
Dose-Response: An International Journal
Volume 10
Issue 2 Special Issue on the Role of Linear and
Nonlinera Dose-Response Models in Public Decision-
Making

Article 10

6-2012

DOSE-RESPONSE THRESHOLDS FOR
PROGRESSIVE DISEASES
Louis Anthony (Tony) Cox, Jr
Cox Associates, University of Colorado

Follow this and additional works at: https://scholarworks.umass.edu/dose_response

This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Dose-Response: An
International Journal by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Cox, Jr, Louis Anthony (Tony) (2012) "DOSE-RESPONSE THRESHOLDS FOR PROGRESSIVE DISEASES," Dose-Response: An
International Journal: Vol. 10 : Iss. 2 , Article 10.
Available at: https://scholarworks.umass.edu/dose_response/vol10/iss2/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/32435767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/dose_response?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol10?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol10/iss2?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol10/iss2?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol10/iss2?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol10/iss2/10?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol10/iss2/10?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol10%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Dose-Response, 10:233–250, 2012
Formerly Nonlinearity in Biology, Toxicology, and Medicine
Copyright © 2012 University of Massachusetts
ISSN: 1559-3258
DOI: 10.2203/dose-response.11-039.Cox

233

DOSE-RESPONSE THRESHOLDS FOR PROGRESSIVE DISEASES

Louis Anthony (Tony) Cox, Jr. � Cox Associates and University of Colorado

� Many diseases, including cancers, heart diseases, and lung diseases, can usefully be
viewed as arising from disruption of feedback control systems that normally maintain
homeostasis of tissues and cell populations. Excessive exposure can destabilize feedback
control loops, leading to sustained elevation of variables to saturated levels and clinical
consequences such as chronic unresolved inflammation, destruction of tissue (as in
emphysema), proliferation of cell populations (as in lung cancer), and increases in reac-
tive oxygen species and protease levels (as in coronary heart diseases and chronic obstruc-
tive lung disease). We propose a framework for understanding how exposure can destabi-
lize normally homeostatic feedback control systems and create sustained imbalances and
elevated levels of disease-related variables, by creating a new, locally stable, alternative
equilibrium for the dynamic system, in addition to its normal (homeostatic) equilibrium.
The resulting model, which we call alternative-equilibria (AE) theory, implies the exis-
tence of an exposure threshold below which transition to the alternative equilibrium
(potential disease) state will not occur. Once this threshold is exceeded, progression to the
alternative equilibrium continues spontaneously, even without further exposure. These
predictions may help to explain patterns observed in experimental and epidemiological
data for diseases such as COPD, silicosis, and inflammation-mediated lung cancer.

Key words: exposure-response threshold, dose-response threshold, mathematical model, crystalline sili-
ca, lung cancer, silicosis

1. INTRODUCTION

Many diseases can be viewed as arising from destabilization of physio-
logical feedback control loops that normally maintain homeostasis. For
example, several important heart (Eleuteri et al. 2009) and lung (Azad et
al. 2008) diseases are associated with oxidative stress caused by disruption
of the normal balance between reactive oxygen species (ROS) and
antioxidants. Examples include chronic lung inflammation, fibrosis, sili-
cosis, and inflammation-mediated lung cancer. Chronic obstructive pul-
monary disease (COPD) involves failures to maintain protease/anti-pro-
tease and apoptosis/replacement balances in the alveolar epithelium,
and degradation/repair balance in the extracellular matrix, as well as oxi-
dant-antioxidant balance in alveolar macrophages (AMs) and other lung
cell populations (Cox 2011). Chronic inflammation in the lung, heart,
and other organs or organ systems arises from failure to maintain the nor-
mal balance between influx and clearance of inflammatory cells, such as
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neutrophils and macrophages, in the inflamed areas. Cancer reflects a
loss of homeostatic control balancing proliferation and apoptosis rates in
cell populations.

When such diseases are associated with preventable occupational or
environmental exposures, it is natural to wonder whether there are safe
exposure levels, below which exposures do not cause harmful imbalances
due to failures of normal homeostatic regulatory processes. This paper
proposes a simple mathematical model and conditions for which such
protective thresholds exist in disease processes arising from disrupted
feedback-control loops. Its focus is on understanding general qualitative
mechanisms of disrupted homeostasis that can produce such thresholds,
rather than on estimating specific parameter values, which are likely to
differ for different individuals.

Our mathematical approach is based on modeling systems of dynam-
ic (changing) variables, organized into networks in which the levels of
some variables affect the rates of change (e.g., production or removal) of
other variables. This framework is similar to that of Biochemical Systems
Theory (“S-theory”) (Savageau, 1988), except that we do not assume any
specific functional form (e.g., power laws) for the relations among levels
of variables and their rates of changes. As in S-theory, we make the real-
istic assumption that the rates of production and removal of biological
substances are saturable (i.e., the maximum possible rates of change are
finite). We consider networks with positive feedback loops, and study how
the equilibrium levels of variables in these networks change when expo-
sure increases the responsiveness of some variables (e.g., their net rates of
production) to the levels of others, since this a commonly observed in
inflammation-mediated diseases (e.g., Azad et al. 2008, Cox 2011). If
there is more than one stable equilibrium for a system, then, following
the usual terminology in dynamical systems theory, we call the set of all
starting points (i.e., initial values for all variables) from which the system
will move to a given equilibrium point its “basin of attraction,” and we
examine how exposure can change the dynamics of self-regulating sys-
tems, creating new equilibria (which we identify as potential disease
states) and sending the network of feedback loops from the basin of
attraction of the initial healthy equilibrium into the basin of attraction of
a potential disease state equilibrium.

2. HOMEOSTASIS AND DISEASE STATES IN A SIMPLE MODEL OF A
FEEDBACK LOOP

We model a biological quantity, X, (e.g., a measure of oxidative stress)
that is normally kept at a stable equilibrium level, X*, via homeostatic reg-
ulation of inflows and outflows of X. This process may involve an entire
network of other variables and processes, not all of which are necessarily
known to the risk analyst. Ultimately, however, X affects and is affected by
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other variables so that departures from X* are eliminated. Realistically, we
assume that, although the normal background level X* is always restored
following sufficiently small perturbations of X around it, both production
and removal rates for X have finite maximum possible (saturated) values.
We will explore conditions under which such modest assumptions imply
the existence of distinct “normal” and “disease” states, with a tipping-
point threshold between them.

Explicit Formulas for a Simple Linear Model

Figure 1 shows a simplified conceptual model of inflammation-medi-
ated lung cancer caused by exposure to agents (such as bacteria, cigarette
smoke, chemical or particle pollutants, or radiation) that trigger the pro-
duction of excess ROS in the lung. In this model, excess ROS disrupts oxi-
dant-antioxidant balance, causing oxidative stress and stimulating chron-
ic inflammation. The biological basis and evidence for this scheme, and
many additional details (e.g., which cell populations secrete which
cytokines and mediators, and how these attract and activate alveolar
macrophages and neutrophils via specific receptors), are discussed in a
large recent literature on inflammatory lung diseases (Azad et al. 2008,
Cox 2011). The simplified high-level version in Figure 1 allows explicit
analysis of the input-output behavior of the ROS feedback loop (i.e., ROS
→ pro-inflammatory mediators → macrophages and neutrophils → ROS) when
each component is described by a simple (piecewise linear) feedback
control model. The resulting analysis can then be generalized to a wide
range of nonlinear models. Throughout, we use the arrow notation to
mean that an increase in the variable at an arrow’s tail increases the vari-
able at its head, other things being held fixed, e.g., by increasing its pro-
duction rate and/or decreasing its removal rate.

Figure 1 is a directed graph model for non-negative variables. (All,
other than the exogenous input variable, exposure, are positive even in the
absence of exposure.) Perhaps the simplest explicit model of self-regula-
tion of each variable, X, in such a system is as follows:

dX/dt = bX – dXX (1)

Dose-Response Thresholds for Progressive Diseases

235

FIGURE 1. Simplified schematic diagram of key events by which exposure can create chronic lung
inflammation and increased risk of lung cancer (Source: Adapted from Figure 3 of Azad et al. 2008). 
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where bX is the birth rate or production rate of X and dX is the death rate
or removal rate of X, per unit of X per unit time. This model implies that
there is a unique, globally stable normal (unexposed) equilibrium level
of X, which we will denote as X*, that can be found by setting dX/dt = 0
(the definition of equilibrium) and solving for X:

X* = bX/dX (2)

If X starts at any other level, then the dynamic process (1) will restore
its level to X*.

The analysis is almost as simple when several such self-regulating vari-
ables are linked in a feedback cycle, so that the level of each variable
depends partly on the level of its predecessor. Let Y be the predecessor of
X, and generalize equation (1) as follows, to let Y affect X:

dX/dt = bX + aXYY – dXX (1a)

(This is essentially the same model as (1), except that bX is extended
to become bX + aXYY. The new parameter, aXY, may be interpreted as a
potency parameter, showing by how much a unit increase in Y increases
the rate of formation of X.) Now, the equilibrium level of X is:

X* = (bX + aXYY)/dX (2a)

In a stable feedback loop, with X and Y as its only two variables, X
would also be a predecessor of Y, and symmetry then implies that the
equilibrium level of Y is

Y* = (bY + aYXX)/dY (2b)

The joint equilibrium values of X and Y can be found by requiring
mutual consistency between equations (2a) and (2b). Substituting (2b)
into (2a) for Y yields:

X* = (bX/dX) +(aXY/dX)(bY + aYXX*)/dY

dXdYX* = dYbX + aXYbY + aXYaYXX*

X* = (dYbX + aXYbY)/(dXdY – aXYaYX) if aXYaYX/dXdY < 1 (3)

The formula for Y* is symmetric [i.e., just exchange X and Y through-
out (3)]. If exogenous exposure affects the model variables by increasing
bX, then equation (3) implies that each unit of increase in bX will increase
X* by dY/(dXdY – aXYaYX), as long as the system is stable (aXYaYX/dXdY < 1).

L. A. Cox, Jr.
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The preceding analysis is unchanged if many variables and pathways
intervene between X and Y, provided that a unit change in Y eventually
produces a unit increase of aXY in the rate of formation of X, and, con-
versely, a unit change in X eventually produces a unit increase of aYX in
the rate of formation of Y. In general, if N such variables are arranged in
a feedback loop, with the equilibrium level of each depending on the
equilibrium level of its predecessor, then generalizing (3) shows that all
N of them will reach stable equilibrium levels if the product of the com-
ponent factors aj/dj around the loop is less than 1, where aj is the poten-
cy factor quantifying how much component j is increased by a unit
increase in its predecessor. Explicitly, denote the N variables by X1, X2, ...,
XN, and arrange them into a loop: X1 → X2 → ... → XN → X1 (that is, each
Xj has Xj+1 (modulo N) as its successor). Generalize equation (1) as fol-
lows:

dXj/dt = bj + ajXj-1 – djXj (4)

(Here, aj denotes the potency factor linking the inflow to compart-
ment j to the level of compartment j – 1.) At equilibrium, the inflow (bj +
ajXj-1) must equal the outflow (djXj), implying the following flow balance
equation:

Xj = (bj/dj) + (aj/dj)Xj-1. (5)

This first-order linear difference equation can be solved by repeated
substitution. For the equilibrium level in compartment 1:

X1 = (b1/d1) + (a1/d1)XN = (b1/d1) + (a1/d1)[(bN/dN) + (aN/dN)XN-1]

= (b1/d1) + (a1/d1)(bN/dN) + (a1/d1)(aN/dN)[(bN-1/dN-1) 
+ (aN-1/dN-1)XN-2]

= [(b1/d1) + (a1/d1)(bN/dN) + (a1/d1)(aN/dN)(bN-1/dN-1)] 
+ (a1/d1)(aN/dN) (aN-1/dN-1)XN-2

= ... (iterate through XN-3, XN-4, ... X2, X1)

= [(b1/d1) + (a1/d1)(bN/dN) +... + (a1/d1)(aN/dN)(aN-1/dN-1)...
(a2/d2)(b1/d1)]

+ (a1/d1)(aN/dN) (aN-1/dN-1)...(a2/d2)X1.

This solution (which is just the usual solution to a first-order constant-
coefficient linear difference equation) exploits the fact that X1 can be
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viewed as its own ancestor to eliminate all of the other variables. To save
space and clarify the solution, it is useful to rewrite it as follows:

X1 = c1 + gX1,

where the two constant coefficients are defined as follows:

c1 = [(b1/d1) + (a1/d1)(bN/dN) +... + (a1/d1)(aN/dN)(aN-1/dN-1)...
(a2/d2)(b1/d1)]

g = (a1/d1)(aN/dN) (aN-1/dN-1)...(a2/d2) 
= (a1/d1)(a2/d2) (a3/d3)...(aN/dN).

We will call g the gain factor around the loop. By symmetry, since any
of the variables in a loop can be arbitrarily numbered as “1,” the solution
for any of the N variables is

Xj = cj + gXj, (6)

which can be solved explicitly, yielding:

Xj = cj/(1 – g), for 0 ≤ g < 1 and for j = 1, 2, ..., N (7)

If exposure increases at least one variable (by increasing any of the
birth rates bj or decreasing any of the death rates dj, each of which will
increase all of the cj), or if it increases g (by increasing some of the inter-
action potency factors aj determining coupling strengths between vari-
ables, or decreasing some of the dj) then equation (7) implies that the
equilibrium levels of all variables will increase in response. If g increases
until g ≥ 1, however, then the entire feedback loop becomes unstable, and
its variables increase until they become saturated. Equation (7) no longer
applies, since we have not yet modeled saturation; a refined model (dis-
cussed in the next section) is needed.

Although we have developed equations (6) and (7) for a single stable
feedback loop, they hold for more general regulatory networks (e.g., with
multiple overlapping feedback loops), with equation (4) generalized to
contain multiple predecessors for X. The following sections consider
feedback control systems with nonlinear (and possibly unknown or
uncertain) input-output relations, for which explicit formulas may be
unavailable. Section 4 considers an alternative analysis of the simple lin-
ear model analyzed so far, and extends it to allow for saturation in the lev-
els of variables. Section 5 applies the same ideas to more general systems,
to infer qualitative properties of exposure-response relations.

L. A. Cox, Jr.
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3. ITERATIVE CALCULATION OF EQUILIBRIUM LEVELS

Although it is easy to compute the equilibrium values of variables
using explicit formulas such as (7), in the simple model discussed so far,
this section describes a more complicated-seeming iterative numerical
computational procedure that will allow immediate generalization to
more flexible (and uncertain) models. Suppose that X is the variable
whose level we wish to predict. (We drop the subscript j from X, since the
analysis leading to equation (7) applies symmetrically to each variable.)
Suppose that the equation for the equilibrium level of X is

X = cX + gX, for g < 1 (6)

This is equation (6), with the subscript j eliminated, and the subscript
X for cX indicating that this constant depends in general on which X we
are considering. Now, suppose that a change in exposure (perhaps from
0 to a positive constant) leads to a change in X and in either or both of
the two parameters (cX, g). Let X0 be the initial value of X when the
change in exposure disturbs the system. (Henceforth in this section, sub-
scripts on X will index iterations in a procedure for guessing the new
value of X. X0 is its initial value.) When the system settles down to a new
steady-state equilibrium (assuming for the moment that it eventually does
so), what will the new value of X be? Of course, we could calculate the
answer from equation (7), as X = cX/(1 – g), by plugging in the new val-
ues of (cX, g). But, instead, we apply the following iterative numerical cal-
culation of values, based on equation (6):

Xt+1 = cX + gXt (8)

It is instructive to interpret this iteration as follows. Starting from level
Xt, the effects of X propagate out into the feedback loop (or more gener-
al system) affected by X. We imagine letting all other compartments (i.e.,
variables) adjust until they are in equilibrium with Xt. As a result of their
new levels, new information will feed back to the parameters governing
compartment X (e.g.., via equation (5)). However, we can envision clamp-
ing X at value Xt until all other variables have finished adjusting to it (to
as many significant digits as desired). Then, when all other variables have
reached their new values in response to Xt, we hold their values fixed, and
let X respond to come into equilibrium with them. This generates a new
value of X, denoted by Xt+1 in equation (8). Now we advance the iteration
counter one step (so that the new value Xt+1 will play the role of Xt in the
discussion just given), and repeat.

The justification for this procedure is familiar from numerical analy-
sis: equation (8) has as its (unique, globally stable) fixed point the same
solution as equation (6). Figure 2 shows why. For any parameter values
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(cX, g), with 0 ≤ g < 1, the model line representing equation (8) (with slope
g and y-intercept cX) cuts the equilibrium line (meaning the 45 degree line
through the origin, the collection of all points with Xt+1 = Xt) exactly once,
from above. Call the value of X at this intersection point X*. Then, for all
starting values of X less than X*, the sequence of X values produced by
iteration (8) is increasing, since Xt+1 > Xt to the left of X*. (Graphically, the
iterations from equation (8) can be visualized as a series of steps, moving
horizontally across from any starting point (Xt, Xt+1) on the model line to
the dashed equilibrium line, then moving vertically to a new point on the
model line, and continuing via a sequence of smaller and smaller such
steps toward X*.) Conversely, for any starting value to the right of X*, the
sequence of X values produced by iteration (8) is decreasing, since Xt+1 <
Xt to the right of X*. Equilibrium is achieved only at X*, where Xt+1 = Xt.

This iterative procedure for computing equilibrium values, known in
numerical analysis as functional iteration or fixed-point iteration, gener-
alizes immediately to permit calculation of equilibria for a wide variety of
systems with nonlinear model curves in place of the model line shown in
Figure 2. It can be used to gain insight into the qualitative behaviors of
systems for which only some general features of the model curve are
know, even if there is not enough knowledge available to calculate exact
answers. This is useful for modeling realistically uncertain disease
processes.

L. A. Cox, Jr.
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4. EFFECTS OF EXPOSURES ON MODEL CURVES AND EQUILIBRIA

Exposure can affect the model line and the resulting equilibrium
level of each quantity (i.e., X* in Figure 2) in several ways. Consider first
the explicit model developed so far for the linear case.

• If exposure increases the birth rate (i.e., the influx rate, bX) into any com-
partment, then the intercept term (cX in Figure 2) increases for all com-
partments in the feedback loop (or more general network). The model
line shifts up, and the equilibrium value of each X (where the model
line intersects the equilibrium line) shifts rightward. Thus, all variables
increase.

• If exposure decreases the death rate (i.e., the fractional elimination rate,
dX) in any compartment, then not only do the y-intercepts and model
lines for all compartments shift upward, but the gain factor g (which
has the product of the death rate parameters as its denominator)
increases, making the model lines steeper.

• If exposure increases the coupling constant describing the increase in the
influx or production rate into one compartment per unit quantity in an-
other compartment (i.e., one or more of the aX coupling constants
whose product is the numerator of g), then the slope of each model
line, g, also becomes steeper. Again, the equilibrium levels of all vari-
ables in the feedback loop increase. If exposure increases n > 1 of the
coupling constants, each in proportion to exposure, then the slope g
will increase in proportion to the nth power of exposure.

What happens if exposure increases g to some value g > 1? Figure 3
suggests the answer. When g > 1, the model curve lies above the equilib-
rium line, and Xt+1 > Xt. However, this increase cannot continue indefi-
nitely: eventually, X reaches its maximum possible (saturated) level,
denoted in Figure 3 by X**. We assume that all variables have finite max-
imum possible (saturated) values. The saturated level for X is depicted by
a horizontal line in Figure 3, implying that, once X reaches saturated level
X**, it stays there. Thus, X** becomes the new, globally stable equilibri-
um. We call it a saturation equilibrium, since it occurs where the saturation
line intersects the equilibrium line. Such an equilibrium may constitute a
potential disease state, since the normal healthy homeostatic equilibrium
level of X (i.e., X* in Figure 2) has been replaced by one with higher val-
ues for X and for all variables in the same feedback loop with X. If X indi-
cates ROS or protease concentration at the alveolar wall, or number of
preneoplastic cells in the bronchiolar epithelium, then the new, higher
level may cause clinical harm, such as chronic inflammation, emphysema,
or increased cancer risk. However, we use the term “potential disease
state” to refer to X** itself, rather than eventual clinical consequences,
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since failures of other (e.g., detection and repair) mechanisms may also
be necessary for the saturated equilibrium to produce clinical harm.

More generally, exposure can affect dose-response in two different
ways, and on two different time scales, as follows.

(i) Short-run exposures may change the value of X. For example, inhaling
diesel exhaust, cigarette smoke, mineral dusts and fibers, or bacteria,
can irritate and inflame the lung, increasing ROS (and other variables
in the same feedback loop as ROS in Figure 1) above their usual un-
exposed levels (Azad et al. 2008). If X is ROS, or increases when ROS
increases, then such short-term exposures increase X.

(ii) Longer-term exposure may change the shape of the model curve. Exposure that
changes cell population sizes and/or their sensitivity and responsive-
ness to mediators can thereby change the function (i.e., the model
curve) mapping each specific value of X, say, Xt, to a corresponding
new value, Xt+1, that is in equilibrium with the values of other variables
when they, in turn, are in equilibrium with Xt. For example, pro-
tracted exposure to cigarette smoke or pollutants might induce a
long-term shift in alveolar macrophages (AMs) toward phenotypes
that release more of certain chemokines or proteases in response to
any given level of X (where X could be ROS or RNS, for example). (Al-
ternatively, or in addition, exposure might increase the production of

L. A. Cox, Jr.
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X per unit of such substances produced by the AMs.) Then, if X and
the AM products form a positive feedback loop or network with each
other, exposure will raise the model curve for X, as each value of Xt
now produces a higher corresponding level of Xt+1. If the steepness of
the model curve depends on the level of X, then a nonlinear model
curve, such as “Model curve 2” in Figure 4, results.

Figure 4 provides a graphical framework for discussing both types of
exposure effects. A short-term exposure that increases X above its usual
unexposed level of X* would be represented by an increase in Model
Curve 1, e.g., a steepening of its slope and/or an upward shift in the
whole line (not shown in Figure 4). Such a change would shift the unique
equilibrium point X* rightward. If the model curve returns to its initial
position after exposure cases, then X will eventually return to its initial
value of X*. (Although nothing in our framework or results requires the
Model curve 2 to be S-shaped, this is the most common shape observed
in detailed S-theory models for networks of dynamic variables (Savageau,
1988), and hence we use it for purposes of illustration.)

In contrast, suppose that long-term exposure permanently increases
the height of the model curve, at least for relatively high levels of X, by
increasing the gain factor (g = dXt+1/dXt). (This occurs, for example, if
exposure induces a permanent shift in, or selection of, cell phenotypes
toward types that produce higher levels of variables in the feedback loop,
such as ROS, in response to the same levels of other variables. For lung
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diseases such as COPD, alveolar macrophages are an example of a popu-
lation that undergoes such a lasting change in phenotype in response to
exposure (Azad et al. 2008, Cox 2011).) Model Curve 2 in Figure 4 shows
such an exposure-related increase in the model curve. Increases are
greater at higher levels of X (but approaching a horizontal asymptote of
saturated response). They are zero or negligible at sufficiently low levels
of X. (This might occur if negative feedback loops maintain tight home-
ostasis, despite exposure, at these low levels. For example, if low levels of
exposure start to increase ROS, this increase could trigger a compensat-
ing increase in antioxidants to help decrease net ROS and maintain oxi-
dant-antioxidant balance. If low exposure hastens cell death, this could
trigger a compensating increase in replacement rates to help maintain
birth-death balance. Thus, Model Curve 2 is significantly elevated, com-
pared to the no-exposure Model Curve 1, only when X levels are high
enough to overwhelm such tight homeostatic control.) Although an infi-
nite number of other model curves could be constructed, they all share
the qualitative property that long-term exposure that increases the model
curve only affects X if it affects the intersection of the model curve with
the equilibrium line. Since this does not occur for Model Curve 2 in
Figure 4, the effects of exposure are not observed in a change in X*.

Finally, consider the case in which high, prolonged exposure perma-
nently shifts some of the model curve upward, as in Model Curve 3 in
Figure 5. This is very similar to Model Curve 2 in Figure 4, except that
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now the increase is great enough to create a saturation equilibrium, in
which the saturated portion of the curve intersects the equilibrium line
from above and to the left. (In Figure 4, it did not intersect the equilibri-
um line at all.) Model Curve 3 has both a homeostatic equilibrium (X*)
at the left, and a saturation equilibrium (X**) at the right. Both are local-
ly stable (since both cut the equilibrium line from above and to the left).
It is a topological necessity that any continuous model curve that cuts the
equilibrium line at two different points from above must also cut it at least
once, somewhere between them, from below. If the model curve is “S-
shaped” (i.e., is a smooth curve with a slope that is non-decreasing in X
up to some point of inflection, and non-increasing thereafter), then the
point at which it intersects the equilibrium line from below is unique.
This is an unstable equilibrium point, and the system will move away from
it toward one of the two stable equilibria (since Xt+1 > Xt to its right and
Xt+1 < Xt to its left). In the example shown in Figure 5, the unstable equi-
librium point is denoted by X’, and is called the “tipping point threshold.”
If X starts below this threshold, then it will return to X*; if it starts above
the threshold, then it will progress to X**.

The general situation illustrated by this example can be summarized
as follows:

THEOREM (Alternative Equilibria): Any S-shaped model curve having both
a homeostatic equilibrium and a saturation equilibrium (both locally stable),
must have a unique threshold between them such that the system described by
the model curve is attracted to the homeostatic equilibrium from all starting
points below the threshold, and to the saturation equilibrium from all starting
points above it.

In other words, there is a unique threshold between the respective
basins of attraction for the two equilibria.

Proof: For the model curve to intersect the equilibrium line twice from
above, it must cross back from below the line to above it, somewhere
between them. This point of intersection is the threshold referred to.
It is unique because the S-shape prevents a second crossing from
below (as the slope cannot again become steeper than the equilibri-
um line, starting from below it, at any point to the right of the first
such crossing from below, which is therefore the unique unstable
threshold). QED

The Alternative Equilibria theorem, though simple, has potentially
useful consequences for dynamic disease models and exposure-response
modeling under uncertainty. In a system with alternative equilibria, any
exposure (even a relatively brief transient one) that sends X above the
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threshold pushes the system into a basin of attraction that leads to the sat-
urated equilibrium (X**) as its new equilibrium point, even in the absence
of any further exposure. It may require sustained exposure to increase the
model curve far enough to create a saturation equilibrium (e.g., by con-
verting a large enough fraction of alveolar macrophages to a high-ROS
phenotype, in our ongoing example). But, once this has been done, any
exposure history that sends X above the threshold triggers a self-amplify-
ing escalation of the feedback loop or network. This escalation will con-
tinue, even without additional exposure, until saturation is reached.
Exposure has destabilized the original system, allowing the values of its
variables to escape from their homeostatically controlled levels and to be
sent to an alternative, saturated state. Moreover, this state does not
depend on the size of the exposure transient that began the self-amplify-
ing escalation in variable values: the final result depends only on their sat-
urated levels. Therefore, many uncertainties about exposure histories are
irrelevant for determining the resulting health effects (if any) of expo-
sure. All that matters is when and whether the threshold is exceeded, and,
if so, how quickly the system then moves to the new, saturated equilibri-
um. If elevated levels of the system variables cause harm or risk of clinical
diseases, then the time for this harm to manifest itself can be added to the
time-to-initiation (when the threshold is first exceeded) and the time for
progression to the saturated equilibrium, to obtain the total time until
exposure causes observable harm.

5. TESTING ALTERNATIVE EQUILIBRIA (AE) THEORY: CRYSTALLINE
SILICA AS AN EXAMPLE

The Alternative Equilibria (AE) theoretical framework in Figures 3-5
makes several testable predictions. It implies that, in susceptible species
or individuals (i.e., those whose gain factors or model curves increase
enough in response to exposure to cut the equilibrium line from below),
sufficiently large and prolonged exposures can create a threshold for disease
progression (or, more precisely, for permanent increases in the levels of
variables) in normally homeostatic systems. Short-term exposures that
send a system over this threshold then trigger a self-sustaining increase in
variable levels that continues until saturation is reached, even in the
absence of further exposure.

How well do these implications correspond to real-world observa-
tions? Figure 1 suggests that inflammatory lung diseases may provide a
useful empirical testing ground for the AE framework. Several feedback
loops regulate lung cell populations and the levels of cytokines and their
receptors, ROS and antioxidants, proteases and anti-proteases, apoptotic
and proliferating epithelial cells, and destruction and replacement of
extracellular matrix (ECM) (Cox 2011). These loops generally reinforce
the key ROS-mediated inflammatory loop shown in Figure 1 (Cox 2011),
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and exposure to a wide variety of pollutants increases ROS and associat-
ed variables (Azad et al. 2008). Thus, it is natural to wonder whether lung
diseases associated with elevated ROS exhibit the following properties, as
predicted by the AE theory:

(i) Correlated values. Levels of variables in the feedback loops are strongly
correlated over time, i.e., they increase or decrease together.

(ii) Susceptible and non-susceptible individuals. Individuals with relatively low
levels of ROS elevation in response to exposure are not susceptible to
loop-saturating increases in variables and resulting exposure-related
diseases. (Such individuals would be described by the homeostatic
equilibrium in Figure 4.)

(iii)Exposure threshold for disease causation. Even in susceptible individuals,
exposure concentrations and durations that do not push the system
over the threshold between the two basins of attraction are not pre-
dicted to cause excess disease risk (at least for diseases that are medi-
ated by a transition from the homeostatic to the saturated, high-ROS
equilibrium).

(iv) Progression without further exposure. Exposure concentrations and dura-
tions that do push the system over the threshold will trigger a pro-
gressive increase in all loop variables to the saturated equilibrium
(causing any damage and diseases or risk associated with these high
levels), even without further exposure.

We can test the plausibility of these predictions by examining diseases
for which an increase in ROS levels and resulting oxidative stresses in the
lung environment are crucial in causing subsequent exposure-associated
lung injury and disease. These diseases are thought to include chronic
obstructive pulmonary disease, fibrosis (Fubini and Hubbard 2003), sili-
cosis, and lung cancer (Ding et al. 2000, Shi et al. 1998 and 2001, Schins
and Knaapen 2007, Huaux 2007, Azad et al, 2008). Particulate pollutant-
related cardiovascular diseases may also follow the same paradigm
(Mossman et al. 2007).

A recent quantitative risk model of COPD caused by cigarette smok-
ing (Cox 2011) is fully consistent with the AE model and its implications.
To test the AE model further, however, we focus here on lung diseases
caused by crystalline silica. Compared to cigarette smoke (as well as coal
dust, diesel exhaust, soot, PM10 in ambient air, and many other pollu-
tants, including bacteria), crystalline silica lacks organic content, which
might potentially trigger diseases via mechanisms different from the
inflammatory one in Figure 1. Indeed, crystalline silica has previously
been studied as a model for chronic inflammation-mediated lung car-
cinogenesis (Blanco et al. 2007).
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The following empirical observations are consistent with the main
predictions of the AE model for crystalline silica-associated lung diseases.

• Correlated values. Correlations among levels of ROS, pro-inflammatory
mediators (such as tumor necrosis factor alpha (TNF-α), interleukin-1,
and activation of transcription factors AP-1 and NFκB involved in in-
flammation), lung cell apoptosis, and lung injury have been observed in
silica-exposed animals in vivo and in lung cells in vitro (e.g., Fubini and
Hubbard 2003). For humans, too, levels of ROS and TNF-α released by
AMs have been recommended as better predictors of silica-associated
lung cancer risk than silica concentration itself (Cocco et al. 2007), con-
sistent with our core hypothesis (Figure 1) that escalation of ROS-loop
variables creates increased risk of silica-associated lung cancer.

• Possible progression threshold in humans. Empirically, as noted by Porter et
al. (2004), “Human epidemiologic studies have found that silicosis may
develop or progress even after occupational exposure has ended, sug-
gesting that there is a threshold lung burden above which silica-
induced pulmonary disease progresses without further exposure.”

• Progression threshold in rats. Experimental results in animals are also con-
sistent with this threshold-like exposure-response pattern for progres-
sive lung disease in humans. Porter et al. (2004) found experimentally
that “the time course of rat pulmonary responses to silica inhalation as
biphasic, [with] the initial phase characterized by increased but con-
trolled pulmonary inflammation and damage. However, after a thresh-
old lung burden was exceeded, rapid progression of silica-induced pul-
monary disease occurred.” They reported that “During the first 41 days
of silica exposure, we observed elevated but relatively constant levels of
inflammation and damage, with no fibrosis. Subsequently, from 41 to
116 days of exposure, rapidly increasing pulmonary inflammation and
damage with concomitant development of fibrosis occurred. This sug-
gested that pulmonary defense mechanisms were initially able to com-
pensate and control silica-induced pulmonary inflammation and dam-
age, but after a certain threshold lung burden was exceeded, these con-
trol mechanisms no longer were adequate to prevent the progression of
silica-induced pulmonary disease.” This account is consistent with the
AE theoretical prediction that sustained exposure that increases the
model curve thereby shifts the homeostatic equilibrium rightward (cor-
responding to increased but controlled levels of loop variables) and cre-
ates a threshold and a disease state (saturated equilibrium) that will be
reached once exposure passes a tipping point threshold (Figure 5).

• Escalation of ROS as a mechanism of lung disease. Porter et al. (2006) sub-
sequently confirmed that the mechanism of progressive injury in rat
lungs following cessation of exposure is indeed continuing increased
production of ROS (and also reactive nitrogen species). This is consis-
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tent with the AE theory prediction that a loop, once destabilized and
pushed over its threshold, will continue to escalate until it locks into a
saturated equilibrium. They reported that “even after silica exposure
has ended, and despite declining silica lung burden, silica-induced pul-
monary NO [nitrogen oxide] and ROS production increases, thus pro-
ducing a more severe oxidative stress. ...iNOS and NO-mediated dam-
age are associated anatomically with silica-induced pathological
lesions.”

6. DISCUSSION AND CONCLUSIONS

The foregoing observations suggest the potential practical applicabil-
ity of AE theory to explaining some observed exposure-response patterns
that appear to involve thresholds. In addition to describing important
aspects of COPD (Cox 2011), AE theory may be applicable to silicosis and
related diseases, with chronic lung inflammation and progressive pul-
monary damage, fibrosis, and lung cancer as other possible adverse
health outcomes, depending on an individual’s damage-detection and
repair capabilities. The theory does not attempt to describe all of the nec-
essary and sufficient conditions needed to produce clinically detectable
diseases. But it does suggest that, when diseases depend on sustained ele-
vation of one or more variables (such as ROS, or net destruction rates of
alveolar tissue in emphysema, or net proliferation rates of altered bron-
chiolar epithelial cells in lung cancer, or net deposition of collagen and
formation of scar tissue in fibrosis), then there are simple conditions
under which we should expect both that there are exposure thresholds
for disease causation, and also that there will be irreversible progression
to a disease state (or to a high-risk state, if events other than escalation of
variable levels are also required for disease) once the exposure thresholds
are exceeded.

Although more work is needed to further test and refine the theory –
ideally, leading to quantitative analysis of exposure thresholds and times-
to-disease based on more fully developed models of relevant physiologi-
cal feedback control loops or networks – available human and rat data
support the hypothesis that a range of particulate pollutants (such as cig-
arette smoke for COPD, or crystalline silica for silicosis) may act through
a common high-level dynamic exposure-response mechanism. We have
proposed that, despite numerous differences in detailed pathways and
cell population responses, particulate exposure-related diseases as diverse
as inflammation-mediated lung cancer, coronary heart disease, COPD,
and silicosis may all be usefully described as acting by the same high-level
process: they create an alternative to the normal homeostatic equilibri-
um. Exposures that push feedback control systems into the basin of
attraction for this new, alternative equilibrium then cause progressive,
irreversible diseases. If correct, this unifying description suggests that pre-
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venting such diseases requires keeping exposures low enough so that no
alternative equilibrium is formed – or, if one is created, keeping expo-
sures low enough so that passage into its basin of attraction, with its irre-
versible slide to the new equilibrium, never occurs.
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