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� This study aims to explore the expression of GRP78, a marker of endoplasmic reticu-
lum (ER) stress, in the cortex of rat brains acutely exposed to methylmercury (MeHg).
Thirty Sprague-Dawley (SD) rats were randomly divided into six groups, and decapitated
6 hours (h) after intraperitoneal (i.p.) injection of MeHg (2, 4, 6, 8 or 10 mg/kg body
weight) or normal saline. Protein and mRNA expression of Grp78 were detected by west-
ern blotting and real-time PCR, respectively. The results showed that a gradual increase in
GRP78 protein expression was observed in the cortex of rats acutely exposed to MeHg (2,
4 or 6 mg/kg). Protein levels peaked in the 6 mg/kg group (p < 0.05 vs. controls),
decreased in the 8 mg/kg group, and bottomed below the control level in the 10 mg/kg
group. Parallel changes were noted for Grp78 mRNA expression. It may be implied that
acute exposure to MeHg induced hormetic dose-dependent changes in Grp78 mRNA and
protein expression, suggesting that activation of ER stress is involved in MeHg-induced
neurotoxicity. Low level MeHg exposure may induce GRP78 protein expression to stimu-
late endogenous cytoprotective mechanisms.

Key words Methylmercury; endoplasmic reticulum stress; GRP78; rat; cortex

INTRODUCTION

Methylmercury (MeHg) is recognized as a global environmental pol-
lutant. Its primary target organ is the central nervous system (CNS).
MeHg disrupts multiple biochemical and physiological processes
(Aschner et al. 2010). In humans, MeHg damages the visual cortex and
interferes with somatosensory processing. Signs of intoxication include
the constriction of the visual field, hearing loss, sensory impairment of
the extremities, muscle weakness, tremors and mental deterioration
(Castoldi et al. 2001). Several mechanisms have been proposed for MeHg-
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induced neurotoxicity, such as the induction of oxidative stress (Farina et
al. 2011), disruption of neurotrophic signaling (Andersson et al. 1997),
disruption of intracellular calcium homeostasis (Hare et al. 1993), and
alterations in neurotransmitter systems (Minnema et al. 1989).
Nevertheless, the precise nature of MeHg-induced neurotoxicity remains
to be fully elucidated, likely reflecting upon its multifaceted disruptive
cellular mechanisms (Atchison and Hare 1994; Ceccatelli et al. 2010;
Grandjean et al. 2010).

The endoplasmic reticulum (ER) is a major organelle serving several
specialized functions, such as calcium storage, biosynthesis, folding and
assembly of transmembrane and secretory proteins, and the production
of phospholipids and sterols. Disturbance in any of these functions may
lead to ER stress (Xu et al. 2005). One of the most characterized and high-
ly conserved ER stress responses is the unfolded-protein response (UPR)
(Kaufman 2002). The UPR diminishes cellular stress by activating protein
folding and degradation pathways in the ER and by inhibiting protein
synthesis (Mori 2000; Rutkowski and Kaufman 2004). The UPR induces
the expression of the 78-kDa glucose-regulated protein (GRP78). GRP78
is an ER-resident molecular chaperone that prevents the aggregation of
unfolded or misfolded proteins so that they can be properly refolded,
ubiquitinated and presented to the proteasome for degradation (Lee
2001; Brostrom and Brostrom 2003; Schröder and Kaufman 2005).

GRP78 is also known as an immunoglobin-binding protein, BiP. It is a
major functional molecule that is regulated by the ER stress response,
and its up-regulation affords protection from cytotoxic injury (Lee 2001).
GRP78 also functions as a molecular chaperone under physiological con-
ditions (Pfaffenbach and Lee 2011). Upon stress, a greater abundance of
GRP78 proteins is required to promote refolding and repair of denatured
proteins, which serves impedie a cellular damage cascade (Pfaffenbach
and Lee 2011). A protective role of GRP78 is supported by studies in neu-
rons and glias (Lee et al. 1999; Yu et al. 1999; Suyama et al. 2011).
However, when ER stress is prolonged and/or too pronounced, ER resi-
dent chaperones are unable to counteract the accumulation of misfolded
proteins and an ER-mediated apoptotic program is triggered through the
activation of caspase-12 (Nakagawa et al. 2000; Lamkanfi et al. 2004; Cribb
et al. 2005).

Previous reports suggested that several in vitro heavy metals, including
lead, manganese, cadmium and mercury, can induce ER stress and con-
tribute to damage or adaptation in exposed cells (Castiglioni et al. 2001;
Chun et al. 2001; Qian et al. 2000, 2001; Liu et al. 2006; Hiramatsu et al.
2007; Yokouchi et al. 2007; Shinkai et al. 2010; Aremu et al. 2011; Ji et al.
2011). Liu et al.(2006) reported that in LLC-PK1 cells inorganic mercury
(Hg) failed to significantly induce GRP78 expression, yet it significantly
increased the protein levels of two other markers of ER stress, namely
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phospho-eukaryotic initiation factor 2 (eIF2α) and ATF4. Exposure of
Atlantic cod to Hg-enriched sediments for five weeks was associated with
enhanced mRNA expression of calreticulin (Olsvik et al. 2011b), a Ca2+-
buffering chaperone in the ER lumen (Qiu and Michalak, 2009).
Calreticulin protein expression was also increased in MeHg-treated
Atlantic salmon (Olsvik et al. 2011a). Increased expression of calreticulin
increases Ca2+ transients and has been linked to ER stress (Zhang et al.
2007). In MeHg-susceptible C2C12-DMPK160 cells, the organometal sig-
nificantly up-regulated Grp78 mRNA and ER stress-related proteins, XBP1
and GRP78 (Usuki et al. 2008). In agreement with the previous studies,
Cambier and colleagues noted that Hsp5a(Grp78) and Hsp90b1(grp94)
were overexpressed in the skeletal muscles of zebrafish fed a MeHg-con-
taminated diet (Cambier et al. 2010). Our previous study showed that
acute MeHg (4 mg/kg body weight) exposure increased GRP78 protein
expression in the cerebral cortex, hippocampus, brain stem, striatum and
cerebellum (Zhang et al. 2010a). Thus, a link exists between MeHg expo-
sure and ER stress. However, little is known about the dose-response rela-
tionship between ER stress and in vivo acute systemic exposure to MeHg.

The objective of the present study was to determine the dose-effect
relationship between MeHg exposure and GRP78 expression at the pro-
tein and mRNA levels over an expanded dosimetry range. Our results
establish that acute exposure to MeHg induced Grp78 protein expression
in a non-linear dose-dependent manner. These results suggest that ER
stress activation plays a role in MeHg-induced neurotoxicity.
Furthermore, low level MeHg exposure may induce a hormetic effect to
stimulate endogenous cytoprotective mechanisms.

MATERIALS AND METHODS

Drugs and Reagents

Methylmercury (MeHg, 99.9% purity) was purchased from Sigma (St.
Louis, MO, USA). GRP78 polyclonal antibody and β–actin antibody were
obtained from the Santa Cruz Biotechnology Company (Santa Cruz, CA,
USA). Trizol was bought from Invitrogen (Carlsbad, CA, USA) and the
protein extraction kit was obtained from the Kang Cheng Bioengineering
Company (Shanghai, China). We bought the BCA protein assay kit from
Thermo Scientific (Waltham, MA, USA). Amersham ECL Plus Western
Blotting Detection Reagents were obtained from the GE Healthcare
Company (Waukesha, WI, USA). The reverse transcription and PCR kits
were obtained from Fermentas (Glen Burnie, MD, USA). SYBR Green I
Mix was purchased from Stratagene (La Jolla, CA, USA) and the PCR
primers were synthesized at the Health Bioengineering Company
(Shanghai, China).

Hormetic effects of methylmercury on GRP78 expression
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Animals

Adult (4-5 weeks) male Sprague-Dawley (SD) rats (n=30) weighing
200-300 g were provided by the Laboratory Animal Center of Jiangsu
University.

Animal treatment protocol

After a 1-week adaption period, thirty SD rats were randomly divided
into six experimental groups. In a previous study, we found that, com-
pared with the control group, MeHg-induced alterations of Grp78 pro-
tein only in the cerebral cortex and brain stem were statistically signifi-
cant at the dosage of 4 mg/kg, and magnitude of induction in cerebral
cortex was the largest, though the trend was similar in the cerebellum,
cerebral cortex, brain stem, hippocampus and striatum (Zhang, et al.
2010a). Therefore, we chose cerebral cortex as the optimal structure for
the present study and the range of dosages was extended to 2, 4, 6, 8 or
10 mg/kg body weight from 4mg/kg body weight. Regarding to sampling
time points, we chose 6 h after administration of MeHg as critical time
point because the peak of Grp78 induction was at 6 h after MeHg injec-
tion (Zhang et al. 2010a).The animals were decapitated 6 h after a single
i.p. MeHg injection (2, 4, 6, 8 or 10 mg/kg body weight), and the cere-
bral cortex was immediately dissected out and placed on ice, following
our previous treatment protocol (Zhang et al. 2010a). The rats in the con-
trol group were i.p. injected with normal saline. The brain cortices were
rapidly frozen in liquid nitrogen and transferred to the -80˚C freezer. All
animal exposure protocols were approved by the Jiangsu University
Institutional Animal Care and Use Committee (IACUC) and were
adhered to strictly to minimize pain. All exposures and procedures fol-
lowed the NIH Laboratory Animal Care and Use guidelines.

Primers

Primers were designed and synthesized based on Grp78 and rat house-
keeping gene (β-actin) sequence information. The sequences of the
primers are shown in Table 1.

Western blot analysis

Western blot analysis was conducted as previously described (Zhang et
al. 2010a). Briefly, total protein was extracted from the cerebral cortex
with a protein extraction kit. The protein concentration was assessed with
the BCA protein assay kit (ThermoFisher Scientific, Rockford, IL, USA).
Equal amounts (20 µg protein/lane) of protein and prestained molecu-
lar-weight markers were loaded onto 12% sodium dodecyl sulfate-poly-
acrylamide gels and subsequently transferred to PVDF immunoblotting
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membranes. The membranes were incubated for 60 min at room tem-
perature in blocking buffer containing 5% nonfat dry milk. Next, the
membranes were washed in Tris-buffered saline and incubated overnight
at 4°C with a rabbit polyclonal antibody to GRP78 (1:1000) followed by
incubation with a goat anti-rabbit IgG HRP-linked antibody (1:10000).
The membranes were exposed to Amersham ECL Plus Western Blotting
Detection Reagents, and a Typhoon 9400 molecular imaging system
(excitation wavelength 430 nm, emission wavelength 503 nm) was used
for chemical fluorescent scanning. The lane densities were assessed with
ImageQuant TL software (GE Healthcare, Waukesha, WI, USA). The
ratio of GRP78 gray value and the corresponding β-actin expression level
in the various groups was compared to the control group, which was set
to 1.

Quantitative real-time PCR

Total mRNA from the cerebral cortex was extracted with Trizol
reagent, following the manufacturer’s instructions. Then the first-strand
cDNA was synthesized using 1 µg mRNA. Fluorescent real time quantita-
tive PCR (qPCR) was performed to detect the mRNA levels of Grp78 and
β-actin in a Stratagene Mx3000P PCR machine (La Jolla, CA, USA). The
qPCR reaction included: 7.5 µL SYBR Green 1 mix, 0.3 µL forward
primer (10 mM), 0.3 µL reverse primer (10 mM), 0.3 µL Reference Dye
(ROX) (10 mM), 1 µL cDNA template and 5.6 µL ddH2O. The PCR was
performed for 35 cycles (denaturation: 95°C, 30 seconds (s); annealing:
Grp78, 64˚C for 30 s or β-actin 58°C for 30 s; extension: 72°C for 25 s). The
relative expression of the target gene was calculated as the ratio between
the copy numbers of target gene over that of β-actin. The levels of mRNA
in the various groups were compared with the control group, which was
set to 1. The specific working conditions of the real-time quantitative PCR
are shown in Fig. 1.

Data analysis

The data are expressed as means ± S.D. Statistical analysis was conduct-
ed with SPSS13.0. Significant differences between groups were evaluated by
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TABLE 1. Grp78 and β-actin primers sequences 

Gene Primer’s sequence (5’-3’) DNA fragments (bp) Melting point (°C)

Grp78 For: AACCCAGATGAGGCTGTAGCATA 162 64
Rev: CACAGTGTTCCTCGGAATCAGTT

β-actin For: GAGGGAAATCGTGCGTGAC 444 58
Rev CTGGAAGGTGGACAGTGAG
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one-way analysis of variance (ANOVA) with Student-Newman-Keuls test as
a post hoc test. p < 0.05 was considered to be statistically significant.

RESULTS

Effect of MeHg exposure on GRP78 protein expression in rat cerebral cortex

Compared with the control group, GRP78 protein expression showed
an initial increasing trend followed by a gradual decrease (Fig. 2). GRP78
protein expression significantly increased (p< 0.05) in the 4 mg MeHg/kg
group and peaked in the 6 mg MeHg/ kg group (180±3% of control).
Interestingly, higher doses of MeHg (8 and 10 mg/kg) failed to further
increase GRP78 protein expression. GRP78 expression in the 8 mg
MeHg/ kg group was lower than the 6 mg MeHg/ kg group, but the
expression levels remained higher than in the control group (p< 0.05).
Notably, GRP78 expression in the highest dosing group (10 mg
MeHg/kg) was significantly reduced, dropping to levels below the con-
trol group (p< 0.05).

Effect of MeHg treatment on Grp78 mRNA expression in the rat cerebral
cortex

To further explore the relationship between GRP78 expression and
MeHg exposure in rat cerebral cortex, changes in Grp78 mRNA were
examined with real time PCR (Fig. 3). Grp78 mRNA levels significantly
increased even in the lowest MeHg exposure group (2 mg/kg) vs. the
controls (p< 0.05). Nevertheless, unlike GRP78 protein expression levels,
Grp78 mRNA levels were maintained at approximately the same level in
the 2, 4, 6 and 8 mg/kg groups (p> 0.05 vs. controls) (Fig. 3). Consistent
with the protein changes, a significant decrease in Grp78 mRNA was
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FIG. 1. Fluorescent quantitative amplification and melting curves. A: The amplification and melting
curves of β–actin; B: The amplification and melting curves of GRP78. 
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FIG. 2. GRP78 protein expression in the cerebral cortex of rats acutely (6 h) exposed to MeHg. A:
Western blot analysis of GRP78 expression. β-actin was used as a loading control. B: Protein bands
from the western blots were quantified by scanning densitometry. The relative gray value for the
GRP78 protein was expressed relative to β-actin and the control group was set to 1 (n=5). Means ±
SD. **P < 0.05: MeHg treated groups vs. normal saline treated control group (control). 

FIG. 3. Grp78 mRNA expression analyzed by qPCR in the cerebral cortex of rats acutely exposed to
MeHg. β-Actin was used as a loading control. The relative value for Grp78 mRNA was expressed rela-
tive to β-actin, and the control group was set to 1 (n=5). Means ± SD. **P < 0.05: MeHg treated groups
vs. normal saline treated control group (control). 
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noted in the highest MeHg exposure group (10 mg/kg). Both the Grp78
mRNA and protein expression were significantly reduced to levels below
the controls in this group (p< 0.05), suggesting that cellular damage may
be inherent to the highest MeHg dosing group.

DISCUSSION

This is the first time a dosimetry study on the effects of MeHg expo-
sure in rat brain has been performed to assess the potential for a hormet-
ic effect. Our results showed a typical inverted U-type curve of rat brain
(cortical) GRP78 expression at the protein and mRNA levels, which has
previously been defined as hormesis (Calabrese and Baldwin 2001;
Calabrese and Blain 2004). Hormesis refers to a process whereby a sub-
lethal stressor renders an organism resistant to subsequent stress. This
effect has been demonstrated in multiple stress models, both in cell cul-
ture to in vivo human models, including studies on dietary restriction,
exercise, radiation, chemical and heat exposures (Damelin et al. 2000;
Damelin and Alexander 2001; Cypser et al. 2006; Mattson 2008; Le Bourg
2009). The mechanisms that mediate hormesis are ill defined; neverthe-
less, previous research has implicated members of the heat shock protein
70 (HSP70) family and metallothionein (MT) proteins as contributors to
hormesis. Levels of these proteins are known to increase in response to
heavy metal exposures (Damelin et al. 2000). Additionally, hormesis has
been invoked as a potential explanation for the latent period observed in
MeHg exposure and the delayed onset of symptoms (Weiss et al. 2002).
Heinz and colleagues found that when mallard (Anas platyrhynchos) eggs
were injected with MeHg at doses ranging from 0 to 6.4 ...g/g egg, the
eggs’ hatching success was significantly increased at the lowest doses and
progressively decreased at incremental doses (Heinz et al. 2012). The
same group also reported that a parental diet containing 0.5 mg MeHg/g
body weight enhanced mallard reproduction (Heinz et al. 2010). These
results are consistent with low-dose MeHg induction of cytoprotective
agents, such as glutathione, heat shock proteins (HSP) and metalloth-
ioneins (MT1) as recently documented in Caenorhabditis elegans (Helmcke
and Aschner 2010).

The disruption of protein synthesis is a primary mechanism of MeHg-
induced neurotoxicity. Decreased incorporation of [14C] leucine has
been shown in cerebral and cerebellar slices of rats exposed in vivo to this
organometal (Yoshino et al. 1966; Verity et al. 1977). However, the mech-
anisms underlying this inhibition of protein synthesis have not been
established. Notably, increased accumulation of unfolded or misfolded
proteins in the ER lumen results in compensatory activation of the UPR
(Lee 2001). A hallmark of UPR activation is global reduction in the rate
of protein synthesis, which is controlled by reversible phosphorylation of
the α-subunit of eIF2. The phosphorylation of eIF2α prevents formation
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of the eIF2-tRNAmet-40s complex, thereby impeding the initiation of
protein synthesis (Harding et al. 1999; Kaufman 1999). Thus, high-dose
MeHg-induced UPR activation and eIF2α phosphorylation may arrest
protein synthesis (Verity et al. 1977; Syversen 1981; Fair et al. 1987). These
mechanisms reduce the flux of nascent proteins entering the ER, and
then alleviate the increased burdens of protein processing in the ER
(Kaufman 1999).

The inverted U-typed curve noted in our study is a common phe-
nomenon (Calabrese and Blain 2004). Upregulation of the expression of
stress proteins, such as HSP70 may play a role in the underlying mecha-
nisms of hormesis (Damelin et al. 2000). Qian et al. (2001) demonstrated
the hormetic effects of lead and mercury on Grp78 mRNA in C6 rat
glioma cells. Low-level inorganic mercury also transcriptionally activated
Grp78 in HepG2 cells (Sutton et al. 2002). Though obtained from in vitro
cultured cells, these data corroborate MeHg’s ability to induce a hormet-
ic dose-response effect in ER stress responses. Taken together, our studies
along with earlier work on GRP78 expression in response to cadmium,
lead, inorganic and organic mercury, nickel and iron (Zhang et al.
2010b), suggest that GRP78 is a universal target for heavy metal exposure,
and that the ER serves as an intracellular sensor for injuries incurred by
toxic metals. Furthermore, though the present acute exposure protocol
has merits as it provides the necessary means for obtaining dose range for
chronic exposure and data on the difference between acute and chronic
effects, the effects of chronic (long-term) exposure to MeHg in rats
should be conducted to most closely mimic the human exposure via fish
and rice consumption (Grotto et al. 2011; Li et al. 2010).

In summary, acute exposure to MeHg produced a hormetic effect on
cortical ER stress-activated UPR in the rat brain. This effect may be attrib-
uted to low-level MeHg activated UPR which serves to combat MeHg-
induced oxidative stress and calcium imbalance to keep cellular home-
ostasis. High levels of GRP78 may bind to MeHg thus chelating free
MeHg and reducing its ability to bind to cellular targets (Zhang et al.
2009). However, the mechanisms and relevance of the MeHg-induced
biphasic change in GRP78 expression warrant further study.
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