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ADAPTATION AND SENSITIZATION TO PROTEOTOXIC STRESS

Rehana K. Leak � Division of Pharmaceutical Sciences, Mylan School of
Pharmacy, Duquesne University

� Although severe stress can elicit toxicity, mild stress often elicits adaptations. Here we
review the literature on stress-induced adaptations versus stress sensitization in models of
neurodegenerative diseases. We also describe our recent findings that chronic proteotox-
ic stress can elicit adaptations if the dose is low but that high-dose proteotoxic stress sen-
sitizes cells to subsequent challenges. In these experiments, long-term, low-dose protea-
some inhibition elicited protection in a superoxide dismutase-dependent manner. In con-
trast, acute, high-dose proteotoxic stress sensitized cells to subsequent proteotoxic chal-
lenges by eliciting catastrophic loss of glutathione. However, even in the latter model of
synergistic toxicity, several defensive proteins were upregulated by severe proteotoxicity.
This led us to wonder whether high-dose proteotoxic stress can elicit protection against
subsequent challenges in astrocytes, a cell type well known for their resilience. In support
of this new hypothesis, we found that the astrocytes that survived severe proteotoxicity
became harder to kill. The adaptive mechanism was glutathione dependent. If these find-
ings can be generalized to the human brain, similar endogenous adaptations may help
explain why neurodegenerative diseases are so delayed in appearance and so slow to
progress. In contrast, sensitization to severe stress may explain why defenses eventually col-
lapse in vulnerable neurons.

Key words: dual hit; two hit; Parkinson’s disease, Alzheimer’s disease, preconditioning, hormesis, 
U-shaped

INTRODUCTION

It has long been observed that organisms can adapt to mild stress but
are weakened by exposure to severe stress. Many decades ago, the father
of toxicology, Phillipus von Hohenheim (also known as Paracelsus),
observed that the dose makes the poison (Ottoboni 1997). Despite the
dearth of scientific data in the 1500s, Paracelsus suggested that anything
can be toxic in high doses and, conversely, that many poisons are not
toxic in low doses. Hans Selye, who described biological responses to
stress in the first half of the 20th century, also categorized stress into two
forms: eustress and distress (Selye 1975). Eustress was defined as mild
stressors that improve behavioral function and could be contrasted with
severe stressors that exert a negative impact on adaptive behavior. Selye’s
seminal studies demonstrated that the response to stress is largely dura-
tion-dependent. Stress initially elicits a phase of resistance in animals,
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whereas chronic stress that is unyielding results in distress. Both of these
pioneers, Paracelsus and Selye, therefore described two features that
strongly influence the direction of the response to stress: dose and dura-
tion. A plethora of more recent studies have largely confirmed their ini-
tial suspicions and also identified underlying mechanisms.

Our recent mechanistic studies on adaptations as well as sensitizations
to stress are the subject of the present review. It will become evident from
our studies that even long duration stress can elicit adaptations in some
cellular models provided the stressor dose is low, and that even high dose
stress can elicit adaptations in some cell types. However, in other cellular
models, severe stress elicits synergistic toxicity when combined with a sec-
ond challenge. Thus, the response to stress is not unidirectional and is
probably highly dependent on stressor dose, stressor duration, cell type,
brain region, prosurvival protein profile, organismal age, and many other
factors. Our models of stress all revolve around proteotoxicity, stress
caused by protein misfolding and aggregations. Proteotoxic stress is a
hallmark pathology of neurodegenerative diseases (Walker and LeVine
2000; Walker et al. 2006; Morimoto 2008; Dickson 2009; Jellinger 2009;
Uversky 2009; Angot et al. 2010; Gundersen 2010; Morimoto 2011). Many
neurodegenerative conditions, including the more common Alzheimer’s
and Parkinson’s diseases, are therefore known as proteinopathies. Each
of these diseases is characterized by signature protein aggregations or
inclusions in specific brain regions. Not surprisingly, there are also reduc-
tions in proteasome activity in both Parkinson’s and Alzheimer’s disease
(Keller et al. 2000; McNaught et al. 2003; McNaught 2004). The barrel-
shaped ubiquitin-proteasome system degrades misfolded proteins that
are tagged with a polyubiquitin tail. Although proteasome inhibition can-
not mimic the full extent of the pathologies in neurodegenerative dis-
eases, inhibition of proteasome activity with pharmacological tools elicits
some of the salient features of these disorders, such as the formation of
protein aggregations and cell death (Rideout et al. 2001; Rideout and
Stefanis 2002; Sawada et al. 2004; Rideout et al. 2005; Sun et al. 2006; Xie
et al. 2010). Another important caveat of current models of neurodegen-
eration is that they fail to mimic the decades-long pathophysiology of
chronic neurodegenerative diseases. This is a difficult obstacle to over-
come for the entire field and can be attributed to our lack of knowledge
of the primary cause of these disorders, the short rodent lifespan, and the
acute nature of insults applied to in vitro models of neurodegeneration.
On the other hand, studies on genetic or familial forms of Alzheimer’s
and Parkinson’s disease strongly support the hypothesis that abnormally
shaped proteins are causally linked to neurodegeneration. Despite this
significant advance, our lack of knowledge of the original stimulus that
first precipitates protein misfolding in sporadic forms of Alzheimer’s and
Parkinson’s disease has stalled the identification of curative therapies and
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hindered the development of animal and cellular models. Until we iden-
tify the reason for protein aggregation in sporadic forms of these diseases,
eliciting proteotoxicity with proteasome inhibition in cellular models or
by direct infusion into the brain appears to be a reasonable and practical
model of protein misfolding stress (Fornai et al. 2006; Pan et al. 2008;
Vernon et al. 2010; Zhang et al. 2012). Another form of proteotoxicity in
neurodegenerative disorders is the presence of autophagic stress (Nixon
and Yang 2012; Son et al. 2012; Salminen et al. 2013). Autophagy by the
lysosome is an alternative means to clear cellular debris such as misfold-
ed proteins, and can be mobilized in self-defense when the proteasome is
inhibited (Iwata et al. 2005; Ding et al. 2007; Rubinsztein et al. 2007; Janen
et al. 2010; Wong and Cuervo 2010). MG132, the toxin that we have used
to inhibit the proteasome, also inhibits lysosomal cathepsins (Lee and
Goldberg 1998). Thus, treatment with MG132 mimics both the proteaso-
mal and the autophagic stress of proteinopathies. In this respect it is sim-
ilar to lactacystin, a proteasome inhibitor that also inhibits cathepsin A
(Lee and Goldberg 1998; Aikawa et al. 2006).

In this review, we use the term “mild” to describe stressors that are
short enough in duration or low enough in dose to be sublethal. We use
the term “severe” to describe stressors that are long enough in duration
or high enough in dose to be lethal to some fraction of the cellular pop-
ulation. We envision that the response to stress in the human brain may
switch from enhanced resistance to increased vulnerability with a shift in
either stressor dose or duration. Our earlier work was based on the
hypothesis that adaptations to mild cellular stress may partly explain the
delayed onset and protracted nature of neurodegenerative conditions
(Leak et al. 2006; Leak and Zigmond 2007; Leak et al. 2008). We specu-
lated that endogenous defenses against stress may keep full-blown neu-
rodegenerative illnesses at bay in young individuals and may also brake
disease progression in those who do finally develop Parkinson’s or
Alzheimer’s disease in old age. Such favorable reactions elicited by low
dose stressors or eustress are defined as hormetic responses and are well
established in the toxicology literature (Calabrese 2008c; Giordano et al.
2008; Mattson 2008; Calabrese 2010). Hormesis can be viewed as the pro-
totypical homeostatic reaction to environmental fluctuations, in accor-
dance with the original definition of homeostasis by Claude Bernard and
Walter Cannon. The ability to respond dynamically to challenges that
threaten internal homeostasis is also described as plasticity and is more
evident in some cell types than others. With higher levels of stress, how-
ever, adaptive responses may fail and the response to subsequent chal-
lenges can be compromised. In the latter situation, pre-stressed cells
become sensitized to a second hit instead of protected. This toxic type of
response may predominate in vulnerable brain regions or in aged ani-
mals (Boger et al. 2010). The biphasic nature of the response to stress is
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reflected in the U-shaped, hormetic dose-response curves that are often
reported in toxicology. With some exceptions (Calabrese et al. 2007;
Calabrese 2008b), discussions of U-shaped dose response curves and
hormesis do not always include reference to a second hit. However, adap-
tation or sensitization to stress can be quantitatively measured by the
response of pre-stressed cells to a second challenge, as will be discussed
further below. If previously stressed cells are protected against a second
challenge relative to naïve cells, they are said to be preconditioned or in
a state of tolerance. On the other hand, if pre-stressed cells respond to
two hits with synergistic toxicity they are said to be sensitized to the sec-
ond challenge. In contrast, if two toxic hits are additive and not synergis-
tic, neither adaptation nor sensitization is at work and the first hit is, in a
sense, neutral, because it leaves behind cells that are as vulnerable to the
second hit as naïve cells. In short, a two hit protocol is extremely useful
to gauge both the direction and magnitude of the stress response.

Our long term goal is to characterize in detail the protein profile of
stressed, but adapted neuronal and glial cells and to contrast this profile
with cells that are sensitized to subsequent challenges. A better under-
standing of this “adaptive proteome” in the brain and how it responds to
homeostatic challenges might hasten the development of CNS pharma-
cotherapies or identify dietary/lifestyle changes that mimic these stress-
responses without causing any harm. Estimates place 15% of highly con-
served proteins in the stress responsive category (Kultz 2005); their abun-
dance and phylogenetic conservation can be viewed as a testament to
their importance in homeostasis. Stress responsive proteins include (1)
sensors to recognize perturbations, (2) transducers to amplify and inte-
grate signals and (3) effectors to counteract stress (Kultz 2005; Babar et
al. 2008). The effector proteins that battle challenges to homeostasis
include the antioxidant enzyme systems and folding chaperone machin-
ery as well as the prosurvival signaling cascades. Although these prosur-
vival effectors have often been observed to be lower in postmortem tissue
from Alzheimer’s and Parkinson’s victims, the occasions on which they
are higher in disease states are instructive. Well-established examples of
antioxidant defenses that are lowered early in the course of Parkinson’s
and Alzheimer’s disease include loss of the essential tripeptide glu-
tathione (Sofic et al. 1992; Sian et al. 1994; Calabrese et al. 2006; Baldeiras
et al. 2008; Zeevalk et al. 2008; Lloret et al. 2009; Martin and Teismann
2009; Johnson et al. 2012). Based on our two hit model of proteasome
inhibition in N2a cells (discussed below), catastrophic drops in glu-
tathione may reflect synergistic proteotoxicity within vulnerable cell
types. One should note that these prodeath cellular changes are not nec-
essarily maladaptive to the organism as a whole. It may benefit the organ-
ism to clear dysfunctional cells that are damaged beyond repair. Such
removal may decrease mutagenesis risk and preserve energy for other cel-
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lular systems that can be salvaged. In other words, even toxic responses to
stress may play an evolutionarily adaptive role under some circumstances.

In contrast to the loss in glutathione, some prosurvival molecules are
raised in the brains of victims of neurodegenerative diseases. Some of the
more enlightening examples of these changes will be discussed here. One
might speculate that increases in prosurvival molecules reflect those
remaining cells that have either successfully battled proteotoxic stress or
are able to prolong their lives by delaying the harmful sequelae of pro-
teotoxicity. It is also important to characterize regional variations in the
adaptive proteome in this context, as differences in endogenous defense
strategies across brain regions may underlie the topographic nature of
neurodegenerative disorders, where all neurons are not equally vulnera-
ble to inclusion formation and cell death (Mattson et al. 1989; Mattson
and Kater 1989; Braak et al. 2000; Braak et al. 2003; Posimo et al. 2013).
An example of regional differences in glutathione content has been pub-
lished by Mythri and colleagues (Mythri et al. 2011). Although glu-
tathione levels in the nigra are reduced in Parkinson’s disease, glu-
tathione levels are raised in the less vulnerable frontal cortex, caudate,
and putamen (Mythri et al. 2011). This increase in glutathione was accom-
panied by a decrease in the activity of gamma glutamyl transpeptidase,
the enzyme that breaks down glutathione. Glutathione peroxidase activi-
ty levels were also raised in the caudate and putamen, supporting the
hypothesis that more resilient brain regions are protected from oxidative
damage in Parkinson’s disease (Mythri et al. 2011). Another instructive
study of glutathione peroxidase 4 expression within neuromelanin-con-
taining cells in the nigra reveals an important caveat of these types of
experiments (Bellinger et al. 2011). In the Bellinger study, total glu-
tathione peroxidase 4 immunoreactivity was decreased in the substantia
nigra of Parkinson’s victims. However, when glutathione peroxidase 4
immunoreactivity was expressed relative to cell density, there was an
upregulation of glutathione peroxidase 4 levels within the remaining
nigral neurons in Parkinson’s brains. Thus, some previous studies that
have reported losses in prosurvival systems in neurodegenerative disor-
ders may actually reflect an overall loss in neuron number. Some studies
have dealt with this caveat by quantifying immunostaining intensities
within remaining neurons. One example of this type of study shows that
the ferroxidase ceruloplasmin is higher in the remaining CA1 hip-
pocampal neurons in Alzheimer’s brains (Loeffler et al. 2001).
Ceruloplasmin is a serum copper chaperone, but recent studies show that
it also plays a protective role in the central nervous system (Kaneko et al.
2008; Hineno et al. 2011; Texel et al. 2011). Ceruloplasmin concentrations
in the brain are increased in Alzheimer’s and Parkinson’s disease
(Loeffler et al. 1996). Given its ability to rise with stress in other human
conditions, the rise in ceruloplasmin in neurodegenerative diseases is not

R. K. Leak

28
5

Leak: Adaptation and Sensitization to Proteotoxic Stress

Published by ScholarWorks@UMass Amherst, 2014



surprising and may reflect the endogenous defense capacities of the
human brain (Mezzetti et al. 1996; Mezzetti et al. 1998; Louro et al. 2000;
Taysi et al. 2002; Memisogullari and Bakan 2004; Chacko and Cheluvappa
2010).

Other defensive proteins that are upregulated in neurodegenerative
diseases include the well-studied heat shock family of proteins. The heat
shock response to stress is a primordial defense against denatured pro-
teins (Verbeke et al. 2001). Heat shock proteins battle apoptosis, refold
misfolded proteins, and escort damaged proteins to the proteasome or
lysosome for degradation (Kalia et al. 2010; Lanneau et al. 2010; Aridon et
al. 2011). One might therefore speculate that an endogenous rise in heat
shock proteins is a self-defense mechanism that slows down proteotoxici-
ty in proteinopathies. Heat shock protein 90 is raised in Parkinson’s dis-
ease and is colocalized with α-synuclein in Lewy bodies (Uryu et al. 2006).
Furthermore, heme oxygenase 1 (also known as heat shock protein 32) is
raised in hippocampal and cortical tissue in Alzheimer’s disease
(Schipper 2000; Schipper et al. 2006) and is also increased in astrocytes in
Parkinson’s disease (Schipper et al. 1998). In mild cognitive impairment,
a possible precursor to dementia, heat shock proteins 70 and 27 are both
increased in the inferior parietal lobule (Di Domenico et al. 2010).
Furthermore, heat shock protein 27 is raised in the nigrostriatal pathway
in Parkinson’s disease (Zhang et al. 2005). The major risk factor for neu-
rodegenerative diseases is aging. Although the induction of heat shock
proteins is impaired with aging, chaperones in general are increased with
aging (Fargnoli et al. 1990; Maiello et al. 1998; Soti and Csermely 2000;
Schultz et al. 2001; Walters et al. 2001; Gupte et al. 2010). For example,
heat shock proteins 40, 27, 60, 70, and constitutive heat shock protein 70
are known to increase in the aged central nervous system (Lee et al. 2000;
Lu et al. 2004). Clearly, different aspects of endogenous defenses can be
impaired or increased in individuals at risk for neurodegenerative dis-
eases or with full-blown disorders. Thus, both types of responses can coex-
ist in the same human brain, perhaps not the least because of striking
regional variations in vulnerability (Mattson et al. 1989; Mattson and
Kater 1989; Braak et al. 2000; Braak et al. 2003; Posimo et al. 2013).

Although it seems reasonable to speculate that rises in prosurvival
molecules in human neurodegenerative disorders slow down disease pro-
gression, this is not known for certain, as the human studies are correla-
tional and do not establish causation. Furthermore, the analysis of post-
mortem brain tissue is a cross-sectional snapshot of one moment in time.
As a result, we do not know whether changes in prosurvival proteins with-
in individual neurons are long term or transient in nature. Finally, it is
also not known how long stress-induced protection or sensitization can
linger in the human brain. Most of the answers to these questions come
from experimental model systems. The best way to experimentally
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address whether a response to stress is adaptive or toxic is to challenge
cells with a second hit and to quantify the degree of protection or sensi-
tization. As mentioned earlier, sublethal stress-induced protection against
subsequent challenges is known as preconditioning. The mechanisms
underlying preconditioning have been well defined in studies of ischemia
but are often neglected in the study of neurodegenerative diseases. Only
a small number of studies have considered the possibility of precondi-
tioning in models of neurodegenerative diseases and some of these will
be described here. First, Mark Mattson has proposed that dietary and
behavioral manipulations such as exercise and food restriction may pro-
tect against models of neurodegeneration by activating stress-responsive
pathways (Duan and Mattson 1999; Guo et al. 2000; Mattson et al. 2004;
Son et al. 2008). For example, dietary restriction increases levels of brain
derived neurotrophic factor, neurogenesis, and heat shock proteins
(Mattson et al. 2004). Mattson has further proposed that dietary phyto-
chemicals ingested from plants can precondition against multiple dis-
eases, including Parkinson’s and Alzheimer’s disease (Son et al. 2008).
From an evolutionary point of view, phytochemicals may activate stress-
responsive pathways because they are designed to repel insects, molds,
and even mammals. Two examples are nicotine and caffeine, both of
which have been associated with reduced risk for neurodegeneration in
epidemiological studies (Tan et al. 2003; Powers et al. 2008). Calabrese
and colleagues have argued that hormetic phytochemicals work through
vitagenes, genes which encode for heat shock proteins, sirtuin, and
thioredoxin (Calabrese et al. 2012). If phytochemicals continue to have
these effects for the long term, chronic adaptation may be possible in
humans. Second, dietary habits such as moderate alcohol consumption
are also associated with lower risks of Alzheimer’s disease and may also be
effective over the long term (Peters et al. 2008; Anstey et al. 2009). In sup-
port of this notion, ethanol can precondition against models of
Alzheimer’s disease (Mitchell et al. 2009; Collins et al. 2010). Other natu-
ral dietary compounds, such as the green tea polyphenol epigallocate-
chin-3-gallate and the red wine ingredient resveratrol have also been pro-
posed as preconditioning agents in Alzheimer’s and Parkinson’s disease
models (Raval et al. 2008; Tai and Truong 2010; Tang et al. 2011; Wu et al.
2012). Resveratrol is thought to protect cells in a sirtuin-dependent man-
ner (Farghali et al. 2012; Wu et al. 2012). Third, anesthetics induce toler-
ance against subsequent challenges in Alzheimer’s disease models and
raise levels of phosphorylated tau (Wei and Xie 2009; Tang et al. 2011).
Even β-amyloid itself can be used as a preconditioning tool against sub-
sequent challenges, such as glutamate excitotoxicity, by promoting endo-
cytosis of the NMDA receptor (Goto et al. 2006).

Another example of long term preconditioning in humans may be
the lifelong benefits of exercise. Exercise can be viewed as a natural, mild
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stress. Exercise is known to raise free radical content and can precondi-
tion against ischemia (Frasier et al. 2011; Powers et al. 2011; Zhang et al.
2011). Many studies have supported the long-term benefits of exercise in
humans, even in Alzheimer’s and Parkinson’s patients (Chen et al. 2005;
Xu et al. 2010; Erickson et al. 2012; Mayeux and Stern 2012; Fisher et al.
2013; Intlekofer and Cotman 2013; Winchester et al. 2013). Animal stud-
ies have also shown convincingly that exercise is protective in experi-
mental models of neurodegeneration (for some examples, see Adlard et
al. 2005; Nichol et al. 2009; Pothakos et al. 2009; Zigmond et al. 2009;
Gerecke et al. 2010; Vuckovic et al. 2010; Intlekofer and Cotman 2013;
Souza et al. 2013). The studies on the benefits of long term exercise,
dietary phytochemicals such as nicotine and caffeine, and moderate alco-
hol consumption all suggest that chronic adaptation to stress may be
achievable in humans. Furthermore, exercise is known to generate an
adaptive proteome. For example, we have observed that treadmill exer-
cise raises ceruloplasmin in primates and that levels of physical activity
are positively correlated with ceruloplasmin levels (Leak et al. 2012).
Despite its stress-responsive nature, ceruloplasmin has not been exten-
sively explored in connection with severe proteotoxic stress and brain
neuroprotection. Further studies on this protein are therefore warranted.

In a cellular Parkinson’s disease model, we have shown that sublethal
oxidative stress from 6-hydroxydopamine can precondition dopaminer-
gic cells against subsequent lethal exposures to higher concentrations of
the same toxin (Leak et al. 2006). The protection in this model was kinase
dependent, as inhibitors of ERK1/2, Akt, and JNK activation all attenuat-
ed the preconditioning-induced protection. Besides sublethal 6-hydroxy-
dopamine, another means of eliciting protection against lethal doses of
6-hydroxydopamine is by thrombin pretreatment in vivo (Cannon et al.
2005). Dopaminergic terminal loss in the striatum and ventricular
enlargement were both attenuated by thrombin preconditioning. Third,
hyperoxia preconditioning can protect animals against the behavioral
symptoms of 6-hydroxydopamine toxicity, such as apomorphine-induced
rotations and motor performance on the rotarod (Hamidi et al. 2012).
Fourth, preconditioning can also be elicited by the bacterial endotoxin
lipopolysaccharide. Lipopolysaccharide is well known to elicit inflamma-
tory responses but, in low concentrations, can precondition organotypic
midbrain cultures against subsequent lipopolysaccharide challenges
(Ding and Li 2008). Lipopolysaccharide preconditioning protected
against dopamine neuron loss as well as lactate dehydrogenase release in
this organotypic slice model. Lipopolysaccharide preconditioning also
prevented the microglial activation and tumor necrosis factor-α release in
response to the second, higher concentration of lipopolysaccaride. In
addition to these inflammation-suppressing functions of precondition-
ing, homeostatic crosstalk between endoplasmic reticulum stress and
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autophagy may also mediate the benefits of preconditioning in Drosophila
and mouse Parkinson’s disease models (Fouillet et al. 2012; Matus et al.
2012). In these studies, inhibition of autophagy was found to impair
endoplasmic reticulum stress-induced protection. Matus and colleagues
have recently reviewed these hormetic responses to protein-misfolding
stress (Matus et al. 2012). Fifth, activation of the antioxidant response ele-
ment by endoplasmic reticulum stress inducers can also precondition
against 6-hydroxydopamine toxicity (Hara et al. 2011). Sixth, low dose
methamphetamine challenges can protect dopaminergic cells against 6-
hydroxydopamine toxicity (El Ayadi and Zigmond 2011). Finally, in vitro
studies also provide evidence that heat shock can precondition against 1-
methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), another well-established
model of Parkinson’s disease (Quigney et al. 2003; Fan et al. 2005). These
studies, while not numerous, reveal that preconditioning can indeed
occur in models of neurodegenerative diseases.

In contrast to the small numbers of studies on preconditioning in
neurodegeneration, several seminal papers on short duration ischemic
episodes initiated a flood of investigations on preconditioning in stroke
models (Murry et al. 1986; Kitagawa et al. 1990; Kirino et al. 1991; Liu et
al. 1992; Kirino 2002; Dirnagl et al. 2003). These studies consistently
showed that short, sublethal ischemic episodes elicit tolerance of subse-
quent, longer duration ischemic attacks that would otherwise be lethal.
As argued by Valina Dawson, ischemic preconditioning offers a way to
“mine for survival genes” (Dawson and Dawson 2006) and has been a pro-
ductive field of research for many decades. Ischemic preconditioning also
has translational potential; remote ischemic preconditioning of an arm
or leg with a tightened blood pressure cuff may protect distant organs
from ischemic events such as stroke and cardiac bypass surgery
(Fairbanks and Brambrink 2010; Candilio et al. 2011). The state of our
knowledge on ischemic preconditioning has been discussed in many
recent reviews (Dirnagl and Meisel 2008; Della-Morte et al. 2012; Kitagawa
2012; Prabhakar and Semenza 2012; Thompson et al. 2012) and will not
be described further here.

As mentioned above, if the stressor is severe, it can exacerbate the
toxic response to future insults and result in greater than additive cell
loss. For example, previous exposures to thromboembolic events can
combine with a subsequent ischemic insult to produce larger areas of
ischemic injury (Dietrich et al. 1999; Danton et al. 2002). In the field of
neurodegeneration, the synergistic toxicity of multiple challenges is the
subject of the “two hit” or “dual hit” hypothesis (Zhu et al. 2004; Carvey et
al. 2006; Manning-Bog and Langston 2007; Sulzer 2007; Zhu et al. 2007;
Weidong et al. 2009; Boger et al. 2010; Gao and Hong 2011; Unnithan et
al. 2012). A few reports of dual-hit insults in Parkinson’s and Alzheimer’s
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disease will be described below. First, Carvey and Di Monte have discussed
the dual hit concept with reference to Parkinson’s disease in that suffi-
cient cell loss to elicit symptoms may require multiple stress exposures
(Di Monte et al. 2002; Ling et al. 2004b). For example, toxic environmen-
tal agents might interact with endogenous factors such as α-synuclein and
aging. Indeed, gene-environment interactions are particularly relevant to
the two hit hypothesis (Gao and Hong 2011) and can be studied by fus-
ing animal models (Manning-Bog and Langston 2007). Genetic disrup-
tions that result in fewer dopamine neurons at birth may also result in
Parkinsonian symptoms when combined with age-related neuronal attri-
tion (Weidong et al. 2009). Other models of the two hit hypothesis have
examined loss in trophic factors such as glial cell derived neurotrophic
factor (GDNF) and its impact on the response to aging and to metham-
phetamine challenges (Boger et al. 2010). As expected, genetic reduc-
tions in GDNF exacerbate age-related changes in dopaminergic systems
and increase vulnerability to methamphetamine. Several studies have
examined the two hit hypothesis in the context of inflammatory changes
to the brain. The authors of these studies consistently report that the pes-
ticide rotenone or the neurotoxin MPTP can both combine with the
inflammogen lipopolysaccharide to elicit synergistic neurotoxicity in
dopamine neurons (Gao et al. 2003a; Gao et al. 2003b; Ling et al. 2004a).
Dopamine oxidation and mitochondrial dysfunction have also been sug-
gested to combine with loss of function gene mutations or autophagic
self-degradation to underlie cell death in Parkinson’s disease (Sulzer
2007). Smith and colleagues have put forth a two hit hypothesis for
Alzheimer’s disease in that oxidative stress and mitogenic dysregulation
may combine to increase risk for Alzheimer’s pathology (Zhu et al. 2001;
Zhu et al. 2004; Zhu et al. 2007). In their model, oxidative stress and
abnormalities in mitotic signaling can both initiate pathology, but both
must be present to propagate the full extent of the pathology. A multiple
hit model of changes in tau function has also been suggested to promote
tau assembly (DeTure et al. 2006). Furthermore, traumatic brain injury
has been hypothesized to predispose individuals to both Parkinson’s and
Alzheimer’s disease (Kiraly and Kiraly 2007). Finally, a two hit study from
the stroke literature is particularly edifying (Qiao et al. 2009). In this study
by Tuor and colleagues, a 40 min stroke resulting in focal necrosis was
combined with a 60 min stroke three days later. Proximal to the ischemic
core, where loss of blood flow was the most severe, the damage exceeded
that of the first insult, whereas distally, there was tolerance to the insult.
These findings reveal that adaptation and sensitization can occur within
the same brain and show elegantly that the direction of the response
depends on the magnitude of the insult.

The two hit terminology has not generally been applied to studies of
preconditioning although preconditioning protocols also apply two
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sequential stressors. The word ‘hit’ is not typically used in reference to
sublethal stress even though it elicits transient damage (for an example,
see Dembinski et al. 2006). Sublethal preconditioning stimuli also
increase reactive oxygen species and activate the caspase cascade
(McLaughlin et al. 2003; Thompson et al. 2012). Without sublethal injury,
there would be no stress response because the sensors would not recog-
nize any perturbations. Before setting semantic issues aside, we argue
here that the two hit hypothesis should, by definition, encompass any pro-
tocol that involves two hits, be they sublethal or lethal, and that the
hypothesis must account for the biphasic nature of stress responses.
Therefore, we propose that the response to two hits can involve the fol-
lowing: 1) preconditioning-style adaptations following sublethal stressor
hits, 2) additive toxic responses to two severe stressor hits in which the
first hit does not change the response to the second hit, 3) synergistic
toxic responses to two severe stressor hits in which the first hit magnifies
the response to the second hit, and 4) adaptive responses to severe stress
so that the impact of a second hit is blunted in the cells that manage to
survive the first hit. To explore some of these possibilities, below we
describe our recent work investigating responses to proteotoxicity in var-
ious two hit cellular models. We begin with a description of adaptations
to chronic low dose proteotoxic challenges. A high-throughput two hit
model of synergistic neurodegeneration is also presented. Finally, we
summarize our recent findings that astrocytes, a glial cell type well known
for stress-induced plasticity, can adapt to proteotoxic stress delivered at a
high enough concentration to kill half the population. This was the first
demonstration that the glial survivors of severe proteotoxic stress are
more resistant than naïve cells. The mechanisms underlying the adapta-
tions and sensitization are also presented.

EVEN LONG-TERM STRESS CAN ELICIT ADAPTATIONS

As mentioned above, neurodegenerative conditions are characterized
by inhibition of the normal role of the proteasome. Indeed, the chronic
nature of neurodegenerative conditions raises the possibility that dis-
eased brains are exposed to proteotoxic stress for an extended time-
frame. Of course, Selye had argued that chronic stress weakens defenses.
Nonetheless, we wondered if cells are able to adapt to chronic stress if the
dose is low enough. If this was true, mild stress-induced plasticity might
explain why neurodegenerative conditions are so slow to progress despite
evidence of long-term proteotoxicity.

Although Parkinson’s disease involves degeneration of multiple brain
regions, such as noradrenergic (Forno 1996; Gesi et al. 2000), serotoner-
gic (Halliday et al. 1990; Gai et al. 1992; Politis et al. 2012), and hypocre-
tin/orexin systems (Fronczek et al. 2007; Thannickal et al. 2007), the
motor deficits are largely attributed to massive dopaminergic cell loss in
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the nigrostriatal tract. Parkinson’s disease is also characterized by its late
age of onset and progressive nature, suggesting that endogenous adapta-
tions may be hard at work. In order to test the hypothesis that cells can
adapt to chronic stress in a dopaminergic model, PC12 cells were exposed
to long durations (14 days - 6 months) of the proteasome inhibitor
MG132 (Leak et al. 2008). In our model, MG132 (0.1 μM) effectively
reduced chymotrypsin proteasome activity by 47%. Furthermore, there
was a statistical trend towards higher levels of ubiquitin-conjugated pro-
teins with MG132 treatment. These findings suggest that MG132 was pro-
teotoxic in this model. However, no impact of chronic MG132 on overt
morphology or tyrosine hydroxylase expression was observed. Tyrosine
hydroxylase is the rate-limiting enzyme for dopamine biosynthesis. We
also measured viability at 4-5 day intervals for two weeks after initiation of
MG132 treatment and found no change. MG132 (0.1 μM) was left in the
media at all times for up to 6 months. Viability was measured within two
days after plating cells throughout this entire procedure. We discovered
that chronic pretreatment with 0.1 μM MG132 did indeed protect against
subsequent challenges. Fourteen days or longer exposure to sublethal
MG132 protected against either 6-hydroxydopamine or higher-dose
MG132 (40 μM). Protection in this system was verified by two independ-
ent assays for cell viability: the Cell Titer Glo assay for ATP and counts of
Hoechst-stained nuclei. We typically perform at least two viability assays in
order to reduce the likelihood of false positives and to measure protec-
tion of both cell numbers and metabolic activity. This helps us ascertain
the impact of treatments on cellular structures as well as their function.
However, a potential confound of our interpretation that chronic MG132
was protective would be if MG132 decreased activity of the dopamine
transporter that shuttles 6-hydroxydopamine into the cytoplasm from the
extracellular medium. In other words, we were concerned that the rise in
viability in chronically stressed cells might be an artifact of reduced influx
of the 6-hydroxydopamine toxin. In contrast to this expectation, we
observed a 36% rise in dopamine transporter activity after chronic treat-
ment with MG132, not a fall. This suggested that the pre-stressed cells
were protected despite slightly greater exposure to 6-hydroxydopamine.
Notably, when MG132 was removed from the media for more than two
weeks, the protection disappeared, suggesting that the stress had to be
continuous to elicit an adaptive response. Conversely, this low concentra-
tion of MG132 was not sufficient to elicit protection if administered for
less than two weeks. Taken together, all of these observations are consis-
tent with the hypothesis that dopaminergic cells have the capacity to
adapt to chronic sublethal stress but that the protection disappears when
the stressful stimulus is removed.

Next we proceeded to examine the mechanism underlying long term
adaptive defenses. First, we scrutizined the role of the ubiquitous thiol
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glutathione in this model. Thiol defenses are so important to cells that
glutathione is present in millimolar concentrations in most tissues
(Cooper and Kristal 1997; Wilson 1997; Dringen 2000; Pompella et al.
2003; Pocernich and Butterfield 2011). Proteotoxicity and oxidative
stress are inextricably intertwined in neurodegenerative conditions
because oxidized proteins can become misfolded and must be degraded
by clearance systems such as the proteasome. We initially speculated that
glutathione would stave off the negative impact of chronic proteotoxic
stress. Thus, we hypothesized that inhibiting glutathione synthesis would
abolish or attenuate the stress-induced protection against 6-hydroxy-
dopamine. In contrast to this expectation, inhibition of glutathione syn-
thesis with buthionine sulfoximine exacerbated 6-hydroxydopamine tox-
icity to the same degree in naïve cells and cells treated with chronic
MG132 and did not attenuate the MG132-induced protection at all.
Chronic MG132 also did not raise glutathione levels. This suggested that
glutathione defenses were not responsible for the adaptation to long
term MG132.

As a result of these negative findings, we proceeded to examine levels
of other antioxidant molecules and folding chaperones. We found an
increase in CuZn superoxide dismutase enzymatic activity and protein
levels with chronic MG132. In contrast, a small rise in Mn superoxide dis-
mutase protein levels was not accompanied by a parallel rise in enzyme
activity. Superoxide dismutases catalyze the dismutation of superoxide
into hydrogen peroxide and oxygen. Catalase and heat shock protein 70
levels were also raised by chronic MG132. Catalase aids the breakdown of
hydrogen peroxide and thus may act in conjunction with the superoxide
dismutase enzymes. Heat shock protein 70 actively battles apoptosis in
addition to its chaperone functions and is thought to be protective
against neurodegeneration (Koren et al. 2009; Nagai et al. 2010; Witt
2010; Aridon et al. 2011; Silver and Noble 2012). We decided to focus on
the change in CuZn superoxide dismutase because previous investiga-
tions had shown that CuZn superoxide dismutase overexpression is pro-
tective in models of Parkinson’s disease whereas deficiencies in this pro-
tein exacerbate dopaminergic neurodegeneration (Przedborski et al.
1992; Asanuma et al. 1998; Barkats et al. 2002; Sturtz and Culotta 2002;
Van Remmen et al. 2004; Barkats et al. 2006; Wang et al. 2006). Notably,
CuZnSOD levels are lowered in Parkinson’s and Alzheimer’s patients
(Boll et al. 2008; Torsdottir et al. 2010), and CuZnSOD is found in Lewy
bodies (Nishiyama et al. 1995). We therefore hypothesized that knock-
down of CuZn superoxide dismutase with RNA interference would atten-
uate the MG132-induced protection against 6-hydroxydopamine. As
expected, CuZn superoxide dismutase knockdown with either of two
short interfering RNA (siRNA) sequences attenuated MG132-induced
protection. Using two independent siRNA sequences in place of one
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sequence alone reduced the likelihood of false positive results from non-
specific effects of RNA interference. Taken together, these findings
revealed multiple adaptive changes in stressed cells and showed that
CuZn superoxide dismutase was responsible for long term stress-induced
protection against oxidative toxicity.

In summary, these studies describe the protective nature of chronic
but mild proteotoxic stress. The protection lasted for at least 6 months
(the latest timepoint we tested), but removal of the stimulus caused loss
of defenses. Adaptive proteins such as anti-apoptotic chaperones and
antioxidant enzymes were raised by chronic stress and CuZn superoxide
dismutase mediated protection of dopaminergic cells against oxidative
toxicity. It must be acknowledged here that our definition of chronic falls
short of the decade-long march of neurodegeneration in Parkinson’s and
Alzheimer’s disease. The only conceivable model systems in which
decades-long insults might be applied are the nonhuman primates.
Whether mild, low dose proteotoxic stress can protect the primate brain
for the truly long term remains to be seen. Second, although they express
tyrosine hydroxylase, PC12 cells are not always predictive of dopaminer-
gic neurons because PC12 cells originate from the adrenal gland and not
the brain. Although PC12 cells can be differentiated to a neuronal phe-
notype, differentiated PC12 cells are unsuitable for the long term studies
conducted here because they begin to die. For our next high-throughput
cellular model, we switched to a neuroblastoma cell line, N2a, which orig-
inates from the mouse spinal cord. Although N2a cells are not dopamin-
ergic, Parkinson’s disease is now well known to extend beyond the ventral
midbrain, as mentioned earlier. Many extranigral brain regions, includ-
ing the spinal cord, are affected with synuclein inclusions (Braak et al.
2002; Braak et al. 2003; Del Tredici and Braak 2012). In the studies dis-
cussed below, we examined the N2a response to acute, severe proteotox-
ic stress in a cellular model of synergistic neurodegeneration.

CELLS CAN BE SENSITIZED TO INJURY BY SEVERE STRESS

Although stressors that potentiate the response to subsequent chal-
lenges may occur decades prior to the second hit, two hits may also occur
in rapid succession, such as exposure to toxicants in careers in agriculture
or industry. Many agricultural workers, for example, are exposed to pes-
ticides and herbicides on a daily basis. Some of these pulsatile challenges
to humans may elicit oxidative damage and protein misfolding. In sup-
port of this notion, pesticide and herbicide exposures increase the risk
for Parkinson’s disease and cause protein aggregations and cell death in
animal models (Liou et al. 1997; Betarbet et al. 2000; Alam and Schmidt
2002; Manning-Bog et al. 2002; McCormack et al. 2002; Franco et al. 2010;
Tanner et al. 2011). We hypothesized that synergistic responses to dual
proteotoxic challenges should be dose dependent and only elicited by
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severe stress, such as high concentrations of MG132. In support of this
hypothesis, lethal, but not sublethal concentrations of MG132 were found
to synergize in their negative impact on N2a viability when administered
24 hours apart (Unnithan et al. 2012). Three independent and unbiased
viability assays, conducted on the third day, illustrated this effect. For
assaying viability in a high-throughput manner, we stained the nucleus
and cytoplasm with a combination of two infrared stains (DRAQ5 and
Sapphire) and measured levels of the cytoskeletal protein α-tubulin with
immunocytochemistry. The third viability assay, Cell Titer Glo, measured
ATP levels. Interestingly, the Cell Titer Glo assay demonstrated that sub-
lethal concentrations of MG132 raised ATP without a parallel change in
cell numbers. This favorable metabolic reaction to low level proteotoxic
stress may allow slightly stressed cells to battle sublethal injury more effec-
tively and is an example of hormesis. As hypothesized, higher concentra-
tions of MG132 elicited cell loss and increased the toxic response to a sec-
ond MG132 hit by all three viability assays. Low or subtoxic concentra-
tions of MG132 did not elicit this synergistic response. Toxic, but not
subtoxic concentrations of MG132 greatly raised ubiquitin-conjugated
proteins in this model, suggesting that higher concentrations of MG132
effectively hindered the clearance of misfolded proteins (Fig. 1).

Adaptive responses to low level stress in our dopaminergic model of
the previous section included rises in several antioxidant proteins and the
anti-apoptotic folding chaperone heat shock protein 70. Conversely, we
expected toxic responses to severe stress to involve loss of antioxidant and
chaperone defenses. Contrary to these hypotheses, we found no loss in
heat shock protein 70 with toxic MG132 concentrations. In addition,
toxic, but not subtoxic MG132 elicited a rise in ceruloplasmin, not a loss
(Fig. 1). Our data showing an MG132-induced rise in ceruloplasmin in
neuronal cells is consistent with previous studies that it increases with
stress (Mezzetti et al. 1996; Mezzetti et al. 1998; Louro et al. 2000; Taysi et
al. 2002; Memisogullari and Bakan 2004; Chacko and Cheluvappa 2010)
and demonstrate that this response can be elicited by proteotoxicity even
when the stress is severe.

Next we examined whether toxic MG132 would elicit loss of
autophagic markers, because concomitant failure of autophagic and pro-
teasome defenses might underlie the synergistic toxicity of two MG132
hits. However, toxic concentrations of MG132 raised proteins involved in
chaperone-mediated autophagy such as heat shock cognate 70 (Hsc70)
and the lysosome-associated membrane protein type-2a (LAMP2a). These
responses again reflect adaptive responses to severe proteotoxic stress,
not toxic responses to stress (Fig. 1). The notion that the chaperone-
mediate autophagy markers reflect cellular engagement in self-defense
was supported by the finding that ammonium chloride, an inhibitor of
autophagic protease activity (Kaushik and Cuervo 2009), increased the
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toxicity of both single and dual hits of MG132 in our model. Thus, cells
exposed to toxic concentrations of proteasome inhibitors may rely on
autophagy as an alternative mechanism to clear cellular debris. Of course,
adaptive responses such as rises in ceruloplasmin or autophagic markers
failed to explain why two toxic MG132 hits were synergistic in nature. We
therefore proceeded to test the hypothesis that loss of thiol defenses
underlay the toxic impact of two hits.

In contrast to the rises in autophagic proteins and ceruloplasmin, we
found that two hits elicited a synergistic loss of glutathione. The response
of glutathione to two hits therefore paralleled the synergistic loss of via-
bility and supported the hypothesis that loss of thiol defenses might
underlie the toxicity of two hits (Fig. 1). As a result of these findings, we
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FIGURE 1. Misfolded proteins are tagged with an ubiquitin tail, linearized, and fed through one end
of the barrel-shaped proteasome. Peptides exit the other end of the proteasome and are further
degraded by cytoplasmic peptidases into amino acids for recycling into fresh proteins. Stress on the
proteasome, such as that induced by proteasome inhibitors, causes the buildup of misfolded proteins
that can no longer be degraded. In N2a cells treated with high concentrations of the proteasome
inhibitor MG132, two types of responses are elicited in response to the reduced clearance of dam-
aged proteins. A rise in the antioxidant ceruloplasmin and the chaperone-mediated autophagy pro-
teins lysosome-associated membrane protein type-2a (LAMP2a) and heat shock cognate 70 (Hsc70)
may serve to defend the cell. Inhibiting autophagic defenses increases the toxicity of both single and
dual MG132 hits in this model, suggesting that cells use autophagy as an alternative clearance mech-
anism when the proteasome is inhibited. Cells also respond to dual hits of severe proteotoxicity with
a synergistic loss in glutathione (GSH) defenses. This loss of GSH may increase oxidative toxicity and
enhance cell death. 
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examined whether raising glutathione levels would protect the N2a cells
against two toxic hits of MG132. The glutathione precursor N-acetyl cys-
teine prevented glutathione loss and almost completely abolished the
toxic response to two MG132 hits by all three viability assays. N-acetyl cys-
teine is an over-the-counter supplement well known to be protective in
animal models (for some examples, see Perry et al. 1985; Martinez
Banaclocha 2000; Pocernich et al. 2000; Farr et al. 2003; Fu et al. 2006;
Tucker et al. 2006; Sharma et al. 2007; Clark et al. 2010). It has even been
shown to benefit cognitive status in Alzheimer’s patients (Adair et al.
2001). N-acetyl cysteine is therefore currently being tested in clinical tri-
als of Parkinson’s disease (Clinicaltrials.gov ID: NCT01470027). Our find-
ings are consistent with a protective effect of N-acetyl cysteine against pro-
teinopathies, even when the proteotoxic stress is high in concentration
and unremitting in nature.

In summary, the response of neuronal cells to two MG132 hits reveals
an exquisite dose-sensitivity of synergistic effects. Low concentrations of
MG132 did not elicit synergistic toxicity; only severely toxic concentra-
tions of MG132 potentiated the response to the second hit. Despite the
toxic effects of high concentrations of MG132, highly stressed cells
nonetheless appeared to raise adaptive defenses in the form of autophag-
ic markers and ceruloplasmin (Fig. 1). One might speculate that stressed
cells would be even worse off without such defenses. This speculation is
supported by our observation that the toxicity of MG132 was increased
with an autophagy inhibitor. These studies showed for the first time that
the two hit neurodegenerative phenomenon can be extended to protein-
misfolding stress from proteasome inhibition. Furthermore, the data on
glutathione support the classic notion that oxidative and proteotoxic
stressors propel and propagate each other. Oxidative stress has been asso-
ciated with neurodegenerative proteinopathies for many decades ever
since Denham Harman drew attention to free radicals in aging in the
1950s (Harman 1956; Floyd and Hensley 2002; Harman 2006, 2009).

A few caveats of our neuroblastoma studies are worth mentioning
here. Our N2a studies of two proteotoxic hits were extremely short in
duration compared to the decades-long exposure to stress in human neu-
rodegenerative conditions. Our protocol is better suited to model the
toxic impact of rapid, successive hits of proteotoxic stress. Second, the
protein profile and concentration of reactive oxygen species in tumor
cells is often different from that of normal cells, especially when con-
trasted to differentiated cells that have exited the cell cycle some time
ago. Studies on immortalized lines cannot fully recapitulate the highly
heterogenous and differentiated pool of neurons in the brain. Primary
cultures are therefore probably more predictive of in vivo brain function
and were used in the next series of experiments. Because we had
observed a number of defensive responses to severe proteotoxic stress in
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N2a cells, we wondered whether primary astrocytes might adapt to high
dose proteotoxic stress. A previous study by Friedman and colleagues pro-
vides precedence to examine the protective impact of severe stress. In
that study, exposure to a moderately toxic hit of glutamate (eliciting 30%
cell loss) protected hippocampal neurons against exposure to a lethal
glutamate challenge 7 days later (Friedman and Segal 2010).

ASTROCYTES CAN ADAPT TO SEVERE STRESS

Thus far we had shown that dopaminergic cells can adapt to low level
proteotoxic stress in a CuZn superoxide dismutase-dependent and glu-
tathione-independent manner but that neuronal cells cannot survive
multiple bouts of high level proteotoxic stress because of catastrophic glu-
tathione loss. Notably, highly stressed neuronal cells still responded to
toxic MG132 with some adaptations, such as a rise in autophagic markers
and ceruloplasmin. All of these findings led us to wonder whether severe
proteotoxicity would elicit adaptations in cells known for their stress
resistance, astrocytes (Shao and McCarthy 1994). Astrocytes are well
known to interact with neighboring neurons, providing them with troph-
ic support and metabolic precursors such as lactate (Westergaard et al.
1995; Rathbone et al. 1999; Benarroch 2005; Barres 2008). Furthermore,
astrocytes probably serve as sentinels, as they express many types of neu-
rotransmitter receptors (Fuller et al. 2010; Verkhratsky et al. 2012).
Astrocytes are also critical for the production of glutathione in the brain
(Dringen et al. 2000). In Parkinson’s disease, astrocytes in the amygdala,
septum, cortex, thalamus, and striatum become immunoreactive for the
neuronal protein α-synuclein (Wakabayashi et al. 2000; Braak et al. 2007).
These findings support the hypothesis that astrocytes engulf α-synuclein
from the extracellular space through endocytosis to protect neighboring
neurons (Lee et al. 2010). Furthermore, astrocytes are also known to
engulf extracellular β-amyloid (Wyss-Coray et al. 2003). Because of their
plasticity and critical roles in maintaining neuronal viability, astrocytes
have been proposed to define homeostasis in the central nervous system
(Parpura et al. 2012).

Given the plasticity of astrocytes, we wondered whether adaptive
astrocytic responses could be elicited even with LC50 concentrations of
MG132 that were lethal to half the cellular population. To our knowledge
this question had not been answered in astrocytes before, although pre-
vious studies had shown that astrocytes can adapt to sublethal stressors
(Rajapakse et al. 2003; Calabrese 2008a; Chu et al. 2010; Du et al. 2010; Du
et al. 2011; Johnsen and Murphy 2011). In our model, we delivered two
hits of toxic concentrations of MG132 one day apart to primary cortical
astrocytes (Titler et al. 2013). Cells were assayed for viability on the third
day by counting the remaining Hoechst-stained nuclei and measuring
ATP. Toxic MG132 concentrations that killed approximately half the pop-
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ulation of astrocytes did render the remaining cells resistant to a second
MG132 hit. In other words, the toxicity of two hits was neither additive
nor synergistic and the response to the second hit was blocked. Both cell
count and ATP level viability assays verified that pre-stressed astrocytes
were protected against a second hit. Although the cell count data con-
firmed the lethal nature of the first hit, the ATP assay actually revealed a
slightly different pattern than cell counts. That is, the first hit did not elic-
it any ATP loss as it had loss of cell numbers; ATP output per cell had
risen instead. Second, the first hit completely prevented the usual ATP
loss in response to the second, higher dose challenge. The ATP dose-
response curve therefore looked very similar to a traditional precondi-
tioning curve with sublethal stress protecting against a second, otherwise
lethal challenge. Because the pre-stressed cells were protected against
ATP loss in response to a second MG132 challenge, we concluded that
astrocytes exhibit active metabolic adaptations in response to severe pro-
teotoxic stress. The rise in ATP output with the first hit may help fuel anti-
apoptotic signaling cascades and preserve homeostasis.

As a potential confound to our interpretations on active astrocytic
adaptations, we initially wondered whether the first MG132 hit was simply
leaving behind astrocytes that were refractory to the toxin and therefore
also unresponsive to a second hit. If this was the case, we could not claim
that astrocytes mounted any adaptations to MG132. Alternatively, a second
MG132 hit could continue to have an impact on the proteasome in pre-
stressed cells even though it did not lead to additional cell death. We tried
to distinguish between these two possibilities by assaying for ubiquitin-con-
jugated proteins. We found that two hits of MG132 caused a synergistic rise
in ubiquitin-conjugated proteins (Fig. 2). This finding was incompatible
with the hypothesis that the remaining cells were simply refractory to
MG132. Even though the downstream impact of proteotoxic stress on cell
viability itself was abrogated, these data demonstrate that the stress on the
proteasome itself was not prevented. The potentiation of this proteasomal
response verifies the continued impact of MG132 in the survivors of the
first hit and also reflects the severity of the proteotoxicity.

In order to probe for adaptive rises in pro-survival molecules in
stressed astrocytes, we measured heat shock protein 70 and heme oxy-
genase 1. Heme oxygenase 1 degrades heme into biliverdin and carbon
monoxide (Grochot-Przeczek et al. 2012). Astrocytes express high levels
of this protein, perhaps reflecting their inherent resilience (Dwyer et al.
1995). Both heat shock protein 70 and heme oxygenase 1 were raised by
MG132, as expected from cells that are attempting to battle toxicity (Fig.
2). We also probed for glutathione levels in this model, and discovered
that pre-stressed astrocytes failed to respond to the second hit with the
usual glutathione loss, unlike naïve astrocytes challenged with high dose
MG132. In other words, glutathione levels following the MG132 chal-
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lenge were higher in pre-stressed astrocytes than in naïve controls. This
finding suggested that severely stressed astrocytes might use thiol defens-
es to protect themselves against future insults. Consistent with this
hypothesis, depletion of glutathione stores with buthionine sulfoximine
unmasked the cumulative impact of two hits; pretreated astrocytes now
became vulnerable to the second MG132 hit and responded with addi-
tional cell loss. The unmasking of the vulnerability to two hits following
glutathione depletion was also inconsistent with the notion that the first
MG132 hit simply left behind cells that were unresponsive to the poison.
As in the N2a two hit model, the findings reveal that antioxidant defens-
es help defend cells against proteotoxic stress. However, astrocytes and
the neuronal N2a cells responded to severe proteotoxicity in opposite
fashion. The response to the second proteotoxic hit was blocked in astro-
cytes but potentiated in N2a cells. We do not claim here that neuronal
cells only respond to dual challenges with synergistic toxicity or that only
astrocytes can adapt to severe stress. Instead, we have preliminary data in
primary cortical cultures that neurons are able to adapt to severe oxida-
tive stress from hydrogen peroxide pretreatment. Thus, whether severe
stress elicits adaptations or exacerbates further insults may depend on
the nature of the stress as well as the specific cell type, in addition to dose
and duration.

Adaptation and Sensitization to Proteotoxic Stress
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FIGURE 2. Stress on the proteasome, in the form on inhibition of its normal proteolytic function,
increases the cellular burden of damaged proteins. Astrocytes respond to such proteasome inhibition
with a rise in the anti-apoptotic heat shock protein 70 (Hsp70). Numerous studies reveal that Hsp70
refolds misfolded proteins or enhances their degradation by the proteasome. A parallel rise in heme
oxygenase 1 (HO-1), a generally protective phase 2 enzyme, is also apparent. Astrocytes respond to
severe proteotoxicity with glutathione (GSH) loss, unless they have been pre-stressed with MG132, in
which case GSH levels are restored. This thiol adaptation serves to increase the number of viable
astrocytes and is accompanied by a rise in ATP. Pre-stressed astrocytes are thus both structurally and
functionally protected against further proteotoxicity. 
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In summary, astrocytes are a highly plastic cell type that can adapt to
stress even when it is toxic enough to kill half the population. The astro-
cytes that survive the initial hit are less, not more, vulnerable to further
proteotoxicity and have higher levels of glutathione upon the second hit
(Fig. 2). We speculate that astrocytes that are exposed to similarly severe
protein-misfolding stress in the human brain may fulfill their roles as neu-
rosupportive cells better than if they had no such defenses. As mentioned
above, astrocytes and neurons are well known to interact in the brain,
probably in conjunction with oligodendrocytes (Amaral et al. 2013). It
remains to be determined whether stressed astrocytes provide increased
trophic, metabolic, or antioxidant support for neighboring neurons or
whether stressed astrocytes engulf more misfolded proteins in proteotox-
ic conditions. Many have argued instead that activated astrocytes neglect
their neurosupportive roles, particularly in the presence of chronic
inflammation (Fuller et al. 2010). Thus, examinations of the protective or
toxic impact of severe proteotoxic stress on neuronal-astrocytic interac-
tions are highly warranted.

CONCLUSIONS

The mammalian brain enjoys manifold robust defenses. Even the sim-
ple observation that a large fraction of dopamine must be lost before
movement deficits emerge reflects the impressive compensatory adapta-
tions of the human brain (Hornykiewicz 1975; Zigmond et al. 1990;
Hornykiewicz 1998). Another form of adaptation is the ability to raise
anti-apoptotic proteins in response to stress. The studies detailed in this
review, as well as many others not discussed here, have slowly begun to
define this adaptive proteome. Our studies add to this body of work by
specifically revealing that the ubiquitous tripeptide glutathione is respon-
sible for adaptation against severe proteotoxicity. Conversely, when it is
reduced in levels, a lack in glutathione is responsible for synergistic pro-
teotoxicity.

As mentioned above, the long term goal of our studies is to charac-
terize the adaptive proteome so that it can be mimicked with pharmaco-
logical tools. Clinical preconditioning with pharmacotherapies is not
unprecedented or futuristic. Many FDA approved agents such as aspirin,
isoflurane, and statins are already thought to precondition against
ischemia (Gidday 2010). Defining the molecular targets of precondition-
ing and the effectors to counteract stress may also guide studies on
lifestyle and dietary factors that elicit a naturally therapeutic protein pro-
file. However, all the findings presented must be examined in further
detail in whole animals and over longer timeframes. Even partial inhibi-
tion of the proteasome for many months does not recapitulate the full
extent of the pathophysiology of neurodegenerative disorders. More
chronic models than presented here are therefore required to rigorously

R. K. Leak

44
21

Leak: Adaptation and Sensitization to Proteotoxic Stress

Published by ScholarWorks@UMass Amherst, 2014



test the hypothesis that the cells that remain behind after neurodegener-
ation has commenced are either resistant or sensitized to further toxicity.
Studies of this nature would build upon previous in vivo reports showing
that repeated stressors can provide persistent protection against
ischemia/reperfusion injury (Hoshida et al. 2002). Bearing these impor-
tant gaps in our knowledge and the experimental caveats in mind, we pre-
dict that both neurons and glia in vivo will react to severe stress in a way
that deeply affects their response to subsequent challenges, but that the
response will depend on dose, duration, and perhaps brain region
(Mattson et al. 1989; Mattson and Kater 1989; Braak et al. 2000; Braak et
al. 2003; Posimo et al. 2013). More specifically, we propose that distinct
adaptations and vulnerabilities to proteotoxic stress across different brain
regions may underlie the signature topographies of protein inclusions in
neurodegenerative diseases.

Finally, the two hit model is probably a simplification of the injuries
that occur in neurodegenerative conditions because the diseased human
brain may be exposed to a rolling landscape of hits, and not just two
sequential stressors. Furthermore, some stressors may not even appear as
a hit because they are not transient, but chronic in nature. Nevertheless,
the two hit treatment protocol with MG132 is a useful tool to probe
whether proteotoxic stress (the first hit) elicits adaptations or toxic
responses. If more examples of adaptations can be collected in vivo in
chronic proteotoxicity models, they would be consistent with the delayed
onset and slowly progressive nature of neurodegenerative conditions.
Conversely, toxic neuronal responses to severe proteotoxic stress may
overwhelm defenses when the stress is unyielding, as originally postulat-
ed by Selye, and are consistent with the eventual collapse of vulnerable
brain regions in Parkinson’s and Alzheimer’s disease.
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