
Dose-Response: An International Journal

Volume 11 | Issue 4 Article 6

12-2013

LINEAR NO-THRESHOLD MODEL VS.
RADIATION HORMESIS
Mohan Doss
Fox Chase Cancer Institute

Follow this and additional works at: https://scholarworks.umass.edu/dose_response

This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Dose-Response: An
International Journal by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Doss, Mohan (2013) "LINEAR NO-THRESHOLD MODEL VS. RADIATION HORMESIS," Dose-Response: An International
Journal: Vol. 11 : Iss. 4 , Article 6.
Available at: https://scholarworks.umass.edu/dose_response/vol11/iss4/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/32435284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/dose_response?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol11%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol11?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol11%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol11/iss4?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol11%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol11/iss4/6?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol11%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol11%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol11/iss4/6?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol11%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


480

Dose-Response, 11:480–497, 2013
Formerly Nonlinearity in Biology, Toxicology, and Medicine
Copyright © 2013 University of Massachusetts
ISSN: 1559-3258
DOI: 10.2203/dose-response.13-005.Doss

LINEAR NO-THRESHOLD MODEL VS. RADIATION HORMESIS

Mohan Doss � Fox Chase Cancer Center

� The atomic bomb survivor cancer mortality data have been used in the past to justify
the use of the linear no-threshold (LNT) model for estimating the carcinogenic effects of
low dose radiation. An analysis of the recently updated atomic bomb survivor cancer mor-
tality dose-response data shows that the data no longer support the LNT model but are
consistent with a radiation hormesis model when a correction is applied for a likely bias
in the baseline cancer mortality rate. If the validity of the phenomenon of radiation
hormesis is confirmed in prospective human pilot studies, and is applied to the wider pop-
ulation, it could result in a considerable reduction in cancers. The idea of using radiation
hormesis to prevent cancers was proposed more than three decades ago, but was never
investigated in humans to determine its validity because of the dominance of the LNT
model and the consequent carcinogenic concerns regarding low dose radiation. Since
cancer continues to be a major health problem and the age-adjusted cancer mortality rates
have declined by only ~10% in the past 45 years, it may be prudent to investigate radiation
hormesis as an alternative approach to reduce cancers. Prompt action is urged.
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INTRODUCTION

Though the use of the linear no-threshold (LNT) extrapolation
model has become well established in radiation safety regulations and
practices throughout the world in the past several decades, there contin-
ues to be a considerable amount of disagreement in the scientific com-
munity regarding the appropriateness of its use (Cameron, 1998;
Cameron and Moulder, 1998; Cohen, 1998; Mossman, 1998; Strom, 1998;
Tubiana, 2005; NRC, 2006; Tubiana et al., 2006; Little et al., 2009; Tubiana
et al., 2009). Controlled in-vitro and animal studies have contradicted the
LNT model as many of these have shown adaptive response to low dose
radiation resulting in reduced mutations and cancers (Hosoi and
Sakamoto, 1993; Ishii et al., 1996; Mitchel et al., 1999; Redpath et al., 2003;
Elmore et al., 2005; Ina et al., 2005; Day et al., 2007; Moskalev et al., 2011;
Phan, 2011; Phan et al., 2012), demonstrating a phenomenon known as
radiation hormesis (Luckey, 1980; Luckey, 1991; Calabrese and Baldwin,
2003; Feinendegen, 2005; Jolly and Meyer, 2009; Sanders, 2010). For
humans, the effect of radiation on cancer has been inferred by deter-
mining the cancer rates of population groups that were exposed to radi-
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ation, and comparing these to equivalent population groups not exposed
to the radiation. Among all the data that are available from such human
studies, the data from the atomic bomb survivors are generally consid-
ered to be the “gold standard” for estimating the cancer risk from radia-
tion because of the large size and the non-selective nature of the radiat-
ed population group, the wide range of radiation doses involved, and the
long-term systematic monitoring of their health (Hall and Brenner,
2008). For example, the atomic bomb survivor data have been used as the
primary resource for estimating the carcinogenic risks from low dose
radiation in reviews, e.g. (Gilbert, 2009; Suzuki and Yamashita, 2012), and
these data have been used by the recent BEIR VII report to estimate radi-
ation cancer risks for individual cancers (see Chapter 6 of the report), to
reaffirm the absence of a threshold dose and support for the LNT model,
and to exclude the possibility of beneficial effects of low dose radiation
(see page 10 of the report) (NRC, 2006). The atomic bomb survivor data
have also been used to raise concerns about the radiation dose to the
public from the increasing use of diagnostic imaging (Brenner and Hall,
2007; Hall and Brenner, 2008).

EVIDENCE FOR RADIATION HORMESIS IN ATOMIC BOMB SURVIVOR
DATA

Recently an updated report was published on the mortality of atomic
bomb survivors (Ozasa et al., 2012; Ozasa et al., 2013) including six addi-
tional years of follow-up compared to the previous comprehensive report
(Preston et al., 2003). Figure 1 shows the results from the publication
where excess relative risk (ERR) for solid cancer mortality among the sur-
vivors is plotted as a function of radiation dose, with ERR defined as (R-
B)/B, where R and B are the solid cancer mortality rates of the radiated
and baseline cohorts respectively. Since R and B are expected to be near-
ly equal for doses near zero, and the process of calculating ERR effectively
involves subtraction of these two values to obtain the small difference
between them, the ERR values are likely to be subject to large fluctuations
in the low dose range due to the statistical errors in the cancer mortality
rates. For example, the number of excess solid cancer deaths for the dose
ranges of 0.005 Gy to 0.01 Gy, and 0.01 Gy to 0.02 Gy in the atomic bomb
survivor cohort are 49 and 46 respectively (see Table 9 of the publication)
(Ozasa et al., 2012). The total number of cancer deaths for the two dose
ranges are 3653 and 789 respectively. These two dose ranges have been
divided into ~5 and ~4 bins respectively in Figure 1, making the average
excess cancers per bin ( ~10 and ~12) smaller than the average standard
errors for the bins ( ~27 and 14 respectively). The large variation in ERR
values observed between even adjacent close dose values for doses below
~0.3 Gy may indicate the dominance of such errors at these doses over-
whelming the dose dependence of ERR.

Linear No-threshold Model vs. Radiation Hormesis
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When ERR is considered over the whole dose range, the authors
reported that the linear dose–response relationship provided the best fit
to the solid cancer mortality data (Ozasa et al., 2012). After performing a
detailed dose threshold analysis, the authors also concluded that zero
dose is the best estimate for the dose threshold, apparently validating the
present use of the LNT model for radiation safety purposes. This conclu-
sion is however questionable as the functional forms they used to fit the
ERR data in the dose threshold analysis may have been too restrictive,
resulting in the conclusion of zero dose threshold (Doss et al., 2012). If
they had used a more generalized functional form, they would not have
concluded that zero dose is the best estimate of the dose threshold, as the
lower bounds of the point-wise 95% CIs would have been below zero for
low doses, as for example determined in the analysis shown in Figure 2.
Thus, the atomic bomb survivor data do not provide evidence for the
absence of a threshold dose for the carcinogenic effects of radiation.

The updated atomic bomb survivor data have also shown a reduction
of ERR for doses in the range of 0.3 to 0.7 Gy when compared to the lin-
ear fit to the data (see Figure 1). This deviation from linearity or curvature
of the dose response data for 0-2 Gy dose range was significant with a P
value of 0.02 in the present update as compared to earlier reports where
such deviation was not significant (see Table 7 of the publication) (Ozasa

M. Doss
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FIGURE 1. From Ozasa et al. (Ozasa et al., 2013). Excess relative risk (ERR) for all solid cancer mor-
tality in atomic bomb survivors in relation to radiation exposure. The black circles represent ERR and
95% CI for the dose categories, together with trend estimates based on linear (L) with 95% CI (dot-
ted lines) and linear-quadratic (LQ) models using the full dose range, and LQ model for the data
restricted to dose < 2 Gy. Figure reproduced with permission from the Radiation Research Society. 
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et al., 2012). The reason for the significant curvature was the lower than
the expected cancer rates for the dose range of 0.3-0.7 Gy, for which the
authors had no explanation (See page 238 of the publication) (Ozasa et
al., 2012). The LNT model that the authors used cannot explain this sig-
nificant reduction in cancers with increasing dose at low doses, since the
fundamental idea behind the LNT model is that the higher the dose, the
higher the number of mutations, and the higher the cancer incidence.

One possible reason for the inexplicable shape of the dose response
curve may be the bias introduced by the method of analysis used to deter-
mine the values of ERR as a function of dose (Ozasa et al., 2012). In cal-
culating the ERR values, the authors did not use a zero dose cohort as a
baseline group since even the lowest dose cohort had some exposure to
the atomic bomb radiation (See Table 1 of the report) (Ozasa et al.,
2012). Instead, they fitted the cancer mortality data for all the different
dose cohorts using ERR in the form of a linear (or linear plus quadratic)
function of dose multiplied by an effects modification factor to account
for other variables such as age, sex, etc., and extracted the ERR values
from the fit to the whole dataset (see page 231 of the report) (Ozasa et al.,
2012). In this procedure, the cancer mortality rates of the lowest dose
cohorts effectively determined the baseline cancer mortality rate through
linear extrapolation to zero dose. If the low dose radiation cohorts had
reduced cancer rates compared to the baseline cancer rate due to radia-

Linear No-threshold Model vs. Radiation Hormesis
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FIGURE 2. Excess relative risk (ERR) for all solid cancer in atomic bomb survivors in relation to radi-
ation exposure. The black circles and error bars represent ERR and 95% CIs for the dose categories.
Data from (Ozasa et al., 2013). Solid Line - fit to the ERR data using a multiple linear regression in
which weighted log colon dose was entered into the model using a restricted cubic spline transfor-
mation with five knots. Regression weights were equal to the inverse of the variance of the point esti-
mates. Dashed lines are 95% CI of the fit. Figure from performing analysis equivalent to (Doss et al.,
2012) with the corrected data in (Ozasa et al., 2013). Figure provided by Brian L. Egleston. 
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tion hormesis, then this procedure would introduce a negative bias in the
baseline cancer rate, since the lower cancer rates at low doses (extrapo-
lated to zero dose) would effectively be used as the baseline cancer rate
during the fitting process. Many retrospective human studies have shown
reduced cancer rates in the cohorts subjected to low dose radiation in
comparison to the cohorts not subjected to such radiation (Hwang et al.,
2006; Cohen, 2007; Vaiserman, 2010; Thompson, 2011). Let us now dis-
cuss the publication (Hwang et al., 2006) in some detail, as it reports the
effect of accidental whole body low dose radiation on cancer rate in a
large population group.

In 1982, a number of buildings were constructed in Taiwan using steel
unknowingly contaminated with Co-60, exposing thousands of residents
to low dose radiation for a number of years. Detailed dose estimation per-
formed for this population group indicates the average excess radiation
dose received by the residents from the contamination was ~0.048 Gy
(Hwang et al., 2006). This radiation dose is similar to the average of the
doses received by the two lowest dose cohorts in the atomic bomb sur-
vivor study (0-0.005 Gy and 0.005-0.1 Gy) (Ozasa et al., 2012). The cancer
incidence for the residents has been monitored and the standardized
incidence ratio (SIR) of solid cancers for the period up to 2002 has been
determined to be 0.7 (with 95% CI of 0.6-0.9), based on the 82 observed
and 109.5 expected solid cancers (see Table III of the publication)
(Hwang et al., 2006), indicating the irradiated residents had a signifi-
cantly reduced rate of solid cancers. A significant reduction in all cancers
was also reported, with the SIR of 0.8 (95% CI of 0.7-1.0). A follow-up
report including 3 additional years of data indicated the number of solid
cancers observed had increased to 106 (Hwang et al., 2008). Adjusting for
the increase in average age of the radiated population from 33.3 to 36.3
between the two reports using age-specific solid cancer incidence rates
from Taiwan Cancer Registry (TCR, 2008), the expected solid cancers are
projected to be 151, resulting again in SIR of ~0.7 for solid cancers. This
reduction of cancers cannot be explained using the LNT model and is
consistent with the radiation hormesis model. If there were a similar
reduction in cancers in the lowest dose cohorts in the atomic bomb sur-
vivors, the procedure used for analyzing the atomic bomb survivor cancer
mortality data would have led to a negative bias in the baseline cancer
rate. Such a bias has likely influenced the conclusions of the atomic bomb
survivor studies published since 1987 when the current procedure of
analysis was adopted.

If the baseline cancer rate used to compute ERR has a bias, it can be
shown that the calculated ERR values can be corrected for such a bias
using the following equation (Doss, 2012a),

(1)
δ

=
+ × +

−ERR corr
ERR

( )
(1 ) (100 )

100
1
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where ERR(corr) is the value of ERR corrected for the bias, and δ is the
percentage bias in the baseline cancer mortality rate. This correction has
been applied to the ERR values in Figure 1 assuming -20% bias in the
baseline cancer rate (being a rough estimate similar to the reduction in
cancers observed in the Taiwan residents study) (Hwang et al., 2006), and
the resulting dose-response data are shown in Figure 3. The correction
has shifted the ERRs to lower values resulting in negative ERR values for
all the doses below ~0.6 Gy (see Figure 3). Though there are large fluc-
tuations in the corrected ERR values between even adjacent close dose
values for doses below ~0.3 Gy, the overall pattern of negative ERR values
for doses below ~0.6 Gy is indicative of the cancer preventive effect of low
dose radiation that has been observed in animal and human studies
(Cohen, 2007; Sanders, 2010; Thompson, 2011). Thus, the qualitative
shape of the dose response curve of the atomic bomb survivor data has a
plausible explanation using a radiation hormesis model when corrected
for the likely bias in the baseline cancer rate, whereas there is no expla-
nation for the observed reduction in ERR values in the 0.3-0.7 Gy dose
range using the LNT model.

Linear No-threshold Model vs. Radiation Hormesis
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FIGURE 3. Excess relative risk (ERR) for all solid cancer mortality in atomic bomb survivors cor-
rected for -20% bias in baseline cancer mortality rate plotted as a function of colon dose. Error bars
are 95% CI. The obvious requirement that ERR = 0 at zero dose has been added as an additional data
point. 
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Additional support for the reduced incidence of cancers from low
dose radiation in humans has been reported recently by Tubiana et al.
who analyzed the incidence of second cancers in radiation therapy
patients. The tissues that had received ~0.2 Gy were found to have
reduced cancers per kg compared to the unradiated tissues that had
received no radiation dose (see Figure 4) (Tubiana et al., 2011).

LNT MODEL VS. RADIATION HORMESIS

The inability of the LNT model to explain (i) the significant reduc-
tion of cancers in the 0.3-0.7 Gy region of the atomic bomb survivor dose-
response data, (ii) the reduction of cancers in Taiwan residents exposed
to low dose radiation and in other radiated cohorts, and (iii) the reduc-
tion of second cancers per kg of tissue subjected to ~20 cGy dose in radi-
ation therapy patients is not surprising since the LNT model considers
only the initial interaction of radiation that causes the oxidative damage
and mutation. The LNT model completely ignores the body’s defensive
adaptive responses that may be triggered by the low dose radiation
(Feinendegen, 2005; Feinendegen et al., 2013). The importance of such
adaptive response becomes clear when one considers the contrast
between (i) the failure of anti-angiogenesis therapies which did not take
into consideration the adaptive response of the tumors to the therapy and
(ii) the occasional unexpected cure of metastatic lesions following radia-

M. Doss
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FIGURE 4. From (Tubiana et al., 2011). Second cancers per kg according to the mean dose received
in volume in radiation therapy patients. Figure reproduced with permission from Health Physics. 
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tion therapy to a primary tumor known as the abscopal effect, which is
likely from the adaptive response of increased immune system activity
from the stimulation by incidental low dose radiation to parts of body
from the radiation therapy (Doss, 2013). The radiation hormesis con-
cept, on the other hand, includes the consideration of the adaptive
responses of the body, i.e. (i) the protective radiobiological effects of low
dose radiation that tend to reduce the naturally occurring DNA damage
resulting in the suppression of the endogenous carcinogenic process
(Feinendegen, 2005; Scott, 2007; Liu, 2010), and (ii) the elevated
immune system response (Ina and Sakai, 2005; Farooque et al., 2011)
which plays a major role in preventing occult cancers from becoming
clinical cancers (Koebel et al., 2007), and in suppressing metastasis
(Nowosielska et al., 2010).

The atomic bomb survivor data are considered to be the best available
data for estimating radiation effects by many scientists and advisory com-
mittees, and have been used to justify the continued use of the LNT
model for radiation safety (NRC, 2006). Since the LNT model cannot
explain even qualitatively the reduction of cancers in the 0.3-0.7 Gy dose
range in the updated atomic bomb survivor cancer mortality data, the use
of the LNT model should be discontinued, and the present radiation
safety regulations for low dose radiation should be revised taking into
account the unsuitability of the LNT model. In addition, since the radia-
tion hormesis model can explain the shape of the atomic bomb survivor
dose-response data qualitatively, the phenomenon of radiation hormesis
should be investigated further to build confidence in its validity. The
study of radiation hormesis and the use of low dose radiation to reduce
cancers had been proposed several decades ago (Luckey, 1980; Hickey et
al., 1983; Luckey, 1991), and continues to be advocated (Luckey, 1999;
Cameron, 2002; Pollycove, 2007; Doss, 2012b). A proper scientific
approach to decide between two competing hypotheses is to perform
studies to test the predictions from the two hypotheses. Thus, the study of
radiation hormesis should have been initiated in pilot human studies
when it was proposed over three decades ago (Luckey, 1980; Hickey et al.,
1983), considering the important beneficial consequences to human
health if such studies had demonstrated reduced cancers from the low
dose radiation. However, no prospective human cancer prevention stud-
ies have been conducted thus far to investigate the concept to determine
its validity because of the dominance of the LNT model-based radiation
safety regulations which has resulted in carcinogenic concerns regarding
any dose of radiation.

Though no prospective cancer prevention studies have been per-
formed with low dose radiation in humans so far, the effect of low dose
radiation applied to the whole body (or to half the body) has been inves-
tigated for non-Hodgkin’s lymphoma patients in a clinical study, with the

Linear No-threshold Model vs. Radiation Hormesis
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low dose radiation treatments being interspersed between the standard
radiation therapy treatments to the primary tumor (Sakamoto, 2004).
The interspersed low dose radiation treatments have resulted in reduced
metastases and improved overall patient survival in comparison to the
standard radiation therapy alone (see Figure 5), indicating the effective-
ness of low dose radiation in reducing the adverse impact of cancers for
these patients.

RADIATION HORMESIS AS A METHOD OF REDUCING CANCERS

If the hormetic effect observed in the atomic bomb survivors (and
other radiated population groups) would be confirmed in human studies
and applied to the general population, it could result in a considerable
reduction in cancer mortality. Since the traditional approaches to reduce
cancers have had limited success (Faguet, 2005; Goldstein et al., 2012)
and there has been only about 10% reduction in age-adjusted cancer
mortality rate in the past 45 years (See Figure 6) (Remington and
Brownson, 2011), it may be very worthwhile to investigate the validity of
the radiation hormesis concept in humans as an alternative paradigm, as
has been suggested in prior publications (Luckey, 1999; Cameron, 2002;
Pollycove, 2007).

In view of the reported significant curvature in dose-response of the
present atomic bomb survivor data (for 0-2 Gy dose range) that is not
consistent with the LNT model and has provided evidence for radiation
hormesis, and in view of the additional human data supporting the con-

M. Doss
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FIGURE 5. From (Sakamoto, 2004). Survival of Stage I and II non-Hodgkin’s lymphoma patients fol-
lowing interspersed low-dose total-body or half-body irradiation between local radiation therapy treat-
ments compared to local radiation therapy treatments only. Figure reproduced with permission from
Nonlinearity in Biology Toxicology and Medicine. 
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cept of radiation hormesis in Taiwan residents subjected to low dose radi-
ation and in the study of second cancers in radiation therapy patients, the
long period of adherence to the LNT model has likely resulted in serious
adverse consequences. By our inaction in not studying radiation horme-
sis in humans since the time it was proposed in the 1980s, we may have
contributed to a large number of preventable cancer deaths. The analysis
of the atomic bomb survivor data has shown there was some reduction in
the cancer mortality rate in the low dose region (see Figure 3). Since
there is considerable uncertainty in quantifying this reduction as it
depends on the assumed bias in the baseline cancer mortality rates, for
the discussion below it will be assumed that 10% reduction in cancer mor-
tality rates may be achieved by the application of low dose radiation in
humans. Under this assumption, and using the current estimate of
577,190 annual cancer deaths in USA (Siegel et al., 2012), over 1.15 mil-
lion cancer deaths may have been prevented in the past 20 years in the
USA by the application of radiation hormesis. The worldwide numbers
would be ~13 times higher considering the 7.6 million annual global can-
cer death toll (Jemal et al., 2011). Prompt action is urged.

The main reason for not investigating the radiation hormesis hypoth-
esis in the 1980s as well as in later years was that the use of the LNT model
had become well established and there was, and there continues to be,
considerable concern regarding low dose radiation among the scientists
and public. One of the main factors contributing to this concern is the
reported increased cancers among the atomic bomb survivors. In the
recent update to the atomic bomb survivor data (Ozasa et al., 2012), the
authors have estimated the total number of excess cancer deaths due to

Linear No-threshold Model vs. Radiation Hormesis
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FIGURE 6. From (Remington and Brownson, 2011). Trends in age-adjusted death rates for the lead-
ing chronic diseases in United States for 1960–2007. 
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radiation exposure from the bombs to be 527 in the 58% of the 86,611
study subjects who had deceased up to the end of 2003 (See Table 9 of
the publication) (Ozasa et al., 2012). Extrapolating these excess cancer
deaths to the rest of the study cohort using the same proportion, the total
number of excess cancer deaths in the study cohort can be projected to
be ~900. Since roughly half the survivors within 2.5 km of the bombs are
included in the study cohort (Pierce et al., 1996), the final excess cancer
death toll among all the atomic bomb survivors can be estimated to be
~1800. It is ironic that we are likely having more preventable cancer
deaths every day (due to not studying radiation hormesis from the fear of
low dose radiation) than the total projected atomic bomb cancer death
toll that is mainly responsible for the fear of low dose radiation.

ENABLING STUDY OF RADIATION HORMESIS FOR CANCER 
PREVENTION

Though the above discussion indicates it may be worthwhile investi-
gating the use of radiation hormesis for preventing cancers, a prospective
human study of radiation hormesis for cancer prevention is not present-
ly feasible in view of the current recommendations of most of the adviso-
ry bodies in support of the LNT model, the current radiation safety reg-
ulations based on the LNT model, and the carcinogenic concerns regard-
ing low dose radiation in the scientific community and in the public.
Major changes are needed in these areas to enable the study of radiation
hormesis for cancer prevention in humans.

The first needed change is the reversal of recommendations by the
advisory bodies most of which have so far supported the use of the LNT
model for the purposes of radiation safety, since governments are influ-
enced by recommendations of such advisory bodies in formulating the
radiation safety regulations and policies. The advisory bodies should be
asked to review their recommendations in view of the new atomic bomb
survivor data and analyses that have raised doubts about the LNT model.
The new evidence observed in atomic bomb survivors against the LNT
model and for radiation hormesis is much stronger than the evidence
claimed for low dose radiation induced leukemias (Dus, 1957; Lewis,
1957). Partly based on such evidence, the LNT model was adopted by the
advisory bodies in the 1950s (Calabrese, 2009). If the advisory bodies
review the data, and endorse the change away from the LNT model, it
would greatly help in rescinding the LNT model-based radiation safety
regulations and reducing the concerns regarding low dose radiation
among the scientists and the public.

The second change needed is the revocation of the LNT model based
radiation safety regulations that have been used by governments world-
wide since the 1950s implying that even the smallest amount of radiation
can increase the risk of cancer. These regulations prevent prospective

M. Doss
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studies of health effects of low dose radiation by raising carcinogenic con-
cerns regarding any low dose radiation exposure. Governments should be
urged to replace the present LNT model based radiation safety paradigm
with an adaptive response based model and modify the radiation safety
regulations accordingly to enable the prospective study of radiation
hormesis (Doss, 2012b; Doss, 2013).

The third needed change is the allaying of the carcinogenic concerns
regarding low dose radiation among the scientists and the public, which
were fueled by many peer-reviewed publications as well as stories in the
popular media regarding the projected carcinogenic hazards from low
dose radiation based on the LNT model. Though several books have been
written (Luckey, 1980; Luckey, 1991; Sanders, 2010) and many articles
have been published in scientific journals (Luckey, 1999; Feinendegen,
2005; Scott, 2011; Doss, 2012b; Doss, 2012a) that present arguments and
data supporting radiation hormesis and against the LNT model, these do
not receive much publicity in the popular media. On the other hand, sen-
sational articles that project dangers from low dose radiation based on
the LNT model, e.g. (Berrington de Gonzalez et al., 2009) or based on
comparison to atomic bomb survivor data (Brenner and Hall, 2007) get
wide coverage, distorting the view of the scientists and the general public
about the present state of scientific knowledge, and raising their concerns
regarding low dose radiation. Hence, a prolonged education program
should be initiated to correct the misconceptions and inform the scien-
tific community and the public regarding the invalidity of the LNT model
and the evidence for the phenomenon of radiation hormesis, in order to
reduce and eliminate the concerns regarding low dose radiation.

Successful implementation of these changes may make it feasible to
conduct prospective pilot studies of radiation hormesis to confirm its
validity and determine its usability for reducing cancers in the general
population.

Another possible approach to reduce the concerns regarding low
dose radiation is to explore applications of radiation hormesis for cancer
patients in pilot clinical trials, since success in such clinical trials can
reduce the carcinogenic concerns regarding low dose radiation.

APPLICATIONS OF RADIATION HORMESIS IN CANCER PATIENTS

There is a considerable amount of pre-clinical and clinical data sug-
gesting the use of low dose radiation for treating cancer patients, either
alone or as an adjuvant to the standard cancer therapies (Cuttler and
Pollycove, 2003; Farooque et al., 2011). Pilot clinical trials are needed
(preceded by pre-clinical studies to optimize the treatment protocols) to
determine the effectiveness of low dose radiation in improving patient
outcomes in cancer patients. Among the applications that can be consid-
ered are:

Linear No-threshold Model vs. Radiation Hormesis
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• Treatment of early stage cancers. Since low dose radiation boosts the
immune system, and the immune system plays a major role in keeping
occult cancers in check, the adaptive response from low dose radiation
may be sufficiently effective in treating early stage cancers reducing the
need for current standard treatments such as lumpectomy, radiation
therapy, and/or chemotherapy with the accompanying adverse side ef-
fects (Doss, 2013).

• Use of interspersed low dose radiation as an adjuvant to standard radi-
ation therapy. Interspersing low dose radiation of the whole body or
half of the body between standard radiation therapy treatments may be
effective in improving primary tumor control as well as in reducing
metastatic disease as has been observed in the clinical study of non-
Hodgkin’s lymphoma patients (Sakamoto, 2004).

• Reduction of second cancers in radiation therapy patients. With the
longer-term survival of cancer patients following improvements in can-
cer therapies, there are increasing concerns regarding the incidence of
second cancers in the survivors (Tubiana, 2009; Yock and Caruso,
2012). The analysis of Tubiana et al. indicates there was reduced inci-
dence of second cancers per kg in tissues exposed to radiation dose of
~20 cGy in comparison to unexposed tissues in radiation therapy pa-
tients (See Figure 4) (Tubiana et al., 2011). This suggests second can-
cers may be reduced in cancer patients by subjecting them to low dose
radiation exposure. Clinical trials are needed to determine if whole
body radiation exposure at the level of ~20 cGy following standard can-
cer therapy is effective in reducing the incidence of second cancers in
these patients.

For these initial applications, low dose radiation exposure in the
range of 10-20 cGy to the whole body or to half the body may be achieved
conveniently using the standard radiation therapy machines which are
readily available in most hospitals caring for such patients. Success in
such clinical trials can reduce the current carcinogenic concerns regard-
ing low dose radiation by demonstrating its cancer preventive nature, and
enable the study of radiation hormesis for cancer prevention in larger
clinical trials.

PROSPECTIVE STUDY OF RADIATION HORMESIS

Though there is evidence supporting radiation hormesis in the atom-
ic bomb survivor data, second cancer data in radiation therapy patients
and other epidemiological studies, we need to perform detailed prospec-
tive pilot studies to confirm the validity of the phenomenon, and deter-
mine the radiation doses that result in significant reduction in cancers. If
the pilot studies fail to demonstrate a significant cancer preventive effect,
the radiation hormesis hypothesis will need to be rejected. However, if
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the reduction in cancers from low dose radiation is confirmed in pilot
studies, the concept should be applied to larger population groups in
order to reduce the cancer rates in the wider population. At the same
time, a systematic investigation should be initiated to optimize the cancer
prevention by varying the low dose radiation treatment parameters. The
optimum radiation dose that results in the most reduction in cancers
would need to be determined from such studies.

Since the adaptive response from a single application of low dose
radiation is likely to decrease with elapsed time, repeated exposure to low
dose radiation at an appropriate time interval may reinforce the adaptive
response and enable even higher reduction in cancer mortality rates than
was observed in the atomic bomb survivors. However, this needs to be
confirmed, and the optimum time interval needs to be determined.
Chronic radiation should also be studied at different dose rates to assess
if the cancer rates can be reduced using chronic radiation. In addition,
different types of low dose radiation should be studied to determine if
there are differences in the cancer preventive effect, in order to optimize
the type of radiation to be used. Whereas some of these studies may show
results in a relatively short time, others may require a lifetime of follow
up. Thus, substantial resources will need to be allocated to the systematic
study of radiation hormesis over a long period of time. The rejection of
the LNT model and rescinding of LNT model-based radiation safety reg-
ulations (which would be a pre-requisite for enabling the study of radia-
tion hormesis) can free up considerable amount of resources and man-
power from reduced compliance and enforcement needs which can be
redirected to the systematic study of radiation hormesis.

SUMMARY

The conclusion of zero threshold dose for carcinogenic effects of
radiation in the recent updated report on the atomic bomb survivor can-
cer mortality data appears to be unjustified and may be the result of the
restrictive functional forms that were used to fit the data. Also, the shape
of the dose-response observed in the recent update of atomic bomb sur-
vivor data is clearly non-linear with the significant reduction in cancer
mortality rate in the dose range of 0.3 Gy to 0.7 Gy. This raises doubts
about the LNT model and possibly shows evidence for the phenomenon
of radiation hormesis when a correction is applied for a likely bias in the
baseline cancer mortality rate. Though the use of radiation hormesis was
proposed more than three decades ago as a method of reducing cancers,
no prospective human cancer prevention studies have been conducted so
far to determine its validity due to carcinogenic concerns based on the
LNT model. Since the current approaches to reduce cancers have had
limited success with only about 10% reduction in age-adjusted cancer
mortality rate in the past 45 years, it may be prudent to investigate radia-
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tion hormesis as an alternative paradigm to reduce cancers, though it is
against the present radiation safety regulations and practices, which are
based on the LNT model. Several major changes will need to occur
before any prospective human studies of cancer prevention using radia-
tion hormesis can be conducted, including (i) recognition of the impor-
tance of adaptive response by advisory committees and reversal of their
current recommendations to use the LNT model for radiation safety, (ii)
changes in the governments’ radiation safety regulations recognizing
adaptive response, and (iii) allaying of concerns among the scientists and
the public regarding low dose radiation through increased dissemination
of information on the invalidity of the LNT model and the evidence for
radiation hormesis. Low dose radiation may also be helpful in improving
outcomes in cancer patients by cure of early stage cancers, as an adjuvant
to standard radiation therapy to improve tumor control and reduce
metastases, and to reduce the incidence of second cancers. Pilot clinical
trials are needed to determine the effectiveness of low dose radiation in
these applications. Success in such clinical trials can help to reduce the
concerns regarding low dose radiation and enable the study of cancer
prevention using radiation hormesis. Prompt action is needed.
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