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O An essential part of toxicity and chemical screening is assessing the concentrated related
effects of a test article. Most often this concentration-response is a nonlinear, necessitating
sophisticated regression methodologies. The parameters derived from curve fitting are essen-
tial in determining a test article’s potency (EC,) and efficacy (E ) and variations in model
fit may lead to different conclusions about an article’s performance and safety. Previous
approaches have leveraged advanced statistical and mathematical techniques to implement
nonlinear least squares (NLS) for obtaining the parameters defining such a curve. These
approaches, while mathematically rigorous, suffer from initial value sensitivity, computation-
al intensity, and rely on complex and intricate computational and numerical techniques.
However if there is a known mathematical model that can reliably predict the data, then non-
linear regression may be equally viewed as parameter optimization. In this context, one may
utilize proven techniques from machine learning, such as evolutionary algorithms, which are
robust, powerful, and require far less computational framework to optimize the defining
parameters. In the current study we present a new method that uses such techniques,
Evolutionary Algorithm Dose Response Modeling (EADRM), and demonstrate its effective-
ness compared to more conventional methods on both real and simulated data.

Keywords: Evolutionary Algorithm, Hill-Slope Model, Parameter Estimation, Nonlinear Regression

1. INTRODUCTION

Nonlinearity is a pervasive phenomenon in biological systems
(Schnell et. al 2007). Processes such as mRNA expression (Vanden
Heuvel, et al. 1994, Hariparsad et. al 2008), neural networks (Rolls and
Treves 1998), and metabolic networks all have an input/output relation-
ship that is nonlinear. Moreover, such systems often exhibit sigmoidal or
exponential responses in the presence of increasing stimuli. However, it
is typically not feasible to have inputs that are truly continuous; instead an
investigator must partition the input space into discrete pieces compris-
ing a representative range. Thus, a crucial task for any researcher is the
process of information recovery, as an experiment cannot be run with

Address correspondence to: Alison A Motsinger-Reif, Ph.D., Bioinformatics Research
Center, Department of Statistics, 840 Main Campus Drive, CB 7566, North Carolina State
University, Raleigh NC 7695-7566, USA, TEL: 919-515-3574, FAX: 919-515-7315, EMAIL:
motsinger@stat.ncsu.edu
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Example Dose-Response
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FIGURE 1: Example Nonlinear Dose-Response

infinite precision the researcher must interpolate the missing informa-
tion between these discrete observations. An example of a prototypical
sigmoid response is given in Figure 1.

One traditionally used approach in dose-response modeling has been
to use an implementation of nonlinear least squares (NLS) (Pinheiro et
al. 2006). Some well-known algorithms that implement NLS are the
NL2SOL algorithm (Dennis et al. 1981) from the Port package
(http://netlib.bell-labs.com/netlib/port/) and the Gauss-Newton
method (Bates and Watts 1988). These techniques are taken from the
wealth of research in nonlinear regression analysis and attempt to mini-
mize the least squares estimator (Bates and Watts 1988; Dennis et al.
1981). Section 1.3 will discuss these two algorithms in further detail.

While there is a rich history of using NLS for dose response model-
ing, there are several disadvantages to the method that are of concern.
First, model fitting with NLS methods are highly sensitive to the initial
parameter values used, resulting in inconsistent parameter estimates or
lack of model convergence (Bates and Watts 1988). Additionally, the local
search optimization used in NLS modeling can limit the potential of
parameter estimation in the presence of complex fitness landscapes, pre-
venting the algorithms from discovering the globally optimal solution
(Bates and Watts 1988).
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To address these concerns, we propose the use of an Evolutionary
Algorithm (EA) to perform the search and optimization for the dose-
response model. EAs are search methods inspired by the biological con-
cepts of “natural selection” and “survival of the fittest”. EAs differ from
more traditional optimization techniques in that they involve a search
from a “population” of solutions, not just a single point. EAs iterate using
a competitive selection that weed out poor solutions, and the solutions
with high “fitness” (the best fitting solutions) are recombined and mutat-
ed in each iteration to “evolve” the best possible solution. EAs have a rich
history in optimizing nonlinear models in diverse areas such as engi-
neering (Oyama and Liou 2001), genetics (Motsinger-Reif et al. 2008;
Motsinger-Reif and Ritchie 2008), and even air traffic control (Delahaye
and Puechmorel 2004). Additionally, other machine-learning approach-
es have been successfully applied to dose-response data (Chamjangali et
al. 2007), indicating the potential of such a strategy. Given the success of
EAs in such disparate areas and the comparatively modest mathematical
requirements, we believe that our approach is a viable alternative to tra-
ditional ones for those wishing to do high-throughput dose-response
modeling. In the current manuscript we describe the use of an EA for
dose response modeling (EADRM) and its implementation. Additionally,
we show the results of an extensive configuration parameter sweep to
evaluate the stability of the EADRM solutions and determine optimal con-
figuration parameters. Then we demonstrate its empirical success in
detecting a range of simulated dose response models and a real response
dataset. Additionally, we compare the performance of the EADRM algo-
rithm to two commonly used NLS algorithms, and demonstrate the
improved relative performance of the EADRM method in regards to both
model fit and computational requirements.

The rest of this paper is divided as follows: Section 1 provides a gen-
eral introduction to evolutionary algorithms and an overview of tradi-
tional NLS approaches. Section 2 describes the EADRM and NLS imple-
mentations, the mathematical models used, and the testing methodology
and environment. Section 3 describes the simulation experiments evalu-
ating a range of different parameter settings for the EADRM algorithm,
as well as the empirical comparisons of the new method with the tradi-
tional NLS approaches. Finally, Section 4 will discuss the results and pos-
sibilities for future directions.

1.1 Overview of Evolutionary Algorithms (EAs)

As previously mentioned, EAs are a set of general machine-learning
approaches inspired by Darwinian evolution and the concept of survival
of the fittest (Fogel et al 1966; Holland 1975) to automatically “evolve”
optimal models for the data at hand. EAs maintain a pool of potential
models/solutions (population) comprised of initial estimates of the solu-
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tion (individuals). Each individual has some measure of relative quality,
often a measure of model fit (fitness) that is specified by the user. High
quality solutions (those models with the highest fitness) are selected for
“reproduction” during the iterations (generations) of the EA process.
These selected models/solutions then undergo one or more evolutionary
operators (i.e. crossover, mutation, duplication, etc.). These operators are
used to generate new models/solutions that are biased towards regions of
the search space for which good solutions have previously been observed.
This iterative process results in the development of increasingly “fit” mod-
els/solutions (Koza 1995). This iterative process continues until the solu-
tion converges (where fitness becomes maximal and/or unchanging across
a number of generations), or until a pre-specified number of generations
are completed. There are many specific algorithms that all use this gen-
eral EA approach, including genetic algorithms, and genetic program-
ming (Koza 1995). For the current study, we use a very general EA
approach as described in detail below.

1.2 Nonlinear Regression and Nonlinear Least Squares

Nonlinearity occurs if the observational data can be modeled by a
nonlinear combination of the input parameters and has one or more
independent variables. A generalized nonlinear model, using the nota-
tion from (Bates and Watts 1988), may be written as Equation 1.1:

Yn :f('xn’®) + Zn

where, in this context, Y is the nth observation, fis the expectation func-
tion (i.e. the “prediction” function), and x_ is a vector of regressor or
independent variables for the nth case. The expectation function is
entirely deterministic whereas Z represents the nondeterministic or sto-
chastic portion (Bates and Watts 1998) of the response and is often
referred to as the noise or disturbance. For a function to be nonlinear at
least one of the derivatives of the function with respect to its parameters
is dependent upon on at least one of the parameters. This is the crucial
difference between linear and nonlinear models.

One of the most elementary examples of this requirement is the
exponential decay function which may be expressed as Equation 1.2:

f(t,©) = 7!
and whose derivative with respect to © is Equation 1.3:
af/ 00 = —1e®!
Since the derivate of fis dependent upon O, the function is nonlinear.
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Nonlinear least squares attempts to model nonlinear data by making
linear approximations of the model and then iteratively improving these
approximations based on the least squares estimator. The least squares
estimator is a measure of the sum of squares expressed as Equation 1.4:

20, /(%,0)?

In the context of regression analysis, this definition of sum of squares is a
measure of the residuals, or error, associated with a given prediction func-
tion. Note that unlike the more familiar linear least squares, nonlinear
least squares solutions are not guaranteed to be unique.

1.2.1 Gauss-Newton Method

The Gauss-Newton algorithm is a special case of Newton’s method for
finding the minimum of a function and can only be used on sum of
squares minimization problems. The approach takes an initial guess of
the parameters (@°) and continues to improve upon this estimate until
the solution converges; meaning that the improvement obtained from
further iterations is so small that there is no “useful” change to the param-
eter estimates. More specifically, the method solves the least squares prob-
lem for a linear approximation of the function in the region “near” the
initial guess, ©°, then replaces the initial value with the linear least
squares solution, and iterates until convergence. To minimize the approx-
imate residual sum of squares, the Gauss increment (0) is computed using
a Jacobian matrix of the residuals with respect to ©, which requires com-
puting a matrix of first-order partial derivatives. For a more in depth
explanation refer to (Bjorck 1996; Bates and Watts 1998).

1.2.2 NL2SOL

NL2SOL is a gradient based, hill-climbing approach to nonlinear least
squares. This approach maintains a secant approximation to the second
order portion of the leastsquares Hessian matrix and then dynamically
determines when this approximation is appropriate. The approximation is
then scaled, updated, and the process iterates while attempting to mini-
mize a local quadratic model of the sum of squares function constrained to
an elliptical trust region centered at the current approximate minimizer.
This process requires computing the Hessian matrix, which is comprised of
second order partial derivatives and requires numerical approximations
that are cumbersome and computationally expensive. Less formally stated
this approach uses a gradient to guide the algorithm iteratively to a least
squares estimate. This approach is detailed in (Dennis et al. 1981).

1.2.3 Limitations of NLS
Nonlinear least squares is a very powerful approach to regression
analysis. However it also has shortcomings which we believe an EA may
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address. In particular it is very sensitive to initial values and indeed most
texts on NLS contain entire chapters devoted to finding suitable initial
values (Bates and Watts 1998). This represents an important concern as
most NLS implementations require the user to supply “reasonable” start-
ing values. However, “reasonable” is a largely subjective term and highly
dependent not only upon the model being fit but also the particular
instance of the model. Failure to provide appropriate starting values may
cause the algorithm to fail without returning a solution. EAs in contrast
are less susceptible to poor initial conditions are thus able to recover from
poor initial estimates (Knowles et al. 2008).

Also, because NLS is a sequential search, it is more prone to local min-
ima because it searches the solution space in a linear manner. EAs in con-
trast search the solution space in parallel, sampling multiple points simul-
taneously and evaluating their quality. This makes them less susceptible to
stalling on a local solution. This is an important advantage in modeling
biological phenomena such as dose response since complex fitness land-
scapes are almost ubiquitously demonstrated (Moore and Parker 2001).
It can also be argued that an EA is easier to implement than the NLS
methods as the only computation requirement for an EA is a random
number generator, whereas NLS techniques require calculation of first
and second order partial derivatives, which must use advanced numerical
approximation techniques.

2. METHODS AND MATERIALS
2.1 Evolutionary Algorithm Dose Response Modeling (EADRM)

As previously mentioned, we implemented an EA for dose-response
modeling (EADRM). The EA is used to not only optimize the model param-
eters, but also to select the appropriate model. There are two mathematical
models that can be evolved using EADRM: sigmoidal and exponential.

In the case of the sigmoidal model, EADRM uses an equivalent form
of the 4-Parameter Logistic model, also known as the Hill-Slope model,
and is recommended in (NIH NCGC 2008). The equation for this model
is given in Equation 2.1:

E —-E .
f( X) — Emax _ max mln{
1+ (‘x/EC{)O) Hillslope

This model defines a response in terms of four parameters; E__, E ..

EC,,, and Hillslope (commonly represented as the variable W). Refer to

Figure 1 for graphical representation of these parameters. The E__ and

E . are the upper and lower asymptotes of a response and represent the
min . . . . . .

saturation and minimum response, respectively. E__ is typically referred

to as a test article’s efficacy. The EC;, is the effective concentration
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required for 50% of maximal induction (E_ ), and represents the
response’s inflection point. It is also taken as a measure of the test arti-
cle’s potency. The Hillslope parameter dictates how quickly the response
transitions from E __to E . , e.g. a Hillslope value of 1 would be a linear
increase with respect to concentration and a very large value would make
the response resemble the step function centered at the EC,.

It is also known that all biological systems do not have a sigmoid type
of response, or it may be that the saturation point was not reached dur-
ing experimentation. In these instances it may be more appropriate to
use an exponential model in analysis of the data. Equation 2.1b shows a
typical exponential model:

J(x) =B e™

where B is the scale factor and A is the growth or decay factor that must
be optimized. Moreover, it may be the case that a high-throughput data
set contains both types, sigmoid and exponential, and techniques able to
fit the correct model in a hands free manner could be valuable. In
Section 3.4, we demonstrate the flexibility of our approach by modeling
these types of data.

2.2 Evolutionary Algorithm Implementation

For each of the mathematical models selected, EADRM optimized
each parameter in either model. It performs this optimization using the
process described in the following pseudocode:

Initialize the population of initial solutions

Evaluate initial population

Repeat
Perform competitive selection
Apply genetic operator to generate new solutions
Evaluate solutions in the population

Until a stopping criteria is met

The initial population is comprised of a user-specified number of ran-
domly generated solutions, using sensible initialization to ensure that all
solutions are computationally valid. Additionally, the user has the option
to use only Hill-Slope, only exponential, or both models in the optimiza-
tion (depending on knowledge of their own dataset). In the case of the
Hill-Slope solutions, E __and E_. are initialized to the maximum and
minimum observed response, respectively. The EC, is initialized to the
value half way between the maximum and minimum concentration val-
ues, on a logarithmic scale. For most assays this will be close to the actual
EC,,, however even if the true EC; is not near this value the algorithm
has not started so poorly that it will not be able to recover, due to the EA’s
ability to maintain genetic diversity (meaning a diverse population of
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potential models). The Hill-Slope is initialized to a value of 2.5, which is
reasonable by the same logic as the EC,. In the case of the exponential
solutions, the scale factor f is initialized to 1 and the growth A factor is
initialized to 2.5. If the user wants only a single model to be evaluated, all
initial solutions use that model, where if both models are to be consid-
ered, 50% of the initial solutions use the Hill-Slope model, and 50% of
the initial solutions use the exponential model.

Each of these randomly generated solutions are then evaluated for
their “fitness”, or how well they actually model the data. The measure of
fitness used in EADRM is R?, where a higher R? value represents higher
fitness (better fit) of the model/solution. We use R? because it allows for
easy comparison between responses on different efficacy scales as well as
between different mathematical models. R? has two components involved
in its calculation. The first component is the Sum of Squares Total (SS7)
and is given in Equation 2.2:

N
SST=§(y,~—&>‘2

Where y, is the ith observed value and y is the average of all observations.
The second component is the Sum of Squares Residuals (SSR) and is
given in Equation 2.3:

N
SSR = Zl [ (yi - ypredirted) ?

SSRis a common measure of residual error associated with a fit. The final
formula for R? is given in Equation 2.4:

_ (SST- SSR)
N SST

R2

Note with this definition of R? the maximum value is 1, as a fit that
goes exactly through all observed points will have residual error of zero.
Using the EA implementation, this is zero is not “protected”, i.e. achieving
a perfect fit will not cause an error with the algorithm, whereas certain
implementations of nonlinear least squares (http://www.R-project.org.)
warn against using zero-residual data. This unidirectional (Holland 1975)
fitness function is then used in the selection process of the EA.

Selection of individuals for reproduction often conforms to one of two
general schemas: ordinal or proportionate-based selection (Motsinger et
al. 2006). Roulette Selection is the most commonly used example of propor-
tionate selection (Motsinger et al. 2006) and works by assigning an indi-
vidual’s probability of being selected for reproduction in proportion to its
fitness. Tournament Selection is the most commonly used example of ordinal
based selection (Motsinger et al. 2006), and works by randomly selecting
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N individuals from the entire population and allows the individual with
the highest fitness of those selected to reproduce. Tournaments are
repeated until a suitable number of surviving individuals have been
achieved. In the current implementation of EADRM, tournament selec-
tion, using a user-specified tournament size (N) is used for selection. In
the EA field, there are relative advantages and disadvantages for different
selection techniques, and each has advantages and disadvantages for dif-
ferent modeling challenges (Motsinger et al. 2006). In the current study,
tournament selection is chosen because it is well-established that tourna-
ment selection maintains diversity in the solution population, which is
important when searching for global optima (Koza 1995).

Individuals that “win” these tournaments then undergo mutation
(the evolutionary operator implemented in EADRM), where mutation
represents randomized changes in randomly selected parameter values.
To create a diverse initial population, these original estimates are allowed
to mutate randomly up to +/-100%. Newly initialized Hillslope values are
assigned a negative sign with 50% probability to allow the algorithm to fit
suppression/inhibition like responses in addition to induction responses.
Likewise, the A term is given a negative value with 50% probability in
newly created individuals from the exponential model. Consequently, the
mathematical model need not be changed to accommodate different
types of responses. Subsequent individuals are only allowed to mutate up
to +/-10% from the parameter values of their parents. This allows indi-
vidual solutions to continue to evolve stochastically while preventing
potentially good solutions from being derailed by gross mutation. After
the initial population is created the sign of an individual’s and their prog-
eny’s exponentiated term remains constant for both the Hill-Slope and
exponential models.

This selection and mutation processes are repeated until the stopping
criteria is met. In EADRM, the stopping criteria used is either a maximal
R? value (of 1.0) or a user-specified number of generations.

User supplied parameters determine the initial and equilibrium pop-
ulation sizes. During simulation each tournament winner is allowed to
have the same number of children that will replenish the population to
the equilibrium size. Figure 2 provides an overview of the overall EADRM
algorithm.

2.3 Data Simulation and Analysis

A crucial component of any methodological development is the vali-
dation of the new method on simulated data. In order to evaluate the
potential of EADRM to model both Hill-Slope (sigmoidal) and exponen-
tial models of a dose-response, we simulated both types of dose-response
models with varying amounts of noise. Unlike in real data applications, by
using simulated data with known models, we can evaluate the sensitivity of
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Evolutionary Algorithm Overview

EA Parameters:

* P, Initial Population Size

Initial Population

* Create a population of P, individuals by * P Equilibrium Population Size
randomly mutating initial solution estimate « N: Tournament Size
+ T: Number of Tournaments

+ G: Maximum number of generations for simulation

Selection Reproduction

* Randomly select N individuals from _ _ « Selected individuals reproduce by
population. Allow individual with highest random mutation until equilibrium
fitness to survive population (P) is reached

» Repeat this T times

Termination Solution
No « Has the solution converged? _Y®S__ « Individual with highest
+ Has the simulation run for G ﬁlnes_s is taken as
solution

generations?

FIGURE 2: Evolutionary Algorithm Overview

the method to different parameter settings, and objectively investigate the
relative performance of the method, since the true model is known for
these simulations. For each combination of model and noise level, 50 sim-
ulated datasets were generated for analysis. By performing replicates of
each simulated model, the accuracy and precision of the EADRM solu-
tions can be evaluated. This initial round of analysis was to assess how sen-
sitive EADRM is to the configuration parameters. For the sigmoidal mod-
els, the four model parameters were randomized and up to +/-10% ran-
dom noise was added. This randomization was done in a constrained man-
ner to reflect the characteristics of real data. The EC,j was kept between
the minimum and maximum concentrations, the E___was greater than the
E_..the E_. was greater than 0, and the Hill-Slope was between .1 and 8.
Each observation generated from these parameters was then given up to
+/-10% noise randomly for the evaluation of the performance of the
method. For the exponential models, data was generated using the model
from [equation 2.1b] with f=1.5 and A=2.75, with 5% random perturba-
tion added to each datapoint to preclude the chances of an exact fit.
First, the simulated sigmoidal model data (with no noise) was used to
evaluate the sensitivity of the EADRM method, in terms of the quality/fit
of the solution, convergence rate and computation time. To assess these
effects, each configuration parameter was swept over a range of repre-
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Table 1: Evolutionary Algorithm Parameters Evaluated

Initial Equilibrium Number of Number of Tournament
Population Population Generations Tournaments Size
EA Parameters 5000 200 100 20 10

sentative values and the convergence rate (the approximate number of
generations at which the population of solutions reaches maximal fitness,
where there is not improvement in model R? across increasing genera-
tions) and the computation time needed to obtain a fit were measured.
The configuration parameter evaluation included the following: Initial
Population Size, Equilibrium Population Size, and Tournament Size. For
each configuration parameter we swept various values for the parameter
being tested while the others remain fixed and measured the results.
Table 1 summarizes the values used in the parameter sweep. To measure
the effect of each configuration parameter, all other configuration
parameters not being tested remained constant, and the results were aver-
aged across the simulation replicates for each model simulated.

To select the final configuration parameter values for EADRM, six dif-
ferent permutations were tested on the same data. Since EADRM is a non-
deterministic process, each set of configuration parameter values was
used to analyze 15 simulated datasets. The model parameter estimates
were recorded, and mean value and standard deviation were computed.
The optimal configuration parameter settings were determined by these
parameter sweep experiments (as described in the results section below)
by determing the configuration parameter combinations that resulted in
the most accurate and least variant model parameter estimates, with min-
imal computation time.

To evaluate the potential of EADRM to fit both sigmoidal and expo-
nential data, EADRM was evaluated on simulated data with three settings,
that are implemented in the software as user-defined choices. First, on sig-
moidal models, EADRM was evaluated by initially generating sigmoidal
solutions. Secondly, on the exponential data, EADRM was evaluated by ini-
tially generating only exponential solutions. Then, to evaluate the potential
of EADRM to evolve appropriate solutions without making any mathemat-
ical model assumptions, EADRM was used to model the sigmoidal data by
initializing solutions using both the sigmoidal and expontial models.

To compare the performance of EADRM against the traditional NLS
approaches, each method was run on simulated sigmoidal data, and
results were averaged across the 50 replicates. Initial value selection for
NLS was done in the same way as for EADRM as described in Section 2.2.

Finally, to evaluate real world performance each approach was
applied to experimental data. Comparisons on real-world concentration-
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responses were made on mRNA expression data obtain from a quantita-
tive Nuclease Protection Assay (qQNPA™) (Roberts et al. 2007) that was
run for in-house positive control assays run at CellzDirect. The assay was
performed in cultures of primary human Hepatocytes furnished by
CellzDirect. The values represent the amount of mRNA expressed by a
specific gene quantified by luminescence detection and normalized to
the vehicle control (DMSQO) to obtain a fold-over-control value. The EA
and NLS approaches were applied to these concentration-responses to
assess real-world performance. Data from prototypical inducer
Rifampicin (RIF) for Cytochrome p450 CYP3A4 was used to evaluate each
approach’s performance on a positive response. To evaluate how well
negative or suppressed responses were fit, data from chenodeoxycholic
acid (CDCA) suppression of the gene 3-hydroxy-3-methylglutaryl-
Coenzyme A synthase 2 (HMGCS2) was used. Details of the experiments
used for this evaluation can be found in (Roberts et al. 2007).

All test code and simulations were written and conducted using the R
Statistical Language (R Development Core Team 2008). Random muta-
tion in the EA and random noise were accomplished using R’s built in
random number generator. For comparison, the nls function in R was
used, which implements both Gauss-Newton and NL2SOL. Gauss-Newton
is the default algorithm and NL2SOL may be used by assigning the algo-
rithm option to “port” in nls. Execution time was measured using R’s sys-
tem time function (Sys.time()).

All simulations were conducted using a Quad Core Intel® Xeon®
E5450, 2x6MB Cache, 3.0GHz, 1333MHz FSB. EADRM code is available
from the authors upon request by emailing the corresponding author.

3. RESULTS

In this section we describe the results of the configuration parameter
sweep experiments, the evaluation of the performance of EADRM on
both sigmoidal and exponential models, the comparison to the NLS
results, and the real data application.

3.1 Effect of EA Parameters on Convergence Rate

As mentioned above, to evaluate how an individual EADRM configu-
ration parameter affected the convergence rate of the solution, each con-
figuration parameter was modulated while the other three remained
fixed. The configuration parameters not being tested were given the val-
ues listed in Table 1. Each configuration was then run 50 times and the
results averaged as described in Section 2.3. Execution time was also
recorded for each configuration and averaged to assess each parameter’s
effect. Figures 3 — 8 show these results.
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The results indicate that so long as each configuration parameter is
reasonably large, the convergence rate is only marginally improved by
increasing a given parameter’s size. There is considerable increase in exe-
cution time associated with grossly increasing a given configuration para-
meter’s size. It appears that there is an exponential trade-off between a
single configuration parameter’s size and execution time. These simula-
tions suggest that so long as the configuration parameters’ sizes are not
cripplingly small, that the convergence rate is roughly similar.

Effect of Initial Population Size on Convergence Rate
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Effect of Tournament Size on Convergence Rate
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Execution Time vs. Tournament Size

Time [seconds)

o 20 a0 &0 80 100 120 140 160 180 200

Tournament Size

FIGURE 8: Execution Time vs. Equilibrium Population Size

3.2 Selection of Final EADRM Configuration Parameters and Solution
Stability Assessment

To select parameter values used in the comparison to the NLS
approaches, six configurations representing different permutations of
the parameter ranges were simulated to assess how tightly each configu-
ration converged to the same solution. Each configuration was evaluated
15 times and the average and standard deviation for each configuration
parameter setting combination was recorded. The six configurations are
summarized in Table 2 and the results are tabulated and displayed below
in Table 3 and 4. Finally the execution needed for each configuration is
summarized in Table 5.

The results show that all configurations, even ones with more modest
EADRM configuration parameter values, do relatively well at recovering
the true model parameter values and do so in a consistent manner.
Configuration combinations 3, 5, and 6 performed the best overall as
they had the highest average R?, the most accurate average model param-
eter values, and the lowest average standard deviations. This indicates
that these three configuration combinations were able to accurately
recover the true model parameters and do so with the least amount of
“wobble”. Configuration combination 5 out performed configuration
combinations 3 and 6 slightly in nearly all categories at the expense of
taking nearly four times the amount of execution time. Given the com-
putational expense of configuration combination 5 in relation to the
marginal solution improvement, configuration combination 6 was chosen
for use in further analyses. These configuration parameter estimates are
recommended for EADRM implementation and application.
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Table 2: Configuration Parameter Values for Each Combination:

Configuration 1 2 3 4 5 6

Initial Population 5000 20000 5000 5000 20000 10000
Equilibrium Population 200 200 1000 200 5000 1000
Tournament Size 25 25 25 100 500 300

Table showing the different configurations of EA parameters used in simulations.

Table 3: Average Parameter Values for Each Configuration:

Configuration Top Bottom EC,, w R?

1 998.699 2.347 0.010004 1.905 0.999779
2 999.125 2.277 0.010015 1.893 0.999859
3 999.506 1.885 0.010018 1.511 0.999976
4 998.726 2.341 0.01001 2.089 0.999768
5 999.615 2.075 0.010005 1.513 0.999997
6 999.38 2.453 0.01001 1.621 0.999925
True Value 1000 1 0.01 1.75

Table showing results from each configuration’s simulations. Each column represents the average
value for parameter obtained over 15 simulations of synthetic data with no noise. The true values for
each parameter are shown for comparison.

Table 4: Standard Deviation Values for Each Configuration:

Configuration Top Bottom EC;, W R?

1 2.569 1.564 5.99E-05 0.864 0.000431
2 2.068 1.525 5.36E-05 1.062 0.000367
3 1.822 1.142 9.81E-05 0.034 0.000014
4 2.951 1.228 4.24E-05 1.226 0.000457
5 0.404 1.079 2.71E-05 0.013 0.000003
6 0.855 1.229 2.36E-05 0.044 0.000785

Standard deviation values were recorded for each configuration to measure each configuration’s

stability.
Table 5: Execution Time for Each Table 6: Parameter Values
Configuration

Curve Parameters
Configuration Time (sec)

EMAX 2256
1 22.62846 EMIN 1.064
2 56.08406 EC50 1.021
3 468.71754 W 2.5165
4 136.27968
5 2581.9843
6 1011.2223
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3.3 Initial Value Sensitivity

Assessments of the sensitivity to initial model parameter estimates were
made on EADRM and the two NLS implementations. The model parame-
ter that caused the most perturbation on final solutions was observed to
be the EC50, which represents the curve’s inflection point. To evaluate
how much perturbation the initial EC50 estimate influenced the resulting
solution, eight different values were given as initial estimates for the EC50
and the results tabulated. NL2SOL and Gauss-Newton advise against run-
ning on zero residual data (http://www.R-project.org) so the analysis was
run on simulated data with 1% random noise added to each data point.
Table 6 shows the curve parameters used during simulation.

Using data points generated from the Hill-Slope model defined by
the above model parameters, simulations were performed for 8 different
initial estimates of the EC50. The results are displayed in Table 7. If an
algorithm failed to produce a solution and halted, that is indicated in the
table by NA.

The results show that for estimates close to the true EC50 value (1.021)
the NLS approaches provide very good solutions. However, as the initial
model parameter estimate drifts further away from the true value, most
often the algorithms are unable to provide a solution at all, and if they do
it is generally quite poor. In contrast the EA provides not only a very good
solution, but converges to nearly the same solution, independent of the
initial model parameter estimate. This result is due to the EA’s consider-
able robustness and parallel search technique, which keeps it from being
pigeon-holed by poor initial model parameter estimates. NLS however

Table 7: Results from Initial Value Simulations

Initial EC,, Estimate

0.0001 0.001 0.01 0.1 1 10 100 1000

EA Ey 2266020  92266.724  2266.68  2266.404 2267.874 2267.068 2260.266  2265.44
Ey 09596 1.0055 1.2661 11232  1.0799 07031 09818  1.023
EC,, 10324 1.0325 10317 1.0259  1.0309 10319 10145  1.0279
w 19434 2.0491 1.975 20186 20207  2.0474 37828  2.0268
R 09999  0.9999 0.9999  0.9999 09999 09991 09998  0.9999
NL2SOL E, NA 7443 7443 NA  2267.822 NA NA  3101.499
Eyn NA 7049 ~7049 NA -3.055 NA NA 785.17
EC,, NA 0.0039 0.0039  NA 1.029 NA NA 946.346
w NA -0.0564  -0.0564  NA 1.96 NA NA 6.471
R? NA 0.8356 0.8356  NA 09999  NA NA 0.2182
Gauss-  Ey NA NA NA  2967.822  2267.822 NA NA NA
Newton Ey NA NA NA -3.055  -3.055 NA NA NA
EC,, NA NA NA 1.029 1.029 NA NA NA
w NA NA NA 1.96 1.96 NA NA NA
R NA NA NA 09999 09999  NA NA NA
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relies upon a sequential searchand is thus very susceptible to poor initial
model parameter values and is reliant upon good initial estimates.

3.4 Performance on Exponential Models

As described above, EADRM was used to evaluate the simulated data
generated from an exponential model. Example results are shown in
Figure 9. The results are listed in Table 8. The results demonstrate the
excellent fit of the models generated by EADRM.

Mean Curve for Exponential Model
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FIGURE 9: Resulting Fit from Exponential Model

Table 8: Results from the exponential value simulations.

B k
Mean 1.589 2.8497
Standard Deviation 0.108 0.1857
True Value 1.5 2.75

Summary for the parameter estimates averaged across 15 simulations. Includes average parame-
ter estimates, standard deviations, and the true parameter value used to generate the data.

3.5 Performance with No Model Assumptions

The Hill-Slope simulations were re-evaluated, without using mathe-
matical model assumptions for the initialization, to test the potential of
EADRM to evolve not only the model parameter estimates, but also the
mathematical model used. The results are shown in Figure 10. Summaries
of the results are listed in Table 9. Here we observe that the algorithm was
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able to correctly fit the data using the Hill-Slope model despite that it was
not told explicitly that was the correct model.

Mean Curve for Discovered Sigmoid Model
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FIGURE 10: Result from Simulating both Exponential and Hillslope individuals on Hillslope Data

Table 9: Results from the model-free analysis.

EMAX EMI.\I ECB(P W
Mean 982.0656 1.0063 0.108 2.4658
Standard Deviation 85.6183 0.6374 0.0026 1.0338
True Value 1000 1 0.01 2.75

Summary for the parameter estimates averaged across 15 simulations. Includes average parame-
ter estimates, standard deviations, and the true parameter value used to generate the data.

3.6 Performance on Experimental Data

First we present CYP3A4 gene expression data treated with Rifampicin
(RIF). This concentration-response represents “flatter” or more-closely lin-
ear behavior than do most concentration related gene expression respons-
es. Figure 11 displays this response for all three approaches.

Note that both NLS techniques converge to exactly the same solution
and hence both curves are overlaid and only the Gauss-Newton curve
remains visible. EADRM produces nearly the exact same solution as NLS
but does not underestimate E . whereas NLS produces an E . value less
than zero. The last response represents a negative or suppression like

response of HMGCS2 by CDCA. This is displayed in Figure 12.
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FIGURE 11: Concentration-Response for CYP3A4/RIF
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FIGURE 12: HMGCS2 Suppression by CDCA. Note that the green and red lines overlap, and are not
distinguishable visually.
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4. DISCUSSION AND ANALYSIS

4.1 Examination of the Effect of EA Configuration Parameters on
Convergence

Increasing any of the EADRM configuration parameters generally
leads to faster solution convergence. However, the configuration param-
eter that impacted the convergence rate the most was tournament size.
Larger tournament size increased the likelihood of picking individuals
with higher fitness, and thus increased the rate at which the solution was
able to converge. So long as the parameters were sufficiently large, the
increase in the rate of convergence was not drastic, however increasing
the values of the EADRM configuration parameters did come at a con-
siderable computational cost. In the current implementation the amount
of time to perform the simulation is severely affected by an increased
equilibrium population size while only yielding marginal increases in con-
vergence rates. This trade-off must be considered in EADRM analysis.

4.2 Stability of EADRM Solutions

As indicated in Section 3.2, the relative stability of the solution produced
by EADRM was quite good. All parameters except E_. converged to within
1% of the same value each time. The apparent variation of the derived E .
is not as troubling as one might initially think. Depending on the values for
the other parameters we may not have enough evidence to infer the correct
value because the minimum observed value may actually be greater than the
theoretical E_. . E_. percent errors also suffer from the floor effect. If the
true E . is actually 1 and a value of 1.2 is derived this is a 20% error, how-
ever the experimental implications of this error are minute.

4.3 Comparison between EA and NLS and Initial Value Sensitivity

Overall the EA compared very favorably with NLS. In testing, EADRM
solutions proved to be more robust, as NLS required specific tuning of
the initial values to avoid the errors mentioned previously and consider-
able effort was given to ensure that NLS would operate in the given input
range. In contrast, once the EADRM configuration parameters are set, all
that was need were the observations and the concentration/x-axis values.
The EADRM was able to take any input range and data shape with out any
hand-holding, and minimal model assumptions.

This is of crucial importance to researchers who wish to do truly high-
throughput analysis and is indeed the original motivation for this
approach. It is this impressive robustness that is EADRM’s strength; one
may feed nearly any response and EADRM will optimize the fit based sole-
ly on the data without the user having to guess what an appropriate start-
ing point would be.
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4.4 Conclusions and Future Directions

While EADRM is still in its infancy, the results of the current study
demonstrate that the evolutionary algorithm approach to dose-response
modeling is a promising viable alternative to more traditional approach-
es such as NLS. On both simulated and real data EADRM performed as
well as NLS without relying on cumbersome mathematics and avoiding
pitfalls such as initial value guesses and search bounds. EADRM was
shown to provide the accuracy of the deterministic models with out prob-
lems that typically plague such implementations.

Due to the nature of EAs, there are opportunities for massive paral-
lelism in the form of multi-threading. This would decrease the time need-
ed to run a simulation drastically and allow the values of the EADRM con-
figuration parameters to be increased, which would in turn increase con-
vergence rate thus decreasing the number of generations needed for a
given simulation. Additional aspects of the evolutionary process should
be also be evaluated within the EADRM approach. The addition of cross-
over operators, different models of parallelization, etc should be investi-
gated for their impact on EADRM performance.

Other improvements may also be made by exploring different statis-
tical criteria for fitness and for model selection. Currently we have used
R? as our fitness criterion because it is familiar and adapts well across dif-
ferent types of models. However, it may be that other fitness functions
could improve the solution quality. Also, we currently take the individual
who has the highest fitness as the winner, without taking model com-
plexity into consideration. Future directions may include accounting for
model complexity when deciding between populations containing differ-
ent types of models.

Finally, as our method is proposed for application to high-throughput
dataset, computation time should be optimized, including the incorpora-
tion of in line C code to speed up the analysis run-time and paralleliza-
tion, and competitive run times with conventional methods should be
evaluated. Because the NLS approaches implemented in the current
study are sequential, and incorporate in line C code and rely on “recipes”
from “numerical cook books, a fair computational comparison is not pos-
sible in this early stage of EADRM development, and the implementation
of the NLS methods is substantially faster than EADRM. With continued
development, the EADRM approach can be optimized for more compa-
rable run-times.
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