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 Studies of gas-phase ionic clusters have become an integral component in 

understanding microsolvation and catalysis by transition metal cations.  Further 

interest in this field is due to the possibility of bridging the gap between the 

condensed and gas phases by developing our understanding of clusters and the 

possibility that small clusters can have unique chemical and catalytic properties.  

Most gas phase studies have focused on singly charged ions.  Electrospray allows for 

the production of multiply charged ions solvated by a few solvent molecules.  

Understanding smaller reactive species such as metal centered clusters with well-

defined, gas phase conditions also allows for detailed comparison between theory and 

experiments.   



 In these studies the main focus is to understand bond activation by transition 

metal cations and solvation of transition metal dications.  The gas phase ions of 

interest are studied using an electrospray-ionization or laser-ablation dual time-of-

flight mass spectrometer and are characterized using photofragment spectroscopy in 

the visible and ultraviolet regions of the spectrum.  Photofragment spectroscopy is a 

powerful method that can be used in gas phase studies to gather a wealth of 

information on the ions’ bond strengths, spectroscopic constants, and dissociation 

kinetics and dynamics. 

 The study of TiO+(CO2) spectroscopy (Chapter 3) was a result of study of CO2 

bond activation by Ti+ that went on to provide a wealth of information on the 

spectroscopy and dissociation kinetics of this molecule.  An electronic transition of 

the TiO+ chromophore was observed, 2∏�2∆, revealing new information about the 

excited state and the effect of TiO+ electronic state on the metal- CO2 ligand 

interaction.  The photodissociation spectrum of this molecule is well resolved and 

shows progressions in the covalent Ti-O stretch and metal-ligand stretch and rock.  

The lifetime of electronically excited TiO+(CO2) was measured, and depends strongly 

on vibrational energy.  Calculations on TiO+ and TiO+(CO2) were combined with 

experimental results on TiO+(CO2) to predict spectroscopic transitions of TiO+, an 

astrophysically interesting molecule. 

 The photodissociation dynamics of M2+(CH3CN)n(H2O)m where M = Co and Ni, 

(Chapter 4) is important in understanding the gas phase microsolvation of metal 



dications.  The coordination number and type of solvent affect the dissociation 

pathways.  M2+(CH3CN)n (n>2) primarily lose a solvent molecule.  Electron transfer is 

a minor channel for n=3 and is the only channel observed for n=2.  Mixed clusters 

M2+(CH3CN)n(H2O)m preferentially lose water.  Loss of acetonitrile is a minor channel, 

as is proton transfer.  Water is the proton donor.  Replacing acetonitrile with water 

increases the proton transfer channel.  Nickel and cobalt complexes show similar 

dissociation dynamics, with proton transfer more likely for nickel complexes.   

 Methane activation by transition metal catalysts is industrially important as it 

can be used to produce gasoline from natural gas.  We studied the products and 

intermediates of the reaction of laser-ablated platinum atoms with methane (Chapter 

5).  Photoionization efficiency curves were measured for PtCH2 and the [H-Pt-CH3] 

insertion intermediate using tunable vacuum ultraviolet light.  The resulting 

ionization energies were combined with bond strengths for the cations to derive bond 

strengths for the neutrals.  These were used to construct a potential energy surface for 

methane activation by platinum atoms. 
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CHAPTER 1CHAPTER 1CHAPTER 1CHAPTER 1    

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

1.1 1.1 1.1 1.1 IntroductionIntroductionIntroductionIntroduction    

 Photodissociation spectroscopy was revealed as a useful experimental 

technique in the early 60’s.  It is particularly useful in cases where it is hard to obtain 

an absorption spectrum.1  Photodissociation requires that the molecules absorb light 

and dissociate.  Hence, the intensity of the features in the photodissociation spectrum 

is the product of the absorption cross-section and the dissociation probability of the 

excited molecules.  Directly measuring absorption spectra of transient molecules is 

challenging due to the very low concentrations of molecules typically present.  

Indirect measurements offer the potential for improved sensitivity.  Photofragment 

spectroscopy is particularly well suited to studying ions.  Parent ions can be mass 

selected and fragment ions can be distinguished and detected with exquisite 

sensitivity using mass spectrometry.  We use gas-phase photofragment spectroscopy 

to study ion structure and non-covalent metal ion-ligand interactions in controlled 

surroundings. 

 Studies of ionic clusters have become an integral component in understanding 

microsolvation and catalysis by transition metal cations.  Research on ion clusters in 

the gas phase has emerged as a very active field in chemistry and physics during the 
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last decade.  This wide interest is due to two reasons: the possibility of bridging the 

gap between the condensed and gas phases by developing our understanding of 

clusters and the possibility that small clusters can have unique chemical and catalytic 

properties. 

 Understanding smaller reactive species such as metal centered clusters in the 

gas phase with well-defined conditions allows for detailed comparison between 

theory and experiments.  This is more challenging in condensed phase studies because 

it is hard to accurately model interactions of the bulk solvent molecules with the 

charged metal center.2  However, in the gas phase, the number and type of solvent 

molecules interacting with a metal center can be controlled. 

 Most of the studies conducted on gas phase ions have focused on singly 

charged cations.  But with Fenn’s introduction of the electrospray ionization 

technique multiply charged ions can be produced in sufficient concentrations for 

detailed studies.3  The higher charge on the metal leads to very strong interaction 

with inner-shell solvent molecules.  For example, the first six water molecules bond 

to M2+ by an average of ~60 kcal/mol, giving 75% of the bulk free energy of 

solvation.4,5  Gas phase studies of small, microsolvated clusters provide a unique 

opportunity to study very strong non-covalent interactions.  Research by Stace and 

co-workers has shown that smaller clusters are useful because they are too small to 

exhibit bulk behavior without ion solvation.6 
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1.2 Motivation1.2 Motivation1.2 Motivation1.2 Motivation    

 In our lab the main focus is to understand bond activation by transition metal 

cations and solvation of transition metal dications.  The gas phase ions of interest are 

characterized using photofragment spectroscopy in the visible and ultraviolet regions 

of the spectrum.  The solvation studies were conducted using Co2+ and Ni2+ as the 

metals and acetonitrile and water as solvents.  This complements previous studies 

done by our lab with the same metal dications and water/methanol as solvents.  Also, 

activation of methane by neutral platinum atoms, and the key insertion intermediate 

were studied via Photoionization.  Transition metals hold interest far from our galaxy 

into the stars.  One of the studies is of significant importance for astronomy because it 

can aid the investigation of potential molecular ions present in cool M-type stars by 

observing and characterizing excited states of TiO+.  Since we don’t have enough 

photon energy to efficiently break the TiO+ bond, we use a spy molecule, CO2, to 

understand the electronic spectroscopy of TiO+ by studying TiO+(CO2).  The 

electrostatic bond between the metal oxide cation and ligand requires very little 

energy to break.  So this technique has become one of the common methods to 

understand molecular spectroscopy indirectly.7,8  Typically spy molecules are used to 

obtain vibrational spectra of ions where one IR photon does not have enough energy 

to break a covalent bond.  The first studies of this type attached H2 to protonated 
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water clusters to measure the O-H stretching vibrations.7  In recent studies a rare gas 

atom, typically Ar is used as the spy instead.9,10 

 1.2.1 Solvation of Dications 1.2.1 Solvation of Dications 1.2.1 Solvation of Dications 1.2.1 Solvation of Dications    

 Transition metals are known for their colorful character.  The color is 

determined by the interaction of the metal compound or ion with solvent molecules 

or ligands.  Thus, the change in energy of the d-orbitals due to the solvent splitting 

the degeneracy of the orbitals into higher and lower energy states is reflected in the 

color of light the metal species is able to absorb.  In recent years, research on 

microsolvation of transition metal clusters has expanded dramatically due to advances 

in experimental techniques.  Previously, the major part of our understanding was 

limited to singly charged species because multiply charged species were impossible to 

produce in the gas phase.11  Transition metals are usually multiply charged in 

solution.6  Hence, understanding these states is of importance in chemistry and 

biology.  The introduction of electrospray ionization by Fenn and co-workers opened 

doors to a new era in studying multiply charged ions and their chemistry in the gas 

phase.3  Studies of microsolvated, multiply charged transition metal ions offer insight 

into solvation of these important species by measuring their thermochemical 

properties, excited electronic states, coordination and structure.2,12-14  Gas phase 

studies offer complete control over solvent and coordination number, which is simply 

not possible in the condensed phase. 
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 These studies focus on acetonitrile and water as the solvent molecules.  

Acetonitrile is a polar, aprotic solvent which has become a good prototype due to its 

widespread use as a non-aqueous solvent.  At present acetonitrile is primarily emitted 

from biomass burning.15  This leads to its importance in atmospheric and marine 

chemistry as well as biological sciences.  Also, acetonitrile has a higher dipole 

moment and polarizability (α) than water as shown in table 1.1.  Thus, acetonitrile is 

a better solvent for isolated M2+ than water.  Studies of M2+ microsolvated by 

acetonitrile and water provide a wealth of information on aprotic vs. protic molecule 

competition for the solvation of the transition metal dication, and on how the nature 

of the solvent affects the stability and dissociation dynamics of the cluster.  There 

have been two studies of fragments produced from M2+(CH3CN)n by collision induced 

dissociation (CID).13,16,17  Our work uses photons to excite the molecules which 

provides better control over the energy.  Also, we will study mixed acetonitrile water 

clusters. 

Ligand IE (eV) μ (D) α (Å3) 

Water 12.62 1.8 1.4 

Acetonitrile 12.19 3.9 4.4 

 
Table 1.1:  Physical properties of acetonitrile and water. 
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1.2.2 Motivation for Bond A1.2.2 Motivation for Bond A1.2.2 Motivation for Bond A1.2.2 Motivation for Bond Activationctivationctivationctivation Studies Studies Studies Studies    

 Transition metals are known to form the best catalysts.  For example, nickel is 

a hydrogenation catalyst that is used to make partially hydrogenated vegetable oil 

which has a higher melting point and is less reactive.  Also, platinum and rhenium are 

vital in industry for production of high octane gasoline.  They perform better as 

catalysts due to their multiple oxidation states and ability to provide alternative lower 

overall activation energy route in reactions.  Understanding the particular character 

of these transition metals, and mechanism for bond activation reactions, is critical for 

developing more efficient catalysts for industry.   

 In the late 70’s Allison, Freas and Ridge first studied C-H and C-C bond 

activation by gas phase transition metal ions.18  Many subsequent studies showed that 

gas phase transition metal cations are very reactive, and are able to activate H-H, C-H 

and C-O bonds, often with surprising selectivity.19-25  The ability of gas phase studies 

to provide quantitative information on these transition metal cation species leads to 

well-characterized reaction mechanisms and energies of the reactions.22,26  These 

studies have provided the electronic requirement for covalent bond activation by 

metal cations without interference from solvents or stabilizing ligands.  However, the 

mechanisms for the reactions of neutral metal atoms 24,27-29 are not as well 

characterized due to challenges faced in the experimental approach.  This makes the 
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study of neutrals extra important, and it quantifies how charge affects the reaction 

energetics and mechanism. 

 Accurate computational studies can help to establish reaction mechanisms and 

develop new catalysts.  Theory on transition metals tends to be challenging due to the 

number of electrons, spin contamination and relativistic effects.30  Accurate data on 

relatively simple, yet relevant systems such as platinum cation with methane provide 

an ideal benchmark for computational studies.  Platinum is an all purpose catalyst and 

highly studied transition metal27,28 and metal cation.22,23,30  Methane is the major 

(~80%) component of natural gas, a resource of which the US has extensive supplies.  

Methane can be used to produce larger hydrocarbons that then can be used in the 

gasoline industry to make highly branched hydrocarbons, but current catalysts for 

methane activation have poor conversion and selectivity.  So, the activation of 

methane by platinum becomes an important system not only for intrinsic interest but 

also for industrial applications.   

 One of the studies we have done is to examine methane activation by neutral 

platinum.  The thermochemistry of intermediates and products of methane activation 

by platinum cation is known.22  Measuring their ionization energies will allow us to 

determine energetics for the corresponding neutral reaction, from which we can learn 

about the reaction mechanism.   
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1.2.3 Astronomically Interesting Transition Metal Complexes1.2.3 Astronomically Interesting Transition Metal Complexes1.2.3 Astronomically Interesting Transition Metal Complexes1.2.3 Astronomically Interesting Transition Metal Complexes    

 The middle region of the photosphere of cool stars contains certain diatomic 

3d oxide molecules.  In cool red M-type stars, the dominant diatomic molecule is 

titanium oxide.31  Due to its importance in astrophysics, TiO is one of the most studied 

transition metal containing diatomics.  It has strong electronic absorption bands in 

the visible spectrum with resolvable rotational structure.  These spectral features are 

used to classify these stars in the MK system and the rotational structure is used as a 

thermometer.32  Unlike other types of stars, cooler M stars emit very little UV 

radiation throughout their very long lifetimes.  This factor works in favor of molecule 

production near M stars.  The TiO bond dissociation energy is slightly higher than its 

ionization energy making it a likely diatomic candidate to donate free electrons into 

the pool of electrons in these stars.  However, for astronomers to observe TiO+, its 

electronic spectroscopy needs to be characterized.   

 The only excited state of TiO+ known experimentally is the 2Σ state from 

photoelectron spectroscopy of TiO studied by Weisshaar and coworkers.33  

Transitions to this state from the 2∆ TiO+ ground state are forbidden, making this 

excited state useless for astronomical observations.  Astrophysicists and chemists have 

used theory to study TiO+, but, to date, these calculations are at too low a level to be 

very helpful.34  Therefore, there is much interest in the electronic spectroscopy of the 

titanium oxide cation in the visible region of the spectrum.  In our lab, we have 
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studied the TiO+(CO2) molecule to look into TiO+ electronic spectroscopy.  With the 

photon energy available in our lab, we are unable to photodissociate the TiO+ bond.  

However, using a spy molecule, carbon dioxide, we are able to study photofragment 

spectroscopy of TiO+(CO2) to understand the electronic states of TiO+ as well as to 

explore how the TiO+-CO2 interaction depends on the electronic state of TiO+.  Since 

the carbon dioxide can slightly perturb the TiO+, theory is useful in inferring the 

properties of bare TiO+ from studies of TiO+(CO2).   

1.3 1.3 1.3 1.3 The The The The PhotodissociationPhotodissociationPhotodissociationPhotodissociation Process Process Process Process    

 The main technique that is utilized in our lab is photofragment spectroscopy.  

Photofragment spectroscopy is a form of action spectroscopy.  When the charged 

molecule absorbs a photon and dissociates, what is monitored is the fragment that was 

produced due to the photon energy.  The yield of the fragment is an indirect 

measurement of the absorption of a photon.  The spectrum that results from 

observing a fragment over a range of energies is the photodissociation spectrum.   

 Figure 1.1 depicts a typical photodissociation process.  The parent, AB+, 

absorbs the photon energy provided to promote it to an excited state, [AB+]*.  If this 

leads to dissociation the following fragments would be observed: 

AB+    +    Νphoton hυ  →    [AB+]* →    A+   +    B 

where Νphoton is the number of absorbed photons with energy hυ.  This is only possible  
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Figure 1.1: Schematic depiction of photodissociation via two different processes: (a) 
direct and (b) indirect. 
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under certain conditions.  The molecules must absorb the photon to produce [AB+]*, 

the photon should have ample amount of energy to dissociate the bond to produce A+ 

fragment and there must be a non-zero quantum yield for the dissociation to observe 

a peak on the spectrum.  Basic photofragmentation involves a single photon which is 

shown throughout these studies.  However, multi-photon techniques are common 

with photons of the same or different energy.   

 There are two types of photodissociation, direct and indirect, which are shown 

in figure 1.1.  Direct dissociation is simple and the fragmentation does not depend on 

dynamic limitations such as energy barriers.  When the parent ion is excited to a 

higher energy state, fragmentation results due to the potential being repulsive along 

the reaction coordinate.  This is a rapid process, so the excited state lifetime tends to 

be very short and the spectral features are limited.  But the upper limit of the bond 

strength can be found from the dissociation threshold.35   

 Indirect dissociation is slightly complicated since it involves two separate steps 

leading to fragmentation.  The initial step is the absorption of a photon to promote 

the parent ion into an excited state. The second step is the fragmentation which is 

challenged by dynamic constraints such as energy barriers.  This is not a quick 

dissociation process since it needs to overcome the barrier.  It is necessary either to 

tunnel through the barrier, redistribute the internal vibrational energy or avoid it 

completely by crossing to another nearby electronic state (internal conversion) to 

dissociate.   
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 Photodissociation, as described in our studies, is due to the crossover to a 

lower lying state above the dissociation limit via internal conversion.  Indirect 

photodissociation that leads to long-lived excited states (“pre-dissociation”) yields 

more information regarding the parent ion such as vibrational frequencies of the 

excited and sometimes ground electronic states, and even bond lengths.  The 

TiO+(CO2) spectrum (Chapter 3) is a good example of indirect photodissociation via 

internal conversion to the ground state.  The electronic spectrum has resolved 

vibrational structure, and the excited state lifetime depends on the vibration energy 

in the excited state.  The study of solvated M2+ is an example of indirect 

photodissociation via internal conversion to the ground state.  The fragment time-of-

flight profile is sensitive to the lifetime of the excited state and to the kinetic energy 

release in the dissociation. 

1.4 1.4 1.4 1.4 TTTTimeimeimeime----ofofofof----Flight (TFlight (TFlight (TFlight (TOFOFOFOF))))    PPPProfile rofile rofile rofile     

 The instruments that were used for all the studies are dual reflectron time-of-

flight mass spectrometers.  They are discussed in detail in Chapter 2.  Each 

differentiates according to the source region: ablation or electrospray ionization TOF 

mass spectrometer.  Initially the parent mass is selected and then the 

photofragmentation takes place at the turning point of the reflectron.  The second 

portion is where the fragment and the depleted parent are monitored and identified 
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according to their arrival flight time.  In addition, from the fragment TOF profile, we 

can get information about the dynamics and kinetics of the fragmentation.   

 The TiO+(CO2) studies were done using the laser ablation dual TOF.  The TiO+ 

fragment TOF profile provided useful information on the lifetime of the excited state 

of TiO+(CO2).  The solvation of Co and Ni dications by acetonitrile and water studies 

used the ESI apparatus.  The TOF profile reveals the kinetic energy release (KER) in 

the dissociation. 

1.4.1 1.4.1 1.4.1 1.4.1 KinetKinetKinetKinetic Energy Ric Energy Ric Energy Ric Energy Releaseeleaseeleaseelease (KER) (KER) (KER) (KER)    

 To study photodissociation, a photon should excite a molecule from a lower 

energy state to a higher electronic state and the excited molecule should ultimately 

dissociate due to the upper electronic state’s potential being repulsive along the 

intermolecular coordinates.  When the photon energy exceeds the bond dissociation 

energy, the excess energy will partition to other modes such as translational energy 

and internal energy of the fragments. 

Eexcess  =  Ephoton  -  D0  =  Etrans  +  Einternal 

where D0 is the bond dissociation energy and the Einternal is a combination of 

vibrational, rotational and electronic energies of the fragments.   

 The kinetic energy release (KER) is the energy that is released as the 

translational energy of the departing fragments.  The kinetic energy release depends 

on the potential energy surface and it reveals information on the transition state 
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structure and reverse reaction barrier.36  Schematic of potential energy surfaces with 

different reverse barriers are shown in figure 1.2.   

 For example, the transition state of simple bond cleavage is similar to the 

products (“loose”), which leads to little kinetic energy release (figure 1.2 a).  So there 

is no reverse activation barrier because the transition state does not need 

rearrangement to lead to products.  So the resulting TOF profile is a narrow fragment 

peak.  This is what we observe for simple solvent loss from microsolvated M2+.

 However, a “tight” transition state involves substantial rearrangement in going 

from reactants to products.  There is a substantial reverse activation barrier.  The 

internal energy is not re-distributed among the degrees of freedom of the tight 

transition state as in the loose transition state.  As a result often the reserve reaction 

barrier will end up as KER.  The KER will be observed in the fragment peak shape.  In 

cases where a doubly charged parent ion dissociates to form two singly charged 

fragments there is a substantial reverse activation barrier.  This is a result of 

coulombic repulsion between the singly charged fragments, and can give rise to large 

KER (figure 1.2 b).  The peak broadening is caused by the large distribution of 

velocities of the fragment ions.  Ions with KER parallel to the beam direction reach 

the detector first, while those anti parallel reach the detector last.  Some charged 

fragments dissociate perpendicular to the beam direction can completely miss the 

detector, giving a dip in the TOF profile as shown in figure 1.3.  Modeling the peak 

profile allows us to measure the KER, providing insights into the reverse activation  
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Figure 1.2: Schematic of two potential energy profiles (a) without (b) with a reverse 
activation barrier.  In part (b), two diabatic potentials are shown above the 
adiabatic potential. 
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Figure 1.3: The time-of-flight profile of two fragments with different kinetic energy 
releases.  The dip in middle is due to fragments with high velocity 
perpendicular to the ion beam missing the detector. 
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barrier and dissociation mechanism.  

1.4.2 1.4.2 1.4.2 1.4.2 Dissociation Lifetimes and RatesDissociation Lifetimes and RatesDissociation Lifetimes and RatesDissociation Lifetimes and Rates    

 Another piece of useful information that is derived from the TOF mass 

spectrum is the dissociation rate of the molecules.  The data are collected based on the 

flight times of the charged particles.  If the fragmentation is rapid, all the parents will 

dissociate at the same time to produce the same mass charged fragment ions that 

reach the detector simultaneously, resulting in a narrow peak unless there is KER.  If 

the photoexcited ion does not fall apart immediately, but remains excited for >50 ns, 

there is observable tailing of the fragment peak leading towards the parent mass.  The 

study of TiO+(CO2) showed excited state lifetimes which depend on the vibrational 

energy of the excited state.  The tailing that was observed is shown in figure 1.4.  

 We measure the dissociation rate using a MathCAD program to iteratively 

simulate the shape of the fragment peak.  However, there are limitations to the 

lifetimes we can measure in our lab.  Ions that dissociate ≤50 ns show no tailing.  Ions 

that dissociate after the reflectron have the same flight time as parent ions, and are 

thus not detected as fragments.  This limits the maximum lifetime we can monitor to 

~1-5 µs, depending on the mass of the parent.    
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Figure 1.4: TOF profile of TiO+ fragment from photodissociation of TiO+(CO2) at two 
photon energies.  Tailing at lower energy is due to slow photodissociation 
(~1100 ns lifetime). 
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1.5 Overview1.5 Overview1.5 Overview1.5 Overview    

 The instrumentation used in these studies is described in chapter 2, 

particularly modifications made to the electrospray instrument.  Chapter 3 describes 

studies of the photofragment spectroscopy of TiO+(CO2), which reveals information 

on the electronic spectroscopy of TiO+, as well as how electronic excitation of the 

TiO+ affects the metal-CO2 interaction.  The studies of strong non-covalent 

interactions between metal dications and acetonitrile and water solvent molecules are 

described in chapter 4.  Photofragment pathways reveal competition between solvent 

loss, proton transfer, and electron transfer and how this depends on the number and 

type of solvent molecules and the metal.  Chapter 5 details photoionization studies of 

products and intermediates of the Pt + CH4 reaction.  The measured ionization 

energies and bond strengths for the cations are used to derive a potential energy 

surface for the reaction.  Chapter 6 summarizes our results and describes future 

studies on our electrospray instrument.  
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CHAPTER 2CHAPTER 2CHAPTER 2CHAPTER 2    

EXPERIMENTALEXPERIMENTALEXPERIMENTALEXPERIMENTAL    

2.1 2.1 2.1 2.1 ExperimentalExperimentalExperimentalExperimental Approach  Approach  Approach  Approach     

 All the work that is described in the following chapters has one experimental 

technique in common, the time-of-flight reflectron mass spectrometer.  However, 

each project was uniquely differentiated by the source region such as the manner in 

which the molecules or ions of interest were produced.   

 The solvation study (Chapter 4) utilizes electrospray ionization (ESI) to 

produce multiply charged metal centered clusters.1  Then the ions are introduced to 

the vacuum through a heated desolvating capillary.  With the aid of an ion funnel the 

ion beam is concentrated and transmitted to the following vacuum region.  After a 

couple of differential pumping regions and two octopole ion guides the ion beam 

enters an ion trap.  The ion trap is very important, since it couples the continuous 

region to the pulsed instrument leading the ions to thermalize in the trap.  The 

trapped ions are extracted, accelerated and re-referenced to ground prior to entering 

the field free region.  The ions are photodissociated at the turning point of the 

reflectron and the fragments are detected by a dual micro channel plate detector and 

identified by their flight times. 
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 Two of the projects, spectroscopy of TiO+(CO2) (Chapter 3) and 

photoionization studies of PtCnHm (Chapter 5), use laser ablation to produce the 

ion/molecule of interest.  The instrument in our lab used laser ablation of a titanium 

rod, followed by reaction and clustering with CO2 to produce TiO+(CO2).  The ions 

were then accelerated and re-referenced to ground prior to entering the field free 

flight tube.  As in the electrospray instrument, the ions were photodissociated at the 

turning point of the reflectron.  Fragments were monitored at the detector.   

 Photoionization studies of PtCnHm were carried out at the Advanced Light 

Source (ALS) at Lawrence Berkeley National Laboratory.  Laser ablation of a platinum 

tube produced neutral platinum, which reacted with methane to produce gas-phase 

PtCH2 and HPtCH3.  These molecules are then photoionized in the extraction region 

of a reflectron time of flight mass spectrometer using tunable vacuum ultraviolet light 

and the ions are detected on a microchannel plate detector. 

 The remainder of this chapter describes the electrospray instrument in detail.  

Our laser ablation instrument has been described in John Husband’s thesis2 and in 

two review articles.3,4  The photoionization instrument and ALS capabilities are 

described in several papers.5,6 
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2.2.2.2.2 ESI Apparatus D2 ESI Apparatus D2 ESI Apparatus D2 ESI Apparatus Descriptionescriptionescriptionescription    

 The study of solvation of metal dications Co2+, Ni2+ and Cu2+ by acetonitrile and 

water was carried out using an electrospray source to produce microsolvated 

M2+(CH3CN)n(H2O)m ions that are then mass selected.  Selected ions are irradiated 

with a pulsed tunable laser.  The charged photofragments were characterized by their 

masses using a dual time-of-flight reflectron mass spectrometer.  Two key recent 

improvements to the apparatus are an ion funnel used for improved signals and liquid 

nitrogen cooling for the ion trap used for improved spectral resolution.  For the 

solvation studies, only the ion funnel was used.  The electrospray ionization ion trap 

reflectron time-of-flight mass spectrometer is shown in figure 2.1. 

2.2.2.2.2.1 Ion P2.1 Ion P2.1 Ion P2.1 Ion Production roduction roduction roduction and First Differential Rand First Differential Rand First Differential Rand First Differential Regionegionegionegion    

 With the introduction of electrospray ionization (ESI) by Fenn and co-

workers in the 80’s, multiply charged ions became very popular in gas phase studies.1  

In an ESI source, a solution of the ion of interest in a solvent such as water, methanol 

or acetonitrile flows through a thin needle.  The potential difference between the 

hypodermic needle and the desolvating capillary causes the droplets to be highly 

charged.  As the solvent evaporates, the droplets shrink in size resulting in an 

increased charged on the droplets’ surface.  As the surface charge increases due to 

instability of the droplet, the droplets undergo fission to produce smaller droplets  
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Figure 2.1:  Schematic drawing of the electrospray ionization dual time-of-flight mass 
spectrometer apparatus that was used for M2+(CH3CN)n(H2O)m study. 
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until stable gas phase cluster ions are produced.7  Many combinations of clusters are 

produced and the charges depend on the conditions of the needle, capillary and metal 

solvent mix.   

 These multiply charged metal clusters are produced with an electrospray 

ionization source (ESI) in the room environment.  A 10-3–10-4 M solution of the 

appropriate M2+ salt in the solvent of interest flows through a stainless steel needle (A) 

held at a high voltage (5-6 kV for water; 3.5-5 kV for acetonitrile).  All the solutions 

were made using nitrate salts due to the difficulties of dissolving chlorides and sulfates 

in pure acetonitrile.  Salts were vacuum dried overnight while acetonitrile was dried 

using molecular sieves for a day prior to making the solution in order to create pure 

acetonitrile clusters with metal dications such as M2+(CH3CN)n.  Mixed clusters were 

made with an acetonitrile to water ratio of 50:1.  A desolvating capillary (B), which is 

usually held at 100-150 V, is the coupling between the atmospheric ESI source and 

the vacuum instrument.  It is a stainless steel tube is 6” long with an internal diameter 

of 0.03” and outer diameter of 0.0625”.  This tube is heated to ~500C to detach excess 

solvent molecules from the clusters.  After passing through the desolvating capillary 

the ion clusters enter the first differential region, which is at ~1 Torr. 

2.2.2.2.2222....2222    Modifications to the First Differential RModifications to the First Differential RModifications to the First Differential RModifications to the First Differential Regionegionegionegion    

 A problem with the electrospray is that ions are formed at atmospheric 

pressure, while the detector is at ~10-7 Torr.  It is challenging to achieve this 
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differential in pressure while maintaining good ion transmission.  Until recently, we 

used a tube lens, which is basically a tube with high voltage, to guide ions from the 

desolvating capillary through a skimmer and into the next chamber.  Unfortunately, 

the tube lens is not very useful for keeping the ions in a narrow beam.  Therefore, 

most of the ions do not pass through the skimmer as shown in figure 2.2.  When the 

capillary is moved closer to the skimmer, the pressure in the next chamber gets too 

high.  Several groups have used a device called an ion funnel8,9 to solve this problem, 

increasing the ion signal by at least an order of magnitude, while reducing the gas 

load on later chambers.  In this work, we have adopted this approach.  Our ion funnel 

(C) is made of 32 plates with apertures exponentially decreasing in diameter from 1” 

to 0.05”.  A similar concept is shown in figure 2.2.  The plates are made of 0.035” thick 

stainless steel and the spacing between the plates is 1/16”.  There is a potential 

difference of 10-50 V between the first and last plates.  The plates are connected to 

each other with 1 MΩ resistors, creating a DC gradient, which causes the ions to flow 

towards the skimmer.  A 1800 phase shifted RF signal (10-500 V peak to peak at 1 

MHz) is applied to alternating plates using 1000 pF to compress the ion beam. We 

built the electronics based on O’Connor’s design for a high voltage regulated oscillator 

which produces two phase shifted sine waves.10  The RF frequency and amplitude can 

be changed easily to optimize the ion beam transmission and is usually run with 

amplitude of 30 V peak-to-peak.  Using this technique, we were able to significantly 

improve the ion beam intensity thus allowing us to study smaller cluster ions. 
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Figure 2.2:  Schematics of (a) tube lens and (b) an ion funnel that are used for ion 
transmission and to create a concentrated ion beam.  
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2.2.2.2.2.32.32.32.3 Second Second Second Second and Third Differential R and Third Differential R and Third Differential R and Third Differential Regionegionegionegionssss    

 The first octopole ion guide (OIG) (D) aids the transport of cluster ions 

through the second differential pressure region to the next chamber.  The second 

octopole ion guide (E) leads the ions to a radio-frequency quadrupole ion trap (F) (R. 

M. Jordan Co.).  The OIG consists of 8 stainless steel rods with alternating RF on each 

of the stainless steel poles.  The first OIG is floating at a 10 V DC potential and is 10” 

in length.  The second OIG is shorter, 5”, and has no DC offset.  The main purpose of 

the OIGs is to transport ions efficiently through differential pumping regions over a 

long distance and to lose any neutrals in the beam.  The loss of ions over a long 

distance is minimized by narrowing the distance between the skimmer and the OIG 

as well as between the back plate of the ion funnel and front plate of the ion trap.   

 The ion trap serves three useful purposes: (1) collecting ions to improve the 

overall signal and (2) coupling the continuous ion source to the pulsed time-of-flight 

mass spectrometer (TOF-MS) (3) thermalizing the ions that are collected.  The back 

plate of the ion trap is held at (-) 10 to (+) 10 V to guide ions to the trap.  Ions are 

trapped for up to 49 ms when running at the typical 20 Hz repetition rate.  During 

this time they collide with the background gas, comprising 1 mTorr of He that has 

been added to the trap.  This causes the ions to thermalize to 298 K.  Prior to ejecting 

the ions the RF is turned off, which causes the ions to diffuse within the trap.  A 100 

V pulse is provided to the front plate of the trap after a delay of 2 µs, ejecting the 
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stored ions.  Then ions are accelerated into the last differential region by a plate held 

at (–) 1800 V.  This is where the continuous region of the instrument is coupled to the 

pulsed region. 

 The photodissociation of parent ions containing a wide distribution of internal 

energies results in peak broadening.  Recently, a liquid nitrogen cooling system (G) 

was added to the ion trap, which cools the trap gas (He) and the ion trap environment 

through a thermal link.  When liquid N2 is added to the reservoir, ions can be 

thermalized down to ~80 K, lowering the internal energy and improving the spectral 

resolution.  The liquid nitrogen cooling reservoir was not utilized for the solvation 

studies mention in here.   

2.2.2.2.2.42.42.42.4    Last Differential RLast Differential RLast Differential RLast Differential Regionegionegionegion    

 The pressure of this region is around 10-6 Torr under typical running 

conditions.  The ions are re-referenced to ground potential and focused by a series of 

ion optics.  A pair of deflector plates transmits the ions to the field free flight tube and 

also acts as a mass gate to select the parent of interest.  Following the mass gate a set 

of vertical deflector plates guides the ion beam to optimize overlap with the laser 

beam.   

 The re-referencing tube (H) is a 3” long 1.5” diameter stainless steel tube that 

is initially held at (-) 1800V, the same potential as the acceleration plate.  When the 

pulsed ion packet reaches the center of the tube, the voltage is set to zero, uniformly 
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changing the electric field around the ions to ground.  This is the re-referencing 

process.  It is important to re-reference ions to ground, so that the flight tube can also 

be grounded, which simplifies the instrumentation as well as lowers the operating 

risks.11  Following the re-referencing tube is a 1.25” i.d. Einzel lens (I).  The Einzel 

lens has three cylinders where the outer rings are at ground potential with the middle 

ring at (-) 2.3 kV.  When the ions enter the Einzel, ions travel from the grounded re-

referencing tube to the grounded first ring.  The Einzel lens spatially focuses the ion 

cloud for optimum overlap with the dissociation laser.  A pair of deflector plates (J) 

provides the horizontal and vertical alignment of the ion beam into the field free 

region of the instrument.   

2.2.5 Detector R2.2.5 Detector R2.2.5 Detector R2.2.5 Detector Regionegionegionegion    

 The time-of-flight mass spectrometer we use was initially introduced by Wiley 

and McLaren in the fifties as an analytical tool.12  Using the Wiley McLaren 

configuration a spatially dispersed ion cloud is focus into a tight packet of ions at a 

focal point, reflectron.  In this region the laser beam intersects the ion beam at the 

turning point of the reflectron. Under running conditions the pressure of this region 

is 10-7 Torr.  With the aid of deflector plates (J,K) the ions are focused to the center of 

the reflectron (L).  The second set of deflector plates also act as the mass gate with a 

pulsed voltage to allow ions to go through reflectron at the correct angle to reach the 

detector.  Thus, it eliminates unwanted masses.   
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 The reflectron consists of ten 1.8” i.d., 3.6” o.d. stainless steel plates spaced by 

0.174” cm and joined with resistors as shown in figure 2.3.  The first, second and last 

plates have meshes.  This is a two-field reflectron, with the potential on plate 2 

usually using an external resistor to 1.2 kV.  Internal resistors (261 kΩ) provide a 

constant electric field between plates 2 and 11.  Under typical condition, (+) 2970 V is 

applied to plate 11.  The ions that enter the reflectron are decelerated by the electric 

field and come to a rest at the turning point, midway between plates 6 and 7.  This is 

where the laser crosses with the ions.  Then the ions are accelerated back out of the 

reflectron with the same kinetic energy they entered.  The reflectron is at “high field” 

(~306 V/cm) at the turning point under normal conditions, which gives a more 

compact ion packet, and maximizes the overlap with the dissociation laser.  This field 

can be controlled by an external resistor to the “low field” (~150 V/cm) to further 

study kinetic energy release.   

 Directly behind the last plate of the reflectron is an imaging detector aligned 

with the center.  When the reflectron power is turned off, the ions hit the imaging 

detector instead of turning around to the ion detector.  The imaging detector is very 

useful to troubleshoot the instrument and to focus and align the ions to the center of 

the reflector.  The imaging detector is a dual micro channel plate detector coupled to 

a 1” phosphorous screen so that a glow is observed as the ions hit.  Under normal 

running conditions this detector is not in use, and the ions are redirected to the ion 

detector by the reflectron.   
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Figure 2.3:  Side view of the reflectron.  The turning point for the ions is shown with 
a cross. 
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 The mass selected clusters are irradiated with the unfocused output of a pulsed 

(20 Hz) Nd:YAG-pumped dye laser (N) with a line width of <0.1cm-1 that is tunable 

from 540 to 900 nm.  For some of these studies, the 532 nm second harmonic and 355 

nm third harmonic of a Nd:YAG laser were also used.  When the clusters are 

photodissociated and the charged fragments and remaining parent ions are 

accelerated down a second field-free tube to the detector (M).  The ion detector is 

located 26” from the center of the reflectron.  A 40 mm dual micro-channel plate 

detector detects the resulting ions.  The ion signal is produced by an avalanche effect.  

The resulting signal is amplified, collected on a digital oscilloscope or a gated 

integrator, and recorded digitally using a LabView-based program. 

2.2.2.2.2222....6666    Data Processing and Experimental TData Processing and Experimental TData Processing and Experimental TData Processing and Experimental Timing iming iming iming     

 Mass spectra are collected on a 200 MHz Tektronix TDS 2022 digital 

oscilloscope with a LabView-based program.  A mass spectrum of the ions is produced 

by measuring ion signals as a function of time on the digital scope.  Difference (mass) 

spectra are obtained by subtracting mass spectra obtained when the dissociation laser 

is off from those when it is on.  A home-built chopper wheel assists in producing a 

difference spectrum by allowing for the subtraction of laser-on spectra from laser-off 

spectra.  Difference (mass) spectra were used to find the relative abundance of the 

dissociated fragments as well as to identify the fragments and fragment pathways at a 

given wavelength.  The difference spectrum can also give information that is also 
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sensitive to dissociation dynamics and kinetics.  Kinetic energy release leads to 

broadening of the fragment time-of-flight peaks, while slow dissociation leads to 

tailing in the fragment peak toward the parent time.13  The area of the signal can be 

computed using numerical integration of difference spectral peaks or monitoring the 

parent and fragment peaks using a gated integrator.  The photodissociation spectra 

were obtained by monitoring the fragment ion yield as a function of wavelength and 

then normalizing to both the parent ion signal and laser power. 

 Experimental timing is key when studying a pulsed ion packet dissociated by a 

pulsed laser.  Re-reference, mass gate, dissociation laser Q-switch, the delay and the 

trigger for the scope (fragment flight time) are all with respect to the extraction 

pulse.Stanford Research System and Precision Plus digital pulse generators control 

pulse timing via TTL outputs.  Figure 2.4 shows the timings associated with the 

instrument.   

2.32.32.32.3    Ablation ApparatusAblation ApparatusAblation ApparatusAblation Apparatus    

 The metal centered ion species were produced using laser ablation techniques 

for the TiO2+(CO2) study.   This differentiates the instrument from the previously 

described ESI instrument.  However, the regions following the skimmer are very 

similar to the previously described ESI instrument’s ion optics.  The laser ablation 

dual time-of-flight mass spectrometer is shown in figure 2.5.  The instrument and  
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Figure 2.4: Experimental timing for the electrospray ionization dual time-of-flight 
apparatus.  The timings given are for Co2+(CH3CN)4.  
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Figure 2.5: Schematic drawing of the laser ablation dual time-of-flight mass 
spectrometer apparatus that was used for the TiO+(CO2) study. 
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data acquisition software are described in detail in John Husband’s thesis, so only the 

conditions used for the TiO+(CO2) study are described here.2 

 Singly charged metal cations are generated by laser (A) ablation of a 

translating and rotating titanium rod (B) in the source region. An external stepper 

motor rotates and translates the rod.  A Nd:YAG laser at 532 nm with laser pulse 

energy of 13 mJ is used for ablating the rod.  Once produced, Ti+ ions react with ~0.1% 

CO2 seeded in helium introduced through a piezoelectric pulsed valve (C)14 to 

produce Ti+, TiO+ and TiO+(CO2)n.  The pulsed valve is operated at 10 to 40 psi 

backing pressure.  The rep rate for the whole instrument is at 20 Hz.   

 Ions produced by laser ablation undergo supersonic expansion into a vacuum 

where the ion beam is skimmed (D) and extracted into the time-of-flight mass 

spectrometer.  In the meantime, the ions are cooled electronically and vibrationally 

by collision with bath-gas helium.  Typical rotational temperatures are 10 K.15,16  The 

cations of interest are mass selected and re-referenced (F) to the ground potential 

before entering the flight tube through the Einzel lens (G). The ion optics, 

fragmentation, and data processing are similar to those for the ESI instrument.   

2.4 A2.4 A2.4 A2.4 Advanced dvanced dvanced dvanced LLLLight ight ight ight SSSSourceourceourceource    Ablation Apparatus DAblation Apparatus DAblation Apparatus DAblation Apparatus Descriptionescriptionescriptionescription    

 All the studies on Pt were conducted at the Chemical Dynamic Beamline at 

the Advanced Light Source at Lawrence Berkeley National Laboratory.  The 
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instrument setup consists of a laser ablation source region coupled to a time-of-flight 

reflectron mass spectrometer.  The molecular beam is skimmed and irradiated with 

tunable vacuum ultraviolet (VUV) light.  The ionization VUV light energies are 8-14 

eV and linewidths of 25 to 100 meV were used.5,6 

 The neutrals are made in the similar manner as previously described for the 

ions with laser ablation technique.  The 532 nm output of a pulsed, 50 Hz rep rate 

Nd:YAG laser was used for ablation with power of 8 mJ on a platinum tube 

(Goodfellow, 99.95% pure) to produce gas phase platinum atoms.  The platinum 

atoms then react with CH4 or CD4 introduced through a pulsed piezoelectric valve at a 

backing pressure of 2 atm.  Different laser powers favor production of different 

neutral molecules: higher power favors PtC, while lower power favors H-Pt-CH3.  

Ions produced in the source are deviated off the neutral molecular beam path prior to 

the skimmer by a set of deflector plates.  The neutral molecular beam propagates to 

the next vacuum region through the skimmer.   

 The molecular beam is irradiated by the VUV light in the extraction region of 

a reflectron time-of-flight mass spectrometer.  The newly made photo-ions are 

extracted with a high voltage pulse into the reflectron time-of-flight and are collected 

on a microchannel plate detector.  To obtain photoionization efficiency curves, photo 

ion mass spectra are obtained as a function of VUV energy.  The signal for a particular 

ion is integrated and counted by a fast scaler and normalized to the VUV energy and 

photon flux.   
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2.52.52.52.5    ExperimentalExperimentalExperimentalExperimental    TimingTimingTimingTiming        

 Since our instrument is a pulsed time-of-flight mass spectrometer, the timing 

is very important.  Timing is controlled by two digital pulse generators, a Stanford 

Research Systems DG 535 and a Precision Instruments Inc. Model 9650.  The initial 

time, T0, is arbitrary.  The entire timing triggers are relative to T0 and the repetition 

rate for the entire instrument is set by the delay generators 20 Hz.  We use TTL logic 

outputs (0-5 V pulses) with high impedance load.  There are a total of 8 channels that 

can be used: four channels (A, B, C, and D) and four other combination channels.  

Each channel can be triggered relative to an internal trigger, external trigger or by 

another channel.  These pulses are used throughout the instrument for various 

purposes: to trap ions, select mass, laser flash lamp and Q-switch delays, etc. 

2.5.1.1 Electrospray Ionization Instrument2.5.1.1 Electrospray Ionization Instrument2.5.1.1 Electrospray Ionization Instrument2.5.1.1 Electrospray Ionization Instrument    

 Timing on this instrument is summarized in figure 2.4.  First, the ions are 

accumulated inside the ion trap.  The RF voltage to the ion trap is turned off, and ions 

are extracted into the time of flight mass spectrometer with a pulsed voltage.  All 

subsequent times are relative to extraction timing.  Then the extracted ion packet 

referenced to ground potential via the reference tube.  Initially as the ions enter the 

tube the potential is held at (-) 1800 V and then triggered to provide a ground 

potential, so that as the ions leave, they are grounded.  Then the ions are mass 
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selected with the mass gate.  The mass gate is a pulsed voltage that can be controlled 

to select a mass of interest.  When the mass gate is at continuous voltage a mass 

spectrum of all the stable ions can be monitored. 

 Mass selected ions then enter the field free region of the time-of-flight tube 

and travel towards the reflectron.  The ions are irradiated with the dissociation laser 

at the turning point of the reflectron which is another critical time control.  The 

flashlamp-Q-switch delay can be experimentally found by maximizing the laser 

power.  The dissociation laser Q-switch time is controlled to optimize the maximum 

dissociation.  This can be done either experimentally by observing the fragment or 

calculating the time using parameters that are unique to the instrument (table 2.1). 

2.52.52.52.5.1.2 Ablation Instrument.1.2 Ablation Instrument.1.2 Ablation Instrument.1.2 Ablation Instrument    

 It is critical that the timing for this instrument is properly maintained because 

the whole instrument is pulsed.  Initially the pulsed valve gets a trigger and the 

ablation laser flash lamp is triggered shortly after.  Just after the gas pulse leaves the 

holder, the ablation laser fires on to the metal rod so the metal cation can react with 

the gas molecules around the rod inside the holder.  These ions are pulse extracted 

and accelerated to 1800 V kinetic energy.  The rest of the instrument shares the same 

as the electrospray instrument.   
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2.5.2 Arrival Time Calculations2.5.2 Arrival Time Calculations2.5.2 Arrival Time Calculations2.5.2 Arrival Time Calculations    

 When the mass gate is turned off, the spectrum that is seen at the detector 

includes all the stable ions that were produced.  The arrival time of an ion is related to 

its mass by 

0/ tzma +=τ  

The parameters a and t0 can be initially calibrated using two known ion peaks. 

 When ions are photodissociated, the photofragment flight times reflect the 

fact that the ions spend a portion of the time as parents prior to fragmenting.  

Therefore the photofragment flight time can be calculated using the equation below. 

)()( // fragmentparent zmczmb +=τ + t0 

where b + c = a.  So to identify the fragment, use the above equation to find the time 

difference from the parent flight time.  Typical parameters a, b, and c for the two 

instruments are listed below. 

Instrument a b c 

Electrospray 4.426 3.116 1.31 

Ablation 5.87 3.82 2.02 

 
Table 2.1: Timing constants are unique to each instrument and also allow finding the 

appropriate mass using arrival time of the ions.  
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CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3    

PHOTOFRAGMENT SPECTROSCOPY OF TiOPHOTOFRAGMENT SPECTROSCOPY OF TiOPHOTOFRAGMENT SPECTROSCOPY OF TiOPHOTOFRAGMENT SPECTROSCOPY OF TiO++++(CO(CO(CO(CO2222))))    

3.1 Introduction 3.1 Introduction 3.1 Introduction 3.1 Introduction     

 Metal oxides are interesting due to their importance in astronomy and as 

catalysts.  Astrophysicists consider cool stars to be the largest stellar class.  Therefore, 

understanding their properties is vital for astronomy in general.  Diatomic molecules 

play an important role in the middle region of the photosphere of cool stars.  Most 

interesting is the domination of TiO molecule in the spectrum of M-type stars due to 

its opacity in the visible and near-infrared regions.1 

 Ionization of metals and oxygen leads to the formation of a pool of free 

electrons in interstellar clouds.  Titanium and oxygen ionization results in the 

production of TiO+ and TiO.2  Some stars are classified by the abundance of certain 

metal oxides and cations present in them.  For instance, cool M and S class stars 

contain titanium oxides.3  Furthermore, the temperature of the stellar atmosphere is 

determined by the rotational structures of these oxides.4  Hence, studying the metal 

oxides, cations, and the excited states of these molecules in a quantitative manner is 

very important.  Although there has been some theoretical work2 on TiO+, little is 

known about it experimentally, whereas an abundance of information is available for 

TiO.  
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 Another motivation for studying transition metal oxide cations is catalysis.  

Transition metal oxides are widely used in industry as oxidation catalysts.  A recent 

interesting application of titanium oxide is its use as a non-platinum electro catalyst 

for oxygen reduction reactions that can be useful in polymer electrolyte fuel cells.5  

There have been numerous gas-phase studies of transition metal oxides to understand 

the oxo ligand influence on metal chemistry and to characterize reactions such as 

methane to methanol conversion.6-9 

 Recently, Koyanagi and Bohme measured the room temperature kinetics of 

the sequential reactions of 46 main group and transition metal cations with CO2.10  

Several early transition metal cations (including Ti) activate CO2:   

M+   + CO2  �  MO+   +   CO 

While sequential activation is observed for Hf+, Nb+, Ta+ and W+: 

MO+ + CO2  � MO2+   +   CO 

Breaking the OC-O bond requires 5.52 eV.  So, Ti+ oxygen abstraction from CO2 is 

consistent with the measured Ti+-O bond strength of 6.88±0.07 eV.11 

 To date, the only spectroscopic information on TiO+ is from photoelectron 

spectroscopy of TiO. Dyke and co-workers irradiated TiO from a high-temperature 

oven with 21.22 eV photons and observed transitions assigned to two states of TiO+.  

A weak band due to ionization to TiO+ (X, 2∆) gives an ionization energy of 6.82±0.02 

eV.  A second band at T0=10250±80cm-1 with vibrational frequency ωe=860±60 cm-1 

and re=1.73±0.01 Å was assigned to the A, 2Σ+ state.12  Neutral TiO has a 3∆ ground 



48 

state with the electron configuration 8σ2, 3π4, 1δ1, 9σ1 and re=1.620 Å.  The 2∆ ground 

state of TiO+ results from removing 9σ electron (figure 3.1).  Removing the 1δ 

electron gives the 2Σ excited state.  Weisshaar and co-workers measured the 

photoelectron spectrum of supersonically cooled TiO using resonance-enhanced 

multi-photon-ionization.13  They measure an ionization energy of 6.819±0.006 eV, in 

accord with the earlier work.  The vibrational frequency of the TiO+ ground state is 

ωe=1045±7 cm-1, with anharmonicity ωexe=4±1 cm-1.  They observe an excited 2Σ+ state 

with an origin at 11227±17cm-1, a vibrational frequency ωe=1020±9cm-1, and 

anharmonicity ωexe=6±2cm-1.  Although this state lies at a similar energy to the 2Σ 

observed by Dyke and co-workers, the very different vibrational frequencies led 

Weisshaar and co-workers to propose that TiO+ has two distinct low-lying 2Σ states, 

and resonant two-photon ionization reaches one state, while one-photon ionization 

reaches another.  Unfortunately, 2∆-2Σ optical transitions are forbidden, so these states 

are difficult to characterize by other means, and are not useful for astronomical 

observation of TiO+.  The low ionization energy of TiO, and its high bond strength of 

6.92±0.09 eV allow for TiO+ to be formed by chemionization: 

Ti + O � TiO+ + e-  ∆Hrxn = -0.10 eV 

 Due to interest in CO2 activation, the electronic and vibrational spectroscopy 

of several transition metal cation complexes with CO2 have been measured.  Brucat 

and coworkers have studied the electronic spectroscopy of CO2 bound to Ni+and 

Co+.14-16  In our lab, we have looked at the electronic and vibrational spectroscopy of  
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Figure 3.1:  Molecular orbital diagram and electron occupancy of TiO+ (X, 2∆). 
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V+(CO2).17,18  Duncan and coworkers have studied the vibrational spectroscopy of 

M+(CO2)n clusters for several metals.19-21 

 Other studies have focused on MO+(CO2)n to understand metal-ligand 

interactions.  Brucat and co-workers have produced ZrO+(CO2)n using molecular-

beam methods and characterized an excited electronic state with photofragment 

spectroscopy.22  As the CO2 electrostatic bond with ZrO+ is dissociated, much 

information about the ZrO+ excited and ground states are revealed.  For example, the 

binding to CO2 decreases the energy gap to the excited state indicating that the 

solvent molecule binds to the excited state much more strongly than to the ground 

state.  This can be explained with respect to the upper-electronic state properties of 

ZrO+, particularly the greater electric dipole moment and the larger separation of its 

internuclear bond.  This information is obtained by comparing to other complexes of 

ZrO+ such as ZrO+(N2). 

 The Ti+-O bond is very strong, and consequently it is hard to use 

photofragment spectroscopy to observe the absorptions of this molecule.  To 

understand the excited states without breaking the Ti+-O bond, one can look into 

attaching a spy molecule like CO2 and then breaking the metal–ligand bond.  We 

have measured the photodissociation spectrum of TiO+(CO2) to characterize an 

excited state of the TiO+ chromophore.  When TiO+ is photoexcited, its electron 

density changes, and the response of the ligand to these changes is reflected in the 
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photodissociation spectrum.  In addition, calculations help to further characterize the 

ground and excited states of TiO+ and TiO+(CO2).   

3.2 Experimental3.2 Experimental3.2 Experimental3.2 Experimental    

 The experimental apparatus, a dual time-of-flight reflectron photofragment 

spectrometer, and methods used have been described in detail previously in Chapter 3 

and literature.23 24  In this study, titanium cations are generated by laser ablation of a 

translating and rotating titanium rod (Strem Chemicals, 99.98% pure) in the source 

region.  The Ti+ ions react with ~0.1% carbon dioxide (99.98% pure) seeded in helium 

introduced through a piezoelectric pulsed valve to produce TiO+ and TiO+(CO2)n.  The 

ions in the plasma then undergo supersonic expansion into vacuum, leading to 

substantial cooling.  Vibrationally mediated photodissociation of V+(CO2) reveals a 

rotational temperature of 12 K for ions produced in this source.17  The ion beam is 

then skimmed, extracted into the time-of-flight mass spectrometer and re-referenced 

to ground potential.  The mass-selected ions of interest are then photoexcited at the 

turning point of the reflectron by the output of a pulsed (20 Hz) Nd:YAG-pumped 

dye laser with a line width of <0.1cm-1.  Fragment and parent ions re-accelerate to a 

dual micro-channel-plate detector.  The resulting signal is amplified, collected on a 

digital scope or a gated integrator, and recorded digitally using a LabView-based 

program.  The photofragment experiments produce two types of spectra.  Difference 
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spectra are obtained by subtracting time-of-flight spectra with the dissociation laser 

block from those with it unblocked.  Difference spectra are used to identify fragment 

ions and their relative abundance at a given wavelength.  The difference spectrum can 

also give information on the dissociation dynamics and kinetics.  Kinetic energy 

release leads to broadening of the fragment time-of-flight peaks, while slow 

dissociation leads to tailing in the fragment peak toward the parent time.25  

Photodissociation spectra are obtained by monitoring the fragment ion yield as a 

function of wavelength and normalizing to the parent ion signal and laser power.  

The intensities of features in the photodissociation spectrum are given by the product 

of the absorption cross section and the quantum yield for photodissociation. 

3.3 Results and D3.3 Results and D3.3 Results and D3.3 Results and Discussioniscussioniscussioniscussion    

3333.3.1 .3.1 .3.1 .3.1 Photodissociation Spectroscopy and Dissociation Kinetics of TiOPhotodissociation Spectroscopy and Dissociation Kinetics of TiOPhotodissociation Spectroscopy and Dissociation Kinetics of TiOPhotodissociation Spectroscopy and Dissociation Kinetics of TiO++++(CO(CO(CO(CO2222))))    

 The photodissociation spectrum provides the absorption spectrum of 

TiO+(CO2) when absorption leads to dissociation.  Figure 3.2 shows the resonant 

photodissociation spectrum of 48TiO+(CO2) obtained by monitoring 48TiO+, the only 

fragment observed.  The spectrum is richly structured, with four bands separated by 

~950 cm-1; each band consists of several peaks separated by ~50 cm-1.  In order to 

identify the vibrational progressions in electronic spectrum of TiO+(CO2) we first  
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Figure 3.2:  Photodissociation spectrum of TiO+(CO2) with the covalent Ti-O stretch 

vibrational quantum numbers vTiO marked.  The asterisk denotes the 
electronic state origin. 
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consider the vibrational frequencies of TiO+ and CO2.  The vibrational frequency13 of 

the TiO+ ground state is ωe=1045±7 cm-1, with anharmonicity ωexe=4±1 cm-1; the 

vibrational frequencies of CO2 are 2349, 1333 and 667 cm-1.  The ~950 cm-1 progression 

observed is thus likely due to the covalent Ti-O stretch in the excited state of 

TiO+(CO2), while the low-frequency vibration(s) are due to non-covalent metal-CO2 

stretches and bends.  In order to confirm the assignment of the high-frequency bands 

and to establish vibrational quantum numbers we measured the photodissociation 

spectrum of TiO+(CO2) using the minor 50Ti isotope (5% natural abundance), rather 

than 48Ti (74% abundance).  Since vibrational frequencies depend on the reduced 

mass of the molecule, the TiO+ stretching frequency of the heavier 50TiO isotopomer 

is lower than that of the more abundant 48TiO isotopomer.  Ignoring anharmoncity 

and the influence of the CO2, the ratio of reduced masses yields ω50 = 0.994986 ω48.  

Using the vibrational frequencies of the ground (1045 cm-1) and excited (950 cm-1) 

states of TiO+ gives an isotopic shift (in cm-1) of 

E 48
TiO

+ − E 50
TiO

+ ≈ 4.76  ′ v  −  0.24     (1) 

where v’ is the excited state vibrational quantum number.  Figure 3.3 shows the 

measured isotopic shifts, and the predictions of equation 1 for the cases where the 

first observed band corresponds to v’=0 (best fit), v’=1, and where the second band is 

due to v’=0.  With the vibrational numbering established, the peak at 13918 cm-1 

(asterisk in figure 3.2) is the origin.  The excited state covalent TiO+ stretching  
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Figure 3.3: Assignment of covalent Ti-O stretch vibrational levels vTiO in the 
photodissociation spectrum of TiO+(CO2).  Experimental isotope shifts are 
compared to calculated shifts assuming the vibrational numbering is as 
shown in Fig. 2 (solid line) and with the numbering shifted by one 
(dashed lines). 
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frequency is ω’TiO=952 cm-1 with anharmonicity x’TiO=5 cm-1. 

 Figure 3.4 again shows the photodissociation spectrum of TiO+(CO2), but with 

the four high-frequency bands shifted, to allow for better comparison of the low-

frequency structure in each band.  The four bands exhibit almost identical low-

frequency structure, indicating that there is little coupling between the covalent Ti-O 

stretch and the metal-CO2 stretches and bends.  There are progressions in two low-

frequency modes: at 45 cm-1 and 186 cm-1.  The 186 cm-1 vibration is assigned to the 

non-covalent metal-CO2 stretch, while the lowest frequency vibration is due to the 

metal-CO2 rock.  Every fourth peak has a split feature, as the stretch frequency is not 

quite an integer multiple of the rocking frequency.  The long progressions observed in 

the metal-ligand rock and, to a lesser extent, rock indicate that the TiO+ electronic 

state substantially affects its interaction with CO2.  This will be explored in more 

detail with the aid of electronic structure calculations.  It also interesting to compare 

the photodissociation spectrum of TiO+(CO2) to that of isoelectronic ZrO+(CO2) 

obtained by Bellert et al.22  The spectra are very similar.  They observe a progression 

in the Zr-O covalent stretch (ω’ZrO=891 cm-1, x’ZrO=3.4 cm-1), as well as the metal-CO2 

stretch (ω’stretch=173 cm-1) and rock (ω’rock=39 cm-1).  These values are very similar to 

those we observe for TiO+(CO2).  The titanium complex does, however show a more 

extensive progression in the rock, indicating that electronic excitation of TiO+ results 

in a larger change in the orientation of CO2 ligand. 
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Figure 3.4: Overlapped photodissociation spectrum of TiO+(CO2). Bands 

corresponding to the covalent Ti-O stretch vTiO = 0 to 4 are shifted to 
allow comparison of the low-frequency metal-CO2 stretch and rock.  The 

low-frequency vibrations are essentially independent of vTiO 
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 The shape of the fragment peak in the time-of-flight spectrum is sensitive to 

dissociation dynamics and kinetics.  Substantial kinetic energy release leads to peak 

broadening, while slow dissociation leads to peak tailing.  Figure 3.5 shows the TiO+ 

fragment peak from photodissociation of TiO+(CO2) at 14204 and 14925 cm-1.  The 

14204 cm-1 spectrum shows clear tailing, which is much reduced at 14925 cm-1.  The 

lifetimes of the photoexcited molecules are determined by comparing experimental 

and simulated25 fragment time-of-flight profiles.  Excited state lifetimes measured at 

several photon energies covering vTi-O=0-4 are listed in table 3.1.  The lifetime drops 

rapidly with increasing photon energy, until no tailing is observed at energies above 

16500 cm-1, indicating lifetimes below 50 ns.  

Energy (cm-1) Lifetime (ns) Dissociation rate (s-1) 

14204 1100 9x105 

14925 120 8x106 

15798 60 1.7x107 

16722 ≤ 50 ≥ 2x107 

 
Table 3.1: Excited state lifetimes for several vibronic states of TiO+(CO2).  The 

lifetimes are measured from fits to tailing in the TiO+ fragment time-of-
flight spectrum, as shown in figure 3.5. 
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Figure 3.5: Time-of-flight spectra of TiO+ from photodissociation of TiO+(CO2) at 
14204 and 14925 cm-1.  Tailing in the 14204 cm-1 spectrum indicates a 
lifetime of 1100 ns, which drops to 120 ns at 14925 cm-1.  The small peaks 
in the spectra are due to photodissociation of minor isotopomers. 
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3.3.2 3.3.2 3.3.2 3.3.2 CalculationsCalculationsCalculationsCalculations    

 Electronic structure calculations were carried out on TiO+ and TiO+(CO2) to 

determine which state of the TiO+ chromophore is responsible for the observed 

spectrum, as well as to try to explain the photodissociation mechanism and the broad 

range of dissociation lifetimes.  In addition, by calculating how the CO2 affects the 

vibrational frequencies and electronic spectroscopy of TiO+, we can use our 

experimental results on TiO+(CO2) to predict the electronic spectrum of bare TiO+ in 

the visible.  Calculations were carried out using the B3LYP hybrid density functional 

method, with the 6-311+G(d) basis set, using Gaussian03.26  At this level of theory, 

bare TiO+ is predicted to have a 2∆ ground state, with the electron configuration 8σ2,  

3π4, 1δ1 and re=1.570 Å.  To characterize excited electronic states, time-dependent 

density functional theory (TD-DFT) calculations were carried out, at the B3LYP/6-

311+G(d) level.  There are two low-lying excited states: the 2Σ state is formed by 

promotion of the 1δ electron to the 9σ orbital (see figure 3.1); promotion to the 4π 

orbital produces the 2Π state.  Figure 3.6 shows scans along the Ti-O stretch for the 

ground and low-lying doublet states of TiO+.  Spectroscopic parameters obtained by 

solving the Schrodinger equation on the one-dimensional stretching potential are 

given in table 3.2.  Transitions from the 2∆ ground state to the 2Σ excited state are 

symmetry forbidden.  Transitions to the 2Π state are calculated to have an integrated 

oscillator strength f = 0.0050. 
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Figure 3.6: Calculated potential energy curves for doublet states of TiO+ and 
TiO+(CO2) along the covalent Ti-O stretch.  Points are calculated using 
TD-DFT at the B3LYP/6-311+G(d,p) level.  Electronic states of TiO+(CO2) 
are also labeled by the corresponding state of bare TiO+. 
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State we wexe Te T0 

2∆,harmonic 1122.1 0 0 0 

2∆ 1122.5 4.18 0 0 

2Σ 1130.9 4.84 11399 11403 

2Π 1049.6 3.89 16385 16348 

 
Table 3.2: Spectroscopic parameters for the ground and low-lying excited states of 

TiO+ from TD-DFT calculations at the B3LYP/6-311+G(d) level.  The first 
row is a harmonic frequency.  Other rows are anharmonic frequencies 
from the potentials in figure 3.6. All values in cm-1. 

 

 The TiO+(CO2) complex is calculated to be planar.  Binding to CO2 lengthens 

the covalent Ti-O bond by 0.010 Å, to 1.580 Å.  The noncovalent OTi-OCO bond 

length is 2.19 Å, and the complex is bent, with an O-Ti-(OCO) angle of 107°.  The 

CO2 is bound by 8000 cm-1.  Figure 3.6 shows scans of excited states of TiO+(CO2) 

along the covalent Ti-O stretch.  Interaction with CO2 splits the 2Π excited state of 

TiO+ into two states.  The lower-energy state corresponds to an electron in the out-of-

plane π orbital, resulting in less repulsion with CO2 than promotion to the in-plane π 

orbital.  Binding to the CO2 lowers the symmetry, so transitions to the 2A’ (2Σ) state 

are no longer forbidden, but are weak with f=0.0007.  The low-energy 2A” component 

of the 2Π state retains significant oscillator strength (f=0.0057), while the 2A’ 

component has f≈0.  Calculated spectroscopic parameters for the covalent Ti-O  

stretch in TiO+(CO2) are given in table 3.3.  Calculated harmonic vibrational 

frequencies for the ground state of TiO+(CO2) are in table 3.4. 
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State we wexe Te T0 

2A” (2∆), harmonic 1106 0 0 0 

2A” (2∆) 1103.5 3.16 0 0 

2A’ (2Σ) 1062.4 3.31 11552 11531 

2A’ (2Π) 1033.5 3.96 14992 14957 

 
Table 3.3: Spectroscopic parameters for the ground and low-lying excited states of 

TiO+(CO2) from TD-DFT calculations at the B3LYP/6-311+G(d) level.  The 
first row is a harmonic frequency.  Other rows are anharmonic 
frequencies from the potentials in Figure 6. All values in cm-1. Electronic 
states of TiO+(CO2) are also labeled by the corresponding state of bare TiO+ 
in parentheses.  Interaction with CO2 splits the 2P state into two 
components.  Parameters are not given for the upper 2A” (2P) state. 

 

Assignment Frequency (cm-1) 

CO2 antisymmetric stretch 2458 

CO2 symmetric stretch 1377 

CO2 bend 639 and 647 

Covalent Ti-O stretch 1106 

OTi-(OCO) stretch 255 

OTi-(OCO) rock 53, 100 and 132 

 

Table 3.4: Calculated vibrational frequencies of  ground state TiO+(CO2) at the 
B3LYP/6-311+G(d) level.  
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3.4 3.4 3.4 3.4 DiscussionDiscussionDiscussionDiscussion    

 The photodissociation spectrum of TiO+(CO2) has an origin at 13918 cm-1 and 

shows extensive progressions in the covalent Ti-O stretch (ω’TiO=952 cm-1 with 

anharmonicity x’TiO=5 cm-1), and the metal-CO2 stretch and rock (186 and 45 cm-1, 

respectively).  The calculations predict two states of TiO+(CO2) in this region: the 2A’ 

(2Σ) and  2A’ (2Π) states.  Transitions to the 2A’ (2Σ) state are predicted to be about an 

order of magnitude weaker than those to the 2A’ (2Π) state.  Since we observe only 

one electronic transition, it is assigned to the 2A’ (2Π) state.  This state is at an 

adiabatic energy of Te=14877 cm-1, if the excited state geometry is optimized.  

Photoexcitation of TiO+(CO2) to this state is calculated to increase the covalent Ti-O 

bond length by 0.04 Å, decrease the OTi-OCO bond length by 0.04 Å, and decrease 

the O-Ti-OCO angle by 13°.  These geometry changes would lead to progressions in 

the covalent Ti-O stretch, and the metal-CO2 stretch and bend, as observed.  The 

calculation slightly over-estimates the covalent TiO stretch frequency, predicting 

ω’TiO=1033.5 cm-1 with anharmonicity x’TiO=4 cm-1 

 The TiO+ cation is an astronomically interesting molecule.  The TiO neutral 

has been detected near numerous stars and its presence is used to identify cool M and 

S class stars.  Neutral TiO is detected based on absorption in three strong electronic 

transitions in the visible.  The resulting rotational structure is used to measure the 

local temperature.  The low ionization energy of TiO and high bond strength of TiO+ 
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make it likely that it is present in circumstellar envelopes.  The electronic spectrum of 

TiO+ has not been measured, which clearly hampers its detection.  The high Ti+-O 

bond strength also makes it difficult to detect via photofragment spectroscopy.  We 

would like to use our calculations on TiO+ and TiO+(CO2), as well as experimental 

results on TiO+(CO2), to predict the electronic spectroscopy of bare TiO+.  The 

calculations indicate that binding to CO2 affects the 2Π state of TiO+: lowering ωe by 

16 cm-1 and Te by 1508 cm-1.  For TiO+(CO2), we measure T0=13918 cm-1 and ω’TiO=952 

cm-1 with anharmonicity x’TiO=5 cm-1.  We would then predict that the 2Π state of 

TiO+ has ωe=968 cm-1 with anharmonicity ωexe=5 cm-1, and lies at T0=15426 cm-1.  The 

estimated value of T0 ignores differences in zero-point energy between the two states.  

These values are very close to recent very high level multi-reference calculations by 

Miliordos <ref – A. Miliordos, private communication, 2008>.  Astronomical 

identification of TiO+ would require accurate laboratory frequencies, but these values 

provide an excellent starting point for laboratory studies of TiO+, perhaps by sensitive 

absorption techniques such as cavity ring-down spectroscopy.   

 The calculations predict that TiO+ (X, 2∆) binds CO2 by 8000 cm-1.  The 

calculated 1508 cm-1 red shift for excitation to the 2A’ (2Π) state indicates that the 2Π 

state of TiO+ binds CO2 more strongly, by ~9500 cm-1.  This stronger interaction is also 

consistent with the calculated reduction in the OTi-OCO bond length upon 

photoexcitation.  Despite this strong binding, interaction with the CO2 only slightly 

affects the vibrational frequency of TiO+. 



66 

 Current spectroscopic information on TiO+ is from photoelectron spectroscopy 

of TiO by Dyke and co-workers and Weisshaar and co-workers.  They agree on the 

ground 2∆ state of TiO+. Dyke and co-workers also observe a band at T0=10250±80cm-1 

with ωe=860±60 cm-1 and re=1.73±0.01 Å, which they assign to the A, 2Σ+ state.12  

Weisshaar and co-workers observe an excited 2Σ+ state with T0=11227±17cm-1, 

ωe=1020±9cm-1, and anharmonicity ωexe=6±2cm-1.13  Although this state lies at a 

similar energy to the 2Σ observed by Dyke and co-workers, the very different 

vibrational frequencies led Weisshaar and co-workers to propose that TiO+ has two 

distinct low-lying 2Σ states, and resonant two-photon ionization reaches one state, 

while one-photon ionization reaches another.  Our photodissociation study of 

TiO+(CO2) probes the 2Π state of TiO+.  This state has the electron configuration 8σ2, 

3π4, 4π1 and thus can’t be reached by simply removing an electron from neutral TiO, 

so it was not observed by Dyke and co-workers.  The multiphoton ionization study of 

Weisshaar and co-workers used several intermediate electronic states of TiO, so they 

could conceivably ionize to the 2Π state of TiO+, but their study did not extend to 

sufficiently high energies.  However, our calculations shed light on the 2Σ states 

observed by photoelectron spectroscopy.  The TD-DFT calculations predict one low-

lying 2Σ state of TiO+, at T0=11403 cm-1 with ωe=1131 cm-1 and ωexe=5 cm-1 and re=1.55 

Å.  These values are in excellent agreement with the values for the 2S state observed 

by Weisshaar and co-workers.  The next 2Σ state is predicted to lie at much higher 

energy, with Te=30600 cm-1.  It is not clear why the one-photon photoelectron 
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spectrum of TiO leads to such a low predicted vibrational frequency for the A 2Σ state 

of TiO+.  One possibility is that the high temperature (~800 K) of the molecules and 

modest spectral resolution lead to overlapping vibrational bands that are easily mis-

assigned.   

 The slow dissociation and wide range of dissociation lifetimes observed for 

TiO+(CO2) is unusual for a molecule this small.  Photoexcitation of TiO+(CO2) initially 

produces [TiO+(CO2)]* 2A” (2Π).  Dissociation requires internal conversion or 

intersystem crossing to a lower-lying electronic state followed by intermolecular 

vibrational relaxation (IVR) to transfer sufficient energy into the OTi-OCO stretch to 

dissociate the complex.  Intersystem crossing does not contribute since the lowest 

quartet state is calculated to lie above the photon energy.  We can use a statistical 

model to predict whether internal conversion or IVR is the rate-limiting step.  If 

internal conversion of [TiO+(CO2)]* to highly vibrationally excited TiO+(CO2) in its 

ground electronic state is rapid, then the statistical RRKM model can then be used to 

predict the unimolecular dissociation rate of the energized complex.  Using computed 

vibrational frequencies (table 3.4) and the computed TiO+-CO2 binding energy of 

8000 cm-1, the statistical dissociation rate is 3 x 1010 s-1 at a photon energy of 14000 

cm-1.  Even increasing the binding energy to 10000 cm-1, the dissociation rate is 3x109 

at 14000 cm-1.  This is over 3 orders of magnitude faster than is observed.  Thus, these 

calculations predict that IVR is rapid and internal conversion is the rate-limiting step.  
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This suggests that TiO+ (2Π) may fluoresce, which provides an additional route for 

laboratory studies. 

3.5 Conclusion 3.5 Conclusion 3.5 Conclusion 3.5 Conclusion     

 Photofragment spectroscopy of TiO+(CO2) has been used to characterize the 

2A” (2Π) excited state.  These measurements, along with calculations on TiO+ and 

TiO+(CO2) allow for the prediction of the excitation energy and vibrational frequency 

of the 2Π state of TiO+.  Astronomical observation of TiO+ in circumstellar envelopes 

may be possible via the 2∆-2Π electronic transition in the visible.  Photoexcited 

TiO+(CO2) shows a wide range of dissociation lifetimes, which is likely due to slow 

internal conversion at lower energies. 
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CHAPTER 4CHAPTER 4CHAPTER 4CHAPTER 4    

MICROSOLVATION OF NiMICROSOLVATION OF NiMICROSOLVATION OF NiMICROSOLVATION OF Ni2+2+2+2+ AND C AND C AND C AND Coooo2+2+2+2+ BY ACETONITRILE AND WATER:  BY ACETONITRILE AND WATER:  BY ACETONITRILE AND WATER:  BY ACETONITRILE AND WATER: 

PHOTODISSOCIATION DYNAMICS OF MPHOTODISSOCIATION DYNAMICS OF MPHOTODISSOCIATION DYNAMICS OF MPHOTODISSOCIATION DYNAMICS OF M2+2+2+2+(CH(CH(CH(CH3333CN)CN)CN)CN)nnnn(H(H(H(H2222O)O)O)O)mmmm    

4.1 Introduction 4.1 Introduction 4.1 Introduction 4.1 Introduction     

 Transition metals make human blood red and crustacean blood blue.  This 

colorful character makes d-block elements useful as pigments in dyes and paints and 

also gives precious gems like rubies their beautiful color.  Transition metals are vital 

to the physiology of living organisms.  For example, cobalt is imperative for vitamin 

B12 activity and copper and zinc are widely used metals in biological systems.  Also, 

transition metal ligation/solvation is a key aspect of homogeneous catalysis.  Studying 

metal ion solvation leads to a better understanding of transition metal chemistry and 

catalysis as well as providing functional and structural information on biological 

molecules in which these metals interact.  

 There is much that is not yet known about the interaction of transition metals 

with different solvents.  In solution, transition metals are typically multiply charged 

species such as M2+ and M3+.  Transition metal cations have a strong attraction to 

solvent molecules, due to their partially filled d-orbitals and characteristic multiple 

charges.  Most studies of ion-ligand interactions have been in solution.1  However, it 

is really difficult to differentiate the influence of the solvent molecules in the first 
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solvent shell from the second shell in solution.  In contrast to solution, gas phase 

studies allow for better control of the environment around the metal ion.  Gas phase 

clusters can be made with a known number of solvent molecules, and gas phase 

studies eliminate bulk effects due to outer-shell solvent molecules.  The number of 

solvent molecules needed to stabilize the metal dication depends on the type of 

solvent.  Typically, the preferred coordination number in solution is six for water but 

gas phase complexes with four water molecules are readily produced.2  Furthermore, 

the gas phase offers better control over the type of solvent that binds to the metal 

dication when different solvents are present.  For example this study focuses on 

mixed M2+(CH3CN)n(H2O)m clusters.  These features make the gas phase an ideal 

medium to study fundamental ion-ligand interactions.3-6 

 Singly charged transition metals tend to be the focus of much of the gas phase 

studies due to the convenience of producing them.6,7  Also, singly charged complexes 

are stable since metals have significantly lower first ionization energies than most 

solvent molecules.  However, in the condensed phase many transition metals in 

chemistry and biology are found in their more characteristic multiply charged states.8  

This is a compelling reason to produce and study multiply charged clusters in the gas 

phase.  The second ionization potential of metals is much higher than the first 

ionization potential, making it challenging to generate multiply charged ions.3  For 

example, nickel’s second ionization energy is 18.17 eV which is 10.53 eV higher than 

the first ionization energy.  Similarly, the energy difference between the second and 
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first ionization of cobalt is 9.2 eV.  With Fenn’s introduction of electrospray, efficient 

production of solvated, multiply charged ions became a possibility.9   

 Microsolvated multiply charged metal ions can be excited by energetic 

collisions or, in our experiment, absorption of light.  The microsolvated metal ion 

must first absorb a photon which has sufficient energy to break a bond leading to 

dissociation.  Charged fragments are detected by their characteristic flight time in the 

mass spectrometer.  In addition to identifying dissociation pathways, photofragment 

spectra can yield both dynamic and kinetic information about the dissociation 

process.  Metal ion clusters follow different dissociation pathways as the number of 

solvents increase; the relative yield of different fragments also changes with 

wavelength.  The larger clusters lose one or more solvent molecules, whereas smaller 

clusters show charge reduction or heterolytic bond cleavage.  In charge reduction, the 

doubly charged parent ion will make two fragment ions that are singly charged via 

proton transfer or electron transfer.   

 Earlier work in our lab has determined the dissociation pathways, mechanisms 

and bond dissociation thresholds for Co2+ and Ni2+ solvated by 4 to 7 water and 

methanol molecules.10-12  Both are protic solvents with the ability to hydrogen bond 

outer shell solvent molecules to those in the inner shell.  To extend the solvation 

study we will move away from the protic solvents to understand the effects of aprotic 

solvents such as acetonitrile.  Previous studies using Collision Induced Dissociation 

(CID) have shown that proton transfer is much less favorable for aprotic solvents, 



75 

narrowing the major charge reduction pathway exclusively to electron transfer and 

allowing for the production of smaller clusters.13-15   

 Even though acetonitrile and water have similar ionization energies, the 

dipole moment of acetonitrile is more than two times higher than that of water, as 

shown in table 4.1.  The polarizability of acetonitrile is over thrice that of water 

which is only 1.4 Å3.  So, acetonitrile interacts more strongly with M2+ than water.  As 

a result, stable smaller clusters can be produced.  Smaller clusters show more 

interesting dissociation dynamics and kinetic energy release than larger clusters. 

Ligand IE (eV) μ (D) α (Å3) 

Water 12.62 1.8 1.4 

Acetonitrile 12.19 3.9 4.4 

 
Table 4.1: The physical properties of acetonitrile and water show that acetonitrile is 

a better solvent for gas phase cations. 

4.2 Experimental4.2 Experimental4.2 Experimental4.2 Experimental Approach Approach Approach Approach    

 The experimental apparatus, a dual time-of-flight photofragment mass 

spectrometer, is described in chapter 2 in detail and also in the literature.16  The 

multiply charged metal clusters are produced with an electrospray source (ESI) 

outside the instrument and introduced to the vacuum chamber through a capillary.  A 

10-3–10-4 M solution of the appropriate M2+ salt, Co(NO3)2 or Ni(NO3)2, in the solvent 

of interest flows through a stainless steel needle held at a high voltage (4.5-5.5 kV).  
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Nitrate salts were used for the acetonitrile studies, as chlorides and sulfates did not 

dissolve.  To control the water content, the salts were vacuum dried overnight and 

the acetonitrile was dried using molecular sieves for at least 24 hrs.  It was necessary 

to use salts and acetonitrile that was free of water to produce small M2+(CH3CN)n 

clusters.  For the mixed clusters, the solvent mix is changed depending on the ion 

cluster we are interested in studying.  A 1:13 ratio of acetonitrile to water is used to 

generate M2+(CH3CN)2(H2O)2 and a 1:100 ratio is used to generate M2+(CH3CN)2(H2O).  

As the water content increases in the solvent mixture, the needle voltage also needs to 

be increased.   

 Normally, the desolvating capillary is kept below 0.1 kV.  The desolvating 

capillary17 is typically heated to 50-60 0C to aid in desolvating the clusters.  Once they 

reach the source chamber, the ions travel through an ion funnel18 before heading to 

the next low pressure chamber.  The alternating plates of the ion funnel have phase-

shifted RF of 30-40 V peak-to-peak at 1MHz frequency and a DC gradient: 12 V on 

first plate, 30 V on last plate.  Using this technique, we are able to significantly 

improve the ion beam intensity, thus allowing us to study challenging ions such as 

smaller clusters.   

 The ion funnel focuses the ions through a differential pumping aperture and 

into the second differential region where they enter the first octopole guide (OIG).  

The first OIG is floating at a 10 V DC potential and alternate rods carry 200 V peak-

to-peak at ~1 MHz.  The second octopole ion guide which has the same RF potential, 
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but has no DC bias, leads the ions to a radio frequency quadrupole ion trap.  The front 

plate of the ion trap is held at (-) 10 to (+) 2 V to guide ions into the trap.  The back 

plate carries a slightly more positive voltage than the front plate.  The difference 

between the ion trap plate voltages was ~1-2V for larger ions (n>3) and above ~2 V for 

smaller ion clusters (n=2, and 3).  The ions are trapped for up to 49 ms.  During this 

time they collide with background gas of 1 mTorr of He which is added to the trap.  

These collisions cause the ions to thermalize to ~298 K.  Ions are ejected from the trap 

with a pulsed voltage and are accelerated into the last differential region by a plate 

held at (–) 1800 V. 

 In this region, ions are re-referenced to ground potential, focused by an Einzel 

lens and guided by a pair of deflector plates into the field free flight tube.  The ion of 

interest is mass selected from the entire ion beam in this region.  The ion beam is then 

photo-excited at the turning point of the reflectron by the output of a pulsed (20 Hz) 

Nd:YAG-pumped dye laser with a line width of <0.1cm-1 or by the 532 nm or 355 nm 

harmonics of a Nd:YAG laser.  The fragments and parent ions are re-accelerated down 

the flight tube and detected by a dual micro-channel-plate detector and identified by 

their characteristic flight time.  The resulting signal is amplified, collected on a digital 

scope and recorded digitally using a LabView-based program.  The photodissociation 

spectra are obtained by monitoring the fragment ion yield as a function of wavelength 

and then normalizing to both the parent ion signal and laser power.  Difference 

spectra are used to identify the fragment pathways at a given wavelength, and can 
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also show effects due to kinetic energy release and slow photodissociation.  A home-

built chopper wheel assists in producing a difference spectrum by allowing for the 

subtraction of laser-on spectra from laser-off mass spectra. 

 Calculations to complement the experimental work were conducted using 

B3LYP hybrid density function theory with the 6-311+G basis set using Gaussian 03.19  

For each complex, the geometry was optimized and harmonic vibrational frequencies 

calculated to confirm the structure is a minimum.  The energy includes the zero point 

energy and thus corresponds to 0 Kelvin values.   

4.3 4.3 4.3 4.3 ResultsResultsResultsResults        

 Our primary interest in this study is the dissociation dynamics of transition 

metal dications solvated by acetonitrile and water.  The fragment ions produced by 

photodissociation depend mainly on three conditions: (1) whether the solvents in the 

cluster are homogenous or heterogeneous, (2) the coordination number of the cluster, 

and (3) the photon energy provided by our photodissociation laser.   

 We were able to produce different combinations of mixed clusters with 

acetonitrile and water solvating Co2+ and Ni2+.  Other studies have shown that aprotic 

acetonitrile solvated metal ion clusters tend to favor specific numbers of solvent 

molecules, such as Ni2+(CH3CN)6 and Cu2+(CH3CN)5.13  However, we produced smooth 

cluster distributions, with no pronounced “magic number” with unusually high 
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intensity in the mass spectrum.  Figure 4.1 shows mass spectra obtained by spraying 

3x10-4 M solutions of Co(NO3)2 and Ni(NO3)2 in 1:20 CH3CN:H2O and optimizing the 

yield of small clusters.  Observed coordination numbers range from 2 to 5; lower 

capillary temperatures lead to larger clusters.  

 The photodissociation work was conducted at visible and ultra-violet 

wavelengths.  None of the clusters dissociated at 355 nm.  Photolysis deeper in the 

ultraviolet region, at 266 nm, produced no obvious fragments, although there was 

substantial background at this wavelength.  In the visible, studies were carried out at 

532 nm and at several wavelengths from 560 to 660 nm.  Although the 

photodissociation yield depends on the visible wavelength, the observed products and 

dynamics do not, so only the 532 nm results are discussed.  Clusters with coordination 

number greater than 4 dissociated by simple solvent loss.  Mixed clusters 

preferentially lost the water molecule.  Due to their richer photodissociation 

dynamics, this study specifically focuses on M2+(H2O)n(CH3CN)m (M=Co, Ni) clusters 

with coordination number n+m=2 through 4.   
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Figure 4.1: (a) Mass spectrum of Co2+(CH3CN)n(H2O)m clusters (b) Mass spectrum of 
Ni2+(CH3CN)n(H2O)m. The peaks consist of doublets due to the two major 
isotopes of nickel, 58Ni and 60Ni, which are separated by one m/z unit as 
shown above.   
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4.3.1 Photodissociation Dynamics of Co4.3.1 Photodissociation Dynamics of Co4.3.1 Photodissociation Dynamics of Co4.3.1 Photodissociation Dynamics of Co2+2+2+2+ Complexes Complexes Complexes Complexes    

4.3.1.1 Four Coordinate 4.3.1.1 Four Coordinate 4.3.1.1 Four Coordinate 4.3.1.1 Four Coordinate ComplexesComplexesComplexesComplexes    

 Figure 4.2 (a) shows the difference spectrum of Co2+(CH3CN)4 at 532 nm.  The 

only observed dissociation pathway is solvent loss.  The major dissociation channel is 

the loss of one acetonitrile with a very minor channel for the loss of two acetonitrile.  

This minor channel was not observed for the nickel cluster (figure 4.2 b).  Calculated 

(B3LYP/6-311+G) energies for the observed pathways are 

Co2+(CH3CN)4             �   Co2+(CH3CN)3   +   CH3CN  ∆Hrxn = 2.41 eV 

Co2+(CH3CN)4             �   Co2+(CH3CN)2   +   2 CH3CN  ∆Hrxn = 6.25 eV 

A 532 nm photon has an energy of 2.33 eV.  The observed experimental loss of an 

acetonitrile from Co2+(CH3CN)4 is calculated to require 2.41 eV.  This is reasonable, 

considering the likely uncertainty in the calculated values.  Also, all the experimental 

work was done at ~298 K, so the internal vibrational energy of the parents (which is 

substantial, especially for the larger clusters) also contributes.  The loss of two 

acetonitrile molecules produced a fragment that was significantly lower in 

photodissociation yield.  This is because, as the calculation shows, absorption of three 

photons is required to promote this fragmentation. 
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Figure 4.2: Difference spectra for Co2+(CH3CN)4 (top) and Ni2+(CH3CN)4 (bottom) at 
532 nm.  The fragment is due to simple solvent acetonitrile loss. 
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 When one of the acetonitriles is replaced by a water molecule, 

Co2+(CH3CN)3(H2O), the dissociation pathway that is observed is loss of water (figure 

4.3 a).  This cluster overwhelmingly loses water, which implies that acetonitrile is  

more strongly bound to Co2+.  This is due to its higher dipole moment and 

polarizability.  This is supported by the calculations: 

Co2+(CH3CN)3(H2O)   �   Co2+(CH3CN)3   +   H2O   ∆Hrxn = 1.69 eV 

Co2+(CH3CN)3(H2O)   �   Co2+(CH3CN)2(H2O)   +   CH3CN  ∆Hrxn = 2.62 eV 

Loss of water from Co2+(CH3CN)3(H2O) happens readily because it requires <2.33 eV 

However, the lost of acetonitrile was not observed because that requires much more 

energy than water loss, and more than the energy of one photon from the dissociation 

laser.  

 The photodissociation of Co2+(CH3CN)2(H2O)2 is dominated by solvent water 

loss, as shown in figure 4.4.  However, two other minor pathways are observed: 

acetonitrile loss and proton transfer.  Note that loss of acetonitrile is observed instead 

of loss of two water molecules.  The two fragments made from proton transfer are 

protonated acetonitrile and the complementary singly charged metal hydroxide, 

CoOH+(CH3CN)(H2O).  Figure 4.5 shows the proton transfer pathway is stronger for 

the Ni2+ than the Co2+ complex.  Proton transfer was further studied with deuterated 

acetonitrile Co2+(CD3CN)2(H2O)2 to see if the proton transferred is from acetonitrile or 

water.  As shown in figure 4.6, the fragment observed is H+(CD3CN) rather than 

D+(CD3CN) indicating that the proton donor is the water molecule and not  
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Figure 4.3: Difference spectra for Co2+(CH3CN)3(H2O) (top) and Ni2+(CH3CN)3(H2O) 
(bottom) at 532 nm.  The fragment is due to simple solvent, water, loss. 



85 

 

100

80

60

40

20

0

-20

P
h

ot
of

ra
gm

en
t 

Y
ie

ld
 (

m
V

)

-4 -2 0 2 4

Relative Time (µs)

Depleted parent

Co
2+

(CH3CN)2(H2O)2

Major fragment 

Co
2+

(CH3CN)2(H2O)

Minor fragment

H
+
(CH3CN)

Minor fragment

Co
2+

(CH3CN)(H2O)2

Minor fragment
Counter part to proton transfer

CoOH
+
(CH3CN)(H2O)

 

 

Figure 4.4: Difference spectrum for Co2+(CH3CN)2(H2O)2 shows three dissociation 
pathways.  The major channel is solvent water loss.  Loss of solvent 
acetonitrile and proton transfer are minor channels. 
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Figure 4.5: As seen in the difference spectra of (a) Co2+(CH3CN)2(H2O)2 and (b) 
Ni2+(CH3CN)2(H2O)2 the minor pathways yields are different.  
Ni2+(CH3CN)2(H2O)2 favors proton transfer while Co2+(CH3CN)2(H2O)2 
prefers acetonitrile loss.   
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Figure 4.6: The minor fragmentation pathways, proton transfer and acetonitrile loss, 
are shown for (a) Co2+(CH3CN)2(H2O)2 and (b) Co2+(CD3CN)2(H2O)2.  This 
was used to identify the proton donor to be water and not acetonitrile.    
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acetonitrile molecule.  We were not able to study M2+(CH3CN)(H2O)3 due to the 

inability to produce a stable parent.  In our previous studies of Ni2+(H2O)4 and 

Co2+(H2O)4 we found that proton transfer dominates.10,11 

 When there is an equal number of the two solvents present in the mixed 

cluster, Co2+(CH3CN)2(H2O)2, the preferred dissociation pathway is simple solvent 

water molecule loss.  The calculations again predict that water loss is energetically 

favored: 

Co2+(CH3CN)2(H2O)2   �   Co2+(CH3CN)2(H2O)   +   H2O  ∆Hrxn = 1.84 eV 

Co2+(CH3CN)2(H2O)2   �   Co2+(CH3CN)(H2O)2   +   CH3CN ∆Hrxn = 2.79 eV 

Experimentally, acetonitrile loss was observed but it is a significantly smaller 

dissociation channel.  The other dissociation pathway was proton transfer.  

Energetically this is favorable since two singly charged fragments are produced.  

However, the activation barrier leading towards the fragments is quite high, and the 

transition state for proton transfer is tighter than that for solvent loss therefore this is 

not a very favorable dissociation channel.  As we saw in the difference spectra, proton 

transfer and loss of acetonitrile channels have significantly lower yield than loss of 

water. 
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4.3.1.2 Three Coordinate Complexes4.3.1.2 Three Coordinate Complexes4.3.1.2 Three Coordinate Complexes4.3.1.2 Three Coordinate Complexes    

 Producing the smaller clusters requires very different instrument conditions 

than for the four coordinate clusters.  Mostly, the ion funnel DC gradient and 

pressure in the desolvating chamber have to be tuned.  For example, the pressure in 

the chamber has to be higher (~500 mTorr), compared to ~300 mTorr for larger 

clusters.  Also, the ion funnel DC gradient has to be 30-40 V, rather than the ~18-20 V 

typically used for four coordinate clusters.   

 When Co2+(CH3CN)3 dissociates, the only product observed was simple loss of 

solvent acetonitrile as shown in figure 4.7 (a).  Unlike the four coordinate clusters, the 

second solvent molecule loss was not observed.  The low photodissociation yield is 

likely due to the high binding energy of the solvent molecule:  

Co2+(CH3CN)3   �   Co2+(CH3CN)2   +   CH3CN  ∆Hrxn = 3.84 eV 

This binding energy is 1.43 eV higher than for Co2+(CH3CN)4.   

 Photodissociation of the mixed three coordinate cluster, Co2+(CH3CN)2(H2O), 

produces solvent loss and proton transfer, as shown in figure 4.8 (a).  The major 

pathway is solvent water loss.  Again, loss of acetonitrile is calculated to require more 

energy and is not observed: 

Co2+(CH3CN)2(H2O)   �   Co2+(CH3CN)2   +   H2O  ∆Hrxn = 2.99 eV 

Co2+(CH3CN)2(H2O)   �   Co2+(CH3CN)(H2O) +   CH3CN ∆Hrxn = 3.43 eV 
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Figure 4.7: Difference spectra of three coordinate clusters (a) Co2+(CH3CN)3 and (b) 
Ni2+(CH3CN)3.  The common fragmentation pathway is acetonitrile loss 
(major).  The electron transfer channel is unique for Ni2+ cluster.  
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Figure 4.8: Difference spectra of (a) Co2+(CH3CN)2(H2O) and (b) Ni2+(CH3CN)2(H2O).  

The common fragmentation pathways are water loss (major) and proton 
transfer.  
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 The second, minor path is proton transfer which results in producing 

protonated acetonitrile and the complementary metal hydroxide, CoOH+(CH3CN).  

This minor proton transfer pathway in three coordinate clusters results in similar low 

yield when compared to the four coordinate cluster proton transfer channels.  The 

proton transfer pathway is an exothermic process, in contrast to the simple solvent 

losses.   

Co2+(CH3CN)2(H2O)   �   CoOH+(CH3CN)   +   H+(CH3CN) ∆Hrxn = -0.56 eV 

However, it does not produce an abundance of fragments because this process has a 

calculated activation barrier of 1.10 eV, and the transition state is tighter than the 

simple solvent loss.  In general, the photofragment yields for the three coordinate 

clusters are smaller than for the four coordinate clusters.   

4.3.1.3 Two Coordinate Complexes4.3.1.3 Two Coordinate Complexes4.3.1.3 Two Coordinate Complexes4.3.1.3 Two Coordinate Complexes    

 The last cluster we looked at was two coordinate Co2+(CH3CN)2.  This shows a 

new dissociation pathway: electron transfer.  The products are acetonitrile cation, 

CH3CN+, and singly charged metal cation, Co+(CH3CN), as shown in figure 4.9 (a).  

Similar to the three coordinate clusters the photofragment yield is very low.  Electron 

transfer is energetically favored over solvent loss: 

Co2+(CH3CN)2   �   Co+(CH3CN)   +   CH3CN+  ∆Hrxn = 2.79 eV 

Co2+(CH3CN)2   �   Co2+(CH3CN)   +   CH3CN  ∆Hrxn = 4.64 eV 
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Figure 4.9: Difference spectra of (a) Co2+(CH3CN)2 and (b) Ni2+(CH3CN)2.  Dissociation 
occurs via electron transfer. 
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The low photodissociation yield may be due to few molecules having sufficient 

energy to surmount the electron transfer activation barrier. 

4.3.2 Photodissociation Dynamics of Ni4.3.2 Photodissociation Dynamics of Ni4.3.2 Photodissociation Dynamics of Ni4.3.2 Photodissociation Dynamics of Ni2+2+2+2+ Complexes Complexes Complexes Complexes    

 The same clusters, M2+(CH3CN)n(H2O)m, were studied with Ni2+ as the metal.  

Both metals showed very similar photodissociation dynamics.  The calculated 

thermodynamic data for observed dissociation pathways of M2+(CH3CN)n(H2O)m are 

shown for both metals in table 4.2.  The energetics are similar for the two metals.  

However, the photofragment yields are quite different for Ni and Co complexes. 

4.3.2.1 Photodissociation Yield of Four Coordinate Complexes4.3.2.1 Photodissociation Yield of Four Coordinate Complexes4.3.2.1 Photodissociation Yield of Four Coordinate Complexes4.3.2.1 Photodissociation Yield of Four Coordinate Complexes    

 The absorption spectra of Ni (ΙΙ) and Co (ΙΙ) in solution are quite different, so 

we would expect that the absorption spectra of Ni2+(CH3CN)n(H2O)m and 

Co2+(CH3CN)n(H2O)m would also differ.  The photodissociation yield reflects these 

differences in absorption cross section and in photodissociation quantum yield.  

Normalized photodissociation yields (Y) are given by  

Y   =   F/ (P x L) 

where F is the total area under all of the fragment peaks, P is the parent peak area and 

L is the laser power in Joules.  Table 4.3 compares photodissociation yields for 

M2+(CH3CN)n, while yields for mixed clusters are in tables 4.4 and 4.5. 
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Reaction 
Co 

Clusters 
(eV) 

Ni 
Clusters 

(eV) 

   

Four coordinate clustersFour coordinate clustersFour coordinate clustersFour coordinate clusters      

M2+(CH3CN)4   �   M2+(CH3CN)3   +   CH3CN 2.41 2.13 

M2+(CH3CN)4   �   M2+(CH3CN)2   +   2 CH3CN 6.25 5.20 

M2+(CH3CN)3(H2O)   �   M2+(CH3CN)3   +   H2O 1.76 1.69 

M2+(CH3CN)3(H2O)   �   M2+(CH3CN)2(H2O)   +   CH3CN 2.61 2.62 

M2+(CH3CN)2(H2O)2   �   M2+(CH3CN)2(H2O)   +   H2O 1.84 1.83 

M2+(CH3CN)2(H2O)2   �   M2+(CH3CN)(H2O)2   +   CH3CN 2.79 2.72 

   

Three coordinate clustersThree coordinate clustersThree coordinate clustersThree coordinate clusters      

M2+(CH3CN)3   �   M2+(CH3CN)2   +   CH3CN 3.84 3.06 

M2+(CH3CN)2(H2O)   �   M2+(CH3CN)2   +   H2O 2.99 2.14 

M2+(CH3CN)2(H2O)   �   M2+(CH3CN)(H2O) +   CH3CN 3.43 3.42 

M2+(CH3CN)2(H2O)   �   MOH+(CH3CN)   +   H+(CH3CN) -0.56 -0.99 

   

Two coordinate clustersTwo coordinate clustersTwo coordinate clustersTwo coordinate clusters      

M2+(CH3CN)2   �   M+(CH3CN)   +   CH3CN+ 2.79 1.81 

M2+(CH3CN)2   �   M2+(CH3CN)   +   CH3CN 4.64 4.93 

M2+(CH3CN)(H2O)    �    MOH+   +   H+(CH3CN) -0.80 -1.19 

M2+(CH3CN)(H2O)    �   M2+(CH3CN)   +   H2O 4.20 3.64 

M2+(CH3CN)(H2O)    �   M2+(H2O)    +   CH3CN 4.50 5.86 

 

Table 4.2: Energies for the dissociation reactions of M2+(CH3CN)n(H2O)m clusters.  
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Coordination 
number 

Type of Cluster 
Normalized 

Photodissociation 
Yield for Co2+ 

Normalized 
Photodissociation 

Yield for Ni2+ 

Four M2+(CH3CN)4 2.1 0.28 

Three M2+(CH3CN)3 0.07 0.46 

Two M2+(CH3CN)2 0.08 0.09 

 
Table 4.3: Normalized photodissociation yields are compared for homogeneous 

clusters of both metals at 532 nm. 
 

 

Type of Cluster 
Normalized photodissociation 
yield for Cobalt cluster (λmax ) 

Normalized photodissociation 
yield for Nickel cluster (λmax ) 

M2+(CH3CN)4 3.41 (595 nm) 0.28 (532 nm) 

M2+(CH3CN)3(H2O) 2.85 (605 nm) 0.74 (532 nm) 

M2+(CH3CN)2(H2O)2 3.09 (605-615 nm) 0.46 (605-615 nm) 

M2+(CH3CN)1(H2O)3 N/A N/A 

M2+(H2O)4 
(585 nm; 

shoulder at 518 nm) 
(605 nm; 

shoulder at 512 nm) 
 
Table 4.4 : Four coordinate clusters of M2+(CH3CN)n(H2O)m where M = Co and Ni, 

normalized photodissociation yield for simple solvent loss at the 
maximum absorption wavelength. 
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Type of Cluster 
Normalized 

photodissociation  
yield for Cobalt cluster 

Normalized 
photodissociation  

yield for Nickel cluster 

M2+(CH3CN)3 0.07 0.46 

M2+(CH3CN)2(H2O) 0.15 0.78 

 
Table 4.5: Three coordinate clusters of Ni and Co, M2+(CH3CN)n(H2O)m, normalized 

photodissociation yield at 532 nm 
 

 Figure 4.2 and table 4.3 show that Co2+(CH3CN)4 is more readily dissociated 

than the same nickel cluster by almost an order of magnitude.  The calculated energy 

for CH3CN loss from the nickel complex is 2.13 eV, which is 0.28 eV lower than for 

the cobalt complex.  This suggests that the difference in photodissociation yield is not 

due to photodissociation quantum yield, rather is because the nickel four coordinate 

acetonitrile clusters do not absorb strongly for photon energies in the visible 

wavelengths (532–660 nm).  It is clear that the cobalt four coordinate clusters 

dissociate more readily than nickel for all combinations of M2+(CH3CN)n(H2O)m.   

 The major pathway for all four coordinate clusters is simple solvent loss.  

However, Ni2+(CH3CN)2(H2O)2 fragments via two minor pathways: proton transfer 

and a small amount of loss of acetonitrile as shown in figure 4.10.  The same 

dissociation channels were observed Co2+(CH3CN)2(H2O)2.  But, in the cobalt complex, 

acetonitrile loss was slightly favored over proton transfer pathway.  The opposite is 

true for Ni2+(CH3CN)2(H2O)2. 
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Figure 4.10: Difference spectrum for Ni2+(CH3CN)2(H2O)2 shows three dissociation 
pathways: proton transfer and solvent (major: water, very minor: 
acetonitrile) loss.  
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4.3.2.2 Photodissociation Yield of Three Coordination Complexes4.3.2.2 Photodissociation Yield of Three Coordination Complexes4.3.2.2 Photodissociation Yield of Three Coordination Complexes4.3.2.2 Photodissociation Yield of Three Coordination Complexes    

 The photodissociation yield for three coordinate nickel complexes is similar to 

that of four coordinate complexes, with complexes containing more water generally 

showing higher yield.  In contrast the photodissociation yield for three coordinate 

cobalt complexes is very low.  This could be due to differences in absorption, but it is 

also likely that photodissociation quantum yield plays a role.  Solvent binding 

energies in Co2+(CH3CN)3 and Co2+(CH3CN)2(H2O) are calculated to be above the 2.33 

eV photon energy, and are ~0.8 eV higher than those of the corresponding nickel 

complexes.  As with the four coordinate mixed clusters, Ni2+(CH3CN)2(H2O) shows 

higher branching for proton transfer than the cobalt complex (figure 4.8). 

 The most interesting observation compared to Co2+(CH3CN)3 is that electron 

transfer was a minor dissociation pathway that was observed for Ni2+(CH3CN)3.   

Ni2+(CH3CN)3   �   Ni+(CH3CN)2   +   CH3CN+ 

This may show slight broadening in the time-of-flight profile (figure 4.7) due to 

kinetic energy release, but it is hard to quantify, as the fragment peak is broadened 

due to dissociation of 58Ni and 60Ni complexes.  
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4.3.2.3 Photodissociation Yield of Two Coordinate Complexes4.3.2.3 Photodissociation Yield of Two Coordinate Complexes4.3.2.3 Photodissociation Yield of Two Coordinate Complexes4.3.2.3 Photodissociation Yield of Two Coordinate Complexes    

 The photodissociation yields of M2+(CH3CN)2 were similar for the two metals.  

Electron transfer is the only channel observed, and this is likely to have a large 

barrier, which will reduce the photodissociation quantum yield.   

4.3.3 Wavelength Dependence 4.3.3 Wavelength Dependence 4.3.3 Wavelength Dependence 4.3.3 Wavelength Dependence     

 The wavelength at which maximum photodissociation is observed (λmax) 

depends on the type of solvent present.  The Co2+(CH3CN)4 complex shows maximum 

dissociation near 595 nm and as the number of water molecules increases the 

absorption peak shifted toward 605-615 nm.  Previous studies in our lab have shown 

that the Co2+(H2O)4 maximum absorption is around 585 nm with a shoulder extending 

to 518 nm.11  Generally, acetonitrile addition shifts the absorption to a slightly lower 

energy compared to the homogeneous water complex.   

 Four coordinate clusters of nickel shows different trend in the wavelength 

dependence of the dissociation.  As the number of acetonitrile molecules increases in 

the four coordinate clusters the maximum absorption peak moved towards higher 

energy, 532 nm, compared to homogeneous water clusters which peak near 605 nm.10  

These molecules are considerably larger hence the absorption peaks are also broader.   
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4444.4 Discussion.4 Discussion.4 Discussion.4 Discussion    

 The microsolvation of Co2+ and Ni2+ by acetonitrile and water study was 

specifically done to understand the interaction of solvents with the metal center and 

competition between two different solvent molecules such as protic water and aprotic 

acetonitrile.  Since prior work in our lab focused on protic solvents, this will shed 

more information on aprotic solvents.  Acetonitrile is the better solvent towards M2+ 

due to its higher polarizability and dipole moment.  The smallest cluster previously 

made in our lab is M2+(H2O)4, but with acetonitrile we are able to make smaller 

clusters such as M2+(CH3CN)2.  This is due to acetonitrile being a better solvent and 

minimizing proton transfer dissociation. 

4.4.4.4.4.4.4.4.1 Geometry of the Metal Dication Clusters1 Geometry of the Metal Dication Clusters1 Geometry of the Metal Dication Clusters1 Geometry of the Metal Dication Clusters    

 Our earlier studies conclude that the four coordinate clusters M2+(H2O)4 for 

M= Co and Ni are tetrahedral and that these absorptions are red shifted from the 

solution data of Swaddle and Fabes.20  Tetrahedral complexes absorb more strongly 

than square planar due to lack of center of inversion in the geometry.  Our mixed four 

coordinate clusters, M2+(CH3CN)n(H2O)m, also showed the maximum absorption in the 

bulk range of the tetrahedral absorption peak.  This again suggests that these four 

coordinate complexes are approximately tetrahedral.  This is supported by our 
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calculations which predict tetrahedral geometries for Co2+(CH3CN)4 and 

Ni2+(CH3CN)4. 

4.4.2 Homogeneous Acetonitrile Clusters4.4.2 Homogeneous Acetonitrile Clusters4.4.2 Homogeneous Acetonitrile Clusters4.4.2 Homogeneous Acetonitrile Clusters    

 Leary and co-workers have conducted studies to compare the CID of divalent 

cations, M2+(CH3CN) and M2+(CH3CN)2, of alkaline earth metals such as calcium and 

transition metals such as Sr, Mn and Co.14,15  Shvartsburg and co-workers have 

specifically looked at the charge transfer and fragmentation pathways for 

M2+(CH3CN)n metals such as Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn, Fe, Co, Ni and Cu.13  The 

CID studies show that the major dissociation pathways for smaller clusters with 

aprotic solvents are proton transfer, electron transfer and heterolytic bond cleavage as 

shown in figure 4.11.  These CID studies were only done for the homogeneous 

acetonitrile clusters. 

 Our photofragmentation studies of M2+(CH3CN)n, show similar dissociation 

pathways.  However, heterolytic bond cleavage was not observed.  This may have 

been due to our inability to create the M2+(CH3CN) parent.  The larger clusters 

showed simple solvent loss.  The smallest cluster we observe, M2+(CH3CN)2, showed 

proton transfer and electron transfer in CID studies.  With the quantitative photon 

energy provided in our photodissociation dynamics studies we only observe electron 

transfer.  The electron and proton transfer products only differ by one mass unit, so 

there is the possibility that both pathways exits and the peaks overlap.  To confirm  
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Figure 4.11: Shvartsburg and coworkers have above fragmentation pathways for 
doubly charged metals such as Be, Mg, Ca, Sr, Ba, Zn, Cd, Mn, Fe, Co, Ni 
and Cu with acetonitrile. 13  Collision energies range from 40 – 160 eV. 
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that the only dissociation pathway we monitored was due to electron transfer, the 

study was extended using deuterated acetonitrile, CD3CN.  Deuteron transfer will 

result in fragments that are two mass units apart.  However, we only see one fragment 

pathway: electron transfer.  The difference between the CID and photolysis results 

could be due to more energy being available in the CID studies and a proton transfer 

barrier that lies above our photon energy. 

4.4.3 Photodissociation Dynamics of M4.4.3 Photodissociation Dynamics of M4.4.3 Photodissociation Dynamics of M4.4.3 Photodissociation Dynamics of M2+2+2+2+(CH(CH(CH(CH3333CN)CN)CN)CN)nnnn(H(H(H(H2222O)O)O)O)mmmm Clusters Clusters Clusters Clusters    

4.4.3.1 Simple Solvent Loss Pathway4.4.3.1 Simple Solvent Loss Pathway4.4.3.1 Simple Solvent Loss Pathway4.4.3.1 Simple Solvent Loss Pathway    

 Solvent loss is the dominant path of dissociation for metal-solvent clusters 

with coordination number n>2.  Observation of simple solvent loss is similar to the 

M2+(H2O)n  and M2+(CH3OH)n studies done previously in our lab, where solvent loss 

dominates for n>4.10-12 Also, if there is a combination of solvents such as water and 

acetonitrile, the more weakly bound solvent is more likely to cleave the electrostatic 

bond with the metal dication, leading to preferential loss of water.  The smallest 

cluster we could produce with water and methanol had n=4.  Acetonitrile stabilizes 

Co2+ and Ni2+ better than water, so we were able to produce mixed three-coordinate 

clusters which mostly dissociate by solvent water loss. 
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4.4.3.2 Electron Transfer Pathway4.4.3.2 Electron Transfer Pathway4.4.3.2 Electron Transfer Pathway4.4.3.2 Electron Transfer Pathway    

 The novel important dissociation pathway that was observed is electron 

transfer.  This is only observed for the two and three coordinate clusters, 

M2+(CH3CN)2 for both metals.  Protic solvents like water favor proton transfer, and 

this is the major dissociation pathway for small clusters.  For aprotic solvents, in the 

absence of proton transfer, electron transfer is observed.  Also, doubly charged 

clusters fragmenting to two singly charged species typically provide information on 

kinetic energy release (KER) in the form of peak broadening.  This was obvious in our 

earlier studies of M2+(H2O)4 and M2+(CH3OH)4.  However, there is much less KER for 

the acetonitrile complexes (see figure 4.9).  This could be due to electron transfer 

taking place when the two fragments are fairly far apart, minimizing Coulomb 

repulsion.   

4.4.3.3 Proton Transf4.4.3.3 Proton Transf4.4.3.3 Proton Transf4.4.3.3 Proton Transfer Pathwayer Pathwayer Pathwayer Pathway    

 The other interesting dissociation pathway was proton transfer.  This was only 

observed for mixed clusters, and its importance differed between the metals, Ni and 

Co.  Proton transfer was observed when there was at least one water molecule present 

in the metal cluster, so homogeneous acetonitrile clusters did not show this channel.  

Also, the M2+(CH3CN)3(H2O) cluster did not follow the proton transfer pathway, 

presumably because loss of water is much more favorable. 
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 According to the calculations shown below the proton transfer pathways are 

exothermic. 

Co2+(CH3CN)2(H2O)   �   CoOH+(CH3CN)   +   H+(CH3CN) ∆Hrxn = -0.56 eV 

Co2+(CH3CN)(H2O)    �    CoOH+   +   H+(CH3CN)   ∆Hrxn = -0.80 eV 

Previous work in our lab on M2+(H2O)4 shows that during the dissociation via proton 

transfer, the transition state adopts a salt-bridge arrangement M2+-OH--H3O+.21  This 

lowers the Coulomb barrier to fragments.  Co2+(H2O)4 lies 0.22 eV above the proton 

transfer products H3O+ + CoOH+(H2O)2.  However, Co2+(H2O)4 is kinetically stable 

because proton transfer has a 1.5 eV barrier.  If we consider the thermodynamics of 

Co2+(CH3CN)2(H2O), the calculations show that proton transfer is exothermic by 0.56 

eV in the absence of a photon.  However, the Co2+(CH3CN)2–H2O attractive potential 

and the CoOH+(CH3CN)–(H+CH3CN) repulsive potentials are separated by a 

significant barrier, thus allowing us to observe thermodynamically unstable 

Co2+(CH3CN)2(H2O).  The transition state for proton transfer from Co2+(CH3CN)2(H2O) 

is also calculated to have a salt-bridge structure (CH3CN)Co2+-OH--H+(NCCH3).  We 

did not make sufficient amounts of Co2+(CH3CN)(H2O)2 to study.  This is likely 

because the barrier to proton transfer for this molecule is so low that it dissociates in 

our source.  Mixed water-acetonitrile clusters show proton transfer, and this channel 

becomes increasingly important as more acetonitriles are replaced by water.  This is 

due to two effects.  Water is less able to stabilize the 2+ charge than acetonitrile and 

studies done with deuterated acetonitrile confirm that the proton donor is water.  
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Proton transfer fragments showed no significant peak broadening, indicating that the 

kinetic energy release is small.  This suggests that the transition state for proton 

transfer occurs at large MOH+-H+(CH3CN) distances, and that acetonitrile vibrations 

provide an efficient sink for excess energy. 

4.4.4 Influence of Metal4.4.4 Influence of Metal4.4.4 Influence of Metal4.4.4 Influence of Metal    

 Nickel dications solvated by acetonitrile and water generally show the same 

dissociation pathways for similar clusters as cobalt.  One exception is that proton 

transfer is more favored in nickel complexes such M2+(CH3CN)2(H2O).  Nickel’s 

second ionization energy is 18.17 eV, which is slightly higher than that of cobalt 

(17.08 eV).  This favors proton transfer to create two singly charged ions rather than 

the loss of solvent.   
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CHAPTER 5CHAPTER 5CHAPTER 5CHAPTER 5    

IONIZATION ENERGIES OF PtCIONIZATION ENERGIES OF PtCIONIZATION ENERGIES OF PtCIONIZATION ENERGIES OF PtCnnnnHHHHmmmm AND A POTENTIAL ENERGY SURFACE FOR  AND A POTENTIAL ENERGY SURFACE FOR  AND A POTENTIAL ENERGY SURFACE FOR  AND A POTENTIAL ENERGY SURFACE FOR 

THE Pt + CHTHE Pt + CHTHE Pt + CHTHE Pt + CH4444 REACTION REACTION REACTION REACTION    

5.1 5.1 5.1 5.1 IntroductionIntroductionIntroductionIntroduction    

 Although the US has extensive natural gas reserves, gasoline production from 

natural gas has been hampered by the lack of appropriate catalysts.  If an efficient 

catalyst to convert methane to larger hydrocarbons were developed, it then could be 

matched with systems like zeolites to produce highly branched hydrocarbons.1  This 

process will produce high octane petroleum without consuming scarce crude oil.  

However, the main problem with activating methane is that it is the least reactive 

hydrocarbon, due to the strong C-H bonds (104 kcal/mol), which is higher than the 

C-H bond strength in other primary or secondary alkanes (90-98 kcal/mol).   

 This economic imperative has led to extensive research on methane activation 

using a variety of transition metal catalysts.  One particularly interesting finding is 

that some gas phase transition metal cations, M+, do undergo reactions with methane.  

Beauchamp and co-workers using Fourier-transform ion cyclotron resonance studies 

have shown that most of the third row transition metals spontaneously 

dehydrogenate methane at room temperature.2   

M+  +  CH4  �  MCH2+  +  H2 
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However, the dehydrogenation reaction is endothermic for the first and second row 

metals.3-5   

 In some cases, the metal carbenes can further react via Fischer-Tropsch 

methylene coupling to create larger hydrocarbons.2 

MCH2+  +  (n-1) CH4  �  MCnH2n+  +  (n-1) H2 

For example, tungsten cation reacts sequentially with methane to make WC8H16+.  

The initial four methane molecule reactions are fast near the collision rate and the 

subsequent four methane molecule reactions are much slower.  The late transition 

metals are less reactive.  At thermal energies, Pt+ reacts readily with methane to 

produce PtCH2+, which is unreactive towards methane.2,5-7   

 Platinum is widely used as an industrial catalyst.  For example, platinum-based 

catalysts are used for dehydrogenation, isomerization and aromatization reactions in 

the petroleum industry.8,9  As a result, the consecutive reactions of Pt+ with methane 

have received particular attention, as the simplest model of C-H bond activation.7  It 

is also used to test the reliability of electronic structure calculations which are 

challenging as due to relativistic effects, unpaired electrons and low-lying excited 

states.6,10 

 In studying models for C-H bond activation, one would like to study a system 

that is as similar as possible to heterogeneous catalysts that industry uses.  An 

interesting question is to what extent charge influences the reactivity.  The long range 

M+-CH4 ion-induced dipole attraction tends to reduce reaction barriers, compared to 
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the corresponding neutral system.  As a result, neutral metal atoms are much less 

reactive with methane and larger hydrocarbons than the cations.11  At thermal 

energies, no neutral metal dehydrogenates methane.12  However, platinum is 

consumed in collisions with methane.12-14  Studies show that this as a termolecular 

reaction: platinum inserts into a C-H bond, and the resulting H-Pt-CH3 complex is 

stabilized by collisions with methane or helium buffer gas.  Although predicted by 

computational studies, H-Pt-CH3 has not been experimentally observed.  While 

reactions of cations can be readily monitored by mass spectrometry, neutral reactions 

are hard to observe due to the lack of charge.  Thus, the reaction energetics, rates and 

products have not been studied as much.  The bond strength and relative energies of 

PtCH2 and H-Pt-CH3 have not been measured. 

 In our lab, we have looked at the intermediates and products of reactions of 

metal cations with small alkanes for first row transition metals such as Fe, Co and Ni, 

and third row metals Ta, Pt and Au.15-17  This chapter discusses our production of 

PtCH2 and H-Pt-CH3 by reaction of laser ablated platinum atoms with methane and 

subsequent measurement of their photoionization efficiencies (PIE).  Ionization 

energies are derived from the PIEs.  Ion beam studies have provided a wealth of 

information on bond dissociation energies for cations.5  Combining these bond 

energies with ionization energies for the corresponding neutrals allows us to 

determine bond energies for the neutral and to produce a potential energy diagram 

for neutral platinum reacting with methane.  These results will then be used to 
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evaluate the reliability of computational approaches to the study of platinum 

activation of hydrocarbons which ultimately provide insights to theoretical models on 

late transition metal catalysts.   

5.2 Experimental5.2 Experimental5.2 Experimental5.2 Experimental    

 Our study was carried out at the Chemical Dynamics Beamline at the 

Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory.  The 

beamline provides vacuum ultraviolet (VUV) light with photon energies of 8-16 eV at 

a repetition rate of 500 MHz.  The linewidth is determined by the slit width on a 3 m 

monochrometer.  It was 20-50 meV in these studies.  The instrumentation consisted 

of a laser ablation source coupled to a reflectron time-of-flight mass spectrometer.  

The ablation source was previously described in chapter 2 and other literature.18-20  A 

schematic of the apparatus is shown in figure 5.1.  A platinum tube (99.95% pure, 

Goodfellow) was used to produce Pt neutral atoms that then reacted with methane 

gas from a pulsed piezoelectric valve at 20 psi stagnation pressure.  The ablation laser 

is a Nd:YAG at 532 nm with a repetition rate of 50 Hz.  The laser can produce up to 8 

mJ/pulse.  High laser power favors production of PtC, while production of PtCH2 and 

H-Pt-CH3 is optimum at 3 mJ/pulse.  The PtCnHm produced are cooled in the 

supersonic expansion and then transmitted to the next region through a skimmer.  

These neutral molecules are irradiated by the VUV light.  Prior to the skimmer, a set  
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Figure 5.1:  The ablation reflectron time-of-flight instrument used at the ALS is 
shown above.  The VUV light irradiates the molecular beam at the center 
of the ion optics as shown (courtesy of Dr. Musa Ahmed, Lawrence 
Berkeley National Lab). 

Pt Rod Rod Rod Rod    

LaserLaserLaserLaser    

532 nm @50 Hz Nd:YAG532 nm @50 Hz Nd:YAG532 nm @50 Hz Nd:YAG532 nm @50 Hz Nd:YAG    VUV Light 
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of deflector plates help to divert unwanted ions produced by ablation from the 

neutral beam.  A pulsed voltage extracts neutrals that are ionized by the VUV light 

into a time-of-flight reflectron mass spectrometer.  Another set of deflector plates 

located in the flight tube is used to maximize the signal.  Ions travel to the detector 

where they are collected on a dual micro channel plate detector and characterized 

according to their arrival times.  The time-of-flight spectra of the ions are collected 

with a multichannel scaler card (FAST Comtec 7886). 

 The use of a reflectron to increase the mass resolution is very important since 

Pt has four major isotopes: 194Pt (33 %), 195Pt (34 %), 196Pt (25 %), and 198Pt (7 %).  To 

identify the products and avoid isobaric interferences we used deuterated methane for 

initial studies.  Platinum-195 is the only odd mass isotope.  So, in reactions with CD4, 

odd mass products must contain 195Pt.  These initial studies established the following 

reactions 

 

but not the following reactions 
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So, subsequent experiments were done with CH4, and the 195Pt containing peak was 

typically monitored, as it is uniquely present in all odd mass peaks.   

 Mass spectra are obtained as a function of VUV photon energy, typically 

integrating over 5000 laser shots at each energy.  Photoionization efficiency curves 

(PIE) are measured by integrating the area under the photo-ion of interest and 

normalizing to ALS current and VUV flux as measured by a Si photodiode.  A survey 

scan is initially done over a range of energies to identify the products and estimate the 

onset region for each of the products.  Finer scans, with smaller VUV linewidth, were 

then done near the onset.  The fine scans were then used to find the ionization 

energy.   

5.35.35.35.3 Results Results Results Results    

 Reaction of laser-ablated platinum atoms with methane was monitored by 

VUV ionization of the products.  As noted above, the large number of platinum 

isotopes makes it difficult to identify the products of reaction with CH4.  Therefore 

we first used CD4, and the resulting mass spectrum at 11 eV photon energy is shown 

in figure 5.2.  It is clear that we are only making PtC, PtCD2 and PtCD4.  No PtCD and 

PtCD3 are observed.  Small amounts of PtC2Dn are also produced.  Using ethane as a 

reaction partner leads to much higher yields of PtC2Hn and of PtH2 and studies of 

these species will be discussed elsewhere.  Photoionization studies of PtC have  
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Figure 5.2: The mass spectrum of the ionized products from the reaction of laser-
ablated platinum with CD4 at 11 eV.  The enlarged portion shows the 
assignment of the PtCDn peaks. 
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already been published.20  A complementary mass spectrum taken at 11 eV for the 

reaction of CH4 with platinum is shown in figure 5.3. 

 A survey scan was run over a range of 8-10.5 eV to estimate the onset regions 

for the products of the reaction of platinum with methane.  Fine scans with higher 

energy resolution and smaller step size onset were run near the ionization onset to 

find the ionization energy.  Figure 5.4 shows the PIE of PtCH2 near the ionization 

onset.  It is important to find a peak that is not contaminated by isobaric 

interferences, so the onset is only due to the desired molecules.  This data is obtained 

by monitoring only m/z = 209, which corresponds to 195PtCH2.  This avoids 

interferences due to PtC and PtCH4.  The onset for PtCH2 is at 8.78±0.05 eV.  The 

other onset found from this study is due to the insertion intermediate, H-Pt-CH3.  

The ionization energy is 8.89±0.05 eV, as shown in figure 5.5. 
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Figure 5.3: The mass spectrum of the ionized products from the reaction of laser-
ablated platinum with CH4 at 11 eV.  The enlarged portion shows the 
assignment of the PtCHn peaks. 
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Figure 5.4: The ionization energy onset for 195PtCH2 made via reaction of methane 
with platinum.  The vertical line shows the ionization energy of 8.78 eV. 
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Figure 5.5: The ionization energy onset for the insertion intermediate, H-195Pt-CH3 
made via reaction of methane with platinum.  The vertical line shows the 
ionization energy of 8.89 eV. 
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5.4 5.4 5.4 5.4 DiscussionDiscussionDiscussionDiscussion    

 Bond strengths for many transition metal cations have been measured in 

guided ion beam experiments in which the charged products of an endothermic 

reaction are monitored as a function of collision energy.3,21  Measuring bond strengths 

in neutrals is more challenging, as it is much harder to control the collision energy, 

and even identifying the products is difficult.  The classic method of measuring bond 

strengths of nonvolatile and transient molecules is Knudsen cell mass spectrometry in 

which equilibrium concentration of neutrals are sampled, ionized, and mass 

analyzed.22  Unfortunately, this typically requires very high temperatures (~2300 K for 

FeC) and is only applicable to simple compounds, due to interfering side reactions.  

However, neutral bond strengths can be accurately measured indirectly, by 

combining cation bond strengths with measured ionization energies.20    

5.4.1 Potential Energy Surface for Methane Activation by Platinum5.4.1 Potential Energy Surface for Methane Activation by Platinum5.4.1 Potential Energy Surface for Methane Activation by Platinum5.4.1 Potential Energy Surface for Methane Activation by Platinum    

 We use the bond dissociation energies measured by Armentrout and 

coworkers for platinum containing cations5 along with ionization energies of PtCH2, 

H-Pt-CH3, and PtH2 and PtC20 to derive bond energies for the neutrals.  For example, 

figure 5.6 shows the thermodynamic cycle used to derive the bond dissociation 

energy for PtCH2; 
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Figure 5.6: Thermodynamic cycle used to calculate the bond dissociation energy of 
Pt-CH2.  

 

 

Pt   +   CH2 

PtCH2 

Pt+   +   CH2 
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D0(Pt-CH2)   =   D0(Pt+-CH2)   +   IE(Pt-CH2)   -   IE(Pt) 

D0(Pt-CH2)   =  4.62 ± 0.06 eV 

This is a 0 K value.  Table 5.1 summarizes the derived bond strengths for compounds 

related to methane activation by Pt and Pt+.  Using this information about Pt-CH2, we 

can calculate the enthalpy for the Pt + CH4 reaction:  

Pt   +   CH2    �   Pt-CH2               ∆Hrxn = - 4.62 eV 

                           CH4    �   CH2   +   H2        ∆Hrxn = 4.71 eV 

These two combined provide the dehydrogenation reaction enthalpy. 

                Pt   +   CH4    �   Pt-CH2   +   H2        ∆Hrxn = +0.1 eV 

 A second key finding is the energy of the H-Pt-CH3 insertion intermediate.  

Based on its ionization energy and the energetics of [H-Pt-CH3]+, it lies 1.69 eV below 

Pt + CH4.  The potential energy surface (figure 5.7) for the Pt + CH4 reaction was 

created using the above information.  The energies of transition states and minor 

intermediates that were not observed were estimated using the calculations.12  This 

potential energy surface will guide our discussion of other experimental and 

computational studies of the Pt + CH4 reaction. 
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Figure 5.7: The potential energy surface for the reaction of methane with platinum.  
Values in parenthesis are based on calculations.9 

 

 

 

 

 



126 

 IE (eV) D0 (cation) (eV) D0 (neutral) (eV) 

Pt 8.9588 - - 

Pt – H - 2.81 ± 0.05 3.48  

Pt – H2 9.35 ± 0.05 1.52 ± 0.12 1.91 ± 0.12 

Pt – C 9.45 ± 0.05 5.43 ± 0.05 5.95 ± 0.07 

Pt – CH2 8.78 ± 0.05 4.80 ± 0.03 4.62 ± 0.06 

Pt – CH4 8.89 ± 0.05 1.77 ± 0.08 1.70 ± 0.09 

 

Table 5.1:  Ionization energies and bond strengths for platinum containing 
compounds at 0 K.  Cation values are from Armentrout and co-workers5 
and Pt-H neutral bond strength from Brooks and co-workers.23 

 

5.4.2 Experimental and Theoretical Studies of Methane Activation by Pt Atoms5.4.2 Experimental and Theoretical Studies of Methane Activation by Pt Atoms5.4.2 Experimental and Theoretical Studies of Methane Activation by Pt Atoms5.4.2 Experimental and Theoretical Studies of Methane Activation by Pt Atoms    

 There have been several studies on the reaction of methane with neutral 

platinum atoms.12-14  Weisshaar and Carroll monitored the reaction by using laser 

induced fluorescence detection to measure the decay of the ground state metal atom 

concentration with respect to hydrocarbon number density at a given reaction time.12  

The reaction rate was measured at 300 K at several He pressures.  It was found that 

the rate increases with the pressure of He, which is maximum at 0.5-0.8 Torr.  The 

rate of reaction with ethane is much higher, and is independent of helium pressure.  

Theory predicts that Pt dehydrogenation of methane is endothermic by 0.3 eV.12  
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These results suggest that Pt reacts with CH4 to produce the insertion intermediate H-

Pt-CH3.  This intermediate is stabilized by colliding with He gas and does not go on to 

produce the endothermic final products PtCH2 and H2.  In addition, the calculations 

predict that there is a 1.34 eV barrier between H-Pt-CH3 and products.   

 These calculations, as well as experiments and calculations by Campbell14 

highlight the influence of both the ground state (s1d9 3D3) and low lying excited state 

(d10 1S0) on producing the insertion intermediate H-Pt-CH3.  Spin-orbit interaction 

between these two states deepens the insertion potential well and also causes triplet-

singlet crossing at lower energies.  This provides the triplet ground state easy access to 

the singlet insertion well at thermal energies.  This underscores the importance of 

properly treating unpaired electrons, low lying electronic states and relativistic effects 

to accurately describe reactions of transition metals. 

 Our experiments show that the calculations slightly underestimate platinum 

bond strengths.  The overall dehydrogenation reaction is 0.1 eV endothermic, rather 

than the 0.3 eV endothermic predicted by theory.  The global minimum is the 

insertion intermediate, H-Pt-CH3, which experimentally lies 1.70 eV below Pt + CH4.  

The calculations predict it is only 1.39 eV below the reactants.  These underestimated 

stabilities also suggest that the calculated barrier to products is too high.   
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5.4.3 Methane Activation by Platinum Cation5.4.3 Methane Activation by Platinum Cation5.4.3 Methane Activation by Platinum Cation5.4.3 Methane Activation by Platinum Cation    

 Armentrout and co-workers have extensively studied C-H bond activation in 

methane by platinum cation.5  They have used reaction and collision induced 

dissociation studies over a wide range of kinetic energies to measure energetics of the 

potential energy surfaces for endothermic and exothermic reactions and used theory 

to fill in gaps.  This resulting potential energy surface is shown in figure 5.8.  Pt+ 

reacts with CH4 without a barrier to produce the intermediate H-Pt+-CH3, which is 

the global minimum on the potential energy surface.  The first C-H bond activation is 

possible due to the metal orbitals: empty 6s acts as the acceptor while filled 5d-π act 

as the donor.  The second C-H bond activation also takes place with a small barrier, 

below the reactants’ energy.  The resulting intermediate, (H)2Pt+CH2, produces 

(H2)Pt+CH2 through reductive elimination.  The (H2)Pt+CH2 then goes on to make 

PtCH2+ + H2 via decomposition.  Overall, the reaction is exothermic by 0.09 eV 

relative to reactants.  All of the barriers lie below the reactant energy, so the reaction 

is efficient at low collision energies.  At higher collision energies other products are 

formed.  Above 2 eV the Pt+-H and Pt+-CH3 products are formed via simple bond 

cleavage from H-Pt+-CH3.  These products are kinetically favored at high collision 

energy, and dominate the thermodynamically favored PtCH2+, which is made via a 

tight transition state.  At 2.5 eV or higher the PtH+ channel dominates over the 

isoenergetic PtCH3+ channel due to angular momentum constraints.  At even higher  
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Figure 5.8: Comparison of Pt+ + CH4 reaction with Pt + CH4 reaction. 
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energies PtC+ and PtCH+ are produced as results of dehydrogenation of PtCH2+ and 

PtCH3+.  These endothermic products are kinetically favored at higher energies. 

5.4.4 Effect of Charge on Methane Activation by Platinum5.4.4 Effect of Charge on Methane Activation by Platinum5.4.4 Effect of Charge on Methane Activation by Platinum5.4.4 Effect of Charge on Methane Activation by Platinum    

 Comparing the reactions of Pt and Pt+ with methane is useful in understanding 

how charge and electron occupancy affect the reaction thermodynamics and kinetics.  

Figure 5.7 compares the potential energy surfaces for Pt + CH4 and Pt+ + CH4.  In each 

case, the zero of energy is the reactants.  The global minimum on the potential energy 

surface is due to the insertion intermediate, and the relative energies of H-Pt-CH3 and 

H-Pt+-CH3 are very similar.  For the cation, there is no barrier to forming H-Pt+-CH3, 

which is a direct result of the electrostatic attraction between the positive metal core 

and electron rich methane.  For the neutral, insertion may have a small barrier.  The 

calculations12 predict a ~0.05 eV barrier, but this does not include spin-orbit coupling, 

which should lower the barrier.   

 There is a very significant difference in the mechanism when it comes to the 

second C-H bond activation.  The cation follows an α-migration transition state to 

produce (H)2-Pt+-CH2, followed by H-H recombination to form (H2)Pt+CH2, all with 

small barriers.5  The neutral follows a α-elimination transition state via a four-center 

complex which has a large barrier.12  For the neutral, the (H)2-Pt-CH2 intermediate 

appears to lie at too high an energy to be involved in the mechanism.  This is likely an 

electron occupancy effect: neutral Pt has too few empty orbitals to form the three (or 
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four) bonds required.  Neutral iridium, which is isoelectronic to Pt+, is predicted12 to 

react via an (H)2-M-CH2 intermediate just like Pt+.  The overall reaction energetics for 

Pt and Pt+ are similar: the cation products are 0.18 eV below the neutral products.  As 

a result, the overall reaction is slightly exothermic for Pt+ and slightly endothermic 

for Pt.  We do not have IE(PtCH3) to calculate the energy of the PtCH3 + H product, 

but the relative energetics of other endothermic products such as PtH, PtH2, and PtC 

do not depend strongly on charge. 

 The overall conclusion, as shown in figure 5.7, is that dehydrogenation of 

methane by neutral platinum atoms is not possible at thermal energies because the 

reaction is endothermic and because a large barrier precedes the final products.  With 

the platinum cation the same reaction leads to products at thermal energies being 

slightly exothermic, with no large barriers. 
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CHAPTER 6CHAPTER 6CHAPTER 6CHAPTER 6    

CONCLUSIONS AND FUTURE WORKCONCLUSIONS AND FUTURE WORKCONCLUSIONS AND FUTURE WORKCONCLUSIONS AND FUTURE WORK    

6666.1 Conclusions.1 Conclusions.1 Conclusions.1 Conclusions    

 All three projects share the common interest in our lab: to strive to understand 

the covalent and non-covalent interactions in transition metal chemistry whether 

cation, dication or neutral.  We use spectroscopy with well-defined photon energies 

in all three experiments so we can quantitatively study thermodynamics, bonding and 

dynamics of transition metal systems.  The projects that are described in chapter 3 

and chapter 4 were conducted at the our lab using photofragment spectroscopy and 

the studies in chapter 5 were done at the Advanced Light Source, Lawrence Berkeley 

Labs using photoionization.  The first two projects that are described look at cation 

chemistry in detail using the spectroscopy and dissociation dynamics of the molecules 

and the last project looks into neutral atom chemistry using ionization energies of the 

molecules. 

6.1.1 6.1.1 6.1.1 6.1.1 PPPPhotofragment Spectroscopy of hotofragment Spectroscopy of hotofragment Spectroscopy of hotofragment Spectroscopy of TiOTiOTiOTiO++++(CO(CO(CO(CO2222))))    

 The TiO neutral has been detected near numerous stars and its presence is 

used to identify cool M and S class stars.  Neutral TiO is detected based on absorption 

in three strong electronic transitions in the visible.  The resulting rotational structure 
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is used to measure the local temperature.  The low ionization energy of TiO and high 

bond strength of TiO+ make it likely that it is present in circumstellar envelopes.  The 

electronic spectrum of TiO+ has not been measured, which clearly hampers its 

detection.  The high Ti+-O bond strength also makes it difficult to detect via 

photofragment spectroscopy.  We would like to use our calculations on TiO+ and 

TiO+(CO2), as well as experimental results on TiO+(CO2), to predict the electronic 

spectroscopy of bare TiO+.   

 The resonant photodissociation spectrum of 48TiO+(CO2) is obtained by 

monitoring the only fragment 48TiO+.  This provides the absorption spectrum of 

TiO+(CO2) when absorption leads to dissociation.  The spectrum is richly structured, 

with four vibrational bands separated by ~950 cm-1.  Each band consists of several 

peaks separated by ~45 cm-1.  The ~950 cm-1 progression is due to the covalent TiO 

stretch.  Isotopic shift studies aid the assignment of the band origin.  The low-

frequency vibrations are due to the non-covalent metal-CO2 stretch (186 cm-1) and 

rock (45 cm-1).  The four Ti-O stretching bands exhibit almost identical low-

frequency structure, indicating that there is little coupling between the covalent Ti-O 

stretch and the metal-CO2 stretch and rock.  The long progressions observed in the 

metal-ligand rock and, to a lesser extent, stretch indicate that the TiO+ electronic state 

substantially affects its interaction with CO2.  Another observation made is that slow 

dissociation leads to peak tailing (figure 3.5).  The lifetime drops rapidly with 
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increasing photon energy, until no tailing is observed at energies above 16500 cm-1, 

indicating lifetimes below 50 ns.  

 Electronic structure calculations were carried out on TiO+ and TiO+(CO2) to 

determine which electronic state is responsible the observed transitions and also how 

the CO2 affects the vibrational frequencies and electronic spectroscopy of TiO+.  Thus, 

we can use our experimental results on TiO+(CO2) to predict the electronic spectrum 

of bare TiO+ in the visible.  Calculations show that the transitions to the 2A’ (2Σ) state 

are predicted to be about an order of magnitude weaker than those to the 2A’ (2Π) 

states.  We observed only one electronic transition which is assigned to the 2A’ (2Π) 

state.  Calculations also show that interaction with CO2 splits the 2Π excited state of 

TiO+ into two states.  The lower-energy state corresponds to an electron in the out-of-

plane π orbital, resulting in less repulsion with CO2 than promotion to the in-plane π 

orbital.  Binding to the CO2 lowers the symmetry, so transitions to the 2A’ (2Σ) state 

are no longer forbidden, but are weak with f=0.0007.  The low-energy 2A” component 

of the 2Π state retains significant oscillator strength (f=0.0057), while the 2A’ 

component has f≈0.   

6.1.2 6.1.2 6.1.2 6.1.2 MMMMicrosolvation of Niicrosolvation of Niicrosolvation of Niicrosolvation of Ni2+2+2+2+ and Co and Co and Co and Co2+2+2+2+ by Acetonitrile and Water: Photodissociation  by Acetonitrile and Water: Photodissociation  by Acetonitrile and Water: Photodissociation  by Acetonitrile and Water: Photodissociation 

DynamiDynamiDynamiDynamics of cs of cs of cs of MMMM2+2+2+2+(CH(CH(CH(CH3333CN)CN)CN)CN)nnnn(H(H(H(H2222O)O)O)O)mmmm        

 The microsolvation of metal dication by acetonitrile and water study was 

specifically done to understand the interaction of solvents with the metal center and 



137 

how the nature of the solvent, protic water and aprotic acetonitrile, affect binding 

and charge transfer dynamics.  The clusters were produced by electrospray and 

characterized by photofragment spectroscopy in an ion trap dual time-of-flight mass 

spectrometer.  The homogeneous clusters with acetonitrile, n=4 and 3 dissociated by 

simple solvent loss and only n=2 showed electron transfer as a dissociation pathway.  

Mixed clusters with water and acetonitrile reveal more interesting dissociation 

dynamics.  Again, larger clusters, (n=4 and 3) show simple solvent loss.  Water loss 

was favored over acetonitrile loss by a significant yield which is understandable 

because acetonitrile is a better solvent in the gas phase due to its higher dipole 

moment and polarizability.  Proton transfer was observed as a minor channel for 

M2+(CH3CN)2(H2O)2 and M2+(CH3CN)2(H2O) but was not seen in M2+(CH3CN)3(H2O).  

In our lab we previously observed proton loss as the major channel for M2+(H2O)4.  

Studies of deuterated clusters confirm that water acts as the proton donor.

 Considering the photodissociation yield it was clear that four coordinate 

clusters of cobalt dissociated more readily than nickel clusters whereas for the three 

coordinate clusters, dissociation was more efficient for nickel clusters over cobalt.  For 

the two coordinate clusters, dissociation is via electron transfer but the yield is low 

for both metals.  Our calculations of reaction energetics, dissociation barriers, and the 

positions of excited electronic states complemented the experimental work.   
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6.1.3 6.1.3 6.1.3 6.1.3 IIIIonization Energies of onization Energies of onization Energies of onization Energies of PtCPtCPtCPtCnnnnHHHHmmmm    and a Potential Energy Surface for the Pt + CHand a Potential Energy Surface for the Pt + CHand a Potential Energy Surface for the Pt + CHand a Potential Energy Surface for the Pt + CH4444    

reactionreactionreactionreaction    

 Although the US has extensive natural gas reserves, our petroleum production 

comes from consuming scarce crude oil.  The challenge lies in finding an efficient 

catalyst that can convert methane to larger hydrocarbons, which can be used to 

revolutionize the usage of natural gas.  This is where the importance of C-H bond 

activation in methane by transition metals becomes vital for industrial purposes.  Gas 

phase Pt+, along with several other third-row transition metal cations, efficiently 

activate methane at thermal energies, producing H2 + MCH2+, which can then react 

with additional CH4, forming MCnH2n+.1  This reaction is not observed for the 

corresponding ground state neutrals, although platinum does insert into methane 

forming H-Pt-CH3.   

 We studied PtCH2 and the H-Pt-CH3 reaction intermediate by reaction of laser 

ablated platinum atoms with methane and subsequent measurement of their 

photoionization efficiencies (PIE).  Ionization energies are derived from the PIEs.  

Armentrout and co-workers have studied the same system, C-H bond activation in 

methane, using the platinum cation whereas we are used the platinum neutral.2  

Using their bond dissociation energies and the ionization energies we found for the 

neutrals, we are able to derive bond energies for the neutrals.  Using the resulting 

experimental bond energies of PtH, PtH2, PtC, and PtCH2, and the H-Pt-CH3 
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intermediate, along with calculated values for the transition state energies we were 

able to produce a potential energy surface for methane activation by platinum atoms. 

 The global minimum on the potential energy surface is due to the intermediate 

H-Pt-CH3 which is 1.70 eV below Pt + CH4 reactants.  Insertion has a very small 

barrier, ~0.05 eV, making this a favorable process.  Up to this point, the neutral and 

cation reactions are very similar, and [H-Pt-CH3]+ is only slightly more stable, 1.77 eV 

below Pt+ + CH4.  For the cations the second C-H bond activation also takes place at 

low energies according to calculations.  This intermediate, (H)2PtCH2+, produces 

(H2)Pt+CH2 through a reductive elimination process.  The intermediate later goes on 

to make Pt+CH2 via decomposition.  Overall the reaction Pt+ + CH4 � PtCH2+ + H2 is 

exothermic by 0.19 eV.  There are no barriers above the reactant energy, consistent 

with efficient reaction at thermal energies.   

 The situation for the neutral is quite different.  First, our experiments show 

that the Pt + CH4 � PtCH2 + H2 reaction is endothermic by 0.1 eV.  Calculations 

predict that the second C-H bond activation to produce (H2)PtCH2 has a barrier of 1 

eV above products, or 1.34 eV above reactants.3  Other products, such as PtC + 2H2 or 

H-Pt-H + CH2 are substantially more endothermic.  These results agree with the 

experimental observation that neutral platinum readily inserts into methane, but no 

subsequent reaction to produce PtCH2 occurs. 
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6666.2 .2 .2 .2 Future Work on the Electrospray Ionization InstrumentFuture Work on the Electrospray Ionization InstrumentFuture Work on the Electrospray Ionization InstrumentFuture Work on the Electrospray Ionization Instrument    

6.2.1 Electronic Spectroscopy 6.2.1 Electronic Spectroscopy 6.2.1 Electronic Spectroscopy 6.2.1 Electronic Spectroscopy     

 The first project that was studied using this instrument was 

M2+(CH3CN)n(H2O)m because it was a new addition to our lab (in 2002).  This 

instrument differs from the laser ablation instrument in several ways: ions are made 

by electrospray ionization in the room and introduced to the vacuum via a capillary 

and an ion funnel for enhanced ion transmission, and ions are collected in an ion trap, 

where they are thermalized.  Therefore, this instrument can be used to study many 

interesting and different molecules.  

 Most first row transition metal ions are six-coordinate (octahedral or slightly 

distorted octahedral geometry) in aqueous solutions.  The conventional explanation 

for the characteristic absorption bands of these ions in the visible and near ultraviolet 

regions is due to transitions between d orbitals.  According to crystal field theory the 

degenerate atomic 3d orbitals split into set of molecular eg and t2g orbitals.  These d-d 

bands are symmetry forbidden in octahedral symmetry, making them weak.  This 

weak transition is reflected in small extinction coefficients generally in the magnitude 

of ε = 1-10 M-1 cm-1.  Previously in our lab, Co2+ and Ni2+ have been studied with 

water, and methanol as solvents to understand the spectroscopy and photodissociation 

dynamics.4,5   
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6.2.1.1 Electronic Spectroscopy of M6.2.1.1 Electronic Spectroscopy of M6.2.1.1 Electronic Spectroscopy of M6.2.1.1 Electronic Spectroscopy of M2222++++(solvent(solvent(solvent(solvent))))nnnn        for M= Ni and Co at 80 Kfor M= Ni and Co at 80 Kfor M= Ni and Co at 80 Kfor M= Ni and Co at 80 K    

 The motivation for this study arose when Gilson and Krauss came up with the 

controversial idea that Co2+(H2O)6  is not responsible for bulk absorption properties 

and that a strongly absorbing minor species could play the necessary role.6,7  Their 

calculations show transition energies and oscillator strengths for  Co2+(H2O)6  to have 

very low (f<10-6) oscillator strength, thus leaving minor species such Co2+(H2O)5 and 

Co2+(H2O)4  as likely chromophores.  The penta-coordinate species is predicted to 

have the largest effect.  Later, Fedorchuk and Swaddle contested Krauss’ calculation 

by stating that Co2+(H2O)6  is the chromophore responsible for absorption properties 

through thermal distortions and vibronic coupling.8  Previously, our lab studied gas 

phase Co2+(H2O)n for n=4-7. Our lab’s photodissociation results (figure 6.1) show that 

the n=6 chromophore is responsible for the room temperature solution’s absorption 

spectrum since gas phase and solution phase spectra are similar.5  It is slightly 

disappointing that the photodissociation spectra of gas phase Co2+(H2O)4 and 

Co2+(H2O)6 are nearly as broad as the solution spectra. 

 At room temperature, a molecule such as Co2+(H2O)6  has many populated low 

frequency vibrations.  This could broaden the spectrum as transitions take place from 

vibrationally excited molecules in the ground electronic state.  As figure 6.2 shows, 

cooling the ions down to 80 K greatly reduces this effect and should lead to a better 

resolved spectrum.  We modified the apparatus by adding a liquid N2 cooled can that  
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Figure 6.1: Total photodissociation spectrum of Co2+(H2O)6 and the absorption 
spectrum of Cobalt (II) in aqueous solution. 
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Figure 6.2: Spectral resolution is greatly improved by lowering the internal energy of 
the ions.  The vibration energy calculations were done on Zn2+(H2O)6.   
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surrounds the ion trap, cooling the trap, helium bath and ions to ~80 K. 

6.2.1.2 Electronic Spectroscopy of Cu6.2.1.2 Electronic Spectroscopy of Cu6.2.1.2 Electronic Spectroscopy of Cu6.2.1.2 Electronic Spectroscopy of Cu2222++++(H(H(H(H2222O)O)O)O)nnnn    atatatat 80 K 80 K 80 K 80 K    

 As Cu2+ is d9, Cu2+(H2O)6  distorts from octahedral geometry due to the Jahn-

Teller effect.  A few studies have shown that metals with Jahn-Teller effect exchange 

water ligands with solvent water molecules at faster rate than metals without this 

effect.9  It would be interesting to compare previously studied metals like Co2+ and 

Ni2+ with Cu2+.  Thus, according to calculations, Cu2+(H2O)4  is square planar whereas 

Co2+(H2O)4 and Ni2+(H2O)4 are tetrahedral.  The tetrahedral complexes absorb much 

more strongly than square planar or octahedral since the d-d transition is symmetry 

allowed.  An added motivation for this study comes after Stace and co-workers have 

stated that larger clusters (n>4) of Cu2+(H2O)n  are formed by adding water molecules 

to the second solvation shell of Cu2+(H2O)4.10  This would be in contrast to solution, 

where copper (II) is six coordinate.  Using photodissociation spectra, we can look into 

whether Cu2+(H2O)6 is four or six coordinate.   

 The second ionization energy of M2+ and the M+-OH bond strength influence 

the energetics of charge transfer as well as the number of solvent molecules needed to 

stabilize the metal.  By studying the charge transfer dissociation of Cu2+(H2O)4 we can 

compare it to two systems with significantly different energetics: Co2+(H2O)4 and 

Ni2+(H2O)4.  Vukomanovic’s study has shown that CID of Cu2+(H2O)n leads to loss of 
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H2O for both large and small ions and smaller ions tend to dissociate by charge 

reduction.11  We could measure the dissociation pathways and kinetic energy release 

of fragment ions following visible photolysis of Cu2+(H2O)n, examining ions at 300 K 

and 80 K.  Cooling the ions will provide us a well defined, lower internal energy, as 

shown in figure 6.2, making the comparison between theory and experiment more 

detailed.  

6.2.2 Vibrational Spectroscopy 6.2.2 Vibrational Spectroscopy 6.2.2 Vibrational Spectroscopy 6.2.2 Vibrational Spectroscopy     

 Obtaining vibrational spectra of the ions using photofragment spectroscopy is 

more challenging than electronic spectroscopy, as one infrared photon usually does 

not have enough energy to dissociate the cluster.  Two possible methods of obtaining 

vibrational spectra are to use infrared multiphoton dissociation (IRMPD) or a spy 

molecule (“argon tagging”).  Our group has used both of these methods to study singly 

charged transition metal ions with different ligands.12,13  The clusters we are hoping to 

study are large enough to conduct experiments using IRMPD.  This requires rapid 

intramolecular vibrational redistribution so that the excited molecules get to absorb 

more photons at the resonant wavelength.  The other method we propose, argon 

tagging, can be done in the liquid nitrogen cooled ion trap by using argon as the 

buffer gas instead of helium.  Absorption of IR photons leads to loss of the weakly 

bound Ar atom.  Argon atoms have a small effect on the vibrational frequencies of the 

molecule.  The vibrational frequency of the untagged molecules can be estimated by 
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measuring the spectra of clusters with varied number of argon atoms.  Vibrational 

spectroscopy studies can be carried out with an infrared laser system that we have in 

our lab.  It is tunable from 600-4000 cm-1. 

6.2.2.1 Vibrational Spectroscopy of Cu6.2.2.1 Vibrational Spectroscopy of Cu6.2.2.1 Vibrational Spectroscopy of Cu6.2.2.1 Vibrational Spectroscopy of Cu2+2+2+2+((((HHHH2222O)O)O)O)nnnn and Co and Co and Co and Co2+2+2+2+(CH(CH(CH(CH3333CN)CN)CN)CN)nnnn Clusters Clusters Clusters Clusters    

 The following study would complement the previous electrospray 

spectroscopy studies and will gather information via vibrational spectroscopy of the 

molecule.  The vibrational spectrum of solvated M2+ ions is very sensitive to their 

structure.  For example, consider Cu2+(H2O)6.  As shown in figure 6.3, when the 

cluster is six coordinate, calculations predict that the O-H stretch is intensified with a 

slight red shift in comparison to free H2O.  This will be different if the complex is four 

coordinate, since the O-H stretch shows a much larger red shift and a higher 

intensity.  Ziegler and co-workers have calculated that the four coordinate complex is 

more stable by 71 kJ/mol using density functional theory without zero point energy 

correction.14  We have carried out B3LYP calculations, using a larger basis set (SDD 

for Cu and 6-311++G** for O and H) that predict it is only more stable by 25 kJ/mol.  

Experiments in this area would clearly illuminate this further. Our study would 

experimentally explore the competition between metal ion-water and water-water 

interactions, which is very challenging to calculate.  
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Figure 6.3: Structures and calculated IR spectra of two possible structures of 
Cu2+(H2O)6. Arrows and solid bars indicate the calculated positions and 
intensities for bare H2O. 
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 Also, previous studies in our lab have shown that Co2+(CH3OH)4 has a similar 

visible photofragment spectrum to Co2+(H2O)4, suggesting it is also tetrahedral.15  As 

the number of methanol molecules increases, the spectra of Co2+(CH3OH)n (for n=5 & 

6) look like that of tetrahedral Co2+(CH3OH)4, suggesting that these clusters are also 

four coordinate.  This is different from Co2+(H2O)6 which is six coordinate.  So another 

interest we have is to explore the possibility of using IR studies with Co2+(CH3OH)n.  

6.2.2.1 Vibrational Spectroscopy of Metal Dication 6.2.2.1 Vibrational Spectroscopy of Metal Dication 6.2.2.1 Vibrational Spectroscopy of Metal Dication 6.2.2.1 Vibrational Spectroscopy of Metal Dication –––– Polypeptide Complexes Polypeptide Complexes Polypeptide Complexes Polypeptide Complexes    

 Still, not much is understood about the effect water molecules play in the 

conformations and stability of peptides.  Gas phase studies of bare and hydrated 

peptides can explore these effects.  Bowers’ group has studied the hydration 

equilibrium of small peptides using ES-MS and showed that peptide structural 

changes are a function of water molecules.16  The ability to produce functional 

peptides in the gas phase opens up another avenue to look at metal ions in the context 

of biological systems. Lately many researches are heading toward exploring metals in 

biology.17,18  Some researches have explored the CID of alkali metal peptide clusters to 

find different dissociation pathways based on the metal binding site.19  Knowing the 

fragmentations can reveal important structural information of these complexes.  For 

example, Gross and co-workers have found that the position of aromatic rings plays a 

key role in which position fragmentation takes place on a peptide chain that is 
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attached to a doubly charged transition metal ion.20  Photoexcitation can lead to 

different dissociation pathways than CID.  We could study photodissociation of small 

peptide-metal clusters with the same metals (Cu2+, Ni2+ and Co2+) and compare 

photodissociation paths with CID results.  The peptides of interest will vary with 

aromatic (F-phenylalanine) and non-aromatic (A-alanine) functional groups such as 

FAAA, AFAA, AAFA and AAAF.  The metal interaction with the aromatic molecules 

tends to be very strong.  For example, two conjugated rings could make a sandwich 

with the metal or the rings could stack, leaving the metal interaction only from one 

side of the ring.  Therefore, having the aromatic peptide on a terminal position rather 

than the middle of a chain could lead to a difference in the dissociation path.  

Spectroscopically, metal-ligand charge transfer in the visible and also the positions of 

C-H and N-H stretch frequencies in the IR provide information on the environment 

near the metal.  We can study how the addition of water molecules to the peptide 

affects metal binding using vibrational spectra.  Comparing the results with calculated 

IR spectra can lead us to identify the structure of the complex.  
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