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SCREENING FOR OXIDATIVE STRESS ELICITED BY ENGINEERED 
NANOMATERIALS: EVALUATION OF ACELLULAR DCFH ASSAY

Anoop K. Pal, Dhimiter Bello, Bridgette Budhlall, Eugene Rogers � University of
Massachusetts Lowell 

Donald K. Milton � University of Maryland College Park

� The DCFH assay is commonly used for measuring free radicals generated by engi-
neered nanomaterials (ENM), a well-established mechanism of ENM toxicity. Concerns
exist over susceptibility of the DCFH assay to: assay conditions, adsorption of DCFH onto
ENM, fluorescence quenching and light scattering. These effects vary in magnitude
depending on ENM physiochemical properties and concentration. A rigorous evaluation
of this method is still lacking. The objective was to evaluate performance of the DCFH
assay for measuring ENM-induced free radicals. A series of diverse and well-characterized
ENM were tested in the acellular DCFH assay. We investigated the effect of sonication con-
ditions, dispersion media, ENM concentration, and the use of horseradish peroxidase
(HRP) on the DCFH results. The acellular DCFH assay suffers from high background sig-
nals resulting from dye auto-oxidation and lacks sensitivity and robustness. DCFH oxida-
tion is further enhanced by HRP. The number of positive ENM in the assay and their rel-
ative ranking changed as a function of experimental conditions. An inverse dose relation-
ship was observed for several Carbon-based ENM. Overall, these findings indicate the
importance of having standardized assays for evaluating ENM toxicity and highlights lim-
itations of the DCFH assay for measuring ENM-induced free radicals.

Keywords: DCFH, engineered nanomaterials, oxidative stress, ROS, toxicity screening

INTRODUCTION

Extensive scientific research and investments have been made in the
field of nanotechnology, leading to high rate, high volume manufactur-
ing of a variety of engineered nanomaterials (ENM). It has been estimat-
ed that the production of ENM would increase approximately 25 fold
from a few thousand tons produced today to 58,000 tons by 2020
(Maynard 2006; Nastassja et al. 2008) with possible applications in a range
of diverse fields, from development of advanced materials, novel devices
in the fields of medicine, biotechnology, energy, environmental remedia-
tion to their use in consumer products (Zhang 2003; Salata 2004;
Raimondi et al. 2005). In respose to this reality, a broad consensus is
being built to conduct adequate environmental, health and safety evalua-
tions of these novel ENM at an early stage of materials/product develop-

Address correspondence to Dhimiter Bello, Sc.D., M.Sc., Asst. Professor, Department of
Work Environment, School of Health and Environment, University of Massachusetts Lowell,
One University Ave., Lowell, MA 01854, USA; Fax: 978 452 5711; Phone: +1 978 934 3343;
Email: dhimiter_bello@uml.edu

1

Pal et al.: Evaluation of the DCFH assay for ROS measurement

Published by ScholarWorks@UMass Amherst, 2014



ment. Major efforts are underway on developing reliable and predictive
nanotoxicity screening approaches based on proven toxicological path-
ways (Meng et al. 2009; Donaldson et al. 2010). Given the variability in
ENM physicochemical properties (e.g. surface area, surface charge, mor-
phology, and surface chemistry) and the large number of resulting com-
binations, the challenge of timely evaluation of their toxicity can only be
met with high throughput, low cost, screening assays (Ayres et al. 2008;
Bello et al. 2009; Lu et al. 2009; Meng et al. 2009; Xia et al. 2009).
Although how this will be accomplished is still unresolved, it is likely that
a platform of standardized tests, spanning various possible toxicological
pathways, may be needed in order to predict the overall toxicity potential
of ENM.

Oxidative stress (OS) has been recognized in vivo and in vitro systems
as one such major pathway and is being explored for ENM toxicity screen-
ing purposes (Nel et al. 2006; Xia et al. 2006; Borm et al. 2007; Ayres et al.
2008; Rogers et al. 2008; Bello et al. 2009; Lu et al. 2009; Meng et al. 2009).
OS has been linked to pathogenesis of several diseases, including neu-
rodegenerative diseases (Calabrese et al. 2006), arthrosclerosis (Hsiai and
Berliner 2007; Bonomini et al. 2008), cancer (Lau et al. 2008; Mates et al.
2008; Nishikawa 2008), diabeties mellitus (Bekyarova et al. 2007; Forbes et
al. 2008), hypertension, (Paravicini and Touyz 2008), and other inflam-
matory conditions. OS has also been implicated as an important pathway
in metal toxicity (Valko et al. 2005; Valko et al. 2006), and several com-
mercially important classes of ENM are either metals or metal oxides
themselves or contain significant amounts of metal catalysts (such as
CNTs).

Several assays relying on the detection of free radicals generated in
the test system have been employed for OS screening. The DCFH, ESR
and DTT are commonly used assays for quantitating ROS elicited by ENM
(Sauvain et al. 2008). The DCFH assay has been around since 1940s and
has been used for measuring several endpoints, such as determining
monoamine oxidase activity (Degli-Esposti et al. 2001), serum uric acid
and glucose concentrations (Kato et al. 1979) and identify spermine in
seminal stains (Suzuki et al. 1980). An excellent summary of the DCFH
assay history and applications has been published recently (Chen et al.
2010). Modified variants of the DCFH assay have also been used for nan-
otoxicity studies in a cell-free (acellular) environment and on a variety of
cell lines (Wilson et al. 2002; Arbab et al. 2003; Manna et al. 2005; Foucaud
et al. 2007; Doak et al. 2009; Lu et al. 2009; Xia et al. 2009). Because DCFH
detects a wide range of ROS (RO2, RO, OH., HOCl and ONOO but not
O2

.- and H2O2), it is simple and inexpensive to set up and offers 96-well
plate automated capabilities, it has gained popularity for measuring ROS
induced by ENM (Doak et al. 2009).

Evaluation of the DCFH assay for ROS measurement
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The DCFH assay, like most of the other conventional colorimetric
(dye-based) assays that have been used for ENM toxicity evaluations (such
as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT),
2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium
(WST-1), Neutral Red and Alamar Blue™) were originally standardized
and optimized for chemical compounds and were adopted with little
modifications and method evaluation for ENM. Because of the funda-
mental differences in the physicochemical properties and behavior
between ENM and organic molecules, the assumption that ENM can be
tested similarly to other chemicals needs to be proven and anecdotal evi-
dence is building up against the DCFH assay (Doak et al. 2009).
Interaction of these indicator dyes with carbon-based ENM may provide
erroneous results (Hurt et al. 2006; Monteiro-Riviere and Inman 2006;
Wörle-Knirsch et al. 2006; Belyanskaya et al. 2007; Casey et al. 2007;
Monteiro-Riviere et al. 2009), which raises concerns over applicability of
the organic dye-based assays for ENM toxicity evaluations (Casey et al.
2007). Unreliable assays may generate confusion caused by conflicting
and irreproducible data, and questioning of the utility of OS as a marker
for nanotoxicity evaluations.

The DCFH assay provides a measure of several ROS and RNS species
and is useful when such a global metric is desirable, such as for toxicity
screening. Its utility is more constrained for mechanistic studies; such as
if one needs to measure specific ROS/RNS radicals and identify their
source/origin (Tarpey and Fridovich 2001; Doak et al. 2009). The DCFH,
however, suffers from several well-known problems (Chen et al. 2010).
One major problem intrinsic to the DCFH is its unstable nature. The
DCFH dye is slowly oxidized to the fluorescent DCF species in air and is
also prone to photo-oxidation by the laser light utilized for fluorescence
excitation. Thus, DCFH detection can generate false-positive results
(Sarvazyan 1996; Wang and Joseph 1999) and background values
increase with time. A summary of potential sources of error in the DCFH
assay is provided in Table 1.

In this study, we look systematically at several factors (summarized in
Table 1) that may compromise the DCFH performance for ENM ROS
measurement, including: the type of nanomaterial, ENM concentration,
sonication conditions, dispersion media, and the effect of horseradish
peroxidase (HRP) on the DCFH stability and ROS generation. HRP has
been added to ENM to mimic the cellular conditions of ROS production
(Foucaud et al. 2007; Jiang et al. 2008; Rothen-Rutishauser et al. 2010).
This paper provides multiple lines of evidence that the DCFH assay is sus-
ceptible to several experimental parameters and that in its current format
the assay is not well suited for ENM ROS measurements.

A. K. Pal and others
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MATERIALS AND METHODS

Chemicals and reagents

The 2`-7`-DiChlorofluorescein Diacetate (DCFH-DA) dye, NaOH,
Phosphate Buffer Saline (PBS), H2O2, Bovine serum albumin (BSA),
Horseradish peroxidase (HRP) and Triton X-100 were obtained from
Sigma–Aldrich (Sigma, St. Louis, MO). Methanol was purchased from
Burdick and Jackson (Muskegon, MI, USA). All chemicals were of analyt-
ical grade and were used as received.

Evaluation of the DCFH assay for ROS measurement
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TABLE 1. Potential errors can be introduced at various steps of the DCFH assay when it is used for
the measurement of reactive oxygen species generated by engineered nanomaterials (ENMs). We
grouped them into three broad steps: (i) Preparation of ENM dispersions; (ii) Interaction of ENM
with the assay measurement principle; and (iii) System interdependence on nanomaterial properties. 

Step Investigated  Potential effects 
Dispersion: a   

 
1% BSA/0.9% NaCl 

 
Medium 

 
Surfactant, Triton-X 100 

High energy cup sonication ~ 
125W 

 
Energy 

 Ultrasonic probe sonication ~ 
225W 

• Dispersion efficiency (size distribution and 
homogeneity);  

• Dispersion stability;  
• Interaction of ENMs with proteins and other 

components of the dispersion medium affecting 
surface activity of ENMs; 

•  Structural defects and size fracturing of ENMs by 
sonication;  

• Generation of free radicals during sonication; 

Assay 
Conditions:   

 
 
0-120 min 
 

 
0.1, 0.3, 0.5 mg/mL 

 
Measurement 
Time / 
Reaction 
kinetics 

 
 
 

ENM  
concentration 

 
 
 
 
 

Effect of HRP 
 

 
 
DCFH oxidation by HRP 
 
 
Assaying of ENM in the 
absence of HRP 

• Reaction kinetics may vary depending on ENM 
type, thus measurements have to be made near 
reaction completion; 

• Re-agglomeration of ENMs in the well plate 
during measurements may lead to settling of 
agglomerates and changes in effective dose; 

• Potential adsorption/removal of DCFH by ENMs;   
• Interaction of ENMs with optical measurements 

(e.g. light scattering and absorption, or 
fluorescence quenching); 

• Stronger effects are likely to occur at higher 
ENMs concentrations; 

• HRP-catalyzed oxidation of the DCFH dye; 
Effects may be modulated by the dispersion 
medium; 

• HRP may be deactivated by certain metals in 
ENMs or by interacting with ENMs;  

ENMs type:  
 
C-based ENM 
Metals/Metal Oxides 
 
Series of different sizes and 
impurities 

 
• Different sizes, specific surface areas and surface 

activities may lead to different levels of 
absorption of DCFH, HRP inactivation, as well as 
interaction with the light beam; 

• Additional effects may be impacted by impurities 
in the ENM, e.g. transition metals selectively 
deactivating HRP or organic impurities absorbing 
in the same region as DCFH itself. 

a Although important, dispersion is a generic issue for ENM and not specific to DCFH. 
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Nanomaterials

For the purpose of investigating the DCFH response to different ENM
types, a well characterized set of 19 materials of commercial importance
and with a broad range of physicochemical properties, were selected. The
ENM used in the study, are summarized in Table 2. The materials togeth-
er with their sources and specifications have been described previously by
us (Bello et al. 2009) and included a series of carbon blacks, a series of
fullerenes, a series of titanium dioxides (nano- and micron-sized anatase
and rutile), a series of single and multi-wall carbon nanotubes (CNTs) of
variable length and purity, H2O2-oxidized single wall carbon nanohorns
(SWCNHs-ox), nano alumina, nano silver, and micron-sized crystalline
silica. For simplicity, we will refer to the whole set of materials under
investigation as ENM, although some are microscopic.

Physicochemical characterization

The initial set of 19 ENM has been previously reported (Bello et al.
2009) and includes: Specific Surface Area (SSA), total and water-soluble
transition metals, organic and elemental carbon (OC/EC), surface
charge in PBS saline and crystalinity. Procedures for each characteriza-
tion technique are detailed in Bello et al. 2009.

Dispersion of Nanomaterials

Efficient dispersion of ENM at or near the primary particle size
dimensions remains a serious challenge and different ENM classes may
require different protocols for best dispersion. Because sonication itself
may introduce artifacts (such as the generation of free radicals, modifi-
cation of the dispersion medium and the ENM themselves), it is impor-
tant that all ENM to be tested for comparative evaluations get dispersed
under the same protocol. Initial work investigated dispersion efficiency of
the whole ENM set in two dispersion media, one analogous to a biologi-
cally relevant medium of 1% wt. BSA/0.9 wt % NaClaq (Bihari et al. 2008)
and the other in the chemical surfactant 0.07% wt.Triton X-100 (Hilding
et al. 2003; Moore et al. 2003; Saran et al. 2004). For this study three inde-
pendent stock solutions of 0.8-1.0 mg/mL were prepared for each ENM
in each medium on different days and each stock was assessed at least
three times in triplicates. That is a minimum of nine measurements were
available for each ENM/condition combination. Sonication to prepare
dispersions was performed using a 400 W Branson 450D sonifier with a
550 dismembrator. In our work, three distinct dispersion conditions were
investigated: (i) ENM dispersed in 1% BSA / 0.9 % NaCl(aq) for 12 min
with cup sonication (~90W), (ii) ENM dispersed in 1% BSA / 0.9%
NaCl(aq) for 10 min with 30 sec cycle at 30% amplitude probe sonication
(~200W); and (iii) ENM dispersed in 0.07% Triton X-100 for 10 min with

A. K. Pal and others
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30 sec cycle at 30% amplitude probe sonication (~200W). The scintilla-
tion vials containing ENM solutions were kept in ice and capped during
the whole cup sonication process, whereas for probe sonication vials were
kept in ice uncapped. Because the primary purpose of this set of experi-
ments was to investigate the magnitude of susceptibility of the assay to
sonication/dispersion conditions (which continues to be a non standard-
ized process) and not a strict comparison of dispersion protocols, some
variations in the sonication cycle settings were deemed acceptable.

Dispersion efficiency of ENM in each dispersion condition was deter-
mined in triplicate by taking intensity weighted particle size measure-
ments using a dynamic light scattering (DLS) Malvern Zetasizer Nano-ZS
instrument. The Zetasizer is equipped with a monochromatic coherent
4mW Helium Neon laser (λ = 633 nm) with a 173o scattering angle and
with a non-invasive back-scatter (NIBS) technology for increasing particle
size sensitivity. The measurements are reported as the z-average hydrody-
namic diameter (dh,z ave) and the particle size polydispersity index (PDI),
which is a measure of the broadness of the particle size distribution. The
PDI scale ranges from 0 to 1, with 0 being monodisperse and 1 being poly-
disperse (Bihari et al. 2008). The measurements were performed within 5
minutes after sonication, and before and after each measurement, the
electrophoretic cell was washed with distilled and deionized water to pre-
vent cross contamination. The temperature of the laboratory was kept at
22 ± 2.5 oC during all experiments. In brief, during DLS measurements
the particles are subjected to Brownian motion. This is compensated by
normalization of the electric field autocorrelation function, of which the
cumulative analysis is used to obtain the z-average hydrodynamic diame-
ter (dh,z ave). The autocorrelation function is calculated by the
Stokes–Einstein equation with the diffusion coefficient determined from
the decay time of autocorrelation function. In addition there is certain
probability that the light scattered by larger particles will swamp the light
scattered by smaller particles since the light intensity of a scattered parti-
cle is proportional to the diameter in the sixth power. That means that
larger particles are overestimated in the dispersions. For this reason the
change of dh,z ave with ultrasonic treatment time shows only a trend in the
change of particle size (Krause, et. al., 2010).

The Acellular DCFH assay

We used the modified DCFH method as described in previous publi-
cations (Foucaud et al. 2007; Bihari et al. 2008) for dispersion, as well as
the ROS measurements. Briefly, in the DCFH assay 15 μl of 1 mM DCFH-
DA dye was chemically hydrolyzed to DCFH with 50 μl of 0.01N NaOH in
each well of 96-well ELISA plate. The reaction plate was placed in dark at
room temperature for 30 minutes. Following hydrolysis of DCFH-DA, 170
μl of 0.1M PBS was added in the 96-well plates. Then, ENM solution was

Evaluation of the DCFH assay for ROS measurement
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spiked in triplicates to give a final concentration of 0.1, 0.3, or 0.5 mg/mL
in wells. Alongside, a blank (no ENM added) and a positive control
(H2O2) were used in the assay, both in triplicates. In the wells containing
H2O2, HRP (0.01U) was added. No HRP was added to wells containing
ENM. After addition of HRP to the H2O2 wells (positive controls and cal-
ibration standards), the plate was placed on ice and assayed rapidly. The
fluorescence generated by the DCFH oxidation was measured continu-
ously for 120 min at 485 nm excitation and 530 nm emission both with a
slit-width of 10 nm under constant agitation condition and constant tem-
perature of 37 0C. Readings were taken at time zero and every 10 min
intervals for 120 min. The data reported is for 90 min reaction time-
frame, a decision that was based on initial reaction kinetics evaluations.
Fluorescence values obtained for ENM were converted to H2O2 equiva-
lents against a calibration curve of H2O2 in the range of 0-1000 µM H2O2
with an r2 = 0.999. This conversion is not necessary for the purpose of the
paper. However, conversion of arbitrary fluorescence units to a biologi-
cally meaningful ROS value is desirable and one approach used for ENM
is conversion in H2O2-equivalents (Foucaud et al. 2007; Jiang et al. 2008;
Lu et al. 2009). Because H2O2 cannot oxidize DCFH independently, the
enzyme HRP is added to catalyze generation of OH radicals. Therefore,
HRP was added only when H2O2 was used as positive control and for the
standards.

Effect of HRP on DCFH oxidation

Considerable discrepancies and confusion exists in the literature with
regards to the practice of adding HRP to ENM, its concentration, and the
sequence of events with regards to its use (when exactly is HRP added in
reaction mixture). We have not found convincing scientific rationale for
addition of HRP to ENM. Since oxidation of DCFH by HRP has been
reported over a decade ago (Rota et al. 1999a; Rota et al. 1999b), this rais-
es concerns over its use in the DCFH assay for ROS measurements of
ENM. It has also been reported that the HRP catalytic activity may be mod-
ulated (deactivated or enhanced) by several transition metals (e.g. Mn,
Co, and Ni), which are common in carbon nanotubes and other metal
oxides (Mahmoudi et al. 2003). Therefore, a systematic investigation of the
effect of HRP on DCFH was undertaken. HRP effect (0.01U final concen-
tration) was investigated on blanks (no ENM added) under different con-
ditions, including the sequence of adding HRP and sonication. Several
experiments were grouped into three broad conditions: effect of HRP on
blanks with and without sonication and effect of event sequence of HRP
addition. As an illustration, we investigated the DCFH fluorescence of
blanks when reagents were added in the following order: (i) DCFH,
NaOH, PBS; (ii) DCFH, NaOH, PBS plus HRP; and (iii) DCFH, NaOH,
PBS, HRP + dispersant (BSA or Triton X-100) plus sonication.

A. K. Pal and others
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Statistical Analysis

Experimental data was investigated for normality of distributions and
differences in means between test systems were analyzed via two-sided t-
test, analysis of variance ANOVA, correlation and regression using SPSS
v18 (SPSS Inc., Chicago. IL, USA). The error bars in DCFH response fig-
ures represent the 95% Confidence interval (CI) of at least three inde-
pendent ENM dispersions tested in triplicate.

RESULTS

Effect of HRP on DCFH oxidation

Results of the investigation of HRP on DCFH response are summa-
rized in Figure 1. For blanks without HRP (experiment 1, 4 and 7) the
DCFH response is comparable at ~ 100 µM H2O2 eq. and notably lower
than for all other experiments that involved HRP. Addition of HRP to
blanks increased fluorescence response by ~4-5 times regardless of soni-
cation (experiments 2 and 3 vs. 5 and 6 relative to 1, 4, and 7). The worst
situation was observed for experiment 8 (addition of HRP in Triton X-
100 dispersion media followed by sonication). The sequence of events

Evaluation of the DCFH assay for ROS measurement
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FIGURE 1. Effect 0.01U of HRP on DCFH oxidation of blanks (no nanomaterials involved) under
different conditions (sequence of events and dispersion conditions). The label on the X-axis reflects
actual sequence of events. HRP is undoubtedly involved in DCFH oxidation and the magnitude of
the effect spans approximately an order of magnitude compared to blanks without HRP, depending
on the experimental conditions. 
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apparently may be important in some circumstances (e.g. experiment 8
vs. 9) but not others (2 and 3 vs. 5 and 6). Dispersion medium also plays
a significant modifying role on the effect of HRP on DCFH as can be
clearly seen in the differences between 1%BSA/0.9%NaClaq medium
(experiments 5 and 6) and Triton X-100 (experiments 8 and 9). HRP is
undoubtedly involved in DCFH oxidation and the magnitude of the
effect spans approximately an order of magnitude compared to blanks
without HRP, depending on the experimental conditions. Based on these
results we could not justify the addition of HRP onto ENM for ROS meas-
urements.

Dispersion Efficiency

Dispersion efficiency results for the complete set of 19 ENM in all
three conditions are presented in Table 2. The z-average hydrodynamic
diameter (dh,z ave) and polydispersity index (PDI) of the dispersions were
determined using DLS and were used as a measure of dispersion effi-
ciency. The dh,z ave of all ENM (except TiO2_Rutile in Triton X-100) in
each of the three dispersion conditions tested were consistently higher
than the primary particle size of ENM. Thus, the particles aggregated and
agglomerated considerably in the dispersion conditions. Better disper-
sions (lower dh,z ave and PDI values) were obtained for the majority of ENM
in 1% BSA / 0.9 % NaCl(aq) as the sonication energy increased (cup son-
ication vs. probe sonication). Using 0.07 % Triton X-100 and high energy
probe sonication even better dispersions for ENM were obtained, except
for SWCNT_L, TiO2_mR and Al2O3. In general, higher dispersion stabil-
ity was observed for ENM dispersed in 0.07 % Triton X-100 than for ENM
dispersed in 1% BSA / 0.9 % NaCl(aq) irrespective of energy used. (DLS
measurements were conducted over 90 min for a few ENM to confirm
these interpretations, data not shown).

We obtained dh,z ave and PDI values for the entire carbon black series
tested and the distribution of particles was such that 90% or more parti-
cles was found in the primary peak. The dh,z ave increased from N110 to
N990, reflecting the same trend as their primary particle size. For exam-
ple, N990 (primary size > 200 nm) had consistently larger dh,z ave values
than N550 (44 nm). For the fullerene series, values obtained showed vari-
ability both in dh,z ave and PDI due to a high rate of particle agglomeration
(due to its strong hydrophobic nature) in solution under all tested con-
ditions. Irrespective of dispersion conditions, high PDI was obtained with
< 70% particle found in the primary peak of the particle size distribution
(PSD) for Fullerene_purified.

Comparable values were obtained for two SWCNT in all dispersion
conditions. For SWCNT_L, however, the dh,z ave value in 0.07 % Triton X-
100 was half of that obtained in 1 % BSA / 0.9% NaCl(aq) without any con-
siderable change in PDI but with fluctuations in number of particles in
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primary peak. In the series of MWCNT tested, values for dh,z ave and PDI
consistently decreased for all three MWCNT tested, with a major decrease
in both dh,z ave and PDI for MWCNT_L (dh,z ave from 471.6 nm to 124.2nm
and PDI from 0.48 to 0.19). SWCNHs-ox had nearly identical values in all

Evaluation of the DCFH assay for ROS measurement
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three conditions, although there was a small shift in size and PDI in 0.07
% Triton X-100 condition than 1 % BSA / 0.9 % NaCl(aq) conditions.

For the metal oxides series comprising titania, nAg, silica, the dh,z ave
decreased for TiO2_nA, TiO2_nR, nAg and silica as shown in Table 2
(going from dispersion in 1 % BSA / 0.9 % NaCl(aq) with cup sonication
to dispersion in 0.07 % Triton X-100 with probe sonication). There was
no trend in PDI for the same set of ENM. For TiO2_mA, TiO2_mR and
alumina both the dh,z ave and PDI show considerable variations depending
on the energy and surfactant used for dispersion. As indicated by dh,z ave
and PDI values, Triton X-100 with probe sonication gave overall better
dispersion stability than the other two dispersion conditions, with the car-
bon based nanomaterials being better dispersed than the metal oxides.

ROS generation in the DCFH assay

ROS values for all ENM under different dispersion conditions
(reported as µM H2O2 equivalents) are presented in Figures 2, 3 and 4.
All values are for 0.3 mg/mL of ENM. Data for the other two concentra-
tions (0.1 and 0.5 mg/mL) are presented later. In each figure, the dotted
red line indicates the ROS value of the blank (no ENM added) and error
bars indicate 95% confidence intervals (95% CI). ENM for which the
lower fifth percentile of the distribution was above the red line was con-
sidered as a positive result (i.e. the ENM generates ROS, which is statisti-
cally significantly greater than the blank value, p<0.05, t-test) on the assay
whereas those for which the upper 95th percentile was below the blank
were taken to be negative on the assay (i.e. the ENM did not generate
ROS values that were higher than the blank; p>0.05, one sided t-test).
When the 95% CI of ROS included the red line the test was considered
inconclusive, meaning that for a single DCFH measurement (as is com-
monly done in reality) the ROS value could potentially be positive,
although statistically the ENM ROS value was not significantly different
than the blank (p>0.05, t-test).

The number of ENM in the positive, negative and inconclusive cate-
gory varied with the assay conditions. For ENM dispersed in 1%
BSA/0.9% NaCl(aq) using cup sonication (Figure 2) there were 4 positive
ENM (SWCNT_S, SWCNT_L, MWCNT_S and SWCNH-ox), 13 negatives
(the majority of ENM) and 2 inconclusive (MWCNT_L, nAg). For ENM
dispersed in 1% BSA/0.9% NaCl(aq) using probe sonication (Figure 3)
there were 3 positives (SWCNT_S, SWCNT_L and nAg), 12 negatives and
4 inconclusive (MWCNT_L, MWCNT_S, nano Al2O3). Interestingly,
SWCNH-ox, the ENM with the highest response in cup sonication yield-
ed a negative result and the CI interval was narrower. Additionally, nano
Ag switched from inconclusive to positive and MWCNT_S switched from
positive to inconclusive. For ENM dispersed in Triton X-100 (Figure 4)
there were 5 positives (SWCNT_S, SWCNT_L, MWCNT_S, MWCNT_L
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and SWCNH-ox), 12 negatives and 2 inconclusive (MWCNT_I and nano
Ag). Interestingly, SWCNHs-ox gave the highest ROS value again. The CI
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FIGURE 3. DCFH ROS generation of 19 ENMs in 1wt.%BSA/0.9wt.% NaCl dispersed by probe son-
ication. Only 3 of the 19 ENMs were positive (95% confidence interval above blank value denoted
with the red line), 12 were negative and four were inconclusive (MWCNT_L, MWCNT_S, nano
Al2O3). The positive samples included SWCNT_S, SWCNT_L and nAg. Note also that SWCNH-ox
dropped from the strongest signal in cup sonication (Figure 2) to negative. Each value represents 3
or more independent sonications, each in triplicates (n≥9). 
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FIGURE 2. DCFH ROS generation of 19 ENMs in 1wt.%BSA/0.9wt. % NaClaq dispersed by cup son-
ication. Only 4 of the 19 ENMs were positive (95% confidence interval above blank value denoted
with the red line), 13 were negative and two were inconclusive (MWCNT_L, nano Ag). The positive
samples included three CNTs and the SWCNH-ox. Each value represents 3 or more independent son-
ications, each in triplicates (n≥9). 
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intervals were generally narrower for this condition, likely reflective of
better and more reproducible dispersion.

The majority of ENM were consistently negative on the DCFH assay,
and this included the series of carbon blacks, fullerenes, titania, crys-
talline silica, and nano alumina (two out of three tests). Important also is
the common observation that the majority of the negative ENM gave
results that were consistently lower (up to 2x) than the blank value.

Dose Response of ENM

The dose-response for each ENM was studied at three concentrations:
0.1, 0.3 and 0.5 mg/mL. Here we report results for probe sonication in
Triton X-100, the condition with overall better dispersion efficiency and
stability, and the data are shown in Figure 5. The first general observation
is the lack of a proportional DCFH response with increased ENM dose.
The highest ENM dose of 0.5 mg/mL gave consistently a much lower
response that the lowest dose (0.1 mg/mL). The 0.3 mg/mL dose gave
responses that were slightly higher than the 0.1 mg/mL dose for some
materials (metal/metal oxides) but not others (mostly carbon based
ENM). For several carbon based ENM (carbon blacks, fullerenes, several
CNTs), an inverse DCFH response is seen with increasing concentration
(e.g. N110, F_soot, SWCNT_L). ENM with higher SSA tended to give a
higher magnitude of decrease in the response (e.g. SWCNT_L vs.
SWCNT_S vs. N110 with SSA of 510.5, 343, and 110 m2/g, respectively.
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FIGURE 4. DCFH ROS generation of 19 ENMs in 0.7wt.% Triton-X 100 dispersed by probe sonica-
tion. Only 5 of the 19 ENMs were positive (95% confidence interval above blank value denoted with
the red line), 12 were negative and 2 were inconclusive (MWCNT_I and nano Ag). The positive sam-
ples included four CNTs (SWCNT_S, SWCNT_L, MWCNT_S, MWCNT_L) and SWCNH-ox. Each
value represents 3 or more independent sonications, each in triplicates (n≥9). 
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DISCUSSION

Nanomaterials have large surface area owing to higher particle num-
ber per unit mass than their micron-sized counterparts. This makes them
highly reactive because surface atoms usually have unsatisfied high-ener-
gy bonds that will readily interact with other molecules to gain stability
(Oberdorster et al. 2005; Doak et al. 2009). Enhanced adsorption onto
ENM surface of the dyes or other chemical entities present in the reac-
tion system, further modified by variable surface chemistries, manufac-
turing processes, and types of surfactants used to disperse ENM, may lead
to measurement errors that are largely unknown (Belyanskaya et al. 2007;
Doak et al. 2009). Few studies pointed to these limitations in the DTT
assay (Sauvain et al. 2008) and DCFH assay (Doak et al. 2009); however,
the evidence was mostly anecdotal. Several potentially serious analytical
problems have been reported for the DCFH assay as early as 1999 (Rota
et al. 1999a; Rota et al. 1999b ; Myhre et al. 2003; Bonini et al. 2006) but
they seem to have had little impact on adoption of the DCFH assay for
ENM ROS measurements. Our finding that the DCFH assay is susceptible
to several parameters and that the direction and magnitude of such
effects varies unpredictably is in good agreement with these earlier cau-
tionary reports.
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FIGURE 5. Dose response for the whole series of nanomaterials studied at three concentrations: 0.1,
0.3, and 0.5 mg/ml. The data are for Triton-X probe sonication, the condition with overall better dis-
persion efficiency and stability. Lack of a linear relationship with increased concentration is appar-
ent. The lowest response was consistently observed for the highest concentrations. Depending on the
nanomaterial type, especially for the carbon based nanomaterials, an inverse linear DCFH response
is seen with increasing concentration (e.g. SWCNT_L and N110). The effect is higher for higher sur-
face area nanomaterials. These anomalies are likely a net effect of several processes, such as poten-
tial absorption of DCFH reagent onto the surfaces of particles followed by removal from solution via
agglomeration/precipitation and light scattering effects. 
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Dispersion Efficiency

Proper dispersion of ENM for toxicological studies is a key factor and
its significance has been recognized (Bihari et al. 2008). Yet, the problem
has not been fully resolved and dispersions at the primary particle size
continue to be challenging. In the present study, consistent with the best
practices at the time, two types of dispersion mediums were tested, one
biologically relevant medium of 1 % BSA/ 0.9 % NaCl(aq) and the other,
0.07 % Trition-X 100, a nonionic surfactant routinely used for dispersing
ENM. Agglomeration of ENM varies according to the sonication energy,
frequency and time used and can impact ROS measurements (Murdock
et al. 2008). Thus, both cup sonication (lower energy) and probe sonica-
tion (higher energy) were employed to disperse ENM in two media (1 %
BSA / 0.9 % NaClaq and 0.07% Trition-X 100). The dh,z ave and PDI results
obtained (Table 2) indicate that, depending on the ENM class, dispersion
efficiency can vary considerably. Dispersion stability and efficiency (with
a few exceptions) was generally in the order: 1% BSA / 0.9% NaClaq with
cup sonication < 1 % BSA / 0.9 % NaClaq with probe sonication < 0.07 %
Trition X- 100 with probe sonication. In general, consistent with earlier
reports (Allouni et al. 2009), carbon based ENM dispersed better than
metal oxides under probe sonication and their agglomeration rates were
slower than for metal oxides. This was reflected in the overall PDI values.
Our dispersion efficiency (as reflected in the dh,z ave and PDI values) were
equivalent to or better than earlier results (Foucaud et al. 2007; Murdock
et al. 2008; Bihari et al. 2008; Lu et al. 2009) performed with similar ENM.

While higher sonication energy can generally lead to better disper-
sions and smaller agglomerate size for some ENM, it can also lead to
changes in ENM structure and even ENM breakage and generation of
free radicals, which may induce biologically significant structural alter-
ations in serum proteins (such as BSA) and other biological surfactants
frequently used as dispersion media (Wang et al. 2009). For example,
materials with high aspect ratios (SWCNT and MWCNT series) as well as
those whose primary particle size is in the micron range
(TiO2_mA,TiO2_mR and silica) had fluctuations in dh,z ave and PDI.
Moreover, the % intensity of the primary peak in the PSD fluctuated as
well. Overall these factors point to a variable rate of agglomeration in dis-
persions of these materials. DLS data and SEM/TEM images of SWCNTs
and micron-size TiO2 confirmed structural fragmentations. This phe-
nomenon was consistent with earlier observation of TiO2 breakage
(Mandzy et al. 2005). For the micron-size crystalline silica (with sizes typ-
ically in the 1-5 µm range), electron microscopy revealed a substantial
fraction of smaller (<1 µm) particles. The dh,z ave for crystalline silica may
reflect a combination of these smaller particles and potential fragmenta-
tions. For TiO2_Anatase particles, the dispersion was not as effective, con-
sistent with the prior observations (Bihari et al. 2008).
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It is speculated that the values for Al2O3 and the fullerene series (espe-
cially F_purified), are not representative of the true particle size distribu-
tion in the dispersions. They showed the highest rate of agglomeration of
all the ENM studied, even though measurements were taken instanta-
neously after sonication. The PDI values obtained for these ENM were
higher (approx 0.6-0.7) than the average PDI for the other ENM tested.

While these modifications may be less important relatively, for acellu-
lar than cellular assays, the use of high sonication energy may need to be
balanced against these undesirable effects. Measuring particle size of
CNTs by DLS might be error-prone (as stated in method section), but for
our study it is sufficient for obtaining an idea of their hydrodynamic
diameter in the dispersions. This is especially the case for their agglom-
eration rate in different mediums under different dispersion conditions.
It was found that poorer dispersion leads to a larger average diameter
(dh,z ave) for CNTs. Dispersion efficiency is likely a major contributor to
the observed variability in ROS values (the 95% CI around the mean).
This is easier noticed by looking at the 95% CI for the same material
under different dispersion conditions (e.g. CNTs in 0.07 % Triton X-100
vs. 1% BSA / 0.9% NaCl(aq)). However, it should be pointed out that dis-
persion is not a DCFH-specific problem.

ROS measurements

Different measurement times have been reported in the literature for
the DCFH assay spanning from minutes to one hour (Foucaud et al. 2007;
Veranth et al. 2007; Lu et al. 2009; Rothen-Rutishauser et al. 2010). Initially
we investigated reaction kinetics for all tested ENM over 120 min
(Figure 6). Under the current assay conditions, none of the reactions
reached completion, and this may be in part due to continued auto-oxi-
dation of the large DCFH pool. During the first 40 min, distinct reaction
dynamics were observed for different ENM depending on dispersion
media and sonication and the relative ranking of ENM ROS generation
would change depending on the time of measurement. Meaningful meas-
urements and comparisons among ENM leading to stable rankings of
ENM ROS intrinsic potency could be made after 60 min. Reaction com-
pletion was observed at 90 min for higher reactant (DCFH and ENM)
concentrations. We reported data for 90 min as a more conservative
approach, although the results and conclusions of this work would not
change if data were reported for 60 min. The reaction kinetics data have
several implications. Because only a minor fraction of the reaction is com-
pleted in the first 10 min, DCFH measurements based on this time frame
for individual ENM have little value. Even for comparative purposes, such
as for relative ranking of their intrinsic potency to generate ROS, such
measurements are unreliable if they are based on short time frames, espe-
cially < 40 min. Sixty minutes or more is necessary.
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Consistent with previous reports on DCFH oxidation by HRP, our
results document significant effects of HRP on DCFH oxidation. More
problematic is the finding that the magnitude of this effect varies depend-
ing on the dispersion media and sonication conditions, making correc-
tions for such effects impossible. The range of H2O2 Eq. ROS generated
as a result of DCFH oxidation by reactants other than ENM spanned from
100 (blank without HRP) to 800 µM H2O2(eq) (blank with HRP and probe
sonication). The range of H2O2(eq) ROS generated as a result of DCFH
oxidation by ENM without HRP was ~100 (blank) to < 400 µM H2O2(eq)
under all conditions. These data do not support addition of HRP to ENM.

Another important factor, often overlooked, which may add to the
variability of ROS measurements induced by ENM in the presence of
HRP in the DCFH assay is the potential interaction and inactivation of
HRP as a result of absorption onto ENM surfaces, as has been shown for
silica nanoparticles and HRP, lysozyme, trypsin, and catalase (Vertegel et
al. 2004). The magnitude of this effect, which may lead to different levels
of HRP activity and DCFH oxidation, will likely depend on ENM type and
particle size. Such concerns are contrary to a general tendency where
HRP is being added during DCFH assay to ‘amplify the DCFH oxidation’
(Foucaud et al. 2007; Jiang et al. 2008; Rothen-Rutishauser et al. 2010). As
mentioned previously, several M2+ transition metals (Co, Mn, Ni) com-
mon in CNTs and metal oxides may inactivate or enhance HRP catalytic
activity with different potencies. For the reasons stated above, addition of
HRP to ENM severely compromises the quality of the data, (which in the
DCFH assay are inherently compromised by DCFH auto-oxidation) and
renders comparisons inconsequential as one would not know how much
effective ROS is generated by each ENM, given their variable physio-
chemical characteristics and unknown re/activity to HRP.

In our tests, the DCFH gave consistently negative responses for the
majority of ENM, irrespective of dispersion medium and method used.
This is primarily driven by the high ROS values obtained for blanks (with-
out ENM) and reflects one major inherent limitation of the assay: auto
oxidation. This fact is consistent with other studies (Foucaud et al. 2007;
Lu et al. 2009; Rothen-Rutishauser et al. 2010). Notable also is the fact that
the majority of ENM that were negative gave values than were below the
blank. For a reliable assay, a ROS value below blank would mean that the
ENM exhibits antioxidant properties and the difference from blank value
would be proportional to its intrinsic potency. This is unlikely to be the
case for the majority of these ENM (with the exception perhaps of puri-
fied fullerenes). The more likely explanation for these observations is a
net effect of several aforementioned ENM-induced artifacts that drive the
overall DCFH response towards smaller values.

Only two ENM were positive under all three conditions (SWCNT_L,
SWCNT_S). The number of positives varied with the dispersion medium
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and sonication conditions between 3 and 5. A few CNTs switched from
positive to negative and vice-versa upon dispersion/sonication condi-
tions. Some typical cases involved nano silver (1/3 positive), MWCNT_S
and _L (1/3 inconclusive) and SWCNH-ox. The SWCNH-ox represents
an even more drastic example. For 2/3 conditions (1% BSA / 0.9%
NaCl/ cup sonication and Triton X-100/probe sonication) SWCNH-ox
gave one of the highest ROS values. However, in 1% BSA / 0.9% NaCl
medium with probe sonication the result was conclusively negative. The
reason for this drastic shift in behavior is not known and it warrants fur-
ther investigations. For all the aforementioned reasons, negative DCFH
results for ENM should be treated as uninformative. Additionally, reports
of individual acellular DCFH results for ENM for which no blank values
were provided or which have been acquired with the addition of HRP to
ENM should be treated with skepticism.

Lack of a linear dose-response over the tested 0.1-0.5 mg/mL range is
also concerning. For the series of carbon blacks, fullerenes, CNT and
TiO2 an inverse dose response was observed. For the remainder ENM
(TiO2 series, Silica, nAl2O3, nAg, MWCNTs and SWCNHs-ox) ROS values
increased as concentration increased from 0.1 to 0.3 mg/mL but
decreased for 0.5 mg/mL. This effect for the DCFH assay was also
observed by Doak et al. 2009 for one type of ENM (iron oxides). Since
only negligible fluorescence responses were obtained from ENM when
they were run as blanks without DCFH (data omitted), factor associated
with the reagent (DCFH) and its interaction with ENM must be responsi-
ble for such phenomena (non-linear response, high blank values, high
variability in ROS measurements, many ENM resulting in responses
below blank values, etc.). Although the mechanisms contributing to these
observations have not been studied in detail and these effects have not
been quantified, they can be attributed to several processes: adsorption of
DCFH onto the surface of ENM (and the subsequent fluorescence
quenching), ENM reagglomeration and sedimentation from solution,
and light scattering or absorption by several ENM.

These findings are based on a cell-free system. The DCFH assay is also
commonly used for quantitating the extracellular and intracellular oxida-
tive stress in the presence of ENM. Since there are reasons to believe that
problems with the acellular DCFH assay may also occur in the cellular
DCFH assay, more rigorous method development and evaluation may be
needed in order to quantify and minimize ROS measurement errors in
cellular systems. The problems with the acellular DCFH assay for ENM
ROS measurements raise concerns that similar problems may also hap-
pen in intracellular milieu. Since the medium complexity is greater, the
variability and uncertainty in DCFH measurements in cellular systems
may be even greater. As for the intracellular DCFH measurements, one
important factor is the ENM type and the extent of its intracellular
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uptake. In the best case scenario, there is always the auto oxidation of
DCFH by visible light to worry about (Marchesi et al. 1999).

CONCLUSIONS

The acellular DCFH assay for measuring ROS elicited by ENM is sus-
ceptible to experimental conditions and the assay lacks robustness and
reproducibility required in an analytical method. Its broad adoption for
ENM ROS measurements without sufficient method development and
validation may lead to erroneous and conflicting data. Although further
modifications and development may improve its performance, the inher-
ent limitations of the assay are a serious obstacle. We advocate for the dis-
continuation of the DCFH assay for measuring ROS elicited by ENM and
encourage exploration of alternative more biologically relevant assays.
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ABBREVIATIONS

ENM: Engineered Nanomaterial(s), 
one or more dimensions < 100 nm

ROS: Reactive oxygen species
RNS: Reactive nitrogen species
DCFH/DCF: Dichlorofluorescein
CNTs: Carbon nanotubes
BOD: Biological oxidative damage
EPR: Electron paramagnetic resonance
ESR: Electron spin resonance
OS: Oxidative stress
DTT: Dithiothreitol
HRP: Horseradish peroxidase
DLS: Dynamic light scattering
dh,z ave: Z-average hydrodynamic diameter
PDI: Particle size polydispersity index
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