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ABSTRACT 

MOLECULAR DESIGNS TOWARD IMPROVING ORGANIC PHOTOVOLTAICS 

FEBRUARY 2009 

ARPORNRAT NANTALAKSAKUL, B.S., CHULALONGKORN UNIVERSITY  

M.S., CHULALONGKORN UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Sankaran Thayumanavan 

 Organic photovoltaics (OPVs) that have been studied to date have poor power 

conversion efficiencies.  This dissertation focuses on various molecular designs that 

could lead to both a fundamental understanding of photoinduced charge separation at a 

molecular level and also provide a solution to improve bulk properties of organic 

materials to overcome the poor efficiencies of OPV devices. 

 The effect of molecular architectures on the efficiency of electron transfer, a 

primary step in OPVs functioning, is evaluated in this work.  We have shown that even 

though dendrimer provides an interesting architecture for efficient electron transfer due to 

the presence of multiple peripheries around a single core, this architecture leads to 

trapping of charge at the dendritic core.  This results in a decrease in the electron transfer 

efficiency in solution and also limits the possibility of charge transport to the electron in a 

photovoltaic device.   

 Non-conjugated polymers containing conductive EDOT units at side chains were 

also designed and synthesized.  The frontier energy levels of these polymers can be easily 

tuned by changing the conjugation lengths of side chain EDOT oligomers.  Moreover, by 
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incorporating crosslinkable units as co-side chains, the absorption bandwidth of these 

polymers can be manipulated as well. 
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CHAPTER 1 

INTRODUCTION 

1.1 Dendrimers 

In natural photosynthetic systems, a large array of chlorophyll molecules surrounds a 

single reaction center. The intricate chlorophyll assembly acts as an efficient light 

harvesting antenna that captures photons from the sun and transfers its energy to the 

reaction center, where conversion of solar energy into chemical potential energy via the 

formation of a charge-separated state takes place. Interestingly, the energy of any photon 

absorbed anywhere in this relatively large assembly of chromophores is passed rapidly to 

the reaction center with energy transfer quantum yield that approaches unity over 

nanometer distances.1-5 

In the past decade, much attention has been devoted to the design and synthesis of 

supramolecular systems that can function as artificial light harvesting systems for the 

photochemical conversion of solar energy.6-10 Five features of these complexes play key 

roles in the efficient collection of incident light for conversion into chemical energy: (1) 

large absorption cross-section of the complex due to a large number of chromophores 

with high extinction coefficients; (2) relative spatial orientation of these chromophores; 

(3) energy hopping of the exciton along the chromophores at the rim of the complex; (4) 

efficient and uni-directional energy transfer (ET) of the exciton from a chromophore at 

the rim to the chromophore in the center of the complex; (5) the generation of efficient 

photoinduced charge separation from excited state of peripheral chromophores and 

neutral state of the core.   
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Figure 1.1. A dendritic architecture. 

Dendrimers are perfectly branched synthetic macromolecules having numerous 

chain ends all emanating from core (Figure 1.1).  The number of peripheral 

functionalities in dendrimers can be controlled systematically with generations.  

Dendrimers are interesting scaffolds for light harvesting applications. Light harvesting is 

the trapping of energy where the peripheral chromophores absorb light and funnel it to a 

central point, where it can be utilized as photon energy or converted into chemical 

energy. Dendrimers possess the architecture to facilitate such a conversion. These 

properties include its tree-like structure that could potentially act as an energy gradient 

for the funneling process. The periphery of dendrimers can be functionalized with 

multiple light absorbing chromophore units that gives a high probability to capture light. 

The relatively short through-space distance from the periphery to the core, due to back 

folding, allows for high efficiency energy transfer.  
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1.1.1  Dendrimers for energy transfer 

1.1.1.1  Dendron as a scaffold 

Non-conjugated dendrons such as the widely used poly(aryl ether) dendron function 

as just a scaffold linking together light-harvesting chromophores at the rim and the 

energy acceptor chromophore at the core. Owing to the lack of the electronic 

communication between donor and acceptor chromophores through dendritic backbone, 

these dendrimers provide the ability to independently tune the energy level of each 

chromophore.  Moreover, the flexibility of the backbone also helps increase the solubility 

and processability of dendrimers.   

Fréchet and coworkers synthesized non-conjugated poly (aryl ether) dendrimers 

containing amino-functionalized Coumarin-2 as the donor and acid-functionalized 

Coumarin-343 as the acceptor (Figure 1.2(a)).11  The excitation of Coumarin-2 at 343 nm 

resulted in the fluorescence mainly at ~480 nm, which represented the characteristics of 

Coumarin-343 acceptor emission.  This result implied an efficient energy transfer within 

these molecules. Steady-state and time-resolved studies revealed that the energy transfer 

efficiency in these dendrimers approached unity even at higher generations.  Also, an 

interesting study on the relative rate between the energy transfer and nonradiative 

relaxation was carried out in this work.  The model compounds of these dendrimers 

containing chromophores at the periphery, but not at the core, were also designed and 

used for this study (Figure 1.2(b)).  The fluorescence spectra of G1 and G2 model 

dendrons showed the quenching of the Coumarin-2 emission in methanol upon the 

excitation of donors resulting from the nonradiative relaxation due to the hydrogen 

bonding of the solvent with the tertiary amine lone pair.  In contrast, corresponding 
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Figure 1.2. G2 dendrimers containing Coumarin-2 as an energy donor and Coumarin-343 
as an energy acceptor (left) and dendrimers without Coumarin-343 chromophore (right) 
for relative rate study.  

dendrimers with the acceptor at the core showed strong emission exclusively from 

Coumarin-343 core.  This study revealed that the fast energy transfer can overcome the 

rate of the nonradiative pathways.   

1.1.1.2 Dendrimer backbone as the chromophore 

Dendrimer backbone themselves can also be concurrently used as the energy donor. 

Conjugated dendrimers such as phenylacetylene chains were mainly used for this 

purpose.  By controlling over the conjugation length of dendritic branches in these 

dendrimers, rapid and directional energy transport could be obtained resulting in efficient 

energy transfer. 

Efficient, unidirectional energy transfer from a dendritic framework to a single core 

chromophore was reported by Xu and Moore (Figure 1.3).12
 Conjugated phenylacetylene 

dendrimers functionalized with a low band gap perylene chromophore at the core were 

synthesized.  Here, the phenylacetylene monomer units act as the energy donors, and 

perylene acts as the central energy acceptor.  Excitation of the dendrimer backbone at 312 
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Figure 1.3. Chemical structure of perylene-functionalized phenylacetylene dendrimer. 

 

Figure 1.4. Molecular structure of polyphenylene dendrimer. 

nm resulted in emission emanating solely from the perylene dye (450–600 nm), with 

nearly complete quenching of the dendrimer emission.   

Another conjugated dendrimer containing polyphenylene backbone and a perylene 

diimide core was synthesized by Mullen and co-workers. (Figure 1.4)13 In this system, 

polyphenylene dendrimer scaffold exhibits strong fluorescence, with quantum yields 

ranging from 0.2 to 0.5 depending on the dendrimer generation. The authors noted that, 

high extinction coefficients of polyphenylene dendritic arms at shorter wavelength and 

their strong fluorescence intensity, together with the efficient intramolecular energy 

transfer, result in a strong emission from the core by indirectly exciting the 

polyphenylene dendritic arms.  
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1.1.1.3 Energy migration  

In dendrimers fully decorated with peripheral chromophores, after one of the 

peripheral chromophores were excited by incident light, it was shown by several groups 

that the migration of the excitation energy could be initiated before energy transfer to the 

core and that this energy migration can enhance the efficiency of energy transfer.  Jiang 

and Aida demonstrated porphyrin dendrimers ((L5)nP, n = 1-4) having different number 

(n) of five-layered aryl ether dendron subunits (L5) (Figure 1.5).14  The excitation of 

dendron subunits in (L5)4P at 280 nm in CH2Cl2 resulted in strong emission at 656 and 

718 nm which is characteristic of the porphyrin core.  In contrast to this result, the 

excitation of partially substituted dendrimers resulted in a strong emission in the dendron 

region with only a weak emission from the porphyrin core.  The energy transfer quantum 

yield dropped dramatically with the decreasing number of substituents on the porphyrin 

core. (n = 4, φEET = 80.3%; n = 3, φEET = 31.6%; n = 2, φEET = 19.7%; n = 1, φEET = 10.1%)  

For this observation, the authors suggested that before energy transfer happens, the 

excitation energy first migrates among neighboring dialkyoxybenzyl units until it can 

find the chromophore that has a suitable orientation for energy transfer.  Then, the 

excitation energy is efficiently transferred to the core.  As a result, this energy migration 

process would be able to enhance the energy transfer efficiency.  The evidence for the 

presence of this energy shuttling was confirmed by fluorescence anisotropic 

measurements. The excitation of (L5)4P at 280 nm with polarized light resulted in the 

depolarized emission whereas emission of partially substituted (L5)nP (n = 1-3) still 

exhibited polarization character.  We have recently shown that such energy shuttling is an 

important parameter in obtaining high ET efficiency in dendrimers.15 
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                 a (L5)1P :  R1 = L5, R2 = R3 = R4 = tolyl 
                 b (L5)2P :  R1 = R2 =  L5, R3 = R4 = tolyl or  R1 = R3 =  L5, R2 = R4 = tolyl 
                 c (L5)3P :  R1 = R2 = R3 = L5,  R4 = tolyl, d (L5)4P :  R1 = R2 = R3 = R4 = L5 
 
Figure 1.5. Structure of porphyrin dendrimers containing different numbers of dendron 
subunits. 
 

 1.1.1.4 Energy Cascade 

A versatile synthetic scheme allowed for the synthesis of dendrimers having a 

directional energy gradient. Moore and coworkers have reported dendrimers based on 

phenylacetylene chains that are specially arranged to form an energy gradient (Figure 

1.6).  Interestingly, it was found that this energy gradient dramatically increases (by two 

orders of magnitude) the energy transfer rate constant within the dendrimer.16 Hence, the 

directional energy transfer from periphery to core must be greatly facilitated by the built-

in energy gradient. Indeed, theoretical work by Klafter and coworkers afforded the same 

conclusion, suggesting that ‘random walk’ energy transfer from periphery to core, as in 

the former structures, is much less productive than the directed process in funnel 
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Figure 1.6. Chemical structure of perylene-functionalized phenylacetylene dendrimer 
with an energy gradient. 
 

structures.17, 18  However, the mechanism of energy transfer in these systems was difficult 

to ascertain. Owing to the cross-conjugated dendrimer backbone, orbital overlap 

contributions to the energy transfer cannot be ruled out.19 In addition, spectral overlap 

between donor emission and acceptor absorption is not very large in this case, and would 

preclude the Förster mechanism alone from producing the high energy transfer 

efficiencies that were observed.20 

Dendrimers containing multichromophoric units that can absorb light in a wide 

visible range and efficiently transfer it to the core would be ideal for light harvesting 

systems.  Fréchet and co-workers designed and synthesized poly (aryl ether) dendrimer 

containing coumarin-2 and fluorol-7GA at the third and second branch point, respectively 

as energy donors and a perylenebis(dicarboximide) derivative at the core as the energy 

acceptor (Figure 1.7).21 The cascade energy transfer in this dendrimer was designed in 

such a way that energy would be harvested by coumarin-2 units and transferred to 

fluorol-7GA chromophores and then to perylene core.  The direct energy transfer from 

coumarin-2 to the perylene core was expected to be less favorable owing to the smaller 
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Figure 1.7. The structure of multichromophoric dendrimers containing coumarin-2 and 
fluorol-7GA as energy donors and perylenebis(dicarboximide) as the energy acceptor. 
 

spectral overlap between the emission spectra of coumarin-2 and the absorption spectra 

of perylene core and the longer interchromophore distance between these two dyes.  The 

authors showed spectroscopic evidence for a cascade energy transfer from coumarin-2 to 

fluorol-7GA and finally to perylene core from the steady-state measurements.  The 

energy transfer efficiency from coumarin-2 to fluorol-7GA was 99% and from fluorol-

7GA to perylene core was 96%. Therefore, this would be a more favorable pathway 

compared to a direct transfer from coumarin-2 to perylene core that was calculated to be 

at the most 79%. 

While all these energy cascade schemes increase the efficiency of energy transfer to 

the core, they do so at an energetic cost.  The exciton loses energy at every step down the 

cascade, so the energy available when it reaches the core is less than what it had when it 

started at the periphery.  Thus while the efficiency of an excitation reaching the core may 

be 100%, that excitation may only have 75% of the original photon energy.  It is worth 
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noting that in nature, the light-harvesting complex consists of isoenergetic chlorophylls, 

and that the cascade motif is not the dominant one (although there is some energy 

gradient which directs the excitation to the reaction center).  Thus it is not immediately 

clear that the cascade or energy funnel types of structures are necessarily the best for 

solar light harvesting.  High ET efficiency to the core does not directly translate to high 

overall energy efficiency of the structure.   

1.1.2 Dendrimers for electron transfer            

 After energy transfer, electron transfer (ET) is the next key step in photosynthetic 

systems and it involves a pair of electron-donor and acceptor entities, and its efficiency 

reduces exponentially with donor-acceptor distance. However, while a highly efficient 

FRET results in fluorescence emitted mainly from the acceptor chromophore, a highly 

efficient ET usually leads to a strong quenching of the fluorescence of the emitting 

chromophore. Recently, Müllen and coworkers have reported 

perylenetetracarboxidimides (PDI) with peripheral triphenylamine (TPA) dendrimers 

(Figure 1.8).22 Steady state and time-resolved data revealed that this dendrimer is capable 

of intramolecular electron transfer from periphery to core and this occurs more efficiently 

in polar solvents.   

Guldi and co-workers have reported fullerene based dendrimers to mimic the natural 

photosynthetic assemblies (Figure 1.9).23  These dendrimers function as rigid molecular 

scaffolds where dendritic spacers are end capped with dibutylaniline or 

dodecyloxynaphthalene as donors, while the electron accepting fullerene is placed at the 

focal point of the dendron.  Photophysical investigations showed that upon  
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Figure 1.9. First (1a, 1b) and second (2a, 2b) generations of new C60-dendron dyads. 

 
Figure 1.8. Polyphenylene dendrimer with peripheral triarylamines and a central 
perylenetetracarboxidiimide chromophore. 

photoexcitation there was an efficient and rapid transfer of singlet excited state energy 

that controls the reactivity of the initially excited antenna portion. Spectroscopic and 

kinetic evidence suggests that photoinduced electron transfer from periphery to core 

resulted in C60
.- -dendron.+ charge transfer state with quantum yields as high as 0.76 with 

lifetimes in the order of hundreds of nanoseconds (220-725 ns). They also found that this 
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charge transfer state can be modulated by varying the energy gap and that higher 

generations stabilize this charge transfer state efficiently.  

The example of non-conjugated dendrimers that are capable of photoinduced 

electron transfer was demonstrated by Aida and co-workers.24  Electron donor 

metalloporphyrin having benzyl ether dendritic shell was synthesized (Figure 1.10).  In 

this work, methyl viologen (MV2+) noncovalently-attached on the exterior surface of 

dendritic shell was used as an electron acceptor.  The titration of dendrimer with methyl 

viologen showed no change on absorption spectra of metalloporphyrin region implying 

that dendritic shells protect metalloporphyrin core by steric shielding and that methyl 

viologen has no interaction with the metalloporphyrin core.  However, upon irradiation of 

this dendrimer in the presence of MV2+, fluorescence from the core was quenched and 

fluorescence lifetime was shortened.  This phenomenon implied the long range 

photoinduced electron transfer from metalloporphyrin core to methyl viologen through 

the dendrimer framework.  Similar dendrimer-viologen binding, where a conjugated 

polymer is used as the chromophore, was also used for a demonstration of solar hydrogen 

production. 
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Figure 1.10. Benzyl ether dendrimers having metalloporphyrin core. 

1.1.3 Bifunctional dendrimers 

In order to mimic the complete photosynthetic event, recently, our group had 

designed dendrimers that are capable of undergoing both energy transfer and electron 

transfer properties.  These dendrimers contained benzthiadiazole derivatives as the 

energy and electron acceptor at the core and diarylaminopyrene units as the energy and 

electron donors at the periphery.25 The emission of diarylaminopyrene units overlapped 

with the absorption of benzthiadiazole moiety implying that Förster energy transfer can 

happen in these dendrimers.  Moreover, the oxidation potential of benzthiadiazole units 

obtained from cyclic voltammogram was 595 mV, which is above that of 

diarylaminopyrene units which exhibited at about 444 mV (with respect to 

ferrocene/ferrocenium couple).  This electrochemical data suggested that it is possible for 

the excited state of the chromophore at the core to be reduced by peripheral 

chromophores. 
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Figure 1.11. Light-harvesting dendrimers containing benzthiadiazole derivatives at the 
core and diarylaminopyrene at the periphery. 

The excitation of peripheral chromophores at 395 nm resulted in the fast rise of the 

fluorescence from the acceptor at 605 nm implying rapid Förster energy transfer in these 

molecules.  Also, the energy transfer efficiency in these molecules was high even at high 

generations (ηEET ~ 0.89-0.97).   This efficiency was found to be solvent-independent, 

which is common for energy transfer processes.  However, we found that the 

fluorescence lifetimes of the core altered with the change in the dielectric constant of 

solvents.  The different degree of the fluorescence quenching from the core upon 

changing the solvent polarity implied the presence of a charge transfer event.  In fact, this 

fluorescence quenching was found to be faster in high polar solvents.  This would be due 
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to the fact that more polar solvent can better stabilize the charged-intermediate species 

and thereby increase the charge transfer rate. In addition, it was found that the long-lived 

(microseconds) transient absorption spectrum closely resembled that of the radical cation 

spectra obtained from both chemical and electrochemical oxidation of the peripheral 

diarylaminopyrene units.  This provided additional evidence to confirm the presence of 

charge separated state in these dendrimers.  The charge transfer efficiency in these 

dendrimers was calculated to be as high as 70% in the polar solvent DMF, and the overall 

efficiency of the photon to charge-separated state process was calculated to be 

approximately 50%. 

1.2 Organic Photovoltaic Devices 

1.2.1 Basic principle 

A typical organic photovoltaic (OPV) device consists of an active layer 

sandwiched between two dissimilar metal/ semiconductor electrodes. The relatively 

higher work function electrode serves as the anode while the lower work function 

electrode serves as the cathode. Indium-tin-oxide (ITO) coated glass is the most 

commonly used transparent anode. The cathode can be a metal such as Au, Ag, Al, Ca, 

and Mg.   
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Figure 1.13. Working of an OPV device in terms of energy levels. 
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Figure 1.12. Structures of (a) RR-P3HT, (b) MDMO-PPV, (c) MEH-PPV, (d) C60 and 
(e) PCBM. 

The active layer consists of a chromophore, a hole transporting (HT) and an 

electron transporting (ET) material. A single material can function as a chromophore and 

hole transporter or electron transporter, though most commonly a chromophore also 

functions as a hole transporter. Commonly used HT materials are based on conjugated 

polymers as shown in Figure 1.1226 while ET materials are often based on fullerene 

derivatives.  

The working of an OPV device in terms of relative energy levels of constituent 

materials is depicted in Figure 1.13. When the incident light hits an organic chromophore, 

excitation of the molecules can occur if the light is of equal or higher energy than the 
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η =  FF * Voc * Isc

Pin          (1.1) 

FF =  Vpp * Ipp

Voc * Isc          (1.2) 

 

band gap of the chromophore.  The highest flux of photons occurs around 700 nm (1.8 

eV) in the solar spectrum.27  Therefore the most preferred chromophore for OPVs is that 

which has a band gap of 1.8 eV. Once the exciton is generated, a potential difference 

greater than its binding energy (approximately 0.3 eV) is required to split it into electrons 

and holes. This potential difference can be created at an interface with a material with a 

relatively larger electron affinity. Such an interface however, must be encountered within 

the diffusion length in order to obtain high exciton splitting efficiency. Upon separation 

of charges, these must be carried to electrodes which can accept them to be subsequently 

run through an external circuit.  Thus, the challenge in designing organic semiconductor 

based photovoltaics is to generate large number of excitons, harvest a majority of these, if 

not all, and ensure efficient charge transport to electrodes. This has been the focus of 

research for the past few decades. 

1.2.2. Device performance 

Each of the stages mentioned above, from exciton generation to charge collection, 

impacts the overall efficiency, η, of the device which is determined using measurable 

parameters, viz. the open circuit voltage (Voc), short circuit current (Isc), fill factor (FF), 

incident radiation intensity (Pin), voltage at peak power (Vpp) and current at peak power 

(Ipp). The mathematical expression relating these parameters is as follows. 
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The performance is experimentally measured under standard illumination 

conditions (AM 1.5 spectrum) and represented in an I-V curve. A typical I-V curve is 

shown in Figure 1.14. The non-ohmic nature of the curve is on account of photo-

generation of charges. The further the deviation from ohmic behavior, the better will be 

performance of the device. The voltage at which no current flows through the device is 

called the open circuit voltage (Voc) while the current flowing in absence of applied 

voltage is called the short circuit current (Isc). Optimal output occurs at the point where 

the power generated is the maximum, the theoretical maximum being the product of Voc 

and Isc. The closer the Vpp and Ipp are to the Voc and Isc respectively, the higher will be the 

fill factor, a parameter indicating the fraction of the theoretical output being harnessed 

from the device. Let us now discuss the factors affecting each of these parameters. 

 

1.2.1.1 Open circuit Voltage (Voc) 

In a single layer device, wherein the organic layer functions as both the HT and 

ET, there is no inherent chemical potential difference in the active layer. Therefore, 

exciton splitting occurs only due to the potential difference arising from the difference in 

 

.  
 

Figure 1.14. I-V curve. 
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work functions of the two electrodes. This is present only at the interface of the organic 

layer and metal electrode, leading to exciton splitting happening at this interface. Thus, 

the difference in the work functions of the two electrodes dictates the Voc. The metal-

insulator-metal (MIM) model is used to explain this. However, this model could not 

explain the origin of Voc in devices where two different materials function as HT and ET 

individually.28-30 For instance, bilayer devices consist of a layer of HT and ET mounted 

on each other, sandwiched between two electrodes, while the bulk heterojunction based 

OPV devices consist of an active layer constituted by a blend of the HT and ET materials 

sandwiched between two electrodes. 

The fact that the donor and acceptor are separate provides a chemical potential 

difference at the interface of the HT and ET materials which can drive exciton splitting. 

In such cases, the Voc can exceed the electrical potential difference due to the difference 

in work functions of the electrodes.31  It was reported that the Voc in bilayer and bulk 

heterojunction devices is a function of the difference between the LUMO energy level of 

the ET and the HOMO energy level of the HT.29, 32-36 

Morphology of the active layer also has an impact on the Voc. A theoretical model 

developed for understanding the origin of Voc in bulk heterojunction OPV devices 

predicts that the degree of phase separation of HT and ET materials has a significant 

impact on the Voc of the device.28, 37 According to this model, an increase in the degree of 

mixing increases the Isc but leads to a decrease in the Voc. They find that layered 

morphology yields the highest Voc while homogenous blends show low values on account 

of higher internal energy losses arising from multiple charge separation events. Hence, 

partially blended morphology of the active layer should serve best to provide optimal Voc 
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Isc  =  EQE(λ) ∗ SAM1.5 dλ
        (1.3) 

EQE(λ)  = ηλ* ηED* ηCC         (1.4) 

in the device.  Other approaches towards improving the Voc of the device include 

changing the ratio of HT and ET present in the blend38, modification of electrodes39, 40, 

modification of interface between HT and ET material41 and using a cascade energy band 

structure.42 

1.2.1.2 Short circuit current (Isc) 

 The short circuit current can be calculated from equations 1.3 and 1.4.  From 

these relationships, the photocurrent generated in the device can be enhanced by 

improving the amount of light absorbed (ηλ), the efficiency of exciton separation (ηED) 

and charge transport (ηCC).   

Below, we would like to discuss material design strategies used in literatures to 

improve the efficiency of each of these parameters. 

1.2.1.2.1 Light absorption 

As photovoltaic devices convert one photon into one electron, it is essential that 

the chromophoric materials absorb light in the high photon flux region in the solar 

spectrum to reduce the photon loss.  As mentioned earlier, the highest intensity of solar 

spectrum occurs at 700 nm (1.8 eV), therefore, the desirable band gap for light absorbing 

organic materials should be at least 1.8 eV or lower. The band gap of a material is 

represented by the following equation which considers all its significant contributors.43, 44 

         

Eg = EBLA + ERES + Eθ + Eint+ Esub         (1.5) 
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1. Bond length alteration (EBLA): This is defined as the difference in ground state, 

aromatic form, and the excited state, quinoid form, energy results in which dictates the 

confinement of electron in the aromatic structure. For instance, increasing the 

contribution of the quinoid form in conjugated polymers can extend the conjugation 

length and, thus, reduce the band gap. 

2. Aromaticity (ERES): Aromaticity results in the confinement of the π-electron on to 

aromatic rings. Reducing steric hindrance between adjacent aromatic rings will enable the 

electrons to delocalize throughout the conjugated system, therefore, decreasing the band 

gap. 

3. Planarity (Eθ): Increasing of planarity in conjugated systems by either reducing the 

steric interaction or applying the rigidification into conjugated systems will result in the 

high degree of electron delocalization of the π electrons and thus reducing the band gap. 

4. Intermolecular Effects (Eint): The band gap reduction due to an intermolecular effect 

can be obviously seen from the difference in optical properties of solid and solution 

phase. Mesoscopically ordered phases is a reason for the decrease in band gap in solid 

state compared to the disordered solution phases. 

5. Substituent effects (Esub): Inductive effect of electron withdrawing and electron 

donating groups can result in the reduction of the band gap. 

Examples of low band gap materials are showed in Figure 1.15.45-48 A synergistic 

combination of several effects mentioned above is attributed to the low band gap in these 

materials. It should be noted, however, that reducing band gap alone might not 

necessarily help obtaining high power conversion efficiency in OPV devices. All low 

band gap materials shown below provide very low efficiency when intermixed with 



 22

 
Figure 1.15. Examples of low band gap materials and their power conversion efficiency. 

PCBM. This may be the consequence of increasing HOMO level of these donors upon 

reducing the band gap resulting in the decline of the Voc.
49 

 

1.2.1.2.2 Charge separation 

The morphology of the active layer plays a significant role, as it affects the charge 

separation and mobility to an appreciable extent. A large interface between the HT and 

ET materials is desirable in order to have the maximum opportunity for charge 

separation. Blending the two kinds of materials meets this requirement satisfactorily, but 

without providing a control over the morphology of the blend. Isolated phases of the ET 
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material dispersed in the HT material, which are unavoidably formed in blends, hamper 

the flow of charges through the combined phase. This is an important drawback of the 

bulk heterojunction devices, the state-of-the-art OPV devices.  

In order to address this issue in bulk heterojunction OPVs, the concept of “double 

cable” polymers has been introduced.  These materials consist of a conjugated polymer as 

the donor (p cable) whose pendent side chains function as acceptors (n cable).  This 

design ensures large donor/acceptor interface enforced at the molecular level and also 

prevents aggregation of either donor or acceptor materials.50, 51  The advantages of this 

design are quite intuitive. The intramolecularly-linked D/A can accelerate the electron 

transfer kinetics appreciably as the donor and acceptor interface is tremendously 

increased in a molecular level. 

While designing double cable polymers, it is important to ensure that there is no 

ground state electronic communication between donor and acceptor units. In order to 

achieve this, photo-inactive alkyl chains are generally employed as linkers between the 

acceptor side chains and the donor main chain The most widely used polymers for 

constructing these molecules are poly(thiophene) and poly(phenylenevinylene), while the 

acceptor is most commonly fullerene.52-56  The main drawback of double cable type 

materials is their insolubility.57 As a result, these polymers often have very short chain 

lengths, which may impede their charge transport property.  The methodology adopted to 

increase the solubility of the double cables is incorporating flexible units as co-side 

chains.  However, increasing the amount of solubilizing groups decreases the acceptor 

content of the polymers. As a result, the electron hopping from one acceptor unit to its 

neighboring unit becomes more difficult resulting in low power conversion efficiency.   



 24

An example of double cable with photodiode behavior is illustrated in Figure 

1.16. This double cable was synthesized by the copolymerization of poly(p-phenylene 

vinylene) having solubilizing side chains and poly(p-phenylene ethylene) containing 

fullerene side chains.58  The photoinduced charge transfer in this double cable was 

confirmed by fluorescence quenching of the PPV donor in double cable and the presence 

of methanofullerene anion band at 1.2 eV in the photoinduced absorption spectra.  It is 

noteworthy that even though the Isc (0.42 mA/cm2) of this double cable polymer is low 

compared to that of the blended system59, the percentage of fullerene leading in the 

double cable is much lower (31.5%wt in the double cable polymer vs. 75 %wt in the 

blend). 

 

One of the reasons that cause the poor power conversion efficiency of devices 

made of double cables is the low percent loading of the acceptor which in turn limits the 

transportation of electrons.  Soluble double cable copolymers of polythiophene 

containing 7% and 14% of fullerene side groups have been reported. (Figure 1.17)60  The 

photodiode performance of these double cables was low compared to the blended system 

due to the low percentage of fullerene incorporated onto the molecules.  This assumption 

 

Figure 1.16. Structure of copolymers of poly (p-phenylene vinylene) having solubilizing 
side chains and poly(p-phyneylene ethylene) containing fullerene side chains. The PIA 
spectra revealed the presence of electron transfer in this copolymer. 
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Figure 1.17. The structure of polythiophene containing fullerene double cables. 

was proved by mixing double cable containing 7% of fullerene with PCBM in 1:3 ratio.  

The efficiency of the device was improved and became comparable to the bulk 

heterojunction one. 61 

Even though power conversion efficiency in double cables is not comparable with 

that in the blended system, there still is room for optimization.  It has to be borne in mind 

that increasing the charge dissociation alone by maximizing D/A interfaces in double 

cables may not lead to improved efficiency.  The power efficiency is also dictated by 

other parameters including the carrier transport.  To improve the carrier transport, the self 

organization of double cable polymers needs to be considered.  If π-stacking of donor 

conjugated polymers can be achieved, hole transport may be further facilitated, thus 

enhancing the efficiency of charge transport to the electrode.  Moreover, the drift carriers 

in organic materials result not only from the potential built-in by different electrodes, but 

also from the photoinduced chemical potential gradient generated by A-D moieties.62  

Therefore, a perfect double cable polymer need not necessarily have a perfect distribution 

of A moieties in each and every repeating unit of D donor as this is too homogeneous and 

could erase the photoinduced chemical potential gradient in the materials, the driving 

force for carrier separation and collection.  Therefore, tuning D-A ratio, morphology and 
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separation could be promising ways to improve the efficiency of OPV devices made of 

this type of materials.  

1.2.1.2.3 Charge collection  

 The above molecular architecture was designed to enhance the charge separation 

efficiency in an OPV. The other significant parameter directly influencing Isc is the 

charge collection. The process of charge generation occurs at femtosecond time scale, 

while the recombination of these charges is a microsecond time scale process.63 The 

recombination step is also assisted by the favorable Coulombic interaction of opposite 

charges.  Therefore, the generated charges have to be transported fast enough to their 

respective electrodes to obtain high charge collection efficiency lest the carrier loss will 

lower the power conversion efficiency.  Materials with high electron and hole mobilities 

have been designed and used for this purpose. In an ideal scenario, both the HT and ET 

should form two continuous phases, where each phase has a size on the order of the 

average exciton diffusion length, generally less than 10 nm.64 Considering this, small 

molecules and block copolymers containing donors and acceptors functionalities are 

particularly of interest.  Block copolymers provide an advantage over the small molecules 

in terms of tunability of the block length and donor/acceptor units in each block.65  

Systematic control of these factors should lead to improved photovoltaic efficiency.   

1.2.1.2.3.1 Small molecules 

The self assembly of small molecules into segregated donor and acceptor domains 

can generate the transport pathway for carriers to the respective electrodes resulting in 

improved photovoltaic efficiency.  However, the problem with this kind of assembly is 

that electronically rich donor chromophores preferentially interact with electron-poor 
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Figure 1.18. Structures of electron rich and electron poor chromophores having 
incompatible side chains. 

acceptor chromophores.  This interaction is not favorable for photovoltaic cells. In order 

to acquire a desirable self organization, Venkataraman et al. incorporated hydrocarbon 

chain onto donor chromophores and fluorocarbon chain onto acceptor chromophores 

(Figure 1.18).66 It was confirmed by X-ray that the incompatibility of hydrocarbon and 

fluorocarbon drives the molecular assembly in such a way that segregated domains of 

electron rich and electron poor units can be obtained.  However, photocurrent of this D/A 

assembly was not investigated.  

Another example of the self-assembly of donor-acceptor diads has been illustrated 

by Aida et al.67  In this case, self assembly was controlled by the incompatibility of 

hydrocarbon and glycolic moiety and the π-π interaction of hexabenzocoronene (HBC) 

donor units.  Well-defined self-assembled coaxial nanowires of trinitrofluorenone (TNF)-

appended hexabenzocoronene (HBC) (Figure 1.19) showed photoconductivity 

enhancement by the factor of >104 upon irradiation.  This improved photoconducting 

efficiency could have resulted from an efficient hole and electron transport through a 

layer of HBC and TNF, respectively.  They also found that increasing the ratio of the 

acceptor:donor upto a certain limit increases the photoconductivity beyond which 

distortion of the nanoassembly reduces it.68  
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Figure 1.19. The structure of HBC-TNF and its assembly into a nanotube. 
 

 
Figure 1.20. Amphiphilic and lipophilic oligothiophene donor containing fullerene 
acceptor. 

 

 

 

 

In another instance, amphiphilicity of the molecules was used to trigger self 

assembly. The self assembly of amphiphilic oligothiophene-C60 dyads was studied and 

compared with their nonamphiphilic analogs (Figure 1.20).69  It was observed by 

synchrotron radiation small angle X-ray scattering (SAXS) analysis that each repeating 

layer in amphiphilic A-D dyads formed tail-to-tail pairs and such layers are connected at 

the fullerene-appended hydrophilic head part to form 2D lamellar strucuture. Unlike in 

amphiphilic A-D dyads, nonuniform assembly was observed in the nonamphiphilic 

analogs.  The assembly of amphiphilic dyads led to 10 fold enhancement in photocurrent 

as compared to nonamphiphilic molecules.  
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Figure 1.21. structure of PPV-b-P(S-stat-CMS) block copolymer and its morphology. 

1.2.1.2.3.2 Block Copolymers 

 Block copolymers are well known to self assemble into several discrete 

morphologies such as spheres, cylindrical, gyroidal and lamellar structures depending on 

the volume fraction of each block. Amongst these, cylindrical and lamellar morphologies 

can generate clear pathways for charge transport significantly reducing carrier losses.70  

Moreover, it is possible to adjust the block length of each block to obtain the assembly 

that is within the excition diffusion length, thus minimizing the exciton losses.  Finally, 

by carefully selecting the donor and acceptor functionalities in each block, we should be 

able to maximize the amount of light captured by the chromophoric constituent. As a 

result, the photon losses can be minimized.  Therefore, a block copolymer approach 

seems to be promising to acquire efficient OPV cells. 

To investigate the performance of block polymers in photovoltaic devices, 

Hadziioannou and co-workers synthesized PPV-b-P(S-stat-C60MS) based diblock 

copolymer (Figure 1.21).71 The morphologies of block copolymers in CS2 observed from 

SEM images exhibit a highly ordered honeycomb structure with spherical cavities of 

diameter of 3-5 µm.  This highly ordered structure was not seen in chloroform or o-

dichlorbenzene where, instead a disordered morphology was observed. 
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OPV devices were fabricated from the PPV-b-(S-stat-C60MS) copolymers and 

from the blend of PPV and C60 containing the same amount of donor and acceptor 

components and their performance was compared. (Figure 1.22)72  The D-A block 

copolymer showed superior response over the blend system.  However, it was observed 

that the collection efficiency was still low in this device.  This low efficiency may have 

been a result of inefficient exciton dissociation owing to competing energy transfer 

process.  Moreover, the non-conjugated nature of C60 acceptor might result in the poor 

electron mobility and thus charge carrier losses in this device. 

 

In order to address these issues, A and D conjugated block polymers with non-

conjugated bridge (BDBA system) were designed (Figure 1.23(a)). Photo inactive linkers 

are aimed to separate the electronic state of the donor from the acceptor and to reduce the 

charge recombination rate. The flexibility of the linkers also assists in the phase 

separation and self assembly of block copolymers.73  Figure 1.23(b) shows the structures 

of this type of block polymers.  Alkyloxy derivative of polyphenylenevinylene or “RO-

PPV” was synthesized as the D block, a sulfone derivatized polyphenylenevinylene or 

“SF-PPV” was incorporated as the A block and a long alkyl chain was used as a flexible 

bridge.  STEM image of the block copolymer showed a regular pattern implying the 

 
Figure 1.22. Photovoltaic parameters obtained in the D-A copolymers (B) and PPV/C60 
blend (A) linker (B). 
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Figure 1.23. (a) A schematic representation of a conjugated donor/acceptor copolymer 
linked with flexible and non-conjugated linker and its self assembly. (b) The structure of 
the copolymer used in this study. (c) STEM and AFM images of block copolymer film. 

phase separation between donor and acceptor blocks.  This characteristic was not 

observed in the D/A blend film.  Moreover, the columnar morphological pattern was 

observed in AFM image of the block copolymer on a silicon substrate (Figure 1.23(c)).  

The current density of devices made of this BDBA film was 2-3 orders of magnitude 

higher than that of the D/A blend film prepared under the same condition. The mobilities 

in the blend film and the block copolymer were found to be 3.21 x 10-10 and 5.66 x 10-8 

cm2/Vs, respectively. This implied that the enhanced photoconductivity observed in self 

assembled film originated from the bi-continuous phase separated morphology in BDBA 

system. 

Another BDBA type block copolymer was illustrated by Bonner et al. (Figure 

1.24)74-77  I-V characteristics of PPV based block copolymers exhibited improved 

photovoltaic performance compared to their corresponding blends. (1.10 vs 0.14 V, and 

0.058 vs 0.017 mA/cm2) It was observed by XRD that the D/A phase separation in the 

blend was on the order of several hundred nanometers, while this was on the order of 

around 20 nm (D phase) an 10 nm (A) phase in the block copolymer system.  This 
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reduction in the phase segregation explains the reduction of exciton loss in the block 

copolymers.  Moreover, the more ordered D/A crystalline phases in block copolymers 

resulted in the improved charge carrier transport in turn improving the Voc and Isc of 

block copolymer based device.  The cell performance can be further improved by several 

factors such as optimization of energy levels, organic-metal interface treatment and 

morphology of materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.24. Structure of BDBA block copolymers in this study. 
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CHAPTER 2 

EVALUATION OF NON-CONJUGATED DENDRITIC ARCHITECTURES  

FOR ENERGY AND CHARGE TRANSFER BY COMPARISON WITH LINEAR 

ANALOGS 

2.1 Introduction 

Increasing energy needs and the rapid depletion of fossil fuels highlight the need 

for developing methods for harvesting energies from renewable sources.1-3 Solar energy 

is one of the widely available, yet largely untapped, sources of energy.  The 

photosynthetic apparatus in nature is an example of converting solar energy in to 

chemical potential energy with high efficiency.4-6 Two key steps in this energy 

conversion process involve energy transfer from the chromophores absorbing the light to 

the one that collects the absorbed energy at the reaction center and uses it to drive a 

charge separation event.7 Factors such as the extinction coefficient of the chromophores, 

relative orientation of the chromophores and the charge transport units, and exciton 

hopping among the chromophore units could all influence the efficiency of the electronic 

energy transfer (EET) and/or the charge transfer (CT) events. Therefore, while designing 

artificial scaffolds for this purpose, it is necessary that a certain control over the 

functional group placements exist. Although a number of small molecules have been 

studied,8-29 it is interesting to consider the possibility of using macromolecules for this 

purpose because of the potential to achieve charge separation over longer distances. 

While polymers have been studied for this purpose,30-33 dendrimers provide a 

unique opportunity to carry out systematic structure-property relationship studies in a 

macromolecular system due to the excellent control that one could achieve over the 
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molecular weight and polydispertsity.34, 35 More importantly, the possibility of having a 

functionally dense periphery along with a single core unit makes dendrimers potentially 

useful for light harvesting applications. Both conjugated36-40 and non-conjugated 

dendrimers41-47 have been studied for this purpose. While conjugated dendrimers provide 

the advantage of through-bond communication between the periphery and the core for 

electronic energy transfer (EET), non-conjugated dendrimers provide the opportunity to 

dissect the electronic and architectural advantage of dendrimers. This is mainly because 

the role of dendrimers in a non-conjugated system is only structural and not functional.  

Moreover, the lack of electronic communication through conjugation allows for the 

independent tuning of the donor and the acceptor. Considering these advantages, several 

reports exist on the light harvesting properties of non-conjugated dendrimers. There have 

been a relatively few reports on charge transfer within dendritic architectures as well in 

both conjugated48, 49 and non-conjugated systems.50-53 We have recently reported a 

system that combines both EET and CT events sequentially in the same dendrimer.54 

While all these studies highlight the impressive possibilities with dendrimers, a 

systematic study to understand whether dendrimers provide architectural advantages in 

light harvesting applications has been lacking. We address this here for both energy 

transfer and charge transfer using non-conjugated dendrimers. 

The obvious advantage of dendrimers in light-harvesting applications is their 

ability to pack multiple chromophores around a central acceptor. The ability of those 

absorbers to transfer energy to the core acceptor results in a large effective cross section 

for the acceptor, which in turn can use the transferred photon energy to do useful work, 

e.g. charge separation. But it is certainly possible that the covalent attachment of the 
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multiple donor chromophores carries some penalty in terms of the photophysical 

properties. For example, the branched architecture may sterically hinder the average 

through-space proximity of the donor and acceptor and force the donor-acceptor distance 

R to be larger than it would normally be for an unbranched (i.e. linear) analog.  Since the 

Förster mechanism predicts an EET rate that scales as 1/R6, even small changes in 

distance can drastically alter the EET efficiency. After the energy is transferred to the 

core, in our bifunctional dendrimers, an electron transfer can then take place from one of 

the CT donors to the excited core. Since electron transfer reactions generally require 

orbital overlap, the possible lack of conformational freedom in dendrimers, relative to 

linear molecules, could be expected to present an obstacle to efficient charge separation 

as well.  On the other hand, it is also possible that steric crowding at the dendrimer 

periphery actually increases backfolding and charge separation relative to linear 

molecules.  In this work, we test the influence of these two competing structural 

possibilities upon charge transfer. In the flexible benzyl-ether systems studied here, we 

find that any deleterious effects of steric congestion on the EET or CT efficiencies is 

more than compensated for by the advantages of having greater donor densities around 

the core. In these conformationally disordered systems, the existence of multiple transfer 

pathways overcomes the slight increase in the average donor-acceptor distance in the 

branched molecules. 

To demonstrate this experimentally, we have synthesized the set of molecules 

shown in Chart 2.1. The EET and CT donor moiety involves a diarylaminopyrene 

functionality at the periphery of the dendrimer and the acceptor unit involves a 

benzthiadiazole based dendritic core. We use these functionalities to achieve the fully 
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Figure 2.1. Schematic of a fully-decorated dendrimer (F), linear analog (L), and 
dendrimer with difunctionalized periphery (D). 

decorated dendrimers,  difunctionalized dendrimers and the linear analogs. Comparison 

of dendrimers with linear analogs has been previously done in the context of their 

physical properties.55, 56  However, similar comparison in light harvesting dendrimers is 

more complicated. The complications are schematically illustrated in Figure 2.1. 

Classical dendrimers with the periphery fully decorated with energy or electron donor 

moieties and a single acceptor unit at the core are represented by F in Figure 2.1. 

Comparison of F with the linear analog L accounts for the distance between the donor 

and the acceptor that dendrimers and the linear oligomers provide, but fails to provide the 

equivalent chromophore densities (i.e. number of donors vs. acceptor).  The only way to 

avoid this complication is to synthesize a difunctionalized dendrimer D, in which the 

number of and the distance between donors and acceptor moieties are identical to those in 

L. This work demonstrates the synthesis and photophysical characterization of all three 

types of molecules. We analyze the structural advantages of dendrimers both in the 

context of EET and CT properties.  
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Chart 2.1. Structures of the fully functionalized dendrimers 2-1F, 2-2F, and 2-3F, 
difunctionalized dendrimers 2-1D, 2-2D, and 2-3D and the corresponding linear analogs (2-
1L, 2-2L, and 2-3L). 
 

2.2 Result and Discussion 

2.2.1 Synthesis and Characterization 
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Scheme 2.1. The synthetic pathway of the benzthiadiazole core. 

We have synthesized dendrimers that contain diarylaminopyrene-based units as 

the energy and electron donor and a benzthiadiazole-based core as the energy and 

electron acceptor. Structures of the fully functionalized dendrimers 2-1F, 2-2F, and 2-3F, 

difunctionalized dendrimers 2-1D, 2-2D, and 2-3D, and the corresponding linear analogs 

2-1L, 2-2L, and 2-3L are shown in Chart 2.1.  

Synthesis of these dendrimers was approached in a modular fashion.  The 

synthesis of dihydroxy benzthiadiazole core (2-3) and hydroxymethyl diarylaminopyrene 

periphery (2-23) were followed the methodologies published previously by our group.54  

Synthesis of chromophore core was achieved by using bromination and Stille coupling as 

two main steps (Scheme 2.1).  Benzothiadiazole (2-1) was first brominated using HBr/Br2 

as a reagent. Dibrominated product was obtained with 47% yield and was then coupled 

with 2-tributyl tin thiophene to get dithiophene benzothiadiazole (2-2) with 53% yield. 

The bromination of this compound using NBS gave 4,7-bis(5-bromothiophene-2-

yl)benz[c][1,2,5]thiadiazole as a product with 64% yield.  The Stille coupling of this 
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Scheme 2.2. The synthesis of the diarylaminopyrene peripheral unit. 

dibromo compound with aryl stannane followed by the deprotection of TBS protecting 

group using KF gave the desire benzthiadiazole core (2-3) in 62% yield.  

Synthesis of the peripheral unit was accomplished by using the palladium 

catalyzed C-N coupling reaction as the key step (Scheme 2.2).  Bromopyrene (2-4) 

obtained by reacting pyrene with NBS was coupled with aniline under Hartwig’s 

conditions57, 58 to get secondary amine as a product with 70% yield. The product was 

further reacted with 2-(3-bromophenyl)-1,3-dioxolane to obtain the protected tertiary 

amine as a product with quantitative yield.  The protecting group was removed under 

acidic condition to get aldehyde functionalized diarylaminopyrene derivative (2-5) with 

78% yield. The aldehyde moiety (2-5) was then reduced to get corresponding 

hydroxymethyl group in which it was converted into bromomethyl functionality upon 

treatment with MsCl/NEt3 followed by LiBr reagent. The desired bromomethyl 

diarylaminopyrene unit (2-6) was used for further elaboration into the dendrons. 
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Scheme 2.3. Assembly of dendrimers and linear analogs. 

The dendrimers and the linear analogs were assembled by the reaction of a 

bromomethyl functionalized dendron or a hydroxyl functionalized linear molecule with 

the benzthiadiazole core chromophore (2-3), which contains two phenolic functionalities, 

as shown in Scheme 2.3. 

The key steps in the synthesis of fully decorated 2-1F, 2-2F, and 2-3F and 

difunctionalized 2-1D, 2-2D, and 2-3D dendrons are alkylation and bromination. It is 

noteworthy that the brominating reagents were carefully selected to avoid the possibility 

of extra ring bromination as the presence of bromine atoms could affect our 

photophysical results, due to heavy atom effect.59, 60  This conversion was performed 

using a combination of methanesulfonyl chloride/ triethylamine, and lithium bromide. 

The reaction here is thought to proceed through the formation of the mesylate initially, 

which then gets converted to the bromoalkyl functionality by nucleophilic displacement. 

The lack of the opportunity to form an electrophilic Br+ functionality obviates the 

possibility of ring bromination.  

In the convergent assembly of fully decorated dendrons, the diarylaminopyrene 

units having bromomethyl functionality 2-6 was treated with 3,5-dihydroxybenzyl 

alcohol under Williamson alkylation conditions to afford G1-OH dendrons with 56% 

yield.  Conversion of the hydroxymethyl compound to the bromomethyl version to obtain 

G1-Br (2-7) using MsCl/LiBr regents was achieved with quantitative yield.  G1-Br (2-7) 
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Scheme 2.4. The convergent synthesis of fully decorated dendrons. 

was then taken through the above two synthetic steps iteratively to obtain the G2 and G3 

monodendron with a bromomethyl functionality at the focal point (2-8 and 2-9).  

Treatment of the bromomethyl functionalized dendrons 2-7, 2-8 and 2-9 with the 

chromophore core (2-3) in the presence of potassium carbonate afforded the fully 

decorated dendrimers 2-1F, 2-2F, and 2-3F respectively (Scheme 2.4). 

To obtain the partially functionalized G-1 dendron 2-12, the diarylaminopyrene 

compound 2-6 was first treated with monophenolic G1-OH (2-10) under the potassium 

carbonate alkylation conditions to obtain the hydroxymethyl functionalized dendron 2-11 

in 80% yield (Scheme 2.5). Conversion of this compound to the corresponding 

bromomethyl version afforded the targeted G-1 dendron 2-12. The compound 2-10 was 

obtained by the reaction of 3,5-dihydroxybenzyl alcohol with benzyl bromide in a 1:1 

ratio. This reaction afforded a mixture of the 2-10 along with the corresponding 

disubstituted G1-OH (2-13) (Scheme 2.5). The dendron 2-11 was converted to the 

corresponding bromomethyl compound 2-12 and was used for the next generation of 

dendrons. 
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Scheme 2.5. Synthetic pathways for diarylaminopyrene incorporated difunctionalized 
dendrons.  

The disubstituted G1-Br (2-14) obtained from bromination reaction of compound 

2-13 using MsCl/LiBr reagents was treated with one equivalent of 3,5-dihydroxybenzyl 

alcohol to afford a mixture of dendron 2-15 and dendron 2-16. Separation of these 

compounds followed by the reaction of dendron 2-15 with the bromomethyl G-1 dendron 

2-12 afforded the hydroxymethyl functionalized G2-OH dendron 2-17, which was then 

converted to the bromomethyl G2 dendron 2-18. Similarly the Dendron 2-16 was 

converted to the disubstituted G2-Br 2-19 followed by treatment with 3,5-

dihydroxybenzyl alcohol afforded the monosubstituted G3-OH 2-20. A reaction between 

this dendron 2-20 and compound 2-18 in the presence of potassium carbonate and 18-

crown-6 afforded the G3-OH dendron 2-21 followed by conversion to the bromomethyl 

dendron 2-22 (Scheme 2.6).  Treatment of the bromomethyl functionalized dendrons 2-

12, 2-18, and 2-22 with compound 2-3 in the presence of potassium carbonate afforded 

the difunctionalized dendrimers 2-1D, 2-2D, and 2-3D respectively. 
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Scheme 2.6. Synthetic pathway for G2 and G2 difunctionalized dendrons. 

 

The linear analogs 2-1L, 2-2L, and 2-3L were synthesized with Mitsunobu 

reaction as the key step in the synthesis. The hydroxymethyl functionalized 

diarylaminopyrene (2-23) was treated with 3-hydroxybenzaldehyde under Mitsunobu 

reaction conditions followed by the reduction of carboxaldehyde to the alcohol provided 

2-24, linear analog for the G-1 dendron (Scheme 2.7). Reaction of compound 2-23 with 

the aldehyde 2-25, followed by reduction afforded the G-2 analog 2-26, whereas a similar 

reaction sequence with the compound 2-24 afforded the G-3 analog 2-27. Reaction of the 
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Scheme 2.7. Synthesis of linear analogs. 
 

hydroxymethyl compounds 2-24, 2-26, and 2-27 with compound 2-3 under the 

Mitsunobu reaction conditions afforded the linear 2-1L, 2-2L, and 2-3L, as illustrated in 

Scheme 2.3. Note that these reactions also do not involve the possibility of any heavy 

atom incorporation into the dendrimers. When we attempted the Mitsunobu based 

reaction for the syntheses of the dendrimers 2-1D, 2-2D, and 2-3D and 2-1F, 2-2F, and 2-

3F, the yields of reactions were poor especially at higher generations.  

The dendrons, dendrimers, linear analogs, and the key compounds that lead to 

these molecules were characterized by 1H, 13C NMR, mass spectrometry, and elemental 

analysis. The key feature of each generation of the dendrimer is that the number of 

pyrene units remains the same in 2-1D, 2-2D, and 2-3D, but relative ratio of the pyrene 

units vs. the number of phenyl rings in the periphery or the dihydroxybenzyl ether rings 

in the inner layers of the dendrimers vary. The 1H NMR peaks for pyrene appeared 

between 8.2 and 7.8 ppm, whereas those of the peripheral phenyl rings and the inner layer 

dihydroxylbenzyl ether rings appeared between 7.4 and 6.8 ppm and between 6.7 and 6.4 

ppm respectively. The relative integration of these three areas was useful in confirming 
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the identity of the dendrons and the dendrimers assembled. Similar ratios were also found 

to be useful in characterization of the linear analogs 2-1L, 2-2L, and 2-3L, although 

assignment of 1H NMR spectra of these linear molecules were inherently less 

complicated. In fully decorated dendrimers, the difference in a number of benzylic 

protons in each generation of dendrimers can be used to confirm the success in obtaining 

the desired dendrimers.  For example, there appear four different benzylic signals in the 

ratio of 8:4:2:1 in 2-3F. 

Moreover, all the dendrimers exhibited the parent ion peak with calculated 

isotopic distribution pattern in the MALDI-ToF spectra. Particular attention was paid to 

the presence of even a small peak containing bromine atoms (M+80 or M+160 and so on) 

which might imply the presence of extra bromine in final compounds. No such peaks 

were observed even in small amounts. Additionally, the purity of the samples was also 

determined using GPC. All dendrimers exhibited a single sharp peak in the size exclusion 

chromatogram indicating the presence of a single large species. We also characterized the 

dendrimers  2-1F, 2-2F, 2-3F,and  2-1D, 2-2D,  2-3D and the linear analogs 2-1L, 2-2L, 

and 2-3L using absorption spectra. While the relative number of the diarylaminopyrene 

periphery units and the benzthiadiazole core increases with increasing generation in 2-1F, 

2-2F, and 2-3F, this number remains constant in the other two series of compounds. 

While a linear increase in the relative absorbance with generation was observed in the 

fully decorated dendrimers, the relative absorbance was essentially unchanged in the 

difunctionalized dendrimers and the linear analogs as elaborated below. 

Initial photophysical characterization of the difunctionalized dendrimers 2-1D, 2-

2D, and 2-3D and the linear analogs 2-1L, 2-2L, and 2-3L were done using steady-state 
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Figure 2.2. (a) Absorption spectra of the compounds 1L-3L and 1D-3D, normalized at 
the absorption maximum of the acceptor. (b) Absorption spectra of the compounds 1F-
3F, normalized at the absorption maximum of the acceptor.   
 

linear absorption spectroscopy and emission spectroscopy. Absorption spectra of the 

difunctionalized dendrimers 2-1D, 2-2D, and 2-3D and the linear analogs 2-1L, 2-2L, 

and 2-3L are shown in Figure 2.2a, while the spectra of the fully functionalized 

dendrimers 2-1F, 2-2F, and 2-3F are shown in Figure 2.2b. As expected and mentioned 

above, the relative area of absorption of the donor versus the acceptor increases with 

generation in the case of the fully functionalized dendrimers. However, there is no 

significant difference among generations for both the difuncitonalized dendrimers and the 

linear analogs series, relative to what is observed in the F series. This provides the 

evidence of the lack of the ground state electronic communication between the donor and 

the acceptor in all these molecules and also that all these molecules behave similarly 

electronically, but differ in the chromophore densities and molecular architecture. 
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Figure 2.3. Emission spectra when excited at the donor at 395 nm in toluene (a) 2-
1D, 2-2D, and 2-3D; (b) 2-1L, 2-2L, and 2-3L; (c) 2-1F, 2-2F, and 2-3F. 

The emission spectra of the both dendrimer series and the linear analogs are 

shown in Figure 2.3a-2.3c.  In all these cases, when the donor component of the 

molecules is excited at about 395 nm, the emission arises mainly from the acceptor. This 

indicates a high degree of EET from the periphery to the core of both difunctionalized 

and fully functionalized dendrimers, as wells as from the linear analogs. We have 

quantified the EET and CT efficiencies in all three classes of dendrimers using time-

resolved spectroscopy measurements (vide infra). 
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2.2.2 Time-Resolved Electronic Energy Transfer Studies 

 We have previously shown that the diarylamino pyrene unit is energetically 

suitable for energy transfer to the benzthiadiazole based chromophore core.61  The redox 

potential of this amine is also such that an electron transfer from this unit to the excited 

state of the chromophore core is thermodynamically feasible. If the energy transfer 

occurs incoherently between well-separated molecules as in the case of the molecules 

reported here, we can apply the Förster formula 

6

6
011

R

R

flEET ττ
=          (2.1) 

J
nN

d
f

nN
R

A

fl

A

fl

45

2

0
445

2
6
0 128

)10ln(9000
)()(

128

)10ln(9000

π

κφ

ν
ν

ννε
π

κφ
== ∫

∞

   (2.2) 

where R is the separation between chromophores, n is the index of refraction, τfl is the 

fluorescence lifetime of the donor (which in this case is identical to the acceptor), φfl is 

the quantum yield, κ is an orientation factor, NA is Avagadro’s number, ε(ν) is the 

absorption spectrum and f �(ν) is the fluorescence spectrum whose integral has been 

normalized to 1. R0 combines these factors into a single length called the critical Förster 

radius. For the diarylaminopyrene/benzthiadiazole pair, we have calculated a Förster 

radius R0 of 48 Å.61 This large value results from the very good overlap of the 

diarylaminopyrene’s fluorescence with the benzthiadiazole’s absorption. In all the 

molecules studied here, the donor-acceptor distance is less than R0 due to the constraints 

of the molecular structure. Thus in all cases, we expect rapid energy transfer and 

accelerated fluorescence decays for the diarylaminopyrene donors. This is exactly what is 

observed for all three classes of molecules, as shown in Figure 2.4. In toluene at room 



 56

(a)                                                                (b) 

-0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

flu
or

es
ce

nc
e

ns

 1L
 2L
 3L

-0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0
flu

or
es

ce
nc

e

ns

 1D
 2D
 3D

 
                                           (c)  

-0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

flu
or

es
ce

nc
e

ns

 1F
 2F
 3F

 
Figure 2.4.  Donor fluorescence decays for a) 2-1L, 2-2L, and 2-3L linear analogs, b) 2-
1D, 2-2D, and 2-3D dendritic analogs, and c) 2-1F, 2-2F, and 2-3F fully decorated 
dendrimers.  Dendrimers are excited at 400 nm and donor fluorescence measurement is 
made from 430 nm to 510 nm in toluene. 
 

temperature, for the linear, difuntionalized, and fully decorated dendritic molecules, the 

decay of the donor fluorescence ranges from ~40 ps for the first generation molecules to 

100-146 ps for the third generation molecules. The decays are generally biexponential, 

with a small (~10%) long-lived component whose decay is close to that of the isolated 

donor in solution (4.9 ns). In fitting the data in Figure 2.4, we set the long component to 

be 4.9 ns in all cases. The origin of this long-lived component is not clear. This has been  

attributed to a very small fraction of impurities not detectable by classical 
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Table 2.1. Donor Fluorescence Decays and estimated EET Efficiencies. Excitation 
wavelength = 400 nm, and emission detected in 50 nm window centered at 440 nm. 
Decays with two time scales are fit with a biexponential fit of the form 

exp( / ) exp( / )A BA t B tτ τ+ . All times are in ns. Donor fluorescence lifetime in toluene is 

4.94 ns. 
 

A1 1τ  A2 2τ  τ  EET 
efficiency 

2-1L 0.95 0.040 0.05 4.94 0.29 0.94 
2-2L 0.96 0.075 0.04 4.94 0.27 0.95 
2-3L 0.93 0.124 0.07 4.94 0.46 0.91 
2-1D 0.95 0.044 0.05 4.94 0.29 0.94 
2-2D 0.88 0.079 0.12 4.94 0.66 0.87 
2-3D 0.85 0.146 0.15 4.94 0.87 0.82 
2-1F 0.95 0.038 0.05 4.94 0.28 0.94 
2-2F 0.96 0.065 0.04 4.94 0.26 0.95 
2-3F 0.92 0.099 0.08 4.94 0.49 0.90 
 

characterization techniques.54, 62 The results of the fitting of the data are given in Table 

2.1.   

For the biexponential decays, we have defined donτ  , the weighted average of 

the donor fluorescence decay times, as  

2211 τττ AAdon +=         (2.3) 

where A1 and A2 are the amplitudes of the two components for the normalized decay data.  

It is straightforward to show that this single parameter can be related to the EET quantum 

yield φ using the following equation: 

 
don

don
EET τ

τ
φ

′
−=1         (2.4) 

where donτ ′  is the lifetime of the donor in the absence of EET. Note that the EET times for 

the fully decorated dendrimers in toluene are faster than those tabulated in our previous 

observation,54 where the lifetimes were measured in DMF. The Förster energy transfer 

rate is proportional to 1/n4, and if we plug in the refractive indices of toluene (n = 1.494) 
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and DMF (n = 1.427), Eq. (2.1) predicts that τEET in toluene should be 20% longer, the 

opposite of what is observed. An alternative explanation for the more rapid EET in 

toluene is that the conformational structure, or degree of folding, is slightly different in 

these two solvents. It is reasonable that toluene could lead to a more compact structure 

given the polar nature of the BE framework used here.18 

There are two trends in Table 2.1 which are of interest for this work. The first is 

the increase of relative EET times with increase in the length of the BE arms, which is 

observed within all three families of molecules. The second is the trend in τEET values in 

the three families.  Below we address each of these two issues in detail. The dependence 

of τEET on dendrimer size was observed previously for the fully decorated dendrimers.54 

In that work, it was found that if R, the donor-acceptor separation distance, scaled 

linearly with N, the number of intervening chemical bonds, then τEET was predicted to 

scale as N6, much more rapidly than observed experimentally.  If, on the other hand, we 

assumed that the actual interchromophore distance through space scaled as N , we have 

366 )( NNREET =∝∝τ       (2.5) 

This scaling reproduced the observed dependence of τEET on molecular size. Figure 2.5 

shows that this analysis is valid for all three families of dendrimers studied in this work.  

While there are slight divergences between the different families, none of them comes 

close to the N6 dependence expected for a rigid dendrimer. The NR ∝  dependence can 

be deduced from simple theoretical considerations for a flexible, multi-segment system. 

The benzyl ether linkages employed in the set of compounds under consideration are 

known to be quite flexible,35 and it would appear from our results that this flexibility is 
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Figure 2.5. Measured fast decay times (τ1) for the donor fluorescence versus 
generation for linear analogs L (filled circles), disubstituted dendrimers D (open 
squares), and fully decorated dendrimers F (open triangles).  The predicted variation 
for R∝N6 (dashed line) and R∝N3 (solid line), where N is the number of bonds 
between the acceptor and donor, are also shown.   
 

not significantly degraded by the steric crowding present in the multiple branched D and 

F families. 

  A second observation is that although families L, D, and F exhibit the same 

general behavior of τEET with generation, their absolute values of τEET differ. This 

difference is most pronounced at the third generation, where τEET of 2-3D (146 ps) is 

almost 50% longer than that of 3F (99 ps). The slight slowdown in EET in going from the 

L to D families can be rationalized in terms of increased donor-acceptor separations in 

the D molecules.  Such increased separations would be expected in the D family due to 

increased steric hindrance to the conformational motions that would bring the donor and 

acceptor closer.  The only surprising thing is that this effect is so small – it only slows 

down EET by about 15% in the third generation, where the effect is most pronounced.  

Considering that 6REET ∝τ , this would translate to only a 2% change in the average 

donor-acceptor distance.  
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Figure 2.6.  Normalized donor fluorescence anisotropy decay of 2-3D (black) and 2-3F 
(red) dendrimers.   
 

If anything, steric congestion should be even more pronounced due to the addition 

of the bulky amino-pyrene chromphores in the F compounds, where R would be expected 

to increase even further. But instead of decreasing, the EET rate increases in the 2-1F, 2-

2F, and 2-3F family.  Again, this trend is most pronounced in the third generation, where 

a comparison of the τEET’s shows an almost 30% drop in going from 2-3D to 2-3F. One 

explanation for this effect is that the average value for R is lower in the F dendrimer than 

in the D dendrimer due to increased backfolding driven by steric crowding by the amino-

pyrene chromophores at the periphery. A second possibility is that there is difference in 

the orientational structure of the D and F families. Examination of Eq. (2.2) shows that 

the orientation factor κ2, which can range between 0 and 4, plays an important role in 

determining τEET. If the initially excited chromophore is randomly oriented with respect 

to the acceptor, it may have a low κ2 value and thus a long τEET, even if R is small. Of 

course, if the donor and acceptor are reorienting rapidly with respect to each other, we 

can use the rotationally averaged value for κ2 = 0.667, while for an isotropic static 

distribution, κ2 = 0.63 
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To analyze the role of chromophore orientations, we need to look at the evolution 

of the donor fluorescence anisotropy. Two examples are shown in Figure 2.6, where the 

normalized anisotropy decays of 2-3D and 2-3F are compared. The values for the decays 

of all the compounds are given in Table 2.2. Note that a slight constant offset, usually 

about 10% of the initial amplitude, was required to fit the entire decay, and that the 

values for the initial anisotropies varied between 0.3 and 0.4, as expected for a dipole-

allowed transition. We are most concerned, however, with how τr, the exponential decay 

time, changes between families. From Table 2.2, several things are clear. First, attaching 

the diarylaminopyrene to the benzylether chain slows down its rotational diffusion by 

only about 50%. Even in the smallest dendrimer, the effective molecular radius is 

expected to change by at least a factor of 3, assuming a rigid molecule. The lack of a 

corresponding increase in τr indicates that the flexible benzylether linker probably 

constrains the motion of the diarylaminopyrene to some extent, but that it can still rotate 

more or less freely.  Second, the EET is so rapid that in all molecules the anisotropy 

decay occurs on the same time scale as the energy transfer. The assumption of rapid 

rotational averaging that leads to κ2 = 0.667 is thus not valid for these molecules, and 

static conformations probably play an important role in determining the overall EET 

efficiency. Such an effect has been observed in DNA-dye molecular complexes have 

been used to demonstrate how different donor orientations can effectively ‘gate” Förster 

energy transfer to a fixed acceptor.64  Understanding how these conformations change 

among the L, D and F families will probably require detailed molecular dynamics 

simulations. The last point is that the data in Table 2.2 does suggest that dynamic 

reorientation of the excited state may play a role in accelerating the EET in the F 
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Table 2.2. Donor fluorescence anisotropy decays. Decays are fit with a single exponential 
fit of the form 0 0( ) exp( / )rr t r t yτ= + . All times are in ns. 

 
 

rτ  0r  0y  

 2-1L 0.126 0.315 0.050 
 2- 2L 0.119 0.412 0.042 
 2-3L 0.135 0.290 0.016 
 2-1D 0.118 0.388 0.032 
 2-2D 0.178 0.342 0.047 
 2-3D 0.180 0.268 0.028 
 2-1F 0.151 0.295 0.056 
 2-2F 0.134 0.314 0.053 
 2-3F 0.115 0.249 0.050 
 2-23 0.082 0.427 0 
 

dendrimers. Unlike the L and D molecules, there is a systematic decrease in τr with 

increasing size in the F dendrimers. It is unlikely that the rapid anisotropy decay in 2-3F 

is due to more rapid rotational diffusion, since the diarylaminopyrene units are much 

bulkier than the phenyl groups. Instead, EET between the donors on the periphery would 

help explain why both in τr and τEET are enhanced for higher generations in F. Such 

donor-donor energy hopping provides an explanation for the more rapid EET in 2-3F and 

has previously been used to explain efficient EET in other light-harvesting dendrimers.45, 

65, 66 In our molecules, the extra donor chromophores in the 2-1F, 2-2F, and 2-3F 

molecules provide additional pathways which both randomize the polarization and 

optimize EET to the core acceptor. It is important to point out, however, that even at the 

level of 2-3F, the differences in τr are only on the order of 30% at most.  Whether the 

decrease in τr in 2-3F is sufficient to explain its shorter τEET with respect to the other third 

generation dendrimers is unclear. We simply emphasize that the observed trends in τEET 

and τr are consistent with what is expected based on considerations of steric congestion 

and chromophore density.   
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Although the difference in EET rates between families does not lead to large 

differences in the overall EET efficiencies, since all the rates are so fast, they do reveal 

differences between the different architectures which could become more significant in 

larger structures. Our results do not, however, provide a compelling case for the 

architectural superiority of the classical, fully decorated dendrimers as opposed to the 

linear analog in terms of EET to the core. Of course, the fully decorated dendrimer still 

has the advantage of having a much larger absorption cross-section due to its additional 

chromophores, which still make it a better light-harvesting molecule overall.  

2.2.3 Time-resolved Charge Transfer Studies  

The dendrimers studied in this work are bifunctional, demonstrating both EET 

and subsequent CT from the ground state of the amino-pyrene donor to the excited state 

of the benzthiadiazole acceptor.  Although the dendrimer structure does not provide a 

significant advantage in terms of EET efficiency, we do find that it does provide a 

significant advantage in terms of CT efficiency.  Figure 2.7 shows the decays of the third 

generation molecules 2-3L and 2-3F in a series of solvents: toluene, CH2Cl2, and DMF. 

As the solvent polarity increases, the benzthiadiazole fluorescence decay becomes more 

rapid.  It has been shown that for 2-1F, 2-2F, and 2-3F compounds this fluorescence 

quenching is accompanied by the formation of a long-lived, charge separated species.54  

Thus at least part of the rapid fluorescence decay represents CT quenching. Table 2.3 

summarizes the acceptor fluorescence decay data for all 9 compounds in the three 

solvents specified.  Biexponential acceptor decays are analyzed in the same way as the 

donor decays in the previous section, except that the time constant of the second decay 

component is not fixed. It is clear that all three families of compounds undergo some  
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Figure 2.7.  Acceptor fluorescence decay of (a) 2-3F in toluene (red), methylene chloride 
(black), and DMF (blue), b) 2-3L in toluene (red), methylene chloride (black), and DMF 
(blue), and (c) the size dependence of the acceptor fluorescence decay of 2-1F (black), 2-
2F (red), and 2-3F (blue) in DMF. 
 
 Table 2.3. Acceptor Fluorescence Decays (excitation at 400 nm, detection in 50 nm 

window centered at 600 nm) and CT Efficiencies calculated. Decays with two time scales 
are fit with a biexponential fit of the form exp( / ) exp( / )A BA t B tτ τ+ . All times are in ns. 

 

  toluene  methylene chloride  DMF 

  A Aτ  B Bτ  τ  CTη   A Aτ  B Bτ  τ  CTη   A Aτ  B Bτ  τ  CTη  

accept
or 

 
 6.55     

 
 7.99     

 
 7.58     

2-1L   6.55    0  0.68 3.91 0.32 7.23 4.97 0.3777   3.29    0.5660 
2-2L   6.50    0.0076  0.38 2.92 0.62 6.02 4.84 0.3940   3.51    0.5369 
2-3L   6.53    0.0031  0.20 1.77 0.80 5.60 4.83 0.3950   3.86    0.4908 

2-1D   6.44    0.0168  0.50 3.36 0.50 6.41 4.89 0.3886   3.35    0.5580 
2-2D   6.34    0.0321  0.39 2.62 0.61 6.21 4.81 0.3980  0.52 2.68 0.48 4.95 3.77 0.5027 
2-3D   6.53    0.0031  0.74 4.75 0.26 8.25 5.66 0.2916  0.44 2.81 0.56 5.30 4.20 0.4453 

2-1F   6.44    0.0168  0.35 1.95 0.65 5.36 4.17 0.4785  0.84 1.93 0.16 3.66 2.21 0.7089 
2-2F   6.55    0  0.37 1.33 0.63 5.45 3.93 0.5087  0.36 0.86 0.64 1.93 1.54 0.7962 
2-3F  0.28 2.37 0.72 6.83 5.58 0.1479  0.42 1.25 0.58 5.43 3.67 0.5401  0.73 1.00 0.27 2.94 1.52 0.7990 
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degree of polarity-dependent quenching, and that this is most pronounced for the fully 

decorated dendrimers. In fact, in DMF the CT efficiency, ηCT, as estimated from the 

fluorescence quenching rate, is 0.80 for 2-3F as opposed to 0.45 for 2-3D and 0.49 for 2-

3L. This difference in ηCT between families is most pronounced in these larger 

molecules, but is present for all generations. The evolution of ηCT with generation for the 

three families of compounds in DMF is illustrated in Figure 2.8.  The CT efficiency in 2-

1L, 2-2L, and 2-3L and 2-1D, 2-2D, and 2-3D decreases as the donor-acceptor separation 

increases, although not dramatically. For both EET and CT, the decreased transfer rates 

are likely due to the increased distance between donor and acceptor. The size effect is not 

as dramatic as it was in the case of EET, and this may have to do with the different 

timescales of the two processes. The EET event occurs within 50-150 ps, during which 

the donor moieties barely have time to rotate, much less translate and change R, for their 

separation. CT occurs on the timescale of several ns, allowing these flexible molecules to 

dynamically sample multiple conformations. This dynamic sampling may blur average 

distance effects that dominate the EET process. For CT, it would only take a single close 

encounter during that period to produce a CT event.  A better understanding of the role of 

conformational fluctuations in enabling CT in these compounds probably requires the use 

of molecular dynamics simulations. 

The most interesting trend in ηCT is seen in the fully decorated dendrimers, where 

ηCT actually increases with dendrimer size. This unexpected result, which can be 

discerned both from Table 2.3 and Figure 2.7c and 2.8, cannot easily be explained in 

terms of backfolding or more rapid conformational fluctuations. But as in the case of 

EET, here too the presence of additional chromophores can also provide an enhancement 
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Figure 2.8.  Plot of charge transfer efficiency ηCT versus generation for the linear 
analogs L (open squares), disubstituted dendrimers D (open circles), and fully decorated 
dendrimers F (solid circles).   
 
in the CT rate. In these compounds, the local concentration of chromophores is 

significantly higher than in the L and D molecules. If the overall rate is proportional to 

the concentration, one would expect a 4-fold enhancement in the CT rate for 2-3F 

relative to 2-3D. While we do not see this level of enhancement, it is still almost a factor 

of 2, which is significant. But while the presence of additional donors explains the 

enhancement in ηCT relative to 2-1L, 2-2L, and 2-3L and 2-1D, 2-2D, and 2-3D, the fact 

that τCT decreases with size, while τEET increases, is surprising.  One possible explanation 

lies in the conformational disorder implied by the N  dependence of the donor-acceptor 

τEET.  The measured τEET reflects the average distance of all the donors from the acceptor, 

since they all have an equal chance of being excited by an incident photon. The measured 

ηCT, on the other hand, is expected to be most sensitive to the position of the donor 

closest to the acceptor. As the dendrimer size increases, the through-bond distance to 

each donor increases. But the total number of donors available for CT increases as well, 

and at least some of those additional donors may end up quite close to the acceptor. 

These two competing effects tend to cancel each other, and are only present in the 2-1F, 
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(a)    (b) 

 
(c)     (d) 

 
 
Figure 2.9. (a) Hypothetical conformation of a fully decorated dendrimer. (b-d) Various 
possible conformations of difunctionalized dendrimers similar to the one in (a). Note: 
Even when one attempts to draw the different conformations with the fully 
functionalized dendrimers as in (b)-(d), there would be a certain number of diarylamino 
pyrene units close to the core.  This could be sufficient for CT and thus enhances CT 
efficiency in higher generations, when fully decorated. 
 

2-2F, and 2-3F molecules. In this way, the fully decorated dendrimers appear to provide 

a clear architectural advantage in terms of CT dynamics.  The increase in donor density 

with generation tends to alleviate the concomitant effect of increasing average donor-

acceptor distance. This is not the case when increased molecular size is not accompanied 

by an increase in the number of transfer pathways, as in the 2-1L, 2-2L, and 2-3L and 2-

1D, 2-2D, and 2-3D molecules. In Figure 2.9, we give a very qualitative illustration of 

how an F dendrimer can always have a donor in contact with the core acceptor, while in 

the D dendrimer, given the same set of conformations of the arms, has conformations 

where the two species are well-separated. 
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2.3 Summary 

 We have designed and synthesized dendrimers that contain only two donors and 

one acceptor units in every generation. Such difuntionalized dendrimers allow for a 

straightforward comparison of dendrimer with the corresponding linear analogs for the 

purposes of EET and CT in non-conjugated dendrimers. By comparing these two classes 

of molecules then with the more classical, fully-decorated dendrimers, we carried out a 

systematic investigation on the architectural advantages that dendrimers provide for 

energy transfer and charge transfer processes. The study provides insights in to the nature 

of the advantage that dendrimers could have in light harvesting applications. The 

deleterious effects of steric crowding can be detected in the D family of compounds, but 

the extra terminal donors in the F compounds more than compensate for this loss. As a 

result of this study, we have shown that: (i) The main advantage that dendrimers provide 

for EET purposes is the opportunity to enhance the density of the donor chromophores 

around an antenna chromophore. Note that the multiple arms in the periphery allow for 

the incorporation of a variety of donor chromophore in a single dendrimer, considering 

the synthetic methods developed.(ii) A small and subtle advantage that dendrimers also 

provide is that a fast energy hopping process among the donor chromophores could allow 

for an efficient EET, since this process allows for sampling through the relative 

orientations between the donor and acceptor chromophores until the appropriate one is 

found. We have shown evidence for this possibility using anisotropy decay experiments.  

(iii) In the case of CT, the key advantage that the dendritic architecture provides involves 

the functional group density. As the generation increases, the relative number of electron 

donors vs. the excited chromophore increases in the case of fully decorated dendrimers, 
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and the CT efficiency increases as well. Since this advantage does not exist in the case of 

difunctional dendrimers, the CT efficiency decreases with generation as in the case of the 

linear analogs. This effect leads to a significant (factor of 2) enhancement in the CT 

efficiency in the third generation fully decorated dendrimers relative to the di-substituted 

dendrimers. Thus, this work demonstrates how multiple conformations in dendrimers can 

significantly enhance energy and charge transfer pathways relative to structures without 

branches or multiple peripheral chromophores.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70

2.4 References 

1. Caldeira, K.; Jain, A. K.; Hoffert, M. I., "Climate Sensitivity Uncertainty and the 
Need for Energy without CO2 Emission" Science 2003, 299, (5615), 2052-2054. 

2. Chow, J.; Kopp, R. J.; Portney, P. R., "Energy Resources and Global 
Development" Science 2003, 302, (5650), 1528-1531. 

3. Hoffert, M. I.; Caldeira, K.; Jain, A. K.; Haites, E. F.; Harvey, L. D. D.; Potter, S. 
D.; Schlesinger, M. E.; Schneider, S. H.; Watts, R. G.; Wigley, T. M. L.; Wuebbles, D. J., 
"Energy Implications of Future Stabilization of Atmospheric CO2 Content" Nature 1998, 
395, (6705), 881-884. 

4. Barber, J.; Andersson, B., "Revealing the Blueprint of Photosynthesis" Nature 
1994, 370, (6484), 31-34. 

5. Deisenhofer, J.; Michel, H., "The Photosynthetic Reaction Center from the Purple 
Bacterium Rhodopseudomonas-Viridis" Science 1989, 245, (4925), 1463-1473. 

6. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaitelawless, A. M.; 
Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W., "Crystal-structure of an Integral Membrane 
Light-harvesting Complex from Photosynthetic Bacteria" Nature 1995, 374, (6522), 517-
521. 

7. Hu, X. C.; Damjanovic, A.; Ritz, T.; Schulten, K., "Architecture and Mechanism 
of the Light-harvesting Apparatus of Purple Bacteria" Proc. Natl. Acad. Sci. U. S. A. 
1998, 95, (11), 5935-5941. 

8. Balashov, S. P.; Imasheva, E. S.; Boichenko, V. A.; Anton, J.; Wang, J. M.; 
Lanyi, J. K., "Xanthorhodopsin: A Proton Pump with a Light-harvesting Carotenoid 
Antenna" Science 2005, 309, (5743), 2061-2064. 

9. Baranoff, E.; Collin, J. P.; Flamigni, L.; Sauvage, J. P., "From Ruthenium(II) to 
Iridium(III): 15 Years of Triads Based on Bis-terpyridine Complexes" Chem. Soc. Rev. 
2004, 33, (3), 147-155. 

10. Biemans, H. A. M.; Rowan, A. E.; Verhoeven, A.; Vanoppen, P.; Latterini, L.; 
Foekema, J.; Schenning, A.; Meijer, E. W.; de Schryver, F. C.; Nolte, R. J. M., "Hexakis 
Porphyrinato Benzenes. A New Class of Porphyrin Arrays" J. Am. Chem. Soc. 1998, 120, 
(43), 11054-11060. 

11. Browne, W. R.; O'Boyle, N. M.; McGarvey, J. J.; Vos, J. G., "Elucidating Excited 
State Electronic Structure and Intercomponent Interactions in Multicomponent and 
Supramolecular Systems" Chem. Soc. Rev. 2005, 34, (8), 641-663. 

12. Chiorboli, C.; Indelli, M. T.; Scandola, F., Photoinduced Electron/energy Transfer 
Across Molecular Bridges in Binuclear Metal Complexes. In Molecular Wires: From 
Design to Properties, 2005; Vol. 257, pp 63-102. 



 71

13. Choi, M. S.; Yamazaki, T.; Yamazaki, I.; Aida, T., "Bioinspired Molecular 
Design of Light-harvesting Multiporphyrin Arrays" Angew. Chem. Int. Ed. 2004, 43, (2), 
150-158. 

14. Di Valentin, M.; Bisol, A.; Agostini, G.; Liddell, P. A.; Kodis, G.; Moore, A. L.; 
Moore, T. A.; Gust, D.; Carbonera, D., "Photoinduced Long-lived Charge Separation in a 
Tetrathiafulvalene-porphyrin-fullerene Triad Detected by Time-resolved Electron 
Paramagnetic Resonance" J. Phys. Chem. B 2005, 109, (30), 14401-14409. 

15. D'Souza, F.; Ito, O., "Photoinduced Electron Transfer in Supramolecular Systems 
of Fullerenes Functionalized with Ligands Capable of Binding to Zinc Porphyrins and 
Zinc Phthalocyanines" Coord. Chem. Rev. 2005, 249, (13-14), 1410-1422. 

16. Guldi, D. M.; Marcaccio, M.; Paolucci, F.; Paolucci, D.; Ramey, J.; Taylor, R.; 
Burley, G. A., "Fluorinated Fullerenes: Sources of Donor-acceptor Dyads with 
[18]Trannulene Acceptors for Energy- and Electron-transfer Reactions" J. Phys. Chem. A 
2005, 109, (43), 9723-9730. 

17. Gust, D.; Moore, T. A.; Moore, A. L., "Mimicking Photosynthetic Solar Energy 
Transduction" Acc. Chem. Res. 2001, 34, (1), 40-48. 

18. Hagfeldt, A.; Gratzel, M., "Molecular Photovoltaics" Acc. Chem. Res. 2000, 33, 
(5), 269-277. 

19. Hindin, E.; Kirmaier, C.; Diers, J. R.; Tomizaki, K. Y.; Taniguchi, M.; Lindsey, J. 
S.; Bocian, D. F.; Holten, D., "Photophysical Properties of Phenylethyne-linked 
Porphyrin and Oxochlorin Dyads" J. Phys. Chem. B 2004, 108, (24), 8190-8200. 

20. Kobori, Y.; Yamauchi, S.; Akiyama, K.; Tero-Kubota, S.; Imahori, H.; Fukuzumi, 
S.; Norris, J. R., "Primary Charge-recombination in an Artificial Photosynthetic Reaction 
Center" Proc. Natl. Acad. Sci. U. S. A. 2005, 102, (29), 10017-10022. 

21. Kurreck, H.; Huber, M., "Model Reactions for Photosynthesis-photoinduced 
Charge and Energy-transfer between Covalently-linked Porphyrin and Quinone Units" 
Angew. Chem. Int. Ed. 1995, 34, (8), 849-866. 

22. Li, X. Y.; Sinks, L. E.; Rybtchinski, B.; Wasielewski, M. R., "Ultrafast 
Aggregate-to-aggregate Energy Transfer within Self-assembled Light-harvesting 
Columns of Zinc Phthalocyanine Tetrakis(perylenediimide)" J. Am. Chem. Soc. 2004, 
126, (35), 10810-10811. 

23. Martinez-Junza, V.; Rizzi, A.; Jolliffe, K. A.; Head, N. J.; Paddon-Row, M. N.; 
Braslavsky, S. E., "Conformational and Photophysical Studies on Porphyrin-containing 
Donor-bridge-acceptor Compounds. Charge Separation in Micellar Nanoreactors" Phys. 
Chem. Chem. Phys. 2005, 7, (24), 4114-4125. 



 72

24. Robel, I.; Bunker, B. A.; Kamat, P. V., "Single-walled Carbon Nanotube-CdS 
Nanocomposites as Light-harvesting Assemblies: Photoinduced Charge-transfer 
Interactions" Adv. Mater. 2005, 17, (20), 2458-2463. 

25. Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R., "Combining Light-harvesting 
and Charge Separation in a Self-assembled Artificial Photosynthetic System Based on 
Perylenediimide Chromophores" J. Am. Chem. Soc. 2004, 126, (39), 12268-12269. 

26. Straight, S. D.; Andreasson, J.; Kodis, G.; Bandyopadhyay, S.; Mitchell, R. H.; 
Moore, T. A.; Moore, A. L.; Gust, D., "Molecular AND and INHIBIT Gates Based on 
Control of Porphyrin Fluorescence by Photochromes" J. Am. Chem. Soc. 2005, 127, (26), 
9403-9409. 

27. Thomas, K. G.; George, M. V.; Kamat, P. V., "Photoinduced Electron-transfer 
Processes in Fullerene-based Donor - Acceptor Systems" Helv. Chim. Acta 2005, 88, (6), 
1291-1308. 

28. Wasielewski, M. R., "Photoinduced Electron-transfer in Supramolecular Systems 
for Artificial Photosynthesis" Chem. Rev. 1992, 92, (3), 435-461. 

29. Weiss, E. A.; Chernick, E. T.; Wasielewski, M. R., "Modulation of Radical Ion 
Pair Lifetimes by the Presence of a Third Spin in Rodlike Donor-acceptor Triads" J. Am. 
Chem. Soc. 2004, 126, (8), 2326-2327. 

30. Fox, H. H.; Fox, M. A., "Fluorescence and Singlet Energy Migration in 
Conformationally Restrained Acrylate Polymers Bearing Pendant Chromophores" 
Macromolecules 1995, 28, (13), 4570-4576. 

31. Furuta, P. T.; Deng, L.; Garon, S.; Thompson, M. E.; Frechet, J. M. J., "Platinum-
functionalized Random Copolymers for Use in Solution-processible, Efficient, Near-
white Organic Light-emitting Diodes" J. Am. Chem. Soc. 2004, 126, (47), 15388-15389. 

32. Watkins, D. M.; Fox, M. A., "Rigid, Well-defined Block-copolymers for Efficient 
Light-harvesting" J. Am. Chem. Soc. 1994, 116, (14), 6441-6442. 

33. Webber, S. E., "Photon-harvesting Polymers" Chem. Rev. 1990, 90, (8), 1469-
1482. 

34. Bosman, A. W.; Janssen, H. M.; Meijer, E. W., "About Dendrimers: Structure, 
Physical Properties, and Applications" Chem. Rev. 1999, 99, (7), 1665-1688. 

35. Grayson, S. M.; Frechet, J. M. J., "Convergent Dendrons and Dendrimers: from 
Synthesis to Applications" Chem. Rev. 2001, 101, (12), 3819-3867. 

36. Devadoss, C.; Bharathi, P.; Moore, J. S., "Energy Transfer in Dendritic 
Macromolecules: Molecular Size Effects and the Role of an Energy Gradient" J. Am. 
Chem. Soc. 1996, 118, (40), 9635-9644. 



 73

37. Gronheid, R.; Hofkens, J.; Kohn, F.; Weil, T.; Reuther, E.; Mullen, K.; De 
Schryver, F. C., "Intramolecular Forster Energy Transfer in a Dendritic System at the 
Single Molecule Level" J. Am. Chem. Soc. 2002, 124, (11), 2418-2419. 

38. Melinger, J. S.; Pan, Y. C.; Kleiman, V. D.; Peng, Z. H.; Davis, B. L.; 
McMorrow, D.; Lu, M., "Optical and Photophysical Properties of Light-harvesting 
Phenylacetylene Monodendrons Based on Unsymmetrical Branching" J. Am. Chem. Soc. 
2002, 124, (40), 12002-12012. 

39. Shortreed, M. R.; Swallen, S. F.; Shi, Z. Y.; Tan, W. H.; Xu, Z. F.; Devadoss, C.; 
Moore, J. S.; Kopelman, R., "Directed Energy Transfer Funnels in Dendrimeric Antenna 
Supermolecules" J. Phys. Chem. B 1997, 101, (33), 6318-6322. 

40. Cotlet, M.; Vosch, T.; Habuchi, S.; Weil, T.; Mullen, K.; Hofkens, J.; De 
Schryver, F., "Probing Intramolecular Forster Resonance Energy Transfer in a 
Naphthaleneimide-peryleneimide-terrylenediimide-based Dendrimer by Ensemble and 
Single-molecule Fluorescence Spectroscopy" J. Am. Chem. Soc. 2005, 127, (27), 9760-
9768. 

41. Adronov, A.; Gilat, S. L.; Frechet, J. M. J.; Ohta, K.; Neuwahl, F. V. R.; Fleming, 
G. R., "Light Harvesting and Energy Transfer in Laser-dye-labeled Poly(aryl ether) 
Dendrimers" J. Am. Chem. Soc. 2000, 122, (6), 1175-1185. 

42. Balzani, V.; Ceroni, P.; Giansante, C.; Vicinelli, V.; Klarner, F. G.; Verhaelen, C.; 
Vogtle, F.; Hahn, U., "Tweezering the Core of a Dendrimer: A Photophysical and 
Electrochemical Study" Angew. Chem. Int. Ed. 2005, 44, (29), 4574-4578. 

43. Dichtel, W. R.; Hecht, S.; Frechet, J. M. J., "Functionally Layered Dendrimers: A 
New Building Block and Its Application to the Synthesis of Multichromophoric Light-
harvesting Systems" Org. Lett. 2005, 7, (20), 4451-4454. 

44. Hahn, U.; Gorka, M.; Vogtle, F.; Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, 
V., "Light-harvesting Dendrimers: Efficient Intra- and Intermolecular Energy-transfer 
Processes in a Species Containing 65 Chromophoric Groups of Four Different Types" 
Angew. Chem. Int. Ed. 2002, 41, (19), 3595-3598. 

45. Jiang, D. L.; Aida, T., "Morphology-dependent Photochemical Events in Aryl 
Ether Dendrimer Porphyrins: Cooperation of Dendron Subunits for Singlet Energy 
Transduction" J. Am. Chem. Soc. 1998, 120, (42), 10895-10901. 

46. Serin, J. M.; Brousmiche, D. W.; Frechet, J. M. J., "Cascade Energy Transfer in a 
Conformationally Mobile Multichromophoric Dendrimer" Chem. Commun. 2002, (22), 
2605-2607. 

47. Stewart, G. M.; Fox, M. A., "Chromophore-labeled Dendrons as Light Harvesting 
Antennae" J. Am. Chem. Soc. 1996, 118, (18), 4354-4360. 



 74

48. Lor, M.; Thielemans, J.; Viaene, L.; Cotlet, M.; Hofkens, J.; Weil, T.; Hampel, 
C.; Mullen, K.; Verhoeven, J. W.; Van der Auweraer, M.; De Schryver, F. C., 
"Photoinduced Electron Transfer in a Rigid First Generation Triphenylamine Core 
Dendrimer Substituted with a Peryleneimide Acceptor" J. Am. Chem. Soc. 2002, 124, 
(33), 9918-9925. 

49. Qu, J. Q.; Zhang, J. Y.; Grimsdale, A. C.; Mullen, K.; Jaiser, F.; Yang, X. H.; 
Neher, D., "Dendronized Perylene Diimide Emitters: Synthesis, Luminescence, and 
Electron and Energy Transfer Studies" Macromolecules 2004, 37, (22), 8297-8306. 

50. Braun, M.; Atalick, S.; Guldi, D. M.; Lanig, H.; Brettreich, M.; Burghardt, S.; 
Hatzimarinaki, M.; Ravanelli, E.; Prato, M.; van Eldik, R.; Hirsch, A., "Electrostatic 
Complexation and Photoinduced Electron Transfer between Zn-cytochrome c and 
Polyanionic Fullerene Dendrimers" Chem. Eur. J. 2003, 9, (16), 3867-3875. 

51. Ghaddar, T. H.; Wishart, J. F.; Thompson, D. W.; Whitesell, J. K.; Fox, M. A., "A 
Dendrimer-based Electron Antenna: Paired Electron-transfer Reactions in Dendrimers 
with a 4,4 '-Bipyridine Core and Naphthalene Peripheral Groups" J. Am. Chem. Soc. 
2002, 124, (28), 8285-8289. 

52. Guldi, D. M.; Swartz, A.; Luo, C. P.; Gomez, R.; Segura, J. L.; Martin, N., "Rigid 
Dendritic Donor-acceptor Ensembles: Control Over Energy and Electron Transduction" 
J. Am. Chem. Soc. 2002, 124, (36), 10875-10886. 

53. Gutierrez-Nava, M.; Accorsi, G.; Masson, P.; Armaroli, N.; Nierengarten, J. F., 
"Polarity Effects on the Photophysics of Dendrimers with an Oligophenylenevinylene 
Core and Peripheral Fullerene Units" Chem. Eur. J. 2004, 10, (20), 5076-5086. 

54. Thomas, K. R. J.; Thompson, A. L.; Sivakumar, A. V.; Bardeen, C. J.; 
Thayumanavan, S., "Energy and Electron Transfer in Bifunctional Non-conjugated 
Dendrimers" J. Am. Chem. Soc. 2005, 127, (1), 373-383. 

55. Harth, E. M.; Hecht, S.; Helms, B.; Malmstrom, E. E.; Frechet, J. M. J.; Hawker, 
C. J., "The Effect of Macromolecular Architecture in Nanomaterials: A Comparison of 
Site Isolation in Porphyrin Core Dendrimers and Their Isomeric Linear Analogues" J. 
Am. Chem. Soc. 2002, 124, (15), 3926-3938. 

56. Hawker, C. J.; Malmstrom, E. E.; Frank, C. W.; Kampf, J. P., "Exact Linear 
Analogs of Dendritic Polyether Macromolecules: Design, Synthesis, and Unique 
Properties" J. Am. Chem. Soc. 1997, 119, (41), 9903-9904. 

57. Hartwig, J. F., "Transition metal catalyzed synthesis of arylamines and aryl ethers 
from aryl halides and triflates: Scope and mechanism" Angew. Chem. Int. Ed. 1998, 37, 
(15), 2047-2067. 

58. Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L., "Rational development 
of practical catalysts for aromatic carbon-nitrogen bond formation" Acc. Chem. Res. 
1998, 31, (12), 805-818. 



 75

59. Khudyakov, I. V.; Serebrennikov, Y. A.; Turro, N. J., "Spin-orbit-coupling in 
Free-radical Reactions -On the Way to Heavy-elements" Chem. Rev. 1993, 93, (1), 537-
570. 

60. Plummer, B. F.; Steffen, L. K.; Braley, T. L.; Reese, W. G.; Zych, K.; Vandyke, 
G.; Tulley, B., "Study of Geometry-effects of Heavy Atom Perturbation of the 
Electronic-properties of Derivatives of the Nonalternant Polycyclic Aromatic-
hydrocarbons Fluoranthene and Acenaphtho[1,2-K]Fluoranthene" J. Am. Chem. Soc. 
1993, 115, (24), 11542-11551. 

61. Thomas, K. R. J.; Thompson, A. L.; Sivakumar, A. V.; Bardeen, C. J.; 
Thayumanavan, S., "Energy and Electron Transfer in Bifunctional Non-conjugated 
Dendrimers" J. Am. Chem. Soc. 2005, 127, (1), 373-383. 

62. Neuwahl, F. V. R.; Righini, R.; Adronov, A.; Malenfant, P. R. L.; Frechet, J. M. 
J., "Femtosecond Transient Absorption Studies of Energy Transfer within Chromophore-
labeled Dendrimers" J. Phys. Chem. B 2001, 105, (7), 1307-1312. 

63. Baumann, J.; Fayer, M. D., "Excitation Transfer in Disordered Two-dimensional 
and Anisotropic 3-Dimensional Systems -Effect of Spatial Geometry on Time-resolved 
Observables" J. Chem. Phys. 1986, 85, (7), 4087-4107. 

64. Xu, Q. H.; Wang, S.; Korystov, D.; Mikhailovsky, A.; Bazan, G. C.; Moses, D.; 
Heeger, A. J., "The Fluorescence Resonance Energy Transfer (FRET) Gate: A Time-
resolved Study" Proc. Natl. Acad. Sci. U. S. A. 2005, 102, (3), 530-535. 

65. Maus, M.; De, R.; Lor, M.; Weil, T.; Mitra, S.; Wiesler, U. M.; Herrmann, A.; 
Hofkens, J.; Vosch, T.; Mullen, K.; De Schryver, F. C., "Intramolecular Energy Hopping 
and Energy Trapping in Polyphenylene Dendrimers with Multiple Peryleneimide Donor 
Chromophores and a Terryleneimide Acceptor Trap Chromophore" J. Am. Chem. Soc. 
2001, 123, (31), 7668-7676. 

66. Maus, M.; Mitra, S.; Lor, M.; Hofkens, J.; Weil, T.; Herrmann, A.; Mullen, K.; 
De Schryver, F. C., "Intramolecular Energy Hopping in Polyphenylene Dendrimers with 
an Increasing Number of Peryleneimide Chromophores" J. Phys. Chem. A 2001, 105, 
(16), 3961-3966. 

 

 



 76

CHAPTER 3 

DENDRITIC AND LINEAR MACROMOLECULAR ARCHITECTURES FOR 

PHOTOVOLTAICS:-A PHOTOINDUCED CHARGE TRANSFER 

INVESTIGATION 

3.1 Introduction 

Developing strategies for harnessing energy from renewable sources is a 

significant challenge facing the scientific community, due to the environmental, 

economic, and national security implications.1-4  Photovoltaics is one of the most 

promising approaches to addressing this issue.5-7  Nature provides both the source and the 

inspiration for a solution in the form of the sun and the photosynthetic apparatus 

respectively.  Funneling the sequestered energy from the solar radiation to generate an 

excited state at a reaction center and utilizing this high energy state to affect a sequence of 

charge transfer (CT) events are the key preliminary steps in photosynthesis.8  The 

resultant charge separated state from these events is ultimately used as a source of 

chemical energy.  Thus, the photosynthetic process involves the conversion of solar 

energy into chemical energy.  Although the ultimate goal of the photovoltaics is to 

convert the solar energy to electrical energy, the preliminary steps are essentially the 

same.  Considering the high efficiency of the photoinduced charge transfer events in 

nature, it is desirable to mimic these efficiencies for photovoltaics.  While the 

biomolecular architectures are very efficient and stable in their native conditions, these 

are neither robust nor cheap enough to be practical materials for photovoltaics.   

Therefore, several artificial systems based on covalent,9-19 supramolecular,20-25 or 

polymeric26-32 arrays of photoactive and electroactive units have been approached. 
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Relative placement of the photoactive and electroactive functionalities plays an 

important role in the vectorial photoinduced charge transfer process.  While it is 

conceivable that one can precisely control these in a small molecule, achieving similar 

control in non-biological macromolecular systems is very challenging.  Dendrimers 

provide a unique opportunity, since these molecules can be achieved with excellent 

control in the relative placement of functional groups while also maintaining a great 

degree of control over their molecular weight.33-36  In addition, the decreasing density of 

functional groups from periphery to the core of the dendrimers is reminiscent of an 

antenna.  Therefore, dendrimers have been extensively investigated as light harvesting 

antennae, where excited state energy from the peripheral functionalities are funneled to 

the core of a dendrimer.26, 37  The dendrimers that have been studies for this purpose can 

be broadly classified into conjugated and non-conjugated dendrimers.37-50 Although much 

more limited, dendrimers have also been investigated as architectures for photoinduced 

electron transfer processes, the next step in the primary steps of photosynthesis.51-53  A 

schematic of the photoinduced electron transfer process in dendrimers is shown in Figure 

3.1.  Although one could envision utilizing a charge separated species of this type in 

conversion to chemical energy, such dendritic architectures do not seem ideal for ultimate 

use in photovoltaics.  This is because the charge transfer process causes one of the 

charges to be at the core of the dendrimer.  This location in a dendrimer is significantly 

encapsulated and therefore the opportunities for ultimately transporting this charge to an 

electrode is limited, if any at all, as illustrated in Figure 3.1.  On the other hand, by 

carrying out a systematic comparison of linear architectures with the corresponding 

dendritic structures, we have also demonstrated that the branched architectures indeed 

provide certain advantages in the photoinduced electron transfer process.54, 55 
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Figure 3.1. Cartoon shows a charge trap at a core by a dendritic backbone. 

Considering all these features, we asked whether it is possible to envisage a 

hybrid architecture where we combine the advantages of dendritic structure in the 

photoinduced electron transfer process with the relatively open nature of the linear 

polymers for transporting the separated charges.  A structure that would fit all these 

requirements will involve a dendron-rod-coil based triad, which contains a “rod” 

chromophore, a “dendron” functionalized with electron-rich moieties, and a polymeric 

“coil” with electron-poor functionalities (Figure 3.2).  An additional advantage of the 

dendron-rod-coil architecture is that these structures have been investigated as unique 

architectures for providing microphase separated nanoscale architectures,56-60 which 

should provide advantages in our ultimate goal of photovoltaic devices.  In this chapter, 

we describe our molecular design, syntheses, and evaluation of the relative roles of the 

dendritic and the linear polymer component in the photoinduced electron transfer 

processes.  Our results show that the dendron-rod-coil combination do indeed provide 

unique advantages in photoinduced charge transfer.   

For photoinduced charge transfer in the dendron-rod-coil molecule, it is necessary 

that the electron-rich functionality in the dendron is capable of reducing the excited state 
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Figure 3.2. Cartoon shows an electron transfer process in dendron-rod-coils. 

of the rod chromophore and the electron-poor functionality of the coil is capable of 

oxidizing the excited state of the rod chromophore as shown in Figure 3.2.   From a 

frontier molecular orbital perspective, this means that the highest occupied molecular 

orbital (HOMO) of the electron-donating dendron functionality should be higher than that 

of the chromophore and the lowest unoccupied molecular orbital (LUMO) of the 

electron-accepting polymer coil functionality should be lower than that of the rod 

chromophore.  Diarylaminopyrene was chosen as the electron-rich functionality (electron 

donor) on the dendritic periphery, naphthalene diimide as the electron-poor functionality 

(electron acceptor) in the polymer coil, and benzthiadiazole as the rod chromophore 

(sensitizer).   Target structures are shown in Chart 3.1. 
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Chart 3.1. Structures of G1-G3 dendron-rod-coils used in these studies.   

3.2 Results and Discussion 

3.2.1 Synthesis and Characterization 

When assembling a macromolecule with different components, such as the ones 

shown in Chart 3.1, it is advantageous to approach the synthesis in a modular fashion.  

The modular approach allows for flexibility in varying the functional groups in molecules 

with relative ease, which allows for any future structure-property relationship study 

needed.  Thus the diarylaminopyrene-based dendron, the benzthiadiazole-based rod, and 

the naphthalene diimide bearing polymer coil were synthesized separately and then 

assembled in the final steps of the syntheses to obtain the desired dendron-rod-coils.  The 

key step in our modular approach is to be able to differentially substitute the polymer coil 

and the dendron on to a symmetrical core chromophore.  It is necessary that we use a set 
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Scheme 3.1. The unsymmetrical substitution of rod species.   

of complementary and versatile reactions to carry out these substitutions.  We envisaged 

the possibility of using a simple alkylation reaction to substitute the dendron on to the 

chromophore, while utilizing the 1,3-dipolar cycloaddition reaction between an azide and 

an alkyne (the so-called ‘click chemistry’) to install the polymer coil.    

Considering our targets, it is necessary that the rod chromophore be 

desymmetrized presenting a phenolic moiety at one terminus, while presenting an alkynyl 

functionality at the other.  To achieve this, we simply utilized the symmetrical dihydroxy 

functionalized benzthiadiazole chromophore 2-3 reported in the previous chapter.  

Treatment of this symmetrical dihydroxy chromophore with a deficient amount of 

propargyl bromide in the presence of K2CO3 and 18-crown-6 afforded the targeted 

unsymmetrical chromophore 3-1, as shown in Scheme 3.1.  The remaining phenolic 

functionality on the rod chromophore will be subjected to alkylation reaction with 

bromomethyl functionalized dendrons, while the propargyl group will be utilized to 

attach the polymer coil via 1,3-dipolar cycloaddition or click reaction with azide 

terminated polymers to obtain the desired dendron-rod-coils as final products.  

The polymer coil contains a naphthalene diimide as the side chain functionality on 

a polymethacrylate backbone.  To attach this polymer to the chromophore through the 

cycloaddition reaction, it is necessary that the one of the chain ends contains an azide 

functionality.  We utilized atom transfer radical polymerization (ATRP),61-63 a living 

radical polymerization technique, that not only allows for selective incorporation of a 
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Scheme 3.2. The synthesis of polymer containing NDI units at the side chain. 

single functionality at the initiator end of the polymer but also can be used for the 

synthesis of methacrylate polymers with very good control over their polydispersities.   

Thus, we used 2-azidoethyl-bromoisobutyrate (3-2) as the initiator for the synthesis of the 

methacrylate-based naphthalene diimide polymer.  To incorporate naphthalene diimide as 

the side chain to the methacrylate monomer, we first targeted the molecule that contains a 

single hydroxyalkyl functionality (3-3).  This functional group will serve as the handle to 

install the naphthalene diimide functionality onto a polymerizable unit by treatment with 

mathacryloyl chloride to obtain compound 3-4.  Polymerization of 3-4 using 3-2 as the 

initiator in the presence of cuprous bromide and PMDETA afforded the polymer 3-5 in 

61% yield with a PDI of 1.14 and a Mn of 9326. 

While the polymer will be incorporated onto the chromophore core through the 

cycloaddition reaction, the dendron will be incorporated onto the chromophore using the 
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Scheme 3.3. The synthesis of dendron rod-coil species. 

Williamson ether synthesis.  Since the chromophore core contains with a phenolic 

functionality, the targeted dendrons should have a bromoalkyl functionality at their focal 

point.  We have previously mentioned the syntheses of dendrons 3-6, 3-7 and 3-8 

containing diarylaminopyrene units in the periphery and a bromomethyl functionality at 

the focal point.  These dendrons were treated with the monophenolic chromophore core 

3-1 under the Williamson alkylation conditions to obtain the dendron-rod components, 

which were further reacted with azide-terminated polymers under click chemistry 

conditions to obtain the G1-G3 dendron-rod-coils (Scheme 3.3). Note that if the 

polymeric coils were first installed onto the rod moiety to obtain rod-coil precursors, the 

overall synthetic steps could be reduced since the difference in G1-G3 dendron-rod-coils 
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Figure 3.3. GPC (THF) profile of G1-G3 dendron-rod-coil compared to their parent 
polymeric species. 

arises from the dendron.  However, the separation of the rod-coils from the desired 

dendron-rod-coils in the final step is likely to be problematic from our experience with 

these molecules.  Alternatively, separation of these dendron-rods from the final dendron-

rod-coils was possible with a conventional chromatographic method due to the significant 

difference in polarity between these two species. All newly synthesized compounds were 

characterized by 1H and 13C NMR.  Additionally, the purity of all targeted compounds 

was elucidated using GPC (Figure 3.3).  All dendron-rod-coil species showed a single 

peak which was shifted towards the higher molecular weight region compared to their 

polymeric parent species, as shown in Figure 3.3. The molecular weight of dendron-rod-

coils was also found to be equivalent to the sum of the molecular weights of their 

corresponding dendron-rod species and polymeric coil with the similar PDI. These 

evidences implied that dendron-rod-coils were successfully synthesized.  The molecular 

weights (Mn) of all dendron-rod-coils along with dendron-rod and polymeric-coil species 

are shown in Table 3.1. 
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Table 3.1. Molecular weights (Mn) and PDI of all compounds obtained by GPC (THF). 

Molecule Mn* PDI 

Polymeric coil (3-5) 9326 1.14 

G1 dendron-rod (3-9) 1777 1.03 

G2 dendron-rod (3-10) 3321 1.03 

G3 dendron-rod (3-11) 5193 1.02 

G1 dendron-rod-coil 10825 1.07 

G2 dendron-rod-coil 12940 1.05 

G3 dendron-rod-coil 13186 1.09 

* Mn is estimated using PMMA standards 

Dendron-rod-coils were also characterized using linear absorption spectroscopy. 

The naphthalenediimide functionality exhibits an absorption maxima around 381 nm; 

diarylaminopyrene at 380 nm; and the benzthiadiazole chromophore at 490 nm (Figure 

3.4).  If one physically mixes the three components, i.e. the dendron, the chromophore 

rod, and the polymer coil, the spectrum obtained from these mixtures matches very well 

with that of the dendron-rod-coil molecule.  This not only provides an additional support 

for characterizing the structure, but also suggests that there is no electronic 

communication among the diarylaminopyrene, benzthiadiazole, and the 

naphthalenediimide functionalities in the ground state.  This is understandable, because 

the linkages between these photo- and electroactive functionalities are non-conjugated. 
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Figure 3.4. UV-Vis absorption spectra of G1 dendron-rod-coil and its chromophore 
constitutes. 

3.2.2 Relative energy levels of the functionalities for photoinduced electron transfer 

For photoinduced charge transfer to occur from the excited state of the 

chromophore rod, the positioning of the frontier orbital energy levels of the 

diarylaminopyrene and the naphthalenediimide units relative to the benzthiadiazole 

chromophore core is appropriate, as shown in Figure 3.2.  The positioning of the HOMO 

or the LUMO of a functionality can be estimated by measuring its oxidation or reduction 

potential respectively.  Once one of the frontier orbital energy levels is determined, the 

energy level of the other orbital can be determined by estimating the HOMO-LUMO gap.  

This gap can be taken to be equivalent to ∆E0-0, which is arrived at using the absorption 

and emission spectra of the photoactive or electroactive molecules.  To estimate the 

energy levels of diarylaminopyrene 3-18, naphthalenediimide 3-3, and the 

benzthiadiazole chromophore 3-13  molecules were used as the control structures (Figure 

3.5a).  Cyclic voltammograms of these molecules are shown in Figure 3.5b.  The onset 

oxidation potential of molecules 3-18 and 3-13 were 535 and 860 mV respectively, and 
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Figure 3.5.  (a) Structures of the model molecules investigated (b) cyclic voltammogram 
in dichloromethane and (c) the relative energy levels of the molecules 3-18, 3-13, and 3-3. 

the onset reduction potential of molecule 3-3 was -665 mV.  The intersection of the 

absorption and emission spectra of these molecules are taken to be the ∆E0-0 gap, the 

values of which are listed in Table 3.2.   These values, in combination with the redox 

potential from cyclic voltammetry, were used to estimate the energy of both HOMO and 

the LUMO levels of functionalities 3-3, 3-18, and 3-13. Using the value of 390 mV as the 

off-set value between ferrocene/ferrocenium couple and vacuum, the HOMO and the 

LUMO energy levels relative to vacuum are listed in Table 3.2.  These energy levels, 

graphically shown in Figure 3.5c, clearly indicate that the excited state of the  

chromophore 3-13 can be reduced by the diarylaminopyrene 3-18 or oxidized by the 

naphthalenediimide 3-3.  Therefore, it is thermodynamically feasible that the excitation of 
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the benzthiadiazole chromophore results in a photoinduced charge separated state, where 

the positive charge is at the diarylaminopyrene functionality in the dendron and the 

negative charge is at the naphthalenediimide functionality.  This also shows that an 

energy transfer process is not thermodynamically feasible from the chromophore core to 

the diarylaminopyrene or the naphthalenediimide functionalities. 

 

 

 

 

3.2.3 Steady State and Time Resolved Spectroscopy 

 To investigate whether the photoinduced electron transfer process is observed in 

these molecules, we analyzed the emission spectra of molecules G1-G3 dendron-rod-coils 

relative to that of the control chromophore rod 3-13.  At identical absorbance with respect 

to the benzthiadiazole chromophore absorption at 490 nm, the emission centered at 603 

nm from the molecules G1-G3 dendron-rod-coils were significantly quenched relative to 

the control rod molecule 3-13, as shown in Figure 3.6a.  This observation provided the 

preliminary indication that incorporating an electron-rich dendron and the electron-poor 

polymeric coil is indeed effective for photoinduced charge separation.  The extents of 

photoinduced electron transfer based quenching were quantified using time-resolved 

studies (vide infra). 

 

Table 3.2. Band gap and frontier energy levels of three functionalities. 

Functionalities ∆E0-0 (eV) HOMO (eV) LUMO (eV) 

Diarylaminopyrene 3-18 2.8 -5.0 -2.2 

Benzthiadiazole chromophore 3-13 2.3 -5.3 -3.0 

Naphthalenediimide  3-3 3.2 -7.0 -3.8 
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(a)       (b) 

    

(c) 

 

Figure 3.6. (a) Emission spectra of G1-G3 dendron-rod-coils compared to the rod (b) 
Emission spectra of G1 dendron-rod-coil, G1 dendron-rod and rod-coil compared to the 
rod.  All steady state measurements were carried out in dichloromethane (excitation 
wavelength = 500 nm). (c) Structures of G1-G3 dendron-rod and rod-coil. 

` Next, we were interested in identifying whether it is the dendron or the coil that 

contributes the most to the observed photoinduced charge transfer based quenching.  To 

analyze this, we synthesized dendron-rod and rod-coil counterparts to the dendron-rod 

coil molecules G1-G3 dendron-rod-coils.  Structures of these molecules are shown in 

Figure 3.6c.  The emission spectra of the control rod chromophore, G1 dendron-rod-coils, 

G1 dendron-rod 3-9 and the rod-coil molecule 3-12 are compared in Figure 3.6b.   
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These results qualitatively indicate that the polymeric coil is more efficient in 

photoinduced charge transfer based quenching compared to the G1 dendron.  It is also 

clear that the combination of the dendron and the polymeric coil is much better in the 

emission quenching.  In order to quantify the efficiency of photoinduced charge transfer, 

we have carried out time-resolved fluorescence measurements.   

As with the steady state measurements shown above, time-resolved fluorescence 

measurements were also carried out in dichloromethane.  As mentioned earlier, the 

fluorescence decays observed here are due to the charge transfer from diarylamiopyrene 

and naphthalenediimide to the excited state of the benzthiadiazole rod.  All observed 

fluorescence decays are nonexponential, which implies the distribution of conformations 

of both benzyl ether dendron and methacrylate polymeric backbone owing to their 

flexibility.  This behavior is consistent with previous observations from our group and 

others.64-66    To fit these nonexponential decays, biexponential functions of the form Ae-

1/τA + B-1/τB were used; the results of our fits are given in Table 3.3.  As we have done 

previously, we parametize our biexponential decay dynamics using a single “average” 

decay rate kacc defined as;   

BA
acc BA

BA
k

ττ ++++

++++
====

         (3.1) 

Once we have the average decay rate kacc, we can also define an effective quenching rate 

kQ: 

0
accaccQ kkk −−−−====

         (3.2) 
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Table 3.3. Rod fluorescence decay (excited at 500 nm) and CT efficiencies. 

Entry Molecule A τA 
(ns) 

B τB 
(ns) 

kQ          
(ns-1) 

ηCT 

1 Rod (3-13)  7.66     

2 G1 dendron-rod (3-9) 0.32 1.24 0.68 3.56 0.23 0.65 

3 G2 dendron-rod (3-10) 0.41 0.82 0.59 2.88 0.36 0.74 

4 G3 dendron-rod (3-11) 0.56 0.73 0.44 3.24 0.42 0.77 

5 G1 dendron-rod-coil  0.56 0.74 0.44 2.90 0.47 0.79 

6 G2 dendron-rod-coil  0.60 0.64 0.40 2.65 0.57 0.82 

7 G3 dendron-rod-coil  0.59 0.62 0.41 2.92 0.51 0.80 

8 Rod-coil (3-12) 0.49 0.74 0.51 3.95 0.29 0.70 

9 G1 dendrimer (2-1F) 0.64 5.36 0.36 1.95 0.12 0.48 

10 G2 dendrimer (2-2F) 0.62 4.76 0.38 0.98 0.18 0.58 

11 G3 dendrimer (2-3F) 0.60 5.49 0.40 1.00 0.15 0.54 

 

where k0
acc is the fluorescence decay of the bare benzthiadiazole rod in the absence of 

both donor and acceptor quenchers.  The efficiencies of charge transfer in dendron-rod-

coils in all generations were calculated using the relationship: 

acc

Q
CT k

k
====η

          (3.3) 

From the data in Table 3.3, several noteworthy trends can be discerned.  First, the 

overall fluorescence quenching rate kQ is larger in the dendron-rod-coil molecules than in 

the dendron-rod molecules in all cases.  The hypothesis put forward in the introduction, 

that the addition of the NDI coil would enhance charge transfer, is apparently correct.  

The total quenching rate, however, is not the sum of the individual contributions from the 

NDI and TAA moieties.  This can be seen from the data in Table 3.3 for the G1 
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compounds.  The sum of the kQ values for the rod-coil and dendron-rod molecules is 0.23 

ns-1 + 0.29 ns-1 = 0.52 ns-1 is greater than 0.47 ns-1, which is the experimental value for 

the G1-dendron-rod-coil.  This discrepancy becomes even more pronounced for later 

generations, and in the G3 molecules the expected kQ is 0.71 ns-1, as compared to                  

0.51 ns-1 as measured experimentally.  The beneficial effect of larger dendrons on charge 

transfer appears to be suppressed in the dendron-rod-coil molecules.  This can also be 

seen from the trends in ηCT in Table 3.3.  Moreover, when comparing the dendritic 

donor’s ability and the acceptor’s ability to quench the excited state of the chromophore, 

it is clear that dendrons are more efficient in photoinduced electron transfer than the 

acceptor polymer, except in the case of G1 dendron-rod-coil. Therefore, it is intuitively 

appropriate to assume that the dendron-chromophore-dendron triad should be more 

efficient than dendron-rod-coil molecules, at least with higher generation dendrimers.  

We have studied the dendron-chromophore-dendron triad in the previous chapter.66  

Surprisingly, the charge transfer efficiencies of the dendritic triads (2-1F, 2-2F, and 2-3F) 

are much worse than the corresponding G1-G3 dendron-rod-coil triads.  One could 

rationalize this observation based on the fact that the dendron-rod-coil is a donor-

chromophore-acceptor triad, whereas the dendritic triad is a donor-chromophore-donor 

triad.  However, it is even more interesting that the ηCT dendritic triads (2-1F, 2-2F, and 

2-3F) are lesser than those of the donor-chromophore based dendron-rod molecules (3-9, 

3-10, and 3-11).  The question then is that why installing large dendron containing TAA 

groups on one side of the chromophore in dendron-rod-coils does not result in as large an 

enhancement of electron transfer efficiency as one would expect and installing two of 

those on the chromophore in dendritic triads leads to even a decrease in the electron 

transfer efficiency. 
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Figure 3.7. Dendrimers used for comparision of photoinduced charge separation 
efficiency. 

One could rationalize the observed results using backfolding and steric 

interference.  We know there exist multiple conformations in both the TAA dendrons and 

the NDI coil, based on their nonexponential fluorescence decays.  We have previously 

shown that as the size of the dendron increases, two competing factors contribute to the 

overall CT quenching rate.  First, the local density of quenchers increases (raising kQ) but 

also their average distance increases (lowering kQ).  If we now add a third factor, the 

presence of a large group on the opposite side of the benzthiadiazole core (either the NDI 

coil or the TAA dendron), it is reasonable to expect that this large, flexible group would 
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Figure 3.8. Comparison between (a) kQ(dendron-rods) + kQ (rod-coils) and kQ(dendron-
rod-coils) (b) kQ(dendrimers) and kQ(dendron-rods). 

interfere with the TAA’s ability to access the core and thus further suppress the expected 

increase in kQ with generation.  Thus we believe that conformational congestion, in both 

the dendron-rod-coil and the dendron-rod-dendron molecules prevents the favorable 

scaling of kQ with generation observed in the dendron-rod molecules.  Figure 3.8 

compares kQ in different species.  The greater difference between kQ (dendron-rods) + 

kQ(rod-coils) and kQ (dendron-rod-coils) (Figure 3.8a) as well as between kQ (dendron-

rod) and kQ(dendrimers) (Figure 3.8b) in high generation dendrons where steric 

congestion plays more significant role to the rate of electron transfer provide support for 

this hypothesis.  

In any case, it is clear from Table 3.3 that the dendron-rod-coils are architecturally 

better in quenching the excited state of the chromophore rod (Figure 3.9).  We were 

interested in identifying the relative contribution by each of structural components, i.e. 

the dendron and the polymer coil, to the overall photoinduced charge transfer based 

fluorescence quenching process.  We utilized the relative charge transfer rates for the G1-

G3 dendron-rod diads (3-9, 3-10, and 3-11) and the rod-coil (3-12) diad to estimate the 
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Table 3.4. Comparison of CT kinetics in dendron and polymer diads with dendron rod 
coils. 

 

Species 

kQ (dendron-rod) 

(ns-1) 

kQ (rod-coil) 

(ns-1) 

% Contribution 

Dendron Polymer 

dendron-rod-coil 0.23 0.29 44 56 

Gdendron-rod-coil 0.36 0.29 55 45 

Gdendron-rod-coil 0.42 0.29 59 41 

 

 

Figure 3.9. A plot of the electron transfer efficiency in different species and different 
generations. 

possible relative contribution.  The assumption here is that these diad rates are useful 

estimates of the effective contribution of the electron donor and the acceptor to the 

photoinduced charge transfer process in the triads G1-G3 dendron-rod-coils.  As we have 

mentioned above, the contributions by the dendrons are indeed affected by the presence 

of the coil and therefore note that this assumption is not foolproof.  However, we 

estimated the relative contributions to gain some insight into the architectural 

contributions by the dendrons and the coils in the photoinduced charge transfer processes.  

The estimates are shown in Table 3.4. 
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From Table 3.4, one can conclude that the contribution from the dendron and the 

polymer coil are about the same.  However, it should be noted that there is another 

variation in the triad molecules in addition to the architectural variation (dendron vs. 

polymer).  That involves the relative ability of the diarylaminopyrene as the electron 

donor to quench the excited state of the benzthiadiazole chromophore, compared to that 

of the naphthalenediimide functionality as the electron acceptor.  We carried out Stern-

Volmer quenching experiments to identify the relative abilities of these functionalities to 

quench the excited state of benzthiadiazole through charge transfer.  In this experiment, 

the steady state emission of the benzthiadiazole rod (3-13) is measured in the presence of 

the quencher (diaryalminopyrene (3-18) or naphthalenediimide (3-3)) at various 

concentrations.  With increasing concentration of the quencher, the emission intensity of 

the chromophore decreases as one would expect. The fluorescence intensity in the 

absence (I0) and presence (I) of either of the quenchers can be related to its concentration 

([Q]) using the Stern-Volmer equation: I0/I = 1 + KSV [Q].  A plot of I/I0 vs. [Q] affords 

KSV, which is a measure of the ability of the diarylaminopyrene or the naphthalenediimide 

to quench the excited state of the benzthiadiazole chromophore. KSV is also related to the 

bimolecular quenching rate constant kq through KSV = kq.τ0, where τ0 is the fluorescence 

lifetime of dendrimer in the absence of quenchers.  The Stern-Volmer plots for the 

diarylaminopyrene and naphthalenediimide are shown in Figure 3.10.  The plots are linear 

and there are no changes in the absorption and emission spectral shapes of the molecules 

in the mixture.  These suggest that the observed fluorescence quenching is dynamic, i.e. 

based on bimolecular collisions.  It is clear from the slopes of these lines that the 

naphthalenediimide is far more effective than the diarylaminopyrene in quenching the 

excited state of the chromophore.  It is to be noted that the differences between the 
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Figure 3.10. The Stern-Volmer plots of NDI acceptor-rod and TAA donor-rod. 

photoinduced charge transfer abilities in the dendron-rod vs. the rod-coil are relatively 

minor.  Combination of these two observations clearly suggests that the dendritic 

architecture indeed provides a distinct advantage in the photoinduced electron transfer 

compared to the polymer coil.  

What could be the reason for dendrimers providing this architectural advantage in 

photoinduced charge transfer over linear polymer coils?  We have previously suggested 

that the high density of functionalities and backfolding in higher generations of 

dendrimers help boosting up the efficiency of the electron transfer in these branched 

molecules.  It is interesting to ask whether such an effect is special for dendrimers or 

whether this can be observed with polymer coils when a similar number of CT units are 

incorporated.  In our polymer backbone, the average number of repeat units is about 15.  

Thus the number of naphthalenediimide functionalities in the polymer coil is about twice 

as much as the number of diarylaminopyrene units in the G3 dendron.  Despite this, 

combined with the fact that the naphthalenediimide is more capable of photoinduced 

charge transfer, the efficiency from the polymer coil is only comparable with that of the 
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Scheme 3.4. Synthesis of model compounds.  

dendron. It is possible that this is due to the possibility that only the naphthelendiimide 

functionality closest to the benzthiadiazole chromophore participates in the initial 

photoinduced charge transfer step, unlike the dendrons.  To test this hypothesis, we 

synthesized a dendron-rod-coil analog where there is a single naphthalenediimide 

functionality.  The distance between the benzthiadiazole chromophore and the 

naphthalenediimide functionality in this analog 3-15 was kept the same as that with the 

G1 dendron-rod-coil molecule.   

To synthesize 3-15, 8-bromoctanoic acid was reacted with oxalyl chloride to 

convert acid functionality into acid chloride, which was then treated with hydroxyl 

functionalized naphthalenediimide 3-3 in the presence of DMAP as a catalyst to obtain 

the bromo terminated naphthalenedisimide derivative.  Treatment of this compound with 

sodium azide afforded naphthalenediimide derivative containing azide functionality (3-

14).  This molecule was then clicked with the acetylenic functionality of the dendron-rod 
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Table 3.5. Rod fluorescence decay (λex = 500 nm) and CT efficiency of model 
compound (3-15). 

A τA (ns) B τB (ns) kQ (ns-1) ηCT 

0.21 0.51 0.79 1.95 0.48 0.79 

 

molecule (3-9) to obtain the single naphthalenediimide molecule (3-15) analog for the G1 

dendron-rod-coil, as shown in Scheme 3.4.  

The fluorescence decay of the rod in this model compound is shown in Table 3.5. 

The ηCT for the G1 dendron-rod-coil and its analog 3-15 are identical.  This indicates that 

the naphthalenediimide that is closest to the chromophore is the primary participant in the 

photoinduced charge transfer process in the polymer coil.  On the other hand, the 

population density of functionalities in the dendritic periphery has a positive effect on the 

charge transfer.54, 55  Thus, it is reasonable to conclude that the high density packing and 

the number of peripheral charge transfer functionalities at equidistant from the 

chromophore are indeed the reasons for the dendritic architectural advantage.  Note 

however that the polymer coil also could play a crucial role in our long-term goals of 

obtaining microphase separated structures with long lived charge separated state for 

photovoltaics.  

3.3 Summary  

Considering the advantages of dendritic architectures in photoinduced electron 

transfer, but issues in moving the charge away from the core due to encapsulation, we 

have designed and synthesized dendron-rod-coil based donor-chromophore-acceptor 

triads for photoinduced charge transfer.  We have shown that: (i) the combination of the 

dendron and the polymer coil with a chromophore rod connecting the two is indeed 
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advantageous for photoinduced charge transfer; (ii) dendron-rod-coil based triads exhibit 

better efficiencies compared to either the dendron-rod or the rod-coil diads; (iii) based on 

the efficiencies of the diads, the dendrons and the polymer coil make similar contribution 

to the overall charge transfer based quenching process; (iv) the polymer coil functionality, 

naphthalenediimide, is a much better excited state quencher for the benzthiadiazole 

chromophore than the diarlyaminopyrene based on Stern-Volmer quenching studies.  This 

suggests that the dendrons have an architectural advantage over polymer coils for 

photoinduced charge transfer; (v) although dendrons provide clear advantages in charge 

transfer quenching, the dendron-rod-dendron triads do not perform better than the donor-

chromophore-acceptor triads based on the dendron-rod-coil architecture; (vi) while all 

electron donor functionalities in the dendritic periphery can equally participate in the 

excited state quenching of the chromophore rod, the naphthalenediimide electron acceptor 

unit that is closest to the chromophore is the primary participant in the quenching that 

arises from the polymer coil.   The realistic possibility that dendron-rod-coil structures are 

capable of providing microphase separated architectures based on prior literature, 

combined with our findings here, suggests that these molecules hold great promise in 

organic photovoltaics.  Polymer processing to achieve morphological control, device 

fabrication, and charge transfer dynamics in the solid state are part of the current focus in 

our laboratories.   

 

 

 

 

 



 101

3.4 References 

1. Arunachalam, V. S.; Fleischer, E. L., "Harnessing Materials for Energy - Preface" 
Mrs Bulletin 2008, 33, (4), 261-263. 

2. Chang, M. C. Y., "Harnessing Energy from Plant Biomass" Curr. Opin. Chem. 
Biol. 2007, 11, (6), 677-684. 

3. Walker, T. W., "Harnessing Natural Energy" Chem. Eng. Prog. 2008, 104, (3), 
S23-S28. 

4. Zahedi, A., "Solar photovoltaic (PV) Energy; Latest Developments in the Building 
Integrated and Hybrid PV Systems" Renew. Energy 2006, 31, (5), 711-718. 

5. Hepbasli, A., "A Key Review on Exergetic Analysis and Assessment of 
Renewable Energy Resources for a Sustainable Future" Renew. Sust. Energy Rev. 2008, 
12, (3), 593-661. 

6. Jester, T. L., "Crystalline Silicon Manufacturing Progress" Prog. Photovoltaics 
2002, 10, (2), 99-106. 

7. Senft, D. C., "Progress in Crystalline Multijunction and Thin-Film Photovoltaics" 
J. Electron. Mater. 2005, 34, (5), 571-574. 

8. Wasielewski, M. R., "Photoinduced Electron Transfer in Supramolecular Systems 
for Artificial Photosynthesis" Chem. Rev. 1992, 92, (3), 435-461. 

9. Baffreau, J.; Leroy-Lhez, S.; Van Anh, N.; Williams, R. M.; Hudhomme, P., 
"Fullerene C-60-Perylene-3,4 : 9,10-bis(dicarboximide) Light-harvesting Dyads: Spacer-
length and Bay-substituent Effects on Intramolecular Singlet and Triplet Energy Transfer" 
Chem. Eur. J. 2008, 14, (16), 4974-4992. 

10. D'Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.; Itou, M.; Araki, Y.; 
Ito, O., "Energy Transfer Followed by Electron Transfer in a Supramolecular Triad 
Composed of Boron Dipyrrin, Zinc Porphyrin, and Fullerene: A Model for the 
Photosynthetic Antenna-Reaction Center Complex" J. Am. Chem. Soc. 2004, 126, (25), 
7898-7907. 

11. Elim, H. I.; Jeon, S. H.; Verma, S.; Ji, W.; Tan, L. S.; Urbas, A.; Chiang, L. Y., 
"Nonlinear Optical Transmission Properties of C-60 Dyads Consisting of a Light-
Harvesting Diphenylaminofluorene Antenna" J. Phys. Chem. B 2008, 112, (32), 9561-
9564. 

12. Haycock, R. A.; Yartsev, A.; Michelsen, U.; Sundstrom, V.; Hunter, C. A., Self-
"Assembly of Pentameric Porphyrin Light-harvesting Antennae Complexes" Angew. 
Chem. Int. Ed. 2000, 39, (20), 3616-3619. 



 102

13. Huijser, A.; Suijkerbuijk, B.; Gebbink, R.; Savenije, T. J.; Siebbeles, L. D. A., 
"Efficient Exciton Transport in Layers of Self-assembled Porphyrin Derivatives" J. Am. 
Chem. Soc. 2008, 130, (8), 2485-2492. 

14. Ishi-i, T.; Murakami, K.; Imai, Y.; Mataka, S., "Light-harvesting and Energy-
transfer System Based on Self-assembling Perylene Diimide-appended 
Hexaazatriphenylene" Org. Lett. 2005, 7, (15), 3175-3178. 

15. Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.; Lindsey, J. 
S.; Moore, A. L.; Moore, T. A.; Gust, D., "An Artificial Photosynthetic Antenna-reaction 
Center Complex" J. Am. Chem. Soc. 1999, 121, (37), 8604-8614. 

16. Kuramochi, Y.; Satake, A.; Itou, M.; Ogawa, K.; Araki, Y.; Ito, O.; Kobuke, Y., 
"Light-harvesting Supramolecular Porphyrin Macrocycle Accommodating a Fullerene-
Tripodal Ligand" Chem. Eur. J. 2008, 14, (9), 2827-2841. 

17. Oekermann, T.; Schlettwein, D.; Wohrle, D., "Characterization of N,N'-dimethyl-
3,4,9,10-perylenetetracarboxylic Acid Diimide and Phthalocyaninatozinc(II) in 
Electrochemical Photovoltaic Cells" J. Appl. Electrochem. 1997, 27, (10), 1172-1178. 

18. Sugou, K.; Sasaki, K.; Kitajima, K.; Iwaki, T.; Kuroda, Y., "Light-harvesting 
Heptadecameric Porphyrin Assemblies" J. Am. Chem. Soc. 2002, 124, (7), 1182-1183. 

19. Wurthner, F.; Ahmed, S.; Thalacker, C.; Debaerdemaeker, T., "Core-substituted 
Naphthalene Bisimides: New Fluorophors with Tunable Emission Wavelength for FRET 
Studies" Chem. Eur. J. 2002, 8, (20), 4742-4750. 

20. Adronov, A.; Frechet, J. M. J., "Light-harvesting Dendrimers" Chem. Commun.  
2000, (18), 1701-1710. 

21. Aida, T.; Jiang, D. L.; Yashima, E.; Okamoto, Y., "A New Approach to Light-
Harvesting with Dendritic Antenna" Thin Solid Films 1998, 331, (1-2), 254-258. 

22. Gilat, S. L.; Adronov, A.; Frechet, J. M. J., "Light Harvesting and Energy Transfer 
in Novel Convergently Constructed Dendrimers" Angew. Chem. Int. Ed. 1999, 38, (10), 
1422-1427. 

23. Hahn, U.; Gorka, M.; Vogtle, F.; Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, 
V., "Light-harvesting Dendrimers: Efficient Intra- and Intermolecular Energy-transfer 
Processes in a Species Containing 65 Chromophoric Groups of Four Different Types" 
Angew. Chem. Int. Ed. 2002, 41, (19), 3595-3598. 

24. Jiang, D. L.; Aida, T., "Bioinspired Molecular Design of Functional Dendrimers" 
Prog. Polym. Sci. 2005, 30, (3-4), 403-422. 

25. Nantalaksakul, A.; Reddy, D. R.; Bardeen, C. J.; "Thayumanavan, S., Light 
Harvesting Dendrimers" Photosynth. Res. 2006, 87, (1), 133-150. 



 103

26. Balzani, V.; Ceroni, P.; Maestri, M.; Vicinelli, V., "Light-harvesting Dendrimers" 
Curr. Opin. Chem. Biol. 2003, 7, (6), 657-665. 

27. Bundgaard, E.; Krebs, F. C., " Low Band Gap Polymers for Organic 
Photovoltaics" Sol. Energy Mater. Sol. Cells 2007, 91, (11), 954-985. 

28. Colladet, K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan, J.; Vanderzande, D.; 
Nguyen, L. H.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen, G.; Goovaerts, E., 
"Low Band Gap Donor-acceptor Conjugated Polymers toward Organic Solar Cells 
Applications" Macromolecules 2007, 40, (1), 65-72. 

29. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., "Conjugated Polymer-based Organic 
Solar Cells" Chem. Rev. 2007, 107, (4), 1324-1338. 

30. Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S. N.; Glatthaar, M.; 
Meyer, T.; Meyer, A., "Flexible, Long-lived, Large-area, Organic Solar Cells" Sol. 
Energy Mater. Sol. Cells 2007, 91, (5), 379-384. 

31. Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D., 
"Polymer-based Solar Cells" Mater. Today 2007, 10, (11), 28-33. 

32. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. 
C., "Efficiency Enhancement in Low-bandgap Polymer Solar Cells by Processing with 
Alkane Dithiols" Nat. Mater. 2007, 6, (7), 497-500. 

33. Dykes, G. M., "Dendrimers: A Review of Their Appeal and Applications" J. 
Chem. Technol. Biotechnol. 2001, 76, (9), 903-918. 

34. Gittins, P. J.; Twyman, L. J., "Dendrimers and Supramolecular Chemistry" 
Supramol Chem. 2003, 15, (1), 5-23. 

35. Jang, W. D.; Kataoka, K., "Bioinspired Applications of Functional Dendrimers" J. 
Drug Deliv. Sci. Technol. 2005, 15, (1), 19-30. 

36. Klajnert, B.; Bryszewska, M., "Dendrimers: Properties and Applications" Acta 
Biochim. Pol. 2001, 48, (1), 199-208. 

37. Choi, M. S.; Aida, T.; Yamazaki, T.; Yamazaki, I., "Dendritic Multiporphyrin 
Arrays as Light-harvesting Antennae: Effects of Generation Number and Morphology on 
Intramolecular Energy Transfer" Chem. Eur. J. 2002, 8, (12), 2668-2678. 

38. Adronov, A.; Gilat, S. L.; Frechet, J. M. J.; Ohta, K.; Neuwahl, F. V. R.; Fleming, 
G. R., "Light Harvesting and Energy Transfer in Laser-dye-labeled Poly(aryl ether) 
Dendrimers"  J. Am. Chem. Soc. 2000, 122, (6), 1175-1185. 

39. Benites, M. D.; Johnson, T. E.; Weghorn, S.; Yu, L. H.; Rao, P. D.; Diers, J. R.; 
Yang, S. I.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S.,"Synthesis and 



 104

Properties of Weakly Coupled Dendrimeric Multiporphyrin Light-harvesting Arrays and 
Hole-storage Reservoirs" J. Mater. Chem. 2002, 12, (1), 65-80. 

40. Devadoss, C.; Bharathi, P.; Moore, J. S., "Energy Transfer in Dendritic 
Macromolecules: Molecular Size Effects and the Role of an Energy Gradient" J. Am. 
Chem. Soc. 1996, 118, (40), 9635-9644. 

41. Gronheid, R.; Hofkens, J.; Kohn, F.; Weil, T.; Reuther, E.; Mullen, K.; De 
Schryver, F. C., "Intramolecular Forster Energy Transfer in a Dendritic System at the 
Single Molecule Level" J. Am. Chem. Soc. 2002, 124, (11), 2418-2419. 

42. Hahn, U.; Gorka, M.; Vogtle, F.; Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, 
V., "Light-harvesting Dendrimers: Efficient Intra- and Intermolecular Energy-transfer 
Processes in a Species Containing 65 Chromophoric Groups of Four Different Types" 
Angew. Chem. Int. Ed. 2002, 41, (19), 3595-3598. 

43. Jiang, D. L.; Aida, T., "Morphology-dependent Photochemical Events in Aryl 
Ether Dendrimer Porphyrins: Cooperation of Dendron Subunits for Singlet Energy 
Transduction" J. Am. Chem. Soc. 1998, 120, (42), 10895-10901. 

44. Kohl, C.; Weil, T.; Qu, J. Q.; Mullen, K., "Towards Highly Fluorescent and 
Water-soluble Perylene Dyes" Chem. Eur. J. 2004, 10, (21), 5297-5310. 

45. Liu, D. J.; De Feyter, S.; Cotlet, M.; Wiesler, U. M.; Weil, T.; Herrmann, A.; 
Mullen, K.; De Schryver, F. C., "Fluorescent Self-assembled Polyphenylene Dendrimer 
Nanofibers" Macromolecules 2003, 36, (22), 8489-8498. 

46. Melinger, J. S.; Pan, Y. C.; Kleiman, V. D.; Peng, Z. H.; Davis, B. L.; 
McMorrow, D.; Lu, M., "Optical and Photophysical Properties of Light-harvesting 
Phenylacetylene Monodendrons Based on Unsymmetrical Branching" J. Am. Chem. Soc. 
2002, 124, (40), 12002-12012. 

47. Neuwahl, F. V. R.; Righini, R.; Adronov, A.; Malenfant, P. R. L.; Frechet, J. M. 
J., "Femtosecond Transient Absorption Studies of Energy Transfer within Chromophore-
Labeled Dendrimers" J. Phys. Chem. B  2001, 105, (7), 1307-1312. 

48. Ranasinghe, M. I.; Varnavski, O. P.; Pawlas, J.; Hauck, S. I.; Louie, J.; Hartwig, J. 
F.; Goodson, T., "Femtosecond Excitation Energy Transport in Triarylamine Dendrimers" 
J. Am. Chem. Soc. 2002, 124, (23), 6520-6521. 

49. Shortreed, M. R.; Swallen, S. F.; Shi, Z. Y.; Tan, W. H.; Xu, Z. F.; Devadoss, C.; 
Moore, J. S.; Kopelman, R., "Directed Energy Transfer Funnels in Dendrimeric Antenna 
Supermolecules" J. Phys. Chem. B 1997, 101, (33), 6318-6322. 

50. Stewart, G. M.; Fox, M. A., "Chromophore-labeled Dendrons as Light Harvesting 
Antennae" J. Am. Chem. Soc. 1996, 118, (18), 4354-4360. 



 105

51. Capitosti, G. J.; Cramer, S. J.; Rajesh, C. S.; Modarelli, D. A., "Photoinduced 
Electron Transfer within Porphyrin-containing Poly(amide) Dendrimers" Org. Lett. 2001, 
3, (11), 1645-1648. 

52. Lor, M.; Thielemans, J.; Viaene, L.; Cotlet, M.; Hofkens, J.; Weil, T.; Hampel, C.; 
Mullen, K.; Verhoeven, J. W.; Van der Auweraer, M.; De Schryver, F. C., "Photoinduced 
Electron Transfer in a Rigid First Generation Triphenylamine Core Dendrimer 
Substituted with a Peryleneimide Acceptor" J. Am. Chem .Soc. 2002, 124, (33), 9918-
9925. 

53. Sadamoto, R.; Tomioka, N.; Aida, T., "Photoinduced Electron Transfer Reactions 
through Dendrimer Architecture" J. Am. Chem. Soc. 1996, 118, (16), 3978-3979. 

54. Ahn, T. S.; Nantalaksakul, A.; Dasari, R. R.; Al-Kaysi, R. O.; Muller, A. M.; 
Thayumanavan, S.; Bardeen, C. J., "Energy and Charge Transfer Dynamics in Fully 
Decorated Benzyl Ether Dendrimers and Their Disubstituted Analogues" J. Phys. Chem. 
B 2006, 110, (48), 24331-24339. 

55. Nantalaksakul, A.; Dasari, R. R.; Ahn, T. S.; Al-Kaysi, R.; Bardeen, C. J.; 
Thayumanavan, S., "Dendrimer Analogues of Linear Molecules to Evaluate Energy and 
Charge-transfer Properties" Org. Lett. 2006, 8, (14), 2981-2984. 

56. Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U., "Mesophase Structure-
Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons"  
Science 2004, 305, (5690), 1598-1601. 

57. Lecommandoux, S.; Klok, H. A.; Sayar, M.; Stupp, S. I., "Synthesis and Self-
organization of Rod-dendron and Dendron-rod-dendron Molecules" J. Polym. Sci. Pol. 
Chem. 2003, 41, (22), 3501-3518. 

58. Messmore, B. W.; Hulvat, J. F.; Sone, E. D.; Stupp, S. I., "Synthesis, Self-
assembly, and Characterization of Supramolecular Polymers from Electroactive Dendron 
Rodcoil Molecules" J. Am. Chem. Soc. 2004, 126, (44), 14452-14458. 

59. Tian, L.; Hammond, P. T. "Comb-dendritic Block Copolymers as Tree-shaped 
Macromolecular Amphiphiles for Nanoparticle Self-assembly" Chem. Mat. 2006, 18, 
(17), 3976-3984. 

60. Zubarev, E. R.; Sone, E. D.; Stupp, S. I., "The Molecular Basis of Self-assembly 
of Dendron-rod-coils into One-dimensional Nanostructures" Chem. Eur. J. 2006, 12, 
(28), 7313-7327. 

61. Coessens, V.; Pintauer, T.; Matyjaszewski, K., "Functional Polymers by Atom 
Transfer Radical Polymerization" Prog. Polym. Sci. 2001, 26, (3), 337-377. 

62. Pintauer, T.; Matyjaszewski, K., "Atom Transfer Radical Addition and 
Polymerization Reactions Catalyzed by ppm Amounts of Copper Complexes" Chem. Soc. 
Rev. 2008, 37, (6), 1087-1097. 



 106

63. Yamada, T.; Iida, K.; Yamago, S., "Living Radical Polymerization - Current 
Status and Future Perspective" Kobunshi Ronbunshu 2007, 64, (6), 329-342. 

64. Lee, K. C. B.; Siegel, J.; Webb, S. E. D.; Leveque-Fort, S.; Cole, M. J.; Jones, R.; 
Dowling, K.; Lever, M. J.; French, P. M. W., "Application of the Stretched Exponential 
Function to Fluorescence Lifetime Imaging" Biophys. J. 2001, 81, (3), 1265-1274. 

65. Phillips, J. C., "Stretched Exponential Relaxation in Molecular and Electronic 
Glasses" Rep. Prog. Phys. 1996, 59, (9), 1133-1207. 

66. Thomas, K. R. J.; Thompson, A. L.; Sivakumar, A. V.; Bardeen, C. J.; 
Thayumanavan, S., "Energy and Electron Transfer in Bifunctional Non-conjugated 
Dendrimers" J. Am. Chem .Soc. 2005, 127, (1), 373-383. 

 

 



 107

CHAPTER 4 

NON-CONJUGATED POLYMERS HAVING EDOT OLIGOMERS AS 

PENDANT GROUPS: DESIGN, SYNTHESIS AND PHOTOPHYSICAL 

PROPERTIES 

4.1 Introduction 

Photovoltaic cells are one of the promising approaches in seeking cheap and clean 

renewable energy sources.1  Solar cells based on crystalline silicon are too expensive to 

find widespread use.2  Therefore, the possibility of devices based on organic materials 

has generated a lot of interest.3-5 Although there have been several interesting approaches 

to organic-based photovoltaics, the efficiencies remain too low to be practical.6-10  Main 

reasons causing the low power conversion efficiencies in organic materials include 

mismatch between the absorption spectrum of chromophores and the solar spectrum, poor 

exciton dissociation and charge carrier recombination.  In chapter 3, the molecular design 

that contains the donor/acceptor molecular heterojunction was discussed.  This design 

could solve the problem associated with inefficient exciton dissociation in OPVs owing 

to a considerable increase in donor/acceptor interface.  In this chapter, the other two 

remaining issues, viz., photon and charge carrier loss are addressed.  Hypothesis, 

molecular design, synthesis and characterizations are discussed below. 

4.2 Molecular design for charge transport units 

In OPV devices, once charges are generated at heterojunctions, there needs to be 

an efficient charge transport (CT) material to transport these charges to the respective 

electrodes.  Conjugated polymers such as polythiophene11-12 and polyphenylene 

vinylene13-15 are generally employed as charge transporters in OPV devices because of 
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(a)      (b) 

     
 
Figure 4.1. (a) Conjugated polymers with flexible side chains (b) Non-conjugated 
polymers with conductive units. 

their appreciable charge diffusion along the π-conjugated main chain.  However, charge 

carrier mobilities are a function of both intrachain charge diffusion and interchain charge 

hopping.  Processibility is a key issue in these conjugated polymers due to their 

inherently rigid main chain.  To solve this problem, flexible alkyl side chains are 

normally installed onto these stiff conjugated polymers.  Even though these side chains 

alleviate the solubility problem, they create another issue by increasing the interchain 

distance between conjugated backbones and thereby reducing the mobility in these 

materials (Figure 4.1a).   

In order to obtain both processible and efficient interchain charge hopping 

materials, we have designed non-conjugated polymers with conductive side chains.  We 

hypothesize that while the flexibility from non-conjugated main chains provides good 

solubility, the highly dense charge transport functionalities at side chains could facilitate 

interchain charge hopping and might result in the high mobility in these materials (Figure 

4.1b). Moreover, since the overall efficiency of OPV devices is determined both by the 

charge transporting ability of the molecules used and by the relative frontier orbital 

energies of the charge transporters, it is also necessary that we have significant control 

over the band gaps of the CT polymers.  The molecular design we propose here also 

allows the exact control over the energy levels of materials by tuning the conjugation 
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Chart 4.1.  Structures of non conjugated polymers with conductive side chains. 

lengths of conductive side chains.  Therefore, systematic tuning of these frontier energy 

levels to optimize the efficiency of OPV devices would also be possible.   

Structures of target polymers are shown in Chart 4.1. Poly(3,4-

ethylenedioxythiophene) (PEDOT) is a low band gap polymer that exhibits high charge 

mobility as well as good thermal and chemical stability.16, 17  These properties are 

desirable for OPVs.  Therefore, we selected EDOT units as our target for charge 

transporters.  Phenyl groups are caped at the α positions of these EDOT units to eliminate 

the possibility of air oxidation at these positions, thus increasing the stability of these 

materials.18 Polynorbornylene is chosen as a non-conjugated backbone due to the ease in 

preparation via ring-opening polymerization (ROMP).19  Moreover, this polymerization 

technique also gives polymers with a great control over MW and PDI.20, 21 

4.2.1 Results and discussion 

4.2.1.1 Monomer synthesis  

The key synthetic methodologies for these EDOT derivatives are bromination 

using NBS as a reagent and Pd-catalyzed Stille coupling.  Hydroxy functionalized 

ProDOT (4-1) were brominated using an excess amount of NBS to obtain dibromo 

ProDOT (4-2) with quantitative yield.  Treatment this dibromoProDOT (4-2) with phenyl 
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Scheme 4.1.  The synthesis of monoEDOT monomer. 

 
Scheme 4.2.  Synthesis of diEDOT monomer. 

boronic acid in the presence of Pd(PPh3)4 as a catalyst gave diphenyl monoEDOT 

derivative (4-3) with 61% yield.  Reacting 4-3 with 5-exo norbonene-2-carboxylic acid in 

the presence of DCC/DMAP gives norbornenyl-based monomer having monoEDOT 

functionality (4-4) with quantitative yield (Scheme 4.1). 

  To synthesize monomer of diEDOT oligomers, a partial bromination of ProDOT 

4-1 with 1 equivalent of NBS was performed.  The monobrominated product 4-5 was 

obtained with 32% yield.  Compound 4-5 was then subjected to a Suzuki coupling with 

phenyl boronic acid to give compound 4-6 with 17% yield.  The bromination of 4-6 with 

NBS gave 4-7 with 39% yield.  The Stille coupling of bromo functionlized 4-7 with 

compound 4-8 containing tributyl tin functionality afforded compound 4-9 with 51% 

yield.  Treatment of this hydroxyl functionalized diEDOT 4-9 with 5-exo norbornene-2-
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Scheme 4.3. Synthesis of triEDOT monomer. 

carboxylic acid in the presence of DCC/DMAP gave a desired monomer of diEDOT unit 

(4-10) with 76% yield (Scheme 4.2). 

A triEDOT monomer was synthesized by Stille coupling and bromination. 

DibromoProDOT 4-2 was treated with 2 equivalents of EDOT functionalized tributyl tin 

group (4-8) in the presence of Pd(PPh3)2Cl2 to afford a triEDOT oligomer having 

hydroxyl functionality (4-11) with 17% yield.  Treatment of 4-11 with 5-exo norbonene-

2-carboxylic acid in the presence of DCC/DMAP as reagents gave a triEDOT monomer 

with quantitative yield (Scheme 4.3).  

A tetraEDOT oligomer was synthesized in a similar manner.  Monobromo- 

ProDOT 4-5 was reacted with tributyl tin functionalized EDOT 4-13 under Stille 

coupling condition to give compound 4-14 with 85% yield.  Bromination reaction of 

compound 4-14 using NBS as a reagent afforded compound 4-15 with 74% yield. 

Compound 4-15 was then subjected to a Stille coupling reaction with compound 4-8 

having tribuyl tin functionality to give tetraEDOT 4-16 with 11% yield.  The desired 

tetraEDOT monomer 4-17 was obtained by reacting compound 4-16 with 5-exo 
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Scheme 4.4.  Synthesis of tetraEDOT monomer. 

 
 
Scheme 4.5. ROMP of monomers investigated. 

norbornene-2-carboxylic acid in the presence of DCC/DMAP.  The product was obtained 

with 69% yield (Scheme 4.4). 

4.2.1.2 Ring Opening Metathesis Polymerization (ROMP) 

All monomers were subjected to ROMP by using 3rd generation Grubbs catalyst.  

Monomer and catalyst were placed in separate vials under inert atmosphere.  Dry THF 

was subjected to three freeze-pump-thaw cycles before adding into monomer and 

catalyst.  A solution of monomer was then added into a solution of catalyst and the 

polymerization was readily performed in 3 minutes.  Then, the polymerization was 

terminated by the addition of ethyl vinyl ether.  The solution was precipitated twice in 

methanol to obtain the desired polymers.  Scheme 4.5 shows structures of the polymers 

and Table 4.2 shows the molecular weights and PDIs obtained from the polymerization. 
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Figure 4.2. The comparison of absorption spectra of monomers and their 
corresponding polymers. 

Table 4.1. Molecular weights (Mn) and PDI of polymers obtained by GPC (THF). 

Side Chains Mn *(g/mol) PDI 
monoEDOT 16862 1.05 

diEDOT 17679 1.36 
triEDOT 9975 1.09 

tetraEDOT 16802 1.12 
*Mn is estinated using PMMA standards 

4.2.1.3 Optical properties of non-conjugated polymers containing EDOT oligomers  

Figure 4.2 shows the absorption spectra of all EDOT monomers and their 

corresponding polymers in dichloromethane.  The absorption maximum of monomers 

and their polymer counterparts are virtually similar implying that norbornene based main 

chains do not interrupt the electronic property of EDOT functionalities.  Moreover, the 

λmax shifts toward longer wavelengths with increasing conjugation lengths.  This implies 

that increasing conjugation lengths in these chromophores results in the reduction in the 

band gaps.   

 4.2.1.4 HOMO-LUMO energy levels 

 Energy levels of all chromophores are calculated by using the combination of 

information obtained from the absorption spectra and the cyclic voltammetry, as 
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Figure 4.3.  Relative energy levels of polymers containing EDOT oligomers with 
different conjugation lengths. 

mentioned in the previous chapter.  Relative energy levels calculated by this method are 

showed in Figure 4.3.  It is clearly shown here that the energy levels of oligomers of 

EDOT derivatives can be systematically tuned by placing these units at side chains of 

polymers.   

Note that, in our system, the increasing conjugation lengths seem to affect more 

on the LUMO energy level than the HOMO energy levels.  One of the measure of the 

efficiency of OPV devices is open circuit voltage (Voc).  This parameter can be calculated 

from the difference between the LUMO of the acceptor and the HOMO of the donor.22  

Since the HOMO of all these polymeric donors remains similar and these molecules are 

likely to act as hole transporters, the increase in conjugation length should not 

significantly reduce the Voc.  Moreover, the ability to harvest solar energy increases with 

reducing of band gaps due to the better overlap to the solar spectrum. Therefore, 

nonconjugated polymers containing oligoEDOT with decent conjugation lengths are 

promising materials to enhance light absorption efficiency, charge transport efficiency as 

well as to maintain the high Voc.   
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Figure 4.4.  Emission spectra of (a) monoEDOT (b) diEDOT (c) triEDOT and (d) 
tetraEDOT monomers and their polymeric counterparts. 

4.2.1.5 Aggregation behavior 

The emission spectra of monomers and their corresponding polymers are shown 

in Figure 4.4.  It was observed that the emission maxima of polymers are slightly 

bathochromically shifted compared to their monomers with retained well-defined 

structures (Figure 4.4).  The red-shifting of emission signals in polymers suggests that 

oligomers of EDOT units at the side chains of polymers slightly aggregate.  The degree 

of aggregation seems to increase with increasing EDOT conjugation lengths.  The 

aggregation of conjugated polymers is well-known and it leads to the higher ability to 

harvest solar energy in these materials due to the better overlapping with the solar 

spectrum.  In our case, we anticipate that further increase in conjugation lengths of EDOT 

oligomers should lead to the higher degree of side chain aggregation.  However, our 

efforts to extend the conjugation lengths of EDOT oligomers failed due to the instability 
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of EDOT intermediates.  Moreover, we observed that tretraEDOT polymer is soluble in a 

limited number of solvents.  Therefore, it is reasonable to assume that the solubility of 

polymers will become an issue, if conductive units with longer conjugation lengths are 

attached onto non-conjugated main chains.  In the next section, we propose an alternative 

method to broaden the absorption spectra of these polymers for more effective utilization 

of solar light. 

4.3 Molecular design for optimizing photon absorption 

While EDOT oligomers installed at side chains of polymers might allow rapid 

interchain charge transport as well as control over the frontier energy levels of these 

materials, it possesses the short conjugation lengths relative to polymers thus limiting the 

amount of photon absorbed by these compounds.  The problem of poor solar absorption 

in organic materials is realized even in conjugated polymers.  Most of the conjugated 

polymers absorb in the ultraviolet (UV) and the green part of the visible spectral region.  

Therefore, photons that are located in low energy part and that are indeed more intense 

have very little contribution to the photocurrent of OPV devices made from these 

materials.  An effort to obtain materials with better spectral matching with solar radiation 

has been dedicated through targeting and synthesizing low band gap polymers.23-25  The 

absorption spectra of these low band gap polymers show absorption peaks at a longer 

wavelength suggesting more efficient utilization of photon in these polymers.  However, 

the shorter wavelength sunlight (such as 380-500 nm) is not absorbed by these materials 

if the bandwidth of their absorption is not sufficiently broad.  Obviously, conjugated 

polymers possessing not only narrow band gap, but also broad bandwidth in the visible 

region are desirable for application in photovoltaics. 
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Figure 4.5.  (a) Cartoon shows the polymers having polymerizable side chain before 
and after side chain polymerization. (b) Cartoon illustrated absorption spectral change 
of polymers before and after side chain polymerization. 

With this in mind, our aim here is to obtain materials with broad spectral 

bandwidth.  The strategy we exploit here is to install crosslinkable and non-crosslinkable 

conducting units at side chains of polymer. The absorption of polymer before side chain 

modification should lie in the short wavelength region due to the short conjugation 

lengths of conducting units.  Crosslinking at side chains shifts the absorption of the 

crosslinkable group into the long wavelength region while non-crosslinkable side groups 

still remain their absorption in short wavelength region.  As a result, the absorption of the 

polymers after crosslinking should be broad due to a combination of the absorption from 

non-crosslinkable unit in the short wavelength region and from crosslinked polymer in 

the long wavelength region.  This hypothesis is illustrated in Figure 4.5. 

 Owing to their low oxidation potential, EDOT units can undergo oxidative 

polymerization at free α-positions.26  With this, we designed non-conjugated polymers 

containing crosslinkable and non-crosslinkable EDOT oligomers.  Phenyl groups are 

installed at α-positions of EDOT oligomers to obstruct the polymerization at these 

positions.  These phenyl-capped EDOT oligomers are, therefore, used as non-
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Figure 4.6. A structure of a target polymer. 

 
Scheme 4.6. Synthesis of triEDOT monomer with α positions for side chain 
polymerization. 

polymerizable units.  The EDOT oligomers with free α-positions are used as 

crosslinkable units and are expected to form PEDOT after side chain polymerization.  

Among all EDOT oligomers we have hands-on experience in synthesizing, mono and 

triEDOT are relatively easy to make.  However, the oxidation potential of triEDOT is 

lower than that of monoEDOT.  Therefore, triEDOT oligomers were chosen as our target 

for this study.  The structure of a target copolymer is shown in Figure 4.6. 

4.3.1 Results and discussion 

4.3.1.1 Monomer Synthesis 

Norbornene functionalized triEDOT monomer (4-19) was synthesized by using a 

similar procedure with its phenyl capped monomer counterpart (4-12).  DibromoProDOT 

(4-2) was reacted with tributyltin functionalized EDOT derivative under Pd-catalyzed 

Stille coupling condition to obtain triEDOT containing hydroxyl functionality (4-18) with 

53% yield.  This compound was reacted with 5-exo-norbornene-2-carboxylic acid to give 
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Scheme 4.7.  Polymerization of monomer 4-12 and 4-19. 

a desired monomer 4-19 with 65% yield (Scheme 4.6).  The synthesis of phenyl-capped 

triEDOT monomer (4-12) has already mentioned in the previous section. 

4.3.1.2 Ring Opening Metathesis Polymerization (ROMP) of diphenyl triEDOT and 

triEDOT homopolymers 

Polymerization of non-crosslinkable and crosslinkable EDOT oligomers is shown 

in Scheme 4.7.  To synthesize homopolymers of non crosslinkable triEDOT unit, 40 

equivalent monomer 4-12 and one equivalent of 3rd generation Grubbs catalyst were 

placed into a small vial under inert atmosphere.  Dry THF was subjected to three freeze-

pump-thaw cycles before adding monomer and catalyst.  A solution of monomer was 

then added into a solution of catalyst and the polymerization was readily performed in 3 

minutes.  Then, the polymerization was terminated by the addition of ethyl vinyl ether.  

The solution was precipitated twice in methanol to obtain desired polymers with Mn of 

9975 and PDI of 1.10. The synthesis of homopolymer of crosslinkable triEDOT unit 

using monomer 4-19 was performed under similar condition.  The polymer was obtained 

with Mn of 12775 and PDI of 1.04. 
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Scheme 4.8.  Crosslinking at triEDOT side chains of norbornenyl polymer.  

4.3.1.3 Spectroelectrochemistry of homopolymer containing triEDOT and 

diphenyltriEDOT side groups 

 To test whether free α positions in triEDOT side groups of capped and uncapped 

norbonylene polymers can undergo oxidative polymerization resulting in crosslinking 

PEDOT, we performed spectroelectrochemistry of both triEDOT and diphenyl triEDOT 

homopolymer and the results are compared.  We first tested that homopolymer of 

triEDOT can undergo electrochemical polymerization as shown in Scheme 4.8.  In this 

experiment, the solution of homopolymer of triEDOT in dichlromethane was coated onto 

an ITO coated glass and spectroelectrochemistry was carriered out.  Figure 4.7 shows 

optoelectrochemistry of crosslinkable homopolymer of triEDOT in 0.1 M TBAP/ACN.  

Homopolymer of triEDOT showed the absorption signal at 345-430 nm. At oxidation 

potential of 0.8 V, the absorption signal at 345-430 nm disappears and no other signal 

could be observed in the region of 300-900 nm. When reduction potential of -0.8 V is 

applied, the broad signal at 350-680 nm emerges. The disappearance and reappearance of 

this broad signal can be manipulated by switching the potential between 0.8 and -0.8 V. 

The original absorption signal at 345-430 nm, however, can not be regained.  It can be 

deduced from this result that upon applying a positive potential, triEDOT side groups are 

oxidatively polymerized generating polarons and bipolarons.  The reduction of these 

bipolarons generates neutral crosslinked EDOT polymers, which exhibit a red shifted 
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Figure 4.7.  Spectroelectrochemistry of homopolymer of triEDOT. 

absorption compared to its original polymer. The reversible generation of bipolarons 

from this neutral polymer can be obtained by controlling applied potentials.  

Next, we investigated whether the homopolymer of diphenyl triEDOT, where 

both α positions of triEDOT units are blocked with a phenyl group exhibits the same 

behavior.  To test this, homopolymer of diphenyl triEDOT was dissolved in 

dichloromethane and coated onto an ITO-coated glass and spectroelectrochemistry was 

performed under the same conditions as above.  It was observed that homopolymer of 

diphenyl triEDOT showed the absorption signal at 350-500 nm, slightly red-shifted 

compared to triEDOT homopolymer owing to the longer conjugation length.  Upon 

appling the potential at 0.8 V, the original absorption signal disappears in accordance 

with the emergence of the new signal at 500-700 nm.  The reductive potential at -0.8 V 

causes the reappearance of the original signal at 350-500 nm.  As expected, phenyl 

groups of triEDOT units prohibit the oxidative cross-linking at α positions.  The signal at 

500-700 nm upon oxidation results from the generation of radical cations of diphenyl 
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Figure 4.8. Spectroelectrochemistry behavior of polymer diphenyl triEDOT 
homopolymer. 

triEDOT moieties which can be reduced back to its original state upon applying the 

negative potential.  

4.3.1.4 Chemically oxidative polymerization of homopolymer of triEDOT  

Cross-linking of homopolymer of triEDOT can also be performed chemically. 

Homopolymer of triEDOT in dichloromethane was spun coat onto the glass substrate. 

TriEDOT homopolymer shows the absorption signal at 320-430 nm, similar to what is 

observed earlier. Oxidative polymerization of triEDOT side chain underwent by dipping 

the thin film into FeCl3 in acetonitrile.  Again, the oxidized film shows no absorption 

signal in the region of 300-900 nm due to the generation of the bipolarons. The reduction 

of oxidative cross-linking polymer can be obtained by subsequent dipping of the film into 

the hydrazine solution in acetonitrile. This causes the emergence of the red shift signal 

relative to the original peak indicative of the generation of crosslinked polymers at side 
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Figure 4.9. Chemical polymerization of triEDOT homopolymer. 

chains of norbornylene backbone. These behaviors are similar to those observed eariler in 

the electrochemical cross-linking method (Figure 4.9). 

4.3.1.5 Broadening the absorption spectra of copolymers by chemical cross-linking 

of triEDOT units   

 So far, we have already shown that α positions of triEDOT groups are active for 

further polymerizations and that blocking these positions inhibits the side chain 

polymerization.  In order to achieve polymers with broad absorption spectra, monomer 4-

19 and monomer 4-12 were mixed in 1:3, 1:1 and 3:1 ratio and polymerization was 

performed under the same conditions as the homopolymers.  Scheme 4.9 shows the 

structure of the copolymer and Table 4.2 shows the Mn along with PDI of random 

copolymers with various ratio of crosslinker (monomer 4-19). 
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Scheme 4.9. Copolymerization of monomer 4-20 and 4-12. 

Table 4.2. Molecular weight (Mn) and PDI of copolymer with various ratio of 
crosslinker  

Monomer4-19: 4-12 %crosslinker Monomer:Catalyst Mn* 
(g/mol) 

PDI 

1:3 25% 100:1 16801 1.10 
1:1 50% 100:1 23532 1.08 
3:1 75% 100:1 16795 1.06 

*PMMA was used as a standard 

 

 

 

 

 

 

Copolymers with different ratio of crosslinkers were spun coat on a glass slide. 

Chemical cross-linking of these copolymers on solid state was carried out using FeCl3 as 

an oxidant.  The color of all thin films changed from their original yellow color to blue 

color indicating the cross-linking of these copolymers.  The film was washed with 

acetonitrile to remove FeCl3 before it was dipped into hydrazine in acetonitrile to reduce 

the oxidized crosslinked PEDOT film.  The film color changed from blue to brown in 

accordance with the change in the absorption spectra.  The schematic representation of 

side chain crosslinking of copolymers and the absorption spectra of these crosslinked 

copolymers are shown in Scheme 4.10 and Figure 4.10, respectively. 
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Figure 4.10.  Absorption of copolymers with different extent of triEDOT crosslinker. 

 
 
Scheme 4.10.  Crosslinking of copolymer at triEDOT side chains. 

The homopolymer containing diphenyl triEDOT unit at side chains shows the 

absorption maxima at 440 nm which is not sensitive to the chemical treatment as 

explained in the last section.  Moreover, crosslinking of triEDOT units at side chains of 

non-conjugated polymers resulted in the red-shifting of the absorption peak to 513 nm.  

As expected, the absorption of copolymers with different ratio of crosslinker combined 

the absorption characteristics of polymer with diphenyl triEDOT group in a short 

wavelength region and of polymer with crosslinked EDOT group in a long wavelength 
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region.  As a result, the absorption spectra of crosslinked copolymers are very broad and 

cover a wide range of the visible region.  Moreover, the shape of these absorption spectra 

can be simply tuned by changing the ratio of two monomers.   

We also observed that the solubility of the copolymers and their crosslinked 

polymer counterparts is very different.  While copolymers are easily soluble in many 

common organic solvents, their corresponding crosslinked polymers become insoluble.  

This may find applications in devices fabricated by layer-by-layer deposition.  The 

solubility of copolymers allows these materials to be easily deposited onto a substrate.  

Crosslinking at side chains of these polymers completely changes their solubility and thus 

allows the deposition of another layer by using a simple conventional wet method.  

4.4 Summary  

In summary, we have demonstrated methodologies that could address the charge 

carrier loss and photon loss issues in OPVs.  By installing conductive units at side chains 

of non-conjugated polymers, we observed that (i) the polymers are soluble in common 

organic solvents.  Processibility of conductive polymers is necessary when these 

materials are used in the device fabrication.  (ii)  the frontier energy level can be tuned by 

controlling the conjugation lengths of conductive side chains and (iii) the absorption 

spectra of these polymers can be broadened by incorporating crosslinkable moieties as 

co-side chains.  Mobility measurement and PV performance of these materials are 

underway. 
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CHAPTER 5 

SUMMARY AND FUTURE SCOPE 

 Macromolecules such as dendrimers, dendrimer-linear polymer hybrids and 

polymers have been designed and synthesized and their photophysical properties have 

been investigated.  While photoinduced charge separation studies of dendrimers in 

solution provide insights into the structure-property relationship of these materials at a 

molecular level, bulk property studies of polymers in solid state lead to an understanding 

of the working principle of PV devices.  Our studies are focused on bridging these two 

areas. 

 In order to understand the architectural advantages of dendrimers toward energy 

and electron transfer processes, we designed and synthesized so-called difunctionalized 

dendrimers; dendrimers that contain two functionalities at their peripheries.  Having the 

same number of chromophores and A-D distance with their corresponding linear analogs, 

the photophysical property comparison of these two species unveils the role of dendritic 

structures toward energy and electron transfer processes.  Moreover, the comparison of 

these difunctionalized dendrimers with traditional dendrimers fully decorated with 

peripheral donors also provides the useful information on the role of the high density of 

peripheral functionalities toward these two processes.  We observed that the dendritic 

architectures adversely affect the energy transfer due to the sterically hindered dendritic 

branches, which prohibit the approach of the peripheral donors to the core acceptor.  

However, the presence of multiple donors in traditional dendrimers enhances the energy 

transfer efficiency by allowing an alternative energy shuttling pathway.  Since the 

efficiency of the energy transfer is dependent not only on the A/D distance, but also on 



 130

the relative orientation of donors and acceptors, the energy shuttling process would allow 

the energy to sample around the peripheral chromophores until it finds the chromophore 

that is situated in the right orientation relative to the acceptor resulting in an enhanced 

energy transfer efficiency.  For electron transfer, the presence of multiple donors at the 

periphery of dendrimers is obviously beneficial to this process.  Due to the flexibility of 

the dendritic arms, the possibility that one of these donors become adjacent to the core 

enhances the efficiency of electron transfer. 

 In order to find applications for these materials in practical devices, processibility 

is a concern.  Dendron-rod-coils were designed to address this issue.  Dendron-rod-coil 

structures would provide a phase segregation between the dendritic and polymeric parts 

which might lead to an interesting nanomorphology.  This nanophase segregation might 

lead to an efficient charge transport to electrodes, which is a key factor in realizing high 

efficiency solar cells. The morphological studies of this class of compounds are 

underway.  We are also interested in fabricating PV devices using these materials to 

investigate the effect of nanophase separation on the device efficiency.  Moreover, since 

these molecules contain both donor and acceptor moieties, it might also be interesting to 

study their bipolar charge transport behaviors. 

 Apart from the bulk property studies which will be pursued in the near future, we 

have shown here that, architecturally, these dendron-rod-coils had provided some 

interesting photoinduced charge separation behaviors.  We have observed that the 

efficiency of the electron transfer in these molecules is higher than that of dendrimers, 

which were previously investigated in our lab.1 We hypothesized that the exposed nature 

of the rod part in these compounds would be responsible for efficient electron transfer 
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because of the better stabilization of this moiety by the surrounding solvent molecules.  

We also observed that architecturally, dendrons would assist better in intramolecular 

electron transfer than the polymers.  Furthermore, we have demonstrated a method to 

solve the photon loss issue encountered in OPV devices.  In this regard, polymers with 

wide range of absorption were introduced.  Norbornene-based copolymers containing 

non-crosslinkable and crosslinkable EDOT units at side chains were synthesized.  

Oxidative polymerization of crosslinkable EDOT side chains would provide conjugated 

polymers that absorb in the long wavelength region while non-crosslinkable EDOT side 

chains retain their absorption in the short wavelength region.  These materials are also 

promising to be employed in a device fabrication.  One of the main problems in 

fabricating devices using organic materials is their solubility in similar solvents.  This 

prohibits a consecutive deposition of donor materials followed by the acceptor, as the 

deposition of the second layer might end up destroying the previously-coated layer.  The 

strategy to solve this problem is to chemically modify one of the compounds to have 

different solubility characteristics.  This is possible, but chemical modification might 

sometimes be difficult.  Our polymers could provide the answer for this issue.  Unlike 

their parent polymer precursors, the crosslinked polymers become insoluble in any 

solvent.  This allows a convenient coating of the second material by using a conventional 

wet method.  Figure 5.1 illustrates the possible way to fabricate an ordered bulk 

heterojunction device, an ideal PV device, using these materials.  The copolymer having 

crosslinkable and non-crosslinkable EDOT side chains will be coated onto the porous 

membrane.  Then, the modified membrane will be dipped into an oxidizing agent to 

polymerize active EDOT side chains.  Then, the membrane template will be removed 
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Figure 5.2.  Structure of block copolymer. 

leaving behind the porous insoluble polymer donors, which will be simply coated with a 

complementary electron acceptor to get an order-bulk heterojunction device. 

 

Horiuchi et al. reported that semi-rod-coil block copolymers of styrene and 

isoprene with oligothiophene modified side chains would self-organize into hexagonally 

paced micropores.2 Similar nanostructure was also observed with block copolymers of 

polystyrene and polystyrene functionalized with EDOT oligomers.3  In this regard, block 

copolymers of benzyl ester and EDOT derivatives could be synthesized.  Figure 5.2 

shows the novel design of promising block copolymers. The two blocks should phase-

separate and also provide the porous structures in accordance with the previous literature 

 
Figure 5.1. An ordered bulk heterojunction device fabricated from polymers 
containing crosslinkable EDOT side chains. 
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Figure 5.3. Structure of novel low band gap crosslinkable polymer. 

reports. Oxidizing agent will be used to polymerize EDOT moiety and, therefore, lock the 

conformation prior to the deposition of the acceptors onto the porous film of polymer 

donors to obtain an ordered bulk A/D heterojunction device.  Since the template is not 

needed in this case, this method could eliminate the problems that are encountered in the 

template removal process.   

 Though the non-conjugated polymers containing EDOT side chains investigated 

here possess a broad absorption window they do not encompass the whole visible region.  

An effort to further expand the absorption bandwidth of polymers could be undertaken by 

incorporating low band gap units as side chains.  For example, the combination of 

electron poor benzothiadiazole unit and electron rich EDOT moiety might lead to a 

further reduction in the band gap.  The free α positions at EDOT units can also be used 

for side chain polymerization.  Figure 5.3 shows an example of the polymer that is 

anticipated to provide broader absorption spectrum and thus might be of interest for 

further investigation. 

  Finally, novel non-conjugated polymers with conductive pendant groups were 

also designed and synthesized for charge mobility studies.  By attaching conductive units 

as side chains of polymers, the band gap of these polymers becomes readily tunable; a 

property that is not amenable in conductive conjugated polymers.  The charge mobility of 

these materials will be investigated.  Moreover, unlike conjugated polymers, self 
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organization may not be needed for efficient charge mobility in these non-conjugated 

polymers.  Therefore, we hypothesize that the mobility of these polymers on the flat 

surface and confined spaces such as nanopores should be similar.   Therefore, we will 

also fabricate devices with different architectures and compare the mobility. 
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CHAPTER 6 

EXPERIMENTAL PROCEDURE 

1H-NMR spectra were recorded on a 400 MHz NMR spectrometer using the 

residual proton resonance of the solvent as the internal standard. Chemical shifts are 

reported in parts per million (ppm).  When peak multiplicities are given, the following 

abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; d of d, 

doublet of doublet; m, multiplet, br, broad. 13C-NMR spectra were proton decoupled and 

recorded on a 100 MHz NMR spectrometer using the carbon signal of deuterated solvent 

as the internal standard. Mass spectrometry was performed on the Bruker Daltonics 

Reflex III (MALDI-ToF). UV-Visible spectra were obtained using a Cary 100 

spectrophotometer and fluorescence data were collected using JASCO FP-6500 

spectrofluorimeter. Flash chromatography was performed with 37-75 µm silica gel. 

Analytical thin layer chromatography was performed on silica plates with F-254 indicator 

and the visualization was accomplished by a UV lamp. THF and toluene were distilled 

over Na/Ph2CO ketyl. Dihydroxy benzthiadiazole derivative, hydroxyl 

diarylaminopyrene and fully decorated dendrimers containing these 2 moieties have been 

synthesized and published earlier by our group.1, 2 Frechet-type dendrons3-5, 

benzyl(aryl)ether backbone6, 7 of linear counterparts, 3rd generation Grubbs catalyst8, 3,4-

propylenedioxythiophene derivative (ProDOT-OH)9, 2-tributyl tin EDOT10-12 and 2-

phenyl EDOT13 have been synthesized according to reported procedures. All other 

chemicals were obtained from commercial sources and used without any purification 

unless otherwise stated.  
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2-6 

Synthesis of compound 2-6 

4.00 g (10.0 mmol) of hydroxyfunctionalized diarylaminopyrene and catalytic 

amount of DMAP were dissolved in THF and the solution was cooled to 0 oC under 

argon atmosphere. 3.50 mL (2.51 mmol) of triethylamine and 1.5 mL (20.7 mmol) of 

mesyl chloride were added dropwise, and allowed to stir at room temperature for 3 h. 

Upon completion of the reaction, water was added and the compound was extracted with 

dichloromethane. The organic layer was concentrated under reduced pressure to afford 

crude mixture which was taken for further step without any purification.  

To the above crude mixture in THF, 4.30 g (50.0 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane, dried over Na2SO4 and evaporated under 

reduced pressure. The crude product was purified by column chromatography using 30% 

dichloromethane in hexanes to afford the product (4.17 g, 90% yield).  1H NMR (CDCl3, 

ppm): δ 8.32-8.03 (m, 8H, a-e), 7.86-7.83 (m, 1H, f), 7.22-6.99 (m, 6H,g, j-m), 6.89-6.86 

(m, 3H, h, i), 4.48 (s, 2 H, n), 13C NMR (CDCl3, ppm): δ 148.9, 148.0, 139.9, 138.8, 

131.2, 131.0, 129.7, 129.5, 129.3, 128.2, 128.1, 127.2, 127.3, 127.2, 126.3, 126.2, 126.1, 

125.3, 125.2, 124.8, 123.1, 122.5, 122.3, 122.1, 121.5, 121.4, 33.3. 
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2-11 

Synthesis of compound 2-11 

A mixture of 3.00 g (13.0 mmol) of monosubstituted G1-OH (2-10), 6.60 g (14.3 

mmol) of compound 2-6, 5.30 g (39.1 mmol) of K2CO3 and 0.6 g (2.60 mmol) of 18-

crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 2% ethyl acetate in dichloromethane to afford the 

product (6.99 g, 80% yield). 1H NMR (CDCl3, ppm): δ 8.08-7.84 (m, 9H, a), 7.43-6.98 

(m, 14H, b), 6.55 (s, 1H, c), 6.49 (s, 1H, d), 6.45 (s, 1H, e), 4.99 (s, 4H, f), 4.54 (s, 2H, 

g). 13C NMR (CDCl3, ppm): δ 160.2, 160.2, 160.1, 149.1, 148.7, 143.6, 140.9, 138.3, 

137.1, 131.4, 131.3, 129.9, 129.7, 129.5, 128.8, 128.8, 128.4, 128.3, 128.2, 127.9, 127.8, 

127.4, 126.6, 126.5, 126.3, 125.5, 125.4, 125.0, 123.5, 122.6, 122.3, 121.5, 121.0, 120.9, 

70.1, 65.3, 65.2. MALDI-ToF MS: Found 615.14 (MH+ calcd. 611.73). 
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2-12 

Synthesis of compound 2-12 

2.17 g (3.54 mmol) of compound 2-11 and 0.13 g (1.06 mmol) of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 1.23 mL 

(8.85 mmol) of triethylamine and 0.56 mL (7.09 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 3.05 g (35.5 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane, dried over Na2SO4 and evaporated under 

reduced pressure. The crude product was purified by column chromatography using 30% 

dichloromethane in hexanes to afford the product (2.08 g, 87% yield). 1H NMR (CDCl3, 

ppm): δ 8.21-7.87 (m, 9H, a), 7.74-6.60 (m, 14H, b), 6.53 (s, 1H, c), 6.48 (s, 1H, d), 6.47 

(s, 1H, e), 4.98 (s, 4H, f), 4.34 (s, 2H, g). 13C NMR (CDCl3, ppm): δ 160.2, 160.1, 149.2, 

148.7, 140.9, 139.9, 138.1, 136.9, 131.5, 131.3, 129.9, 129.8, 129.5, 128.9, 128.5, 128.3, 

128.0, 127.8, 127.5, 126.6, 126.5, 126.3, 125.5, 125.4, 125.1, 123.5, 122.6, 122.4, 121.5, 
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2-17 

120.9, 120.9, 108.4, 108.3, 102.4, 70.3, 70.2, 33.8. MALDI-ToF MS: Found 672.70 

(MH+ calcd. 673.73). 

Synthesis of compound 2-17 

A mixture of 0.95 g (2.15 mmol) of monosubstituted G2-OH (2-15), 1.59 g (2.15 

mmol) of dendron 2-12, 1.76 g (12.9 mmol) of K2CO3 and 0.03 g (0.10 mmol) of 18-

crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 5% ethyl acetate in dichloromethane to afford the 

product (1.86 g, 76% yield). 1H NMR (CDCl3, ppm): δ 8.21-7.87 (m, 9H, a), 7.37-6.93 

(m, 24H, b), 6.68 (s, 2H, c, f), 6.61-6.45 (m, 7H,d, e, g-k ), 5.05 (s, 4H, m), 4.96 (s, 4H, 

l), 4.88 (s, 4H, n), 4.61 (s, 2H, o). 13C NMR (CDCl3, ppm): δ 160.4, 160.2, 160.1, 149.1, 

148.7, 148.8, 140.9, 139.6, 139.4, 138.2, 137.0, 131.4, 131.2, 129.8, 129.7, 129.5, 128.8, 

128.4, 128.3, 128.2, 127.9, 127.8, 127.4, 126.5, 126.5, 126.3, 125.5, 125.4, 125.0, 123.5, 
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2-18 

122.5, 122.3, 121.5, 121.0, 120.9, 70.3, 70.2, 70.1, 70.0, 65.3. MALDI-ToF MS: Found 

1035.12 (MH+ calcd. 1034.08). 

Synthesis of compound 2-18 

1.40 g (1.35 mmol) of compound 2-17 and 0.01 g (0.067 mmol) of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 0.47 mL 

(3.38 mmol) of triethylamine and 0.21 mL (2.71 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 0.72 g (8.10 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane, dried over Na2SO4 and evaporated under 

reduced pressure. The crude product was purified by column chromatography using 75% 

dichloromethane in hexanes to afford the product (1.48 g, 82% yield). 1H NMR (CDCl3, 
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2-21 

ppm): δ 8.20-7.85 (m, 9H, a), 7.39-6.93 (m, 24H, b), 6.67-6.45 (m, 9H, c-k), 5.03 (s, 4H, 

m), 4.97 (s, 4H, l), 4.89 (s, 4H, n), 4.40 (s, 2H, o). 13C NMR (CDCl3, ppm): δ 160.2, 

160.1, 148.4, 140.6, 139.7, 139.1, 138.9, 137.9, 136.8, 131.2, 129.6, 129.5, 129.3, 128.6, 

128.2, 128.0, 127.7, 127.6, 127.2, 126.3 126.2, 126.0, 125.2, 125.1, 124.8, 123.3, 122.3, 

122.0, 121.2, 120.7, 108.2, 106.4, 102.2, 101.7, 101.6, 70.1, 70.0, 69.9, 33.6. MALDI-

ToF MS: Found 1099.51 (MH+ calcd. 1096.38). 

Synthesis of compound 2-21 

A mixture of 0.75 g (0.86 mmol) of monosubstituted G3-OH (2-20), 1.05 g (0.95 

mmol) of compound 2-18, 0.76 g (5.60 mmol) of K2CO3 and 0.03 g (0.17 mmol) of 18-

crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and the aqueous layer was extracted with dichloromethane. The combined 

organic layer was dried over Na2SO4 and evaporated to dryness. The crude product was 

purified by column chromatography using 8% ethyl acetate in dichloromethane to afford 

the product (1.19 g, 66% yield). 1H NMR (CDCl3, ppm): δ 8.02-7.87 (m, 9H, a), 7.35-
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2-22 

6.94 (m, 44H, b), 6.73-6.52 (m, 19H, c, d), 6.45 (d, J = 4 Hz, 2H, e, f), 5.01-4.85 (s, 28H, 

g), 4.60 (s, 2H, h). 13C NMR (CDCl3, ppm): δ 160.2, 160.1, 159.9, 148.9, 148.4, 140.6, 

139.3, 139.3, 139.1, 137.9, 136.8, 131.2, 131.0, 129.6, 129.5, 129.2, 128.6, 128.2, 128.0, 

127.7, 127.6, 127.2, 126.3, 126.2, 126.0, 125.2, 125.1, 124.8, 123.2, 122.3, 122.0, 121.3, 

120.7, 106.4, 105.8, 101.6, 70.1, 69.92, 65.8. MALDI-ToF MS: Found 1883.02 (MH+ 

calcd. 1880.66). 

Synthesis of compound 2-22 

0.75 g (0.40 mmol) of compound 2-21 and 0.003 g (0.02 mmol) of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 0.14 mL 

(0.99 mmol) of triethylamine and 0.06 mL (0.79 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 0.21 g (2.39 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 



 144

N
S

N

S S
O O

O

O

O

O

N
N

pyrene proton : a

bcef

g

b c

aromatic proton : d

ee

e

ee

f

g

f

f

d d
d

d
d

d

d

d
d

d

 
1D 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane, dried over Na2SO4 and evaporated under 

reduced pressure. The crude product was purified by column chromatography using 

dichloromethane to afford the product (0.62 g, 80% yield). 1H NMR (CDCl3, ppm): δ 

8.12-7.79 (m, 9H, a), 7.38-6.81 (m, 44H, b), 6.66-6.43 (m, 21H, c-f), 5.00-4.86 (m, 28H, 

g), 4.36 (s, 2H, h). 13C NMR (CDCl3, ppm): δ 160.5, 160.4, 149.2, 148.7, 141.0, 139.5, 

139.4, 138.3, 137.1, 129.6, 128.9, 128.3, 128.0, 127.9, 127.5, 127.2, 126.6, 126.4, 125.5, 

123.6, 122.6, 121.0, 106.7, 101.9, 70.4, 70.3, 70.2, 31.9. MALDI-ToF MS: Found 

1946.79 (MH+ calcd. 1943.66). 

Synthesis of compound 2-1D 

A mixture of 0.12 g (0.25 mmol) of dihydroxyl benzthiadiazole core (2-3), 0.32 g 

(0.52 mmol) of compound 2-12, 0.20 g (1.50 mmol) of K2CO3 and 0.33 g (0.12 mmol) of 

18-crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 40% dichloromethane in hexanes to afford compound 
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2-2D 

1D (0.18g, 74% yield). 1H NMR (CDCl3, ppm): δ 8.02-7.80 (m, 22H, a, b, c), 7.41-6.87 

(m, 38H, d), 6.66-6.41 (m, 6H, e), 4.97 (s, 8H, f), 4.92 (s, 4H, g). 13C NMR (CDCl3, ppm) 

: δ 160.4, 160.3, 159.4, 152.6, 149.2, 148.7, 145.4, 140.9, 139.5, 138.9, 138.3, 137.1, 

135.7, 131.5, 131.3, 130.3, 129.9, 129.8, 129.6, 128.9, 128.8, 128.5, 128.3, 128.0, 127.9, 

127.5, 127.5, 126.6, 126.5, 126.4, 125.7, 125.5, 125.4, 125.8, 125.1, 124.5, 123.5, 122.6, 

122.3, 121.6, 121.0, 121.0, 118.9, 114.3, 112.7, 106.8, 106.7, 101.9, 70.3, 70.2, 70.1. 

MALDI-ToF MS: Found 1671.41 (MH+ calcd. 1672.04). Anal. Calc. for C112H78N4O6S3: 

C, 80.45; H, 4.70; N, 3.35. Found C, 80.15; H, 4.53; N, 3.21. 

Synthesis of compound 2-2D 

 

 

 

 

 

 A mixture of 0.08 g (0.17 mmol) of dihydroxyl benzthiadiazole core (2-3), 0.37 g 

(0.35 mmol) of compound 2-18, 0.14 g (1.00 mmol) of K2CO3 and 0.023 g (0.09 mmol) 

of 18-crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The 

reaction mixture was allowed to cool to room temperature and solvent was evaporated to 

dryness. The residue was partitioned between water and dichloromethane. The organic 

layer was separated and aqueous layer was extracted with dichloromethane. The 

combined organic layer was dried over Na2SO4 and evaporated to dryness. The crude 
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2-3D 

product was purified by column chromatography using 40% dichloromethane in hexanes 

to afford compound 2-2D (0.11g, 71% yield). 1H NMR (CDCl3, ppm): δ 8.02-7.75 (m, 

22H, a, b, c), 7.38-6.91 (m, 58H, d), 6.67-6.44 (m, 18H, e), 5.05-4.78 (m, 28H, f). 13C 

NMR (CDCl3, ppm): δ 160.5, 160.4, 160.3, 160.2, 159.4, 152.7, 149.2, 146.7, 145.5, 

141.0, 139.6, 139.6, 139.4, 139.0, 138.3, 137.1, 135.7 131.5, 131.3, 130.4, 130.0, 129.8, 

129.6, 129.4, 128.9, 128.6, 128.5, 128.3, 128.0, 127.9, 127.5, 126.6, 126.5, 126.4, 125.9, 

125.6, 125.5, 125.5, 125.1, 124.6, 123.6, 122.6, 122.3, 121.6, 121.0, 119.0, 114.5, 112.8, 

106.7, 105.7, 102.0, 101.9, 101.8, 70.4, 70.3, 70.2, 68.3. MALDI-ToF MS: Found 

2521.02 (MH+ calcd. 2521.01). Anal. Calcd. for C168H126N4O14S3: C, 80.04; H, 5.04; N, 

2.22. Found C, 78.96; H, 4.81; N, 2.16. 

Synthesis of compound 2-3D 
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2-24 

A mixture of 0.05 g (0.11 mmol) of dihydroxyl benzthiadiazole core (2-3), 0.46 g 

(0.23 mmol) of compound 2-22, 0.09 g (0.67 mmol) of K2CO3 and 0.01 g (0.05 mmol) of 

18-crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 5% ethyl acetate in dichloromethane to afford product 

(0.07g, 71% yield). 1H NMR (CDCl3, ppm): δ 8.18-7.67 (m, 22H, a, b, c), 7.38-7.21 (m, 

74H, d), 7.17-7.14 (m, 8H, e), 7.08-7.03 (m, 8H, f), 6.98-6.87 (m, 8H, g), 6.71-6.42 (m, 

42H, h), 5.02-4.84 (m, 60H, i). 13C NMR (CDCl3, ppm): δ 160.4, 160.3, 160.3, 160.2, 

149.1, 143.7, 140.9, 139.5, 139.3, 138.3, 137.1, 131.5, 131.3, 129.9, 129.7, 129.5, 128.8, 

128.4, 128.3, 127.9, 127.8, 127.5, 127.4, 126.3, 125.5, 125.4, 125.0, 123.5, 122.6, 121.5, 

121.0, 120.9, 106.6, 101.9, 101.8, 70.3, 70.2, 70.1. MALDI-ToF MS: Found 4200.14 

(MH+ calcd. 4218.96). Anal. Calc. for C280H222N4O30S3: C, 79.71; H, 5.30; N, 1.33. 

Found C, 79.92; H, 5.25; N, 1.35. 

Synthesis of compound 2-24 

4.00 g (10.0 mmol) of hydroxy diarylaminopyrene (2-23), 1.10 g (9.00 mmol) of 

3-hydroxy benzaldehyde and 3.93 g (13.5 mmol) of triphenylphosphine were taken in 
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THF solvent under N2 atmosphere and cooled to 0 oC. To this cooled contents 

diethylazodicarboxylate (2.12 mL, 13.5 mmol) was added slowly via syringe and 

contents were allowed to stir at room temperature overnight. After completion of the 

reaction, water was added to quench the reaction and extracted using dichloromethane. 

The crude reaction mixture was purified by column chromatography using 50% 

dichloromethane in hexanes to afford the linear analog G1-CHO (2.98 g, 59% yield). 1H-

NMR: (CDCl3, ppm) δ 9.93 (s, 1H), 8.16-7.83 (m, 9H), 7.22-6.73 (m, 13H), 4.93 (s, 2H). 

To a stirring solution of 1.00 g (1.98 mmol) of G1-CHO in THF/methanol solvent 

mixture, 0.15 g (3.97 mmol) of sodium borohydride was added in portions with efficient 

stirring. After the addition was complete the mixture was allowed to stir overnight. The 

mixture was then poured into water and the compound was extracted with 

dichloromethane. The organic layer was concentrated under reduced pressure to afford 

the crude product, which was purified by column chromatography using 25% hexanes in 

dichloromethane as the eluent to afford the product (0.90 g, 90% yield). 1H-NMR 

(CDCl3, ppm): δ 8.17-7.80 (m, 9H, a), 7.21-6.72 (m, 13H, b), 4.90 (s, 2H, c), 4.56 (s, 2H, 

d). 13C NMR (CDCl3, ppm): δ 159.3, 149.1, 148.7, 142.8, 140.9, 138.6, 138.2, 131.4, 

131.3, 129.8, 129.9, 129.6, 129.5, 128.5, 128.2, 127.9, 127.4, 127.4, 126.6, 126.5, 126.3, 

125.5, 125.4, 125.1, 123.5, 122.5, 122.3, 121.5, 121.0, 120.8, 120.0, 119.3, 114.5, 114.3, 

114.1, 113.4. 
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2-25 

Synthesis of compound 2-25 

A 100 mL round bottom flask was charged with 4.08 g (24.25 mmol) of MOM-

protected benzyl alcohol, 2.47 g (20.2 mmol) of 3-hydroxy benzaldehyde and 7.90 g 

(24.25 mmol) of triphenylphosphine under N2 atmosphere and contents were cooled to 

0oC. To the stirred solution diethylazodicarboxylate (4.70 mL, 24.25 mmol) was added 

via syringe and allowed the contents to stir at room temperature overnight. Upon 

completion of the reaction, the reaction mixture was partitioned between water and ethyl 

acetate and organic layer was dried over Na2SO4 and solvent was evaporated under 

reduced pressure. The crude mixture was purified using silica-gel column 

chromatography using 10% ethyl acetate in hexanes to afford product (9.15 g, 51% 

yield). 1H NMR (CDCl3, ppm): δ 9.97 (s, 1H), 7.46 (t, J = 3.4 Hz, 3H), 7.34-7.24 (m, 

2H), 7.13-7.00 (m, 3H), 5.18 (d, J = 3 Hz, 2H), 5.09 (s, 2H), 3.48 (d, J = 2.4 Hz, 3 H). 

 Above purified compound (1.71 g, 6.24 mmol) was taken in ethanol and 3.56 g 

(18.7 mmol) of p-toluene sulfonic acid was added and stirred for 3 h at room temperature. 

After the completion of the reaction, the reaction mixture was worked up using water and 

CH2Cl2. The crude reaction mixture was purified by column chromatography using 10 % 

ethyl acetate in hexanes to afford the product (1.15 g, 82 % yield).  1H NMR (CDCl3, 

ppm): δ 9.96 (s, 1H, a), 7.49- 7.43 (m, 3H, b), 7.29-7.23 (m, 2H, c), 6.97 (t, J = 20 Hz, 

2H, d), 6.82 (d, J = 10.4 Hz, 1H, e), 5.68 (d, J = 10 Hz, 1H, f), 5.08 (s, 2H, g).  13C NMR 

(CDCl3, ppm): δ 159.3, 156.5, 142.6, 139.1, 130.3, 130.1, 120.1, 119.9, 115.5, 114.8, 

114.8, 113.9, 70.1, 65.6. 
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2-26 

Synthesis of compound 2-26 

  1.77 g (4.43 mmol) of hydroxyl diarylaminopyrene (2-23), 0.85 g (4.02 mmol) of 

compound 2-25 and 1.46 g (5.63 mmol) of triphenylphosphine were taken in THF under 

N2 atmosphere and cooled to 0 oC. To the cooled contents, 0.88 mL (5.63 mmol) of 

diethylazodicarboxylate was added slowly via syringe and contents were allowed to stir 

at room temperature overnight. After completion of the reaction, water was added to 

quench the reaction and extracted using dichloromethane. The crude reaction mixture was 

purified by column chromatography using 20% dichloromethane in hexanes to afford the 

linear analog G2-CHO (1.54 g, 57% yield). 1H NMR (CDCl3, ppm): δ 9.91 (s, 1H), 8.26-

7.97 (m, 9H) 7.32-6.81 (m, 17H), 5.01 (s, 2H), 5.00 (s, 2H). 

 To a stirring solution of 0.75 g (1.23 mmol) of G2-CHO in THF/methanol solvent 

mixture, 0.12 g (3.08 mmol) of sodium borohydride was added in portions with efficient 

stirring. After the addition was complete the mixture was allowed to stir overnight. The 

mixture was then poured into water and the compound was extracted with 

dichloromethane. The organic layer was concentrated under reduced pressure to afford 

the crude product, which was purified by column chromatography using 25% hexanes in 

dichloromethane as the eluent to afford the product (0.71 g, 94% yield). 1H NMR 

(CDCl3, ppm): δ 8.24-7.94 (m, 9H, a), 7.29-6.80 (m, 17H, b), 5.02 (s, 4H, c), 4.62 (s, 2H, 

d). 13C NMR (CDCl3, ppm): δ 159.2, 159.1, 149.2, 148.7, 142.9, 140.9, 138.8, 138.3, 
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2-27 

131.5, 131.3, 129.9, 129.8, 129.8, 129.5, 128.5, 128.3, 128.0, 127.5, 127.5, 126.6, 126.5, 

126.3, 125.5, 125.4, 125.1, 123.5, 122.6, 122.3, 121.6, 121.0, 121.0, 120.1, 119.6, 114.6, 

114.3, 114.2, 113.5, 70.1, 69.9, 65.4. MALDI-ToF MS: Found 610.89 (MH+ calcd. 

611.73). 

Synthesis of compound 2-27 

0.57 g (2.70 mmol) of compounds 2-24, 1.49 g (2.97 mmol) of compound 2-25 

and 0.98 g (2.97 mmol) of triphenylphosphine were taken in THF under N2 atmosphere 

and cooled to 0 °C. To these cooled contents 0.59 mL (2.97 mmol) of 

diethylazodicarboxylate was added slowly via syringe and contents were allowed to stir 

at room temperature overnight. After completion of the reaction, water was added to 

quench the reaction and extracted using dichloromethane. The crude reaction mixture was 

purified by column chromatography using 40% dichloromethane in hexanes as the eluent 

to afford the product, linear analog G3-CHO (2.43 g, 52% yield). 1H NMR (CDCl3, 

ppm): δ 9.87 (s, 1H), 8.17-7.84 (m, 9H), 7.32-6.81 (m, 21H), 5.06 (s, 2H), 4.97 (s, 2H), 

4.94 (s, 2H). 

To a stirring solution of 0.74 g (1.03 mmol) of G3-CHO in THF/methanol solvent 

mixture, 0.10 g (2.57 mmol) of sodium borohydride was added in portions with efficient 

stirring. After the addition was complete the mixture was allowed to stir overnight. The 

mixture was then poured into water and the compound was extracted with 
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2-1L 

dichloromethane. The organic layer was concentrated under reduced pressure to afford 

the crude product, which was purified by column chromatography using 25% hexanes in 

dichloromethane as the eluent afforded product (0.69 g, 93% yield). 1H NMR (CDCl3, 

ppm): δ 8.15-7.82 (m, 9H, a), 7.30-6.80 (m, 21H, b), 5.04 (s, 2H, c), 4.95 (s, 2H, d), 4.92 

(s, 2H, e), 4.66 (s, 2H, f). 13C NMR (CDCl3, ppm): δ 159.2, 159.0, 149.1, 148.7, 142.9, 

140.9, 138.8, 138.9, 138.6, 138.3, 131.4, 131.3, 129.9, 129.9, 129.8, 129.8, 129.8, 129.5, 

128.4, 128.3, 127.9, 127.5, 127.4, 126.6, 126.5, 126.3, 125.5, 125.4, 125.1, 123.5, 122.6, 

122.3, 121.5, 121.0, 121.0, 120.1, 120.1, 119.6, 114.6, 114.3, 114.1, 113.4, 70.0, 69.9, 

65.3. MALDI-ToF MS: Found 716.90 (MH+ calcd. 717.85). 

Synthesis of compound 2-1L 

0.44 g (0.86 mmol) of compound 2-24, 0.20 g (0.41 mmol) of dihydroxy 

benzthiadiazole (2-3), 0.27 g (10.25 mmol) of tripheynylphosphine and THF (20 mL) 

were placed in a round bottom flask, and the reaction mixture was cooled to 0 oC. To the 

cold reaction mixture, 0.16 mL (10.25 mmol) of diethylazodicarboxylate was added via 

syringe and stirred at room temperature for 12 h. The crude reaction mixture was 

partitioned between water and dichloromethane and organic layer was dried over 

anhydrous Na2SO4 and the solvent was removed under reduced pressure. The product 

was purified by column chromatography using 40% dichloromethane in hexane as the 

eluent to afford the product (0.34 g, 71% yield). 1H NMR (CDCl3, ppm): δ 8.18-7.88 (m, 
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2-2L 

18H, a), 7.81-7.79 (m, 4H, b), 7.36 (d, J = 3.6 Hz, 2H, c), 7.35-6.81 (m, 34H, d), 5.00 (s, 

4H, e), 4.94 (s, 4H, f). 13C NMR (CDCl3, ppm): δ 159.2, 158.9, 152.4, 148.9, 148.5, 

145.3, 140.7, 138.7, 138.4, 138.1, 135.5, 131.2, 131.1, 130.0, 129.7, 129.6, 129.5, 129.3, 

128.5, 128.2, 128.0, 127.7, 127.2, 127.2, 126.4, 126.2, 126.1, 125.6, 125.3, 125.2, 124.8, 

124.3, 123.3, 122.4, 122.1, 121.3, 120.7, 119.9, 118.6, 114.5, 114.1, 114.0, 112.5, 69.9. 

MALDI-ToF MS: Found 1458.93 (MH+ calcd. 1459.43). Anal. Calcd. for C98H66N4O4S3:  

C, 80.63; H, 4.56, N, 3.84. Found C, 80.56; H, 4.64; N, 3.82.   

Synthesis of compound 2-2L 

0.53 g (0.86 mmol) of compound 2-26, 0.20 g (0.41 mmol) of dihydroxy 

benzthiadiazole (2-3), 0.27 g (10.25 mmol) of tripheynylphosphine and THF (20 mL) 

were placed in a round bottom flask, and the reaction mixture was cooled to 0 oC. To the 

cold reaction mixture, 0.16 mL (1.03 mmol) of diethylazodicarboxylate was added via 

syringe and stirred at room temperature for 12 h. The crude reaction mixture was 

partitioned between water and dichloromethane and organic layer was dried over 

anhydrous Na2SO4 and solvent was removed under reduced pressure. The product was 

purified by column chromatography using 50% dichloromethane in hexanes as the eluent 

to afford the product (1.04 g, 72% yield). 1H NMR (CDCl3, ppm): δ 8.17-7.76 (m, 22H, 

a, b, c), 7.37-6.79 (m, 44H, d), 5.09 (s, 4H, e), 4.97 (s, 4H, f), 4.91 (s, 4H, g). 13C NMR 

(CDCl3, ppm): δ 159.5, 159.4, 159.1, 152.7, 149.2, 148.7, 145.6, 141.0, 139.0, 138.8, 
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2-3L 

138.7, 138.4, 135.8, 131.5, 131.3, 130.3, 130.0, 129.9, 129.8, 129.8, 129.5, 128.8, 128.5, 

128.3, 128.0, 127.5, 127.5, 126.4, 126.6, 126.5, 126.3, 125.9, 125.5, 125.4, 125.1, 124.6, 

124.6, 122.6, 122.3, 121.6, 121.0, 120.3, 120.1, 119.0, 114.8, 114.4, 114.2, 114.2, 112.8, 

70.2, 70.1. MALDI-ToF MS: Found 1671.70 (MH+ calcd. 1672.04). Anal. Calcd. for 

C112H78N4O6S3: C, 80.45; H, 4.70; N, 3.35. Found C, 80.15, H, 4.81, N, 3.28. 

Synthesis of compound 2-3L 

0.50 g (0.69 mmol) of compound 2-27, 0.16 g (0.33 mmol) of dihydroxy 

benzthiadiazole (2-3), 0.22 g (0.82 mmol) of tripheynylphosphine and THF (20 mL) were 

placed in a round bottom flask, and the reaction mixture was cooled to 0 oC. To the cold 

reaction mixture, 0.13 mL (0.82 mmol) of diethylazodicarboxylate was added via syringe 

and stirred at room temperature for 12 h. The crude reaction mixture was partitioned 

between water and dichloromethane and organic layer was dried over anhydrous Na2SO4 

and solvent was removed under reduced pressure. The product was purified by column 

chromatography using 75% dichloromethane in hexane as the eluent to afford the product 

(0.96 g, 73% yield). 1H NMR (CDCl3, ppm): δ 8.18-7.77 (m, 22H, a, b, c), 7.36-6.77 (m, 

52H, d), 5.09 (s, 4H, e), 5.05 (s, 4H, f), 4.93 (s, 4H, g), 4.89 (s, 4H, h). 13C NMR (CDCl3, 

ppm): δ 159.2, 159.1, 159.0, 158.8, 148.9, 148.4, 145.3, 140.6, 138.7, 138.5, 138.5, 

138.4, 138.1, 135.4, 131.2, 131.0, 130.0, 129.7, 129.7, 129.6, 129.5, 129.2, 128.5, 128.2, 

128.0, 127.7, 127.2, 126.3, 126.2, 126.0, 125.2, 125.1, 125.5, 124.8, 124.3, 123.2, 122.3, 

122.0, 121.2, 120.7, 120.0, 119.8, 118.7, 114.5, 114.4, 114.1, 113.9, 113.8, 69.9, 69.8. 
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3-16 

MALDI-ToF MS: Found 1883.89 (MH+ calcd. 1884.28). Anal. Calcd. for 

C126H90N4O8S3: C, 80.31; H, 4.81; N, 2.97. Found C, 80.12; H, 4.96; N, 2.84. 

Synthesis of compound 3-16  

A mixture of N-phenylpyren-1-amine (5.00 g, 11.53 mmol), 2-(3-bromophenyl)-

1,3-dioxolane (3.96 g, 17.30 mmol), Pd(dba)2 (0.05 g, 0.06 mmol), (t-Bu)3P (0.06 g, 0.11 

mmol), and toluene (100 mL) was heated at 80 ºC for 8 h. After cooling, the reaction 

mixture was poured into ice water and extracted with diethyl ether (3 × 30 mL) and the 

combined extract was dried over anhydrous MgSO4. The solvent was evaporated to yield 

yellow syrup and further purified by column chromatography using 50% 

dichloromethane in hexane as the eluent to yield pale yellow solid as a product (5.50 g, 

82% yield).  1H NMR ((CD3)2CO), ppm): δ 8.46-7.67 (m, 9H, a), 7.66-6.90 (m, 8H, b), 

5.62 (s, 1H, c), 4.00-3.81 (m, 4H, d), 2.62-2.50 (m, 2H, e), 1.60 (br, 2H, f), 1.29 (br, 14H, 

g), 0.85 (br, 3H, h). 13C NMR (CDCl3, ppm): δ 149.4, 146.4, 139.2, 137.4, 129.8, 129.5, 

128.1, 128.0, 127.9, 126.6, 126.5, 125.4, 125.3, 125.3, 123.8, 119.3, 104.1, 65.4, 35.7, 

32.2, 31.8, 30.0, 29.7, 23.0, 14.5.  
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3-17 

Synthesis of compound 3-17 

 

 

 

 

A suspension of compound 3-16 (2.21 g, 3.80 mmol) in glacial acetic acid (25 

mL) was heated to 50 ºC. After a clear solution is formed 4 mL of water was added and 

maintained at 50 ºC for 3 h. The reaction mixture was then cooled and 50 mL ice water 

was added.  The mixture was extracted with ethyl acetate and washed several times with 

water, NaHCO3 solution and passed over Na2SO4.  The organic layer was collected, 

combined and dried under reduced pressure and flushed through the column. The yellow 

solid was obtained as a product (1.59 g, 78% yield). 1H NMR (CDCl3, ppm) 9.79 (s, 1H, 

a), 8.30 – 7.67 (m, 9H, b), 7.59 – 6.93 (m, 8H, c), 2.59 – 2.47 (m, 2H, d), 1.53 (d, J = 1.0, 

2H, e), 1.23 (s, 14H, f), 0.84 (d, J = 6.5, 3H, g).  13C NMR, (CDCl3, ppm): δ 192.8, 

150.2, 145.6, 140.4, 138.5, 137.8, 131.6, 131.3, 130.2, 130.1, 129.8, 128.5, 127.8, 127.7, 

127.5, 126.7, 126.6, 126.5, 126.2, 125.7, 125.6, 125.1, 123.8, 123.3, 122.2, 120.9, 35.7, 

32.3, 31.8, 29.9, 23.0, 14.5.   

Synthesis of compound 3-18 
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3-19 

Compound 3-17 (1.99 g, 3.70 mmol) was dissolved in 20 mL tetrahydrofuran and 

diluted with 30 mL methanol. Sodium borohydride (0.17 g 4.44 mmol) was added in 

portions with efficient stirring. After the addition is complete the mixture was allowed to 

stir overnight. After completion of the reaction, the mixture was poured into water and 

the compound was extracted with diethyl ether. The organic extract was collected, dried 

over anhydrous MgSO4 and evaporated to yield a yellow solid which was purified by 

column chromatography using 50% dichloromethane in hexane as the eluent to yield a 

yellow powder as a product (1.95 g, 98% yield). 1H NMR (CDCl3, ppm): δ 8.21-7.80 (br, 

9H, a), 7.12-6.88 (m, 8H, b), 4.52 (s, 2H, c), 2.53 (br, 2H, d), 1.39 (br, 2H, e), 1.25 (br, 

14H, f), 0.87 (br, 3H, g).  13C NMR, (CDCl3, ppm): δ 148.9, 148.5, 142.3, 141.3, 137.3, 

131.5, 131.3, 129.8, 129.6, 129.5, 128.5, 128.1, 127.9, 127.5, 127.3, 126.6, 126.5, 126.3, 

125.4, 125.3, 125.1, 123.7, 123.1, 120.7, 119.9, 119.8, 65.5, 35.6, 32.2, 31.8, 29.8, 23.0, 

14.5. 

Synthesis of compound 3-19 

10.0 g (18.53 mmol) of compound 3-18 and catalytic amount of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 6.50 mL 

(37.05 mmol) of triethylamine and 2.87 mL (37.05 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 
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3-20 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 7.96 g (92.46 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane. The combined organic layer was dried over 

Na2SO4 and evaporated under reduced pressure. The crude product was purified by 

column chromatography using 50% dichloromethane in hexane to afford the product. 

(11.20 g 97% yield) 1H NMR (CDCl3, ppm): δ 8.21-7.79 (m, 9H, a), 7.17-6.85 (m, 8H, 

b), 4.31 (s, 2H, c), 2.60 – 2.48 (br, 2H, d), 1.54 (br, 2H, e), 1.28 (br, 14H, f), 0.87 (t, J = 

6.8, 3H, g).  13C NMR (CDCl3, ppm): δ 148.9, 148.0, 141.0, 139.0, 131.5, 131.4, 129.9, 

129.8, 129.5, 128.5, 128.3, 127.9, 127.5, 127.4, 126.6, 125.5, 125.4, 125.1, 123.6, 123.4, 

121.9, 121.2, 121.0, 35.6, 34.1, 32.2, 31.8, 29.9, 23.0, 14.5. 

Synthesis of compound 3-20 

A mixture of 0.93 g (6.32 mmol) of 3,5-dihydroxybenzyl alcohol, 8.00 g (13.2 

mmol) of compound 3-19, 2.70 g (18.96 mmol) of K2CO3 and 0.17 g (0.63 mmol) of 18-

crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 
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3-6 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 10% ethyl acetate in dichloromethane as the eluent to 

yield yellow solid as a product (4.55 g, 56% yield). 1H NMR (CDCl3, ppm): δ 8.18-7.76 

(m, 18H, a), 7.21-6.86 (m, 16H, b), 6.30 (s, 2H, c), 6.23 (s, 1H, d), 4.77 (s, 4H, e), 4.38 

(s, 2H, f), 2.52 (br, 4H, g), 1.46 (br, 4H, h) 1.24 (br, 28H, i), 0.86 (br, 6H, j).  13C NMR 

(CDCl3, ppm): δ 160.0, 149.5, 146.3, 143.4, 141.2, 138.2, 127.4, 131.5, 131.3, 129.7, 

129.6, 129.5, 128.4, 128.1, 127.9, 127.5, 127.3, 126.6, 126.4, 126.3, 125.4, 124.3, 125.1, 

123.7, 123.2, 120.7, 120.4, 120.2, 105.7, 101.2, 70.1, 65.3, 35.6, 32.2, 31.8, 29.9, 23.1, 

14.5. 

Synthesis of compound 3-6 

3.60 g (3.04 mmol) of compound 3-20 and catalytic amount of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 1.00 mL 

(7.60 mmol) of triethylamine and 0.50 mL (6.08 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 
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3-21 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 1.31 g (15.20 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 

mixture was partitioned between water and dichloromethane. The aqueous layer was 

extracted twice with dichloromethane, dried over Na2SO4 and evaporated under reduced 

pressure. The crude product was purified by column chromatography using 50% hexane 

in dichloromethane as the eluent to afford the product. (3.69 g, quantitative yield)  1H 

NMR (CDCl3, ppm): δ 8.20-7.76 (m, 18H, a), 7.23-6.68 (m, 16H, b), 6.33 (s, 2H, c), 6.23 

(s, 1H, d), 4.75 (s, 4H, e), 4.16 (s, 2H, f), 2.51 (br, 4H, g), 1.54 (br, 4H, h), 1.24 (br, 28H, 

i), 0.86 (m, 6H, j).  13C NMR, (CDCl3, ppm): δ 160.0, 149.5, 146.2, 141.2, 139.6, 138.0, 

137.5, 131.5, 131.3, 129.8, 129.5, 128.4, 128.2, 127.9, 127.5, 127.3, 126.6, 126.5, 126.3, 

125.4, 125.3, 125.1, 123.7, 123.3, 120.7, 120.3, 120.2, 108.2, 102.2, 70.2, 35.7, 33.8, 

32.2, 21.8, 29.9, 23.0, 14.5.  

Synthesis of compound 3-21 
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3-7 

A mixture of 0.11 g (0.73 mmol) of 3,5-dihydroxybenzyl alcohol, 3.70 g (1.52 

mmol) of compound 3-6, 0.31 g (2.14 mmol) of K2CO3 and 0.04 g (0.07 mmol) of 18-

crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 50% dichloromethane in hexane as the eluent to afford 

the product. (1.47 g, 78% yield)  1H NMR (CDCl3, ppm): δ 8.15-7.72 (m, 36H, a), 7.19-

7.08 (m, 4H, b), 7.05-6.85 (m, 28H, c), 6.48 (s, 2H, d), 6.38 (s, 5H, e), 6.25 (s, 2H, f), 

4.74 (s, 8H, g), 4.69 (s, 4H, h), 4.53 (s, 2H, i), 2.49 (br, 8H, j), 1.54 (br, 8H, k), 1.22 (br, 

56H, l), 0.85 (m, 12H, m).  13C NMR, (CDCl3, ppm): δ 160.3, 149.5, 146.3, 143.6, 141.2, 

139.2, 138.2, 137.4, 131.5, 131.4, 129.8, 129.7, 129.5, 128.4, 128.2, 127.9, 127.5, 127.3, 

126.6,126.5, 126.3, 125.4, 125.3, 125.1, 123.7, 123.2, 120.7, 120.3, 106.6, 105.9, 101.6, 

70.2, 65.6, 35.7, 32.2, 31.8, 29.9, 23.0, 14.5. 

Synthesis of compound 3-7 
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1.00 g (0.41 mmol) of compound 3-21 and catalytic amount of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 0.14 mL 

(1.02 mmol) of triethylamine and 0.06 mL (0.81 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 0.17 g (2.03 mmol) of LiBr was added and 

the contents were allowed to reflux overnight. After completion of the reaction, the 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane, dried over Na2SO4 and evaporated under 

reduced pressure. The crude product was purified by column chromatography using 50% 

dichloromethane in hexane to afford the product (1.03 g, quantitative yield) 1H NMR 

(CDCl3, ppm): δ 8.15-7.71 (m, 36H, a), 7.31-7.07 (m, 4H, b), 7.04-6.85 (m, 28H, c), 6.49 

(s, 2H, d), 6.35 (s, 5H, e), 6.25 (s, 2H, f), 4.74 (s, 8H, g), 4.64 (s, 4H, h), 4.33 (s, 2H, i), 

2.49 (br, 8H, j), 1.54 (br, 8H, k), 1.22 (br, 56H, l), 0.85 (m, 12H, m).  13C NMR, (CDCl3, 

ppm): δ 159.8, 149.11, 145.9, 140.8, 139.5, 138.5, 137.7, 137.0, 131.1, 130.9, 129.4, 

129.3, 128.0, 127.7, 127.5, 127.1, 126.9, 126.2, 126.0, 125.9, 125.0, 124.9, 124.7, 123.3, 

122.8, 120.3, 120.0, 119.8, 107.9, 106.2, 101.3, 69.7, 35.2, 33.5, 31.8, 29.5, 22.6, 14.1. 
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3-22 

Synthesis of compound 3-22 

 

 

 

 

 

 

 

 

 

 

 

 

A mixture of 0.03 g (0.27 mmol) of 3,5-dihydroxybenzyl alcohol, 1.43 g (0.56 

mmol) of compound 3-7, 0.12 g (0.86 mmol) of K2CO3 and 0.07 g (0.03 mmol) of 18-

crown-6 was heated at reflux and stirred vigorously under argon for 12 h. The reaction 

mixture was allowed to cool to room temperature and solvent was evaporated to dryness. 

The residue was partitioned between water and dichloromethane. The organic layer was 

separated and aqueous layer was extracted with dichloromethane. The combined organic 

layer was dried over Na2SO4 and evaporated to dryness. The crude product was purified 

by column chromatography using 50% dichloromethane in hexane to afford the product. 

(0.63 g, 53% yield) 1H NMR (CDCl3, ppm): δ 8.22-7.62 (m, 72H, a), 7.20-6.16 (m, 85H, 

b), 4.84-4.57 (m, 28H, c), 4.47 (s, 2H, d), 2.46 (br, 16H, e), 1.55 (br, 16H, j), 1.20 (br, 
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3-8 

56H, g), 0.84 (br, 24H, h).  13C NMR (CDCl3, ppm): δ 160.4, 149.3, 145.9, 140.4, 138.2, 

136.3, 130.9, 128.7, 127.5, 126.0, 124.8, 123.3, 120.3, 106.5, 106.1, 70.2, 35.0, 31.6, 

29.3, 22.1, 14.0. 

Synthesis of compound 3-8 

0.50 g (0.09 mmol) of compound 3-22 and catalytic amount of DMAP were 

dissolved in THF and the solution was cooled to 0 oC under argon atmosphere. 0.04 mL 

(0.25 mmol) of triethylamine and 0.02 mL (0.19 mmol) of mesyl chloride were added 

dropwise, and allowed to stir at room temperature for 3 h. Upon completion of the 

reaction, water was added and the compound was extracted with dichloromethane. The 

organic layer was concentrated under reduced pressure to afford crude mixture which was 

taken for further step without any purification.  

To the above crude mixture in THF, 0.04 g (0.50 mmol) of LiBr was added and 
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3-1 

the contents were allowed to reflux overnight. After completion of the reaction, the 

reaction mixture was partitioned between water and dichloromethane. The aqueous layer 

was extracted twice with dichloromethane, dried over Na2SO4 and evaporated under 

reduced pressure. The crude product was purified by column chromatography using 

dichloromethane to afford the product (0.21 g, 40% yield).  1H NMR (CDCl3, ppm): δ 

8.22-7.65 (m, 72H, a), 7.15-6.79 (m, 63H, b), 6.51 (s, 8H, b), 6.32 (s, 10H, b), 6.21 (s, 

4H, b), 4.81 (s, 4H, c), 4.53-4.74 (s, 24H, c), 4.25 (s, 2H, d), 2.46 (br, 16H, e), 1.54 (br, 

16H, f), 1.20 (br, 56H, g), 0.84 (br, 24H, h).  13C NMR, (CDCl3, ppm): δ 159.6, 149.0, 

145.9, 140.7, 139.0, 137.9, 136.5, 131.0, 129.3, 128.2, 127.9, 126.2, 124.8, 123.4, 122.7, 

120.3, 119.6, 106.2, 69.7, 34.9, 31.8, 29.7, 22.5, 14.2. 

Synthesis of compound 3-1 

A mixture of 0.20 g (0.41 mmol) of dihydroxy benzthiadiazole unit (2-3), 0.03 g 

(0.38 mmol) of propargyl bromide, 0.15 g (1.13 mmol) of K2CO3 and 0.05 g (0.19 mmol) 

of 18-crown-6 was heated at reflux and stirred vigorously under argon overnight. The 

reaction mixture was allowed to cool to room temperature and solvent was evaporated to 

dryness. The residue was partitioned between water and dichloromethane. The organic 

layer was separated and aqueous layer was extracted with dichloromethane. The 

combined organic layer was dried over Na2SO4 and evaporated to dryness. The crude 

product was purified by column chromatography using 10% ethyl acetate in 

dichloromethane as the eluent to afford the product. (0.09g, 43% yield) 1H NMR 

(DMSO-D6, ppm): δ δ 8.14 (br, 2H, a), 7.90 (br, 2H, b), 7.59-7.14 (m, 8H, c, d), 6.96-
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3-9 

6.79 (br, 2H, e), 4.80 (s, 2H, f), 2.59 (s, 1H, g)  13C NMR, (CDCl3, ppm): δ 157.4, 151.3, 

145.5, 144.7, 137.9, 134.1, 129.2, 125.0, 118.4, 116.1, 114.6, 113.5, 111.9, 75.2, 55.4. 

Synthesis of compound 3-9  

A mixture of 0.04 g (0.08 mmol) of 3-1, 0.10 g (0.08 mmol) of compound 3-6, 

0.03 g (2.20 mmol) of K2CO3 and 2.00 mg (0.008 mmol) of 18-crown-6 was heated at 

reflux and stirred vigorously under argon for 12 h. The reaction mixture was allowed to 

cool to room temperature and solvent was evaporated to dryness. The residue was 

partitioned between water and dichloromethane. The organic layer was separated and 

aqueous layer was extracted with dichloromethane. The combined organic layer was 

dried over Na2SO4 and evaporated to dryness. The crude product was purified by column 

chromatography using 30% ethyl acetate in hexane to afford the product. (0.05 g, 48% 

yield)  1H NMR (CDCl3, ppm): δ 8.20-7.74 (m, 22H, a, b, c), 7.46-6.82 (br, 26H, d, e, f, 

g), 6.47 (s, 2H, h), 6.30 (s, 1H, i), 4.71-4.92 (m, 8H, j), 2.57 (s, 1H, k), 2.51 (br, 4H, l), 

1.56 (br, 4H, m), 1.26 (br, 28H, n), 0.87 (t, J = 6.8, 6H, o).  13C NMR (CDCl3, ppm): δ: 

159.8, 159.0, 158.0, 152.4, 149.2, 145.9, 145.3, 145.1, 140.8, 138.9, 138.6, 137.8, 137.1, 
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3-10 

135.5, 135.3, 131.1, 129.9, 129.4, 129.1, 128.5, 128.1, 127.8, 127.6, 127.2, 126.9, 126.3, 

125.9, 125.7, 125.3, 124.7, 124.4, 123.3, 122.8, 120.5, 119.9, 119.2, 118.6, 113.9, 

112.5,106.2, 101.5, 69.7, 55.6, 35.2, 31.8, 29.4, 22.1, 13.8. 

Synthesis of compound 3-10 

A mixture of 0.02 g (0.04 mmol) of 3-1, 0.10 g (0.04 mmol) of compound 3-7, 

0.02 g (0.11 mmol) of K2CO3 and 1.00 mg (0.004 mmol) of 18-crown-6 was heated at 

reflux and stirred vigorously under argon for 12 h. The reaction mixture was allowed to 

cool to room temperature and solvent was evaporated to dryness. The residue was 

partitioned between water and dichloromethane. The organic layer was separated and 

aqueous layer was extracted with dichloromethane. The combined organic layer was 

dried over Na2SO4 and evaporated to dryness. The crude product was purified by column 

chromatography using 30% ethyl acetate in hexane to afford the product. (0.17g, 75% 

yield).  1H NMR (CDCl3, ppm): δ 8.31-7.52 (m, 40H, a, b, c), 7.47-7.27 (m, 10H, d), 

7.21-7.06 (m, 4H, e), 7.08-6.79 (m, 28H, f), 6.62 (s, 2H, g), 6.37 (s, 5H, h), 6.25 (s, 2H, 
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i), 4.63-5.07 (s, 16H, j), 2.57 (br, 1H, k), 2.47 (br, 8H, l), 1.56 (br, 8H, m), 1.11-1.39 (br, 

28H, n), 0.84 (m, 12H, o). 13C NMR (CDCl3, ppm): δ 160.1, 159.7, 159.1, 157.9, 152.4, 

149.1, 145.9, 145.3, 145.0, 140.9, 139.2, 138.8, 137.9, 137.0, 135.6, 131.2, 131.0, 129.9, 

129.5, 129.3, 129.1, 128.6, 128.1, 127.9, 127.5, 127.3, 127.1, 126.3, 126.0, 125.7, 125.3, 

125.1, 124.8, 124.3, 123.4, 122.9, 120.4, 120.1, 119.7, 119.2, 118.5, 114.1 112.5, 106.2, 

101.2, 70.1, 55.9, 35.2, 31.4, 29.4, 22.5, 13.8. 

Synthesis of compound 3-11 

  A mixture of 0.01 g (0.03 mmol) of 3-1, 0.15 g (0.03 mmol) of compound 3-8, 

0.01 g (0.08 mmol) of K2CO3 and 3.00 mg (0.01 mmol) of 18-crown-6 was heated at 

reflux and stirred vigorously under argon for 12 h. The reaction mixture was allowed to 

cool to room temperature and solvent was evaporated to dryness. The residue was 

partitioned between water and dichloromethane. The organic layer was separated and 
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aqueous layer was extracted with dichloromethane. The combined organic layer was 

dried over Na2SO4 and evaporated to dryness. The crude product was purified by column 

chromatography using 50% dichloromethane in hexane to afford the product. (0.03 g, 

19% yield)  1H NMR (CDCl3, ppm): δ 8.11-7.67 (m, 76H, a, b, c), 7.14-6.80 (m, 72H, d, 

e, f), 6.63-6.51 (br, 8H, g, h), 6.30-6.19 (m, 15H, i), 4.98-4.81 (br, 8H, k), 4.71-4.53 (m, 

24H, j), 2.54 (s, 1H, l), 2.44 (br, 16H, m), 1.55 (br, 16H, n), 1.20 (br, 56H, o), 0.83 (br, 

24H, p). 13C NMR, (CDCl3, ppm): δ 160.0, 149.3, 145.9, 141.0, 137.9, 136.9, 131.4, 

129.3, 128.2, 127.2, 125.8, 125.1, 122.7, 119.6, 35.2, 31.4, 29.1, 22.5, 13.8. 

Synthesis of compound 3-3 

Naphthalene dianhydride (15.0 g, 0.55 mol) was taken into a three-necked flask 

with freshly distilled DMF.  The slurry was heated to about 140 oC under N2 atmosphere.  

To this, decylamine (11.1 mL, 0.55 mol) was added dropwise for about 10 minutes and 

the reaction mixture was refluxed overnight.  After the complete consumption of 

naphthalene dianhydride, 3-amino-1-propanol (4.20 mL, 0.55 mol) was added and the 

mixture was left at reflux for overnight.  After completion of the reaction, the mixture 

was cooled down and DMF was evaporated under low pressure.  The residue was 

partitioned between dichloromethane and water and dried over MgSO4.  The organic 

layer was collected and concentrated under low pressure.  The crude product was purified 

by column chromatography using 30% dichlomethane in hexane to afford the product 

(13.25 g, 51% yield). 1H NMR (CDCl3, ppm): δ 8.72 (s, 4H, a), 4.45( br, 2H, b), 4.20 (br, 

2H, c), 3.68 (br, 2H, d), 1.98 (br, 2H, e), 1.75(2H, f), 1.30 (br, 14H, g), 0.98 (br, 3H, h) 



 170

NN

O

O

O

O

O

O

a

b

c
d e

f
g

h

a

a a
H

H

i j

j

j

j

j

j

j

k

 
3-4 

N3
OH
ab

c  
3-23 

13C-NMR (CDCl3, ppm): δ 163.5, 131.2, 120.6, 59.2, 40.4, 36.4, 31.8, 29.5, 29.3, 28.1, 

27.1, 22.7, 14.1. 

Synthesis of compound 3-4 

Compound 3-3 (1.32 g, 2.84 mmol) and a catalytic amount of DMAP were placed 

into a round bottom flask and THF was added as a solvent. The solution was cooled to 0 

oC and triethylamine (0.79 mL, 5.67 mmol) was added followed by mathacryloyl chloride 

(0.55 mL, 5.67 mmol). The mixture was left at room temperature overnight. After the 

completion of the reaction, the mixture was extracted using water and dichloromethane. 

Organic layer was collected and evaporated under reduced pressure. The crude product 

was purified by column chromatography using dichloromethane to afford pale yellow 

solid as a product (0.79g, 49% yield).  1H NMR (CDCl3, ppm): δ 8.78 (s, 4H, a), 6.12 (m, 

1H, b), 5.54 (m, 1H, c), 4.30 (m, 6H, d, e, f), 2.20 (m, 2H, g), 1.76 (m, 2H, h), 1.45 (s, 

3H, i), 1.28 (m, 14H, j), 0.89 (s, 3H, k)  13C NMR (CDCl3, ppm): δ 167.2, 163.1, 136.3, 

131. 3, 131.1, 126.8, 126.3, 125.4, 63.7, 41.0, 38.2, 31.9, 29.5, 29.1, 28.0, 27.4, 26.9, 

22.5, 18.3, 14.1. 

Synthesis of compound 3-23 

To a round bottom flask, 0.25 g (3.08 mmol) chloroethanol and 0.30 g (4.61 

mmol) sodium azide were taken and 5 mL DMSO was added as a solvent.  The mixture 

was heated at 100 oC for overnight.  After completion of the reaction, water was added 
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and the mixture was extracted with dichloromethane (3x25 mL). The organic layer was 

combined and the solvent was evaporated. The product was obtained without any 

purifificaiton. 1H NMR (CDCl3, ppm): δ 5.24 (s, 1H, a), 3.68 (m, 2H, b), 3.31 (m, 2H, c) 

13C-NMR (CDCl3, ppm): δ 60.7, 53.3. 

Synthesis of compound 3-2 

. 0.25 g (0.99 mmol) of compound 3-23 and 0.96 g (1.99 mmol) 2-bromoisobutylic 

acid were dissolved in 30 mL dichloromethane. The reaction mixture was cooled down in 

ice-water bath and a solution of 1.18 g (1.99 mmol) dicylclohexyl carbodiimide in 10 mL 

dichloromethane was slowly added while stirring.  A solution of 0.17 g (0.49 mmol) 4-

dimethylaminopyridine in 5 mL dichloromethane was subsequenly added. The mixture 

was stirred at 0 oC for 1 h and then at room temperature for 24 h. The precipitated 

dicyclohexyl urea was filltered on cotton twice and washed with dichloromethane.  The 

solution was extraced with a solution of NaHCO3 (5%) followed by dichloromethane 

(3x25 mL) and dried over MgSO4.  The volatiles were removed by reduced pressure and 

the crude product was purified by column chromatography using 10% ethylacetate in 

hexane.  The product was obtained as a colorless liquid with a quantitative yield.  1H 

NMR (CDCl3, ppm): δ 4.34 (br, 2H, a), 3.53 (br, 2H, b), 1.96 (s, 6H, c) 13C NMR 

(CDCl3, ppm): δ 171.4, 64.6, 55.2, 49.6, 30.6. 
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Synthesis of compound 3-5 

 

 

 

 

 

4.00 mg (0.03 mmol) of Cu(I)Br was taken in a 5 mL round bottom flask 

equipped with a septum and gas inlet/outlet. The flask was degassed with argon for 5 

min. Then, 12.0 µL (0.06 mmol) of N,N,N’,N’,N’’-pentamethyl diethylenetriamine 

(PMDETA) was added and stirred for 5 more minutes. To this reaction mixture, the 

solution of the monomer 3-4 (800 mg, 1.50 mmol) in 400 µL degassed anisole was added 

and it was stirred for another 5 minutes. To this mixture, 5.00 µL (0.03 mmol) of the 

initiator 3-2 was added and the flask was transferred to a preheated oil bath at 65 °C. The 

polymerization was carried out at the same temperature under argon atmosphere for 6 h. 

After that, the reaction was stopped and the polymer was dissolved in THF. The polymer 

solution was filtered though silica to remove copper salt and then precipitated from 

diethylether and dried over vacuum for 6 h. The polymer was obtained as a yellow-brown 

solid with 58% yield. 1H NMR (CDCl3, ppm): δ 8.94-7.95 (br, 4H, a), 4.35-3.83 (br, 8H, 

b, c, d, e), 3.72 (br, 2H, f), 2.21-1.89 (br, 7H, g, h, i), 1.89-1.54 (br, 2H, j), 1.49-0.93 (br, 

20H, k, l-r), 0.93-0.79 (br, 3H, s). Mn= 9326; PDI= 1.14; Degree of polymerization = 17. 



 173

N

N OO

OO

C10H21

O

O

BrO

O

O

O

N

C10H21

N

C10H21

NN
S

S S

O
O N

N
N

17

 
G1 dendron-rod coil 

Synthesis of G1 dendron-rod coil 

Compound 3-9 (19.0 mg, 11.0 µmole), compound 3-5 (75.0 mg, 9.20 µmole), 

CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) were added into a 

Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The mixture was stirred 

for 10 min and degassed by three freeze-thaw cycles. The Schlenk flask was placed in a 

constant temperature oil bath at 25 0C for 24 h.  After completion of the reaction, the 

THF in the mixture was removed by evaporation and the dry crude product was purified 

by column chromatography using 5% THF in dichloromethane to afford the product. 

(46.0 mg, 48% yield), SEC, Mn= 10800, PDI= 1.07.  
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G2 dendron-rod-coil 

Synthesis of compound G2 dendron-rod-coil 

Compound 3-10 (33.0 mg, 11.0 µmole), compound 3-5 (75.0 mg, 9.20 µmole), 

CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) were added into a 

Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The mixture was stirred 

for 10 min and degassed by three freeze-thaw cycles. The Schlenk flask was placed in a 

constant temperature oil bath at 25 0C for 24 h.  After completion of the reaction, the 

THF in the mixture was removed by evaporation and the dry crude product was purified 

by column chromatography using 5% THF in dichloromethane to afford the product. 

(80.0 mg, 76% yield), SEC, Mn= 12900, PDI= 1.05.  
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G3 dendron-rod-coil 

Synthesis of compound G3 dendron-rod-coil 

Compound 3-11 (76.0 mg, 11.0 µmole), compound 3-5 (75.0 mg, 9.20 µmole), 

CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) were added into a 

Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The mixture was stirred 

for 10 min and degassed by three freeze-thaw cycles. The Schlenk flask was placed in a 

constant temperature oil bath at 25 °C for 24 h. After completion of the reaction, the THF 

in the mixture as removed by evaporation and the dry crude product was purified by 

column chromatography using 5% THF in dichloromethane to afford the product. (62.0 

mg, 41% yield), SEC, Mn= 13200, PDI= 1.09. 
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Synthesis of compound 3-24  

A mixture of 0.05 g (0.10 mmol) of 3-1, 0.02 g (0.30 mmol) of benzyl bromide, 

0.04 g (0.29 mmol) of K2CO3 and 13.00 mg (0.05 mmol) of 18-crown-6 was heated at 

reflux and stirred vigorously under argon for 12 h. The reaction mixture was allowed to 

cool to room temperature and solvent was evaporated to dryness. The residue was 

partitioned between water and dichloromethane. The organic layer was separated and 

aqueous layer was extracted with dichloromethane. The combined organic layer was 

dried over Na2SO4 and evaporated to dryness. The crude product was purified by column 

chromatography using 50% ethyl acetate in hexane as the eluent to afford the product 

(0.04 g, 67% yield). 1H NMR (CDCl3, ppm): δ 8.13 (s, 2H, a), 7.91 (s, 2H, b), 7.38 (m, 

13H, c, d), 7.02 – 6.91 (m, 2H, e), 5.15 (s, 2H, f), 4.78 (s, 2H, g), 2.57 (s, 1H, h).13C 

(CDCl3, ppm): δ 159.2, 157.9, 145.6, 138.7, 136.8, 135.3, 130.1, 129.0, 127.5, 125.6, 

123.9, 119.6, 118.7, 114.4, 112.3, 69.9, 55.9. 

Synthesis of compound 3-12 
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Compound 3-24 (7.0 mg, 11.0 µmole), compound 3-5 (75.0 mg, 9.20 µmole), 

CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) were added into a 

Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The mixture was stirred 

for 10 min and degassed by three freeze-pump-thaw cycles. The Schlenk flask was placed 

in a constant temperature oil bath at 25 °C for 24 h.  After completion of the reaction, the 

THF in the mixture as removed by evaporation and the dry crude product was purified by 

column chromatography using 5% THF in dichloromethane to afford the product. (34.0 

mg, 40% yield), SEC, Mn= 9980 PDI= 1.08.  

Synthesis of compound 3-25 

1.00 g (4.78 mmol) of 8-bromooctanoic acid was placed in a round bottom flask 

and 20 mL of dichloromethane was added as a solvent.  To this solution, 0.83 mL (9.57 

mmol) of oxalyl chloride was slowly added.  The reaction mixture was stirred at room 

temperature for 6 h.  Then, the solvent was removed by a rotary evaporator to yield the 

corresponding acid chloride which was further used for the next step without purification. 

To the round bottom flask, 1.09 g (4.78 mmol) of acid chloride, 1.11 g (2.38 

mmol) of compound 3-3, 0.45 mL (4.78 mmol) of triethylamine, and catalytic amount of 

DMAP were added and THF was used as a solvent. The mixture was stirred at room 

temperature overnight.  After completion of the reaction, water was added and the 

mixture was partitioned between dichloromethane and water.  The organic layer was 

collected and concentrated using a rotary evaporator.  The crude product is purified by 
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column chromatography using 50% dichloromethane in hexane to obtain the product. 

(0.37 g, 23% yield)  1H NMR (CDCl3, ppm): δ 8.79 (s, 4H, a), 4.35 (t, J = 7.1, 2H, b), 

4.27 – 4.15 (m, 4H, c, d), 3.43 (m, 4H, e, f), 1.94 – 1.86 (m, 4H, g, h), 1.66 (m, 4H, i, j), 

1.36 (m, 20H, k), 0.89 (t, J = 6.7, 3H, l). 13C NMR (CDCl3, ppm): δ 173.0, 162.3, 130.9, 

126.4, 61.8, 45.1, 41.0, 38.1, 34.2, 32.6, 31.9, 29.6, 29.3, 28.9, 28.5, 28.1, 27.4, 27.0, 

26.6, 24.8, 22.5, 14.2. 

Synthesis of compound 3-15 

0.046 g (0.07 mmol) of compound 3-25 and 0.007 g (0.11 mmol) of sodium azide 

were added into a round bottom flask and acetonitrile was added as a solvent.  The 

mixture was left at reflux overnight.  After completion of the reaction, water was added 

and the mixture was partitioned between dichloromethane and water.  The organic layer 

was collected and evaporated to obtain an azide functionalized naphthalene bisimide 

derivative (3-14).  This product was further used in the next step without purification. 1H 

NMR (CDCl3, ppm): δ 8.79 (s, 4H), 4.35 (t, J = 7.2, 2H), 4.29 – 4.17 (m, 4H), 3.28 (t, J = 

6.9, 2H), 2.31 (t, J = 7.5, 2H), 2.23 – 2.10 (m, 2H), 1.77 (s, 2H), 1.68 – 1.52 (m, 4H), 

1.31 (d, J = 22.1, 20H), 0.89 (t, J = 6.8, 3H). 

Above prepared compound (3-14) (8.00 mg, 9.20 µmole), compound 3-9 (19.0 

mg, 11.0 µmole), CuBr (5.30 mg, 37.0 µmole) and PMDETA (8.00 µL, 37.0 µmole) 
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were added into a Schlenk flask and 1 mL anhydrous THF was added as a solvent.  The 

mixture was stirred for 10 min and degassed by three freeze-pump-thaw cycles. The 

Schlenk flask was placed in a constant temperature oil bath at 25 °C for 24 h.  After 

completion of the reaction, the THF in the mixture as removed by evaporation and the 

dry crude product was purified by column chromatography using 5% THF in 

dichloromethane to afford the product (22.0 mg, 78% yield).  1H NMR (CDCl3, ppm): δ 

8.62 (s, 4H, a), 8.16 – 7.55 (m, 22H, b, c, d), 7.39 – 6.87 (m, 26H, e), 6.88 – 6.74 (m, 1H, 

f), 6.46 (s, 2H, g), 6.30 (s, 1H, h), 5.29 (s, 2H, i), 4.81 (s, 6H, j), 4.01-4.38 (m, 8H, k), 

2.57 – 2.43 (m, 4H, l), 2.26 (m, 2H, m), 2.07 (m, 2H, n), 1.93 (m, 2H, o), 1.59 (m, 28H, 

p, q, r), 1.24 (br, 28H, s), 0.85 (br, 9H, t) 13C NMR (CDCl3, ppm): δ 174.2, 162.7, 159.7, 

158.5, 152.4, 149.3, 145.5, 143.5, 140.9, 138.8, 137.9, 137.1, 135.4, 131.3, 131.0, 130.0, 

129.2, 128.6, 127.9, 127.8, 127.4, 127.2, 126.9, 126.6, 126.3, 126.1, 126.9, 125.6, 125.3, 

125.0, 124.8, 124.2, 123.4, 122.9, 122.6, 120.4, 120.1, 119.9, 118.9, 111.9, 106.9, 101.5, 

69.4, 62.5, 50.7, 35.3, 34.0, 31.9, 31.4, 29.7, 28.8, 27.5, 27.0, 26.1, 24.7, 22.7, 14.1  SEC, 

Mn= 2700, PDI= 1.03. 

Synthesis of compound 4-5 

In a two-necked 250 mL round-bottom flask filled with 20 mL chloroform, 1.00 g 

(5.00 mmol) of ProDOT was added and the solution was bubbled under argon for 20 min.  

Then, 0.88 g (5.00 mmol) of N-bromosuccinimide (NBS) was added and the solution was 

stirred for 20 h.  After completion, the solvent was removed under vaccuo and the 
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resulting residue was purified by column chromatography using 10% ethyl acetate in 

CH2Cl2 to get a white solid was as a product (0.49 g, 32 %yield).  1H NMR ((CD3)2CO, 

ppm): δ 6.72 (s, 1H, a), 4.00 (m, 2H, b), 3.61 (m, 2H, b), 3.61 (s, 2H, c), 0.96 (s, 3H, d) 

13C NMR ((CD3)2CO,  ppm): δ 147.8, 90.8, 76.9, 63.7, 43.7, 16.1. 

Synthesis of compound 4-2 

In a two-necked 250 mL round-bottom flask filled with 20 mL chloroform, 0.66 g 

(3.00 mmol) of ProDOT was added and the solution was bubbled under argon for 20 

minutes.  Then, 1.11 g (9.00 mmol) of N-bromosuccinimide (NBS) was added and the 

solution was stirred for 20 h.  After completion, the solvent was removed under vaccuo 

and the resulting residue was purified by column chromatography using 100% CH2Cl2.  

The white solid was obtained as a product (1.17 g, quantitative yield).  1H NMR 

((CD3)2CO, ppm): δ 4.00 (d, 2H, J = 12.0, a), 3.73 (d, 2H, J = 12, a), 3.60 (s, 2H, b), 0.97 

(s, 3H, d) 13C NMR ((CD3)2CO, ppm): δ 147.8, 90.8, 76.9, 63.7, 43.7, 16.1. 

Synthesis of compound 4-3 

 1.00 g, (2.80 mmol) of compound 4-2,  0.75 g (6.15 mmol) of phenyl boronic acid 

and 1 M aqueous solution of Na2CO3 (30 mL) were deaerated several times and placed 



 181

S

OO

OH

a

b

c b

c

e

d

f

e

g

 
4-6 

under argon followed by the addition of  0.10 g (0.08 mmol) of  Pd(PPh3)4.  The mixture 

was stirred under reflux for 10 h.  After this period, another portion of catalysts (0.01 g, 

0.008 mmol) was added after which the reaction mixture was stirred for another 4 hours 

under reflex.  The reaction mixture was then poured into CH2Cl2/ H2O and extracted with 

CH2Cl2 several times, and the combined organic fractions were washed with water, dried 

and then concentrated.  The resulting solid was purified by column chromatography using 

40% ethyl acetate in hexane to obtain a white solid as a product (0.60 g, 61% yield).  1H 

NMR (CDCl3, ppm): δ 7.72 (d, J = 8.2, 4H, c), 7.46 – 7.33 (m, 4H, b), 7.31 – 7.20 (m, 

2H, a), 4.25 (m, 2H, d), 3.90 (m, 2H, d), 3.84 (m, 2H, e), 1.03 (br, 3H, h).  13C NMR 

(CDCl3, ppm): δ 146.2, 132.4, 128.6, 126.5, 120.3, 65.6, 43.5, 17.0. 

Synthesis of compound 4-6 

1.00 g, (3.48 mmol) of compound 4-5,  0.52 g (4.30 mmol) of phenyl boronic acid 

and 1 M aqueous solution of Na2CO3 (30 mL) were deaerated several times and placed 

under argon followed by the addition of  0.12 g (0.11 mmol) of  Pd(PPh3)4.  The mixture 

was stirred under reflux for 10 h.  After this period, another portion of catalysts (0.01 g, 

0.01 mmol) was added after which the reaction mixture was stirred for another 4 hours 

under reflex.  The reaction mixture was then poured into CH2Cl2/ H2O and extracted with 

CH2Cl2 several times, and the combined organic fractions were washed with water, dried 

and then concentrated.  The resulting solid was purified by column chromatography using 
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50% ethyl acetate in hexane to get a white solid as a product (0.70 g, 70% yield). 1H 

NMR (CDCl3, ppm): δ 7.67 (d, J = 8.1, 2H, c), 7.36 (t, J = 7.7, 2H, b), 7.30 – 7.21 (m, 

1H, a), 6.46 (s, 1H, d), 4.17 (dd, J = 12.1, 26.3, 2H, e,), 3.90 – 3.75 (m, 4H, e, f), 0.99 (s, 

3H, g). 13C NMR (CDCl3, ppm): δ 150.4, 145.2, 133.1, 128.2, 126.5, 122.7, 103.1, 65.9, 

43.8, 16.6. 

Synthesis of compound 4-18 

To a two-necked 50 mL round bottom flask, 0.50 g (1.40 mmol) of compound 4-

2, 1.32 g (3.07 mmol) of 2-tributyltin EDOT (4-13) in DMF were deaerated several times 

and then handled under argon. 0.07 g (0.10 mmol) of Pd(PPh3)2Cl2 was added and the 

mixture was stirred at 80 oC for 2 h.  After completion of the reaction, water was added 

and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic layer was collected 

and dried over anhydrous MgSO4.  The resulting residue was purified by column 

chromatography using 50% ethylacetate in dichloromethane.  The yellow solid was 

obtained as a product (0.36 g, 53% yield).  1H NMR (CDCl3, ppm): δ 6.24 (s, 2H, a), 4.33 

(s, 4H, b), 4.21 (br, 6H, c, d), 3.85 (br, 2H, d), 3.75 (br, 2H, e), 0.96 (s, 3H, f)  13C NMR 

(CDCl3, ppm): δ 145.2, 141.0, 137.2, 112.8, 109.7, 97.6, 76.9, 65.5, 64.2, 63.5, 43.5, 

15.6. 
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Synthesis of compound 4-11 

To a two-necked 50 mL round bottom flask, 0.50 g (1.36 mmol) of compound 4-

2, 1.52 g (2.99 mmol) of 2-phenyl-5-tributyl tin EDOT (4-8) in DMF were deaerated 

several times and then handled under argon.  0.07 g (0.10 mmol) of Pd(PPh3)2Cl2 was 

added and the mixture was stirred at 80 oC for 2 h.  After completion of the reaction, 

water was added and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic 

layer was collected and dried over anhydrous MgSO4.  The resulting residue was purified 

by column chromatography using 10% ethyl acetate in dichloromethane.  The yellow 

solid was obtained as a product (0.46 g, 17 %yield).  1H NMR ((CD3)2CO, ppm): δ 7.74 

(br, 4H, c), 7.39 (t, J = 7.7, 4H, b), 7.22 (br, 2H, a), 4.45 (s, 8H, d), 4.25 (d, J = 11.9, 2H, 

e), 3.91 (d, J = 11.9, 2H, e), 3.78 (d, J = 6.0, 2H, f), 1.07 (s, 3H, g).  13C-NMR 

((CD3)2CO, ppm): δ 144.1, 128.6, 126.2, 125.5, 76.3, 64.9, 63.0, 43.5, 15.9. 

Synthesis of compound 4-7 
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4-9 

In a two-necked 250 mL round-bottom flask filled with 20 mL chloroform, 0.30 g 

(1.09 mmol) of compound 4-6 was added and the solution was bubbled under argon for 

20 min.  Then, 0.39 g (2.17 mmol) of N-bromosuccinimide (NBS) was added and the 

solution was stirred for 20 h.  After completion, the solvent was removed under vaccuo 

and the resulting residue was purified by column chromatography using 10% ethyl 

acetate in hexane to obtain a white solid as a product (0.25 g, 39% yield).  1H NMR 

(CDCl3, ppm): δ 7.62 (d, J = 7.3, 2H, c), 7.38 (t, J = 7.6, 2H, b), 7.30 (m, 1H, a), 4.22 

(dd, J = 7.1, 12.1, 2H, d), 3.95 – 3.76 (m, 4H, d e), 1.03 (s, 3H,f ).  13C-NMR (CDCl3, 

ppm): δ149.0, 145.2, 132.7, 131.4, 128.6, 127.6, 125.5, 90.7, 76.3, 64.2, 43.5, 15.9. 

Synthesis of compound 4-9 

To a two-necked 50 mL round bottom flask, 1.00 g (3.01 mmol) of compound 4-

7, 1.83 g (3.62 mmol) of 2-phenyl-5-tributyl tin EDOT (4-8) in DMF were deaerated 

several times and then handled under argon.  0.15 g (0.21 mmol) of Pd(PPh3)2Cl2 was 

added and the mixture was stirred at 80 oC for 2 h.  After completion of the reaction, 

water was added and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic 

layer was collected and dried over anhydrous MgSO4.  The resulting residue was purified 

by column chromatography using  dichloromethane to obtain a white solid as a product 

(0.42 g, 29% yield).1H NMR (CDCl3, ppm): δ 7.82 – 7.66 (m, 4H, c), 7.38 (t, J = 7.4, 4H, 

b), 7.27 – 7.18 (m, 2H, a), 4.36 (m, 6H, d, e), 4.01 – 3.79 (m, 4H, e, f), 1.04 (s, 3H, g). 
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13C NMR (CDCl3, ppm): δ 146.2, 145.2, 138.2, 137.4, 133.1, 128.6, 126.7, 125.7, 120.0, 

115.5, 113.3, 108.3, 65.6, 64.7, 43.7, 17.0. 

Synthesis of compound 4-14 

To a two-necked 50 mL round bottom flask, 1.00 g (3.60 mmol) of compound 4-

5, 1.86 g (4.32 mmol) of 2-tributyltin EDOT (4-13) in DMF were deaerated several times 

and then handled under argon.  0.18 g (0.25 mmol) of Pd(PPh3)2Cl2 was added and the 

mixture was stirred at 80 oC for 2 h.  After completion of the reaction, water was added 

and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic layer was collected 

and dried over anhydrous MgSO4.  The resulting residue was purified by column 

chromatography using 30% ethyl acetate in hexane to obtain a yellow solid as a product 

(1.04 g, 85% yield).  1H NMR ((CD3)2CO, ppm): δ 6.54 (s, 1H, a), 6.34 (s, 1H, b) , 4.34 

(m, 2H, c), 4.26 (m, 2H, c), 4.10 (d, J = 16.0 Hz, 1H, d), 4.00 (d, J = 16.0 Hz, 1H, d), 3.79 

(d, J = 25.2 Hz, 1H, d), 3.72 (d, J = 25.2 Hz, 1H, d), 3.67 (m, 2H, e), 0.99 (s, 3H, f) 13C 

NMR ((CD3)2CO, ppm): δ 149.9, 141.4, 102.8, 97.6, 78.4, 78.1, 77.8, 76.8, 76.5, 65.1, 

64.5, 64.0, 43.8, 17.5.  

Synthesis of compound 4-15 
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4-16 

A round bottom flask with a stirring bar was charged with 0.11 g (0.33 mmol) of 

compound 4-14 in dry dichloromethane.  0.12 g (0.69 mmol) of N-bromosuccinimide 

was added and the reaction was allowed to stir at 0 oC for 2 h.  The slightly blue mixture 

was dissolved in 500 mL of dichloromethane and washed by NH3.H2O (10%, 150 mL), 

H2O (3x50 mL) and brine (2x50 mL) and dried over MgSO4.  The CH2Cl2 was 

evaporated to give a yellowish solid that was further used in the next step without 

purification.  1H NMR (CDCl3, ppm): δ 4.34 (s, 4H, a), 4.22 (t, J = 12.5, 2H, b), 3.89 – 

3.75 (m, 4H, b, c), 1.02 (s, 3H, d).13C-NMR is not taken due to its instability. 

Synthesis of compound 4-16 

To a two-necked 50 mL round bottom flask, 0.12 g (0.24 mmol) of compound 4-

15, 0.26 g (0.51 mmol) of 2-phenyl-5-tributyl tin EDOT (4-8) in DMF were deaerated 

several times and then handled under argon.  0.01 g (0.17 mmol) of Pd(PPh3)2Cl2 was 

added and the mixture was stirred at 80 oC for 2 h.  After completion of the reaction, 

water was added and the mixture was extracted using CH2Cl2 (3x20 mL).  The organic 

layer was collected and dried over anhydrous MgSO4.  The resulting residue was purified 

by column chromatography using 30% ethylacetate in hexane to obtain an orange solid as 

a product (0.02 g, 11% yield).  1H NMR (DMSO-D6, ppm): δ 7.73 – 7.60 (m, 4H, c), 

7.40 (t, J = 7.8, 4H, b), 7.24 (br, 2H, a), 4.43 (d, J = 13.0, 12H, d), 4.09 (br, 2H, e), 3.84 



 187

S

OO

O

O

a
a

b

bb

b

c

c c

c

d

d

e

f g
h

e

i
j, k

l

j, k

 
4-4 

(br, 2H, e), 3.57 (br, 2H, f), 0.96 (s, 3H, g). 13C NMR (DMSO-D6, ppm): δ 144.7, 138.7, 

137.1, 133.2, 129.5, 125.3, 114.1, 64.9, 33.5, 16.3. 

Synthesis of compound 4-4 

0.25 g (0.77 mmol) of compound 4-3 and 0.22 g (1.54 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.32 g (1.54 mmol) of dicyclohexyl carbodiimide followed by 

0.19 g (1.54 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0 oC for 2 h.  After completion of the reaction, the precipitated dicyclohexyl 

urea was filtered. Then, water was added and the mixture was extracted using CH2Cl2 

(3x20 mL).  The organic layer was collected and dried over anhydrous MgSO4.  The 

resulting residue was purified by column chromatography using hexane to obtain a 

yellow solid as a product (0.36 g, quantitative yield).  1H NMR (CDCl3, ppm): δ 7.74 (d, 

J = 7.5, 4H, c), 7.40 (t, J = 7.6, 4H, b), 7.29 (br, 2H, a), 6.16 (d, J = 9.8, 2H, d), 4.29 (s, 

2H, e), 4.23 (d, J = 12.2, 2H, e), 3.98 (d, J = 11.9, 2H, f), 3.10 (s, 1H, g), 2.96 (s, 1H, h), 

2.31 (s, 1H, i), 1.96 (s, 2H, j, k), 1.42 (s, 2H, j, k), 1.11 (s, 3H, l). 13C NMR (CDCl3, 

ppm): δ 174.1, 145.9, 138.3, 135.2, 132.7, 128.6, 126.9, 120.3, 100.4, 76.2, 46.2, 42.8, 

41.7, 29.7, 16.2. 
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4-10 

Synthesis of compound 4-10 

0.30 g (0.61 mmol) of compound 4-9 and 0.17 g (1.22 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.25 g (1.22 mmol) of dicyclohexyl carbodiimide followed by 

0.15 g (1.22 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0 oC for 2 h.  After completion of the reaction, the precipitated dicyclohexyl 

urea was filtered. Then, water was added and the mixture was extracted using CH2Cl2 

(3x20 mL).  The organic layer was collected and dried over anhydrous MgSO4.  The 

resulting residue was purified by column chromatography using hexane to obtain a 

yellow solid as a product (0.28 g, 76% yield). 1H NMR (CDCl3, ppm) δ 7.74 (m, 4H, c), 

7.36 (t, J = 7.6, 4H, b), 7.29 – 7.16 (m, 2H, a), 6.21 – 6.08 (m, 2H, d), 4.47 – 4.13 (m, 

8H, e, f), 3.94 (m, 2H, g), 3.09 (s, 1H, h), 2.94 (s, 1H, i), 2.30 (s, 1H, j), 1.97 (d, J = 11.9, 

2H, k, l), 1.41 (t, J = 9.5, 2H, k, l), 1.09 (s, 3H, m). 13C NMR (CDCl3, ppm): δ 176.1, 

145.1, 137.9, 135.6, 132.9, 128.3, 126.0, 66.0, 64.9, 53.4, 46.2, 43.4, 41.5, 30.0, 16.7. 
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4-12 

Synthesis of compound 4-12 

0.10 g (0.16 mmol) of compound 4-11 and 0.04 g (0.32 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.05 g (1.32 mmol) of dicyclohexyl carbodiimide followed by 

0.04 g (0.32 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0 oC for 2 h.  After the completion of the reaction, the precipitated 

dicyclohexyl urea was filtered. Then, water was added and the mixture was extracted 

using CH2Cl2 (3x20 mL).  The organic layer was collected and dried over anhydrous 

MgSO4.  The resulting residue was purified by column chromatography using 30% 

ethylacetate in hexane to obtain a yellow solid as a product (0.03 g, 69% yield).  1H NMR 

(CDCl3, ppm): δ 7.72 (br, 4H, c), 7.44 (br, 4H, b), 7.29 (br, 2H, a), 6.22 (br, 2H, d), 4.47 

(d, J = 12.9, 8H, e), 4.36 – 4.22 (m, 4H, f), 3.96 (d, J = 9.6, 2H, g), 3.13 (br, 1H, h), 2.96 

(br, 1H, i), 2.37 (br, 1H, j), 1.96 – 1.89 (m, 2H, k, l), 1.28 (br, 2H, k, l), 1.05 (s, 3H, m).  

13C-NMR (CDCl3, ppm): δ 176.5, 135.8, 128.6, 126.3, 124.8, 69.7, 66.6, 64.5, 46.2, 43.1, 

41.1, 30.4, 16.6. 
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4-19 

Synthesis of compound 4-19 

0.10 g (0.16 mmol) of compound 4-18 and 0.06 g (0.43 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.09 g (0.43 mmol) of dicyclohexyl carbodiimide followed by 

0.05 g (0.43 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0oC for 2 h.  After completion of the reaction, the precipitated dicyclohexyl 

urea was filtered. Then, water was added and the mixture was extracted using CH2Cl2 

(3x20 mL).  The organic layer was collected and dried over anhydrous MgSO4.  The 

resulting residue was purified by column chromatography using 30% ethyl acetate in 

hexane to obtain a yellow solid as a product (008 g, 65% yield). 1H NMR (CDCl3, ppm): 

δ 6.29 (s, 2H, a), 6.16 (br, 2H, b), 4.37-4.19 (m, 12H, c-e), 3.87 (br, 2H, f), 3.10 (br, 1H, 

g), 2.96 (br, 1H, h), 2.33 – 2.28 (br, 1H, i), 1.96 (br, 2H, j, k), 1.43 (br, 2H, j, k), 1.07 (s, 

3H, l).  13C-NMR (CDCl3, ppm): δ 176.2, 143.8, 141.0, 137.9, 137.2, 135.2, 113.1, 97.6, 

66.3, 64.9, 64.2, 46.6, 43.1, 41.4, 33.9, 30.4, 16.6. 
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4-17 

Synthesis of compound 4-17 

0.16 g (0.21 mmol) of compound 4-16 and 0.06 g (0.42 mmol) of 5-exo-

norbornene-2-acetic acid were dissolved in dry THF or dichloromethane and the mixture 

was cooled down to 0 oC.  0.09 g (0.43 mmol) of dicyclohexyl carbodiimide followed by 

0.05 g (0.43 mmol) of 4-dimethyl aminopyridine were added portionwise.  The mixture 

was stirred at 0 oC for 2 h.  After completion of the reaction, the precipitated dicyclohexyl 

urea was filtered. Then, water was added and the mixture was extracted using CH2Cl2 

(3x20 mL).  The organic layer was collected and dried over anhydrous MgSO4.  The 

resulting residue was purified by column chromatography using 30% ethyl acetate in 

hexane to obtain an orange solid as a product (0.15 g, 79 % yield).  1H NMR (DMSO-D6, 

ppm): δ 7.70-7.72 (m , 4H, a), 7.42-7.46, (m, 4H, b), 7.29 (br, 2H, c), 6.22 (br, 2H, d), 

4.48 (12H, m, e), 4.20-4.37 (4H, m, f), 3.92 (m, 2H, g), 3.11 (s, 1H, h), 2.96 (s, 1H, i), 

2.36 (s, 1H, j), 1.96 (2H, k, l), 1.29 (2H, k, l), 1.05 (s, 3H, m) 13C NMR (DMSO-D6, 

ppm): δ 176.2, 138.1, 135.5, 132.9, 128.8, 126.5, 126.1, 66.9, 64.7, 53.3, 46.8, 43.6, 41.7, 

30.7, 17.4 
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polymer of diphenyl monoEDOT 

Synthesis of polymer of diphenyl monoEDOT 

 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.10 g (0.17 mmol) of monomer 4-4 and 0.04 g (0.04 mmol) of  3rd 

generation Grubbs catalyst were put under vacuum into two separated round bottom 

flasks for 30 minutes before THF was added.  Then, the solution of monomers in THF 

was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in methanol to yield a yellow solid as a 

product (0.07 g, 67% yield). 1H NMR (CDCl3, ppm) δ 7.66 (br, 4H, c), 7.48 – 7.04 (br, 

6H, a, b), 5.49 – 4.90 (br, 2H, d), 4.13 (br, 4H, e), 3.75 (br, 2H, f), 3.22 – 2.77 (br, 2H, g, 

h), 2.77 – 2.25 (br, 1H, i), 2.01 (br, 4H, j-m), 0.94 (br, 3H, o). Mn= 16862, PDI= 1.05. 
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polymer of diphenyl diEDOT 

Synthesis of polymer of diphenyl diEDOT 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.10 g (0.17 mmol) of monomer 4-10 and 0.04 g (0.04 mmol) of  3rd 

generation Grubbs catalyst were put under vacuum into two separated round bottom 

flasks for 30 minutes before THF was added.  Then, the solution of monomers in THF 

was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in methanol to yield a yellow solid as a 

product (0.06 g, 59% yield). 1H NMR (CDCl3, ppm): δ 7.68 (br, 4H, c), 7.26 (br, 4H, b), 

7.14 (br, 2H, a), 5.44 – 4.87 (br, 2H, d), 4.24 (br, 8H, e, f), 3.90 – 3.51 (br, 2H, g), 3.33 – 

2.76 (br, 2H, h, i), 2.76 – 2.28 (br, 1H, j), 2.27 – 1.70 (br, 4H, k-m), 0.88 (br, 3H, o). 

Mn= 17679, PDI= 1.36. 
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polymer of diphenyl triEDOT 

Synthesis of polymer of diphenyl triEDOT 

 

 

 

 

 

 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.15 g (0.20 mmol) of monomer 4-12 and 0.04 g (0.04 mmol) of  3rd 

generation Grubbs catalyst were put under vacuum into two separated round bottom 

flasks for 30 minutes before THF was added.  Then, the solution of monomers in THF 

was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in methanol to yield a yellow solid as a 

product (0.09 g, 60% yield).  1H NMR (CDCl3, ppm): δ 7.84 – 7.53 (br, 4H, c), 7.26 (br, 

4H, b), 7.18 – 6.91 (br, 2H, a), 5.46 – 4.79 (br, 2H, d), 4.25 (br, 10H, e, f), 3.94 – 3.49 

(br, 4H, f, g), 3.23 – 2.73 (br, 2H, h, i), 2.73 – 2.17 (br, 1H, j), 2.13-1.71 (br, 4H, k-m), 

1.10 – 0.65 (br, 3H, o). Mn= 9975, PDI= 1.09. 
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polymer of triEDOT 

Synthesis of polymer of triEDOT 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.10 g (0.14 mmol) of monomer 4-19 and 0.06 g (0.004 mmol) of  3rd 

generation Grubbs catalyst (1 equiv) were put under vacuum into two separated round 

bottom flasks for 30 minutes before THF was added.  Then, the solution of monomers in 

THF was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in either methanol or ether to yield a 

product as a yellow solid (0.09 g, 60% yield).  1H NMR (CDCl3, ppm): δ 6.23 (br, 2H, a), 

5.51 – 4.93 (br, 2H, b), 4.24 (br, 12H, c, d), 3.75 (br, 2H, e), 3.30 – 2.81 (m, 2H, f, g), 

2.81 – 2.32 (m, 1H, h), 2.17 (s, 4H, i-l), 0.94 (s, 3H, m). Mn= 12775, PDI= 1.09. 
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polymer of diphenyl tetraEDOT 

Synthesis of polymer of diphenyl tetraEDOT 

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  0.08 g (0.10 mmol) of monomer 4-17 and 0.01 g (0.01 mmol) of  3rd 

generation Grubbs catalyst were put under vacuum into two separated round bottom 

flasks for 30 minutes before THF was added.  Then, the solution of monomers in THF 

was injected into a stirred solution of catalyst. The mixture was allowed to stir for 3 

minutes at room temperature followed by irreversible termination via the addition of 2 

mL of ethyl vinyl ether.  The solution was then concentrated under vacuum. The 

polymers were obtained by precipitation twice in methanol to yield a product as a yellow 

solid (0.05 g, 63% yield).  Due to the insolubility of the polymer in deuterated solvents, 

NMR is not taken. Mn= 16802, PDI = 1.12. 
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Synthesis of copolymer  

Dry THF was taken into a round bottom flask and was freezed-pumped-thawn 3 

times before used.  The mixture of 1:3, 1:1 and 3:1 ratio of monomer 4-12: monomer 4-

19 and 100 equiv of 3rd generation Grubbs catalyst were put under vacuum into two 

separated round bottom flasks for 30 minutes before THF was added.  Then, the solution 

of monomers in THF was injected into a stirred solution of catalyst. The mixture was 

allowed to stir for 3 minutes at room temperature followed by irreversible termination via 

the addition of 2 mL of ethyl vinyl ether.  The solution was then concentrated under 

vacuum. The polymers were obtained by precipitation twice in either methanol or ether to 

yield a product as a yellow solid.  1H NMR (CDCl3, ppm) δ 7.81 – 7.61 (br, 4H, p), 7.26 

(br, 6H, n, o), 6.30 – 6.05 (br, 2H, a), 5.50 – 4.88 (br, 4H, b), 4.27 (br, 24H, c, d, q, r), 

3.92 – 3.54 (br, 4H, s, e), 3.19 – 2.79 (br, 4H, j, g), 2.79 – 2.28 (br, 2H, h), 2.28 – 1.67 

(br, 8H, i-l), 1.33 – 0.69 (br, 6H, m, t). 
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