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ABSTRACT 

THE ROLE OF LEXICAL CONTRAST IN THE PERCEPTION 

OF INTONATIONAL PROMINENCE IN JAPANESE 

FEBRUARY 2009 

TAKAHITO SHINYA, B.A., KANAGAWA UNIVERSITY 

M.A., SOPHIA UNIVERSITY 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Elisabeth O. Selkirk 

 

In this dissertation, I examine the effects of lexical accent on the perception of 

intonational prominence in Japanese. I look at how an F0 accent peak is perceived 

relative to another flanking F0 peak in the same utterance with respect to perceived 

intonational prominence. Through four experiments, I show that the lexical prosodic 

structure plays a significant role in the perception of intonational prominence. 

I first show that two distinct perceptual processes are at play in the perception of 

relative perceived prominence in Japanese: accentual boost normalization and downstep 

normalization. Accentual boost normalization normalizes the accentual boost of an 

accented word. In this process, the extra F0 boost assigned by a lexical accent does not 

count as part of the F0 peak’s excursion that contributes to the perceived prominence of 

the F0 peak. I demonstrate that when an accented word and an unaccented word are 

perceived as having the same prominence, the accented word has a higher F0 peak value 

than the unaccented word does. 
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Downstep normalization compensates for the production effect of downstep, a 

pitch range compression phenomenon after a lexical accent. Experiments show that for an 

F0 peak to be perceived as having equivalent prominence to a preceding F0 peak, the 

second peak is always lower in F0 when the first word is accented than when it is 

unaccented. This suggests the existence of a perceptual process that normalizes the effect 

of downstep. 

I then examine the nature of accentual boost normalization and downstep 

normalization and show that they refer to two distinct types of lexical accent property 

when they are applied. One is the phonetic F0 contour shape that is characteristic of 

accented words. The other is the phonological lexical accent information that is uniquely 

specified for accented words. The experimental results show that the perceptual effects of 

the normalization processes are seen when only the phonological lexical accent 

information of a word is present with its F0 contour shape being ambiguous as well as 

when the same word is acoustically manipulated into different F0 contour shapes. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

This dissertation explores the interaction of two distinct phonological systems in Japanese: 

lexical accent and intonation. Lexical accent is a word-level system that mainly serves to 

distinguish words. Intonation is a sentence-level system that plays many roles including 

signaling prosodic and syntactic structures, prominence relations and sentence type. This 

dissertation focuses on intonational prominence and looks at how it interacts with lexical 

accent from the viewpoint of speech perception. The fact that that is important to this study is 

that in Japanese lexical accent and intonational prominence are realized in the same acoustic 

dimension: fundamental frequency (F0). How these two phonological systems affect with 

one another is the main theme of this dissertation. 

Lexical accent in principle has a strong impact on the perception of intonational 

prominence, but its specific effects have so far been completely unexplored. Research on the 

perceptual assessment of intonational prominence can roughly be categorized into two types. 

One is the line of research that focuses on intonation languages such as Dutch and English 

and examines the effects of sentence accent on prominence in perception (Gussenhoven, 

Repp, Rietveld, Rump & Terken 1997, Gussenhoven & Rietveld 1988, 1998, Pierrehumbert 

1979, Rietveld & Gussenhoven 1985, Terken 1991, 1994). Such studies typically manipulate 

the heights or positions of the F0 peaks in an utterance and examine the effects of those 

manipulations on the perception of the peaks’ prominence. The other kind of research 
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investigates the effects of focus structure on the perceived prominence of a word in an 

utterance (Vanio & Järvikivi 2006) or on the processing of the utterance contained (Cutler 

1976, Cutler & Fodor 1979, Cutler & Foss 1977, Cutler & Darwin 1981). Vanio & Järvikivi 

(2006), for example, showed that a word is perceived to be more intonationally prominent in 

a syntactically focused position than in a syntactically unfocused position. 

Given these two kinds of research mentioned above, neither examines the effects of 

lexical accent on perceived prominence. One reason for this might be that researchers have 

concentrated on Dutch and English, which are typologically classified as ‘intonation 

languages.’ These languages use pitch accents only at the level of sentence and hence show 

no lexical contrasts in the use of F0. 

Not only in intonation languages but also in pitch-accent languages, accent has a strong 

influence on intonational patterns. In Japanese, typologically a pitch-accent language 

(Lehiste 1970, Pike 1948), the F0 pattern of a word differs considerably depending on when 

the word is lexically accented or unaccented: an accented word shows a higher F0 peak than 

an unaccented word and has a sharp F0 fall following the accentual peak. An unaccented 

word does not show either of these F0 patterns. I call this phenomenon accentual boost. 

Moreover, an accented word affects the F0 pattern of the word that follows it such that it is 

realized as being lowered with respect to the preceding word. This is a phenomenon called 

downstep. An unaccented word does not cause downstep on the following word. (See §1.3 as 

well as the references on Japanese prosody such as Haraguchi 1977, 1991, Pierrehumbert & 

Beckman 1988, Poser 1984, Kubozono 1993 and Sugahara 2003 for background 

information). 

Accentual boost and downstep both potentially interact with perceived prominence. It is 
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generally the case that when everything else is the same the higher the F0 peak of a word the 

more perceived prominence it yields (see Chapter 2 for detailed discussions of the factors 

that can influence the perceived prominence of F0 peaks in an utterance). Given this general 

relationship between F0 peak height and perceived prominence, it might be expected that an 

accented word would be perceived with greater prominence than an unaccented word, 

because the former would have a higher F0 peak than the latter. It may as well be expected 

that a downstepped word occurring after an accented word is perceived less prominent than a 

non-downstepped word occurring after an unaccented word, because a downstepped word 

would show a lower F0 peak than a non-downstepped word. 

In this study I show that neither of these perceptual effects is the case. Instead I 

demonstrate that the interaction between lexical accent and perceived prominence is not that 

simple and cannot be explained by the direct relationship between F0 peak and perceived 

prominence. 

The following sections of this chapter are organized as follows. In the following section 

I present the specific questions that I ask in this study with the brief answers to them (§1.2). 

Following that, I give the reader some background information on Japanese prosody (§1.3). I 

conclude this chapter with an overview of the following chapters (§1.4). 

 

1.2 Research questions 

In this dissertation I ask two questions. The first concerns the possibility of perceptual 

processes that compensate for lexical accent and downstep: those that normalize the raised 

F0 peak of a word that is lexically accented and the lowered F0 peak of a word that is 

preceded by a lexically accented word. 
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Despite the fact that accented words have higher F0 peaks than unaccented words in 

Japanese, there is no research that experimentally shows that accented words are more 

prominent than unaccented words. Accent in this language is lexical and naturally its main 

function is to show lexical contrast. However, it has been pointed out in the literature that 

phonologically Japanese lexical accent shares properties with sentence accent in languages 

like English with respect to several phonological properties. For instance, no more than one 

pitch accent can occur in a word (McCawley 1968), pitch accent plays a role in Minor Phrase 

(or Accentual Phrase) formation (Selkirk & Tateishi 1988), and it serves the base for the 

rhythm of the language (Kubozono 1993). Based on these shared properties, lexically accent 

words may arguably be more prominent than unaccented words. Crucially, however, there is 

no direct evidence that shows that. In this dissertation, I will provide experimental evidence 

against the idea of ‘more prominent’ accented words. 

Likewise, no evidence has been reported that downstepped words are less prominent 

than non-downstepped words. As briefly mentioned in the previous section, the trigger of 

downstep in Japanese is lexical accent and it is the only trigger of the phenomenon. The F0 

peak of a word is reduced precisely because it is preceded by an accented word. If downstep 

signaled reduction in prominence, it would be very hard to understand why a word preceded 

by an accented word needs to be less prominent than a word preceded by an unaccented word 

by virtue of being preceded by an accented word. A natural expectation is that downstep does 

not seem to be relevant to any linguistic prominence relations. 

Given the possibility that lexical accent and downstep both do not play a major role in 

marking prominence, one can come up with the idea that a word’s high F0 peak given by 

lexical accent and a word’s F0 peak reduced by downstep are compensated when they are 
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perceptually assessed in terms of prominence. In this study I show that that is the case. Based 

on a series of perceptual experiments, I propose two perceptual compensation processes: 

accentual boost normalization and downstep normalization. Accentual boost normalization is 

a process where perceived prominence is assessed in a way that the extra high F0 peak of an 

accented word is reduced so that, with other things being equal, an accented word has the 

same perceived prominence as an unaccented word. Downstep normalization compensates 

for the effect of F0 peak reduction seen in a word that is preceded by an accented word. More 

simply, it perceptually undoes the reduction of a downstepped word and consequently two 

words are perceived to have the same prominence even if one of them has a significantly 

lower F0 peak because of it being preceded by an accented word. 

The second question asked in the dissertation is about the nature of accentual boost 

normalization and downstep normalization. The specific question is at what level of lexical 

accent property the perceptual processes make reference to when they are applied. In speech 

perception, two distinct types of property are available for the listener to know the accent 

type of a word. One is the acoustic property, namely the F0 contour shape. The listener can 

use the extra high F0 peak (and the sharp F0 drop that follows) to judge that the word is 

lexically accented. The other type of property is what I call the structural property, which is 

the information of the accent type stored in the lexicon, specified for each lexical item. With 

this property of lexical accent, the listener does not have to hear the F0 pattern of a word to 

know its accent type: all he needs is what the word is. If he can obtain enough segmental 

information to identify the word, its accent type automatically follows from its structural 

property. Thus, the precise question I ask is whether accentual boost normalization and 

downstep normalization are triggered by the acoustic property and/or the structural property. 
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I give a positive answer to this question. I show that accentual boost normalization and 

downstep normalization are both triggered by either of the lexical accent properties. More 

concretely, the results of the perceptual experiments show that the compensation effects are 

seen not only when the physical F0 contour is present but also when it is ambiguous or even 

contradicts to what the segmental content tells what the word is. 

 

1.3 Summary 

Summing up the discussions given above, I have first discussed that the interaction of accent 

and perceived prominence has not been studied in languages that have lexical accent like 

Japanese. I have pointed out that although lexical accent radically changes the intonation 

pattern of an utterance, which potentially has a great impact on prominence perception, the 

effects of lexical accent on perceived prominence have not been subject to serious study. I 

then have presented the two research questions in this study. One is whether there are any 

perceptual compensation processes for accentual boost and downstep. The other is whether 

the acoustic and/or structural properties trigger the perceptual compensation processes. 

 

1.4 Structure of Japanese prosody 

This section outlines the basic facts and theoretical treatment about Japanese prosody (the 

Tokyo variety). I only give the minimum background that is necessary for the reader to 

understand the experiments reported in Chapters 3-6. For a more thorough treatment of 

Japanese prosody, see Haraguchi (1977, 1991), Kubozono (1993), McCawley (1968), 

Pierrehumert & Beckman (1988), Poser (1984), and Sugahara (2003). 
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1.4.1 Accent H*+L, phrase accent H, and boundary tones 

Japanese exploits F0 to distinguish lexical items and is often called a pitch-accent language 

(Lehiste 1970, Pike 1948) precisely because of this function. Every lexical item in Japanese 

is either lexically accented or unaccented. An accented word has a lexical accent that is 

associated to one of the moras in the word while an unaccented word does not have such a 

lexical accent. Because of the lexical accent, an accented word is realized as acoustically 

having a higher F0 peak and a sharp F0 fall than an unaccented word. The F0 contours in 

Figure 1.1a and Figure 1.1b show this difference graphically. 

 

 a. b. 
 
 
 
 L% H H*+L L% L% H L% 
 ku bi ka’ za ri hi ya ke do me 
 ‘necklace’ ‘sunscreen’ 
 accented unaccented 
 

Figure 1.1 F0 contours of an accented and an unaccented word. (a) accented word 
(kubika’zari ‘necklace’); (b) unaccented (hiyakedome ‘sunscreen’). Lexical accent is 
indicated by an apostrophe. 

 

In the accented word kubika’zari ‘necklace’ in Figure 1.1a, the lexical accent falls on the 

third mora (indicated by an apostrophe) whereas the unaccented word hiyakedome 

‘sunscreen’ in Figure 1.1b lacks a lexical accent. In Tokyo Japanese, any word shows an F0 

rise from the first to the second moras unless there is a lexical accent on the first mora, in 

which case the word starts with an F0 fall instead of a rise.  

The F0 contour patterns in accented and unaccented words described above can be 

characterized by a sequence of tones (Pierrehumbert & Beckman 1988). There are two kinds: 
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lexical tone and peripheral tones. Lexical accent is represented by the bitonal accent H*+L, 

which is considered as a property of each lexical item. A H*+L tone is shown at the third 

mora in Figure 1.1a becuase kubika’zari is accented with the lexical accent on the third mora 

whereas the word in Figure 1.1b hiyakedome is not represented with such a H*+L tone 

because this word is unaccented.  

There are two subclasses of peripheral tones: phrasal tone and boundary tones. There is 

only one phrasal tone assumed in Tokyo Japanese, phrasal H tone. The high-pitched point 

seen in the second mora of an accented and an unaccented word is captured by positing a 

phrasal tone H. The F0 contours in Figure 1.1a and Figure 1.1b both show a peak at the 

second mora regardless of the word’s lexical accent type. This peak is represented by a 

phrasal H tone. The phrasal H tone is considered to appear at the beginning of the prosodic 

constituent called the Minor Phrase (MiP), also as known as the Accentual Phrase 

(Pierrehumbert & Beckman 1988) (see §1.4.3 more on the prosodic structure).1  

Two types of boundary tones are assumed in Japanese, namely L% and H%.2 A H% 

tone typically appears at the end of an utterance in an interrogative sentence, which accounts 

for the rise observed at that position. The treatment of the L% tone is more complex. The 

low-pitched point that appears at the beginning of a MiP is explained by positing a L% tone. 

For instance, consider the noun phrase tomodachi-no hiyakedome ‘(my) friend’s sunscreen’ 

(both words are unaccented) in (1). A typical rendition of this noun phrase would contain two 

                                                  
1 The phrasal H tone disappears (or at least cannot be separated from the accent H*), when the lexical accent 

falls on the second mora of a word. For example, the accented word ani’yome ‘sister in law’ has its lexical 
accent on the second mora ni, the mora on which the phrasal H should appear. Since the lexical accent of this 
word is on the second mora, there is only a single F0 peak observed in an F0 curve of this word. 

2 Recent studies on spontaneous speech suggest that there are more types of boundary tones in Japanese 
(Maeda & Venditti 1998, Maekawa, Kikuchi, Igarashi & Venditti 2002, Venditti, Maeda & van Santen 1998). 
For example, Maekawa et al. (2002) assume complex boundary tones that could appear at the MiP-final 
position such as LH%, HL% and HLH%.  
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MiPs with an F0 dip after –no, indicating the boundary between them, as shown in Figure 1.2. 

In this F0 contour, L%2 could be interpreted as a boundary tone of MiP2 since it is naturally 

considered to be linked to the first mora of the second word marking the left edge of MiP2, 

just as L%1 marking the left edge of MiP1. According to Pierrehumbert & Beckman (1988), 

however, L%2 is a boundary tone for MiP1 rather than MiP2. The reason for this is that the 

L% tone would inherit the effects of downstep. That is, Pierrehumbert & Beckman showed 

that the L% tone between two MiPs is realized lower when the preceding phrase is accented 

than when it was unaccented. Based on this observation, the L% tone is interpreted as a 

property of the preceding MiP rather than the following MiP. 

 

(1) Tomodachi -no hiyakedome 
 friend Genitive sunscreen 
 case marker 
 ‘(my) friend’s sunscreen’ 
 
 
 
 
 [L%1 H1  L%2] [ H2 L%3] 
 
 [to mo da chi -no]MiP1 [hi ya ke do me]MiP2 
 

Figure 1.2 F0 curve of the noun phrase tomodachi-no hiyakedome ‘(my) friend’s 
sunscreen’. Both words are lexically unaccented. 
 

A L% tone also appears at the beginning of an utterance, which explains the 

utterance-initial low pitch as illustrated as L%1 in Figure 1.2. Since an utterance-initial MiP is 

not preceded by any other MiP, the low point cannot be attributed to the boundary tone of the 

preceding MiP as seen in the case of L%2. L%1 is considered to be inserted by a phonological 

rule and linked to the first mora of the initial word (Pierrehumbert & Beckman 1988). 
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It is necessary to point out that there is another way of rendering an unaccented word. 

Compare the contours Figure 1.1b and Figure 1.3. 

 

 H 
 
 
 L% L% 
 
 hi ya ke do me 
 
 unaccented 
 

Figure 1.3 A variation of F0 contours of an unaccented word. The phrasal H tone 
“spreads” to the final mora. 
 

Sugahara (2003) pointed out that there are two types of speakers with respect to the phonetic 

realization of the H phrasal tone in an unaccented word. One type of speaker shows a “linear 

interpolation” between the H phrasal tone to the following L% tone that is associated to the 

beginning of the next word (Figure 1.1b). The speakers who participated in Pierrehumbert & 

Beckman’s (1988) study also exhibited this pattern. However, Sugahara showed that there is 

another type of Japanese speakers who show a different realization pattern for the H phrasal 

tone in an unaccented word. These speakers “spread the H phrasal tone” from the second 

mora to the final mora of the unaccented word (Figure 1.3). This difference will become 

important when we discuss the effect of F0 plateaux on perceived prominence in Chapter 4. 

 

1.4.2 Downstep 

Lexical accent in Japanese influences not only the F0 pattern of the word that has an accent 

but also that of the following word. Specifically, in a sequence of two or more words, a word 

is realized lower when it is preceded by an accented word than by an unaccented word. This 
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phenomenon is called downstep or catathesis (Poser 1984, Pierrehumbert & Beckman 1988). 

Example F0 curves are given in Figure 1.4. 

 

 a. b. 
 
 
 
 
 
 
 accented accented unaccented accented 
 

Figure 1.4 An illustration of downstep. 
 

Pierrehumbert & Beckman (1988) claim that downstep is confined within the prosodic 

constituent called the Major Phrase (MaP), also as known as Intermediate Phrase. MaP is 

the prosodic constituent that is one-level higher than MiP. According to Pierrehumbert & 

Beckman, downstep is only observed between two words that are within the same MaP. They 

argue that when a word in an utterance is given a contrastive focus (Rooth 1992), it does not 

undergo downstep even if the preceding word is accented. Instead, the focused word is 

realized with an expanded pitch range, which yields a very high, non-downstepped F0 peak. 

Pierrehumbert & Beckman explain that the focused word is not downstepped because 

contrastive focus introduces a MaP boundary at its left edge, and because the focused word is 

not within the same MaP as the preceding word, downstep is not observed. 

However, this view has been called into question by Kubozono’s (2005) experimental 

results, based on which he argues that downstep persists across MaPs. Kubozono tested 

whether focus blocks downstep using the wh-word nani ‘what’. He took advantage of the 

property that a wh-word is inherently focused. He found that the F0 peak of the wh-word was 

Downstepped Not downstepped 
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consistently lower after an accented word than after an unaccented word, which suggests that 

focus does not block downstep.  

Kubozono’s (2005) findings suggest that MaP is not the domain of downstep in 

Japanese, leaving the question of which prosodic constituent is the domain of downstep for 

the future investigation.3 We can only say at this point that the domain of this tonal 

phenomenon, if it has one, must be some prosodic constituent larger than MaP. 

If MaP is not the domain of downstep, what tonal phenomenon would be characterized 

by this prosodic constituent? One possibility is the F0 upstep phenomenon seen at the left 

edge of a focused word. Kubozono’s (2005) results suggest that a significant F0 rise is 

always observed at the left edge of a focused word. An important additional observation is 

that this F0 rise is consistently greater than the rise typically observed at the left edge of an 

unfocused word; in that case a steep F0 downtrend from the preceding phrase is observed 

between the two MiPs. This suggests that the upstep observed at the left edge of a focused 

word marks a prosodic boundary that is larger than MiP, and the most straightforward 

candidate is MaP. 

 

1.4.3 Prosodic structure 

In this study, I assume the prosodic constituent hierarchy in Figure 1.5 (Kawahara & Shinya 

2005, Selkirk 2005, and Sugahara 2003 among others). The prosodic constituents that are 

relevant here are MiP and MaP. MiP, also as known as ‘Accentual Phrase’ by Pierrehumbert 

& Beckman’s (1988) work, roughly corresponds to a word plus a particle and is considered 

                                                  
3 Kubozono’s (2005) interpretation of the results is different from the one presumed here. He argues that since 

downstep is not blocked by focus, the boundary appearing at the left edge of a focused word is not a 
MaP-level boundary, based on the assumption that MaP is defined as the domain of downstep. He proposes a 
structure that involves recursive prosodic constituents, following Ladd (1986).  
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as the domain of an F0-rise phenomenon called initial lowering, in which F0 rises from the 

first to the second moras of a word signaling an MiP boundary.4 With respect to tonal 

specification, MiP is characterized by the presence of a L% boundary tone followed by a 

phrasal H tone. The prosodic constituent above MiP is MaP, also known as ‘Intermediate 

Phrase’ (Pierrehumbert & Beckman 1988). As has been pointed out above, MaP is often 

claimed to be the domain of downstep because it has been considered that downstep is 

cancelled at the left edge of a MaP. However, this claim has been called into question by 

Kubozono (2005). MaP may be the domain of some other tonal phenomenon, and one such 

possibility is the upstep observed at the left edge of a focused word and a syntactic XP 

(Selkirk & Tateishi 1991). 

 
 Utterance 
 
 Intonational Phrase 
 
 Major Phrase (MaP) (a.k.a. Intermediate Phrase) 
 
 Minor Phrase (MiP) (a.k.a. Accentual Phrase) 
 
 Prosodic Word 
 
 Foot 
 
 Syllable 
 
 Mora 
 

Figure 1.5 Prosodic hierarchy assumed in the dissertation. 
 

 

                                                  
4 The term initial lowering reflects the view that F0 shows a dip at the between two MiPs. However, it is 

possible to characterize the same phenomenon in a different way, which I adopt here: F0 shows a rise at the 
beginning of a MiP. Initial rising and initial lowering are thus different characterizations of the same 
phenomenon. 
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1.5 Overview of the dissertation 

The remainder of the dissertation is organized as follows. Chapter 2 reviews previous 

research that studied factors that affect perceived prominence. This review covers virtually 

all of the factors that can influence the perception of intonational prominence including 

linguistic and paralinguistic ones. 

In Chapter 3, I report on Experiment 1. The experiment examines how lexical accent 

affects perceived prominence using naturally-rendered utterances, which gives the basis for 

the later experiments in which acoustically manipulated stimuli are used. The use of natural 

utterances means that listeners can use both the acoustic and structural properties of lexical 

accent to identify the accent types of the words in the experimental sentences. Based on the 

results of Experiment 1, I propose a perceptual process that normalizes accentual boost: 

accentual boost normalization. 

Chapter 4 describes Experiment 2, which examines the validity of the accentual boost 

normalization account by testing it against another account. This alternative account is based 

on Knight’s (2003) finding that an F0 contour with an F0 plateau induces more perceived 

prominence than an F0 contour without one. I show that the results of Experiment 2 lend 

support to the accentual boost normalization account. 

In Chapter 5, where I report on Experiment 3, I show that the perceptual compensation 

effect seen in Experiment 1 is also found with only the structural property of lexical accent. 

In Experiment 3 uses acoustically manipulated stimuli in which the F0 contours are 

ambiguous between the accented and the unaccented types and hence listeners cannot 

identify the accent types of the experimental words from their acoustic property. Yet, they can 

still readily recognize the accent types since they can identify the words from their segmental 
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content. The results of Experiment 3 show that the structural property plays a crucial role in 

the perception of prominence. 

Chapter 6 focuses on the flip side of what is examined in Chapter 5: the effect of the 

acoustic property of lexical accent on prominence perception. In this chapter, Experiment 4 is 

reported, which tests whether or not accentual boost normalization and downstep 

normalization are observed based only on the acoustic property of lexical accent. To test this, 

stimuli are created such that their acoustic property conflicts with the structural property. 

Experiment 4 shows that accentual boost normalization and downstep normalization can both 

be triggered by the F0 contour pattern that is characteristic of an accented word, regardless of 

whether the words’ structural property marks that it is accented or unaccented. 

Finally in Chapter 7, I summarize the main findings from the four experiments and 

discuss the theoretical implications that the experimental results have and the issues that 

remain to be investigated. 
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CHAPTER 2 

 

FACTORS AFFECTING THE PERCEPTION  

OF INTONATIONAL PROMINENCE 

 

In this chapter, I review different factors that influence the perceived prominence of 

intonational peaks. They are sorted into three classes with respect to whether they reflect (1) 

phonetic/acoustic properties, (2) linguistic properties, and (3) other properties. They include 

five phonetic factors: excursion size (§2.1), position in utterance (§2.2), the rate of declining 

baseline (§2.3), the dependency of P2 on P1 height (§2.4), F0 plateaux (§2.5); one linguistic 

factor: focus structure (§2.6); and two other factors: experimental instructions (pitch height 

or prominence) (§2.7) and voice gender (§2.8). 

 

2.1 Excursion size 

The first and best known factor that affects perceived prominence is the excursion size of an 

F0 peak – how much F0 rise or fall the F0 peak exhibits (Gussenhoven et al. 1997, 

Gussenhoven & Rietveld 1988, 1998, ’t Hart 1981, Knight 2003, Ladd, Verhoeven & Jacobs 

1994, Pierrehumbert 1979, Rietveld & Gussenhoven 1985, Terken 1991, 1994, Terken & 

Hermes 2000). The idea is very simple. As shown in Figure 2.1, an F0 peak with larger F0 

movement (Figure 2.1a) evokes greater perceived prominence than another F0 peak with 

smaller F0 movement (Figure 2.1b). All of the cited studies experimentally showed a positive 

correlation between excursion size and perceived prominence or pitch height such that larger 

F0 movement yields greater perceived prominence (Gussenhoven et al. 1997, Gussenhoven 
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& Rietveld 1988, 1998, Ladd, Verhoeven & Jacobs 1994, Knight 2003, Rietveld & 

Gussenhoven 1985, Terken 1991, 1994) or pitch height (’t Hart 1981, Knight 2003, 

Pierrehumbert 1979, Terken 1991, 1994)1. 

 

 a. b. 
 
 
 
 
 

 
Figure 2.1 Two F0 peaks with different excursion sizes. The contour in (a) evokes 
more perceived prominence than the one in (b). 

 

2.2 Position of F0 peak in utterance: the declination effect 

It is also known that the location of an F0 peak in an utterance affects perceived prominence 

(Gussenhoven et al. 1997, Gussenhoven & Rietveld 1988, Pierrehumbert 1979, Terken 1991, 

1994). Pierrehumbert (1979) showed that when perceiving the relative height of two F0 

peaks in an utterance, the second peak (P2) has to be lower than the first peak (P1) in order 

for it to sound as high as P1. In one of her experiments, Pierrehumbert used reiterative speech, 

namely the repetition of a syllable (e.g. mamamama…), that mimicked the real utterance the 

baker made bagels. This pseudo-utterance contained two F0 peaks, which corresponded to 

the first syllables of baker and bagels. Pierrehumbert moved the P2 value up and down in 

small increments, with two different F0 values of P1: high and low. She asked her English 

listeners to indicate whether the first or the second stressed syllable sounded higher in pitch.2 

                                                  
1 As will be discussed in the next section, Knight (2003) and Terken (1991, 1994) employed two different 

instructions in the tasks used in their experiments: one based on pitch height and the other based on perceived 
prominence. For this reason, I included these studies for both perceived pitch height and prominence.  

2 Here I am precise about how Pierrehumbert exactly asked her listeners to do, because it has been reported that 
listeners response differently depending on which they are asked to judge between pitch height and 
prominence (Terken 1991, 1994). Pierrehumbert asked her listeners to judge pitch height, not prominence. I 



 

 18

She found that for the high P1 value, when the two syllables were perceived to have the same 

perceived pitch height, P2 was much lower in F0 than P1. For the low P1 value, however, P2 

was slightly higher than P1 when the pitch heights of two syllables were perceived to be the 

same. 

Based on these results, Pierrehumbert (1979) proposed a perceptual process which 

normalizes declination – the gradual decline of F0 over the course of an utterance (Cohen, 

Collier & ’t Hart 1982, Ladd 1984). Specifically, she assumed that listeners know that an F0 

peak which occurs later in an utterance is realized lower than an earlier peak due to 

declination and compensate for it in perception. As for the difference between the high and 

low P1 conditions, Pierrehumbert suggested that listeners expect more declination in wide 

pitch range utterances than in narrow pitch range utterances. When P1 is low, the declination 

rate that listeners expect may be flat (or even positive), but when P1 is high the expected 

declination rate may become well negative so that P2 is lower than P1 in F0 when the two 

peaks are perceived to have the equal pitch height. The relation between the pitch range (= 

peak height) of P1 and its effect on P2 is discussed more in §2.4.3 

Hereafter I mainly use the term ‘(perceived) prominence’ rather than ‘(perceived) pitch 

height’ except where the distinction between prominence and pitch height is relevant 

(particularly in §2.7). The reason for this is that I want to avoid unnecessary confusions of 

the terminology and that most of the studies that are subsequent to Pierrehumbert (1979) 

focus on prominence rather than pitch height. 

 

                                                                                                                                                           
discuss the issue of the type of instructions in §2.7. 

3 Studies that carried out similar experiments showed that it is only when P1 is scaled with a quite low pitch 
range that the F0 value of P2 can be higher than P1 when P1 and P2 have the same perceived pitch height or 
perceived prominence (Gussenhoven et al. 1997, Terken 1991). Under most pitch ranges P2 is lower than P1 
when they are perceived to be equal in pitch height/prominence. 
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2.3 Rate of declining baseline 

Research after Pierrehumbert (1979) intensely examined the effects of declination on 

perceived prominence. The question was how to incorporate declination into theories of 

prominence assessment, which has its basis on excursion size. More specifically, researchers 

have focused on lines fitted to F0 peaks or valleys in an utterance contour like the one shown 

in Figure 2.2, which are called the topline and the baseline. Of the two lines, the baseline has 

especially drawn researchers’ attention (’t Hart, Collier & Cohen 1990, Ladd 1993b). 

 

 
 
 
 
 
 
 

Figure 2.2 The topline and baseline of an utterance contour. 
 

Effects of baseline are more opaque than those of topline. However, we can expect 

different slopes of baseline to lead to different excursion sizes. As seen in Figure 2.3, Terken 

(1991) hypothesized that the excursion sizes of adjacent F0 peaks should differ if the slope of 

the baselines differs. Note that the toplines of the two contours in Figure 2.3 are identical. 

However, because the baseline is steeper in Figure 2.3b than Figure 2.3a, the excursion size 

of P1 is smaller than that of P2 in Figure 2.3b while the relation is reversed in Figure 2.3a. 

Therefore, it was predicted that the perceived prominence of P2 relative to that of P1 would 

be greater in the contour in Figure 2.3b than in the one in Figure 2.3a. 

 

 
 

Baseline 

Topline 
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 a. b. 
 P1 P2 P1 P2 
 Excursion size: P1 > P2 Excursion size: P1 < P2 
 
 
 
 
 
 
 
 

Figure 2.3 Different relations between two adjacent F0 peaks with respect to excursion 
size. Redrawn based on Terken (1991), p.1769. 

 

Terken (1991) tested this prediction with Dutch listeners using reiterative speech. His 

stimuli consisted of a set of utterances that contained two F0 peaks with different baseline 

slopes, just like the contours shown in Figure 2.3. The listeners were asked to adjust the 

frequency of P2 so that it was judged to have the same pitch height or prominence as P1.4 

The results supported the prediction: Terken found that when the baseline was steeper the F0 

value of P2 F0 value was much smaller than that of P1 for the two peaks to be judged equally 

prominent. Terken’s experiment made clear that the assessment of perceived prominence 

needs information about the slope of the baseline, which suggests that listeners perceptually 

normalize the rate of declination. 

Based on Terken’s (1991, 1994) findings, Gussenhoven et al. (1997) examined further 

the effects of the properties of the baseline on the perceived prominence of F0 peaks in an 

utterance contour. Using real Dutch speech materials, they showed that the declination effect 

is observed even in an utterance with only one F0 peak. In one of the experiments reported in 

their paper, a single peak with a fixed F0 was perceived to be more prominent if it appeared 

later in the utterance. Gussenhoven et al. (1997) interpreted this result as indicating that the 
                                                  
4 Recall that Terken employed two sets of experimental instructions: the pitch height instructions and the 

prominence instructions.  
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perceived prominence of an F0 peak is not computed based on adjacent F0 peaks in the same 

utterance. 

In other experiments, Gussenhoven et al. (1997) showed that changes of the onset 

frequency of an utterance affect the perceived prominence of an F0 peak in the utterance but 

changes of the offset frequency of an utterance do not. They obtained these findings using 

two kinds of stimuli shown in Figure 2.4. 

 

 a. b. 
 
 
 
 
 
 

Figure 2.4 Schematic F0 contours used in Gussenhoven et al.’s (1997) Experiments III 
(a) and IV and V (b). Redrawn based on Gussenhoven et al. (1997), p.3016 and p.3018. 

 

In Figure 2.4a, the height of the utterance-final frequency is varied independently from the 

peak height of the F0 peak while in Figure 2.4b, the height of the utterance-initial frequency 

is varied independently from the height of the following peak. The listeners’ task was to rate 

the degree of the speaker’s emphasis on the stressed word between 0 (least emphasis) and 

100 (most emphasis). Gussenhoven et al. found no effect of the offset frequency on the 

perceived prominence of the F0 peak, but there was a significant effect of the onset 

frequency height such that raising it reduced the perceived prominence of the F0 peak. Also, 

this onset effect was only observed when the duration of the onset was long enough (over 

400 ms). 

One of the important theoretical implications of these results is that the perceived 

prominence of an F0 peak is not assessed based on the excursion size that is measured as the 
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distance between the peak height and the “observable” baseline. Rather, it is assessed on the 

basis of the distance between the peak height and an “abstract baseline” that is computed by 

the listener. The results of Gussenhoven et al.’s (1997) “offset” experiment (Figure 2.4a) can 

be interpreted such that the observable baseline does not provide the basis for perceived 

prominence assessment. In that experiment, a considerable portion of the observable baseline 

was changed when the offset height was raised or lowered. Despite the manipulations, there 

was no effect on the perceived prominence of the F0 peak. Conversely in Gussenhoven et 

al.’s (1997) “onset” experiments (Figure 2.4b), a large part of the observable baseline was left 

intact even when the onset frequency was changed, but the results showed a significant effect 

on the perceived prominence of the F0 peak. Both of those findings strongly suggest that the 

actually observed baseline is not the reference with respect to which the perceived 

prominence of F0 peaks is computed. Gussenhoven et al. argue that the baseline based on 

which perceived prominence is assessed is abstract and not directly obtained from the F0 

contour. 

 

2.4 Dependency of P2 on P1 height 

The next factor that plays a role in the assessment of intonational prominence is related to the 

finding by Pierrehumbert (1979) about the difference in the size of the declination 

compensation effect between her low P1 and high P1 conditions. She found that when P1 and 

P2 were perceived to have the same pitch height, the difference between the two peaks was 

greater when P1 was in a high pitch range than when it was in a low pitch range. This effect 

has been replicated in subsequent experiments in which relative perceived prominence of F0 

peaks was judged (Gussenhoven & Rietveld 1988, Gussenhoven et al. 1997, Ladd, 
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Verhoeven & Jacobs 1994, Terken 1991, 1994). 

Figure 2.5 graphically illustrates this perceptual effect. Typically, when two peaks in an 

utterance sound equal in perceived prominence, P2 is lower than P1, just as Pierrehumbert 

(1979) and other studies showed. This is shown in the arrow in Figure 2.5a. When P1 is 

raised P2 needs to be raised too, but crucially, P2 does not have to be raised by the same 

amount as P1. As a result, the difference between P1 and P2 is greater when P1 is higher, as 

shown in Figure 2.5b.5 

 

 a. b. 
 P1 P2 P1 P2 
 
 
 
 
 
 
 
 
 

Figure 2.5 Illustration of the baseline adjustment effect. 
 

Ladd, Verhoeven & Jacobs (1994) observed essentially the same effect as the one 

illustrated in Figure 2.5 through a set of perceptual experiments with English listeners. Their 

finding was that with a fixed P2 height, an increase of P1 height induced more perceived 

prominence on P2. However, there is an interesting complication in Ladd et al.’s experiments 

that is worth noting. This perceptual dependence effect was seen only when the height of P2 

is moderate and at the same time the listeners were phonetically untrained. More concretely, 

                                                  
5 Recall that in Pierrehumbert’s (1979) experiment P2 was actually slightly higher than P1 when P1 was low. 

This can be considered as an extreme case of this effect. If the F0 difference between the two peaks is a 
function of P1 height when they have the same perceived prominence, it is possible that P2 is very close or 
even higher when P1 is very low. 
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Ladd et al. (1994) tested different P2 values. They observed the perceptual dependence effect 

when P2 was 140 Hz and their listeners were phonetically trained. They did not observe the 

effect when the listeners were untrained or when P2 was a higher 160 Hz. They argue that 

when F0 peaks are within a normal non-emphatic pitch range, listeners treat the pitch range 

of the two-peak utterance as a whole, and their prominence are assessed on the basis of the 

single pitch range in which they are scaled. However, when F0 peaks are higher than a 

normal pitch range, they are interpreted as being scaled within different pitch ranges and 

their prominence is individually assessed based on each of the pitch ranges (see Ladd 1994 

for a phonological account that is consistent with this view and Hayes 1994 for a critique of 

that account). 

Gussenhoven et al. (1997) proposed a model that accounts for the perceptual 

dependence between two successive F0 peaks. The basic idea goes along with that of 

Pierrehumbert’s (1979), which says that greater pitch range induces more declination on the 

listener’s side. Gussenhoven et al. claim that the slope of the abstract baseline becomes 

greater as P1 increases. I call this perceptual effect the baseline adjustment (BA) effect. 

 

2.5 F0 plateaux 

The discussions we have had so far only consider F0 peaks with a steep rise followed by a 

steep fall right after it, making a single turning point. However, Knight (2003) demonstrated 

that flat stretches of F0 contour, or F0 plateaux, also play a role in the interpretation of 

intonational prominence. Specifically, she showed that the perceived prominence of a word 

relative to the preceding word was greater when the word had a plateau contour than when it 

had a peaked contour. Consequently, the difference between the height of P1 and that of P2 
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was greater in the contour with an F0 plateau in P2 than in the contour without one. This is 

shown in Figure 2.6. P2 in Figure 2.6b is perceived to have the same prominence as P1, just 

like in the utterance shown in Figure 2.6a, but P2 in Figure 2.6b is lower than P2 in Figure 

2.6a because the former shows an F0 plateau while the latter a peaked contour. 

 

 a. b. 
 Equal prominence Equal prominence 
 
 P1 P2 P1 P2 
 
 
 
 
 

Figure 2.6 Schematic F0 contours showing that a contour with a plateau has more 
perceived prominence than a contour without it. From Knight (2003), p.163, redrawn 
with a slight modification by the author. 
 

In a different experiment, Knight (2003) tested the effects of duration of F0 plateaux. 

The experiment had three conditions: peaked contour, 50 ms plateau, and 100 ms plateau. 

She found a significant difference in perceived prominence between the peaked contour 

condition and the other two plateau contours, but no difference between the two plateau 

contours. 

Knight (2003) argued that this plateau effect can be explained in terms of the 

sluggishness of the auditory detection of pitch. That is, in a peaked contour, the F0 stays on 

its peak value only momentarily, which may make it difficult for the auditory system to phase 

lock to the very highest frequency. The duration is too short for the auditory system to detect 

the peak frequency. In a plateau contour, on the other hand, it is much easier for the auditory 

system to detect the information of the F0 peak because the highest value is sustained long 
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enough. Knight explained that there was no durational effect between the two plateau 

conditions because both had a plateau that was long enough for the auditory system to phase 

lock to its peak frequency. See Chapter 4 more on the effect of F0 plateaux on perceived 

prominence. 

 

2.6 Focus structure 

Focus structure is one of the most well-known linguistic factors that affect perceived 

prominence. In many languages a focused word, whether it is a presentational focus or a 

contrastive focus (Belletti 2001, É. Kiss 1998, Katz & Selkirk 2005), is spoken with an 

accent, by virtue of which a greater degree of stress than the other words in the utterance is 

placed on the word. As a result, the stressed syllable of the focused word becomes longer in 

duration, higher in F0, and greater in its peak amplitude (Lehiste 1970). Thus, we can say 

that a focused word is more prominent than an unfocused word. 

The nature of accented words was extensively studied with psycholinguistic methods. 

One of the primary findings in the research is that accented words are processed more easily 

than non-accented words (Shields, McHugh & Martine 1974, Cutler 1976, Cutler & Fodor 

1979, Cutler & Foss 1977, Cutler & Darwin 1981, Hornby 1972). One explanation of this 

effect is that accented words have greater acoustic clarity than non-accented words. However, 

Cutler (1976) showed that that is not all that is going on. She showed that a word is 

processed more easily when it is in a focused position than when it is not, even when there 

are no acoustic cues that tell the word is focused. Cutler recorded two kinds of sentences, one 

in which the target word is in a focused position and one in which it is in an unfocused 

position. An example of each kind of the sentences is shown in (1a) and (1b): 
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(1) a. She managed to remove the dirt from the rug, but not the berry stains. 
 b. She managed to remove the dirt from the rug, but not from their clothes. 
 c. She managed to remove the dirt from the rug. 
 

The sentence in (1a) can be interpreted as the target word dirt (indicated in italic type) being 

in a focused position (indicated by underline) while it is impossible to have such an 

interpretation for the target word in the sentence in (1b); rather the focus is on rug, not on dirt. 

Cutler spliced out of the target words from (1a) and (1b) and replaced them with the same 

target word that was taken from a separately recorded control sentence, shown in (1c), in 

which no focus occurred in dirt. This manipulation made the acoustic properties of the target 

word identical between (1a) and (1b). Using a phoneme-monitoring task (Connie & Titone 

1996 for a review of the method), Cutler tested whether initial phoneme /d/ of the target word 

is detected faster in (1a) or (1b). Results showed that the target phoneme was detected 

significantly faster in (1a) than in (1b). Crucially, this difference cannot be explained by the 

acoustics of the target words since they were acoustically identical. Cutler suggested that the 

contextual prosodic difference before the target word between the two sentences is the source 

of this effect. She proposed that listeners search for sentence accent based on the prosodic 

information that precedes the target word. 

Cutler & Fodor (1979) further showed that the same kind of advantage to focus in 

phoneme monitoring is seen when a target word is indicated to be focused only by the 

preceding question sentence. In their experiment, sentences such as the one in (2a), recorded 

with the neutral intonation pattern, were presented to listeners after either of the two question 

sentences as in (2b) and (2c). When (2c) precedes (2a), (2a) can be said to have the structure 

in which blue is focused. However, when (2b) precedes (2a), the same sentence can be said to 

have the structure in which corner, not blue, is focused. Under these circumstances, Cutler & 
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Fodor showed that the initial phoneme /b/ of blue in (2a) was detected significantly faster 

when it was preceded by (2c) than by (2b). Also, the initial phoneme /k/ of the word corner 

was detected faster after (2b) than after (2c). 

 

(2) a. The man on the corner was wearing the blue hat. 
 b. Which man was wearing the hat? 
 c. What hat was the man wearing? 
 

An important implication of these results is that Cutler’s (1976) proposal that listeners 

actively search for words which will be accented can be reinterpreted from the perspective of 

a search for focus. In Cutler & Fodor’s experiment the sentences were acoustically constant 

with neutral intonation contours, which indicates that listeners cannot use contextual prosodic 

cues to predict an upcoming accent. Rather, as Cutler & Fodor suggested, it is appropriate to 

consider that they use semantic information to search for focus in an utterance. Also, Cutler 

& Fodor’s results suggest that the processing of focus does not crucially depend on any 

acoustic properties. 

Cutler & Darwin (1981) extended Cutler’s (1976) experiment and obtained the 

evidence that supports Cutler & Fodor’s (1979) proposal. They showed two points. First, 

they demonstrated that when F0 contour is monotonized the predicted accent effect was 

unchanged. Second, they showed that this accent effect is not influenced by the manipulation 

of the duration of closure for the target stop phoneme. These findings suggest that the search 

for focus is at least partly independent of the acoustic properties of the utterance including 

the target word. 

The psycholinguistic studies just reviewed above have made a significant contribution 

to out understanding of the processing of focus. However, they all deal with focus with 
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respect to processing, not with respect to prominence. 

What insights would they have into perceived prominence? Here is one consideration. 

The reviewed work on the processing of focus showed that a focused word in an utterance is 

processed more easily than an unfocused word because listener’s attention is directed to 

searching for focus in sentence comprehension. The work also showed that focus is not 

crucially dependant on its acoustic manifestation in the sense that a focused word does not 

have to have a higher F0, longer duration, and greater intensity than an unfocused word for it 

to be interpreted as focused. Based on these findings, we may consider that a focused word is 

processed more easily than an unfocused word because it is more prominent by virtue of the 

abstract property of focus, which directs listeners’ attention to the focused constituent. 

Vanio & Järvikivi (2006) has recently proved the idea that the abstract property of 

focus contributes to perceived prominence. They took advantage of the effect of word order 

in Finnish on the interpretation of a phrase as contrastively focused. In Finnish, the sentence 

Menemme laivalla Lemille “We go by boat to Lemi” has the canonical word order, and can be 

used as an answer to the question “What will you do tomorrow?”. When the last two words 

are switched, as in Menemme Lemille laivalla, the sentence now expresses laivalla “by boat” 

as contrastively focused; thus it can be translated into “It is by boat that we are going to 

Lemi” as an answer to the question “By what means are you going to Lemi?” 

Vanio & Järvikivi (2006) first conducted a perceptual experiment that examined how 

prominence is assessed between two F0 peaks in an utterance. They used the sentence 

Menemme laivalla Lemille, with the canonical word order. They then carried out another 

experiment with laivalla and Lemille reversed in their order. In both of the experiments, the 

F0 peak heights of laivalla and Lemille as well as the baseline declination were varied in five 
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levels using the F0 synthesis model developed by Fujisaki and his colleagues (Fujisaki & 

Hirose 1984). The only difference between the two experiments was in the word order 

between laivalla and Lemille. The listeners in the experiments were asked to indicate which 

of the last two words is given the main stress of the utterance by choosing one of the 

alternatives from (1) on the word Lemille, (2) on the word laivalla, or (3) either of them (the 

sentences had two F0 peaks (or pitch accents) on the first syllables of the second and the 

third words). The results of the two experiments showed that when everything else was equal, 

the third word always had more perceived prominence in the sentence with the focus word 

order than the one with the canonical word order. That is, when the two F0 peaks in the 

utterance are perceived as equal in prominence, the second F0 peak height must be lower 

when it was in the syntactically focused position than when it was not. This suggests that 

listeners expect more prominence in the syntactically-focused position than in the 

syntactically-unfocused position and compensate for it by perceptually reducing the 

prominence of the word in the syntactically-focused position. The results also indicate that 

not only characteristics of F0 but more abstract linguistic structure affects the interpretation 

of intonational prominence. 

To sum up, focus, as a linguistic factor, contributes significantly to perceived 

prominence. IFocus affects perceived prominence with respect to not only its acoustic 

manifestation as higher F0, greater duration and higher intensity but also its grammatical 

property whereby listeners’ attention is directed to items in which they expect focus to occur. 

 

2.7 Pitch height or perceived prominence? 

There are two ‘other’ factors influencing the interpretation of intonational prominence. The 
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first one is the type of experimental instructions. Terken (1991) found that the way the 

perceptual relation between two F0 peaks is judged depends on the type of instructions. He 

compared two different sets of instructions in his experiment: one in which his Dutch 

listeners were asked to judge relative pitch height between two F0 peaks in reiterant speech 

(mamama…) and the other in which they were asked to judge relative prominence using the 

very same stimuli. In addition to the perceptual effect for declination that was described 

above, Terken found that the F0 difference between P1 and P2 was greater with the 

prominence instructions than with the pitch height instructions. 

Terken suggested several possible accounts of this effect, which are based on the 

assumption that listeners are aware of the linguistic structure of the utterance in assessing 

prominence but they are not in assessing pitch height. For example, one of his accounts of 

this instruction effect is a perceptual normalization for final lowering – an extra F0 lowering 

at the end of an utterance (cf. Arvaniti & Godjevac 2003, Liberman & Pierrehumbert 1984). 

According to this account, listeners perceptually undo the extra lowering applied to the final 

F0 peak, and as a consequence, when two F0 peaks are perceived to have the same 

prominence, the physical height of P2 with respect to that of P1 is lower when P2 is in the 

final position than when it is in a non-final position. Crucially, this perceptual mechanism is 

assumed to be at play only when listeners assess prominence, not pitch height. However, 

Terken (1994) ruled out this account based on a similar experiment using three F0 peaks 

instead of two. He found the same instruction effect between the first and the second F0 

peaks: the difference between them was greater in the prominence instruction than in the 

pitch height instruction when they were judged to have the same pitch height or prominence. 

Since the second peak was not in the utterance-final position, Terken rejected the final 



 

 32

lowering account. Instead, he referred to an alternative possibility that concerns listeners’ 

expectation about the application of downstep. 

Terken’s instruction effect itself is interesting since it implies that all that matters is 

listener’s strategy rather than materials that they actually hear. However, his proposal needs 

to be interpreted with caution. The underlying assumption of Terken’s proposal seems to be 

the well-known distinction between non-speech and speech (cf. Liberman, Cooper, 

Shankweiler & Studdert-Kennedy, 1967). That is, Terken’s assumption that instructions 

would matter itself rests on the more general assumption that listeners respond differently 

when asked to make a linguistic judgment such as relative prominence, than a nonlinguistic 

one, such as relative pitch height. However, it is not clear why listeners could be aware of the 

linguistic structure of an utterance under the prominence instructions but not under the pitch 

height instructions. Moreover, Knight (2003) recently carried out a similar perceptual 

experiment with real speech adopting the pitch height and the prominence instructions. She 

found no instruction effects, which also suggests that we have to be careful in interpreting 

Terken’s proposal. 

 

2.8 Voice gender 

The second non-linguistic factor affecting perceived prominence is the gender of the speaker 

voice, which was nicely demonstrated by Gussenhoven & Rietveld (1998). Using utterances 

produced by a Dutch female speaker, Gussenhoven & Rietveld resynthesized them into two 

versions of single-F0-peak contours, one that sounded as though it was produced by a female 

speaker and the other by a male speaker, by changing the first, second and fifth formants in 

the original speech. Thus, the artificially created male speaker utterances had a pitch range 
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that was considerably high for a male speaker. Native Dutch listeners were asked to rate the 

degree of emphasis of the F0 peak. Gussenhoven & Rietveld found that listeners judged F0 

peaks that had the formant properties appropriate for a male voice to be more prominent than 

those that had the formant properties appropriate for a female voice. This result suggests that 

listeners compensate for voice gender based on the knowledge of the gender difference in 

pitch range. Listeners know that the neutral pitch range of a male voice is lower and narrower 

than that of a female voice. With the assumption that the experimental utterance was 

produced by a male speaker, listeners perceived its pitch level to be higher than his neutral 

pitch level. Naturally, the F0 peak was interpreted as emphatic under this greater pitch level. 

As a result, the female speech that was made to sound like male speech was perceived to 

have more perceived prominence than non-manipulated female speech. 

 

2.9 Chapter summary 

This chapter has provided a thorough review of the past studies that investigated factors 

affecting the perception of intonational prominence. We have seen five acoustic factors 

(excursion size, position in utterance, rate of baseline, dependency of P2 on P1 height, and 

F0 plateaux), one linguistic factor (focus structure), and two non-linguistic factors 

(experimental instructions and voice gender). It is rather surprising that only one linguistic 

factor has been seriously studied with respect to perceived prominence. This situation ensures 

the necessity of the current study, which explores the effect of another linguistic factor on 

perceived prominence, namely lexical accent. 
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CHAPTER 3 

 

EXPERIMENT 1: PERCEIVED PROMINENCE WITH  

NATURALLY-RENDERED STIMULI 

 

3.1 Introduction 

This chapter presents Experiment 1, which builds a basis for the experiments that follow. 

Experiment 1 tests the effects of lexical accent on perceived prominence in Japanese using 

‘naturally-rendered’ stimuli. Natural speech contains both types of the properties about 

lexical accent briefly mentioned in the previous chapter: the acoustic and the structural 

properties. We look at the effects of these different types of lexical accent properties in the 

later experiments, but such a further examination makes sense only if we find any perceptual 

effect of lexical accent on prominence with naturally-rendered speech. Experiment 1 tests 

that possibility of such effect. 

In production, accent type in Japanese has two different sorts of influence on F0 

contours. First, an accented word is realized with a higher F0 peak (hence a larger excursion 

size) than an unaccented word, which is characterized as accentual boost. Second, within the 

same Major Phrase (MaP), an accented word triggers the downstep on the following word 

(Pierrehumbert & Beckman 1988, Poser 1984). 

Experiment 1 tests the possibility of perceptual effects that compensate for accentual 

boost and downstep. The primary reason for suspecting such perceptual effects can be found 

if we look at the way that accentual contrast is expressed in Japanese: it is mainly expressed 
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by the presence or absence of lexical accent.1 For example, de’nki ‘electricity’ and denki 

‘biography’ form a minimal pair with respect to the presence of a lexical accent in the former 

word while the latter word lacks one. If we consider this way of showing lexical contrast in 

Japanese in terms of perceived prominence, it is unlikely that lexical accent gives additional 

perceived prominence. If lexical accent gives prominence to words, we would have a strange 

situation where the more accented words a phrase contains the more prominence the listener 

perceive when hearing it. If this was the case, then it would be hard to understand why the 

Japanese intonation system would have to work like that. 

A similar argument as the one above is applied to downstep. A word is downstepped 

when it is preceded by an accented word in the same MaP; it is not downstepped when it is 

preceded by an unaccented word. If a downstepped word was perceptually less prominent 

than a non-downstepped word, it would be less prominent precisely because the former is 

preceded by an accented word whereas the latter by an unaccented word. This is again a 

strange situation. There is no good reason why the downstepped word has to have less 

perceived prominence in such an environment. 

If there are perceptual normalization processes for accentual boost and downstep, what 

sort of processes could they be? The most straightforward conceptualization would be to 

consider that they are processes that undo the production effects. That is, the compensation 

for accentual boost would nullify the difference in F0 peak height between an accented word 

and an unaccented word by undoing the extra F0 boost that is added to the accented word in 

production. The compensation for downstep would nullify the differences in F0 peak height 

                                                  
1 Lexical contrast is also expressed by the position that the accent appears in a word. For example, the 

initially-accented ha’shi ‘chopstick’ contrasts with the finally-accented hashi’ ‘brdge’. However, the number 
of words that show this way of lexical contrast is much smaller than that of words showing contrast with the 
presence or absence of lexical accent. 
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between a downstepped word and a non-downstepped word by undoing the F0 lowering 

applied to the downstepped word in production. I call these two normalization processes 

accentual boost normalization and downstep normalization, respectively. 

The effects of accentual boost normalization and downstep normalization are expected 

to be observed when comparing sequences of two F0 peaks (or words) with various 

combinations of accent types in terms of relative perceived prominence.  

First, if there is any perceptual normalization for accentual boost on perceived 

prominence, we should observe it by comparing the sequence of accented-accented (aa) 

words with the sequence of accented-unaccented (au) words. Specifically, comparing the 

difference between the first F0 peak (P1) and the second F0 peak (P2) when P1 and P2 are 

perceived to be equal in prominence allows us to see the accentual boost effect. What we 

expect to see is that the difference between P1 and P2 in F0 is much smaller in aa than in au 

when P1 and P2 have the same perceived prominence. This is so because listeners may use 

the knowledge that an accented word is realized higher than an unaccented word and 

compensate for it by perceptually undoing the extra F0 peak height brought by the accentual 

boost. Since the first word is accented in both aa and au, this compensation effect has to be 

attributed to the accent type difference in the second word. When P1 and P2 are perceived to 

have the same prominence, P2 needs to be higher in aa than in au because accentual boost 

normalization reduces to P2’s perceived prominence. Consequently, the P1-P2 difference 

becomes smaller in aa than in au. 

Second, if we compare the relative perceived prominence of aa with that of uu, we can 

assess the downstep effect. Downstep is expected to appear in aa but not in uu because the 

first word is accented only in aa. The second words also differ in their accent types between 
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the two conditions. Despite the potential concern that the accent type of the second word 

should be identical across the conditions, what is crucial in this comparison is that the accent 

type of P1 and P2 should not differ within a condition. As long as this is the case, the effect 

of accentual boost normalization that is hypothesized to occur in the accented words in aa 

cannot emerge or be measurable since accentual boost normalization should occur in both of 

them, canceling out each other’s effects. Therefore, it is appropriate to do the comparison 

between aa and uu in terms of the degree of P1-P2 difference in F0 when P1 and P2 are equal 

in perceived prominence. If downstep compensation is at play between aa and uu, P1-P2 

difference should be smaller in aa than in uu. Listeners are expected to compensate for the 

downstep appearing in aa such that the perceived prominence of P2 is greater than the one 

estimated by the physical excursion size. We elaborate more on the comparison techniques 

that have been discussed in the next section. 

 

3.2 How to tease apart different compensation effects 

Experiment 1 employs all of the accent type combinations (aa, au, ua, and uu). We take this 

tack because these four accent-type conditions make it possible to distinguish the different 

perceptual compensation effects. Here, we consider two kinds: the accentual boost effect and 

the downstep effect.2 

We should note that if any perceptual normalization effect is found, it is very likely that 

more than one type of normalization is involved. For example, the au condition would in 

principle show the effects of accentual boost normalization and the downstep normalization. 

The accentual boost effect is expected on P1 because it is accented. The downstep 

                                                  
2 Note that the declination effect is also expected. However, this effect is always expected in any utterance and 

thus we do not discuss it here.  
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normalization effect is also expected on P2 since it is preceded by the accented P1. Clearly, 

we need a way to tease apart these different “components” of perceptual normalization effect. 

One way to accomplish this task is to compare pairs of conditions where they differ 

only in one component of the normalization effect and compare the effect sizes between the 

two conditions. Consider Table 3.1 below. This table shows which perceptual normalization 

effect is involved in the four accent-type conditions. The short thick horizontal lines 

represent the F0 peak values when P1 and P2 have the same perceived prominence. The 

symbols A and D denote the accentual boost effect and the downstep effect, respectively. 

Each symbol in the table has an arrow to its left, either upward (↑) or downward (↓). They 

represent how the normalization process affects the physical value of the F0 peak. An upward 

arrow, seen with the accentual boost effect indicates that the normalization process has the 

effect of increasing the F0 value of the accent peak. A downward arrow indicates that the 

normalization process has an effect such that it lowers the value of the affected F0 peak. 

 

Accent 
combination a     a a     u u     a u     u 

 
Perceptual 

effect 

   A 
 
 
        D 

 A 
 
  
 
 
         D 

          A 
 
 
 

 
 
 
 
 

 
Table 3.1 Different components for perceptual normalization in four accent conditions. 
A indicates accented and u unaccented. The thick vertical lines represent F0 peak values 
of the words contained in the utterances. A and D stand the accentual boost effect and 
the downstep effect, respectively. The arrows represent how the normalization process 
affects the physical value of the F0 peak. 
 

Let us consider Table 3.1 closely. First, the accentual boost effect (A) is at play in the aa, 

A
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au and ua conditions. However, its effect can only be observed in the au and ua conditions, 

namely in the conditions where the accent types of the two F0 peaks differ from one another. 

The aa condition involves this perceptual process since both of the F0 peaks are accented. 

Even so, however, we can not observe any perceptual effect in this condition because 

accentual boost normalization is expected to occur in both of the accent peaks and the 

accentual boost effects on P1 and P2 will cancel each other. In other words, the accentual 

boost effect exists but is invisible in the aa condition. 

Turning to the downstep effect (D), assuming that the two F0 peaks are in the same MaP, 

downstep is expected to appear only in the conditions where P1 is accented, namely, aa and 

au. The downstep effect is expected to occur based on listeners’ knowledge of P2 being 

realized lower than P1 when P1 is accented. Therefore, the P2 value should be much lower 

than the P1 value, whereas P2 would not necessarily be lower than P1 when P1 is 

unaccented. 

Note that P2 in the aa condition has two arrows showing opposite directions. The 

accentual boost effect is expected on this accent peak because it is accented. Due to the 

accentual boost effect, the P2 value should be higher than the P2 values in the other 

conditions in which P2 is unaccented. However, in Table 3.1 the P2 value in the aa condition 

is not very high: in fact it is at the same level as P2 in uu. That is because the downstep effect 

is also seen in the aa condition and its effect cancels out the accentual boost effect that is also 

at work on P2.  

When we take into consideration the two kinds of perceptual normalization effects 

discussed above (the accentual boost effect and the downstep effect), we have specific 

predictions about the magnitude of the overall normalization effect among the four 
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conditions being considered here. Specifically, it is expected that the four conditions are 

ordered au > aa > uu > ua (where “>” indicates “greater in P1-P2 difference). 

(1) au > aa > uu > ua 
where “>” indicates “greater in P1-P2 difference” 

 

As shown in Table 3.1, the au condition is predicted to show the greatest P1-P2 

difference. The accentual boost normalization is expected to yield the effect that the F0 value 

of P1 is higher when P1 is accented than it is unaccented. At the same time, the downstep 

normalization would affect the F0 value of P2 such that it is lower when it is preceded by an 

accented P1 than when it is preceded by an unaccented P1. Consequently, the difference 

between P1-P2 is greatest among the four conditions. The aa condition is like the au 

condition in that accentual boost normalization and downstep normalization are both 

involved. However, as pointed out above, the accentual boost effect is invisible in this 

condition. We could only see the downstep effect, which decreases the value of P2. There is 

not much to comment on the uu condition. Since both accent peaks are unaccented, no major 

perceptual normalizations are expected. The F0 values of P1 and P2 should not be at the 

same level. Finally, The ua condition is predicted to show a negative P1-P2 value due to the 

accentual boost effect on P2. Note that only au and aa are the conditions where P1-P2 value 

is positive.  

The hierarchy in (1) allows us to tease apart the different perceptual normalization 

effects. We can compare the entire compensation effect of au with that of aa to see the pure 

accentual boost effect. This is possible because these two conditions share the same 

component effects except for A of P2 in aa. Therefore, the pure accentual boost effect should 

in principle be observed by taking the difference between the P1-P2 difference in au and the 
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P1-P2 difference in aa. Similarly, the pure downstep effect can be seen by comparing aa with 

uu. The uu condition is considered to involve no perceptual compensation. Note that 

although the aa condition has the accentual boost effect and the downstep effect, the 

accentual boost effect is invisible, as discussed above. 

There is an important assumption concerning the predictions in (1). The different 

perceptual normalization effects are assumed to be additive. That is, there is no interaction 

assumed among the different types of effects when they co-occur. We are not considering 

potential effects that would be caused by one effect combined with another effect. If the 

relationship is not additive, then the magnitude of the compensation effect will vary in a 

much more complex way when more than one effect surfaces, depending on which effects 

are involved, and we would not be able to see the pure effect of the accentual boost effect or 

the downstep effect. Therefore, such a situation will invalidate the predictions in (1). 

However, if our experimental results support the predictions, it can be safely concluded that 

the different perceptual effects are additive. 

Note that we need to take Gussenhoven, Repp, Rietveld, Rump & Terken’s (1997) 

baseline adjustment (BA) effect into account as well. The BA effect is described such that 

P1-P2 difference becomes greater as P1 increases. This effect is expected to occur in all of 

the other conditions since it only depends on the excursion size increase of P1. It might be 

the case that the degree of the BA effect (rate of increase in P1-P2) varies depending on the 

condition. However, our current consideration of the issue does not make any particular 

predictions regarding the BA effect. 

The results of Experiment 1, which are reported below, provide solid evidence that 

there is a perceptual normalization effect that is purely attributed to the accentual boost effect 
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and to the downstep effect. Moreover, the results confirm the predicted hierarchy of the 

magnitude of perceptual compensation in (1). 

3.3 Methods 

3.3.1 Stimuli 

The author recorded sentences shown in (2) based on which the experimental stimuli were 

created. The experimental sentences were four sentences each of which consisted of three 

words, where the first two words were varied in accent type so that we had all possible 

combinations of accent type: aa, au, uu, and ua. The third word was kept unaccented. The 

syntactic structure of the sentences was [[N1-Gen N2-Nom]NP [V]VP]S,3 where the first two 

words form the subject NP followed by an intransitive verb. This structure was assumed to be 

mapped into the prosodic structure where there is no MaP boundary between the first and the 

second words and the entire sentence is in a single MaP because there is no syntactic XP 

boundary between the first and the second words (Selkirk & Tateishi 1991). A typical 

rendition of a sentence with this structure shows an initial lowering between the first and 

second words thus a MiP boundary, but does not show one between the second and final 

words, which means that the last two words are grouped into a single MiP. The first and the 

second words were four-moras long with lexical accent on the second mora if they were 

accented. 

 

(2) a. aa 
 Ina’mori-no an’iyome-ga inai. 
 Inamori-Gen brother-in-law-Nom not found 
 Inamori’s bother-in-law is not found. 
 
b. au 
 Ina’mori-no omiyage-ga kieta. 

                                                  
3 Gen=Genitive, Nom=Nominative 
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 Inamori-Gen souvenir-Nom disappeared 
 Inamori’s souvenir disappeared. 
 
 
c. ua  
 Inamura-no an’iyome-ga inai. 
 Inamura-Gen brother-in-law-Nom not found 
 Inamura’s bother-in-law is not found. 
 
d. uu 
 Inamura-no omiyage-ga kieta. 
 Inamura-Gen souvenir-Nom disappeared 
 Inamura’s souvenir disappeared. 

 

The recorded sentences were stylized and resynthesized using the “pitch synchronous 

overlap add” (PSOLA) method supplied with the Praat program (Boersma & Weenink, 

1992-2009). The F0 peak height (the H* tones for the accented words; the phrasal H tones for 

the unaccented ones) was varied, in 4 steps for the first word and in 7 steps in the second 

word. The step size is 1 semitone with the base frequency of 100 Hz, so it was approximately 

10 Hz. The exact F0 peak values used in the experiment are shown in Table 3.2. The other 

tonal values were fixed. These fixed values are shown with the actual F0 contours used in the 

experiment in Figure 3.1.  

The two peak heights were not orthogonal in that the lowest/highest P2 value became 

higher as P1 gets higher. The values in brackets in Tables 3.2c and 3.2d are ones for the “F0 

shoulder” in the unaccented words: the phrasal H tone spreading to the right edge of the word 

(cf. Sugahara 2003). The symbol “ ” in Table 3.2d indicates that these stimuli were not used 

for the reasons that P2 value was lower than the preceding L% and, therefore, they sounded 

highly unnatural. The overall number of stimuli was 109 (4 P1 heights × 7 P2 heights × 4 

accent-type conditions − 3 unused stimuli = 109). 
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aa     P2      
 1 2 3 4 5 6 7 8 9 10 

P1 133 140 149 158 167 177 188 199 210 223 
1 194           
2 206           
3 218           
4 231           

a 

au     P2      
 1 2 3 4 5 6 7 8 9 10 

P1 121 
109 

128 
115 

136 
122 

144 
129 

153 
137 

162 
145 

171 
154 

186 
163 

192 
177 

204 
183 

1 194           
2 206           
3 218           
4 231           

b 

ua     P2      
 1 2 3 4 5 6 7 8 9 10 

P1 137 145 153 162 172 182 193 205 217 230 
1 168 (158)           
2 178 (167)           
3 189 (177)           
4 200 (188)           

c 

uu     P2      
 1 2 3 4 5 6 7 8 9 10 

P1 114 
(102) 

120 
(109) 

127 
(115)

135 
(122)

143 
(129)

152 
(139)

161 
(149)

170 
(159) 

180 
(169)

191 
(172)

1 168 (158)           
2 178 (167)           
3 189 (177)           
4 200 (188)           

d 

Table 3.2 F0 values of the peak of the first (P1) and the second (P2) words. The shaded 
cells indicate the combinations of P1 and P2 values that were not used. The values in 
brackets are the values of the “F0 shoulder” of the unaccented word Inamura (P1) and 
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omiyage (P2): phrasal H tone at the right edge of the unaccented words. The cells with 
“ ” indicates the combinations of P1 and P2 values that sounded so unnatural that they 
were not used in the experiment. 
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Figure 3.1 The F0 contours used in Experiment 1 with the fixed F0 values (Hz). The varied 
peak values are shown in Table 3.2. 
 

3.3.2 Listeners 

Nineteen native speakers of Japanese were recruited in Amherst, Massachusetts, USA. 

Mostly they were students at the University of Massachusetts Amherst and their spouses or 

people who lived in the area working for branches of Japanese companies. Their ages ranged 

early twenties to early forties. The mean was 30.5. They were originally from various 

different areas in Japan. Dialectal difference could not be controlled since there was a 

relatively small number of native speakers of Japanese in the area who were available for the 
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experiment. 

 

3.3.3 Procedure 

The listeners each sat on a computer terminal and listened to the 109 stimulus sentences 

randomly 5 times through headphones. They were asked to judge which of the first two 

words were given more emphasis or importance by the speaker. They were also asked to 

respond as quickly as possible. The Multiple Forced Choice (MFC) in the Praat program was 

used to present the stimuli. The listeners had five 109-stimulus blocks of trials with an 

optional short break after each block of trials and a forced break after the third. The listeners 

heard the same stimuli in each block of trials, in a different order. In total 545 stimuli were 

presented. The listeners had a practice session to be familiarized with the stimuli where they 

heard two repetitions of 16 of the experimental stimuli. These stimuli consisted of the two 

endpoint P1 stimuli combined with the two endpoint P2 stimuli for each other four accent 

type conditions. The session lasted about 80 minutes including the instructions, the practice, 

the blocks of trials, and the breaks. 

 

3.3.4 Analysis 

The response rates for P2 (P2 sounding more emphatic than P1) were calculated for each 

listener. Then, using probit analysis (Finney 1971), the 50 % crossover point of the response 

rates expressed as a function of P2 height was obtained for each P1 height and for each 

listener. This point is assumed to represent the P2 value that is equivalent to P1 in its 

perceived prominence. 
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3.4 Results 

3.4.1 Effects of accentual boost 

The two graphs in Figure 3.2 plot the mean P2 F0 values obtained by probit analysis that 

have the same perceived prominence as P1, as a function of P1. Figures 3.2a and 3.2b show 

the data where P1 is accented and unaccented, respectively. The straight line in each graph 

represents the y=x function. Since it tells us the points where P1 and P2 have the same 

physical value, it serves as the reference line when we examine the normalization effects seen 

in the experimental conditions. 

In Figure 3.2a, one can immediately notice that all of the mean P2 values reside well 

below the reference line, indicating that there is some normalization process involved. If the 

P1 and P2 values were identical when they sounded equal, these mean values would be right 

on the reference line. Moreover, the P2 mean values are much greater in the aa condition 

than in the au condition, which can be attributed to the difference in the accent type of the 

second word between the two conditions. In addition, the listeners’ response was orderly in 

the sense that the P2 mean values increase as P1 does. 

A 2×4 repeated-measures ANOVA with accent type and P1 height as the independent 

variables revealed that the P2 mean values were significantly lower in au than aa 

(F(1,18)=68.57, p<0.001) and that the increase of those values as a function of P1 was also 

significant (F(3,54)=52.13, p<0.001). No significant interaction between accent type and P1 

height was found (F(3,54)=2.248, p=0.093). 

The uu and ua conditions in Figure 3.2b show patterns similar to the other two 
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conditions. Most of the mean P2 values are below the y=x function, just like the data in 

Figure 3.2a. However, the mean values are much closer to the reference line in Figure 3.2b, 

which suggests that the sizes of the normalization effects, shown as the P1-P2 difference in 

F0 here, are smaller in uu and ua than in aa and au. 
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Figure 3.2 Mean values of P2 giving the same prominence as P1 as a function of P1 
height for different accent-type conditions: (a) aa vs. au; (b) ua vs. uu. The straight line 
in each graph represents the y=x function. The error bars are 95 % confidence intervals. 
 

One more noticeable feature in Figure 3.2b is the rate of increase of P2 mean values 

from low to high P1 values; it is smaller than y=x. In other words, the slopes formed by P2 

mean values are less steep than y=x. This is readily observed in the ua function. This 

indicates that the difference between P1 and P2 gets greater as the height of P1 increases, 

which is the BA effect reported by Gussenhoven et al. (1997). 

An ANOVA analysis confirmed the above observations. The same analysis as we did on 

the data in Figure 3.2a was carried out. There were significant differences for accent type 

(F(1,18)=69.92, p<0.001) and for P1 height (F(3,54)=30.51, p<0.001). The interaction was 

not significant (F(3,54)=0.638, p=0.594). 

 

3.4.2 Effects of downstep 

Figure 3.3 represents the same data as those in Figure 3.2 above, but here the data are shown 

with respect to the difference between the reference line and the mean P2 values (= P1-P2 

difference). The figure contains all of the four accent-type conditions. This is possible 

because the values on the y-axis are not the values of P2 but the differences between P1 and 

P2, with the step size being identical among the conditions. 
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Figure 3.3 Mean P1-P2 difference values for different accent-type conditions (aa, 
au, ua, and uu). The error bars represent 95 % confidence intervals. 
 

As we have already observed in Figures 3.2a and 3.2b, au and uu show greater 

normalization effect than aa and ua, respectively. The mean P1-P2 values are greater in au 

than in aa, and are greater in uu than in ua. These results indicate that P2 is lower in au than 

aa and in uu than ua when P1 and P2 are assessed equivalent in perceived prominence. This 

shows that the perceptual normalization for accentual boost is at play on P2. Moreover, as 

discussed in 3.2, these differences can be considered the pure effect of accentual boost.  

The downstep effect is also observed. Aa exhibits greater P1-P2 differences than uu, 

though the size of the differences between aa and uu are much smaller than the differences 

between au and aa. However, if this difference between aa and uu is statistically reliable, this 

can be considered the pure effect of the perceptual normalization for downstep. Since aa and 

uu do not differ from one another in accent type, the difference between the two conditions 

cannot be explained by the accentual boost effect. Presumably, accentual boost normalization 

▲ au 
■ aa 
□ uu 
△ ua 
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occurs in both peaks in aa, which makes its effect unobservable, and no accentual boost 

normalization should be at play in uu. This difference should only be explained by perceptual 

normalization for downstep. 

Moreover, all of the mean P1-P2 values are positive in uu, which is indicative of the 

presence of the declination effect. Finally, the mean values are also positive in the ua 

condition, suggesting that the declination effect is greater than the accent effect in its 

magnitude. The overall order we obtained is au > aa > uu > ua, which is exactly what we 

predicted in (1) above.  

We can also see that the P1-P2 values become greater as P1 increases; namely, the BA 

effect. We predicted that the BA effect would be seen in all of the accent type conditions, 

which are borne out. 

To confirm these observations, a 4×4 repeated-measures ANOVA was carried out with 

accent type and P1 as the independent variables. There was a significant difference both for 

accent type (F(3,54)=60.64, p<0.0001) and for P1 (F(3,54)=28.32, p<0.0001). The 

interaction was not significant. Since we already established that there is a significant 

difference between au and aa and between uu and ua, the only concern here is whether or not 

aa and uu differ with each other significantly. The difference between aa and uu was small 

but significant (F(1,18)=4.411, p=0.050). Thus, the hierarchy au > aa > uu > ua has been 

statistically confirmed. 

The non-significant result of the interaction suggests that the different components of 

perceptual normalization effects, the accentual boost effect and the downstep effect, are 

indeed additive. That is, perceptual normalization will be larger if two effects in the same 

direction are involved than if only one effect is involved.  
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As for the BA effects seen in all of the conditions, a regression analysis revealed that 

the slopes were significantly greater than zero (F(1,18)=51.39, p<0.0001), which confirmed 

the presence of the effect. 

Note that the difference between au and aa, the one that is attributed to the accentual 

boost effect, is much greater than the difference between aa and uu. Shown in Figure 3.4 are 

the difference values between the two pairs of conditions. The triangles show the differences 

between au and aa in different P1 heights. We consider them to reflect the magnitudes of the 

accentual boost effect. The other pair is aa and uu, which shows the magnitude of the 

downstep effect as represented by the squares. As is clear from the figure, the mean 

difference values between au and aa (triangles) are much greater than those between aa and 

uu (squares). This suggests that though both the accentual boost effect and the downstep 

effect are induced by lexical accent, the size of the accentual boost effect is much greater 

than the size of the downstep effect. 

This observation was statistically supported by a 2×4 repeated-measures ANOVA 

comparing the differences between au and aa with the ones between aa and uu, accent type 

and P1 as the independent variables. A significant result was found for accent type 

(F(1,18)=16.07, p=0.001). Neither P1 nor the interaction was significant (P1: F(3,54)=0.89, 

p=0.450), interaction: F(3,54)=1.91, p=0.139). 
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Figure 3.4 Mean difference values between au and aa (triangles) and between aa 
and uu (squares). The numbers 1 through 4 on the x axis indicate different p1 
values from low to high. The actual values are not shown since the P1 values used 
differ between the condition where P1 is accented and the condition where it is 
unaccented. The error bars represent 95 % confidence intervals. 

 

3.5 Discussion 

3.5.1 Summary of the experimental results 

Experiment 1 tried to give an answer to the question of whether perceptual normalizations for 

accentual boost and downstep play a role in the perception of intonational prominence. The 

answer is positive to both kinds of effect. The results have uncovered two perceptual 

normalization processes that have not been reported in the literature: accentual boost 

normalization and downstep normalization. Accentual boost normalization is triggered by the 

presence of a lexical accent (= accented word) and perceptually undoes the effect of 

accentual boost in the word that is brought by production. Downstep normalization is also 

triggered by the presence of a lexical accent, but the effect appears not on the word itself but 



 54

on the following word. The process undoes the production effect of F0 lowering. The extent 

of the effect differed such that accentual boost normalization was greater than downstep 

normalization in its magnitude. 

The results of Experiment 1 have also revealed a certain relationship between the two 

different perceptual compensation effects being considered here, namely the accentual boost 

effect and the downstep effect. The results have shown that those effects are additive. This 

finding contributes to our understanding of intonational prominence interpretation in such a 

way that when considering the perception of prominence we can assume a fairly simple 

picture where different factors affecting perceived prominence are at play independently 

without interacting with each other. 

In the remainder of this section, I would like to do two things. First, I describe the 

mechanism of accentual boost normalization and downstep normalization, the proposed 

perceptual processes that explain the results of Experiment 1. I then briefly discuss the 

theoretical implications of the experimental results. 

 

3.5.2 Mechanism of accentual boost normalization and downstep normalization 

I propose that accentual boost normalization and downstep normalization both have the 

same mechanism: undo the production effect on F0 in perception. In production, the F0 peak 

of an accented word is higher than that of an unaccented word by accentual boost. In 

perception, the portion of the F0 height added by accentual boost is perceptually removed by 

accentual boost normalization.  

Let us see how this process explains the results of Experiment 1. The experiment has 

shown that the prediction in (1), repeated in (3), is correct. 
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(3) au > aa > uu > ua 
where “>” indicates “greater in P1-P2 difference” 

 

In this hierarchy, au > aa and uu > ua can be accounted for by accentual boost normalization. 

Let us look at au > aa first. The account is visually shown in Figure 3.5. 

 

 
 
 P1 P1 
 
 
 P2 P2 
 
 a u a a 
 

Figure 3.5 Explanation of the greater P1-P2 difference in au than aa by accentual boost 
normalization.  

 

This figure schematically shows the two F0 contours for au and aa when P1 and P2 have the 

same perceived prominence in each of the contours. The relevant experimental result is that 

the F0 difference between P1 and P2 was greater in au than in aa when P1 and P2 were 

perceived to have equal prominence. What needs be explained here is how P1 and P2 could 

have the same perceived prominence in au and in aa despite the fact that the P1-P2 

difference values are different between the two conditions.  

In Figure 3.5, P2 in aa is accented so accentual boost normalization is at play. The 

perceived peak height of P2 is lower than the physical peak height because the portion of the 

P2 peak height added by accentual boost in production is taken away by accentual boost 

normalization in perception. As a result, the peak height difference between P1 and P2 are 

perceptually identical even though they are physically different. Note that accentual boost 

normalization should be seen in P1 in both au and aa. But this effect is not shown in Figure 

Perceived 
height 

Physical height
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3.5 because P1 is accented in both of the conditions, which makes the effect invisible. 

The same account is possible for uu > ua, as shown in Figure 3.6. P1-P2 difference was 

greater in uu than in ua in Experiment 1 because the accentual boost applied in the P2 in ua 

is perceptually undone by virtue of accentual boost normalization whereby its perceived peak 

height is lower than its physical peak height. Consequently, P1-P2 difference is the same 

between uu and ua after accentual boost normalization is applied. 

 

 

 
 
 P1 P1 
 P2 P2 
 
 u u u a 
 

Figure 3.6 Explanation of the greater P1-P2 difference in uu than ua by accentual boost 
normalization.  

 

The process of downstep normalization is shown in Figure 3.7. The relevant result is 

that P1-P2 difference is greater in aa than in uu. Note that to account for this result we cannot 

rely on accentual boost normalization. In uu, this perceptual process is irrelevant since both 

P1 and P2 are unaccented. In aa, where both peaks are accented, the effect of accentual boost 

normalization cannot be seen even though the process is at work in this sequence. A different 

perceptual normalization is necessary to explain the greater P1-P2 difference in aa than in uu, 

and that, I propose, is downstep normalization. 

 

 

 

Physical height
Perceived 
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 P1 P1 
 P2 
 P2 
 u u a a 
 

Figure 3.7 Explanation of the greater P1-P2 difference in uu than aa by downstep 
normalization. 

 

Here is how downstep normalization works. In downstep normalization, the perceived 

peak height is higher than the physical peak height. In Figure 3.7, downstep normalization is 

at work on P2 only in aa since P1 is accented in aa while it is unaccented in uu. The P2 in aa 

undergoes downstep normalization whereby its peak height is boosted in perception. This 

boost makes P1 and P2 have the equal perceived prominence even though the physical value 

of P2 is much lower with respect to the preceding P1 in aa when we compare uu with aa. 

Note that the direction of the downstep normalization effect is opposite to that of the 

accentual normalization effect: accentual boost reduces perceived peak height whereas 

downstep normalization boosts it. However, the two perceptual processes share the 

mechanism of peak height adjustment: they both undo production effect. 

 

3.5.3 Implications 

Let us now move on to the theoretical implications. I want to make two points. First, the 

discovery of the accentual boost effect and the downstep effect clearly argue against the idea 

that F0 excursion size is one of the most dominant indicators of the prominence of F0 peaks. 

Many experiments reported in the literature have shown that how much F0 movement an F0 

peak has directly affects its perceived prominence (Gussenhoven & Rietveld 1988, Rietveld 

Physical height Perceived 
height 
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& Gussenhoven 1985, Terken 1991, 1994). However, Experiment 1 has shown that the 

situation is not that straightforward. The experimental results suggest that for a given P1 

height, an unaccented P2 may have a much smaller excursion size than an accented P2 when 

the two peaks are perceived to be equal in prominence, due to accentual boost normalization. 

A downstepped P2 may also have the same perceived prominence as a non-downstepped P2 

when its F0 excursion size is much smaller for the downstepped peak than for the 

non-downstepped peak. Without taking additional factors such as accentual boost 

normalization and downstep normalization into account, we cannot fully understand the 

interpretation of intonational prominence. 

Second, the results of Experiment 1 also suggest that theories of the perception of 

intonational prominence need to take language-specific effects into account. The two 

perceptual normalization processes proposed on the basis of the experiment are both closely 

related to lexical accent, which is specific to Japanese. In production, lexical accent affects 

intonational patterns in ways that are specific to the language. In perception, as we found, 

lexical accent also affects the perceived prominence of intonational peaks in ways that are 

specific to Japanese. Theories of prominence perception have to account for this interaction 

between lexical and intonational features with respect to perceived prominence. 

 

3.6 Chapter summary 

In this chapter I tried to establish that the assessment of perceived prominence involves 

normalization processes that are triggered by lexical accent in Japanese. The stimuli were 

naturally spoken in the sense that both the acoustic and structural properties of lexical accent 

were present. I tried to tease apart different perceptual normalization processes. Besides the 
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declination effect (Pierrehumbert 1979) and the BA effect (Gussenhoven et al. 1997), the 

experimental results suggested that two novel normalization processes are at work: accentual 

boost normalization and downstep normalization. Accentual boost normalization perceptually 

undoes the accentual boost of an accented word so that the perceived prominence of a word 

is smaller than the prominence that the word would have if it is computed solely based on the 

F0 excursion size. Downstep normalization perceptually undoes the effect of the post-accent 

F0 lowering in production. Furthermore, it was found that the magnitude of accentual boost 

normalization is significantly greater than that of downstep normalization. 

The most important theoretical implications that the findings of Experiment 1 is that 

theories of prominence interpretation have to take the effects of take lexical, and hence 

language-specific, accent features on perceived prominence into account. Current theories on 

the perception of intonational prominence only consider phenomena at the intonation level 

and do not discuss interactions between lexical accent and intonational perceived prominence. 

Experiment 1 indicates that a whole new set of language-specific perceptual effects needs to 

be explored in tone languages and pitch accent languages.  
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CHAPTER 4 

 

EXPERIMENT 2: F0 PLATEAUX AND PERCEIVED PROMINENCE 

 

4.1 Introduction 

4.1.1 F0 plateaux in unaccented words 

Based on the results of Experiment 1, I proposed two perceptual normalization 

processes: accentual boost normalization and downstep normalization. This chapter focuses 

on accentual boost normalization. We test another possible account that equally explains the 

results of Experiment 1. The account is based on Knight’s (2003) finding that an F0 peak 

evokes more perceived prominence when it has a long stretch of its peak or a plateau than 

when it does not. An unaccented word in Japanese with spreading of the H phrasal tone has 

an F0 contour shape that is close to a plateau, which indicates that if the peak height is 

identical, an unaccented word might have more perceived prominence than an accented word. 

In relation to the results of Experiment 1, Knight’s account predicts that in the conditions 

where the accent types of P1 and P2 are different, namely au and ua, the height of the 

unaccented peak is always lower in F0 than that of the accented peak when P1 and P2 have 

the same equal prominence.1 

Sugahara (2003) reported that in Japanese there are two distinct types of speakers with 

respect to the phonetic realization of the H phrasal tone in unaccented words. One type of 

                                                  
1 Knight’s account does not say anything about the sequences where P1 and P2 have the same accent types. 

That is, even if an unaccented evoked more perceived prominence than an accented word, its effect could not 
be observed if both P1 and P2 are both unaccented. 
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speaker shows a “linear interpolation” between the H phrasal tone and the following L% tone. 

The speakers who participated in Pierrehumbert & Beckman’s (1988) study exhibited this 

pattern. However, Sugahara showed that there is another type of Japanese speaker who shows 

a different realization pattern for the H phrasal tone in unaccented words. This type of 

speaker “spreads” the H phrasal tone from the second mora to the final mora of the word, 

showing a stretch of the F0 peak that is sustained at more or less the same level. This is the 

pattern that traditional scholars of Japanese tonology assume (Haraguchi 1977, Poser 1984) 

in the analyses based on their native speakers’ intuition. Thus, the F0 contour has a high F0 

plateau for the most of the word. The F0 contours for “linear interpolation” and “spreading” 

are schematically shown in Figure 4.1. 

 

 H H 
 
  L%  L% 
 
 a. Linear interpolation b. Spreading 

 
Figure 4.1 Two different realization patterns of an unaccented word. 

 

This phonetic realizational difference may be a sociophonetic difference based on 

speakers’ age (Sugahara 2003). Among the five native Japanese speakers in Sugahara’s work, 

only one showed the linear interpolation pattern and she was in her late fifties at the time of 

recording, and the other speakers were in their late twenties or early thirties. If generation 

were the sole factor involved, then the difference between linear interpolation and spreading 

spreading 
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might only serve as an acoustic cue that signals the generation that the speaker belongs to.  

The question I want to ask is whether the F0 plateaux in unaccented words contribute 

to perceived prominence. Knight (2003) showed that in English an F0 contour with a plateau 

yields more perceived prominence than an F0 contour with its highest point lasting only 

momentarily, namely a peaked contour. She accounts for this effect in terms of a very general 

principle in auditory perception. That is, a peaked contour causes difficulty for the auditory 

system to “phase lock” to the frequency of the highest F0 point because of the extreme 

brevity of its duration, whereas a plateau contour does not have this problem because the 

highest F0 point lasts long enough for the auditory system to phase lock the frequency (see 

the following section more on this point). 

If this low-level neurophysiological account is correct, the effect of F0 plateaux on 

perceived prominence should be seen in any languages including Japanese. It is predicted 

that an unaccented word has more perceived prominence than an accented word if they have 

the same F0 peak height. Experiment 2, which is presented in this chapter, tests this 

prediction. Before proceeding, we review Knight’s (2003) experiments in more detail. 

 

4.1.2 Knight (2003): F0 plateaux and perceived prominence 

Knight (2003) tested the effect of sustained F0 peaks on perceived prominence in English. 

Based on several perceptual experiments, she showed that F0 contours with F0 plateaux are 

perceived to be more prominent than peaked contours without F0 plateaux. In her 

Experiment 3, Knight had her listeners hear the utterance Anna came with Manny in which 
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the F0 of Manny was varied with respect to its height and shape, as shown in Figure 4.2. The 

F0 height and the overall duration were fixed for both of the words. The F0 contour shape for 

Anna was kept constant. 

 

 
 
 
 
 
 
 
 
 

Figure 4.2 F0 contours used in Knight’s (2003) Experiment 3 (p.164). 

 

As illustrated in Manny in the figure, Knight (2003) created a number of pairs of F0 

contours in which each pair contained contours which had a sharp peak (represented by a 

solid line) and a plateau of 100 ms with the same height (represented by a dotted line). Her 

listeners randomly listened to each of the sentences and were asked to answer which of the 

two words was higher in pitch or more prominent. 2  Knight found that Manny was 

consistently judged higher or more prominent when the contour had an F0 plateau than when 

it did not. 

In another experiment (Experiment 2), Knight (2003) tested the effects of the duration 

of F0 plateaux. She cut out came with Manny from Anna came with Manny and manipulated 

                                                  
2 Knight (2003) in fact divided her listeners into two groups and gave different instructions to them. One group 

of listeners were asked to judge relative “height” in pitch, and the other were asked to judge relative 
“prominence”, following Terken (1991). However, she did not find a significant difference between the two 
different instruction groups, and, therefore, I ignored these instructional conditions here. 

Anna Manny 
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the F0 height and the F0 contour shape of Manny, as shown in Figure 4.3. For each of the 

different F0 peak heights she prepared three different contour shapes: one with a peaked 

contour (solid line), one with a 50ms plateau (broken line), and one with a 100ms plateau 

(dotted line). She paired up different stimuli, as well as the identical stimuli for control and 

carried out a discrimination test. She asked her listeners (there were only 6) which of the two 

extracted phrases (Manny) is higher in pitch. Knight found that the F0 plateau stimuli were 

perceived to be higher than the peaked stimuli when they had the same peak height. That is, 

there were significant differences in perceived pitch between the peaked contours and the 

plateau contours of 50ms or 100ms. However, she found no effect of plateau duration: there 

was no difference in perceived pitch between the two types of plateau contours with different 

durations. 

 

 
Figure 4.3 F0 contours used in Knight’s (2003) Experiment 2 (p.153). 

 

Knight (2003) argued that these effects can be explained in terms of general 

neurophysiological mechanisms at the level of auditory detection of pitch. To know how her 

explanation works, it is necessary to review the physiology of hearing. 



 

 65

There have been two different theories of pitch perception.3 They are known as the 

“place” theory and the “temporal” theory. The place theory assumes that acoustic signals 

undergo some kind of spectral analysis in the inner ear: different frequencies excite different 

places along the basilar membrane and therefore neurons with different characteristic 

frequencies. Although it is an established fact that different places of the basilar membrane 

are excited by different frequencies of the input signal, it is generally considered that the 

place mechanism is less useful for complex tones, since with a complex tone, the produced 

pattern of excitation along the basilar membrane does not show a single maximum. 

The temporal theory suggests that the pitch of acoustic signals is related to the pattern 

of the neural impulses evoked by the signals in the time domain. The basilar membrane 

vibrates in response to an acoustic signal, whose temporal patterning is also transmitted to 

the hair cells. The excitation of the neural spikes tends to be “phase locked” or synchronized 

to the signal waveform. As a result, the intervals between successive spikes approximate 

integer multiples of the period of the waveform. The auditory system is considered to be able 

to compute the pitch of the signal waveform from this temporal pattern seen in the excitation 

of the auditory nerves. However, the temporal theory also has a drawback: it does not work 

for signals with very high frequencies like those above 5 kHz: phase locking is found not to 

occur for signals of such high frequencies. 

In auditory perception, both the place mechanism and the temporal mechanism are 

considered to be utilized. However, Knight (2003) focuses on this temporal mechanism to 

                                                  
3 See Moore (2003) and Pickles (1988) for a review. 
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account for her experimental results that the plateau F0 contours evoked more perceived 

prominence than the peaked contours and that there was no effect of plateau duration. 

Her account is based on the sluggishness of auditory detection of pitch. It is known that 

pitch discrimination becomes worse as the frequency of the stimulus changes more rapidly 

(e.g. Sek & Moore 1999). Thus, Knight considered that in a peaked contour, the F0 only 

stays on its peak value only momentarily, which would make it difficult for the auditory 

system to phase lock to the very highest frequency. In a plateau contour, on the other hand, 

because the highest value is sustained long enough, it would be much easier for the auditory 

system to detect the information of the F0 peak. Therefore, the perceived height of a peaked 

contour is lower than that of a plateau contour when the two contours have the same F0 peak 

height. 

As for the lack of durational effect of F0 plateau, Knight argues that a plateau of 50ms 

may be long enough for phase locking to occur and for the precise frequency information to 

be detected. A 100ms plateau would be redundantly long for the auditory system to obtain the 

information of the maximum F0 value. 

Since Knight’s (2003) account is based on the neurophysiology of the auditory system, 

the effect of F0 plateau should be universal. Thus, it is predicted that in Japanese unaccented 

words with plateaux contours like the one in Figure 4.1b will evoke more perceived 

prominence than those with linear interpolation contours as the one in Figure 4.1a. Though 

the plateau pattern does not show a real “plateau” with a flat F0 pattern as in Knight’s stimuli, 

it is still much more plateau-like than the linear interpolation contour. 
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Based on the discussion so far, it seems possible to quantify the relationship between F0 

plateaux and perceived prominence in terms of a negative correlation between F0 slope and 

perceived prominence. The hypothesis is that as the slope of an F0 contour decreases the 

perceived prominence increases. I call this the slope-prominence hypothesis. This is shown in 

the Figure 4.4 below. Experiment 2 tests this hypothesis by manipulating the F0 slope of an 

unaccented word, just like shown figure. 

 

 
 
 
 
 
 
 
Figure 4.4 Illustration of the slope-prominence hypothesis. 

 

4.2 Methods 

4.2.1 Stimuli 

There were two stimulus sentences in this experiment, which are shown in (1). Of the four 

possible combinations of the two accent types for a sentence with two major F0 peaks, the 

combinations with different accent types (au and ua) are chosen. The sentences were 

recorded several times by the author in a sound attenuated booth. The mean values of the 

tones that constituted the F0 contour were used as the basis of the stimulus sentences, that is, 

the mean values were used for tones whose F0 values were fixed. One of the experimental 

sentences (1a) had an unaccented noun followed by an accented one (au sequence), and the 

larger F0 slope 
perceived prominence 

smaller F0 slope 
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other (1b) the other way round (ua sequence). The verbs were both intransitive and 

unaccented. 

 

(1) a. [ua] Inamura-no ani’yome-ga inai. 
   Inamura-Gen sister-in-law-Nom not fond 
   ‘Inamura’s sister-in-law is not found.’ 
 
 b. [au] Ina’mori-no omiyage-ga ureta. 
   Inamori-Gen souvenir-Nom sell-past 
   ‘Inamori’s souvenir sold’ 

 

Like Experiment 1, the experimental sentences were naturally uttered in the sense that 

their phonological lexical accent patterns were consistent with their phonetic F0 contour 

shapes. 

However, the F0 contour shape of the unaccented nouns (the first word in 1a and the 

second word in 1b) was acoustically manipulated and resynthesized, with the “pitch 

synchronous overlap add” (PSOLA) method using Praat. More specifically, what was 

manipulated was the F0 slope from the H phrasal tone that is associated to the second mora 

of the unaccented words to the following L% tone. This is illustrated in Figure 4.5. 
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 H 
  
  
  
  
 L% 
   
 

 
 
Figure 4.5 Manipulation of F0 contour shape of the unaccented words in the 
experimental sentences in (1). 

 

The unaccented words had three different F0 contour shapes. The first contour shape 

was the “linear interpolation” between the H phrasal tone to the L% tone at the end. This is 

the F0 pattern that Pierrehumbert & Beckman (1988) observed in their data of unaccented 

words. The second F0 pattern contained a complete F0 “plateau”. In this contour, the F0 

height was kept constant from the H phrasal tone to the onset of the vowel /o/ or /a/ of the 

case marker /no/ (genitive) or /ga/ (nominative), the point I call the “turning point”, and then 

it fell into the L% tone. The third F0 contour shape was an intermediate contour between the 

linear interpolation and the plateau contours. The F0 started from the same H phrasal tone but 

the F0 height was physically 1/2 lower than the plateau contour at the turning point. This 

contour is called the “shoulder” contour. In terms of F0 slope, the linear interpolation contour 

was the steepest, the plateau contour was the shallowest, and the shoulder contour was 

intermediate. 

In addition to F0 contour shape, F0 peak height was also manipulated. This was done 

(2) Plateau (3) Shoulder 

(1) Linear interpolation 

1/2

Turning point: Onset of the vowel 
of the case particle /no/ or /ga/ 
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for both of the accented and unaccented words. The overall F0 contour shape was kept the 

same. For the accented words, only the peak F0 value that corresponds to the H*+L tone was 

varied. For the unaccented words, the values of the H phrasal tone and the turning point were 

covaried so that the relation between those two points was kept constant. Regardless of 

accent type, the F0 peak height was varied in 4 steps with the step size being 1 semitone (st) 

(with the base frequency of 100Hz) for the first word, and in 6 steps with the step size being 

1.4 st for the second word. The actual F0 values of the peak tones (H phrasal tone and the H* 

accented tone) and those of the turning point are shown in Table 4.1. The other fixed F0 

values can be found in Figure 4.6, with the F0 contours actually used in the experiment. 

Overall, the number of stimuli was 144 (2 sentence types × 3 F0 contour shapes × 4 P1 

heights × 6 P2 heights). 
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ua    P2   
P1 Turning point 
H LI Shoulder Plateau

111 120 130 141 153 166 180 

142 116 129 142        
150 118 134 150        
159 120 140 159        
168 123 146 168        

a 
 
 

au  P2  
 112 122 132 143 
 Turning point Turning point Turning point Turning point 

P1 LI S P LI S P LI S P LI S P 
H* 111 110 112 114 118 122 118 125 132 122 134 143 
168             
178             
189             
200             

 (LI = linear interpolation; S = shoulder; P = plateau) 
b 

 
 
Continued from above table for au 

au  P2  
 155 168 182 
 Turning point Turning point Turning point 

P1 LI S P LI S P LI S P 
H* 126 141 155 131 150 168 136 159 182
168          
178          
189          
200          

b 
 
Table 4.1 F0 values of the H phrasal tone and the H* accent tone used in Experiment 
2: (a) ua sequence, (b) au sequence. The cells that are shaded indicate that they were 
not used. 
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  a. ua b. au 
 
Figure 4.6 F0 contours used in Experiment 2. 

 

4.2.2 Listeners 

Twenty-nine native speakers of Japanese were recruited at Sophia University, Tokyo 

University of Agriculture and Technology, and Waseda University (mean age 22.8). All 

institutions were in Tokyo, Japan. Most of them were undergraduate students. None had any 

kind of hearing disorders. Of the 29 listeners, 23 were originally from Tokyo and its 

neighboring areas (Chiba, Kanagawa, and Saitama). The remaining 6 were from various 

areas (Fukui, Fukushima, Hyogo, Ibaraki, and Nigata). All listeners were paid for 

participation. 

 

4.2.3 Procedure and analysis 

The basic experimental procedure of Experiment 2 was identical to that of Experiment 1. 

Listeners were tested in groups of two to five people. They each sat at a computer terminal 

facing a display. The experimental stimuli described in §4.2.1 were randomly presented to 

116 107 99 95

90
116 116 97 110 

106 111 

100 
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the listeners, using the Multiple Forced Choice (MFC) program equipped with Praat. The 

listeners’ task was identical to the one adopted in Experiment 1: to judge which of the two 

words (first or second) was given more emphasis by the speaker as quickly as possible. The 

stimulus presentation involved repetitions, but the number of repetitions differed depending 

on the stimulus. For each of the four P1 heights, the highest and the lowest P2 values were 

presented with only 2 repetitions, the second highest and the second lowest P2 values with 

four repetitions, and the remaining two intermediate P2 heights with 6 repetitions. This 

manipulation was made because it was expected that the judgment would be relatively easy 

when the F0 difference between P1 and P2 is very large. Also, this made the size of the 

experiment reasonable. Overall, there were 576 tokens of stimuli were presented to the 

listeners. 

The stimuli were divided into 7 blocks of trials each of which contained 72 stimuli. 

The listeners were instructed to take a short break after every block of trials if they wanted. 

They had a practice session to be familiarized with the stimuli where they heard two 

repetitions of 16 of the experimental stimuli. The session lasted about 80 minutes including 

the instructions, the practice, the blocks of trials, and the breaks. 

As for the analysis, the same procedure as the one adopted in Experiment 1 was used. 

That is, using probit analysis the response rates for P2 (P2 sounding more emphatic than P1) 

obtained for each listener were submitted to calculate the 50% crossover point of the 

response rates, the point where P1 and P2 would sound the same in perceived prominence. 
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4.2.4 Predictions 

Recall that the slope-prominence hypothesis, which is tested here, says that there is a 

negative correlation between the slope (downtrend) of an F0 contour and its perceived 

prominence: smaller F0 slopes evoke more perceived prominence than larger F0 slopes. 

Based on this hypothesis, it is predicted that a plateau contour will have greater perceived 

prominence than a shoulder contour, which in turn will have greater perceived prominence 

than a linear interpolation contour. 

Let us consider these predictions in more detail using schematic graphs. The two 

graphs in Figure 4.7 represent the P2 values as a function of P1 that has the same perceived 

prominence as P2. Let us first consider Figure 4.7a the ua sequence. In this sequence the 

manipulation of the F0 contour was made in the first word (note that contour shape is 

manipulated for only unaccented words) and thus it is predicted that as unaccented P1 

changes from the linear interpolation through the shoulder to the plateau contours with a 

constant peak height, the F0 value of accented P2 will need to be increased in order for it to 

have the same perceived prominence as P1. This should be so because it is hypothesized that 

for a given peak height the plateau contour has more perceived prominence than the shoulder 

contour, which in turn has more perceived prominence than the linear interpolation contour. 

Therefore, in the ua sequence the prediction is plateau > shoulder > linear interpolation, 

where “>” means “more prominent than”. 

The order is reversed in the au sequence. In Figure 4.7b, the plateau contour is 

predicted to show the smallest P2 values, the linear interpolation contour the greatest values, 

and the shoulder contour the intermediate values. This is because the unaccented word, 

whose F0 contour shape is manipulated, now appears in the second word rather than in the 
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first word. Thus, if we assume that perceived prominence increases as F0 slope becomes 

smaller, it is predicted that for a given P1 height, the P2 F0 value that sounds equal to P1 in 

prominence will have to be decreased from the linear interpolation through the shoulder to 

the plateau contours. 

 

 
 
 
 
 
 
 
 
 
 P1 P1 
 a. ua b. au 
 

Figure 4.7 Predictions on the effects of F0 slope of the unaccented words. P2 values 
are represented against P1 values when P1 and P2 have the same perceived prominence. 
(a) ua sequence, (b) au sequence. 

 

4.3 Results 

In Figure 4.8 the P2 values obtained by the probit analysis are plotted. These P2 values 

represent those that have the same perceived prominence as P1, which are represented on the 

x-axis. 
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Figure 4.8 Mean values of P2 giving the same prominence as P1 as a function of P1 
height among the linear interpolation (LI), the shoulder, and the plateau conditions: (a) 
ua sequence, (b) au sequence. 

 

 

a. ua 
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The overall patterns observed among the three different contour shape conditions 

confirm the slope hypothesis. In Figure 4.8a, the plateau condition (circles) yields the 

greatest P2 values of the three contour shape conditions, the linear interpolation condition 

(squares) the smallest P2 values, and the shoulder condition (triangles) the intermediate P2 

values, although the differences are small, on the order of 5Hz. These patterns suggest that 

for a given unaccented P1 value, the following accented P2, which has the equivalent 

perceived prominence, needs to be higher in F0 when P1 has an increasingly smaller slope. 

This is a finding that supports the slope-prominence hypothesis. 

In Figure 4.8b, which represents the results of the au sequence, the basic patterns are 

the same as those observed in Figure 4.8a, though again the differences are small. The order 

of the effect is reversed due to the location of the unaccented word, as explained in the 

previous section. P2 shows the greatest values in the linear interpolation condition (squares), 

intermediate values in the shoulder condition (triangles), and the smallest values in the 

plateau condition (circles). These results can again be explained by the slope-prominence 

hypothesis. When an accented P1 and an unaccented P2 have the same perceived prominence, 

P2 needs to be lower in the plateau condition than the other two conditions because its F0 

slope is the smaller (it is zero) than the slopes of the contours in the other conditions. Thus it 

evokes the most perceived prominence of the three F0 contour shape conditions. P2 is higher 

in the shoulder condition than in the linear interpolation condition because the F0 slope is 

smaller in the former condition than in the latter condition.  

However, the general pattern is less orderly in the au sequence than in the ua sequence, 
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and moreover the differences among the F0 contour shape conditions are smaller in the au 

sequence than in the ua sequence. 

To statistically assess our results, the obtained data were submitted to a 

repeated-measures ANOVA analysis. For each of the two different sequences, an ANOVA 

was done with F0 contour shape and P1 as the independent variables. For both of the 

sequences there was a significant main effect for both F0 contour shape and P1, and the 

interaction between the two factors, as shown in Table 4.2. Post-hoc pair-wise comparisons 

showed that in the ua sequence the P2 value were significantly higher in the plateau 

condition than the shoulder condition (F(1,28)=24.255, p<0.001) and the linear interpolation 

condition (F(1,28)=20.649, p<0.001), but the shoulder condition did not differ significantly 

from the linear interpolation condition (F(1,28)=2.456, p=0.128). In the au sequence, on the 

other hand, the linear interpolation condition showed P2 values that were significantly higher 

than the shoulder condition (F(1,28)=8.689, p=0.006) and the plateau condition 

(F(1,28)=25.033, p<0.001), but there was no difference between the shoulder and the plateau 

conditions (F(1,28)=4.429, p<0.044, note for the significance-level correction for multiple 

comparisons (α = 0.05/6 ≈ 0.0083)). 
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ua sequence  
F0 contour shape F(2,56)=17.524, p<0.001 
P1 F(3,84)=104.915, p<0.001 
F0 contour shape * P1 F(6,168)=6.710, p<0.001 
au sequence  
F0 contour shape F(1,56)=13.041, p<0.001 
P1 F(3,84)=67.295, p<0.001 
F0 contour shape * P1 F(6,168)=3.159, p=0.006 

 
Table 4.2 Results of the ANOVAs. 

 

A closer examination of the data suggest that the significant interactions between F0 

contour shape and P1 were due to the relatively high P2 mean value at P1=155Hz in the 

shoulder condition in the ua sequence and the relatively high P2 mean value at P1=189Hz in 

the plateau condition in the ua sequence. To confirm these observations, separate 

repeated-measures ANOVAs were conducted without the P1=155Hz condition in the ua 

sequence and the P1=189Hz condition in the au sequence. The results showed that the 

significant interactions were gone from both of the sequences (ua: F(4,112)=2.319, p<0.061, 

au: F(4,112)=0.913, p=0.459).  

In sum, the general patterns observed in Experiment 2 are consistent with the 

slope-prominence hypothesis, which claims that the F0 contour slope of a word is negatively 

correlated with perceived prominence of the word: the perceived prominence increase as the 

F0 slope gets smaller. 
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4.4 Discussion 

4.4.1 The slope-prominence account cannot supplant the accentual boost account 

The important finding of Experiment 2 is that the F0 downtrend slope of an unaccented word 

in Japanese affects perceived prominence: the smaller the F0 slope is the greater the 

perceived prominence the word evokes. This F0 slope effect on perceived prominence is 

consistent with the findings of Knight’s (2003) for English: English native speakers perceive 

F0 contours with plateaux to be higher (and therefore more prominent) than peaked F0 

contours, if everything else is equal. Since F0 contours with plateaux show smaller F0 slopes 

than those without them, the F0 slope effect found in Experiment 2 is compatible with 

Knight’s result. The spreading of the H phrasal tone in an unaccented word contributes to the 

perceived prominence of the word by evoking more prominence than an unaccented word 

with a linear interpolation contour. Knight’s universal neurophysiological mechanism for the 

perception of prominence seems to be at play in Japanese as well as in English. 

The question that should be asked is whether it is possible to account for the accentual 

boost effect found in Experiment 1 with the neurophysiological mechanism without recourse 

to accentual boost normalization? I argue that it is not. 

Accentual boost normalization assumes a perceptual compensation for the accentual 

boost of an accented word such that its extra F0 boost is factored out when the perceived 

prominence of the word is assessed. As a result, when an au sequence is compared with an aa 

sequence, the P1-P2 difference in F0 is greater in au than in aa. However, the same effect can 

in principle be explained if we assume the F0 slope effect found in Experiment 2: since an 
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unaccented word evokes more perceived prominence than an accented word due to its 

smaller F0 slope, the F0 peak height is lower for the unaccented word than for the accented 

word when they have the same perceived prominence. Therefore, between au and aa, P2 

needs to be higher in F0 aa than au in order for it to be perceived as having the same 

prominence as P1. 

However, the F0 slope effect observed in Experiment 2 is quite small. As we saw in 

Figure 4.8, the size of the effect is about 5 Hz or less between the linear interpolation 

contours and the shoulder contours and between the shoulder contours and the plateau 

contours. The maximum difference is about 10Hz at best between the linear interpolation and 

the plateau contours. If we look at the results of Experiment 1 represented in Figure 3.2a, 

reproduced below as Figure 4.9, the difference in the effect size is obvious: the differences in 

mean P2 values between the aa and the au sequences in Experiment 1 are much greater than 

those seen in the F0 contours with different shapes in Experiment 2. The differences in 

Figure 4.9 are 20Hz or more. Therefore, it is impossible to explain these large differences in 

terms of the neurophysiological mechanism that Knight (2003) proposed based on the 

declining slope of an F0 contour. 
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Figure 4.9 (= Figure 3.2) Mean values of P2 giving the same prominence as P1 as a 
function of P1 height for aa and au. The straight line in each graph represents the y=x 
function. The error bars are 95 % confidence intervals. 

 

4.4.2 Comparison with Knight (2003) 

The conclusion reached in the previous section was based on the slope-prominence 

hypothesis, which was developed from the work by Knight (2003) in which she carried out 

experiments that are similar to the one presented in this chapter. In this section, I compare 

Knight’s experiments with the current one to see to what extent they are directly comparable. 

I point out similarities and differences seen between the two studies. I clarify several points 

points that we need to be careful about when considering the relation between F0 slope and 

perceived prominence in future work. 

Let us start with similarities. Figure 4.10 represents part of the data from Knight’s 

Experiment 3 (see §4.1.2 for the methodology). This graph shows the results of the 
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prominence judgment about the stimulus sentence Anna came with Manny. The y-axis 

represents the mean response rates for Manny being judged as more prominent than Anna. 

The x-axis shows different F0 peak values of Manny. Because the way Knight’s data are 

represented in this graph is different from the way ours in Figure 4.8, we need to estimate the 

P1-P2 difference when Anna and Manny have he same perceived prominence. To do this we 

first need to find the F0 peak height of Manny that corresponds to the 50% mean response 

rate, the point where Anna and Manny have the same perceived prominence for each of the 

peaked and the plateau contours. Those values – approximately 193 Hz and 205 Hz for the 

plateau contour and the peaked contour, respectively – are indicated by the broken lines in 

Figure 4.10. The F0 difference between the two contour types, 12 Hz (205 Hz – 193 Hz, 

indicated by the thick arrow), is the mean difference in the peak value of Manny when Anna 

and Manny have he same perceived prominence in each contour type. 

This difference found in Knight’s experiment and the differences between the plateau 

and the linear interpolation conditions in Experiment 2 are in the same ballpark. As pointed 

out above, the size of the F0 slope effect found in Experiment 2 is approximately between 5 

to 10 Hz between the plateau and the linear interpolation conditions. It is fair to say that the 

effect size of Knight’s experiment is not distinctively larger than that of Experiment 2. At 

least it seems much smaller than the size of the differences that were found in Experiment 1 

(represented in Figure 4.9), based on which I proposed accentual boost normalization. 
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Figure 4.10 Effects of F0 plateaux found in one of Knight’s Experiment 3. The 
data are for prominence judgment task. From Knight’s (2003), Figure 5.12, p.166.  

 

Let us move on to the differences. One difference between Knight’s (2003) study and 

the current study lies in the difference between rising and falling slopes. Knight manipulated 

the slope of F0 rise instead of that of F0 fall. In her F0 contours, the slope of the onset rise 

varies depending on whether the contour has a single peak or a plateau, with the F0 declining 

slope being fixed. In Experiment 2, on the other hand, the slope of the offset of the F0 

contour was manipulated with the slope of the onset rise in tact. Based on this stimulus 

difference between the two experiments, we might not know whether the English effect 

comes from the sharper F0 rise at the beginning of the plateau contour or from its smaller F0 

declining slope. 

Though the difference between rising slope and falling slope is acoustically obvious, 

we should notice the fact that Knight (2003) found no difference in perceived height between 

P1-P2 difference when P1 
and P2 are equal in 
prominence: 
approximately, 205 Hz – 
193 Hz = 12 Hz. 
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the shorter plateau and the longer plateau contours observed in her Experiment 2 (Figure 4.3). 

In Figure 4.3, the contours with different plateau durations have different onset slopes. 

Knight obtained the categorical effect of difference in perceived prominence only between 

the contours with plateaux and those without plateaux, and no difference between the 

conditions that differed with respect to plateau duration. This suggests that F0 rising slope 

does not matter to perceived prominence. Rather the right criterion seems to be whether the 

contour has a plateau or not. 

However, still, the lack of plateau duration effect does not mean that the results of 

Knight’s experiments and those of the current experiment are directly comparable. Even if 

the true characterization was whether the contour has a plateau or not, we still could not 

compare Knight’s experiments and the current experiment, because there is still a difference 

between them. The difference is in the position of the F0 peak occurring in a word differs 

from each other, as shown in Figure 4.11. 

On the one hand, Knight (2003) found a significant difference in perceived 

prominence between a plateau contour and a peaked contour with its peak located toward the 

end of the word (between Figure 4.11a and Figure 4.11b). On the other hand, there was a 

significant difference between a plateau contour and a peaked contour with its peak located 

toward the beginning of the word (Figure 4.11c and Figure 4.11d). It is not entirely clear how 

this F0 peak alignment difference affects perceived prominence. 
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Knight’s (2003) experiments 
 
 
 
 
 a. Plateau contour  b. Peaked contour 
 
Experiment 2 
 
 
 
 c. Plateau contour d. Peaked (linear interpolation) contour 
 
Figure 4.11 Differences between the F0 contours used in Knight’s (2003) experiments 
(a and b) and those used in the current experiment (c and d). 

 

In fact, there is a piece of evidence that suggests that the perceived prominence of an 

F0 contour differs depending on whether the F0 contour has an early or delayed peak. Ladd 

& Morton (1997) showed that an F0 contour with a delayed peak alignment evokes more 

perceived prominence than an F0 contour with no delayed peak alignment. Also, 

Gussenhoven (2004) makes the same suggestion, based on the physical requirement that a 

higher F0 peak takes longer to reach than a lower one with rate of F0 rise is constant 

(pp.90-91). If listeners have knowledge of this relationship between F0 peak height and peak 

alignment, it is conceivable that an F0 contour with a delayed peak is perceived to be more 

prominent than a contour without one. Given this relation between peak delay and perceived 

prominence, it is predicted that Knight’s (2003) peaked contour (Figure 4.11b) is more 

perceptually prominent than the peaked contour of the current experiment (Figure 4.11d). I 

leave the testing of the prediction for future research. 

The comparison presented above between Knight’s experiments and Experiment 2 



 

 87

have revealed that the two studies have more differences than similarities, which indicates a 

direct comparison of the experimental results between is not possible. What is certain, 

however, is that as long as the slope-prominence hypothesis is concerned, it cannot 

adequately account for the results of Experiment 2. 

 

4.5 Chapter summary 

Prompted by Knight’s (2003) experimental results, this chapter tested the slope-prominence 

hypothesis, which claims that as the declining slope of an F0 contour decreases the perceived 

prominence increases. The results of Experiment 2 supported the hypothesis. The experiment 

revealed that unaccented words with F0 plateaux show more perceived prominence than 

those with F0 shoulders, which in turn yielded more perceived prominence than unaccented 

words with linear interpolation. These results are generally in accordance with the results that 

Knight (2003) obtained, which is that F0 plateaux evokes more perceived prominence in 

English. However, the size of the F0 slope effect found in Experiment 2 was quite small, 

based on which I argue that this effect cannot be an alternative account for accentual boost 

normalization.  
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CHAPTER 5 

 

EXPERIMENT 3: STRUCTURAL PROPERTY OF LEXICAL ACCENT AND 

PERCEIVED PROMINENCE 

 

5.1 Two sources of accent type identification 

Experiments 1 and 2 used experimental sentences containing words that were lexically 

accented or unaccented and that, at the same time, acoustically exhibited the properties that 

are characteristic of each accent type. In other words, the listeners of the experiments could 

use two different kinds of information to identify whether the experimental words were 

accented or unaccented. 

The first type of information is the lexical accent status specified for each word in the 

Japanese lexicon (MaCawley 1969, Haraguchi 1977, Vance 1987). I call this information on 

lexical accent type the underlying property of lexical accent. 

The second type of information that the listeners could exploit for accent type 

identification in Experiments 1 and 2 is the specific F0 contour pattern that each of the accent 

types shows, to which I refer as the acoustic property of lexical accent. In Japanese an 

accented word is characterized by a set of F0 properties that are distinct from those of an 

unaccented word: an accent word shows an F0 higher peak and a sharper and bigger F0 fall 

than an unaccented word (Pierrehumbert & Beckman 1988, Kubozono 1993, Sugahara 2003). 

These acoustic F0 differences are robust in perception too. There is ample evidence that in 

perception the acoustic property of lexical accent is used to distinguish one accent type from 

the other (Sugito 1982, Hasegawa & Hata 1992, 1995, Kitahara 2001). In particular, through 

a series of perceptual experiments on accent identification, Kitahara (2001) argues that the 
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most reliable F0 property for accent-type identification is the degree of F0 fall: a word with a 

large F0 fall is likely to be perceived to be accented and one a small F0 fall is likely to be 

perceived to be unaccented. 

The issue we have to consider then is how the underlying and surface properties of 

lexical accent are related to accentual boost normalization and downstep normalization. 

Identification of lexical accent type is crucial to these normalization processes because only 

accented words trigger them. The specific question we should ask then is which of the two 

properties does so. In this chapter, we test whether the structural property of lexical accent 

plays a role in the perceptual assessment of prominence. 

 

5.2 Aims of Experiment 3 

Experiment 3 reported below consists of two sub-experiments. In the first sub-experiment, 

called Experiment 3a, an accent-type identification experiment was carried out. In this 

sub-experiment, listeners heard short sentences with three words (N1-N2-V) and two F0 

peaks corresponding to N1 and N2. N1 and N2 were varied in their accent types. N1 was 

acoustically manipulated such that continua from accented to unaccented were created. 

Listeners judged the accent type of the first word by accent-type matching: they matched the 

accent type of the word that they heard with that of one of the words on the computer screen. 

In Experiment 3b, listeners performed relative prominence judgments with the same stimulus 

sentences used in Experiment 3a. 

Experiment 3a is a necessary experiment for three reasons. The first reason is practical. 

It provides a basis for Experiment 3b. In Experiment 3b, it is essential to know in advance 

what F0 contours are ambiguous between the accented and unaccented patterns in N1, since 
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our interest lies in how prominence assessment is affected when the accent type of a word is 

not acoustically signaled; that is, in the circumstance in which the acoustic property of lexical 

accent is unavailable and listeners can only use the structural property of lexical accent. 

The second reason is to examine whether the so called “lexicality effect” or the 

“Ganong effect” (Ganong 1980) is seen at the lexical accent level in Japanese. The lexicality 

effect refers to the influence of existing lexical items on phoneme processing such that when 

hearing an ambiguous segment in a carrier string of segments, the percept is biased toward 

the segment that constitutes a real word with the carrier string. For example, a segment which 

is acoustically ambiguous between [k] and [] is perceived as [k] before –iss (kiss) but as [] 

before –ift (gift). This means that the very same stimulus invokes different percepts 

depending on the environment under which it appears. The listener’s percept is biased by his 

knowledge about what string of segments constitutes a word and what string of segments 

does not. Experiment 3a tests this effect in terms of Japanese lexical accent. 

The lexicality effect has been investigated overwhelmingly on phoneme processing (see 

Pitt & Samuel 1993 for a comprehensive literature review on phonemic processing). Very 

little work has been carried out on the processing of prosodic features. The only study that 

came to my attention is Connine, Clifton & Cutler (1987). They showed that word stress 

information is relevant to the lexicality effect in English. Their experiments used two pairs of 

words in which the VOT (voice onset time) of the initial stop consonant ([t] or [d]) is varied 

into continua such that only one member of the pair forms a real word. One of the pairs was 

diGRESS and tiGRESS, where only diGRESS is a real word, and the other pair was DIgress 

and TIgress, where only TIgress is a real word (stressed syllables are denoted by capitals). 

Connine et al. observed that when the word-initial stop had an ambiguous VOT value, it was 
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perceived to be [d] in the context of –iGRESS while it was perceived to be [t] in the context 

of –Igress. These results showed that the lexicality effect is seen at the prosodic level 

suggesting that word stress information in English plays a role in lexical processing. 

No experimental work of the kind that Connine et al. (1987) did has been done in other 

languages. This is surprising, because many languages are known to use prosodic features to 

distinguish lexical items. Tone languages and pitch-accent languages are good examples. 

Experiment 3a is an attempt to see whether the lexicality effect is observed in Japanese, a 

pitch-accent language. 

The third reason that Experiment 3a is necessary is that it tests a hypothesis formulated 

on the basis of the claim entertained by Kubozono and his colleagues (Kubozono 1996, 

Kubozono & Fukui 2004, Kubozono & Ogawa 2004). They argue that the accent types of 

Japanese words are not entirely determined by the lexical specification in the lexicon but are 

largely determined by independent phonological factors such as syllable length and syllable 

structure. More specifically, through examining the accent pattern of loanwords and 

alphabetic acronyms, they showed that the accent type tends to be unaccented when a word is 

(1) four-moras long, (2) has a word-final sequence of light syllables, and (3) does not contain 

epenthetic vowels in word-final position. For example, o.ru.gan.1 ‘choir organ’ and FM 

(e.fu.e.mu.) ‘Frequency Modulation’, in which both are four-moras long and end with 

successive light syllables, are unaccented words, but e’n.jin. ‘engine’ and su.ko’c.chi. 

‘scotch’ are accented words since both contain a heavy syllable within the final two syllables 

(both of the two syllables in e’n.jin. and the penult in su.ko’c.chi.). Kubozono & Ogawa 

(2004) contend that even nonwords that meet the above three conditions such as /batabina/ 

and /berugiwa/ follow this pattern and are pronounced as unaccented by most of native 
                                                  
1 Periods indicate syllable boundaries. 
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speakers of Japanese, presumably because those nonwords can be considered as extremely 

unfamiliar loanwords. 

Experiment 3a tests this “unaccented law” hypothesis. To this end, this sub-experiment 

employs a nonword for N1 in one of the conditions. This nonword is created by minimally 

changing the segmental strings of the real words in the other conditions, which made the 

nonword conditions and the real word conditions comparable to one another. 

Experiment 3b is an extension of Experiment 1. The basic design is similar to 

Experiment 1 in that listeners hear sentences consisting of three words with different accent 

types and were asked to judge relative prominence between the first and the second words. 

Experiment 3b uses a subset of the sentences used in Experiment 3a. What is novel in 

Experiment 3b was that N1 involved continua from acoustically accented to unaccented 

words so that listeners heard N1 whose accent type was ambiguous. The interest of this 

sub-experiment was to see whether prominence judgments are affected by the structural 

property of lexical accent without the acoustic property in such ambiguous cases. 

 

5.3 Experiment 3a: Accent type identification 

5.3.1 Methods 

5.3.1.1 Stimuli 

The four sentences used in Experiment 1, repeated in (1), plus two new sentences in which 

the first nouns were nonwords were rerecorded by the author. The new sentences are shown 

in (2). All sentences had three words: noun 1 (N1), noun 2 (N2) and intransitive verb (V). In 

the sentences in (1), the accent types of N1 and N2 were lexically varied such that we had all 

of the four combinations of accented/unaccented N1 and N2. The nonword used for N1 in the 
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nonword sentences was inamire, which was chosen to make its phonological form 

comparable to the real words used in N1: Ina’mori and Inamura. 

 

(1) a. aa 
 Ina’mori-no an’iyome-ga inai. 
 Inamori-Gen sister-in-law-Nom not found 
 Inamori’s sister-in-law is not found. 
 
b. au 
 Ina’mori-no omiyage-ga kieta. 
 Inamori-Gen souvenir-Nom disappeared 
 Inamori’s souvenir disappeared. 
 
c. ua  
 Inamura-no an’iyome-ga inai. 
 Inamura-Gen sister-in-law-Nom not found 
 Inamura’s sister-in-law is not found. 
 
d. uu 
 Inamura-no omiyage-ga kieta. 
 Inamura-Gen souvenir-Nom disappeared 
 Inamura’s souvenir disappeared. 
 

(2) a. na (“n” indicating “nonword”) 
 Inamire-no ani’yome-ga kieta. 
 nonword -Gen sister-in-law-Nom disappeared 
 Inamire’s sister-in-law is not found. 
 
b. nu 
 Inamire-no omiyage-ga kieta. 
 nonword -Gen souvenir-Nom disappeared 
 Inamire’s souvenir disappeared. 

 

The recording was carried out in a sound attenuated booth. The sentences in (1) and (2) 

were read seven times. The tonal values of the stimulus sentences were determined based on 

the average values. After recording, they were stylized with Praat such that they had 

schematized F0 contours expressed only by the tones constituting the contours. The 

algorithm used was the PSOLA method. 
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After stylization, the F0 properties of N1 were manipulated. For each N1 of the six 

experimental sentences, a 5-step continuum was created such that N1 showed canonical F0 

properties for a 4-mora accented word at one endpoint and canonical properties for a 4-mora 

unaccented word at the other endpoint. The mean F0 values obtained from the seven 

naturally produced tokens were used for the canonical tonal values. The intermediate stimuli 

were prepared by changing the F0 height and alignment of N1’s peak and the following two 

valleys (as denoted by V1 and V2 in Figure 5.1). The peak values (P1) and the values of V1 

and V2 are shown in Table 5.1. It turned out that peak height and its alignment was 

systematically related between the accented and the unaccented contours in such a way that 

the peak height was higher and aligned later in the accented contour than in the unaccented 

one. Therefore, these two properties were covaried. The step size was 3.4 Hz for F0 height 

and 3 ms for alignment. A systematic but reversed relationship between F0 height and 

alignment was seen in V1. The V1 height was lower and aligned earlier in the accented 

contour than in the unaccented one. The two properties were also covaried with the step size 

of 5.8 Hz for F0 height and 10 ms for alignment. The actual F0 contours used in the 

experiment are shown in Figure 5.1, together with the fixed values that were used in 

Experiment 3a. 

The F0 properties of N2 were fixed in Experiment 3a. For the accented N2, the peak 

height was 148 Hz. For the unaccented N2, there were two F0 peaks that correspond to the 

phrasal H tone and the “shoulder” as a consequence of the phrasal H spreading. Their values 

were 148 Hz and 137 Hz. Actually, N2 was varied with respect to its F0 peak height in 5 

steps but only the middle values were used in Experiment 3a (all of the 6 F0 heights were 

used in Experiment 3b). The actual F0 contours of the stimulus sentences are shown in 
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Figure 5.1. Note that both phonological and phonetic information is available to listeners for 

N2. 

Overall, there were 6 different stimuli of N1 for each of the 6 experimental sentences 

given in (1) and (2), yielding 36 stimuli.  

 
Step  

N1 unaccented 
1 2 3 4 5 

accented 
6 

 

P1 179 182 186 189 193 196  
V1 122 127.8 133.6 139.4 145.2 151  
V2 106 108.6 112.2 113.8 116.4 119 (Hz)

 
Table 5.1 Height of N1 peak and the following valleys (V1 and V2). 
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a. b. 
 
Figure 5.1 F0 contours of the stimuli used in the experiment: N2 shows F0 properties 
for an accented word in (a) and for an unaccented word in (b). 

 

5.3.1.2 Listeners 

The listeners of Experiment 3a was 24 undergraduate and graduate students recruited at 

Sophia University in Tokyo. All were native speakers of Japanese and were from the Tokyo 

dialect areas such as Chiba, Saitama, Tokyo, and Yokohama, except 3 of them. The areas 

which those 3 listeners were originally from were Aichi (about 350km west of Tokyo), 
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Hokkaido, and Kagawa (western Japan). All listeners were paid for their participation. 

Unfortunately, one listener’s data were lost due to a mistreatment in the data analysis. 

The data from the remaining 23 listeners were used for analysis. 

 

5.3.1.3 Procedure 

Listeners were tested in groups of two or three people at a sound-attenuated room. They each 

sat at a computer terminal facing a display. To have them identify accent patterns of words 

and not the words themselves, the following procedure was adopted. On the screen, two 

“matching words” whose accent types differ from each other were displayed: kuda’mono 

“fruit” and kuchibiru “lips”. The former word is lexically accented and the latter unaccented. 

Listeners heard the stimulus sentences and were asked to focus on the first word in each 

sentence, the portion in which F0 was manipulated into a continuum. Their task was to match 

up the accent pattern of the first word that they heard with that of either of the two matching 

words. They indicated which of the two words’ accent patterns matches the accent pattern of 

the word they heard by clicking on one of the matching words. Also, they were instructed to 

do the task as quickly as they could. The Multiple Forced Choice (MFC) of Praat was used 

to present the stimuli. 

To be familiarized with the stimuli, the listeners first had a practice session where they 

heard the two endpoint stimuli for each of the 6 continua (aa, au, ua, uu, na, and nu) three 

times. Thus, they heard 36 stimuli in the practice session (2 endpoints × 6 continua × 3 

repetitions). 

The test session followed the practice session. Since it was considered that the 

endpoint stimuli would be unambiguous and it would be easier to identity their accent types 



 97

than the non-endpoint ones, the listeners heard fewer repetitions for those stimuli than the 

non-endpoint stimuli. More specifically, the endpoint stimuli were presented to the listeners 3 

times while the non-endpoint ones were presented 6 times. Overall, the listeners heard 180 

stimulus sentences: [(2 endpoint stimuli × 3) + (4 non-endpoint stimuli × 6)] × 6 conditions. 

The entire experiment took about 25 minutes. 

Accent-type differences are normally well apparent to native speakers of Japanese 

since there are a certain number of minimal pairs that can only be accentually distinguished 

such as ka’mi “God” vs. kami “hair” and a’me “rain” vs. ame “candy”. Most of the listeners 

were able to perform the task described above quite well. Some of them had difficulty in 

doing so at first, but they got used to the task after hearing the practice stimuli. 

 

5.3.2 Results 

The data were analyzed with respect to the response rates in which N1 was judged to be 

accented. The results are shown in the two graphs in Figures 5.2, which plot the response 

rates as a function of the P1 values.2 

The overall pattern observed in Figure 5.2 is that in both graphs listeners’ responses 

change from ‘unaccented’ to ‘accented’ as the unaccented endpoint stimulus (low P1) to the 

accented endpoint stimulus (high P1), which indicates that the manipulated F0 contour 

properties properly signaled the acoustic cues to identify the accent type of N1. This supports 

the validity of the stimuli for Experiment 3b. 

 

                                                  
2 Each stimulus is represented by its P1 values only for representation’s sake. Note that there are other 

differences in other F0 properties among the stimuli such as the height and alignment of V1 and V2 (See 
Figure 5.1). 
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Figure 5.2 Mean response rates for N1 being judged as “accented” as a function of the 
continuum steps of the stimuli, represented by the peak F0 values of N1 (P1). On the 
x-axis, the lowest value represents an unambiguous unaccented pattern and the highest 
value an unambiguous accented pattern. (a) N2 = accented, (b) N2 = unaccented. 
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A comparison of the accented N1 condition (diamonds) with the unaccented N1 

condition (squares) in Figures 5.2a and 5.2b reveals that the lexicality effect is observed 

regardless of the accent type of N2. In both of the graphs the response rates are greater in the 

accented N1 condition than in the unaccented N1 condition when the acoustic properties of 

N1 do not strongly signal the accent type, which is most clearly seen when P1 is 182, 186 

and 189 Hz. As a result of this effect, the category boundary (50% response rate) is found 

earlier when N1 is lexically accented than when it is lexically unaccented. This suggests that 

when the acoustics does not strongly cue the accent type of a word, listeners rely on the 

word’s structural property of lexical accent to determine its accent type. 

Another observation concerns the conditions in which N1 is a nonword (the triangles in 

Figures 5.2a and 5.2b). What is observed in these conditions is a perceptual bias toward the 

unaccented type. In Figure 5.2a, the mean response rates for the nonword condition pattern 

almost identical to the unaccented condition. In Figure 5.2b, however, the pattern slightly 

differs from Figure 5.2a in that the degree of the bias toward the unaccented type is 

somewhat weaker. That is, when N1 is a nonword, listeners are biased toward the unaccented 

pattern more when N2 was accented than when it was unaccented. 

A three-way repeated-measures ANOVA with the accent type of N1 (AccN1), that of 

N2 (AccN2), and stimulus step (referred to by P1 height) as the independent variables was 

carried out. Since the lexicality effect was conspicuous in P1 = 182 Hz, 186 Hz, and 189 Hz, 

only the data obtained from those three steps were included in the analysis. The results were 

shown in Table 5.2 below: 
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Factor F value P value 
AccN1 F(2,44) = 18.267 p < 0.001* 
AccN2 F(2,44) = 74.479 p < 0.001* 
P1 height F(1,22) = 4.747 p = 0.040* 
AccN1*AccN2 F(2,44) = 3.437 p = 0.041* 
AccN1*P1 height F(4,88) = 3.465 p = 0.011* 
AccN2*P1 height F(4,88) = 2.008 p = 0.146 
AccN1*AccN2*P1 height F(4,88) = 1.926 p = 0.113 

 
Table 5.2 Results of ANOVA for the results of Experiment 3a (accent identification). A 
significant effect is indicated by an asterisk. 

 

As shown, the effect of AccN1 was significant showing that the response rate is significantly 

higher when N1 is lexically accented than when it is lexically unaccented. This supports the 

presence of the lexicality effect caused by the lexical accent status of N1. The significant 

result of P1 height suggests that the listeners judged word accent status appropriately such 

that they judged the stimuli that were made to sound accented as accented ant those that were 

made to sound unaccented as unaccented. 

The significant effect for AccN2 shows the overall response rates are higher when N1 is 

unaccented than when it is accented. However, it seemed that this was particularly caused by 

the relatively high response rates in the nonword N1-unaccented N2 condition (triangles in 

Figure 5.2b). The evidence comes from a separate repeated-measures ANOVA carried out 

excluding this condition: there was no significant effect on AccN2 (F(1,22)=1.113, p=0.303). 

There were two significant interactions: AccN1*AccN2 and AccN1*P1 height. The first 

significant interaction suggests the relation among the three N1 conditions is different 

between when N2 is accented and when it is unaccented. What seems to be mainly 

responsible is that the weaker bias toward the unaccented pattern observed in the nonword 

N1-unaccented N2 condition. The repeated-measures ANOVA excluding the nonword N1 

conditions, which was mentioned in the previous paragraph, showed a raised p-value for the 
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interaction between AccN1 and AccN2 but still a marginally significant effect 

(F(1,22)=4.119, p=0.055). This result implies that there are some other effects contributing to 

the interaction, the uncovering of which I leave for future research. 

The second interaction, AccN1*P1 height, suggests that the relation among the three 

accented N1 conditions differs among different P1 heights, which can readily be seen in 

Figure 5.2. An examination of the mean response rates at P1=182, 186 and 189 Hz – the 

values used in the statistical analysis – tells us that in both graphs in Figure 5.2 the difference 

between the accented N1 condition and the other two conditions is relatively large when P1 is 

182 Hz and 186 Hz (setting aside the exceptionally high mean value for the nonword N1 

condition at P1=186 in Figure 5.2b). However, at P1=189 Hz the difference is much smaller. 

These patterns are not surprising: they just show that the stimulus is more ambiguous with 

respect to lexical accent type at P1=182 Hz and 186 Hz than at P1=189 Hz. 

 

5.3.3 Discussion 

An important finding of Experiment 3a is the significant difference between the accented N1 

and the unaccented N1 conditions in Figures 5.2a and 5.2b. What is observed is that upon 

hearing an acoustically ambiguous word, the listeners’ response is more likely to be 

“accented” when the word is lexically accented than when it is lexically unaccented, and 

conversely their response is more likely to be “unaccented” when the word is lexically 

unaccented than when it is lexically accented. This pattern can be considered to be the 

lexicality effect (Ganong 1980), in which acoustically ambiguous stimuli are perceived such 

that they conform to lexical forms in the lexicon of the listener’s language. The current 

experimental results suggest the presence of the lexicality effect at the prosodic level. 
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Another significant pattern found in Experiment 3a is the overall bias toward the 

unaccented type in the nonword N1 conditions. In Figure 5.2 the nonword N1 conditions 

show the same pattern as the unaccented N1 conditions with much fewer accented percepts 

than in the accented conditions, especially when the stimuli were acoustically ambiguous 

(P1=182, 186, 189 Hz). This pattern is in accordance with Kubozono and his colleagues’ 

“unaccented law” (Kubozono 1996, Kubozono & Fukui 2004, Kubozono & Ogawa 2004). 

The unaccented law says that the accent type of a loanword (and of even a nonword, with the 

assumption that such an item can be regarded as an extremely unfamiliar loanword) can 

largely be determined by its syllable length and structure: specifically, there is a strong 

tendency that the accent type is unaccented when the loanword is four-moras long, ends with 

a sequence of light syllables and does not contain epenthetic vowels. 

The perceptual bias toward the unaccented pattern observed in Experiment 3a can be 

considered to be evidence for the unaccented law. The nonword used in the experiment 

inamire is four-moras long, ends with a sequence of light syllables and does not contain any 

epenthetic vowels, which satisfies the conditions in which the default unaccented pattern 

emerges. Thus, we can explain the obtained bias in such a way that the listeners perceived the 

nonword inamire as an extremely infrequent loanword and assigned the unaccented type 

based on its syllable structure and mora length when it was acoustically ambiguous. 

The observed perceptual bias does not just serve as evidence for the validity of the 

unaccented law. It suggests that the law is psychologically real. In their studies mentioned 

above, Kubozono and his colleagues reached the unaccented law as the emergent pattern by 

examining existing loanwords (and alphabetic acronyms) in a dictionary. The bias toward the 

unaccented type found in Experiment 3a indicates that the unaccented law is a perceptual 
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process that is actively processed in real time by the listeners. 

However, we should be careful about one point. The explanation of the perceptual bias 

holds by the unaccented law holds only if we assume that the listeners categorized inamire as 

a loanword, since the syllable structure conditions for the unaccented law are based on the 

accent patterns of loanwords. Studies show that the Japanese lexicon consists of several 

different “lexical strata” and words in a stratum show different phonological restrictions from 

words in another stratum, such as voiced geminates being only seen in the foreign stratum 

(Gelbart 2005, Ito & Mester 1995, 1999, Moreton 2002, Moreton & Amano 1999). We do not 

know which stratum our listeners perceived the nonword as belonging to. The nonword does 

not have any phonological cues that signal that it belongs to any particular single lexical 

stratum. In that sense, it might be perceived as an extremely rare loanword. But it was a 

nonword created by minimally changing the real person mamas Inamori and Inamire, which 

themselves are native (Yamato) words. Thus it is also equally possible that it is perceived as a 

Yamato word. The relationship between nonwords and the lexical strata in Japanese is an 

interesting topic for future investigation.  

One could think of another possible account of the observed perceptual bias. The 

account says that when listeners hear a nonword, they are biased toward the accent pattern 

that is most dominant in the Japanese lexicon. Based on the Japanese corpus developed by 

Amano & Kondo (1999), approximately 60 % of the four-mora words are unaccented 

(Kitahara 2001). Given that listeners assigned this most commonly seen accented type to the 

nonword that does not have any structural property of lexical accent, the perceptual bias 

found in the experiment has a natural explanation. Further study is warranted to determine 

which of the two accounts given above (the unaccented law account and the dominant accent 
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type account) is on the right track. 

 

5.3.4 Summary 

In Experiment 3a, we have found the lexicality effect on accent identification. It has been 

shown that when the acoustics does not provide strong cues for the accent type of a word, the 

lexical specification of the word, which is available through the segmental string of the word, 

is used to identify its accent type. In other words, when the acoustic property of lexical 

accent is not available listeners make use of the structural property to determine the accent 

type of a word. Moreover, it has been shown that when listeners heard a nonword, the accent 

type that they assigned to it was biased toward the unaccented pattern. Two possibilities that 

can account for this perceptual bias have been suggested, but further research is needed to 

properly understand this effect. 

The next sub-experiment in Experiment 3 (Experiment 3b) focuses on the structural 

property of lexical accent. Specifically, it examines how the structural property of lexical 

accent is used to assess the perceived prominence of an F0 peak. The crucial question is 

whether lexical accent is perceptually normalized with only the structural property of lexical 

accent when no acoustic property is available. 

 

5.4 Experiment 3b: Prominence judgment 

5.4.1 Methods 

5.4.1.1 Stimuli 

The stimuli used in Experiment 3b were basically identical to those used in Experiment 3a. 

However, there were two differences. One was that the nonword stimuli were excluded 
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simply to keep the size of the experiment manageable. That is, only the sentences in (1) with 

different combinations of accent types between N1 and N2 were used. The sentences are 

reproduced in (3) below for each of reference. 

The other difference was that the F0 heights of N2 were varied to indicate 6 different 

heights, as shown in Figure 5.3 below. N2 was varied only in its F0 peak height (P2) when it 

was accented and in its F0 peak height (P2) and the following F0 peak (P3) when it was 

unaccented, with its overall F0 contour shape kept constant. The step size was 14 Hz. The 

actual F0 values used for the N2 height in Experiment 3b are shown in Table 5.3. The P2 

values were identical between the accented and the unaccented N2 conditions. One might 

object that we would need a range that was shifted to a bit higher range for the accented word 

condition because we know that accented words are realized higher than unaccented words. 

However, this manipulation actually did not pose a problem since the purpose of the 

manipulation was to obtain the point where N1 and N2 are judged to have the same 

perceptual prominence. Thus, as long as we obtain a pattern in which the responses for N2 

that are judged to be more prominent than N1 are an orderly function of P2 height, there 

should be no problem with the same F0 range between the accented and unaccented 

conditions. As seen in the results section, we did obtain such orderly functions in the 

experiment. 

(3) = (1) 
 a. aa 
 Ina’mori-no an’iyome-ga inai. 
 Inamori-Gen sister-in-law-Nom not found 
 Inamori’s sister-in-law is not found. 
 
b. au 
 Ina’mori-no omiyage-ga kieta. 
 Inamori-Gen souvenir-Nom disappeared 
 Inamori’s souvenir disappeared. 
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c. ua  
 Inamura-no an’iyome-ga inai. 
 Inamura-Gen sister-in-law-Nom not found 
 Inamura’s sister-in-law is not found. 
 
d. uu 
 Inamura-no omiyage-ga kieta. 
 Inamura-Gen souvenir-Nom disappeared 
 Inamura’s souvenir disappeared. 

 

The 6 different F0 heights for N2 were combined with the 6 N1 stimuli, yielding 36 

stimuli per continuum. The overall number of stimuli was 144 (36 × 4 sentences). 

 

Step  N2 1 2 3 4 5 6  
P2 (a or u) 120 134 148 162 176 190  

P3 (for u only) 109 123 137 151 165 179 (Hz)
 

Table 5.3 Heights of N2 peak (P2) and the F0 shoulder (P3). 
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Figure 5.3 F0 contours of the stimuli used in Experiment 3b: N2 shows F0 properties 
for an accented word in (a) and for an unaccented word in (b). 

 

5.4.1.2 Listeners 

The listeners for Experiment 3b were the same as in Experiment 3a. Note, however, that the 
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data from all of the 24 listeners were used for the analysis including the listener whose data 

were mistakenly lost in Experiment 3a. 

 

5.4.1.3 Procedure 

Experiment 3b was run following Experiment 3a. The stimulus sentences in (3), with 

continua on N1 and different peak heights on N2, were randomly presented to the listeners. 

The listeners’ task was identical to Experiments 1 and 2: to judge relative perceived 

prominence between N1 and N2. More specifically, they were asked to judge which of N1 

and N2 was given more emphasis by the speaker. 

The stimulus presentation involved repetitions and the number of repetitions depended 

on the stimuli. Specifically, the lowest and the highest N2 values were presented only 3 times 

while the other 4 intermediate values were presented 6 times. This was simply because it was 

expected that listeners would reliably respond that N1 was more emphatic than N2 when N2 

was at the lowest value and that N2 was more emphatic than N1 when N2 was at the highest. 

For each of the N2 heights, the 6 N1 stimuli were combined. Since there were 4 accent-type 

conditions (aa, au, ua, and uu), the total number of the stimuli presented was 720 ([2 

endpoint N2’s × 3 repetitions + 4 intermediate N2’s × 6 repetitions] × 6 N1 × 4 accent-type 

conditions). Experiment 3b took approximately 70 minutes including the instructions, a 

practice session and breaks. 

 

5.4.1.4 Analysis 

Just as Experiments 1 and 2, the response rates for N2 (N2 sounding more emphatic than N1) 

were obtained for each listener. Then, the 50% crossover point of the response rates was 
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calculated for each P1 height and for each listener, by probit analysis. 

 

5.4.1.5 Predictions 

Recall that in Experiment 1 we found perceptual effects for accentual boost and downstep. 

The accentual boost effect was found between aa and au: the difference between P1 and P2 

was greater in au than in aa. The downstep effect was found between aa and uu: the 

difference between P1 and P2 was greater in aa than in uu. Based on these findings, I 

proposed two perceptual normalization processes: accentual boost normalization and 

downstep normalization. 

If the structural property of lexical accent plays a role in these perceptual normalization 

processes, we should see their effects between aa in (3a) and ua in (3c) and between au in 

(3b) and uu in (3d). Note that the N1s in each of these pairs have exactly the same F0 contour 

properties. They only differ from each other with respect to segmental content. The lexically 

accented N1 in aa (Ina’mori) and the lexically unaccented N1 in ua (Inamura) are identical 

with respect to F0 pattern. The F0 properties of these two N1s were manipulated in the same 

way with the segmental content intact. The same manipulation was done for au and uu. 

Therefore, the only information that the listeners can rely on in order to identify the accent 

type of N1 in a sequence is the lexically-specified accent information, namely the structural 

property of lexical accent. 

The specific predictions are illustrated in Figure 5.4, using the same type of graph that 

we have been using in describing experimental results. 
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Figure 5.4 Predictions made when the effects of the structural property of lexical accent 
is assumed. 

 

There are three specific predictions. The first prediction is that for a given height of P1, 

P2 is higher in F0 for ua than for aa when P1 and P2 are perceived to have the same 

prominence. In terms of P1-P2 difference, it is predicted to be greater in aa than in ua.3 This 

effect is expected for two reasons. First, accentual boost normalization is applied to only the 

second word in ua while this perceptual process is applied in both of the words in aa, which 

causes their accentual boost effects to be unobservable. Therefore, it should pattern as if the 

accentual boost effect was seen only in the second word of ua, and P2 is expected to be 

higher in ua than in aa for a given P1 value when P1 and P2 have the same prominence. 

Second, downstep normalization is expected in the second word of aa but not in ua, which 

will bring a lower P2 value in aa than in ua for a given P1 value in the circumstance in which 

P1 and P2 are perceived to be equally prominent. Again, P1-P2 difference will be greater in 

aa than in ua. So accentual boost normalization and downstep normalization are predicted to 

                                                  
3 Note that the “P1-P2 difference” means the subtraction of P2 from P1 and not the absolute difference between 

P1 and P2. Thus, if the difference was negative in ua while it was positive in aa (which might well be the 
case) with the absolute difference being greater in ua, I would still say P1-P2 difference is greater in aa than 
in ua. 
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Prediction 1 
(ua > aa)

Prediction 2
(uu > au) 

Prediction 3 
(ua, aa > uu, au ) 

y=xAmbiguous 
range 



 110

give a combined effect such that P1-P2 difference is greater in aa than in ua. 

The second prediction concerns au and uu. It is predicted that for a given P1 height, P2 

will be higher in uu than in au for it to have the same perceived prominence as P1. Here 

again, accentual boost normalization and downstep normalization are both considered to be 

responsible for this effect. First, accentual boost normalization is expected only in the first 

word of au, whereby P1 has to be higher in F0 in au than in uu when P1 and P2 are perceived 

to have the same prominence. From the perspective of P1-P2 difference, the difference value 

should be greater in au than in uu. Second, downstep normalization is expected in au but not 

in uu, thus for a given P1, P2 is lower in au than in uu when P1 and P2 have the same 

perceived prominence. Like accentual boost effect, the downstep effect is predicted to give a 

greater P1-P2 difference in au than in uu. Just like in the first prediction, the effects of 

accentual boost normalization and downstep normalization are predicted to show a combined 

effect on P1-P2 difference such that it is greater in au than in uu. 

The third prediction is that P2 will be higher in the sequences in which the second word 

is accented (aa and ua) than when it is unaccented (au and uu). Recall that in the 

experimental sentences the second words differ from one another with respect to the 

structural as well as the acoustic properties of lexical accent. Thus, the way the second words 

differ between aa and ua on the one hand, and au and uu on the other, is the same as the way 

the experimental sentences in Experiment 1 did, which suggests a robust normalization effect. 

The effect that is expected to be seen is the accentual boost effect: for a given P1 height, P2 

has to be higher in xa (where x could be a or u) than in xu when P1 and P2 are perceived to 

be equally prominent. In other words, greater P1-P2 difference is expected in xu than in xa 

when P1 and P2 are perceived to have the same prominence. 
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We also have to consider another set of predictions, based on the assumption that the 

structural property of lexical accent does not play a role in prominence perception. In other 

words, this second set of predictions is based on the hypothesis that only the acoustic 

property of lexical accent is relevant. This hypothesis makes the three predictions shown in 

Figure 5.5. They are (1) there will be no difference between ua and aa; (2) there will be no 

difference between au and uu; (3) there will be a difference between xa and xu such that for a 

given P1 height, P2 is higher in xa than in xu when P1 and P2 are perceived to be equally 

prominent. The differences between Figure 5.5 and Figure 5.4 are clear: the two sets of 

predictions differ from one another with respect to Predictions 1 and 2 but share Prediction 3. 

 

 Ambiguous range 
 
 
 
 P2 
 
 
 
 
 
 u P1 a 

 
Figure 5.5 Predictions made when the effects of the structural property of lexical accent 
is not assumed. 

 

 

5.4.2 Results 

The results of Experiment 3b are represented in Figure 5.6. This graph shows P2 values that 

have the same perceived prominence as P1. The 5-step N1 continuum from the unaccented 

to the accented patterns is represented on the x-axis.  

ua
aa
uu
au

Prediction 1 
(ua = aa)

Prediction 2
(uu = au) 

y=x

Prediction 3 
(ua, aa > uu, au ) 



 112

140
145
150
155
160
165
170
175
180
185
190
195
200

179 182 186 189 193 196
P1 (Hz)

P
2:

 s
am

e 
pe

rc
ei

ve
d 

pr
om

 a
s 

P
1 

(H
z)

ref
ua
aa
uu
au

 
Figure 5.6 Mean values of P2 giving the same prominence as P1 as a function of P1 
height for different accent-type conditions. 

 

One can readily see that all of the mean P2 values are well below the reference line y=x, 

showing that for P1 and P2 to be equal in perceived prominence, P2 has to be much lower in 

F0 than P1. In other words, this is a replication of the effect of perceptual compensation for 

F0 declination (Pierrehumbert 1979). 

In addition to the F0 declination effect, we can make two observations. First, compare 

the cases in which only the lexical accent status of N1 is different, namely ua vs. aa and uu 

vs. au. The mean P2 values are consistently lower in aa than in ua and in au than in uu. In 

other words, aa and au need larger P1-P2 differences than ua and uu, respectively, when P1 

and P2 are perceived to be equal in prominence (ax > ux, where x is a or u). These results 

confirm Predictions 1 and 2 in Figure 5.4. Recall that the first words in ua and aa are 

identical to one another in their F0 contour shape. So are the first words in ua and uu. Thus, 

the observed differences in P2 height should be explained in terms of the difference in their 

unaccented accented 

y=x 
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lexical accent status. The structural property of lexical accent plays a role in the perception of 

intonational prominence. 

The second observation concerns the large differences between the cases where N2 is 

accented and those where it is unaccented (xa vs. xu). Across the all N1 stimuli, the ua and 

the aa conditions, in which N2 is accented, show remarkably higher mean P2 values than the 

uu and the au conditions, in which N2 is unaccented. To put it in other words, a greater P1-P2 

difference is observed when N2 is unaccented than when it is accented. This second pattern is 

what we expected in Prediction 3 in Figure 5.4 (and in Prediction 3 in Figure 5.5). The 

second words were manipulated only for F0 peak height. Their F0 contour shapes were kept 

intact. Both the structural and the acoustic properties of lexical accent were present in them 

for the listeners to identify their accent types. We expected a robust perceptual effect and that 

is confirmed in the experiment. 

Although both of the two observed patterns are consistent with the idea of accentual 

boost normalization (and downstep normalization for the first pattern), they differ from one 

another in their effect size. The size of the effect is much greater when the accent type of N2 

differs (ux vs. ax or filled vs. unfilled symbols) than when the accent type of N1 differs (xa 

vs. xu or squares vs. triangles). Given that only the structural property of lexical accent is 

available on N1 but both the structural and the acoustic properties of lexical accent are 

available on N2, this bigger difference may be seen as the intrinsically greater influence of 

the acoustic property of lexical accent. 

The statistical analysis supports our observations. A three-way repeated-measures 

ANOVA was performed with accent type of N1 (AccN1), that of N2 (AccN2), and stimulus 

step as the independent variables. In Experiment 3a, we found that the stimuli that were 
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ambiguous in terms of accent type were the three intermediate stimuli in the N1 continua, i.e. 

ones at P1 = 182 Hz, 186 Hz, and 189 Hz. Thus, only those three stimuli were used in the 

ANOVA analysis. The results were summarized in Table 5.4. Only the main effects of accent 

types of N1 and N2 were significant. That is, when P1 and P2 are equal in perceived 

prominence, the mean P2 values were significantly lower when N1 was accented than when 

it was unaccented (aa and au are lower than ua and uu) and were significantly higher when 

N2 was accented than when it was unaccented (ua and aa are higher than uu and au). From 

these results, we can reasonably conclude that (1) the structural property of lexical accent 

plays a role in perception of intonational prominence and that (2) the effect is greater when 

the structural and the acoustic properties of lexical accent are expressed together. 

 

Factor F value P value 
AccN1 F(1,23) = 5.584  p = 0.027* 
AccN2 F(1,23) = 70.204 p < 0.001* 
P1 height F(2,46) = 1.640 p = 0.205 
AccN1*AccN2 F(1,23) = 0.00001 p = 0.997 
AccN1*P1 height F(2,46) = 0.268 p = 0.766 
AccN2*P1 height F(2,46) = 0.801 p = 0.455 
AccN1*AccN2*P1 height F(2,46) = 0.594 p = 0.556 

 
Table 5.4 Results of ANOVA for the results of Experiment 3b. Significant results are 
indicated by the asterisks. 

 

5.4.3 Discussion 

In this section, I have two tasks. The first one is to show how the patterns observed in 

Experiment 3b can be explained in terms of accentual boost normalization and downstep 

normalization. The second task is to discuss the theoretical implications of the experimental 

findings. 
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5.4.3.1 Explanations of the observed patterns 

What has been found in Experiment 3b can be summarized as the following two patterns. 

First, P1-P2 difference is greater when the first word is accented than when it is unaccented 

(ax > ux). This pattern is observed when the accented type of the first word is signaled only 

by its structural property of lexical accent. Second, P1-P2 difference is greater when the 

second word is unaccented than when it is accented (xu > xa). Unlike the first pattern, this 

difference is observed when the structural and the acoustic properties of lexical accent are 

both present, and the effect is quite robust in the sense that the effect size is much larger in 

the second pattern than in the first one. 

The first pattern (ax > ux) can be explained as the combined effect of accentual boost 

normalization and downstep normalization, as shown in Figure 5.7 using the same type of 

graphical technique as the one employed for the explanations of the results of Experiment 1 

(Chapter 3). 

 

 Accentual boost normalization 
 
 

 
 
 P1 
 P2 P1 
 
 u x a x 
 
 
 
 Downstep normalization 
 

Figure 5.7 Explanation of the greater P1-P2 difference in F0 in ax than in ux by 
accentual boost normalization and downstep normalization. 
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Given accentual boost normalization, the perceived height of P1 in ax is lower than its 

physical height due to the accentual-boost-cancelling mechanism of the perceptual process. 

The first word of ux is unaccented, and no perceptual normalization is at work there. As a 

result P1-P2 difference is greater in ax than in ux. Moreover, physical P1-P2 difference gets 

even greater due to downstep normalization on the second word of ax. The first word of ax is 

accented, which triggers downstep normalization on the following word. The production 

effect of downstep is perceptually undone on the second word of ax such that the perceived 

P2 height is higher than the physical P2 height. This perceptual adjustment makes physical 

P1-P2 difference greater in ax than in ux. 

Let us now turn to the explanation of the second pattern: greater P1-P2 difference in the 

sequences where the second word is unaccented than those where it is accented (xu > xa). 

This pattern can properly be explained by accentual boost normalization,4 as graphically 

shown in Figure 5.8. 

 

 
 
 
 P1 P1 
 
 P2 P2 
 
 x u x a 
 

Figure 5.8 Explanation of the greater P1-P2 difference in F0 in xu than xa by accentual 
boost normalization. 

 

                                                  
4 One may want to point out that downstep normalization is involved in the aa-au pair because the first word is 

accented in both sequences. However, the perceptual effect for downstep normalization can not be reflected 
on P1-P2 difference precisely because the first words are both accented. It is considered that downstep 
normalization is applied to both of the second words because of which no difference in relative perceived 
prominence can be observed between aa and au. It should be concluded that only accentual boost 
normalization should be responsible for the second pattern. 

Perceived 
height 

Physical height



 117

What is shown in this figure is that P1-P2 difference is greater in xu than xa because the 

accented second word of xa triggers accentual boost normalization whereby its F0 peak 

height is higher than its perceived height. Thus, the smaller P1-P2 difference in xa is 

equivalent to the larger P1-P2 difference in xu when P1 and P2 are equal in perceived 

prominence in each sequence. 

 

5.4.3.2 Implications 

This section discusses two issues. The first pertains to the importance of lexical accent 

in the perception of intonational prominence. The finding that the structural property of 

lexical accent plays a role in the perception of intonational prominence lends further support 

for the claim I made in Chapter 3: models of the perception of intonational prominence have 

to take lexical accent into account. The crucial point is that the greater P1-P2 differences 

found in ax than in ux are not caused by the difference in F0 properties between the two first 

words but by the difference in lexical accent status between them. The two first words are 

identical to one another with respect to F0 contour shape. They only differ with respect to the 

accent specification as part of the lexical information of each word, which can be accessed by 

identifying the word itself through the segmental content. Thus, the F0 properties can never 

be responsible for the greater P1-P2 differences in ax than in ux. The result of ax being 

greater than ux in P1-P2 difference can be taken as evidence that listeners’ knowledge of 

phonological lexical accent status affects perceived prominence of intonational peaks. 

Note that the Japanese lexicon plays a decisive role here. The result mentioned above 

would not be observed if the listeners were not native speakers of Japanese who have the 

Japanese lexicon. It is the knowledge on accent that is specific to Japanese that causes that 
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result. This is solid evidence that lexical accent needs to be included as an important factor 

that influences perceived prominence in prominence perception models. 

As the second issue I want to take up the nature of accentual boost normalization and 

downstep normalization. Specifically, I want to discuss the level at which they operate in the 

processing of speech signal. The question is whether the two perceptual processes are 

phonological or phonetic.5 

The experimental finding that accentual boost normalization and downstep 

normalization can both be informed by the structural property of lexical accent suggests that 

these normalization processes operate with reference to the phonological representation 

where the information of lexical accent status is available. This means that the perceptual 

processes are phonological (rather than phonetic). 

While this claim conforms to the conception of lexical accent as phonological entity, it 

runs counter to the characterization of downstep by Pierrehumbert & Beckman (1988). For 

these authors, downstep is a phonologically-conditioned phonetic implementation rule. In 

their model, the phonetic implementation exploits the difference in tonal type between 

accented and unaccented words, namely lexical accent H* and phrasal H. A lexical accent H* 

triggers a phonetic implementation rule on pitch range scaling whereby the pitch range is 

compressed for the tones that follow the lexical accent H*, but a phrasal H does not trigger 

the implementation rule and as a result no pitch range compression occurs. This difference in 

the application of the implementation rule accounts for the different patterns between 

downstepped and non-downstepped F0 peaks. Thus, in Pierrehumbert & Beckman’s (1988) 

                                                  
5 Whether a linguistic phenomenon is phonological or phonetic is a difficult issue because the answer crucially 

depends on what is considered phonetic or phonological. Here I take one of the most common views: 
Phonology deals with categorical and symbolic entities while phonetics deal with gradient and non-symbolic 
entities (Keating 1988, Pierrehumbert 1990, Cohn 1993 among others). For a recent review, see Kingston 
(2007). 
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model, the distinction between a downstepped and a non-downstepped F0 tone is not 

represented in the phonological representation: it is a job of phonetics. 

Pierrehumbert & Beckman’s (1988) model of downstep is based on speech production. 

Under the reasonable assumption that the production and the perception of downstep are 

governed by the same system, the most reasonable modeling of downstep normalization 

would be to give the process the same characterization as Pierrehumbert & Beckman’s 

production-based downstep. That is, downstep normalization is conceptualized as the process 

that operates at the phonetic level but makes reference to the information at the phonological 

representation. This way, downstep normalization can be the perceptual counterpart of the 

downstep in production. The phonetic implementation rule for downstep and downstep 

normalization both do not manipulate symbols but only refer to symbolic tonal strings in the 

phonological representation. I will elaborate this suggestion in Chapter 7. 

 

5.5 Chapter summary 

This chapter showed that the structural property of lexical accent is crucially relevant to the 

perceived prominence of intonational peaks. Experiment 3a demonstrated the lexicality effect 

in the identification of lexical accent in Japanese. When the acoustic signal does not have the 

strong cues for a certain accent type, listeners’ response is biased toward the phonological 

accent type that is specified for the word in the lexicon. Experiment 3a also used nonword 

stimuli. Results showed a bias toward the unaccented pattern rather than the accented one. 

Several possible accounts were discussed, including the claim made by Kubozono and his 

coworkers (Kubozono 1996, Kubozono & Fukui 2004, Kubozono & Ogawa 2004) that a 

large part of the accent patterns of loanwords are not determined by the lexical specifications 
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but largely by independent phonological factors such as syllable length and syllable structure. 

Experiment 3b tested whether listeners’ phonological knowledge of lexical accent status 

(= the structural property of lexical accent) affects the assessment of perceived prominence. 

The most important finding is that when P1 and P2 are equally prominent, P2 is significantly 

lower in F0 when N1 is accented than when it is unaccented. This finding is obtained 

crucially when N1’s accent type is differentiated by its lexical accent status alone. This 

finding is important because it indicates that phonological knowledge influences the 

perception of intonational prominence. 
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CHAPTER 6 

 

EXPERIMENT 4: ACOUSTIC PROPERTY OF LEXICAL ACCENT AND 

PERCEIVED PROMINENCE 

 

6.1 Introduction 

In the previous chapter, we considered the interaction between lexical accent and perceived 

prominence with respect to the structural property of lexical accent, namely the phonological 

lexical accent status of words specified in the lexicon. Experiment 3 showed that the 

proposed perceptual normalization processes – accentual boost normalization and downstep 

normalization – play a role in the interpretation of perceived prominence. This chapter 

examines the flip side of Experiment 3. We explore the interaction between prominence 

perception and the acoustic property of lexical accent, namely the phonetic F0 properties 

associated with lexical accent. 

We have not yet investigated the effects of the acoustic property of lexical accent on 

prominence assessment. In Experiment 1, we used naturally-produced utterances in which 

the structural and the acoustic properties of lexical accent were both present in the stimuli. In 

Experiment 3, we used F0 contours that contained the structural property of lexical accent 

but did not contain the acoustic property in order to study the pure effects of the structural 

property on perceived prominence. What we need to do next is obvious: we need to study the 

pure effects of the acoustic property of lexical accent on perceived prominence. Experiment 4, 

which is reported in this chapter, attempts to fulfill this purpose. 

There are two specific research questions asked in Experiment 4: (1) Is accentual boost 
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normalization triggered by the acoustic property of lexical accent (henceforth 

phonetically-driven accentual boost normalization)? and (2) Is downstep normalization 

triggered by the acoustic property of lexical accent (henceforth phonetically-driven downstep 

normalization)? Of these, the second question is the particular interest of this chapter. 

 

6.2 Theoretical status of downstep in Japanese 

The question of whether there is phonetically-driven downstep normalization is interesting 

when we consider it in terms of the theoretical status of downstep in Japanese. Downstep in 

Japanese is often characterized as a phonologically-conditioned phonetic implementation 

rule: a MiP is realized lower when it is preceded by an accented MiP than by an unaccented 

MiP. Pierrehumbert & Beckman (1988) claimed that this lowering of the second MiP is 

achieved by the reduction of the pitch range after the first MiP, and as a result, all subsequent 

tones are scaled in the reduced pitch range. In their characterization, downstep in Japanese is 

phonologically-conditioned because its occurrence is crucially dependent on the presence of 

a lexical accent in the preceding phrase, but it operates at the phonetic level because it 

manipulates the scaling of tones in a gradient tonal space. 

However, as we have been discussing in this dissertation, Japanese lexical accent has 

two facets, its acoustic and the structural properties. It has never been clearly said which 

property of lexical accent downstep refers to in the traditional conception of downstep in 

Japanese. This is not surprising, however, since in naturally-produced utterances these two 

properties are always compatible with each other, which in turn suggests that this issue needs 

to be scrutinized from the viewpoint of perception. 

In previous theoretical work on downstep in Japanese, Sugahara’s (2003) work is 
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exceptional. She proposed that Japanese downstep is phonetic in that it is triggered by the 

physically realized F0 value of a tone and not by the phonological lexical accent property of 

a word. She also claimed that what downstep refers to is not the accent H* tone but the 

following trailing low tone, i.e. +L. 

Her evidence for these claims comes from a finding in one of her production 

experiments. In the experiment, she showed that the magnitude of the effect of downstep on a 

tone following an accent H* tone diminishes as more tones intervene between the tone and 

the preceding accent H* tone. This is graphically illustrated in Figure 6.1. 

 

 
 
 
 
 
 
 F0 
 
 
 
 Time 
 
 )MiP1 ( )MiP2 
 

Figure 6.1 Diminution of the effect of downstep across tones. Sugahara’s (2003) 
Figure 4.9 (p.113) is redrawn with slight modifications by the author. 

 

The two F0 contours shown in the figure represent the sequences of an unaccented MiP 

followed by an accented MiP (ua, solid line) and of an accented MiP followed by an accented 

MiP (aa, broken line). The second MiP in the aa sequence undergoes downstep and all of the 

tones in the MiP are realized lower than the tones in the second MiP in the ua sequence, in 

which no downstep occurs on the second MiP because it is preceded by an unaccented MiP. 
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What Sugahara (2003) demonstrated in her experiment is that the differences between the 

temporally-comparable tones in the two F0 contours, namely those indicated by (a), (b) and 

(c) in the figure, diminish from (a) to (c). 

Note that this result cannot be accounted for by Pierrehumbert & Beckman’s (1988) 

pitch-range reduction model. In their model, all tones in a post-accent MiP are realized in a 

uniformly-reduced pitch range in such a way that they are reduced by the same proportion so 

that the scaling relation among them are identical between the original and the reduced pitch 

ranges. Therefore, the diminution of the downstep effect such as the one in Figure 6.1 is not 

expected in this model of downstep. 

Based on this result, Sugahara proposes that downstep in Japanese is not based on a 

pitch range reduction triggered by the lexical accent H* but the phonetic value of a tone is 

computed relative to the value of the previous tone. She claims that downstep is a 

consequence of the second member of the accent H*+L tone (= +L) being scaled realized 

lower than a L% edge tone. Because the +L tone is realized lower that the L% tone, the value 

of the following tone is also lower than the tone following the L% tone (see Sugahara 2003 

for the exact algorithm). 

Note that Sugahara’s (2003) claim has two parts. One is that downstep in Japanese is a 

phonetic phenomenon that refers to the physically-realized F0 value of some tone. The other 

is that the relevant tone whose value has an effect on what follows is the trailing part of the 

accent tone +L, not H*. This chapter only examines the first claim. 

In Experiment 4, the effects of the acoustic property of lexical accent on downstep 

normalization and on accentual boost normalization are examined, with a particular focus on 

downstep normalization. Together with this principal purpose, the effect of the structural 
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property of lexical accent on downstep normalization is also investigated. To these ends, 

Experiment 4 uses stimuli whose acoustic and structural properties of lexical accent are 

varied independently of one another. Consequently, the F0 contour information and the 

lexical accent status information are compatible with each other in some conditions but 

conflict with each other in others. Thus, it is possible to examine whether there is any 

perceptual normalization effect between conditions which only differ from one another with 

respect to F0 contour shape or lexical accent status. In the following section, I describe the 

basic design of Experiment 4 and the ideas behind it. 

 

6.3 The basic idea of Experiment 4 

When one wants to study two different factors that are involved in a single phenomenon, the 

usual approach is to control one of the factors so as to be able to examine the other. The 

phenomenon that we are facing is lexical accent in Japanese, and the two factors are the 

acoustic and the structural properties of lexical accent. In the last chapter, by using 

ambiguous stimuli (or more precisely continua that contain ambiguous stimuli), we 

controlled the acoustic property of lexical accent in order to study the effects of the structural 

property of lexical accent on the assessment of perceived prominence. In this chapter, we 

want to study the flip side: the effects of the acoustic property of lexical accent on perceive 

prominence. To achieve this goal we need to control the structural property of lexical accent. 

The most straightforward tack one could take is probably to use nonwords, since 

nonwords, by virtue of their own nature, do not have any lexical accent status. However, this 

approach has a problem. It is known that when one hears a word-like string of segments, 

some existing words are activated on the basis of segmental similarity, even if the string does 
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not match any of those existent words in the language. Thus, it would be difficult to see the 

effects that are brought out only by the properties of F0 contour shape. Lexical activation 

needs to be properly controlled. 

To overcome this difficulty, Experiment 4 takes the following approach. It employs real 

words with naturally-produced F0 contours. However, in some conditions the F0 contour is 

manipulated such that its structural property of lexical accent is inconsistent with its acoustic 

property. For example, in the experiment, we have a sequence of two words which are 

naturally-produced as accented-accented (aa). In this sequence, the acoustic and the 

structural properties of lexical accent are matched with each other. Let us indicate this 

sequence as [aa]aa, where [aa] represents the acoustic properties and [  ]aa the structural 

properties. We also have a separate sequence of aa using the same words as [aa]aa, but in this 

sequence the words are accented only phonologically: the F0 contour shape is unaccented for 

both of them. The acoustic and the structural property of lexical accent conflict with each 

other in this sequence (assuming that there are no real words that correspond to combination 

of the segments and the accent type). This sequence can be denoted as [uu]aa. Thus, [aa]aa 

and [uu]aa only differ from one another with respect to the acoustic property of lexical accent. 

We compare these two sequences in the experiment, which allows us to see the effects of the 

acoustic property of lexical accent on downstep normalization.1 Of course we also have the 

complementary sequence pair of sequences in the experiment: [aa]uu and [uu]uu. 

An important point here is that lexical activation is properly controlled in these 

comparisons. The words in [uu]aa can still be perceived as those that their segmental strings 

indicate, because the experimental words were selected such that there are no existing words 

                                                  
1 Recall that aa and uu were compared to see the pure effect of downstep normalization in Experiment 1. It is 

important to keep the accent type identical within a sequence because the effect of accentual boost 
normalization would emerge if adjacent words had different accent types, which causes a confounding effect. 
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that match their segmental strings and the manipulated phonetic properties at the same time. 

That is, it is possible that listeners activate the intended lexical items when their phonetic 

properties are inconsistent with their lexical entries.2 This means that we can study the 

effects of the acoustic property of lexical accent on prominence assessment with controlled 

lexical activation. For example, the word oma’wari ‘police officer’ is a phonologically 

accented word and is pronounced with a lexical accent on the second mora. However, it is 

possible to identify this word when it is pronounced as if it was an unaccented word, because 

there is no real word in Japanese that has the segmental string of omawari and is lexically 

unaccented. 

 

6.4 Methods 

6.4.1 Stimuli 

The five sentences shown in (1) were recorded several times by the author in a 

sound-attenuated booth. The stimulus sentences were based on the mean tonal values of those 

recorded utterances. The sentences all had the syntactic structure of [N(oun)1 N(oun)2 V]. 

The two N1s (Yama’nashi and Yamanote) and the two N2s (oma’wari and omamori) all were 

four-moras long and the two verbs (yameta and kieta) were three moras long. The two words 

for N1 Yama’nashi and Yamanote are lexically accented and unaccented, respectively, but 

their phonetic F0 properties were independently controlled at the recording of the sentences. 

That is, even though Yama’nashi is lexically accented and Yamanote is lexically unaccented, 

recording was made such that Yama’nashi was pronounced as if it was a lexically unaccented 

word and Yamanote was pronounced as if it was a lexically accented word depending on the 

                                                  
2 Listeners may have an impression that the intended words are misaccented and that the speaker speaks some 

dialect that is different from theirs, since accent patterns are one of the most conspicuous features that 
distinguish regional dialects in Japanese. 
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experimental conditions. Similarly, oma’wari and omamori are lexically accented and 

unaccented respectively, and their phonetic properties were different depending on the 

condition. 

(1) a. [aa]aa Yama’nashi-no oma’wari-ga yameta. 
 Yamanashi-Gen police officer-Nom quit-past 
 ‘The police officer from Yamanashi quit.’ 
 
 b. [uu]aa Yama’nashi-no oma’wari-ga yameta. 
 
 c. [aa]uu Yamanote-no omamori-ga kieta. 
 Yamanote-Gen charm-Nom quit-past 
 ‘The charm of Yamanashi disappeared.’ 
 
 d. [uu]uu Yamanote-no omamori-ga kieta. 
 
 e. [au]uu Yamanote-no omamori-ga kieta. 
 

(An underlined word indicates that it is phonetically accented; an apostrophe 
indicates that the word is lexically accented.) 

 

In sentence (1a), N1 and N2 both had the phonetic F0 contours of an accented word 

whereas in (1b) N1 and N2 had those of an unaccented word, keeping the segmental string 

identical to the words in (1a). In other words, the acoustic properties of N1 and N2 were 

consistent with their structural properties in (1a) but were not in (1b); in (1b) these two types 

of information conflicted with each other. 

Let us turn to the sentences in (1c)-(1e). The sentence in (1d) was a natural rendition of 

the words Yamanote and oma’wari, so they did not have any conflict between their acoustic 

and the structural properties of lexical accent. Just like the sentence in (1b), the acoustic 

properties were manipulated in (1c) and (1e). In (1c), N1 and N2 were both phonetically 

accented but phonologically unaccented. In (1e), only N1 had the phonetic F0 property that 

conflict with its phonological property (phonetically a but phonologically u). Both kinds of 
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properties were matched in N2 in (1e). 

The recorded sentences were stylized and resynthesized in terms of F0 peak height, 

using the PSOLA algorithm in the Praat program. The basic procedure was identical to that 

adopted in the earlier experiments. The F0 peak height (the H* tones for the accented words; 

the phrasal H tones for the unaccented ones) was varied, in 5 steps for N1 (first peak, P1) and 

in 6 steps for N2 (second peak, P2). The step size was 1.0 st for P1 and 1.4 st for P2 with the 

base frequency of 100 Hz. The exact F0 peak values used in the experiment are shown in 

Table 6.1. The other tonal values were fixed (see Appendix for those values). The actual F0 

contours used in the experiment are shown in Figure 6.2. Overall, the number of stimuli was 

150 (5 P1 heights × 6 P2 heights × 5 sentence types). 
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[aa]aa & [aa]uu    P2     
P1 102 111 120 130 141 153 166 180 
155         
164         
174         
184         
195         

 a 
 

[uu]uu & [uu]aa    P2     

P1 105 
(97) 

113 
(105)

123
(114)

133
(124)

145
(134)

157
(145)

170 
(158) 

184 
(171) 

133 (121)         
141 (128)         
149 (136)         
158 (144)         
167 (153)         

 b 
 

[au]uu    P2     

P1 105 
(97) 

113 
(105)

123 
(114)

133 
(124)

145 
(134)

157 
(145)

170 
(158) 

184 
(171) 

155         
164         
174         
184         
195         

 c 
 
Table 6.1 F0 values of the peak of N1 (P1) and N2 (P2) in Experiment 4. The cells that 
are shaded indicate that they were not used. The values in brackets in (b) and (c) are 
the ones for the “F0 shoulder”, i.e. the spread phrasal H tone at the right edge of the 
unaccented words. 
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Figure 6.2 The F0 contours used in Experiment 4: (a) [aa]aa and [aa]uu, (b) [au]uu, (c) 
[uu]aa and [uu]uu. 

 

6.4.2 Listeners 

Thirty undergraduate and graduate students at 4 different universities in Tokyo (Sophia 

University, Tokyo University of Agriculture and Technology, and Waseda University) 

participated in Experiment 4 (mean age 25.0). The majority of the listeners (21) were from 

Tokyo and its neighboring areas. The remaining 9 were from various other areas (Fukuoka, 

Gifu, Hokkaido, Hyogo, Ibaraki, Kagawa, Mie, Nagano, and Niigata). All listeners were paid 

for their participation. 
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6.4.3 Procedure and analysis 

The general procedure of Experiment 4 was identical to that of the earlier experiments. The 

experimental sessions took place in a sound-attenuated room or a quiet classroom at the 

universities mentioned in the previous section. Listeners were tested in groups of two to five 

people. They each sat at a computer terminal facing a display. The stimulus sentences were 

randomly presented to the listeners, using the MFC in the Praat program. The listeners’ task 

was identical to that adopted in the earlier experiments: to judge which of the two words (N1 

or N2) was given more emphasis by the speaker. 

Stimuli were presented more than once, but the number of repetitions differed 

depending on the stimulus: for each P1 value, the highest and the lowest P2 values had 2 

repetitions, the second highest and the second lowest P2 values 4 repetitions, the remaining 

intermediate P2 heights had 6 repetitions. In total, there were 600 different tokens in the 

experiment. 

The stimuli were divided into 8 blocks of trials, each of which contained 75 stimuli. 

The listeners were instructed to take a short break after every block of trials if they wanted. 

They had a practice session to be familiarized with the stimuli. The session lasted about 80 

minutes including the instructions, the practice, the blocks of trials, and the breaks. 

The procedure for the probit analysis was also identical to the earlier experiments. The 

response rates for P2 (P2 sounding more emphatic than P1) obtained for each listener were 

submitted to calculate the 50 % crossover point of the response rates. 

 

6.4.4 Predictions 

We tested two kinds of effects of the acoustic property of lexical accent on perceived 
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prominence: accentual boost normalization and downstep normalization. To study the effects 

of accentual boost normalization we can compare the two experimental conditions [aa]uu and 

[au]uu. Because the difference between them is only in their phonetic F0 contours, this 

comparison allows us to see if there is any effect of the acoustic property of lexical accent on 

prominence perception. Recall that in Experiment 1 we compared the aa and the au 

sequences, where their phonetic and phonological information were matched (following the 

notation here, they would be [aa]aa and [au]au) in order to see the effect of accentual boost 

normalization. We had the result that for a given P1 F0 height P2 needs to be lower in [au]au 

than in [aa]aa in order to perceive P1 and P2 as sounding equal in prominence. In other words, 

P1-P2 difference was greater in [au]au than in [aa]aa. If the acoustic property of lexical accent 

plays a role in accentual boost normalization, the same kind of difference should be observed, 

as illustrated in the schematic graph in Figure 6.3, which represents the P2 values when they 

have the same perceived prominence as P1. This graph is the same type of graph we had in 

the earlier experiments. On the other hand, if the process of accentual boost normalization is 

triggered only by the structural property of lexical accent, there should be no difference 

observed between [au]au and [aa]aa in the value of P2 when the two peaks are perceived to be 

equally prominent. 
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Figure 6.3 Prediction made by the phonetically-based accentual boost normalization. 
The graph represents P2 values when P1 and P2 have the same perceived prominence 
between [aa]uu and [au]uu. 

 

Next, let us consider phonetic effects of downstep normalization. If this perceptual 

process is triggered by the acoustic property of lexical accent, we should see differences 

between the conditions in which the words are phonetically aa ([aa]aa and [aa]uu) and 

between the conditions in which the words are phonetically uu ([uu]aa and [uu]uu). Recall that 

when assessing whether there is any perceptual normalization for downstep, it is necessary to 

compare the patterns of perceived prominence between aa with uu. Accentual boost 

normalization is not capable of accounting for any difference that may be observed in this 

pair of sequences since the two words in each pair share the lexical accent type. When the 

two words in a sequence are both accented, the accentual boost effects on them cancel out 

each other. Consequently, no difference is expected from accentual boost normalization 

between aa and uu. The downstep effect would be found if differences between P1 and P2 

are larger in aa than in uu. This is because in downstep normalization the production effect of 

downstep on P2 is perceptually undone after an accented P1 and is lower in F0 when it is 

[aa]uu 

P1 

P2 [au]uu 

y=x
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preceded by an accented P1 than by an unaccented P1. Consequently, P1-P2 F0 difference is 

greater in aa than in uu when P1 and P2 are equal in perceived prominence. Therefore, if 

there is downstep normalization that is based on phonetic F0 contour information, [aa]aa 

should show a greater P1-P2 F0 difference than [uu]aa and [aa]uu than [uu]uu because, 

regardless of the structural property of lexical accent for these sequences, [aa]aa and [aa]uu 

are phonetically accented and [uu]aa and [uu]uu are phonetically unaccented. 

The predictions depicted above are illustrated visually in Figure 6.4. Note that the 

these schematic graphs differ from the one in Figure 6.3 in that it represents the difference 

value between P1 and P2 (P2-P2) on the y axis rather than the P2 value. We could not 

directly compare [aa] and [uu] for the P2 value that has the same perceived prominence 

because P1 height differs between [aa] and [uu]. Taking the difference between P1 and P2 

heights makes the P1 height irrelevant and makes it possible to compare [aa] and [uu]. 

 

 
 
 
 
 
 
 
 
 
 
 
 a b 
 

Figure 6.4 Predictions on the phonetic effects of lexical accent on downstep 
normalization. P1-P2 values are represented against P1 values when P1 and P2 have 
the same perceived prominence. 
 

The current experimental setup also allows us to test the phonological effects of lexical 

accent on prominence perception. The relevant comparisons are the ones of [aa]aa with [aa]uu 

[uu]aa [uu]uu 

[aa]aa
[aa]uu 

P1 

P1-P2 

P1

P1-P2
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and of [uu]aa with [uu]uu. The two members in each pair share phonetic F0 patterns but differ 

in phonological lexical accent status. Thus, if downstep normalization is crucially informed 

by the structural property of lexical accent, we should observe a difference between [aa]aa 

and [aa]uu and between [uu]aa and [uu]uu. The way the two sequences differ in each pair will 

be such that the phonologically aa ([ ]aa) condition yields larger P1-P2 differences than the 

phonologically uu ([ ]uu) condition in each comparison. It is probably good to recall again 

here that the aa-uu comparison is necessary to see the pure downstep normalization effect as 

discussed in Experiment 1. If, on the other hand, the structural property of lexical accent does 

not play a role for downstep normalization, we should see no difference between [aa]aa and 

[aa]uu and between [uu]aa and [uu]uu. 

The predictions described in the previous paragraph are shown in the schematic graph 

in Figure 6.5 together with the predictions that were seen above about the phonetic effects of 

lexical accent on downstep normalization. As seen in the figure, if the predictions about the 

phonetic effects are right, we will observe substantial differences between [aa]aa and [uu]aa 

and between [aa]uu and [uu]uu in such a way that the phonetically [aa] conditions show 

greater P1-P2 differences than the phonetically [uu] conditions. On the other hand, if there is 

an effect of phonological lexical accent status on the perception of prominence, then we 

should see differences between the conditions whose difference is only in phonological 

lexical accent status: between [aa]aa and [aa]uu and between [uu]aa and [uu]uu. 
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Figure 6.5 Predictions of the phonological and phonetic effects of lexical accent 
downstep normalization. P1-P2 values are represented against P1 values when P1 and 
P2 have the same perceived prominence. 

 

6.5 Results 

6.5.1 Phonetic effects on accentual boost normalization 

Figure 6.6 plots the P2 values that sound equal in prominence to P1 for different P1 values in 

[aa]uu and [au]uu. It corresponds to Figure 6.3, which shows the prediction about [aa]uu and 

[au]uu. 

Figure 6.6 shows that our prediction about the [aa]uu–[au]uu comparison is borne out. 

We can see that all of the P2 values for [au]uu are lower than those for [aa]uu. This is the same 

pattern as the one that was obtained in Experiment 1, which used naturally-rendered stimuli 

with no conflict between the acoustic and the structural properties of lexical accent. This 

result supports the idea that phonetically-driven accentual boost normalization can be 

triggered by F0 information only, without making reference to phonological lexical accent 

information. 

[uu]aa

[uu]uu

[aa]aa

[aa]uu

P1

P1-P2 

Phonetic effect 

Phonetic effect 
Phonological 
effect 

Phonological 
effect 
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Figure 6.6 Mean values of P2 giving the same prominence as P1 as a function of P1 
height between [aa]uu and [au]uu. “Ref” is a shorthand for “reference”, which 
represents the y = x function. 

 

However, the differences in P2 value observed between [aa]uu and [au]uu is relatively 

small. We need to check to see whether they are statistically reliable. A two-way 

repeated-measures ANOVA was conducted with sentence type ([aa]uu and [au]uu) and P1 

height (5 heights) as the independent variables. It revealed that there was a statistically 

significant main effect for both of sentence type and P1 height, and there was no interaction 

between sentence type and P1 height (Sentence type: F(1, 29)=10.314, p=0.003, P1 height: 

F(4,116)=145.293, p<0.001, Interaction: F(4,116)=0.510, p=0.728). 

 

6.5.2 Phonetic effects on downstep normalization 

In addition to the effect of the acoustic property of lexical accent on accentual boost 

normalization, this experiment also tested the effect of the acoustic property of lexical accent 

on downstep normalization. Figure 6.7 represents the differences in F0 between P1 and P2 

― ref 
■ [aa]uu 
▲ [au]uu 
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(P1-P2) when the two peaks were perceived to have equivalent prominence for the two pairs 

of phonetically-identical but phonologically-different sequences of words ([aa]aa–[aa]uu and 

[uu]aa–[uu]uu). This graph corresponds to Figure 6.5, where the predictions of the experiment 

on the phonetic and the phonological effects on downstep normalization were illustrated 

(note that the y-axis is now the P1-P2 values, which is different from Figures 6.3 and 6.6 

where it is the P2 values). 
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Figure 6.7 Mean P1-P2 values Mean P1-P2 differences against P1 values for [aa]aa, 
[aa]uu, [uu]aa, and [uu]uu. 

 

In the figure, the P1-P2 values are substantially greater in the two phonetically [aa] 

conditions ([aa]aa and [aa]uu, filled and unfilled squares) than in the two phonetically [uu] 

conditions ([uu]aa and [uu]uu, filled and unfilled circles). This difference provides evidence 

that the phonetic F0 properties of words play a role in downstep normalization. It suggests 

that the phonetically [aa] sequences trigger downstep normalization due to their phonetically 

accented pattern of the first words while the phonetically [uu] sequences do not involve such 

a perceptual process because they only contain words that are phonetically unaccented. 

□ [aa]aa 
■ [aa]uu 
○ [uu]aa 
● [uu]uu 
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Consequently, when P1 and P2 are perceived to have the same perceived prominence, the 

P1-P2 difference is greater in [aa]aa and [aa]uu than in [uu]aa. 

 

6.5.3 Phonological effects on downstep normalization 

We can also see a small but clear phonological effect of downstep normalization between the 

two phonetically aa conditions: [aa]aa (unfilled squares) exhibits greater P1-P2 values than 

[aa]uu (filled squares). Since these two sequences are phonetically identical, these differences 

must be attributed to the difference in the lexical accent status: the words in [aa]aa are 

phonologically accented whereas those in [aa]uu are phonologically unaccented. Given this 

phonological difference, it can be understood that the larger P1-P2 values in [aa]aa than 

[aa]uu are consistent with the pattern that indicates downstep normalization (aa > uu in 

P1-P2). This result replicates what we obtained in Experiment 3 in the sense that not only the 

acoustic property of lexical accent but also the structural property play a role in downstep 

normalization. 

However, in spite of the interpretation we reached above, we observe another, rather 

puzzling, pattern which seems to contradict the pattern found between [aa]aa and [aa]uu. In 

Figure 6.7, there is virtually no difference between the two phonetically uu conditions ([uu]aa 

and [uu]uu, filled and unfilled circles). This leads us to have the question of why the effect of 

phonological lexical accent emerges only when the words were phonetically accented and not 

when they were phonetically unaccented. I discuss this asymmetry in the discussion section. 

We observe yet another interesting asymmetry. The size of the normalization effect for 

downstep is much greater for the phonetically-based effect than for the phonologically-based 

effect. As seen in Figure 6.7, the size of the differences between [aa]aa (unfilled squares) and 
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[uu]aa (unfilled circles) is far greater than the size of the differences between [aa]aa (unfilled 

squares) and [aa]uu (filled squares). This suggests that the phonetic F0 contour influences 

much more than the phonological lexical accent information in downstep normalization and 

that downstep normalization is largely (but not entirely) based on the phonetic F0 contour 

properties. This in turn implies that when the effect of downstep normalization is seen in a 

sequence with no conflict between the acoustic and the structural properties of lexical accent, 

the phonetically-based compensation is responsible for most of its effect. In relation to 

Sugahara’s (2003) proposal on downstep, the results of Experiment 4 lends support for her 

proposal because downstep normalization is largely phonetic but provides evidence against it 

because phonological accent status also plays a role in the perceptual process. Again, this 

point is further discussed in the discussion section below. 

To statistically assess the patterns described above, a three-way repeated-measures 

ANOVA was performed with the phonological lexical accent type ([  ]aa and [  ]uu), the 

phonetic F0 pattern ([aa] and [uu]), and P1 height (5 heights) as the independent variables. 

The results are summarized in Table 6.2: 

 

Phonetic F0 pattern F(1,29)=360.911, p<0.001*
Phonological lexical accent F(1,29)=9.799, p=0.004*
P1 F(4,116)=176.186, p<0.001*
Phonetic F0 pattern * Phonological lexical accent F(1,29)=5.605, p=0.025*
Phonetic F0 pattern * P1 F(4,116)=71.469, p<0.001*
Phonological lexical accent * P1 F(4,116)=0.667, p=0.616 
Phonetic F0 pattern * Phonological lexical accent * P1 F(4,116)=1.620 p=0.174 

 
Table 6.2 Results of ANOVA. Significant result is indicated by an asterisk. 

 

There was a main effect for all of the three the independent variables. The significant effects 

of phonetic F0 pattern and phonological lexical accent suggest that the phonetic F0 contour 
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properties as well as the phonological lexical accent status play an important role in the 

compensation process for downstep. As for the interaction, the significant interaction 

between phonetic F0 pattern and phonological lexical accent indicates that the two 

phonological conditions ([  ]aa and [  ]uu) differ between the two phonetic condition. In 

other words, it reflects the asymmetry in which the phonological difference between [  ]aa 

and [  ]uu was substantial the two words involved were phonetically aa but was gone when 

they were phonetically uu. This asymmetry was statistically confirmed by a separate 

repeated-measures ANOVA with only [aa]aa and [aa]uu and a yet separate ANOVA with 

[uu]aa and [uu]aa. They showed that the difference was significant only between [aa]aa and 

[uu]aa but not between [uu]aa and [uu]aa ([aa]aa–[uu]aa: F(1,29)=13.489, p=0.001, 

[uu]aa–[uu]aa: F(1,29)=0.192, p=0.665).3 The other significant interaction, the one between 

Phonetic F0 pattern and P1, shows that the size of the phonetic differences between the two 

phonetically [aa] conditions and the two phonetically [uu] conditions (the large separation 

between the squares and the circles) differs depending on P1 height. A further examination 

revealed that the difference was larger at the second and the fifth P1 heights than at the other 

heights.4 

Summarizing the results, we have found that both the acoustic and the structural 

properties of lexical accent are used to trigger downstep normalization. However, two 

asymmetries are observed. One is that the size of the phonetic effect was much greater then 

that of the phonological effect. This result suggests that downstep normalization is largely 

based on the phonetic F0 properties of words. The other asymmetry is that the phonological 

                                                  
3 These separate ANOVAs were two-way ANOVAs, with phonological lexical accent and P1 height as the 

independent variables. However, only the results for phonological lexical accent are reported here, as those for 
the other variable are not of our interest here.  

4 There does not seem to be a reasonable explanation for these differences, since they do not pattern with P1 
heights in a principled way. My best guess is that these differences are accidental. 
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effect was seen only when the target words were phonetically accented. 

We also found that there is accentual boost normalization that is based purely on the 

acoustic properties of lexical accent. This phonetic effect was robust but its size was much 

smaller than the phonetic effect of downstep normalization. 

 

6.6 Discussion 

6.6.1 Nature of downstep normalization 

Experiment 4 revealed two types of phonetic effects of lexical accent on the perception of 

intonational prominence in Japanese. It showed that accentual boost normalization and 

downstep normalization can both be triggered by phonetic F0 contour information alone. 

Moreover, the experiment tested the effect of the structural property of lexical accent about 

downstep normalization. It demonstrated that the structural property plays a significant role 

in downstep normalization. One reasonable conclusion drawn from these results about 

downstep normalization is that the acoustic and the structural properties of lexical accent are 

both important to the perceptual normalization process. 

However, Experiment 4 revealed that the effect of downstep normalization reflects 

the word’s acoustic property of lexical accent far more than its structural property. The 

differences between P1 and P2 were greater in aa than in uu not only when the words’ accent 

types are signaled phonetically ([aa] > [uu]) but also when they are signaled phonologically 

([  ]aa > [  ]uu), which itself can be interpreted as the evidence for the phonological and the 

phonetic effects on downstep normalization. However, the effect size was much larger for the 

phonetic effect than for the phonological effect. 

These findings have two implications for the analysis of downstep in Japanese by 
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Sugahara (2003). Based on her production experiment, she proposes a model in which 

downstep is characterized as an entirely phonetic process. However, Experiment 4 showed 

that the phonological lexical accent status also affects the perceptual normalization for 

downstep, which is incompatible with her purely phonetic view if we assume that the 

production and the perception of downstep are governed by the same system. The 

experimental results suggest that at least in perception listeners do make reference to 

phonological lexical accent status in assessing the relative perceived prominence of words. 

At the same time, Experiment 4 showed a result that supports Sugahara’s model of 

downstep. It showed an asymmetry in which the phonetic effect of downstep normalization is 

far greater than its phonological effect. This result indicates that the effect of downstep 

normalization can largely be explained by the physical F0 properties of the experimental 

words. In Figure 6.7, the differences between phonetically [aa] and [uu] conditions (squares 

and circles) are quite large across all of the P1 heights whereas the differences between 

phonologically [  ]aa and [  ]uu conditions (filled and unfilled symbols) are solid but much 

smaller than between the phonetic conditions. (I discuss the absence of differences between 

[uu]aa and [uu]uu later.) Therefore, if we assume that a single mechanism is responsible for 

both of the production and the perception of downstep in Japanese, the appropriate 

characterization should be that it is both the phonetic and phonological accent properties that 

are responsible for downstep in Japanese, but the phonetic property plays a greater role. 

 

6.6.2 On the small phonetic effect of accentual boost normalization in [aa]uu vs. [au]uu 

Experiment 4 showed the phonetic effect of accentual boost normalization but the effect size 

was rather small. It is usually the case that phonetic or bottom-up effects take precedence 
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over top-down or phonological effects in speech perception and that the former type of 

effects is greater and more robust than the latter type of effects. For example, Experiment 3a, 

in which we looked at the lexicality effect in accent type identification, revealed a robust 

phonetic effect: listeners’ responses were invariably “accented” regardless of the word’s 

structural property of lexical accent when its F0 contour showed an accented pattern and 

“unaccented” when the F0 contour shape showed an unaccented pattern, whether the word 

itself was Ina’mori (inherently accented) or Inamura (inherently unaccented). 

Given this phonetic dominance, the small phonetic effect of accentual boost 

normalization is atypical. By way of the exploration of the reason for it, let us compare this 

result in Experiment 4 with the relevant result found in Experiment 1. In Experiment 1, we 

found a robust effect of accentual boost normalization between aa and au using 

naturally-rendered stimuli where the acoustic and the structural properties of lexical accent 

are matched with one another. The P1-P2 differences in the aa and the au condition in 

Experiment 1 are shown in Figure 6.8a. We can see that aa shows much greater P1-P2 

differences than au by approximately 20 to 30 Hz.  

With this result of Experiment 1 on mind, let us look at the P1-P2 differences observed 

between [aa]uu and [au]uu in Experiment 4, which is shown in Figure 6.8b. What we notice is 

that the mean P1-P2 differences for the [aa]uu sequence in Experiment 4 are quite comparable 

with the aa sequence in Experiment 1, exhibiting the values between 25 Hz and 40 or 45 Hz. 

However, a comparison between the [au]uu sequence and the au sequence reveals that the 

former shows much greater P1-P2 values than the latter. This suggests that the [au]uu 

sequence may be the source of the small phonetic effect of accentual boost normalization. 
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Figure 6.8 Comparison of the mean P1-P2 differences observed between aa and au in 
Experiment 4 with those in Experiment 1. (a): Experiment 1, (b) Experiment 4. 

 

At this point, I cannot spot how exactly the [au]uu sequence brought the small phonetic 

effect. However, I want to point out one difference between [au]uu and the other experimental 

sequences that contain words whose acoustic and structural properties of lexical accent are 

compatible with one another, which can be the starting point for further research. Among the 

sequences used in Experiment 4, [aa]uu, [uu]aa and [au]uu involve mismatch between the 

  aa 
▲au 

a 

b 

  [aa]uu 
▲[au]uu 
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acoustic and the structural properties of lexical accent. But such mismatch is seen both of the 

two words uniformly in [aa]uu and [uu]aa while it is seen only in one of the two words in 

[au]uu. Note that the robust phonetic effect of downstep normalization was found in 

Experiment 4 between sequences that involve mismatch between the acoustic and the 

structural properties of lexical accent, namely between [aa]aa and [uu]aa and between [aa]uu 

and [uu]uu. So the mismatch of accent information itself is not crucial for the small phonetic 

effect of accentual normalization. Instead, I consider that the mixture of match and mismatch 

within a sequence may have introduced some confounding factor to Experiment 4. Further 

investigation is necessary on this point. 

 

6.6.3 Asymmetry between [aa]aa − [aa]uu and [uu]aa − [uu]uu 

Another interesting asymmetry found in Experiment 4 is that no difference was found in 

P1-P2 value between [uu]aa − [uu]uu while a small but statistically reliable differences was 

found between [aa]aa − [aa]uu. These two comparisons were intended to test the effect of the 

structural property of lexical accent on the perceptual normalization for downstep. The way 

the two members differed from one another in each pair was identical between the two 

comparisons: one member was phonologically specified as aa and the other member as uu. 

The question we have to ask is why the effect of the structural property of lexical accent was 

only observed between the pair in which the words were phonetically accented 

([aa]aa−[aa]uu) and not between the one in which they were phonetically unaccented 

([uu]aa−[uu]uu). 

I suggest one possible account, which is based on the naturalness or unmarkedness of 

the historical change of lexical accent. A well-known historical change of lexical accent in 
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Japanese is deaccenting (cf. Kobayashi 2002). In this process, words that are lexically 

accented lose their accents over time. For example, the word denwa ‘telephone’ used to be 

pronounced as an accented word with a pitch accent on the first mora (de’nwa), but currently 

no Tokyo Japanese speakers pronounce the word that way: it is invariably unaccented with 

no variation. Also, we can find many words that are in the middle of their transitions: for 

example, ongaku ‘music’ has two variants – o’ngaku (accented) and ongaku (unaccented). 

Crucially, the direction of the accent-type change is from accented to unaccented and 

not the other way round. If it is hypothesized that this direction of the accent change, namely 

deaccenting is more “natural” than the other direction, the accent-type change from the 

accented to the unaccented type may have less perceptual impact on listeners’ ears and hence 

more tolerable than the change in the opposite direction. Consequently, if a word which is 

lexically accented is pronounced as if it was unaccented, they would consider the unaccented 

pattern to be permissible as a possible variant of the word. Hence, the discrepancy between 

the acoustic and the structural properties of lexical accent in [uu]aa may not have been 

perceived as anomalous as those in [aa]uu. 

 

6.7 Chapter Summary 

This chapter reported on Experiment 4, which tested the effects of the acoustic property of 

lexical accent on accentual boost normalization and downstep normalization. The experiment 

has shown a phonetic effect on both of the perceptual processes. Accentual boost 

normalization and downstep normalization can both be triggered by purely phonetic cues. 

Experiment 4 has also revealed an important relationship between the phonetic and the 

phonological effects of lexical accent on downstep normalization. It has shown that both the 
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acoustic and the structural properties of lexical accent play a role but the former is 

considerably larger than the latter. That is, the effect of downstep normalization can largely 

be accounted for by the phonetic F0 contour properties of words. 

Based on these findings, I argued against Sugahara’s (2003) model on Japanese 

downstep because it cannot capture the phonological effect obtained in the experiment. 

However, at the same time, her view is in accordance with the results in that to a large extent 

the effect of downstep normalization can be accounted for by the phonetic F0 contour shape. 

Experiment 4 has shown two other results. One is that the phonetic effect of accentual 

boost normalization is relatively small, which is a puzzle given that phonetic effects are 

usually greater and more robust than phonological effects in speech perception. Clearly 

further research is needed on this point. The other result is the asymmetry in which there was 

a small but statistically reliable phonological effect of downstep between [aa]aa and [aa]uu 

but there was no effect between and [uu]aa and [uu]uu. I suggested one possible account of 

this asymmetry based on the deaccenting process, a diachronic process where accented words 

lose their accents. 
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CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSION 

 

7.1 Introduction 

Through the four perceptual experiments, this dissertation investigated how Japanese lexical 

accent interacts with the perceived prominence of words in an utterance. The main interest of 

this study was in two distinctive perceptual normalization processes on the assessment of 

prominence, namely accentual boost normalization and downstep normalization. We 

considered that the former perceptually undoes the inherently higher peaks (or inherently 

greater F0 excursion size) of accented words by lowering their perceived F0 height, and the 

latter perceptually undoes downstepped F0 peaks occurring after accented words by raising 

their perceived F0 height. The four experiments together showed that the two accented-based 

perceptual normalization processes play an important role in the perception of perceived 

prominence in Japanese. 

In the remainder of this chapter, I first summarize the main findings for each of the 

four experiments (§7.2). I then propose a model that explains how accentual boost 

normalization and downstep normalization work in speech perception as a picture that 

emerges on the basis of the findings (§7.3). Finally, I provide a few suggestions for future 

research. 

 

7.2 Summary of the findings 

Experiment 1 tried to determine whether there is any perceptual normalization effect on 

perceived prominence that is crucially dependent on lexical accent in Japanese. The stimuli 
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were naturally-produced short sentences that contained three words. They contained both the 

structural and the acoustic property of lexical accent, which were available to the listeners. 

Two main results were obtained from two comparisons: (1) [au]au vs. [aa]aa and (2) [aa]aa vs. 

[uu]uu. In [au]au vs. [aa]aa, the P1-P2 differences were greater in [au]au than [aa]aa and in 

[aa]aa vs. [uu]uu they were greater in [aa]aa than in [uu]uu.1 

These results suggested that accentual boost normalization and downstep 

normalization both play a role in the assessment of perceived prominence. I characterized 

these normalization processes as a process that nullifies the corresponding process in 

production. Specifically, accentual boost normalization perceptually nullifies the extra 

prominence assigned to an accented word in production. Downstep normalization 

perceptually nullifies the reduction of prominence that occurs in production to a word after 

an accented word. 

Accentual boost normalization can nicely account for the first experimental result 

observed between [au]au and [aa]aa. The account is based on the fact that accentual boost 

normalization occurs only in the first word in [au]au but it occurs in both of the words in 

[aa]aa. As a result, accentual boost normalization that appears in the two words cancel each 

other and no accentual boost effect is observable in [aa]aa. On the other hand, the effect of 

accentual boost normalization is clearly observable in [au]au. The effect is observed in such a 

way that for a given F0 height of P2, P1 is higher when P1 is accented when it is unaccented, 

because when P1 is accented it needs to be raised against the accentual boost effect. 

Consequently P1-P2 difference is greater in [au]au than in [aa]aa. 

Downstep normalization is responsible for the second result observed between [aa]aa 

                                                  
1 Note that the same notation as the one used in Experiment 4 is used here, where letters in square brackets 

([xx]) indicates acoustic the acoustic property of lexical accent  and subscripted letters ([  ]xx) the structural 
property. 
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and [uu]uu. Since the first word is accented, downstep is expected in [aa]aa but not in [uu]uu. 

For a given F0 height of P1, P2 needs to be lower in F0 in [aa]aa than in [uu]uu because 

downstep normalization is applied only to the second word in [aa]aa, which makes it sound 

more prominent than a word after an unaccented word. As a result, P1-P2 difference is 

greater in [aa]aa than in [uu]uu when P1 and P2 are perceived to have the same prominence. 

Experiment 2 was a follow-up for accentual boost normalization in Experiment 1 in 

that it tested what I call the “slope-prominence” hypothesis, which can equally account for 

the results without recourse to the idea of accentual boost normalization. Based on Knight’s 

(2003) finding, we developed the hypothesis that says that the perceived prominence of a 

word increases as the declining slope of its F0 contour decreases. The prediction made by the 

slope-prominence hypothesis was that because unaccented words have smaller (shallower) 

F0 slopes than accented words, they should evoke more perceived prominence than accented 

words if their peak F0 heights are the same. The theory behind this hypothesis rests on the 

nature of the auditory system: the auditory system has difficulty in phrase-locking the top 

frequency when it lasts only momentarily, while it is much easier to do so when the declining 

slope is small constituting an F0 “shoulder” or “plateau.” The results of Experiment 2 support 

the slope-prominence hypothesis, but the effect size was too small to account for the large 

effect of accentual boost normalization found in Experiment 1. Experiment 2 showed that 

unaccented words with F0 plateaux evoke more perceived prominence than those with F0 

shoulders, which in turn yielded more perceived prominence than unaccented words with 

linear interpolation downward. However, I argued that the slope-prominence hypothesis 

cannot be an alternative account for accentual boost normalization because the size of the F0 

slope effect was too small to explain the accentual boost effect found between aa and au in 
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Experiment 1. 

Experiment 3 examined the role of the structural property of lexical accent for 

prominence perception. It had two parts: Experiments 3a and 3b. Experiment 3a served as a 

preliminary experiment to Experiment 3b to check that the experiment stimuli desirably yield 

ambiguous percepts with respect to lexical accent type. At the same time, it investigated 

whether the lexicality effect (Ganong 1980) is observed in a prosodic-level phenomenon like 

lexical accent. It also explored whether Kubozono and his colleagues’ “unaccented law” is 

observed in the actual speech processing (Kubozono 1996, Kubozono & Fukui 2004, 

Kubozono & Ogawa 2004). This law says that the accent type of a loanword or an infrequent 

nonword tends to be unaccented if the word is a four-moras long, ends with a sequence of 

light syllables and does not contain epenthetic vowls. The stimuli were of the same type as 

those used in Experiment 1. However, the first words of the experimental sentences were 

manipulated to form acoustic continua from an accented to an unaccented pattern. Listeners 

identified the lexical accent type of the words. Results demonstrated the lexicality effect in 

the identification of lexical accent in Japanese. When the acoustic signal was ambiguous and 

did not have enough cues for the accent type of a word, listeners’ response was biased toward 

what the word’s structural property of lexical accent indicated. The results of Experiment 3a 

also suggested that the unaccented law has psychological reality. When the 

acoustically-ambiguous word was a nonword which satisfies the conditions to which the 

unaccented law applies, listeners’ response was biased toward the unaccented pattern. 

Experiment 3b tested whether listeners’ structural property of lexical accent affects the 

assessment of perceived prominence when no acoustic property of lexical accent is available. 

The same stimuli as those in Experiment 3a were used. The crucial comparisons were the 
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pairs of sequences in which the only difference was in the lexical accent status of the first 

word with acoustically-ambiguous F0 shape, [a/u a]aa vs. [a/u a]ua and [a/u u]au vs. [a/u u]uu 

(“a/u” denotes that the word’s F0 contour is ambiguous). Results showed that when P1 and 

P2 had the same perceived prominence, the P1-P2 difference in F0 was greater when the first 

word was lexically accented than when it was lexically unaccented. More specifically, P1-P2 

difference was greater in [a/u a]aa than in [a/u a]ua and in [a/u u]uu than in [a/u u]uu. These 

results were obtained crucially when the accent type of the first word was differentiated with 

respect to phonological lexical accent status alone. We interpreted the results as the 

phonological effect of accentual boost normalization as well as downstep normalization. 

Experiment 3b indicated that phonological knowledge influences the perception of 

intonational prominence. 

Experiment 4 mainly tested the effects of the acoustic property of lexical accent on the 

proposed two perceptual normalization processes. It drew three sets of comparisons: (1) 

[aa]aa vs. [au]aa, (2) [aa]aa vs. [uu]aa and [aa]uu vs. [uu]uu, and (3) [aa]aa vs. [aa]uu and [uu]aa 

vs. [uu]uu. The first set of comparisons (which actually consisted of a single comparison) was 

intended to test the phonetic effect of accentual boost normalization. the only difference 

between was in the acoustic property of the second word between a and u. [aa]aa differed 

from [au]aa only in the F0 contour shape of the first word. The experiment showed that the 

P1-P2 difference was larger in in [au]aa than in [aa]aa when P1 and P2 had the same 

perceived prominence, exhibiting the same pattern between [aa]aa and [au]au in Experiment 1. 

The second set of comparisons examined the role of phonetically-driven downstep 

normalization. In both of the pairs, the phonetically aa ([aa]) conditions needed larger P1-P2 

differences than the phonetically uu ([uu]) conditions when P1 and P2 were perceived to 
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have the same perceived prominence, which suggests that downstep normalization is 

triggered by the acoustic property of lexical accent alone. The last set of comparisons was 

made in order to investigate whether phonologically-driven downstep normalization plays a 

role in prominence assessment. A disparity was found between [aa]aa vs.[aa]uu and [uu]aa vs. 

[uu]uu: the effect of phonologically-driven downstep normalization was observed only in the 

pair [aa]aa vs. [aa]uu. While a significant P1-P2 difference was found between [aa]aa and 

[aa]uu such that it was greater in [aa]aa than in [aa]uu, no significant P1-P2 difference was 

detected between [uu]aa vs. [uu]uu. I suggested that there might be a naturalness difference in 

the direction of accentuation change: listeners tolerate a change from an accented to an 

unaccented pattern more than the other way around because the former direction is in 

accordance with the historical change that has been seen in lexical accent in Japanese. 

The experimental results described above are summarized in Table 7.1. Experiment 2 

is excluded because it tested a hypothesis not directly relevant to the question of whether the 

acoustic and/or the structural properties of lexical accent affect perceived prominence. Rather, 

it was a follow-up experiment of Experiment 1, as mentioned above. In the table, two cells 

are collapsed into one for Experiments 1 and 3. In Experiment 1 it is not possible to tease 

apart the phonetic and the phonological effects for accentual boost normalization and for 

downstep normalization, and in Experiment 3 the phonological effect of accentual boost 

normalization and that of downstep normalization cannot be distinguished.2 As can be seen 

in Table 7.1, the experiments did not discover the pure effect of the phonological accentual 

boost normalization, though it is highly likely that an experiment designed to test its effect 

would find the active role of phonologically-driven accentual boost normalization. 

                                                  
2 Note in Table 7.1 that the order of the phonetic and phonological effects are reversed between accentual boost 

normalization and downstep normalization in order to express the indistinguishability of between the two 
effects 
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 Accentual boost 
normalization 

Downstep 
normalization 

 Phonetic Phonological Phonological Phonetic 
Experiment 1 Experiment 1 

 Experiment 3  Effect 
found in… 

Experiment 4  Experiment 4 Experiment 4
 

Table 7.1 Summary of Experiments 1, 3 and 4 in terms of the phonetic and the 
phonological effects of accentual boost normalization and downstep normalization. 

 

7.3 The picture emerging from the findings 

In this section, we consider what kind of picture emerges when we look at accentual boost 

normalization and downstep normalization in terms of speech processing. I propose that 

these perceptual normalization processes are phonologically-conditioned phonetic processes 

in the sense that they refer to the phonological status of lexical accent when they are applied, 

but the adjustment of perceived F0 height takes place at the phonetic level. The rationale for 

this comes from the following two points. First, Experiment 3 showed these perceptual 

normalization processes can make reference to the structural property of lexical accent of a 

word when no F0 cues signal its accent type. This indicates that the trigger of the perceptual 

processes is the phonological entity for lexical accent, namely the pitch accent H*. Second, 

we characterized accentual boost normalization and downstep normalization as non-symbolic 

processes in which the perceived F0 height of an F0 peak is boosted or reduced depending on 

the lexical accent information. Based on these two points, the most natural conceptualization 

of the perceptual normalization processes is that they are phonetically-conditioned phonetic 

processes. 

I suggest that the specific level in speech processing at which accentual boost 

normalization and downstep normalization refer to lexical accent information corresponds to 
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the level that generative phonology models typically call the surface phonological 

representation (Chomsky & Halle 1968, Kenstowicz 1994) or that psycholinguistic models 

of speech perception call the prelexical level (Luce & Pisoni 1998, McCleland & Elman 

1986, Moreton 2002, Norris 1994, Vitevich 1997, Vitevich & Luce 1998). The surface 

phonological representation, which is production-based, refers to the level at which discrete 

symbolic representations are encoded into gradient phonetic properties. The prelexical level 

is the level where the gradient acoustic signal is transformed into symbolic representations 

such as segments and features. 

I argue that the normalization processes refer to the surface phonological 

representation and cannot directly refer to the lexical specification in the lexicon (that is, the 

underlying phonological representation). We found a robust downstep effect between [aa]aa 

and [uu]aa in Experiment 4, where they shared the words differing only in their phonetic F0 

contour shape. Since [aa]aa and [uu]aa showed the same pattern as the one between [aa]aa and 

[uu]uu in Experiment 1, it is considered that listeners made their judgments based on the same 

representation. The representation cannot be the underlying phonological representation 

because the observed pattern between [aa]aa and [uu]aa crucially rests on the phonetic accent 

information of [uu]aa, not on the phonological accent information. It is suggested that the 

listeners constructed phonological representations that correspond to the words’ phonetic 

contour shape, which are distinguished from their underlying phonological representations. 

The production-based work by Pierrehumbert & Beckman (1988) gives support for 

downstep normalization as a phonologically-conditioned phonetic process because this way 

of characterizing downstep normalization is consistent with their characterization of 

downstep. They propose that downstep in Japanese is a phonologically-conditioned phonetic 
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implementation rule such that the application of downstep is determined by the presence or 

absence of the pitch accent H* but the reduction of the tonal height itself takes place in the 

tonal space. Thus, downstep normazaliton and Pierrehumbert & Beckman’s downstep are 

both phonologically-conditioned phonetic processes. If we assume that speech production 

and perception are governed by the same system, the idea of downstep normalization as a 

phonologically-conditioned phonetic perceptual process is the natural consequence that 

mirrors the production process of downstep. 

The proposed characterization of accentual boost and downstep normalizations is 

graphically shown in Figure 7.1 below: 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1 Conceptualization of accentual boost normalization and downstep 
normalization in speech perception. 
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The figure shows a model that captures speech production as well as speech perception. The 

flow of linguistic information in production and in perception is represented by different 

kinds of arrows. The surface phonological representation contains segmental, tonal and 

prosodic structures. As can be seen in the figure, accentual boost normalization and downstep 

normalization are processes in the phonetic implementation component. When they are 

triggered, they are informed of lexical accent information by the surface phonological 

representation. The direction of the arrow expressing the reference of lexical accent 

information is constantly one way both in production and in perception. This way of making 

reference to phonological lexical accent information is exactly the same as the downstep as a 

production process proposed by Pierrehumbert & Beckman (1988) in that it crucially refers 

to phonological tonal information when it is applied. With the assumption that that 

production and perception are governed by the same processing system, this would be an 

ideal situation. 

 

7.4 Future directions 

I conclude this dissertation with providing a few directions for future research. One line of 

research that can be started right away is to test the predictions that the model presented in 

the previous section makes. One of the predictions that is worth a serious investigation is 

based on the central proposal of the model: accentual boost normalization and downstep 

normalization are triggered by making reference to a lexical accent in the surface 

phonological representation. This proposal implies that the perceptual normalizations are 

triggered as long as the surface phonological representation is available. We would expect no 

effect if there was no surface phonological representation to refer to. This kind of situation is 
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readily conceivable. One such situations is when we hear non-speech like a sine wave that 

mimicks the F0 contour shapes of the stimuli used in our experiments. If we assume that no 

surface phonological representation is created when haring non-speech stimuli, there should 

be no effect of accentual boost normalization or downstep normalization. 

Another area that needs to be explored is the domain of the influence of relative 

prominence judgment. In this study, we only considered relative perceived prominence 

relation between MiPs. There may be perceived prominence relations of different kinds 

between prosodic constitutes that are larger than MiP. For example, the relative perceived 

prominence relation between MaPs may be different from that between MiPs because MaP is 

the level at which the syntactic as well as the focus structures of utterances are reflected 

(Pierrehumbert & Beckman 1988, Selkirk & Tateishi 1991). How these factors interact with 

lexical accent at the MaP level in terms of perceived prominence would be an interesting 

topic. 

Downstep might also be relevant at the level of MaP. Kubozono (2005) suggested that 

the domain of downstep is larger than MiP. He tested whether focus blocks downstep using 

the wh-word nani ‘what’. A wh-word is inherently focused and is normally considered to 

introduce a MaP boundary (Pierrehumbert & Beckman 1988). He found that the F0 peak of 

the wh-word was consistently lower after an accented word than after an unaccented word, 

which suggests that focus does not block downstep. Given this result, whether downstep 

normalization is seen at the MaP level is worth an exploration. 

Speech prosody is one of the research fields that interact with phenomena that belong 

to many different levels. This dissertation examined one of such interplays, the one between 

lexical accent on the one hand as a property of the grammar and perceived prominence on the 
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other as a property of speech perception. This work can thus be seen as a contribution to the 

research of the interplay between phonology and speech perception (Hume & Johnson 1999). 

I hope this study has shed some light on an aspect of such interplay. 
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