL value was (or were, with
equal weight) recorded as the corresponding “BMDL-associated” risk
model(s).

BMD and potency estimates obtained by the BMDS and GHS meth-
ods described above were compared for 100 sets of data simulated condi-
tional on doses, background (p0) risks, numbers nj of exposed animals,
and each of the seven quantal risk models summarized in Table 1, assum-
ing binomial sampling error about model-specific predicted risks condi-
tional on nj. As noted above, six of the seven risk models are quantal mod-
els specifically included in BMDS and the seventh is a hormetic quantal
response model included to illustrate GHS-model flexibility. These com-
parisons addressed: difference (bias) between the arithmetic mean of
each estimate made by obtaining a (for BMDS estimates, BMDL-associat-

K. T. Bogen
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TABLE 1. Doses and risk models used to simulate quantal response data.a

Background True True 
Doses dj, risk, Risk modela, potencyb, BMDc,

Risk j = 1,...,5 p0 = R(0) R(d), of dose d q|R(d) d10|R(d) 
model Symbol (mg/kg/day) (unitless) (mg/kg/day)-1 (mg/kg/day)

Linear L 0, 1, 2, 4, 10 0.05 1 – (1–p0)exp(–0.04d) 0.04 2.63
Linear- LQ 0, 1, 2, 4, 10 0.05 1 – (1–p0)exp(–0.02d – 0.005d2) 0.02 3.01
quadratic

Probit PR 0, 1, 2, 4, 10 0.05 1 – (1–p0)Φ[(d–7)/2.5] 0 3.80
Logistic LG 0, 1, 2, 4, 10 0.10 p0/[p0 + (1–p0)exp(–0.25d)] 0.0225 2.99
Weibull WB 0, 1, 2, 4, 10 0.10 p0/[p0 + (1–p0)exp(–0.075d1.5)] 0 4.63
Gamma GM 0, 1, 2, 4, 10 0.10 1 – (1–p0)G(1.1, 20, d) 0 2.74
Hormetic H 0, 1, 3, 9, 27 0.10 1 – (1–p0)exp(0.04d – 0.004d2) –0.04 12.2

a A total of N = 50 animals was assumed in each dose group. exp(x) = ex for any x where e is Euler’s
constant; Φ = the cumulative standard normal distribution function; G(a, b, x) = the cumulative dis-
tribution function evaluated at x for a generalized gamma distribution with shape parameter a and
scale parameter b. A total of n = 100 data sets, each ith set (for i = 1,...,n) containing the five data points
{Doseij, Responseij} = {dij, nij*/N} (for j = 1,...,5), were simulated using each of the indicated models,
where each of the simulated nij* values was sampled randomly and independently from a binomial
distribution with parameters N and R(dij), using risk functions R(d) defined in column 5 each evalu-
ated at corresponding doses d = dij. Models L and LQ have corresponding BMDS quantal dose-
response model names: Quantal Linear (QL) and Multistage Cancer (MC), respectively.

b q = potency (limiting value of increased risk per unit dose as dose approaches zero, assuming an
independent background risk); a negative value indicates risk-reducing potency.

c BMD = BMD10 = d10 = benchmark dose assuming a Benchmark Response (BMR) level of 0.10,
defined as target excess risk assuming an independent background risk level p0, i.e., assuming BMR
= 0.10 = [R(d10)–p0]/(1–p0).
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ed) fit to simulated data in relation to its corresponding expected value
listed in Table 1, corresponding standard error of each estimate, the sig-
nificance of estimated bias as assessed by t-test adjusted (as indicated by a
p-value denoted padj) for multiple (here, seven) independent compar-
isons using Hommel’s modified Bonferroni-type procedure (Wright,
1992), and statistical coverage (a summary measure of performance) by
the estimators q* and . Also calculated were the percentages of match-
es between BMDL-associated risk models identified by BMDS and each of
the six risk models included in BMDS that were used to generate corre-
sponding model-specific sets of simulated data. Because maximum-likeli-
hood methods are used by BMDS to estimate both d10 and , these per-
centages must approach 100% for all six of these models asymptotically as
ni → ∞, and thus divergence from 100% indicates the extent to which
asymptotic convergence was not achieved. Similar percentages were also
recorded for fits to simulated hormetic data, just to see which BMDS
models might tend to be associated (by definition, erroneously) with
estimates obtained by fitting such data.

GSH and BMDS estimates of d10 and obtained for the same sets of
data simulated from six risk models (excluding the hormetic model)
were compared graphically and also by linear regression, which in the
case of excluded points identified by nested F-test as regression out-
liers (Selvin 1995).

2.3 GHS Estimation of Net Cancer Potency of Anthraquinone

Absent adequate epidemiological data as reviewed by NTP (2005),
net potential human cancer risk of AQ was estimated from NTP bioassay
data involving: groups of 50 male and 50 female F344/N rats fed diets
containing 0, 469, 938, or 1,875 ppm (for males 0, 20, 45, 90, and 180
mg/kg/day, and for females 0, 25, 50, 100, and 200 mg/kg/day) of AQ
for 105 weeks; and groups of 50 male and 50 female B6C3F1 mice fed
diets containing 0, 833, 2,500, or 7,500 ppm (for males 0, 90, 265, or 825
mg/kg/day, and for females 0, 80, 235, or 745 mg/kg/day) of AQ for 105
weeks. Survival of all groups of male rats was similar. Survival of exposed
groups of female rats was significantly greater than that of corresponding
control rats. Mean survival of AQ-exposed female mice equaled or
exceeded that of control mice; survival of exposed male mice was
reduced significantly only in the highest exposure group; and the highest
exposed male mouse dose group also exhibited >3-fold more “natural”
deaths than did male control mice (NTP 2005, pp. 8–9). Because survival
was not reduced in the rats or female mice studied, and was not reduced
in any dosed group of male mice except (significantly) in the highest
dose group, time-to-tumor risk models were not considered relevant to
characterizing BMD and potency based on the NTP (2005) bioassay data
for AQ described. Instead, tumor data were adjusted for intercurrent
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mortality differences among dose groups, as is done for the “Poly3” test
that is routinely applied by NTP to assess the significance of dose-related
effects on tumor incidence (Bailer and Portier 1988). Tumor types ana-
lyzed were limited to those tumor sites, or combinations of tumor sites,
reported by NTP (2005) to have a tumor incidence that was statistically
significantly elevated (p < 0.05) in a trend-wise fashion, among those
tumor types for which NTP concluded there was biologically meaningful
evidence of a dose-related trend. Potencies for benign tumor types were
not calculated if the tumor-specific incidence data indicated unambigu-
ously that potency estimated for corresponding combined benign and
malignant tumors would substantially dominate that estimated only for
benign tumors.

The estimated potency distribution for AQ-reduction of MCL risk was
fit using the complementary linearized GHS procedure (Section 2.1) for
sex-specific MCL incidence data after adjusting for intercurrent mortali-
ty. Resulting estimated distributions of sex-specific potency were given
equal weight, and the result was weighted equally with that for the one
other significantly (positively) affected rat tumor type. Sex-specific poten-
cy distributions for the most elevated tumor type observed in mice were
also weighted equally. Resulting species-specific distributions were weight-
ed equally. For each species/sex/type-specific rodent potency q estimated
for animals of weight W (kg), a corresponding human-equivalent (HE)
potency (qHE) was estimated as qHE = q [(70 kg)/W]1/3 (Anderson et al.
1983; EPA 2005). Net AQ potency (in rodents or humans), aggregating
over all tumor-suppressing and all tumor-inducing potencies, was esti-
mated using a modification (see Appendix) of an approach previously
described to estimate aggregate excess risk for nonthreshold, quantal,
toxic end points caused by exposure to multiple non-hormetic agents,
assuming independent actions and background risks (NRC 1994). This
modification provides a general approach to calculating the net potency
of any set of jointly induced and suppressed toxic risks, assuming inde-
pendent corresponding background risks.

3. RESULTS

3.1 Comparison of BMDS and GHS Estimates of BMD and Potency

Table 2 summarizes BMD and potency estimation achieved by apply-
ing the BMDS procedure to 100 sets of response data at five doses that
were simulated based on each of the seven assumed quantal risk models
described in Table 1, which include six of the eight quantal BMDS risk
models that were fit to each simulated data set, and a hormetic risk model
that illustrates a dose-response pattern not typically addressed by any of
the quantal BMDS models routinely applied in regulatory-compliance
contexts. Thus, a total of 700 data sets were fit to each of eight BMDS
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quantal risk models, with convergence on d10 and estimates being suc-
cessful for nearly all but the hormetic data sets, which exhibited a 35%
non-convergence rate. Causes of BMDS convergence failure were not
investigated. As expected, estimates of BMDS potency q were quite biased
(padj = ~0) for data sampled from the hormetic risk model. The same was
true for five of the other six risk models used to simulate quantal data, for
which corresponding q* estimates exhibited consistent over-conservatism
(coverage = 1, rather than the nominal 0.95 confidence level). The BMDS
approach yielded plausibly unbiased (padj < 0.01) estimates of d10 and
plausibly adequate coverage (≥0.80) for six and four, respectively, of
the seven risk models (including the hormetic model) used to simulate
quantal data. The BMDS approach yielded coverage ≥90% for only
four of the seven risk models used to generate simulated data.
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TABLE 2. BMDS model output for 100 sets of response data at five doses simulated from different
dose-response patterns. 

Model
used to Expected Bias-test 
generate Parametera, valuea, Bias, p-value, Z* 
dataa n b Z EZ a – EZ RMCVc Padj

d a Coveragee

L 97 q 0.04 0.039 –0.0011 0.048 0.57 0.091 0.71
LQ 99 q 0.02 0.035 0.015 0.068 0 0.045 1.
PR 97 q 0 0.030 0.030 0.0007 0 0.038 1.
LG 98 q 0.0225 0.040 0.017 0.083 0 0.063 1.
WB 96 q 0 0.027 0.027 0.0011 0 0.037 1.
GM 97 q 0 0.039 0.039 0.0017 0 0.084 1.
H 65 q –0.04 0.0082 0.048 0.0057 0 0.011 1. (0e)
L 97 d10 2.63 3.17 0.54 0.059 0.0059 2.10 0.71
LQ 99 d10 3.01 3.19 0.19 0.035 0.15 2.50 0.74
PR 97 d10 3.80 3.58 –0.22 0.098 0.10 2.76 0.94
LG 98 d10 2.99 2.97 –0.02 0.041 0.89 2.21 0.90
WB 96 d10 4.63 4.15 –0.48 0.16 0.020 2.94 0.98
GM 97 d10 2.74 3.06 0.32 0.14 0.084 2.00 0.74
H 65 d10 12.2 12.8 0.66 0.029 0.14 9.17 0.98

a The seven risk models (Mdata = L, LQ, PR, LG, WB, GM, or H) used to generate simulated data,
the doses, the parameters (q and d10) and the corresponding model-dependent expected parameter
values and corresponding units are defined in Table 1. EZ = the expected value of parameter Z.
Symbols and denote the arithmetic mean values of the BMDS-calculated maximum likelihood
estimate of selected-model-specific parameter Z, and of its 1-tail (for q) upper or (for d10) lower 95%
confidence limit, respectively, obtained by applying BMDS and its associated “decision tree” steps for
model selection to n data sets simulated assuming the indicated risk model.

b Out of 100 Mdata-specific sets of simulated data, n = the number of data sets for which the BMDS
procedure yielded convergent estimates for parameters q and d10.

c RMCV = root mean square (RMS) coefficient of variation = 100%(RMSE/EZ), where RMSE =
RMS error estimated as Sqrt[∑{(Zi–EZ)2/[(ni–1)]}.

d Padj = p-value from t-test of difference between and EZ using ni–1 degrees of freedom, adjust-
ed for multiple (here, seven) such independent data-shape-specific comparisons using Hommel’s
modified Bonferroni-type procedure (Wright, 1992).

e Coverage = probability that Z* is ≥EZ or is ≤EZ for Z=q or Z=d10, respectively; value in parenthe-
ses = Prob(q* ≤ 0).

Z
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Table 3 summarizes the degree to which BMDL-associated risk mod-
els identified by BMDS tended to mis-specify the correct non-hormetic
risk model from which simulated data were actually sampled. Rates of cor-
rect risk-model specification, shown in the shaded diagonal array of cells
in Table 3, were all <33%, with an average value (±1 SD) of 12% ± 13%,
and was 0% for quantal data simulated using a Weibull (WB) model.
Nearly all (65) convergent BMDL-associated quantal models fit to
hormetic data were approximately evenly divided between multistage
cancer (MC) and gamma (GM) models.

Performance of BMD and potency estimation using the GHS
approach is summarized in Table 4. The GHS approach yielded (as
defined above) plausibly unbiased estimates of q and plausibly adequate
q* coverage for four and six, respectively, of the seven risk models (includ-
ing the hormetic model) used to simulate quantal data, and yielded plau-
sibly unbiased estimates of d10 and plausibly adequate coverage for
four and seven, respectively, of those seven risk models. The GHS
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TABLE 3. Percent agreement between the models used to generate simulated data, and BMDL-
associated risk models identified by BMDS. 

Model (Mdata) 
used to 
generate 
simulated BMDL-associated risk model (Mfit) (% of fits to n simulated data sets): c

dataa n b QL MC PR LG WB GM logPR logLG

L 97 21.6 4.1 17.5 7.2 3.1 8.2 10.3 27.8
LQ 99 12.5 10.1 38.4 25.3 3.4 4.4 5.1 1.0
PR 97 0 49.1 2.1 28.9 4.1 3.6 9.8 2.1
LG 98 17.2 11.1 26.5 32.7 2.9 3.6 3.1 3.1
WB 96 2.1 19.8 16.7 41.7 0 13.5 3.1 3.1
GM 94 23.3 8.3 10.3 18.6 4.2 3.9 7.2 24.2
H 65 0 47.7 0 3.1 0 46.2 1.5 1.5

a The seven risk models (Mdata = L, LQ, PR, LG, WB, GM, or H) used to generate simulated data,
the doses, the parameters (q and d10) and the corresponding model-dependent expected parameter
values and corresponding units are defined in Table 1.

b Out of 100 Mdata-specific sets of simulated data, n = the number of data sets for which the BMDS
procedure yielded convergent estimates for parameters q and d10.

c BMDS dichotomous dose-response model types (Mfit) used to fit to each set of simulated data:
QL = Quantal linear, MC = Multistage cancer, PR = Probit, LG = Logistic, WB = Weibull, GM =
Gamma, logPR = log-Probit, and logLG = log-Logistic. Percentage values (Pi) listed across all model
types in each of the seven Mdata-specific rows are defined as follows, for j = 1,...,7: Pj = 100% mj/n,
where mj = the number of fits involving the jth Mdata type. For this calculation, Mdata values of L and
LQ were assumed to be equivalent to Mfit values of QL and MS, respectively. Row-specific Pi values
may sum to >100% due to rounding. BMDS fits, and associated P-values, may reflect either multiple
Mfit types that when optimized had an equivalent form, or a geometric mean of Mfit-specific fits that
all yielded similar BMDL estimates within a 3-fold factor (see Methods). In each case k total models
contributed to a “best fit” Mfit to data simulated from the j th Mdata type, each of the k contributing
model types was given a weight of 1/k when calculating mj and Pj. The difference between 100.0 and
each Pi value listed in bold typeface indicates the magnitude of non-concordance observed between
corresponding values of Mdata and Mfit.
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approach yielded coverage ≥90% for six of the seven risk models used
to generate simulated data, and ≥89% for all seven models. Although
97% of GHS potency estimates obtained to data sampled from the
hormetic risk model were correctly negative, these estimates were also sig-
nificantly biased (padj < 0.0001) in a positive (conservative) direction.

Figure 1 compares d10 and estimates from those GHS fits to non-
hormetic simulated data yielding positive q or q* estimates (n = 283 or
543, respectively), to functions of the corresponding GSH estimates of q
and q*, respectively, that yield a perfectly linear relationship conditional
on a linear (one-hit) risk model, BMR = 0.1. Deviations from linearity
among points in the top and bottom plots of Figure 1 indicate the degree
to which these GHS fits were substantially nonlinear at the doses in the
range of d10 and , respectively, whereas a linear pattern of points indi-
cates the extent to which corresponding BMD- and potency-related esti-
mates provide redundant information. Approximately 91% of the points
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TABLE 4. GHS model output for 100 sets of response data at five doses simulated from different
dose-response patterns. 

Expected Bias-test 
Risk Parametera, valueb, Bias, p-value, Z*  
modela Z EZ a – EZ RMCVa Padj

a a Coverageb

L q 0.04 0.032 -0.0085 0.055 0.0010 0.053 0.88
LQ q 0.02 0.027 0.0068 0.16 0.13 0.062 0.95
PR q 0 0.00051 0.00051 0.0026 0.84 0.036 0.87
LG q 0.0225 0.025 0.0024 0.14 0.84 0.065 0.90
WB q 0 –0.0012 –0.0012 0.0031 0.84 0.040 0.73
GM q 0 0.028 0.028 0.0031 0 0.057 0.98
H q –0.04 –0.026 0.014 0.046 0 0.00095 1.00 (0.97)
L d10 2.63 3.41 0.78 0.063 0.000058 2.05 0.89
LQ d10 3.01 3.13 0.12 0.045 0.44 1.81 0.91
PR d10 3.80 3.96 0.16 0.026 0.28 2.61 0.93
LG d10 2.99 3.37 0.38 0.056 0.099 1.71 0.90
WB d10 4.63 4.76 0.13 0.037 0.44 2.52 0.96
GM d10 2.74 3.49 0.74 0.0620 0.00015 1.90 0.94
H d10 12.2 13.0 0.84 0.015 0.000089 10.3 0.92

a Risk models (L, LQ, PR, LG, WB, GM, H), doses, the number of animals assumed in each dose
group, parameters (q and d10) and corresponding model-dependent expected values of the model
parameters (and corresponding parameter units) are all defined in Table 1. Definitions of Z, EZ,
RMCV and Padj are given in Table 2. P-values < 10-15 are listed as 0. The GHS model was fit to a total
of 700 data sets, consisting of 100 sets simulated assuming each of the seven indicated dose-response
function shapes, to obtain the listed corresponding estimates for parameters q and d10. Estimates 
and here denote the arithmetic mean values of estimates of parameter Z, and of its 1-tail (for q)
upper or (for d10) lower 95% confidence limit, respectively, obtained by fitting the GHS model to n
data sets, Si = {dij, nij*} for i = 1,...,n and j = 1,...,5, each simulated assuming the indicated risk model,
with each of the Zi and corresponding upper/lower bounds Zi* calculated as the arithmetic mean
and corresponding bound obtained from GHS-fits for 200 sets of data {dij, nij**} simulated assuming
nij** are distributed binomially with parameters N and nij*/N.

b Coverage = probability that Z* is ≥EZ or is ≤EZ for Z=q or Z=d10, respectively; value shown in
parentheses is Prob(q* ≤ 0).
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shown in each plot of Figure 1 are consistent with a linear pattern to with-
in 15%, and (as expected) all deviations from linearity involve q or q* esti-
mates that (conditional on a linear response function) over-estimate the
corresponding, directly estimated values of d10 and , respectively, gen-
erally by a factor of ≤1.5. The q-related deviations from linearity involve
primarily fits to data simulated from linear-quadratic (LQ) and logistic
(LG) risk models, whereas q*-related deviations from linearity involve pri-
marily fits to data simulated from probit (PR) and Weibull (WB) risk
models.

d10
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FIGURE 1. GHS estimates of (top) d10 and (botttom) (on X-axis) compared to corresponding val-
ues of (top) –ln(1–BMR)/q and of (botttom) –ln(1–BMR)/q* (on Y-axis) predicted conditional on
corresponding linear (one-hit) models of increased risk, BMR = 0.1 = 1 – exp(–q d10) and BMR = 0.1
= 1–exp(–q* ), respectively, for those of 100 data sets simulated from each of six different risk mod-
els defined in Table 1 that yielded positive estimated values of q (n = 283) and q* (n = 543). Black
lines show Y = X. 
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The top and bottom plots of Figure 2 compare d10 and estimates,
respectively, obtained using the BMDS approach (on the X-axis) vs. the
GHS approach (on the Y-axis) for fits obtained by both methods to non-
hormetic simulated data (n = 584). The plotted d10 and estimates
exhibit highly significant (p = ~0) positive correlations indicated by coef-
ficients of determination (R2) equal to 0.68 and 0.46, respectively, after
excluding as outliers (F = 2.86, df = {19, 564}, p = 0.000075) a cluster of
18 BMDS-based estimates <0.6 mg/kg/day that were an average (±1
SD) of 8.4 (5.7) times lower than the corresponding 18 GHS estimates.
The d10 estimates by both approaches exhibit roughly symmetric scatter
with a slope and 95% confidence limits (CL) of 0.98 (0.93, 1.04), consis-
tent with a null hypothesis of estimates by both methods that are, on aver-
age, equal. In contrast, for estimates (even excluding the 18 outlying
points), the scatter is asymmetrical with a slope (95% CL) of 0.69 (0.63,
0.75), indicating a significant tendency for estimates obtained by the
GHS approach to be somewhat less (i.e., more conservative) than corre-
sponding BMDS estimates. More specifically, ~62% of the points
are nearly symmetrically distributed, with a slope (95% CL) of 0.93 (0.88,
0.97) and R2 = 0.83, and the remaining ~35% comprise GHS estimates of

that are each <75% of the value of the corresponding BMDS estimate.

3.2 GHS Estimate of Net Anthraquinone Cancer Potency

Tumor types deemed by NTP (2005) to have been affected by chron-
ic dietary exposure of rats and mice to AQ are listed in Table 5, together
with corresponding estimates of rodent potency and human-equivalent
GHS potency, and associated confidence bounds (q* and HE q*, respec-
tively). These tumor types include mononuclear cell leukemia (MCL) in
male and female rats; renal cell adenoma or carcinoma (RTAC) in female
rats; hepatoblastoma (benign or malignant, HB), hepatocellular carcino-
ma (HC), and/or hepatocellular adenoma or carcinoma (HAC) in male
and/or female mice. The GHS estimates of AQ potency for suppressing
MCL in male and female rats are summarized in Figure 3. The estimated
MCL potencies for male and female rats are both significantly negative (p
< 0.01), which illustrates the ability of the GHS model to provide an objec-
tive statistical test of whether an agent exhibits a truly negative initial
dose-response trend.

The initial GHS fit to all female rat RTAC data yielded a predicted
control incidence rate (7.5%) that, assuming binomial sampling error, is
statistically inconsistent (p = 0.00061) with the corresponding historical
control rate of 1/901 (NTP 2005, Table B4a). The listed RTAC potency,
obtained after deleting the two highest dose groups, yields a GHS fit pre-
dicting 0% incidence in the control group, which is statistically consistent
with the historical data. The female mouse control incidence rate of 6/48
(12.5%) of HAC or HB (or HAC alone) was significantly less than the cor-
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responding rate of 273/852 (32.0%) exhibited in Battelle Columbus
Laboratories’ historical control data (NTP 2005, Table D4a) among
untreated female B6C3F1 mice (p = 0.0021, by 2-tail Fischer exact test).
The latter control data exhibited identical incidence rates and range for
HAC alone or for combined HAC or HB. The control rate listed for these
tumors is also less than the historical control rate for female B6C3F1 mice
in all NTP contract laboratories, as reported by NTP (2006) (444/1601 =
27.7% for HAC or HB, 443/1601 = 27.7% for HAC alone, p = 0.011 by 2-
tail Fischer exact test). Thus, it can be argued that potency information
for AQ-induced HAC or HB in female B6C3F1 mice should not be used

K. T. Bogen
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FIGURE 2. Comparison of (top) d10 and (bottom) estimates obtained using the BMDS (on X-
axis) vs. the GHS modeling approach (on Y-axis), for ≥94 data sets simulated from each of six dif-
ferent risk models defined in Table 1 (n = 584). Black lines show Y = X. Blue line and dashed curves
show each corresponding linear fit and its 95% confidence limits (for , excluding 18 BMDS esti-
mates all <0.6 mg/kg/day that are significant outliers). 
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to estimate potential net potency of AQ in humans, because the corre-
sponding bioassay data are anomalous. However, in the present study, this
information was (conservatively) used for GHS-based estimation of net
potency, as described in Methods.

The GHS-based estimate of net human-equivalent tumorigenic AQ
potency (qHE), shown in Figure 4, has an expected value, and 50th, 95th,

Generic Hockey-Stick Model
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TABLE 5. GHS-model estimates of AQ tumorigenic potency in rodents. 

Species, Tumor q q* qHE
b qHE* b

Sex typea (mg/kg/day)-1 (mg/kg/day)-1 (mg/kg/day)-1 (mg/kg/day)-1

Rat, M MCL –0.13 (–0.24, –0.050) –0.68 (–1.3, –0.27)
Rat, F MCL –0.052 (–0.11, –0.010) –0.33 (–0.67, –0.063)
Rat, F RTAC 0.0034 0.0072 0.021 0.045
Mouse, M HB 0.00091 0.0018 0.010 0.020
Mouse, M HC or HB 0.0022 0.0034 0.025 0.038
Mouse, M HAC or HB 0.0048 0.0090 0.054 0.10
Mouse, F HC 0.00015 0.00059 0.0016 0.0063
Mouse, F HAC or HB 0.011 0.017 0.12 0.18

a MCL = mononuclear cell leukemia, RTAC = renal cell adenoma or carcinoma, HB = hepato-
blastoma (benign or malignant), HC = hepatocellular carcinoma, HAC = hepatocellular adenoma or
carcinoma.

b q = tumorigenic potency (limit on increased risk per unit dose d as d→0); columns 3 and 5 list
estimated expected values of q; asterisk (*) indicates 1-tail 95% confidence bound(s); HE q-subscript
indicates human-equivalent potency, derived assuming qHE = q(70 kg/w)1/3 where w = adult animal
body weight in kg, and w was assumed to be 0.445 and 0.280 kg, and to be 0.050 and 0.055 kg, for
male and female rats, and for male and female mice, respectively, used in the NTP (2005) rodent can-
cer bioassay of AQ.

FIGURE 3. Cumulative distribution of anti-tumorigenic AQ potency at suppressing spontaneous
mononuclear cell leukemia in male and female F344/N rats, based on GHS-analysis of correspon-
ding NTP (2005) cancer bioassay data. 
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and 97.5th values of –0.077, –0.071, –0.0080 and 0.0018 (mg/kg/day)-1,
respectively, and indicates that Prob(qHE > 0) = 0.028. The latter proba-
bility illustrates how the GHS model can be combined with the method
described in the Appendix to assess the likelihood of net positive or net
negative potency of an agent or exposure scenario that jointly induces
and suppresses cancer risk.

4. DISCUSSION

The GHS model is simpler to use to estimate BMD and potency
aspects of low-dose dose-response than the multi-model BMDS numerical
optimization and decision-tree procedure (EPA 2000a, 2010b), for five
key reasons:

1. Number of Models. The GHS model consists of one dose-response
model applied in one automated step to each data set, whereas BMDS
consists of a suite of many models.

2. Focus on Low-Dose Dose-Response. By virtue of its mathematical
form, the GHS model focuses more efficiently on the specific prob-
lem of characterizing available low-dose dose-response information of
key relevance to making decisions concerning protection from or pre-
vention of toxicity, without expending additional modeling effort, or
model-output analysis effort, to accurately characterize dose-response
over the entire range of possible response. The GHS approach is thus
a conceptually simpler approach that achieves the same purpose as
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FIGURE 4. GHS-based estimate of net human-equivalent tumorigenic AQ potency (QHE), calculated
as a stochastic difference between (a) the stochastic sum of positive carcinogenic potencies estimat-
ed from data indicating the ability of AQ to induce renal tubular cell adenomas or carcinomas in
female F344/N rats and hepatoblastomas in male B6C3F1 mice, and (b) estimated AQ potency at
suppressing spontaneous leukemia in F344/N rats, after first applying interspecies adjustments to all
estimated rodent potencies involved. Dashed vertical line corresponds to QHE = 0. 
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BMDS, albeit by focusing more narrowly on the low-dose end of avail-
able dose-response information. Dose-response characterization over
an entire response range can be quite important in a number of deci-
sion contexts (e.g., involving experimental design, pharmacology,
resource prioritization, or triage) that hinge on accurate prediction
over this entire range (see, e.g., Bogen 2005). The BMDS approach
can effectively support such goals, whereas the GHS approach
described cannot.

3. Efficiency of Analysis. BMDS risk models must be fit individually to
each data set. Non-automated decision-tree methods must then be
applied to the complete set of model-specific BMDS outputs, to
address model-specific and inter-model goodness-of-fit criteria and
select a desired model output from a complex array of model outputs
produced for each model fit. While the relatively new BMDS “sessions
template” feature automates the application of multiple models with-
in certain predefined BMDS-model subsets, it does not automate
either the application of the decision-tree criteria or the recom-
mended additional step by which users are asked to document how
the criteria were applied to sets of BMDS output. Nor does the cur-
rent version of BMDS automatically re-fit poorly fitting models to data
sets that delete the highest dose group(s). The “sessions template”
feature also requires a considerable amount of labor to set up
required model-specific input-data and model-execution files, all
requiring interaction with a mildly labor-intensive Excel®-like user
interface, which has very few symbolic or object-oriented features that
might enhance implementation efficiency.

4. Mathematical Implementation. The GHS model described was opti-
mized nearly entirely analytically, using a numerical procedure (if nec-
essary) only to solve for roots of convex polynomials of degree >4,
whereas BMDS is optimized by standard numerical methods to maxi-
mize likelihood functions or “surfaces” with respect to the parameters
of each model. For small samples, nonlinear models, and/or models
with constrained parameters, such likelihood surfaces may be multi-
modal and/or otherwise depart substantially from quadratic forms ide-
ally suited for numerical optimization. Consequently, the BMDS
approach may occasionally (or, evidently for hormetic data, fairly
often) fail to converge or may converge on meaningless estimates. In
such cases, users are advised to restart optimization using different ini-
tial values of parameters to be estimated. In contrast, the GHS model
always converges, to yield parameter estimates. Of course, standard
maximum likelihood methods, or newer modified/adjusted profile
likelihood methods, could also be used to optimize the GHS model, in
which case convergence failure would arise for this approach as well.
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5. Characterization of Potential Hormetic Trend (i.e., Negative Potency).
The GHS model is structured to perform an automatic statistical char-
acterization of the likelihood of any hormetic trend (i.e., negative slope)
exhibited by low-dose dose-response data, as a routine component of
performing a GHS model fit. Except for an unconstrained polynomial
model that is not routinely applied due to its mechanistic implausibility,
BMDS models do not characterize or assess the likelihood of hormetic
behavior the way these models are typically applied. The “complemen-
tary” procedure applied to obtain GSH fits to data on AQ-induced
reduction of MCL in rats could also be applied using the BMDS
approach. However, the complementary procedure was required in the
AQ illustration only because the hormetic responses were so pro-
nounced as to drive tumor risks to near zero in all dosed groups of rats.
Had the reduction been a bit less pronounced, the GHS model could
reflect this successfully, whereas BMDS could not do as well consistently.
This is because simply releasing the constraint on the linear term of, for
example, the BMDS MC or polynomial model might do well to model
some hormetic data sets, but could fail to give meaningful results for
others by predicting negative risks within the observed dose range,
because, unlike the GHS model, BMDS models do not (currently)
impose functional constraints to ensure that R(d) ≥ 0. Methods dis-
cussed in the Appendix extend the ability of the GHS model to charac-
terize net potency associated with multiple independent endpoints.

GHS-based estimates of BMD and potency obtained for simulated
non-hormetic data sets were found to be largely redundant, in the sense
that these two measures of low-dose dose-response conveyed essentially
equivalent information (Figure 1). This result raises a fundamental ques-
tion concerning the entire rationale of using a BMD approach. If BMD
and BMDL can nearly always be predicted very accurately, or otherwise
typically at least fairly accurately (within a factor of 1.5), from correspon-
ding estimates of potency and upper-bound potency, respectively, and if
substantial deviations from this predictive relationship are in each case
statistically supported by available low-dose data, why not base decisions
solely on the estimated value or upper bound of the maximum slope (i.e.,
potency) of low-dose dose-response that is statistically consistent with
those data? A key point of the GHS model is that by applying it, relevant
available data can be used to estimate potency or upper-bound potency in
a way that is statistically consistent with those data. By applying the GHS
model, these estimates are not pre-judged by inferring any limitation on
their meaning or reliability by reference to a BMD or BMDL that is in
turn defined by a BMR selected without reference to the data being fit. A
focus on estimating slope per se, which is provided by the GHS approach,
does not necessarily imply a belief, or policy of inferring, that a low-dose
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slope estimate that is statistically consistent with a set of dose-response
data is meaningfully interpreted at doses far below the dose associated
with the lowest observed response above background. Such a belief or
policy is typically adopted for ionizing radiation, radiomimetic chemical
carcinogens, and many or most other genotoxic chemical carcinogens
(e.g., EPA 2005). For other (presumed “nonlinear”) endpoints, the pre-
dictive potency/BMD relationship observed in this study could be
applied to implement the usual method of deriving a reference
dose/concentration (EPA 2002), and to help formulate unified risk-
based approaches to regulating environmental exposures associated with
different types of toxic endpoints (NRC 2009).

GHS-based estimates of BMD and potency performed about as well or
better than corresponding BMDS estimates, at least for quantal data of
the type investigated (Tables 2 and 4). Specifically, the GHS approach
clearly outperformed the BMDS approach in estimating potency and its
upper confidence limit, which is understandable insofar as the BMDS
approach was not designed to estimate this low-dose dose-response char-
acteristic, despite widespread use of the BMDS approach to do just this
(see Introduction). The BMDS approach yielded plausibly unbiased esti-
mates of BMD for more (six of seven) types of simulated quantal data
than did the GHS approach (four of seven types). However, the GHS
approach yielded fairly good BMDL coverage (≥0.89) for all seven data
types simulated, while the BMDS approach did so for only four of the
seven data types. Risk acceptability decisions based on BMD methods typ-
ically are based on potency or reference dose/concentration calculations
involving BMDL rather than BMD estimates (e.g., Cal EPA DPR 2004;
EPA 2000a, 2002, 2005; CalEPA OEHHA 2009).

BMD estimates and approximately 62% of BMDL estimates obtained
by both methods applied to simulated sets of non-hormetic data were
highly correlated (Figure 2). Approximately 35% of BMDL estimates
obtained by the GHS approach were <75% below (i.e., more conservative
than) corresponding BMDS estimates, and approximately 3% of BMDLs
estimated by BMDS had very low values far below the corresponding GHS
estimates (Figure 2). The BMDS approach failed, on average, about 90%
of the time to correctly identify BMDL-associated quantal dose-response
models that were used to simulate corresponding sets of non-hormetic
dose-response data sets analyzed, which all were generated assuming 50
animals in each of five dose groups (Tables 1 and 3). The sample size
used in this study exceeds that of many if not most toxicity data sets used
for regulatory risk assessment. The very low rate of successful model iden-
tification indicates that even this sample size is far from approximating
asymptotic conditions under which maximum-likelihood BMDS methods
guarantee a 100% success rate. The low success rate does not indicate any
fundamental flaw in the BMDS approach, because it was not specifically
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optimized to correctly match models used to estimate BMDL with those
that actually generate data to be fit. Rather, the low success rate indicates
the degree to which model-specific information turned out not to be rel-
evant to estimates obtained by using the BMDS approach.

Modifications could be made to the BMDS-recommended model-
evaluation decision tree (EPA 2000a, 2010b) to enhance its reliability and
performance. Such modifications were not investigated in view of the
adequate performance of the proposed, simpler GHS approach to mod-
eling quantal data, which can readily be extended to address the case of
continuous data.

The application of the GHS model to anthraquinone data, together
with the net-potency-calculation method described in the Appendix, illus-
trate how these approaches can be used to help assess whether a net pos-
itive or negative cancer risk is posed by environmental or dietary expo-
sures to one or more agents that, singly or jointly, exhibit an ability to
both induce and suppress cancer risks. Agents or agent mixtures with
such a capacity currently pose a regulatory dilemma, insofar as no con-
sensus exists on how (or whether) to perform quantitative net-potency
assessment for such agents, rather than simply ignoring demonstrated
tumor-suppressing capacity. From a public health perspective, risk man-
agement must necessarily consider indirect (unintended) imposition or
augmentation of net expected harm, if and whenever it may be likely to
occur—a point emphasized in a key National Research Council recom-
mendation (NRC 1994). The key question upon which a determination
of significant net cancer risk hinges is whether or not hypothesized sig-
nificant anti-carcinogenic effects are plausibly induced at low environ-
mental exposure levels with a linear no-threshold dose-response; that is,
with the same type of low-dose dose-response relationship that is typically
assumed for many, if not most, chemical carcinogens. This appears to be
likely in the case of AQ-induced MCL suppression (see Introduction). For
this type of agent, such information must be incorporated into net-poten-
cy estimation in order to implement the National Research Council rec-
ommendation that quantitative probabilistic approaches be used to
ensure that regulatory decisions inflict no public health detriment (NRC
1994).

APPENDIX:

Net Potency of Jointly Induced and Suppressed Toxicity

The NRC (1994) previously described a method for calculating aggre-
gate potency for increasing the risk of nonthreshold, quantal, toxic end
points caused by exposure to multiple agents—or a single agent causing
multiple related endpoints such as multiple tumor types—assuming inde-
pendent actions and background risks, conditional on a multistage

K. T. Bogen

204
23

Bogen: Generic Hockey-Stick Model

Published by ScholarWorks@UMass Amherst, 2014



model of exposure-related risk (NRC 1994). This general approach can
be modified as follows to allow similar calculations in the case that poten-
cies characterize both induction and suppression of the endpoints
involved, when quantal dose-response data for each ith (among ni)
induced endpoint Ai are well described for inducing agents by multistage-
type (including GHS) risk models, Ri(d) = 1 – exp(–Σk=0 qi,k dk), and for
each jth (among nj) monotonically suppressed endpoints Bj by correspon-
ding complementary risk models Rj(d) = exp(–Σk=0 qj,k dk) that in the sim-
plest case are conditioned on k ≤ 1 and so reflect risks that decline expo-
nentially. Let qi and aj denote the linear coefficients in dose of these mod-
els applied to a specified agent or mixture. Note that risk-inducing poten-
cies qi may each or all have some likelihood of being negative (e.g., if they
are estimated using a GHS model). In contrast, it is assumed here that
Prob(aj < 0) = 0 for all j. At sufficiently low dose, these risk models
become virtually equivalent to one-hit risk models for risk induction (R)
and for monotonic risk suppression (S),

Ri(d) = pi + (1–pi) [1 – exp(–qi d)] for endpoints Ai,

and

Sj(d) = rj exp(–aj d) for endpoints Bj,

respectively, where pi and rj are corresponding background risks condi-
tional on d = 0. Since by de Morgan’s rule (where each overbar denotes
the corresponding complementary set):

,

and because increased risk assuming independent background is A(d) =
[P(d) – P(0)]/[1 – P(0)] for any risk model P(d), it follows that increased
aggregate risk AA∪B(d) for endpoints Ai or Bj is:
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Net aggregate potency Q, defined as the derivative (slope) of AA∪B(d)
with respect to dose d in the limit as d → 0, is thus:

,

where terms bj here denote effective potencies of monotonic risk sup-
pression estimated for endpoints Bj, j = 1,...,nj, respectively. In this expres-
sion for aggregate potency Q, whereas the contributing risk-inducing
potencies qi, are all independent of corresponding estimated background
risks pi, this is not true of the contributing effective potencies bj for
monotonic risk suppression, which are non-linearly proportional to cor-
responding background risks rj. The distribution characterizing uncer-
tainty in Q associated with estimation errors in corresponding parameters
qi and bj is obtained by evaluating the right-hand expression probabilisti-
cally (e.g., by Monte Carlo simulation using random samples from respec-
tive distributions estimated for those parameters).
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