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O Both the linear (at low doses)-no-threshold (LNT) and the threshold models (&
shapes) dose-response lead to no benefit from low exposure. We propose three new mod-
els that allow and include, but do not require — unlike LNT and Sshaped models — this
strong assumption. We also provide the means to calculate benefits associated with bi-pha-
sic biological behaviors, when they occur and propose:

1. Three hormetic (phasic) models: the fshaped, inverse fshaped, the min-max, and
2. Method for calculating the direct benefits associated with the Jand inverse J shaped
models.

The fshaped and min-max models for mutagens and carcinogenic agents include an
experimentally justified repair stage for toxic and carcinogenic damage. We link these to
stochastic transition models for cancer and show how abrupt transitions in cancer hazard
rates, as functions of exposure concentrations and durations, can emerge naturally in
large cell populations even when the rates of cell-level events increase smoothly (e.g., pro-
portionally) with concentration. In this very general family of models, fshaped dose-
response curves emerge. These results are universal, i.e., independent of specific biologi-
cal details represented by the stochastic transition networks. Thus, using them suggests a
more complete and realistic way to assess risks at low doses or dose-rates.

Key words: Biphasic models; linear-no-threshold (LNT); cancer; toxic agents; risk analysis.

INTRODUCTION

Tight public budgets, increasing competition between public and pri-
vate sources of funds some of which are budgeted for regulating envi-
ronmental, occupational and other forms of exposure, demand rational
public budgeting. Unfortunately, regulating health hazards through
default assumptions and safety factors can do more harm than good. We
focus on the regulatory paradigms that rely on linear (at low doses)-no-
threshold (LNT) models for mutagens and carcinogens, and threshold
models (Sshapes) for non-cancer end points, no longer seems consistent
with most recent experimental and theoretical work.

Address correspondence to P. F. Ricci, Holy Names University, Oakland, CA 94619; Tel:
(510) 436 1337; Fax: (510) 436 1199; ricci@hnu.edu
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Regulatory standards affecting environmental and occupational
health choices implicitly deny the possibility of low exposure-related ben-
efits. We add to the discussion of a paradigm change possibly to replace:
1) the conjectural linear-at-low-doses, no-threshold cancer dose-response
models (LNTs) with fshaped models as a regulatory default; and 2) the
Sshaped toxicological model with an inverse jfshaped model. This
change also impacts the acceptability or tolerability of carcinogen exposure
levels and the use of factors of safety, which are issues that we do not
address.

The fshaped model depicted in Figure 1 describes low-dose reduc-
tions in the incidence of disease; its depiction is based on empirical
results found in the literature.

As an example of the policy-science debate for cancer, consider the
differences between the US and the French Academies (i.e., the US
National Academies of Science, the French Academy of Sciences, and the
French National Academy of Medicine) regarding the effects of ionizing
radiations at low doses. Although the US (BEIR VII, Phase 2, 2006) sup-
ports the LNT using low-dose linear models fit to epidemiological data,
the French Academies doubt its validity, pointing to fundamental biolog-
ical repair mechanisms that prevent linearity at low doses (Tubiana and
Aurego, 2005). Current regulatory defaults neither resolve this ambigui-
ty nor necessarily increase protection. Regulatory agencies take a well-
traveled road: the EPA (2005) states:

Response (%)
100 ¥
Experiraental Results (dots are enlarged for exposition
- R
\ o
Region of
@] o adverse
LNT model responses,
Hormetic Model < common to >
O LNT,
. ‘/Experimental control response threshold,
e RN o g e i g i i and hormetic
- models
) Ol i R B N T 2.
E Dose Rate

Protective Increasing incidence of cancers
phase

FIGURE 1. Hypothetical example of a biphasic J-shaped dose-response model for cancer incidence
(the percent response in the controls must be non-zero) and the linear at low dose no threshold
(LNT) model (for both models the frequency of response cannot exceed 100%).
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...extrapolation is based on extension of a biologically based model if support-
ed by substantial data. Otherwise, default approaches can be applied that are
consistent with current understanding of mode(s) of action of the agent,
including approaches that assume linearity or nonlinearity of the dose-response
relationship, or both. ... The linear approach is used when: (1) there is an
absence of sufficient information on modes of action...

Nonetheless, the LNT has considerable regulatory force. For exam-
ple,US EPA’s IRIS data base (IRIS10_07), which contains toxicological
and carcinogenic hazards and risks information for more than 500 sub-
stances, presents quantitative cancer risk estimates as follows:

The slope factor is the result of application of a low-dose extrapolation proce-
dure and is presented as the risk per (mg/kg)/day. The unit risk is the quanti-
tative estimate in terms of either risk per ug/L drinking water or risk per
ug/cu.m air breathed. The third form in which risk is presented is a drinking
water or air concentration providing cancer risks of 1 in 10,000, 1 in 100,000
or 1 in 1,000,000.

For the approximately 80 carcinogens, these risk numbers are esti-
mated from linear at low dose models (linearized multistage dose-
response model is the most commonly used, followed by the relative risk
and Weibull models).

BIPHASIC AND OTHER BEHAVIORS

Different agents induce J or inverse fshaped responses in different
test systems, such as rodents, cattle, rabbit, rhesus monkey. For example,
alcohol, diesel exhaust particles, formaldehyde, lead, TCDD, and methyl
mercury show immunological biphasic responses. Diesel exhaust particu-
late, resveratrol, and formaldehyde are biphasic in humans. Mercury, cad-
mium, and lead are biphasic in mice for plaque-forming cells.
Immunological biphasic outcomes range from agglutination to wound
closure and f or inverse fmodels have been observed for pharmaceuti-
cals, from acetaminophen to xylazine. For cancer, Calabrese (2005) finds
that 138 in vitro cell lines for 32 different human cancers show biphasic
dose-response for 120 agents, including about 50 endogenous agonists
and drugs (e.g., tamoxifen, aspirin, gangiclovir), 40 were phytochemicals
(e.g., resveratrol, flavonoids, caffeine), and 10 pollutants (e.g., arsenate,
arsenite, cobalt, mercury). Although the biological mechanisms for those
substances differ, the shape of the dose-response invariably is fshaped.
Mechanistically, for example, priming, adaptive or preconditioning respons-
es for mutagens, toxicants, and other agents qualitatively describe
processes that generally strengthen the initial response of the biological
units at eventual risk (Davies et al., 1995; Olivieri et al., 1984; Paalzow et
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al., 1983), and thus justify either the [ or inverse fshaped models. They
account for plastic response up to and including a ceiling (Schlichting
and Smith, 2002). If the agent has agonistic or antagonistic properties for
the same receptor, an inverse Jshaped dose-response may result
(Jackobsen et al., 1999). Receptors for adenosine, estrogen,
prostaglandin, and TNFa, for example, suggest a basic biological mecha-
nism based on different molecular affinities; activation can result in
biphasic response.

The known human carcinogen arsenic (As'") adversely affects DNA
repair, cellular control mechanisms, and oxidative stress. However, bipha-
sic behaviors, such as protection against oxidative stress and skin tumors,
have been observed at low doses. Snow et al., (2005) studied effects of
As"™ on human keratinocytes and fibroblasts at (temporally varying)
doses commonly found in drinking water. They reported an inverted f
shaped function, which adds to other, similarly shaped dose-response for
arsenic’s effect on cell proliferation and viability, (base excision) DNA
repair, and telomerase activity. Although these are protective mecha-
nisms, they may also protect damaged cells against apoptosis, increasing
cancer risk. Moreover, two recent epidemiological studies found that As
in drinking water, at concentrations below 60 ppb, was inversely related
with bladder and lung cancer numbers, supporting the fshaped dose-
response (Lamm et al., 2004; Mahata et al., 2004).

Fukushima et al., (2005) have studied concepts such as practical and
perfect thresholds for cancer for genotoxic (e.g., diethylnitroamine, DEN,
ionizing radiation) and non-genotoxic agents (e.g., a-benzene, DDT)
from experimental and mechanistic evidence: non-linearity is evident,
rather than the LNT. They also report that a study found that oxidative
stress at low dose of DDT is significantly reduced, and appears to be
linked to endogenous DNA repair mechanisms, although it increases at
higher doses. Upton (2001) states:

Although the existence of ... adaptive responses is no longer in doubt, it is not
clear from the existing data whether the dose-response relationships for muta-
genic, clastogenic, and carcinogenic effects of radiation are comparably bipha-
sic in the low-dose domain.

J-SHAPED MODELS

It is against this backdrop that we have developed the three dose-
response models we now suggest as a means to improve on the current
use of regulatory defaults. For cancer, the regulatory multi-stage model
(US EPA’s linearized multistage model, LMS) is Model 1 in Table 1.
Usually, the EPA is interested only in q, i.e., the first power of dose d, and
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its upper 95% confidence bound,
the q,*: these parameters cannot
account for biphasic behavior.
The fshaped model introduces a
repair stage (induced by the car-
cinogen), vyielding the four-
parameter Model 2 in Table 1.
This accounts for:

1. The background incidence
of cancer, even when d = 0
(i.e., the carcinogen of inter-
est is not present);

2. The overall repair mecha-
nism stage (induced by the
carcinogen of interest) for
the background cancer; and

3. The linear-non-threshold
mechanism for the cancer in-
duced by the carcinogen of
interest.

This model has the minimum
number of parameters required
to include non-linearity that rep-
resents repair at low dose, com-
pared to the LNT. Its simplicity,
robustness  and  analytical
tractability recommend it as a
candidate tool for future experi-
mental and theoretical investiga-
tions, while allowing for linearity
at low doses when it exists. Our
developments follow the statisti-
cal modeling of Vilenchik and
Knudsen (2006), who developed
a quadratic (U-shaped) dose-
response model (accounting for
a specific mechanism of repair of
damage from IR exposure) and
Bogen (1997), who developed a
biologically mechanistic cytody-
namic 2-stage model predicting a
Jshaped response curve for

Published by ScholarWorks@UMass Ambherst, 2014

TABLE 1. Risk Models: LMS, fShaped, Max-Min, and Inverse fshaped Models
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radon. The complete discussion of the derivation of these three models
can be found on line (to be assigned an URL) and the relationship to sto-
chastic cell models is given later.

An example of the J-shaped model fit to the data from Ullrich et al.,
is given in Figure 2, with a segment of the LNT fit to the same data set.
The squares are the 95% confidence bound, the expected value falling
within each of these squares.

Scott, Haque, and Di Palma (2007) have developed a model that links
different cellular states to the probability of transition from one state to
the other as a function of genomic damage induced by different level of
exposure to ionizing radiation. They, using MCMC, identify a multi-phasic
model. To account for these results we have developed the max-min (n-
phasic) model, Model 3 in Table 1; Figure 3 depicts its hypothetical shape.

The difference between the fshaped and the max-min model is that,
although for the fshaped model repair takes place at any dose rate, in the
max-min model repair occurs only when the dose rate exceeds a specific

limit.
10000%
90.00%
- Hormetic Model MLS Model
20.00% ' Bpetiment q0 = 0.3595069 q0 = 0 2574692089
Hometic q1 =0.0000990 q1 =0 DODD470557
- - - M8 q2 = 0.2000000
— q3 =45 0000000
8000%
B 5000%
4000%
3000%
2000%
1000%
000% . . . , .
0 500 1000 1500 2000 2500 3000
mGy

FIGURE 2. fshaped dose-response model (estimated from data in Ullrich e al. (1976) gamma rays
exposure, lung adenomas response in mice) is depicted by continuous line; the upper and lower 95%
confidence limits are contained within the red squares. The LMS, model 1 in Table 1, is depicted by
dashed lines (we plot the two models in the relevant region of the data and do not interpolate the
LNT to the point (0, 0)).
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FIGURE 3. Hypothetical depiction of the Max-Min (n-phasic) dose-response model. The phases cor-
respond to different biological mechanisms.

The inverse fshaped curve is the two-parameter model, listed as
Model 4 in Table 1.

Unlike the toxicological Sshaped dose-response model, the inverse J
shape model can capture health improvements at low dose rates. Thus,
the inverse fshaped does not allow a threshold, when there is none, but
allows it in our formulation, when it is experimentally demonstrated. In
the instance where the inverse fshaped model is appropriate, the use of
factors of safety (Dourson and Stara, 1983; Calabrese and Baldwin, 1994)
may have to be re-thought. Accordingly, for the fshaped and inverse f
shaped models, we also suggest the following two metrics that quantify
their direct benefits (Table 2) as:

1.  The maximum risk decrease (or benefit increase); and
2. The average risk decrease (or benefit increase).

To exemplify the fshaped calculations, we use the results of Ullrich et
al. (1976) who irradiated 15,256 mice (in seven groups) with Cesium-137
gamma radiation (450 mGy/min): the data on lung adenoma show the
differences between the LMS and the fshaped dose response models.
Using the metrics in Table 2, the maximum risk reduction equals 10.8 %,
and the average risk reduction equals 6.3%. To exemplify the inverse f
shaped model, we use the data from Falchetti et al., (2001, Table 1, IL-2)
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who studied the effect of
resveratrol using cytokine
secretions (Figure 4 is based
on resveratrol and IL-2).
Using the metrics in Table 2,
the maximum effect
increase is estimated to
equal 112%, and the average
effect increase equals 69%.

Confluence of stochastic and
biphasic behaviors

Many chemical carcino-
gens increase tumor rates in
experimental animals only
in situations that also cause
cytotoxicity and regenerative
hyperplasia, or compensat-
ing proliferation of appar-
ently normal cell popula-
tions in response to the toxic
injury. Examples include
chloroform, diesel exhaust,
formaldehyde, and many
others. When such compen-
sating proliferation is a pre-
requisite  for chemically
induced carcinogenesis, tra-
ditional linearized multi-
stage modeling may over-
estimate risks at low concen-
trations by more than five
orders of  magnitude
(Larson et al., 1996), or pre-
dict significant risks at low
concentrations even if none
actually exists (Constan et
al., 2002).

Carcinogenesis can be
modeled as a process in
which a somatic cell line
gradually accumulates trans-
formations (e.g., somatically
heritable mutations or epige-
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FIGURE 4. Inverse fshaped dose response model (the response axis is not bounded by 1, although
it is bounded by 0 as the percentages can be greater than 100 % but cannot be less than 0%; data
from Falchetti et al. (2001).

netic changes) that occur randomly and independently over time. These
changes may be modeled as occurring according to independent Poisson
processes, with approximately equal intensities (since transformations with
much greater intensities than this common minimum value are not rate
limiting, and may be disregarded. Once any of the K possible transforma-
tions has occurred, assume that it is permanent and irreversible (e.g., not
repaired). The altered cell line survives for a finite lifetime 7. If all K dis-
tinct transformations occur before time 7, then the cell line becomes
malignant. A result of modern complexity science is that, for sufficiently
large K, there is a “sharp transition” time such that the first malignant cell
is very unlikely to be formed much sooner or much later than that time: a
nearly deterministic occurrence time for the first malignant cell emerges
simply as a consequence of there being many stages in this simple stochas-
tic transition model. This result establishes a form of nearly deterministic
behavior for a stochastic system describing cancer: if the sharp transition
time 7*is smaller than the death time 7, then formation of a malignant cell
by time 7' is almost certain; otherwise, it is very unlikely. In this simple
model, exposure to carcinogens can increase cancer risk either by decreas-
ing K (in effect, by completing some transformations relatively quickly, so
that they are removed from the rate-limiting set). This reduces 7% making
formation of malignant cells prior to death of the cell line more likely. If
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carcinogenic exposure reduces K, the number of remaining transforma-
tions required to reach malignancy, then the lifetime probability of tumor,
Pr(T* < T),will increase in discrete steps (corresponding to transformations
completed and no longer on the critical path) that may be insensitive to the
detailed exposure pattern used to reduce K.

The link to biphasic behavior is as follows. Suppose that a normal
stem cell (or somatic cell line) must successfully traverse a stochastic tran-
sition network (STN) to become malignant. Paths through the network
correspond to sequences of events that transform a normal genotype to
a malignant one. The network may consist of two or more stages, e.g., first
with multiple possible paths leading from normal to initiated cells, and
then with multiple other paths leading from initiated to malignant cells.
Consider the fates of normal stem cells with finite lifetimes T entering the
STN. Starting from the initial node (NORMAL), each cell progresses
through the network by making stochastic transitions, eventually reach-
ing the final node (MALIGNANT) with some probability unless it dies or
differentiates first, i.e., unless elapsed time 7" occurs before malignancy.
In this setting, any condition that shortens 7" (or stochastically reduces it),
including exposure to a cytotoxic carcinogen, will tend to reduce the
probability of successful traversal of the network, other transition rates
being held equal. In contrast to K-stage models — such as the LMS — in
which exposure can only hasten the transition of cells toward malignan-
cy, exposure can now reduce the probability that a cell survives to reach
malignancy. For example, if an increase in weeks of exposure decreases
T, then the increase in weeks of exposure would reduce the probability of
carcinogenesis for normal stem cell entering the STN. If this reduction
outweighs any increase in the flux of normal stem cells entering the STN
per unit time to compensate for reduced 7, then the net result is a
reduced risk of malignant cells. For example, if the number of cells per
unit time increases homeostatically, by just enough to offset the shorter
life per cell, thus maintaining cell population sizes, then the lifetime risk
of cancer is reduced: a larger number of shorter-lived cells has a lower
probability of successfully percolating through the STN than a smaller
number of longer-lived cells. In STNs where relatively many stem cells tra-
verse the first few nodes and relatively few penetrate much deeper into
the network, physiologically costly defenses (e.g., detection and repair or
apoptosis mechanisms for damaged cells) may be distributed primarily
among the most frequently traversed, early nodes. In this case, exposures
that reduce 7, tending to keep cells in the earlier and relatively well-
defended parts of the STN, may be especially likely to reduce cancer risk.
Expressed in terms of a two-stage clonal expansion model, fshaped dose-
response relations can arise not only by exposures that kill initiated cells
(Holt, 1997; Bogen, 2001), but also from exposures that inhibit the flux-
es of normal to initiated cells, or initiated to malignant cells, or both.
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CONCLUSION

The regulatory dose-response paradigm consisting of linear-non-
threshold (LNT) and Sshaped models should be visited de novo. To
shape the direction of the discussions and to account for the increasing
evidence of by-phasic behaviors at low doses, we introduce two cancer
models (the fshaped and the max-min models) that not only fit the mini-
mum risk consistent with detecting bi-phasic behaviors, but also account
for:

1. The background carcinogens that are responsible for cancer even
when the carcinogen of interest is not present;

2. The overall repair stage (induced by the carcinogen of interest) for
the background cancer; and

3. The linear-non-threshold mechanism for the cancer induced by the
carcinogen of interest.

We also introduce the inverse fshaped model for toxicological end-
points. The advantages of our models is simplicity, ease of interpretation
and need for few parameters to be estimated from experimental data.
These three models are no more complicated to apply than traditional
ones and include the LNTs and Sshapes traditionally used by regulatory
agencies. We combine biological realism with experimental results sup-
porting it, and thus are consistent with regulatory law that relies, for ease
of application and understanding, on simple but accurate answers. We
add a framework for calculating net societal benefits that would otherwise
be unaccounted for by conjectural choices such as the LNTs. Finally, our
proposed models are consistent with clonal (time-dependent) models,
probably the ultimate step in the development of fully realistic cancer
causal models.
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