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SYSTEMS CANCER BIOLOGY AND THE CONTROLLING MECHANISMS FOR
THE J-SHAPED CANCER DOSE RESPONSE: TOWARDS RELAXING THE LNT
HYPOTHESIS 

In Chio Lou � Department of Civil and Environmental Engineering, Faculty of
Science and Technology, University of Macau, Macau

Yuchao Zhao, Yingjie Wu � State Key Joint Laboratory of Environmental
Simulation and Pollution Control, School of Environment, Beijing Normal
University, Beijing, China

Paolo F Ricci � Holy Names University, Oakland, USA and UMass (Amherst),
School of Public Health, Amherst, MA, USA

� The hormesis phenomena or J-shaped dose response have been accepted as a com-
mon phenomenon regardless of the involved biological model, endpoint measured and
chemical class/physical stressor. This paper first introduced a mathematical dose response
model based on systems biology approach. It links molecular-level cell cycle checkpoint
control information to clonal growth cancer model to predict the possible shapes of the
dose response curves of Ionizing Radiation (IR) induced tumor transformation frequen-
cy. J-shaped dose response curves have been captured with consideration of cell cycle
checkpoint control mechanisms. The simulation results indicate the shape of the dose
response curve relates to the behavior of the saddle-node points of the model in the bifur-
cation diagram. A simplified version of the model in previous work of the authors was used
mathematically to analyze behaviors relating to the saddle-node points for the J-shaped
dose response curve. It indicates that low-linear energy transfer (LET) is more likely to
have a J-shaped dose response curve. This result emphasizes the significance of systems
biology approach, which encourages collaboration of multidiscipline of biologists, toxi-
cologists and mathematicians, to illustrate complex cancer-related events, and confirm the
biphasic dose-response at low doses.

Key words: hormesis, bi-phasic behavior, systems biology approach, ionizing radiation, cell cycle control

1. INTRODUCTION

This paper contributes to the understanding of the effect of low dose
exposures, focusing on cancer. The dose-response policy context of risk
reduction depends on causal determinations in which dose-response
models are pivotal. The coupling of legally mandated acceptable risks to
a dose-response model provides doses (or exposures) safe for society
(Ricci, 2006). In the US, for cancer, those exposures are regulated at
either acceptable or tolerable public additional risk over background
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between 1*10–6 and 1*10–4 individual lifetime probabilities. Policy choic-
es not based on sound dose-response models do not increase protection;
paradoxically, less protection is likely despite the large sums spent to
reduce what turns out to be a phantom hazard, created by conservative
(erring on the side of precaution) assumptions that may be incorrect.
Specifically, the issue we discuss is exemplified by the differences in the
choices of the evidence and the models of dose-response, between the US
and the French Academies (i.e., the US National Academies of Science,
the French Academy of Sciences, and the French National Academy of
Medicine) regarding the effects of ionizing radiations (IR) at low doses.
Although the US Biological Effects of Ionizing Radiation (BEIR) (BEIR,
2006) supported the LNT, the French Academies raised doubts about its
validity. The US used epidemiological studies; France instead included in
vitro cell line results. Although these alternative choices of data and dose-
response model are scientifically unambiguous, their different results for
regulation are ambiguous. Alternative and essentially diametrically oppo-
site views affect clean-ups, energy development, and consequently has
many economic and social effects. 

For cancer risk assessments, regulatory agencies (e.g., US EPA, 2005)
default to linearity at low doses (LNT):

… A default approach for linearity extends a straight line from the
Point of Departure (POD) to zero dose/zero response. The linear
approach is used when: (1) there is an absence of sufficient informa-
tion on modes of action or (2) the mode of action information indi-
cates that the dose- response curve at low dose is or is expected to be
linear. Where alternative approaches have significant biological sup-
port, and no scientific consensus favors a single approach, an assess-
ment may present results using alternative approaches. 

In Europe, its laws address concepts such as the maximum residue
limit (MRL) regulation (via a number of Regulations and Directives)
based on the principle of “zero tolerance”, which means that no concen-
tration is safe unless that substance has not been given a MRL (for Annex
1 substances). In this case, knowing the shape of the dose-response func-
tion is seemingly irrelevant. 

In the EU, the Registration, Evaluation, Authorisation and Restriction
of Chemicals (REACH) (REACH regulation, 2006) aims for a high pro-
tection of human health and the environment. This law requires manu-
facturers and importers “to gather information on the properties of their
chemical substances and to register the information in a central data-
base”. The question that REACH does not answer is: Does this require-
ment include alternative choices of dose-response models, given the alter-
natives that are currently available and demonstrably superior to the
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default to linearity? The wording of REACH is explicit and allows those
superior choices—when available:

This Regulation should ensure a high level of protection of human
health and the environment as well as the free movement of sub-
stances, on their own, in preparations and in articles, while enhanc-
ing competitiveness and innovation. This Regulation should also pro-
mote the development of alternative methods for the assessment of
hazards of substances. The dilemma that REACH introduces is that it
also states that it: 

… is based on the principle that it is for manufacturers, importers
and downstream users to ensure that they manufacture, place on the
market or use such substances that do not adversely affect human
health or the environment. 

REACH’s provisions are based on the EU version of the precaution-
ary principle, which trumps the effect of scarce information on potential
public exposure to agents that could cause serious or irreversible harm by
favoring protection, even when scientific certainty about cause and effect
is low. Yet, if regulations do not consider either threshold or beneficial
effects, when those are demonstrated to exist, they contravene the very
reason for the precautionary principle. Specifically, the precautionary
principle either causes actual damage (even when it is supposedly pro-
tective) or results in unwarranted costs. In either of these two cases soci-
ety suffers unduly under an ostensible protection that does not in fact
exists. That is, if the EU were to use the LNT because lack of certainty
about mechanisms of action of an agent under the precautionary princi-
ple, the choice would appear to be protective: zero mass implies zero risk.
Yet, at levels of risk below 0.01, the LNT is unknowable, while biphasic or
hormetic models, as we will shown, are knowable (provided that the
experimental data is not unwittingly biased towards linearity). This bias,
for example, affects the US National Cancer Institute-National
Toxicological Program cancer animal bioassay experiments that use
Maximum Tolerated Dose, and fractions of the MTD plus a control
group, and thus generally do not provide the sufficient information
(about seven data points) about a nonlinear dose-response relationship. 

To set the stage, we consider radon decay products and lung cancer
risks from low levels of cumulative exposure (in this example measured
as working levels-month, WLM), developed by Wakeford (2004). A sum-
mary epidemiological analysis of several epidemiological studies
(Wakeford, 2004) suggests that at low exposures there is a protective (or,
at least, a threshold) effect when the relative risk, RR, < 1.0. The results
up to but not including 100 WLM are statistically insignificant, perhaps
due to small sample size relative to the size of the effect at those low dose
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rates. Adverse effects, the RR > 1.0 become statistically significant there-
after. 

US agency rulemaking for drinking water encountered uncertain cau-
sation regarding the effect of radon. The regulatory process began in
1974. The EPA based its risk calculations on an unpublished study, esti-
mating that approximately 200 excess cancer deaths would occur in the
US per year, and the cost of each death averted (by the regulation, even
though the deaths are not averted but are postponed to later years)
would be approximately 3 million dollars. However, the EPA Science
Advisor asked the agency to consider the “enormous uncertainty” about
the risk, staing that the “maximum contamination level” might be in the
range of 1500 to 2000 pCi/liter, rather than the agency’s 300 pCi/liter.
The EPA Science Advisory Board (SAB) had concluded that although
“there is no direct epidemiologic or laboratory animal evidence of cancer
being caused by ingestion of radon in drinking water,” and that “it is not
possible to exclude the possibility of zero risk from ingested radon”, also
suggesting 3000 pCi/liter. A review of the EPA found that the U. S.
Environmental Protection Agency’s (EPA) “policy and regulations are fre-
quently perceived as lacking strong scientific foundation.” In 1999, it was
concluded that radon in the drinking water would results in cause
“almost negligible” cancer risks. However, exposures to inhaled radon (as
well as smoking) has been stated to cause approximately 21,000 cancer
deaths (due to lung cancer from inhalation) per year by the US EPA (U.S.
EPA, 2010)). Regulatory risk assessment of exposure to Radon has com-
bined policy with science. Specifically, in the context of drinking water,
causation involves an assumption of both linearity and no threshold,
unless the evidence is clearly contrary to this default. The US EPA has
maintained the use of the LNT. Specifically:

“ … radionuclides emit ionizing radiation and, absent data indicating
that there is a threshold level at which exposure does not present a
risk, EPA uses a linear, non-threshold model … (such that) risk asso-
ciated with the exposure increases proportionally to the concentra-
tion of the radionuclide (from zero exposure) (Federal Register, Vol.
65, p. 21,579, 2000 (parentheses added)).

IR can create public and occupational cancer risks, as well as adverse
effects such as burns. Yet, “it is the dose that makes the poison” that clear-
ly matters for our work, as we do not deal with acute effects. Current US
and European regulations and international organizations assume that a
liner-no-threshold (LNT) model of cancer applies at low doses. For exam-
ple, the BEIR VII report concludes the LNT risk model for IR regulation
(BEIR, 2006) is appropriate. The LNT model assumes that the primary
mode of action is linearly related to low doses, and must go through the
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0, 0 intersection of the dose-response axes. However, recent research sug-
gests damage induced by IR (as a process that includes repairs of that
damage) could be nonlinear. These repair process include DNA repair,
intracellular metabolic oxidation/reduction (redox) reactions; cell cycle
checkpoint controls; intra - and intercellular signaling cascades and in
certain instances, senescence (cell aging), apoptosis, and/or mitotic
linked cell death (Dauer et al. 2010). 

The more general dose-response relationship is hormetic (or bi-pha-
sic): it describes biological phenomena broadly characterized by a low -
dose stimulation and a high - dose inhibition (Calabrese and Baldwin,
2002; Calabrese, 2010). In our work we continue to use a system biology
approach that places emphasis on the interaction of cell signaling path-
ways and networks, the distribution effects and responses throughout the
networks and redundancy within and between the networks to develop
the correct dose-response patterns (Dauer et al, 2010). Given these advan-
tages, we developed a model linking cell cycle checkpoint control mech-
anisms to IR induced toxicological perturbation signal and cancer disease
model to predict the dose response relationship of IR induced tumor
transformation frequency. The model captured a monotonically increas-
ing to J-shaped dose response under different parameter values. In this
article, we will further investigate how the biological and mathematical
mechanisms of the model influence the predicted shape of the dose
response of IR induced tumor transformation. Specifically for IR, Upton
(2001) found enhancements to immunological responses such as anti-
bodies, lymphocytes, apoptosis in cells of rabbits, sheep, mice, and
humans, from exposure to gamma and X-rays, including in vitro test
(human lymphocytes, mouse spleen cells). UNSCEAR (1994) and later
studies document the stimulatory effect of low-LET background radiation
(Pollycove and Feinedegen, 2001). 

The ambiguity between the LNT and hormesis continues to motivates
our work (Zhao and Ricci, 2010). Fundamentally, we seek to find the bio-
logical basis for the beneficial (or at least threshold-like) behaviors of
chemicals and IR. Specifically, we clarify the mechanisms of cancer induc-
tion as well as cast some new insight is the correct choice of cancer dose-
response. Our scope is to aid these findings via a common analytical
framework that causally accounts for critical behaviors at the cellular level.

2. METHODOLOGY AND REVIEW OF PREVIOUS MODEL
DEVELOPMENT: NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS
AND BIFURCATION THEORY

Our first generation of cell cycle-tumor transformation model based
upon systems biology approaches is a model consisting of a set of non-lin-
ear ordinary differential equations (ODEs) as shown in equation (1): 
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dxi = fi(xi,…,xn; p1,…,pm), i = 1,…,n (1)
dt

where, 
xi = concentration or activity of the i th protein in the reaction network
fi = the ODE that describes the rate of change in the i th protein’s activity
pj = value of the j th parameter (e.g. rate constant)
n = number of proteins in the network

Bifurcation theory is a technique that contributes to understanding
unexpected results when using non-linear ODEs. It describes and
explains how generic properties of a dynamical system depend on its
(generally initial) parameter values. The attractor of its vector field in a
multidimensional state space that cannot be easily visualized character-
izes the behavior of a regulatory network. There is only a limited number
of ways in which these attractors might change when moving continuous-
ly through the parameter space: bifurcation diagrams depict the dynam-
ic behavior of one or more state variables according to the change of one
or more specific parameter (Tyson et al, 2001). Matcont software is used
to draw the bifurcation diagram. 

The first generation of IR induced cell cycle checkpoint control model 

The cell cycle consists of the series of events that takes place in a cell
leading to its division and duplication, which is a fundamental biological
phenomenon. Cell cycle time is the inverse of cell division rate, which
tends to be shorter in tumor cell than that in normal cell. Checkpoint
control, such as G1/S or G2/M checkpoint control, are protective mech-
anisms in cell cycle regulation mainly to ensure that: (1) cell sizes are
large enough to warrant the next step (e.g. G1/S checkpoint control is to
ensure that cell is large enough to warrant a new round of DNA synthesis
while G2/M checkpoint control is to ensure that cell is large enough to
divide); (2) any damage suffered by DNA has been repaired (Tyson et al,
2002). A series of mathematical models describing the checkpoint con-
trol mechanisms have been developed based on systems biology
approaches, in the past two decades (Tyson and Novak, 2001; Qu et al,
2003a, b, 2004; Jeffries et al, 2012). These authors found that the switch-
like behavior of key regulating proteins is the central biological aspect for
checkpoint control. To reflect this aspect, Tyson’s group summarized the
essential factors of checkpoint control mechanism at the systems level as
including: (1) positive/double negative feedback between regulating
proteins; (2) non-linear relationship in the feedback; (3) and cell growth
(Tyson and Novak, 2001; Zhao and Ricci, 2010).

Adopting these mechanisms, we developed our first generation IR-
induced cancer dose response relationship model based on systems biol-
ogy approach (Zhao and Ricci, 2010; Zhao et al, 2012). The signaling
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pathway that the model is based on is indicated in Figure 1. The G1/S
and G2/M checkpoint control modules are indicated in the circles,
where direct or indirect positive feedbacks occur. Phosphorylation reac-
tions exist between CycE (Cyclin E with its cyclin dependent kinase) and
Rb in G1/S checkpoint as well as between CycB (Cyclin B with its cyclin
dependent kinase) and Weel in G2/M checkpoint. The ordinary differ-
ential equation for phosphorylation follows Michalies-Menten kinetics,
which characterizes the nonlinearity constraint for the checkpoint con-
trol mechanisms. Because the key checkpoint control regulators CycE
and CycB accumulate in the nuclear cytoplasm, the effective concentra-
tions of CycE and CycB equal to their concentrations (multiplying by cell
mass, m). In this way, spontaneous cell growth is a promoting factor in the
positive/double negative feedbacks. Therefore, the model qualifies the
three essential conditions that generate the switch-like behavior of the
key regulators at the checkpoint transition. Cell cycle time can be identi-
fied as a function of when the switch-like behavior happens from bifurca-
tion diagram. When the upper toxicological signals interact with the key
regulating proteins of the checkpoint arrest, the switch-like behavior of
the key regulating proteins was delayed and cell cycle time increases. 

The antagonistic reaction governing G1/S checkpoint in the model
takes place between CycE and Rb and antagonism reaction governing
G2/M checkpoint takes place between CycB and Wee1. P27 and Cdc25
contribute to the two checkpoint transitions, respectively. To describe the

Systems Cancer Biology and the Controlling Mechanisms for the J-shaped Cancer Dose Response
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perturbation caused by IR, IR first induces double strand break (DSB),
then DSB activates ATM by autophosphorylation. Phosphorylated ATM
(ATMp) has repair function to DSB and it can also phosphorylate and
activate the transcriptional factor p53. Activated p53p then transcription-
ally activate p21, GADD45 and 1433 sigma. These are the genes that
repress G1/S and G2/M transitions. P53 dependent signaling also medi-
ates the entry into apoptotic pathway through regulation of Bax and Bcl-
2. Bax is pro-apoptotic and is transcriptionally activated by p53. Bcl-2 is
anti-apoptotic and is transcriptionally repressed by p53. Box Bax and Bcl-
2 signal to caspases, which are proteases at the core of the apoptotic
machinery.

The model consists of three modules. The systems module represents
the signaling pathway/interactions in the two checkpoint controls. The
perturbation module represents the upper signaling pathway showing
how IR induces cell cycle checkpoint arrest as shown in Figure 1. The dis-
ease module uses the two-stage clonal growth cancer model; cell prolifer-
ation rate is one of its parameters. The systems/perturbation module is
linked with the disease module through the inverse relationship between
cell proliferation rate and cell cycle time, (Zhao and Ricci, 2010). 

Identified biological mechanisms: the coexistence of the LNT with biphasic
J-shaped dose-response relationship

The endpoint of the simulation in this model, the transformation fre-
quency, uses the product of cell proliferation rate alpha (unit: time–1) and
mutational rate mu (unit: fraction) in the clonal growth model as its sur-
rogate. Recent research suggests damage induced by IR appears to
increase linearly with dose, thus mutation rate is a linear function of IR
dose. The simulation results show a monotonically increasing to J-shaped
dose response relationship for IR induced transformation frequency.

I. C. Lou and others
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Simulation results show that when cell mutational rate is sensitive to IR
dose, a monotonically increasing dose response curve is more likely to
happen; when cell mutational rate is not sensitive to IR dose, a J-shaped
dose response curve is more likely to happen. This outcome matches
experimental findings, such as those for high linear energy transfer
(LET) particles (e.g. alpha particles, emitted in its decay process by
radon, among other species) with higher sensitivity of mutational rate

Systems Cancer Biology and the Controlling Mechanisms for the J-shaped Cancer Dose Response
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tend to have a monotonically increasing dose response relationship while
low-LET particles (e.g. gamma particle or X ray) are more likely to result
in the J-shaped dose response (Bettega et al, 1992; Azzam et al, 1996;
Redpath et al, 2001). 

When IR increases, the checkpoint arrest time saturates and thus cell
proliferation rate alpha saturates as well. Figure 2 shows how the simulat-
ed checkpoint arrest time saturates with time. Figure 3 is a conceptual
explanation for the J-shaped dose response curve. The mutation rate mu
is linearly increasing with IR dose with three different slopes, as shown in
Cases 1, 2 and 3. In Case 1, when the slope of mu is very large, it domi-
nates the product of alpha and mu, the transformation frequency, so it
leads to a monotonically increasing dose-response: the LNT. In Case 3,
the slope of mu is very small: the alpha part dominates the results of
transformation frequency, and then with the saturation of alpha, the mu
part dominates the results. Therefore, the product of these two first
decreases then increases, the result is the biphasic J shaped dose-
response. In Case 2, when the slope of mu has an intermediate value, the
transformation frequency results in the threshold dose response rela-
tionship. These findings are the fundamental biological reasons for the J-
shaped dose response curve as well as for the possibility of either the LNT
or a threshold for response (Zhao and Ricci, 2010). 

In this paper, we use a linear function to describe the relationship
between mutational rate and IR while did not consider the adaptive
repair process. The adaptive repair process will more likely to make the
mutational fraction/cell and transformation frequency toward a plateau
form, as the dashed line shown in Figure 3. 

I. C. Lou and others
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The biological mechanism leading to the J-shaped dose response was
identified as saturation of the checkpoint arrest time: The induced check-
point arrest time is longer per unit of IR dose in the low dose region than
that in the high dose region. It is consistent with how toxicologists intu-
itively perceive bi-phasic hormetic phenomena (detailed review of previ-
ous work of model development can be found in Zhao and Ricci, 2010
and Zhao et al, 2012). 

Fundamental mathematical mechanisms for the J-shaped dose response
relationship 

The timing of the switch-like behavior of key cellular regulators iden-
tifies cell cycle time and checkpoint arrest time. It can be identified by
time course chart or bifurcation diagram of cell mass. Figure 4 shows the
time course chart when the G1/S switch behavior (checkpoint) happen
for IR = 0, 0.1, 0.2, 0.3. Here we define that CycE activity jumps to 0.1 cor-
responding to when G1/S transition happen. We can see that with IR
increasing, there is checkpoint arrest and the arrest time tends to satu-
rate, which is the fundamental biological mechanisms for the J-shaped
dose response curve. 

As cell mass m is a logistic function of time and the increase of m is
one of the essential conditions for the switch-like behavior to happen, we
analyze the relationship between IR dose and cell mass at the switch tran-
sition. This yields deeper insights regarding the fundamental systems con-
trol for the J-shaped dose response curve. The behavior of cell mass at the
switch-like transition can be indicated in the bifurcation diagram. It
depicts how the steady state value of CycB concentration changes with cell

Systems Cancer Biology and the Controlling Mechanisms for the J-shaped Cancer Dose Response
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mass m that, at the switch-like transition, corresponds to the saddle node
point of the bifurcation diagram. 

Figure 5 shows the bifurcation diagram and the saddle node point for
G2/M check point control. The saddle node point indicates at what cell
size the G2/M transition (switch-like behavior) happens. Here, we define
m at the saddle node to be the critical m. Figure 6 is the bifurcation dia-
gram of G2/M checkpoint from the original model with various IR doses.
It indicates when IR dose increases linearly, the corresponding critical m
increases superlinearly: the critical m saturates with IR increasing. This
matches the saturating behavior in the time course. 

In the earlier modeling (Zhao and Ricci, 2010; Zhao et al., 2012), m
is introduced through a logistic function of time t. The relationship
between the two propositions A and B (A: the saturation of critical m
according to linear increase of IR; B: the saturation of time t according to
linear increase of IR) is that A satisfies B. Therefore, if A is true, a J-
shaped dose response can occur. Both numerical and analytical methods
are used to investigate mechanisms of the saturation of critical m with IR
increasing in the Results section of this paper. 

Model simplification to only incorporate the key “systems” elements

The original model contains 19 ODEs. In order to investigate the
behavior for the saddle node points, the model is simplified to only incor-
porate the essential elements for the system. According to Tyson (Tyson
and Novak, 2001), the fundamental equations that describe cell cycle
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checkpoint control are listed as:

dx/dt = k1 – (k2′ + k2′′y)x (2)

dy/dt =
k3′(1 – y)

–
k4mxy

(3)
J 3 + 1 – y J 4 + y

The parameter values of equations (2) and (3) are listed in Table 1
(Tyson and Novak, 2001). 

The x and y in (2) and (3) identify the key regulating proteins of the
checkpoint control and satisfy the three constrains required to generate
the switch-like behavior of these key regulating proteins. Assuming the
perturbation signal influences the synthesis process, the perturbation sig-
nals linking IR to cell cycle checkpoint control can be written as a
Michaelis-Menten function of IR, as follows [personal communication,
Fangting Li, Academy of Advanced Interdisciplinary Studies, Peking
University]:

Signal = kr1 * IR / (kr2 + IR). 

Adding the toxicological perturbation signal, equation (2) can be
rewritten as:

dx/dt = k1 – (k2′ + k2′′y)x – kr1 * IR/(kr2 + IR) (4) 

3. RESULTS

Numerical results

To find the steady state, equations (3) and (4) were set to zero. The
following equation was obtained for the steady state:

mcritical = (k3′k2′′x + k3′k2′x – k3′k1new)( J4k2′′x – k2′x + k1new) (5)
{[( J 3 + 1)k2′′x + k2′x – k1new](k1newk4 – k2′k4x)x }

In which k1new = k1 – kr1*IR/(kr2 + IR), with kr1 was set to 0.01 and
kr2 was set to 0.07. The saddle node point behavior can be directly
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TABLE 1. Parameter values of equation (2) and (3)

k1 k2′ k2′′ k3′ J3 k4 J4

0.04 0.04 1 1 0.04 35 0.04
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obtained from equation (5) as shown in Figure 7. It is seen that after sim-
plification, the critical m, corresponding to the linear increase of IR, grows
in the same superlinear way as that from the original model in Figure 6.
Mathematically, the behavior of mcritical in Figure 7 can be expressed as the
second derivative of mcritical relative to IR (mcritical′′) is less than zero. 

Analytical results

Equation (5) can be rewritten as a three power distances for variable
x. The saddle node point corresponds to the root which leads to the  of
the three power distances to zero. The analytical solution of critical m is
obtained as equation (6) with parameter values set Table 1.

mcritical =
2 (6)

4 – 100kr/*IR
kr2 + IR

Using Matlab® we obtain:

mcritical′′ = –(4*((100*kr1)/(IR + kr2) – (100*IR*kr1)/
(IR + kr2)2)2)/((100*IR*kr1)/(IR + kr2) – 4)3 – (2*((200*kr1)/

(IR + kr2)2 – (200*IR*kr1)/(IR + kr2)3))/
((100*IR*kr1)/(IR + kr2) – 4)2 (7) 
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FIGURE 7. Saddle node points in the bifurcation diagram of various IR doses from the simplified
model
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We also identify when mcritical′′ is less than zero. When IR > 0, kr2 > 0
and kr1 is less than 0.04, mcritical′′ is less than zero for all 10,000 random
values. When kr1 is larger than 0.04, positive values of mcritical′′ appear.
Table 2 indicates the number of positive values for mcritical′′ when running
the program once. In the program, kr1 is drawn from 10,000 random val-
ues, which are uniformly distributed from 0.001 to B while IR and kr2 are
kept positive. We also find that the number of positive values of mcritical′′
increases and negative values decreases when B increases from 0.04.
Therefore, it is concluded that when kr1 is less than 0.04, it is more like-
ly to lead to a J-shaped dose response curve. Figure 8 shows how toxico-
logical signal (IRsignal) induced by IR changes with IR when kr1 value
increases from 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 and 0.07. From Table 2
and Figure 8, when kr1 is small, it is more likely to lead to a J-shaped dose
response curve. This finding is again consistent with the fact that low-LET
particles tend to have a J-shaped dose response curve, and that high-LET
particles do not. 
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FIGURE 8. The change of IR perturbation signals vs. IR dose corresponding to various values of kr1
(0.01~0.07)

TABLE 2. Number of positive and negative values of mcritical′′

B 0.01 0.02 0.03 0.04 0.041 0.045 0.05 0.06 0.07

number of positive 
values of mcritical′′ 0 0 0 0 234 1082 1911 2917 3517
number of negative 
values of mcritical′′ 10000 10000 10000 10000 9766 8918 8089 7083 6483
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DISCUSSION

Mathematical methods, such as bifurcation theory, play an important
role in understanding biological behaviors and thus in their analysis: the
bifurcation diagram allows the demonstration and understanding of the
biological mechanism of J-shaped dose response relationship in term
from the switch-like behavior of regulating proteins to transfer to the
mathematical dynamical control issue—the behavior of the saddle-node
points.

In this paper, mathematical methods are developed based on systems
biology approach to identify the controlling mechanisms for the J-shape
dose response relationship of IR induced tumor transformation frequen-
cy. The results indicate that the behavior of the saddle node points in the
bifurcation diagram is related to the resulting J-shaped dose response.
Specifically, a J-shaped dose-response curve can occur if mcritical′′ is less
than zero. To assess saddle node points, the model is first simplified to
only include the key elements of the system; the parameter of the systems
module is directly taken from the original model developed by systems
biologists (details in Zhao and Ricci, 2010; Zhao et al., 2012). Both numer-
ical and analytical solutions show that, under certain range of parameter
values that mcritical′′ is less than zero is definite, which means a J-shaped
dose response is very likely to occur for low LET particles. 

The simulation in this paper is at low dose. At high dose, the cell is
more likely to go to apoptosis. When going to apoptosis, there is supple-
mentary regeneration. Future work can focus on modeling apoptosis
process. 

Simplification of the original model is a key step in this work.
Therefore, it is important to determine the essential elements of the sys-
tems used as a function of available knowledge. For cell cycle checkpoint
control, systems biologists have defined the key factors in the system.
With the continuing relevance of systems biology, a set of mathematical
models that explicitly account for a very large number of biological
processes (e.g. apoptosis) have been developed. To apply such models in
dose response modeling, the toxicologists’ role is first to identify the key
elements in the “systems control”. This step requires toxicologists to have
a deep understanding of the feedbacks and interaction of mathematical
model. The more expansive step, of course, is to increasingly require the
collaboration of biologists, toxicologists and mathematician to increase
their collaboration and use mathematical and probabilistic methods to
further clarify when J-shaped dose-response models should normatively
be used, and when either a threshold model or a LNT should be demon-
strable—as opposed to assumed—alternatives. 
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