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It is one thing to find fault with an existing system.  It is another thing altogether, a more 

difficult task, to replace it with another approach that is better. 
-Nelson Mandela, 16 November 2000 

(speaking of water resource management) 

1. ABSTRACT 

There is significant evidence demonstrating that altering river flows downstream of 

impoundments harms native aquatic ecosystems and decreases the ability of native species to 

strive and survive.  Innovative water management practices are needed to improve the health of 

native aquatic species and their surrounding ecosystems while maintaining the benefits from 

historic operating policies at these facilities.  The impacts of individual reservoir operations on 

ecosystem health are often masked by the compounding influence of multiple upstream 

impoundments, making it difficult to analyze an individual facility’s impact within the larger 

system.  This study presents an optimization model that investigates the value of coordinated 

reservoir management practices for ecological benefits in a dynamic system with several major 

reservoirs operating for hydropower production.  An application of this model is presented for 

five hydropower facilities along the Connecticut River using The Connecticut River 

Environmental Assessment Model (CREAM).  The Connecticut River Basin is the largest river 

basin in New England and one of the most impounded rivers in the United States.  Five 

hydropower facilities along the Connecticut River are undergoing Federal Energy Regulatory 

Commission (FERC) re-licensing.  These facilities respond to both seasonal and hourly power 

demands.  CREAM includes the five facilities undergoing this re-licensing process.  This process 

provides an opportunity to explore and alter the operations of these facilities utilizing 

coordinated reservoir management practices that investigate a variety of operating objectives.  

This study provides an opportunity to contribute to the long history of using optimization models 

to explore tradeoff between different operational objectives of hydropower facilities.  This 
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research explores the various emerging environmental concerns in the hydrologic regime while 

addressing historical operating objectives for management of hydropower reservoirs in the 

Connecticut River.  Results suggest that coordinated operational changes to current hydropower 

reservoirs can restore some aspects of the natural hydrologic regime necessary for ecosystem 

persistence without considerable losses to current economic benefits.  

2. INTRODUCTION 

Human water demands must be balanced with the needs of natural ecosystems associated with 

the river but tensions in water resources allocation are intensifying (Petts, 2009).  Hydropower 

reservoirs often make releases that respond to seasonal, daily, and sub-daily energy prices.  

Although any change to natural hydrology may be detrimental, rapid changing sub-daily flow 

release patterns are harmful to many aquatic species and ecosystems that rely on the natural flow 

of the river.  Alternations to the natural hydrologic regime have led to both direct ecological and 

indirect geomorphic responses that have degraded the health of riverine ecosystems and 

depreciated the services they provide (Poff, et al., 1997) (Bunn & Arthington, 2002). 

Instream flow requirements are normally considered as a seasonal target assuring a minimum 

level of streamflow is provided.  Recent literature has emphasized that instream flow needs are 

far more complex than providing an aquatic baseflow requirement.  These baseflow release 

requirements have largely ignored the ecological need for natural variability in streamflow, 

including variations in magnitude, timing, duration, frequency, and rate of change (Poff, et al., 

1997).  Despite the shortfalls of static instream flows, they are still utilized and compose the vast 

majority of environmental requirements imposed on reservoir systems.  Traditional hydropower 

facilities have minimum flow releases that must be met throughout the year.  These types of 
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requirements are used, in part, because their effects on reservoir performance are easily analyzed 

using existing water resource systems analysis techniques (Petts, 2009).  These requirements fail 

to address key hydrologic regime components necessary for ecosystem health. 

The ecological integrity of riverine ecosystems depends on their natural dynamic character, and 

there is considerable interest in characterizing the natural flow regimes of streams prior to 

significant human alteration of their watersheds (Richter, Baumgartner, Powell, & Braun, 1996) 

(Poff, et al., 1997).  Native flora and fauna in streams and associated riparian zones are adapted 

to various features of the natural flow regime, and human alteration of flow regimes often 

impairs these biological communities (Poff, et al., 1997).  A river’s flow regime is recognizes as 

a master variable that drives variation in many other components of a river ecosystem, e.g., fish 

populations, floodplain forest composition, nutrient cycling, in both direct and indirect ways.  

The species richness and productivity characteristic of freshwater ecosystems is strongly 

dependent upon, and attributable to, the natural hydrologic conditions (Richter, Matthews, 

Harrison, & Wigington, 2003) 

The potential energy used in hydropower operations is a common pool resource with public 

discretion as to its end use.  Hydropower provides a quick source of reliable energy due to its 

ability to transform potential energy from stored water into kinetic energy, and ultimately 

electricity, on very short notice, often within seconds, and thus adds significant flexibility to an 

energy supply portfolio (Viers, 2011)  However, despite these benefits, a river impoundment can 

impose many environmental constraints on a natural system.  As a result of dams and other 

anthropogenic regulation on river systems, the magnitude, frequency, and duration of low flows 

and low flows change, the range of flow magnitudes is altered, timing of high flows is shifted, 

and ramping rates are increased (Graf, 2001).  The onset of operation of a dam generally results 
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in sudden changes in the hydrologic regime of a stream (Baker, Richards, Loftus, & Kramer, 

2004).  Hydropower operation is associated with a number of serious environmental problems: 

water diversion, interruption of fish migration, hydropeaking, reservoir flushing, and inundation 

of landscapes and alteration of natural ecosystem attributes (Truffer, et al., 2003)  Restoration of 

more natural streamflow regimes is considered by many to be an essential component of aquatic 

life restoration efforts in streams (Richter, Baumgartner, Powell, & Braun, 1996).  The 

restoration of riverine ecosystems below reservoir impoundments requires new operational rules 

that can help reintroduce components of natural flow variation.  Upcoming FERC re-licensing 

provides an opportunity for these facilities operations to be collectively studied and altered to 

account for these emerging ecological objectives.  This paper presents the development of a 

linear programming model of this integrated system of reservoirs that can explore the tradeoffs 

between traditional reservoir hydropower management objectives and the maintenance of 

ecologically acceptable streamflow variability.  

There is an existing, well-established set of tools for evaluating reservoir operations’ impact on 

different water use objectives (Loucks, van Beek, Stedinger, Dijkman, & Villars, 2005).  

Optimization modeling is a popular approach to analyzing the operations in these systems for 

competing objectives.  Despite extensive research on optimization modeling within multi-

objective reservoir systems, much of the literature ignores environmental flows, and those 

studies that do consider instream flows generally account for them using fixed minimum flow 

constraints that do not allow for flexibility in tradeoffs between environmental and human needs 

(Homa, et al., 2005) (Jager & Smith, 2008).  There are also some studies utilizing simulation 

modeling to establish these tradeoffs (Shiau & Wu, 2007).  Simulation tools cannot establish the 

same optimal tradeoffs possible with optimization models. This study focuses on optimization 
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approaches for balancing water allocation between ecosystem and societal uses, with an 

emphasis on the maintenance of natural streamflow regime.  

Because this study’s purpose is to explore coordinated release rules within a reservoir system for 

the maintenance of natural streamflow variability, a linear programming optimization approach 

is adopted.  Using a linear model allows very large and complex problems to be solved however, 

all relationships between variables must be continuous and related through addition, subtraction, 

equality and inequality.  Linearization separates the model from reality; however, it is necessary 

to linearize components of the model to reach an optimal solution.  Hydropower production, for 

example, is influenced by both volume of flow released and the head above the hydropower 

turbine.  To linearize this, the optimization models used in this thesis assumes that head remains 

constant.   

Model objectives are expressions of system performance that can either be maximized or 

minimized in the optimization framework.  One or more objectives make up the objective 

function, the guiding statement of an optimization model.  The components of the objective 

function provide a quantitative measurement of system performance.  Vogel et. al. 2007 

reviewed the water resources optimization literature and found studies that have explored 

tradeoffs between ecological and human water needs in multiple objective reservoir 

management.   

Decision variables such as reservoir release and storages are values the model optimizes.  The 

model assigns values to different decision variables to optimize the objective function.  Model 

constraints limit the value of decision variables to reflect physical and operational limits for 

different variables such as reservoir maximum capacity, and minimum flow constraints that must 
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be met.  Variables in the optimization model must satisfy constraints.  If there is no solution that 

satisfies the constraints, the model is infeasible.  Yeh (1985) describes typical reservoir 

constraints including mass balance continuity, maximum and minimum storages, maximum and 

minimum releases, penstock limitations, hydropower generation license limits, and contractual 

obligations.   

Sale et al. 1982 was one of the earliest studies to examine tradeoffs of river system objectives 

using optimization modeling techniques  (Sale, Brill, & Herricks, 1982).  Their study employed 

linear programming to determine optimal release schedules required to maximize the minimum 

weighted usable area index for fisheries health in a river in Illinois.  Others embedded a habitat 

capacity model within a linear program of a reservoir system to determine new minimum flow 

requirements for different seasons and hydrologic year types (Cardwell, Jager, & Sale, 1996)  

Neither of these studies, however, investigated dynamic streamflow targets.  

Some recommend a holistic approach to management that uses appropriate understanding of the 

natural system to maximize both ecological benefits and benefits associated with energy 

production (Jager & Smith, 2008).  As part of a larger study of the Connecticut River sponsored 

by the Nature Conservancy and the US Army Corps of Engineers, two workshops were held with 

aquatic scientists and biologists familiar with species and eco-systems unique to the Connecticut 

River.  These workshops provided an opportunity for the aquatic scientists and biologists to 

specify appropriate flow regime characteristics for different ecological species of their specialty. 

A review of the water resources optimization literature found a handful of studies that have 

explored tradeoffs between ecological and human water needs in multi-objective reservoir 

management (Vogel, et al., 2007).  Because the purpose of this study is the exploration of 
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coordinated release rules of five facilities within a vast and complex basin for the maintenance of 

natural unimpacted streamflows, a linear programming optimization approach is considered.  

The two optimization objectives in CREAM are 1) maximizing hydropower value produced 

through the five facilities and 2) reproducing unimpacted natural streamflows at ecological 

locations of interest with some flexibility on allowable deviation from unimpacted flow.  This 

study presents the development and preliminary results for CREAM within the Connecticut 

River.  The model is designed to explore tradeoffs between hydropower based water use 

objective and the maintenance of environmental flow targets. 

2.1. SUSTAINABLE RIVER MANAGEMENT 

The beneficiaries of environmental flow protection are numerous, arguably extending to the 

whole of society.  Environmental flow requirements should be viewed not as a use or allocation 

of water, but as a necessary and desirable outcome of sustainable water management.  The 

existence of adequate environmental flows is an indicator that water resources are being 

managed for long-term sustainability (Richter B. , 2010)  There is no rule-of-thumb for defining 

the amount of water that should remain in a river to satisfy environmental flow needs.  Scientists 

have advanced in their ability to predict ecological consequences as a result of hydrologic 

alteration, how much water should remain as environmental flow in a river are societal decisions 

involving tradeoffs of human values and benefits.  The fundamental ecological principle for the 

sustainable management of riverine ecosystems is the need to sustain flow characteristics that 

mimic the natural, climatically driven characteristics of flow.  This includes the important role of 

floods as well as instream flows.  The natural flow regime shapes the evolution of aquatic biota 

and ecological processes and every river has a characteristic flow regime and an associated biotic 

community (Petts, 2009)  The development of instream flows for this model have been 



   

12 

 

established with the underlying assumption that attempting to bring the flow regime closer to the 

estimated unimpacted natural condition would be sustainable and beneficial to all users of water.   

Sustainability in water management will require that human impacts on the natural variability of 

water chemistry and hydrologic processes are constrained within specific limits, as agreed to by 

water managers and stakeholders.  This model will provide valuable insight to stakeholders 

involved in the decision making process for the Connecticut River. 

2.2. CONNECTICUT RIVER PROJECT OVERVIEW 

This research supports Connecticut River Watershed Project, a collaborative project of the U.S. 

Army Corps of Engineers (USACE), The Nature Conservancy (TNC), the University of 

Massachusetts Amherst (UMass), and the U.S. Geological Survey (USGS).  The Connecticut 

River Watershed Project will identify management modifications for influential dams in the 

Connecticut River Basin to increase environmental benefits while maintaining existing human 

uses such as water supply, flood control, and hydropower generation.  The overall process for 

modeling the five hydropower facilities in CREAM will occur in the years prior to the 2018 

Federal Energy Regulatory Commission (FERC) re-licensing of five major hydropower facilities 

along the mainstem of the Connecticut River.  Through the Federal Power Act, the US FERC is 

the sole issuer of licenses for nonfederal hydroelectric operations.  Since 2005, licenses often 

undergo an Integrated Licensing Process, which provides opportunity for affected parties to 

recommend issues for consultative investigation and possible mitigation, such as the impacts on 

downstream ecosystems.   

A basin-wide daily optimization model, sub-daily re-licensed facilities optimization model, a 

basin wide daily simulation model, and a sub-daily re-licensed facilities simulation model will be 
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constructed for this project.  The optimization models will determine possible environmental and 

hydropower benefits, explore coordinated release decisions, and explore optimal operating 

decisions for specific objectives.  

The focus of this paper is on the construction of CREAM, a sub-daily optimization model of the 

five hydropower facilities on the mainstem of the Connecticut River that are undergoing the 

FERC re-licensing process.  The sub-daily optimization model allows water managers and key 

stakeholders to evaluate environmental and economic outcomes based on different coordinated 

management scenarios.  These models will be increasingly important during the re-licensing 

process to allow stakeholders and operators to understand the coordinated operational 

adjustments that can be made to benefit existing hydropower operational objectives and 

emerging environmental concerns.  The focus of the CREAM is to analyze how sub-daily 

operations at five hydropower facilities impacts the natural flow regime of the Connecticut 

River.  Zimmerman et. al. (2009) identify risk of hydrologic alteration from sub-daily flow 

variation for Connecticut River tributaries and Mainstem.  The portion of river where the 

facilities are located are classified as ‘Severely Impacted’ with sub-daily flow variation outside 

the range expected for unregulated rivers.   

The five facilities undergoing relicensing are modeled in both the full-basin daily optimization 

and simulation models, but also in the finer timestep hourly optimization and simulation models.  

The hourly time steps used in these models will provide insight into how hydropower operations 

at these facilities can have an impact on the natural hydrology of the Connecticut River.  For 

applications such as hydropower generation, a daily timestep may not be sufficient to model the 

desired system operations since hydropower reservoirs commonly make releases based on 

energy prices, which fluctuate on a sub-daily basis (Adamec 2011).  CREAM utilizes an hourly 
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timestep to investigate the sub-daily variations in flow regimes that are important for 

hydropower production and natural ecosystem health. 

A unique component of this project is direct stakeholder interaction.  With the implementation of 

a set of specified environmental flows at designated eco-nodes at different locations throughout 

the basin, an interactive discussion with a variety of aquatic scientists and biologists occurred.  

Several workshops provided the scientists and biologists an opportunity to discuss the methods 

used in the optimization model dealing with meeting specific species requirements.  This unique 

component of the project provides more validity to the results of the model. 

3. BACKGROUND 

3.1. INTRODUCTION TO RE-LICENSING 

The Integrated Licensing Process is intended to streamline the Federal Energy Regulatory 

Commission (FERC) licensing process by providing a predictable, efficient, and timely licensing 

process that continues to ensure adequate resource protections.  The process includes a process 

plan and schedule for each project, guidelines and options for the effective participation, 

communication protocols, and access to documents generated in the process.  The five facilities 

in this study all are being relicensed together, with the new licenses set to expire in 2018. 

FERC licenses last between 30 and 50 years.  Because of their longevity, forecasting the future 

conditions and operational requirements under which the facility will operate is important for the 

length of the license.  This provides a unique opportunity to promote long term changes in the 

hydrologic regime of the Connecticut River for years to come. 



   

15 

 

3.2. OPERATORS AND OTHER STAKEHOLDERS 

The five facilities undergoing relicensing are owned by two companies, TransCanada and GDF 

Suez FirstLight.  These two companies operate the facilities for hydropower and are owned by 

large multi-national energy conglomerates.  The main objective of these companies is to 

maximize hydropower value, or profit generated through the production of hydropower through 

its facilities.   

The Nature Conservancy (TNC) is undertaking the coordination of the Connecticut River Project 

with the purpose of determining how management of various dams and water systems can be 

modified for environmental benefits while maintaining traditional operating objectives.  The 

Nature Conservancy aims to 

 Increase diversity and abundance of conservation targets 

 Restore timing and magnitude of high flow events to increase floodplain inundation and 

restore channel processes 

 Reduce within-day flow variability to improve quality and quantity of aquatic habitat 

and 

 Seek ways to ameliorate effects of large water withdrawals and maintain healthy 

ecosystems 

3.3. SYSTEM PHYSICAL DESCRIPTION 

The Connecticut River Basin is the largest and most highly developed river system in New 

England.  Draining a total of 11,985 square miles, the river flows southward for 410 river miles 

from its headwaters in the Connecticut Lakes in northern New Hampshire and Canada to the 

Long Island Sound passing the states of New Hampshire, Vermont, Massachusetts, and 
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Connecticut.  The basin contains thousands of dams along its mainstem and tributaries, many of 

which are relic low-head hydro projects developed for power production during the Industrial 

Revolution. 

Hydropower reservoirs are characterized into three categories:  Hydropower reservoirs with 

storage, Run of River hydropower facilities, and Pumped Storage facilities.  Hydropower Storage 

reservoirs have large long term storage that can be released at different seasons or over several 

seasons.  Run of River facilities have limited storage and operate such that daily inflow is 

roughly equal to daily outflow.  There is very little active storage in these facilities.  Pumped 

Storage facilities operate separate reservoirs connected via a pipeline.  Water is pumped to an 

upper storage reservoir during off-peak energy prices and returned to generate power during 

peak load times. (WURBS 1991).  The hourly optimization model of the Connecticut River 

includes 4 Run of River hydropower facilities and one Pumped Storage facility between miles 

one hundred twenty two and two hundred seventeen in the states of Massachusetts, Vermont and 

New Hampshire.  

3.3.1. Wilder Project 

The Wilder Project is located on the Connecticut River at river mile 217.4 approximately 1.5 

miles upstream of the confluence with the White River and 7 miles downstream of the 

confluence with the Ompompanoosuc River.  The dam is a concrete gravity structure extending 

across the Connecticut River from Hartford, VT, to Lebanon, NH.  The concrete impoundment is 

59 feet high and the tailwater pool extends upstream 45 miles from the dam.  The dam has a 

useable storage capacity of 13,350 acre-feet with a five-foot drawdown.   
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The powerhouse at Wilder contains three generating units with a total installed capacity of 35.6 

MW.  It generated an average of 153,738 MWh annually from 1982-2011.  The maximum flow 

through the turbines is 12,700 cfs. 

The project is operated as a hydropower facility.  During typical hydropower generation, releases 

vary between the required minimum flow of 675 cfs and the facility’s approximate full hydraulic 

capacity of 12,700 cfs.  During periods of sustained high flow, the facility’s generation is 

continuous and peaking operations are not used.  Wilder is operated in coordination with the 

other TransCanada projects on the Connecticut River.  

3.3.2. Bellows Falls Project 

The Bellows Falls Project is located on the Connecticut River at river mile 173.7, approximately 

1 mile upstream of the confluence with the Saxtons River and 3 miles downstream of the 

confluence with the Williams River at the upper end of a sharp bend of the Connecticut River in 

Bellows Falls, VT.  The dam is a concrete gravity structure extending across the Connecticut 

River from the town of Rockingham, CT to the town of Walpole, NH.  The concrete 

impoundment is 30 feet high.  The tailwater pool extends upstream 26 miles from the dam and 

has a useable storage capacity of 7,476 acre-ft with a three-foot drawdown. 

The powerhouse at Bellows Falls contains three generating units with a installed capacity of 40.8 

MW.  That facility generated an average of 250,249 MWh annually from 2000-2011.  The 

maximum flow through the turbines at Bellows Falls is 11,010 cfs. 

The project is operated as a peaking hydropower project.  During typical generating periods, 

downstream flows can vary between the required minimum flow of 1,083 cfs and the facility’s 

approximate full hydraulic.  During periods of sustained high flow, the project generation is 
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continuous and peaking operations are not utilized.  Bellows Falls operations are coordinated 

with the other TransCanada projects on the Connecticut River.   

3.3.3. Vernon Project 

The Vernon project is located on the Connecticut River at river mile 141.9, approximately 2 

miles upstream of the confluence with the Ashuelot River and 7.4 miles downstream of the 

confluence with the West River.  The dam is a composite overflow and non-overflow ogee type 

concrete gravity structure extending across the Connecticut River from Hinsdale, NH to Vernon, 

VT.  The impoundment is 58 feet high, and the tailwater pool extends upstream for 26 miles 

from the dam and has a useable storage capacity of 18,300 acre-ft at an eight foot drawdown.   

The powerhouse at Vernon contains ten turbine/generators with an authorized installed capacity 

of 32.4 MW which generated an average of 136,583 MWh annually from 2000-2011.  The 

maximum flow through the turbines at Vernon is 17,130 cfs.  

The project is operated as a peaking hydropower project.  During typical generating periods, 

downstream flows can vary between the required minimum of 1,250 cfs and the facility’s 

approximate full hydraulic capacity.  During periods of high sustained flows, project generation 

is continuous and peaking operations are not used.  Vernon’s operations are coordinated with 

TransCanada’s other projects on the Connecticut River.   

3.3.4. Northfield Mountain Pumped Storage Project 

The Northfield Mountain Pumped Storage project is located approximately 5.2 miles upstream of 

the Turners Falls dam in the town of Northfield, MA.  The upper reservoir of the Northfield 

Mountain project is located atop Northfield Mountain in Erving, MA, and consists of a main 

dam, rockfill dikes, and a concrete gravity dam.  The tailrace of the project is the Turners Falls 
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impoundment.  The upper reservoir typically operates with a 62.5 foot drawdown.  Within this 

range, the upper reservoir has a surface area of 134 to 286 acres.  The useable storage is 12,318 

acre-ft.  The underground powerhouse contains four reversible pump/turbines that operate at 

gross heads ranging from 753 to 824.5 ft.  The project has an authorized FERC capacity of 

1,119.2 MW.  The hydraulic capacity is 15,200 cfs in pumping mode, and 20,000 cfs in 

generation mode.   

The project is a pumped storage hydroelectric project, with a capability of using its full storage 

capacity for generating purposes.  The project utilizes the Turners Falls impoundment as its 

lower reservoir.  During pumping operations, water is pumped from the Turners Falls 

impoundment to the upper reservoir.  In the summer and winter seasons, the Northfield Mountain 

project typically peaks twice a day, in the morning and late afternoon.  During other months, the 

Northfield Mountain Project may be peaked one to two times per day, depending on energy 

demand or price.  In both cases, water is typically pumped backed to the upper reservoir during 

the night or during low energy priced hours.   

3.3.5. Turners Falls Project 

The Turners Falls Project is located on the Connecticut River at river mile 122 in the towns of 

Gill and Montague, Massachusetts.  The project consists of two individual concrete gravity 

dams, referred to as Gill dam and Montague dam.  The two dams are connected by a natural rock 

island known as Great Island.  Montague dam height is 35 feet and the Gill dam is 55 feet high.  

The Turners Falls impoundment, which also serves as the lower reservoir for the Northfield 

Mountain project, is approximately 20 miles long extending upstream through the Connecticut 

River valley to the base of Vernon dam.  The impoundment has a useable storage of 21,500 acre-

ft.  Approximately 5.7 miles of the impoundment is located in New Hampshire and Vermont.  
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Water is fed from the two dams through a power canal to the generating facilities located 

downstream of the impoundments. 

The project includes two powerhouses, Station No. 1 and Cabot Station, which together have a 

FERC authorized installed capacity of 67.709 MW which generated an average of 320,140 MWh 

annually from 2000-2009.  Station No. 1 contains seven turbine/generators of which five are 

currently operational.  Cabot Station generating units consist of six turbines.  The turbine and 

hydraulic capacity of the combined system is 18,000 cfs. 

Shown below in Table 2 is a table with basic information for each facility included in CREAM.  

Figure 1 shows the location of the five facilities within the Connecticut River Basin. 

Table 1 - Facility Information 

Facility Name Maximum Storage 

(acre-ft) 

Useable Storage 

(acre-ft) 

Generating 

Capacity (MW) 

Owner Facility Type 

Wilder 104,000 13,350 35.6 TransCanada Dam 

Bellows Falls 43,000 7,476 40.8 TransCanada Dam 

Vernon 222,000 18,300 24.4 TransCanada Dam 

Northfield Mountain 17,000 12,318 1080.0 FirstLight Pump Storage 

Turners Falls 28,000 21,500 6.0 FirstLight Dam 
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Figure 1 - Location of the five facilities within the Connecticut River Basin.  Wilder, Bellows Falls, and Vernon are located 

along the mainstem between the states of New Hampshire to the East and Vermont to the West.  Northfield Mountain is located 

off the mainstem, and Turners Falls is located on the mainstem in Massachusetts. 

3.4. CURRENT CONNECTICUT RIVER VARIABILITY 

Since the Connecticut River basin is one of the most highly regulated river systems, it is 

necessary to understand the existing variability in the river system at several locations.  The 

existing conditions show how current reservoir operations are affecting the natural hydrology of 

the system.  The USGS operates streamflow gages in the area and gage 01154500 located at 

North Walpole, New Hampshire, is located directly downstream of the Bellows Falls dam 

impoundment.  This gage’s location provides useful information into existing river variability.  
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Historic hourly gage flows were gathered for the period of record October 1990 through 

September 2012.  Figure 3 shows a typical month’s hourly flows at this gage.  There is 

significant variation shown every day of the month, as flows are regulated each day to meet 

energy demands by producing hydropower.   

 

Figure 2 - Hourly Historic Flows at USGS Gage Connecticut River at North Walpole for September 2006 showing typical sub-

daily variation.  Releases below Bellows Falls correspond with the USGS gage.  The actual hourly energy price signal is shown 

in Red. 

This figure shows that there is significant alteration to the natural flow of the river, and everyday, 

the river flow is altered by as much as 8000 cubic feet per second to meet hydropower peaking 

demands.  The historic operations observed at Bellows Falls follow a pattern that closely 

resembles the actual hourly energy price signal. 

The Julian Hour average flow at this gage location provides some insight into the typical daily 

cycle of flows in the system.  Figure 3 shows the average flow at the USGS North Walpole gage 

#01154500.  There is average variation of nearly 2000 cfs per day over the entire period of 
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record.  Lower flows are reported in the early morning with higher flows in the afternoon and the 

highest flows occurring in the evening.   

 

Figure 3 - Average daily flow at USGS Gage #01154500 Connecticut River at North Walpole.  The flows on an average day 

range from 10000 cfs early in the morning (when hydropower facilities are storing water to be used for hydropower generation 

later in the day) to over 12000 cfs (when facilities are releasing water through turbines and producing power). 

The existing conditions of the stream show that a sub-daily timestep is necessary to capture the 

essence of reservoir operations along the Connecticut River.  For hydropower applications, a 

daily timestep may not be sufficient to model the desired system operations since hydropower 

facilities typically operate on a sub-daily timestep.  Hydropower facilities operate to meet local 

or regional daily energy demand patterns.  These operations can result in lowered flood peaks, 

followed by a rapidly fluctuating hydrologic pattern to the downstream river corresponding to 

alternating periods of power generation (Richter & Thomas, Restoring Environmental Flows by 

Modifying Dam Operations, 2007).  These episodes of power generation are followed by periods 

in which dam releases may be largely or completely curtailed to allow the reservoir to refill in-

between power-generation cycles.  These typical operations produce a blocky or saw-blade shape 

on outflow hydrographs.  When the dam is generating power, flow through the generating 
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turbines can be greater than natural, and when the dam is refilling its reservoir, flows released 

can be much less than natural.  Studies in the past have developed approaches for assessing the 

effects of dam operations on sub-daily flow by characterizing sub-daily variation in river flows 

downstream of dams and comparing these with unregulated sites (Zimmerman, Letcher, Nislow, 

Lutz, & MaGilligan, 2009). 

When more than one hydropower dam exists on a river, opportunities for modifying the function 

of any one dam will likely be increased considerably.  In many rivers around the world, 

“cascades” of hydropower dams have been constructed.  In a cascade of close reservoirs with 

short distances between them, the ecological health and ecosystem services provided by 

upstream dams may have already been so compromised that it would do little additional harm to 

generate more power at the upper dams.  Oftentimes, the operations of these cascade dams is not 

fully integrated or coordinated (Richter & Thomas, Restoring Environmental Flows by 

Modifying Dam Operations, 2007). 

A variety of indices have been developed to describe natural flow regimes and their degree of 

alteration.  Analysis include the Indicators of Hydrological Alteration (IHA) parameters are 

deemed to be particularly relevant to aquatic communities (Richter, Baumgartner, Powell, & 

Braun, 1996).  Studies on the effects of dams on sub-daily flow variation have used several 

metrics including flashiness indices (Zimmerman, Letcher, Nislow, Lutz, & MaGilligan, 2009). 

4. OPTIMIZATION FRAMEWORK 

CREAM is formulated as a linear programming optimization model.  The LINGO
TM

 software 

environment was used to create the model framework.  This model simulates the operations of 

the five dams on the Connecticut River undergoing the relicensing process:  Wilder Dam, 
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Bellows Falls Dam, Vernon Dam, Northfield Mountain Pumped Storage Project, and Turners 

Falls Dam.  The model operates on an hourly timestep, contains constraints for maximum and 

minimum storage (useable storage) and releases where necessary, and provides the opportunity 

to optimize over objectives that enable the provision of prescribed operations for generation of 

revenue from hydroelectricity production.  When operating over a one year period, the model 

results in over 700,000 constraints and over 560,000 variables.  Using a powerful desktop 

computer (circa 2013), the model can produce an optimal solution in approximately 15 minutes.  

The model runs sequential years over the historic hydrologic record, and the full hydrologic 

record takes nearly 6 days.  The model output is processed using the statistical open-source 

software environment “R,” which provides the ability to create and analyze the time series of 

system storages and releases produced.   

The general structure of CREAM is to minimize the value of penalties that violate different 

operational objectives.  The general mathematic structure of CREAM is given as 

   
 

  ∑∑             
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Ax   b 
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where Z is the weighted sum of penalties incurred for the system, xt,i equals the value of the i
th

 

decision variable at time t, ft,i(xt,i) equals the loss function for the i
th

 decision variable at time t, 

and ci equals the weight for the penalty on the i
th

 decision variable. 

The primary decision variables include reservoir releases, reservoir storages, hydropower 

revenue, and flow at specific eco-node locations.  The matrix A and vector b represent various 

constraints on the decision variables X, including continuity requirements, storage capacities, 

physical turbine production limits, facility license capacity, and ramping constraints, among 

others. 

 

4.1. INPUT HYDROLOGIC DATA 

The optimization model is run over the daily hydrologic period of record available for the basin 

(January 1, 1961 – December 31, 2003).  Daily hydrologic inputs for each node in the model 

were developed from the Connecticut River UnImpacted Streamflow Estimation (CRUISE) tool 

(Archfield et al. 2012) produced by the United States Geologic Survey (USGS).  The CRUISE 

tool estimates flow at a particular point in the basin in two stages.  First, the flow duration curve 

is estimated for the location of interest.  This is done using a series of regressions between flow 

quantiles and watershed characteristics.  Next, a time series of flows from an index gage (an 

unregulated gage with continuous daily flows over the period of record) is transferred to the 

ungaged location through a flow duration curve mapping technique.  The CRUISE tool was used 

to develop forty-three years of continuous, daily, incremental streamflow data at each of the 

nodes in the model.  Hourly flows were then interpolated between the daily flows from CRUISE.  

The interpolation technique is an estimate of hourly flow that does not include any sub-daily 
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variation, but a natural system would not have the same amount of sub-daily variability.  An 

interpolated method is appropriate for a natural system.  These streamflow data are estimates of 

the natural (unregulated) flow entering a node location on any given timestep during the period 

of record and serve as the driving input data for the model.  The period of record for the CRUISE 

data is October 1, 1960 through September 30, 2004. 

4.2. RESERVOIR PERFORMANCE OBJECTIVE 

The reservoirs in CREAM are hydropower facilities and they operate for revenue generation 

from the sale of electricity, which drives operations.  A daily electricity price signal was 

developed from regional, historic locational marginal pricing (LMP) data available over the 2006 

calendar year and gathered from the regional transmission organization ISO New England.  The 

resolution of these data is hourly and these prices were averaged for each hour of the year.  This 

same hourly price signal was repeated for each year of the simulation model, which is used to 

provide insight into daily fluctuation that are transparent in energy prices.  Daily revenue for 

hydropower facilities are calculated directly in the model as the product of electricity price and 

the power produced from hourly discharge rates passing through facility turbines for each 

timestep.  Total cumulative revenue for the entire run period is then maximized in the objective 

function.   

Optimizing the system through the use of LMP energy price data develops the status quo of the 

system.  Though many considerations are often deliberated when reservoir operators decide upon 

daily reservoir management strategies in these facilities, the use of solely energy price data to 

drive reservoir operations adequately represents the average operating procedures for all 

facilities.  The primary purpose of CREAM is to determine how average operations could change 

to better preserve streamflows for ecological objectives.  The use of energy price to drive 
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hydropower operations provides a baseline operational regime against which ecological flow 

needs can be traded off, providing valuable insight into how average operations could be altered 

to improve ecosystem functions.   

4.3. ECOLOGICAL PERFORMANCE OBJECTIVE 

Ecological flow targets in the objective function are used to minimize deviations between 

modeled and natural flow for each optimized timestep.  These targets apply to four eco-node 

locations within the five project geographic scope of CREAM along the Connecticut River.  For 

each eco-node, a unique dynamic convex loss function is derived for each timestep that reflects 

the allowable flow deviation demands of ecological species during that timestep. 

The eco-node locations for this study are part of a larger list of eco-nodes throughout the entire 

Connecticut River Basin that were identified by The Nature Conservancy (TNC).  Streamflows 

at these locations are important for maintaining habitat and providing cues for lifecycle processes 

for various native species in the Connecticut River Basin, including diadromous fish, resident 

fish, macro-invertebrates, mussel species, and riparian floodplain vegetation, among others.  On 

March 10-11, 2011, a 2-day workshop was held by TNC to gather the expertise of aquatic 

scientists, biologists, and other environmental specialists from across the watershed to determine 

allowable levels of flow alteration that different native species can tolerate at different periods of 

year.  A second, 1-day workshop and several webinars were held in November 2012 to ensure 

that the environmental specialists approved of how the flow prescriptions were implemented in 

the model.  Figure 4 below shows a map of the eco-nodes implemented in CREAM.  Table 3 

shows the specific eco-species targeted at each location. 
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Figure 4 - Map of the Hydropower Facilities and Eco-Node locations 

Table 2 - Eco-node targeted species 

Eco-Node Location Floodplain 

Health 

Tiger 

Beetles 

Mussels Diadromous 

Fish 

Resident 

Fish 

Eco-Node 1 below Wilder X X X X X 

Eco-Node 2 below Bellows Falls X X X X X 

Eco-Node 3 below Vernon X   X X 

Eco-Node 4 Below Turners Falls X X X X X 
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The discussions from the March 2011 workshop led to the creation of flow recommendations for 

each species for each calendar month.  The majority of these proposed recommendations 

designate an allowable percent deviation from natural flow that can occur in a specific month 

without damaging the health of a given species and receiving a penalty in the optimization model 

objective function.  The allowable percent deviations can change for different magnitudes of 

natural flow which are categorized as monthly quantile ranges of river flow.  For a given species 

and month, a recommendation designates the percentage that flow can be altered from what it 

would have been naturally, as estimated using the CRUISE tool.  For example, a 

recommendation for resident fish states that flows during all months of the year can be altered by 

+/-10% at low flows (flows less than Q75) or by +/-25% at high flows (flows greater than Q75).  If 

there is a timestep where flows exceed their allowable deviation from what would have occurred 

naturally at a given eco-node location using CRUISE data, a penalty is incurred in the model 

objective function.  The penalty is derived from a piecewise linear, convex loss function 

approximating an exponential penalty as deviations from natural flow increase.   

Figure 5a shows a typical penalty function used for ecological targets in the model.  The penalty 

function is comprised of 4 vertices.  The inner two points represent the allowable percent 

deviation proposed in the flow recommendations.  Reservoir management can alter flow within 

this range without incurring any penalty.  Once flow is modeled to exceed these allowable 

deviation values, a penalty is incurred proportional to the magnitude of deviation relative to the 

slope S1 on the loss function.  The outer two vertices reflect a threshold of deviation beyond 

which penalties become more severe.  Once modeled flows deviate from the level designated by 

the second inflection point, the penalty grows at a higher proportional rate, S2, greater than S1.  

This function is applied for all ecological flow targets in the model.  All targets are weighted 
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equally and the number of vertices and values for slopes S1 and S2 are kept constant for all 

ecological penalty functions.   

 

Figure 5 – a) An example of a variable penalty function for an ecological streamflow target for a particular ecological species, 

calendar month, and magnitude of flow.  b) The vertices of these penalty functions can be visualized as dynamic bounds (red and 

blue dotted line) surrounding estimates of natural (black) flow through time.  Penalties are incurred in the objective function 

when modeled streamflow at this location deviates beyond the first set of bounds.  Penalties increase in magnitude when the 

modeled flow exceeds the second set of bounds. 

 

For a given eco-node location and species, the ecological penalty function dynamically changes 

each timestep depending on the month of flow, and the magnitude of the estimated natural flow.  

Ecosystem flow prescriptions are divided into monthly targets.  These penalty functions can best 

be visualized as bounds around the natural estimated streamflow within which reservoirs can 

operate without incurring a penalty.  Figure 5b shows a sample of CRUISE estimated natural 

flow for a two week period at an eco-node, as well as two sets of bounds.  The inner set of 
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bounds reflects the first tier of penalty (the inner vertices in Figure 5a).  Note how the range of 

these bounds about the natural flow changes depending on the magnitude of the natural flow.  

After November 24
th

, the CRUISE natural flow is predicted to be higher.  This flow falls within a 

higher range flow quantile and the allowable deviation from natural flow during this time 

increases, as visible by the expanding bounds between November 24
th

 and November 29
th

.  The 

outer set of bounds represents the second tier of penalties (the outer vertices in Figure 5a).  Tight 

penalty bounds over a given period suggest that the species at this location greatly depend on 

natural flow variability during that time of year and magnitude of flow.  Wider bounds over a 

period suggest that reservoirs have more flexibility to alter flow at that location without overly 

disrupting the natural hydrology and ecology.  The ecological objective function incentivizes the 

maintenance of natural flow at important ecological locations within a certain range. 

Further work can be done to assess the sensitivity of the penalty function allowable deviations 

developed by The Nature Conservancy in conjunction with scientists and biologists.  Since the 

research in this field is emerging, it can be beneficial to assess the true benefits associated with a 

wide variety of penalty function deviations as implemented into this model.  Additional work can 

be done to assess the priorities for each eco-node location and targeted eco-species.  CREAM 

weights all eco-node locations the same in the objective function, as is the same for all different 

eco-species.  Future research can investigate the spatial and species priority of eco-nodes within 

the scope of this project, and for the entire Connecticut River Basin as part of the larger 

Connecticut River Project. 

4.4. OBJECTIVE FUNCTION WEIGHTING SCHEME 

The operational and ecological penalties previously described must be appropriately established 

for meaningful tradeoff between the objectives.  To address this need, CREAM uses a loss 
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function that expresses penalties in volumetric units of water (cubic feet).  Penalties for deviating 

from ecological targets are expressed in units of volume of water per hour.  To reduce the 

magnitude differences associated with different variables throughout the system, each primary 

objective term is divided by characteristic volumes that represent the size of the system being 

penalized.  Specifically, deviations from eco-node discharge rates are divided by the average 

annual flow at that location.  This results in a comparison of percent deviations from targets for 

the eco-nodes, and not a comparison in the absolute value of the deviations  

Revenue generated from the sale of hydropower, another important tradeoff component, is 

measured in different units.  This requires additional adjustment in the objective function to 

calculate a weighting between hydroelectric objectives and the other normalized objective terms.  

These weights are needed to reflect the relative importance of different penalties in the objective 

function and ensure reasonable status quo operations.  To perform adjustments, weights for all 

value of hydropower were adjusted in an iterative fashion to ensure that model results adequately 

reproduce historic operations. 

The model has hydrologic input for the period of record January 1, 1961 through December 31, 

2003.  The model output of time series of flows at specified locations, reservoir storages, and 

annual power generation values were used to validate the results from CREAM.  USGS gage 

data used to compare model output was compiled from fifteen-minute instantaneous Water Data 

for the Nation.  The USGS gage Connecticut River at North Walpole is located downstream of 

the Bellows Falls facility and is used to directly compare modeled flow at this location to 

historic.  Historic reservoir storage levels and reservoir releases were provided by the facility 

owners.  These historic data allows calibration of storage and releases between 1990 and 2003.   
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Historic hourly storage and release data was provided from the hydropower operators through 

the FERC relicensing process.  Historic hourly flows at other river locations are collected from 

data provided from the USGS.  These data sets are used to conduct the validation of CREAM.  

The process produces a set of baseline calibration weights that are used to define the status quo 

operations of the basin.   

4.5. SYSTEM CONSTRAINTS 

The constraints contained in CREAM reflect limitations of the system that cannot be violated 

due to physical capacities and considerations.  These include constraints on reservoir capacity, 

turbine and gate discharge capacities, and ramping constraints.  Ramping levels are dictated by 

operational reservoir discharge rules and are used to constrain fluctuations in discharge to levels 

representative of historic records.  Continuity equations are included in CREAM as constraints 

set to ensure a water mass balance is preserved through the system.  Evapotranspiration is 

ignored in mass balance equations.  Minimum flow requirements at all reservoirs are included as 

constraints. 

5. MODEL RESULTS 

CREAM’s primary goal within the Connecticut River Project is to identify broad potential 

alternative reservoir operational schemes that address ecological targets in addition to current 

operating objectives.  Optimization model outputs cannot be used directly to make specific 

operational changes; rather, the outputs are used to identify long-term operational trends and how 

the trends affect all components of the model objective function.  
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5.1. MODEL VALIDATION 

Model output was compared to appropriate historic data to ensure that the model could replicate 

status quo operations throughout the system.  Releases from Bellows Falls can be directly 

compared to historic observed flows at USGS Gage Connecticut River at North Walpole.  The 

gage is located approximately ¼ mile downstream of the Bellows Falls impoundment and no 

significant side flows enter the river between the two locations.  Figure 6 compares the historic 

gage flow and modeled flow runs at this location as well as the average daily energy price signal.   

 

Figure 6 - 24 hour Normalized Average Flow at Bellows Falls.  The blue line represents the historic USGS gage at North 

Walpole gage data, the green line represents the modeled releases from Bellows Falls, and the grey line represents typical energy 

price signal. 

The modeled flows closely track the sub-daily variation pattern seen at the USGS gage.  These 

flows vary in response to energy price throughout the day.  Hydropower operators take 

advantage of a persistent daily energy price signal.  When the demand is low (generally during 

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hour of day

P
e

rc
e

n
t 
o

f 
M

a
x
im

u
m

 D
a

il
y
 A

v
e

ra
g

e

Average Daily Energy Price Signal
Hydropower Optimized Run
Hydropower and Eco-Target Optimized Run
Historic USGS gage



   

36 

 

early morning hours) the value of the energy produced is low.  Demand increases throughout the 

day and the value of energy production increases.  Demand, energy price, and energy production 

peak in the evening and night.  This price signal drives the operations and flow fluctuations at 

each facility.  For Northfield Mountain Pump Storage Project, the facility operates under a store 

or produce plan, and the facility takes advantage of this daily consistent energy price signal to 

make profit.  Northfield uses energy during off-peak periods to pump water to the upper 

reservoir when energy prices are low.  When the demand increases and energy price increases in 

the afternoon and early evening hours, Northfield releases water and generate electricity.  

Although there is a net energy loss in this process, Northfield generates a new profit because of 

this daily price fluctuation.  Figure 7 shows 10 day time period comparing hydropower 

optimized flows and USGS historic flow.  The modeled hydropower optimized run shows the 

same subdaily patterns of rising and falling each day.  CREAM utilizes perfect foresight of the 

nuances in the subdaily energy price signal to frequently make more reversals per day that the 

historic period of record.  This perfect foresight allows CREAM to optimize and generate the 

maximum amount of hydropower taking advantage of these small changes in energy price.  

Since the energy price signal was for 2006, and the model was run from 1961-2003, it is 

important to remember that the energy price signal that CREAM is optimizing for is not the same 

energy price signal that was used by the operators when generating the USGS historic flows. 
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Figure 7 - Ten day period showing USGS historic flow and Hydropower Optimized flows at Bellows Falls. 

Under status quo operational conditions, CREAM performs well in modeling power generation 

values for the five traditional hydropower facilities when compared with historic average values 

provided by facility operators.  Table 4 presents the monthly average power generation values 

produced by CREAM and a comparison of average annual power generation values. 

Table 3 – Average Modeled Monthly Energy Price Generation for each Hydropower Facility 

 Wilder 

(MWh) 

Bellows Falls 

(MWh) 

Vernon 

(MWh) 

Northfield Mountain and Turners Falls 

(MWh) 

CREAM average annual 

generation – Hydropower run 

143,532 233,506 143,125 2,148,031 

Historic average annual 

generation 

153,738 250,249 136,583 1,463,178 

Percent difference 6.64% 6.69% -4.79% -46.81% 
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CREAM does not predict the operations of Northfield Mountain and Turners Falls systems as 

well as the traditionally operated hydropower facilities further upstream in the system.  Figure 8, 

shows the seasonal variation of Wilder, Bellows Falls, and Vernon.  Maximum power generation 

occurs in the spring months, when flows are traditionally high due to snowmelt in the upper 

regions of the watershed.  Northfield and Turners Falls are presented together since the 

operations from the systems are coordinated.   

 

Figure 8 – CREAM model results show the annual trends of hydropower generation at each facility.  The traditional hydropower 

facilities operate with annual variation, while Northfield and Turners Falls operate with less seasonal variation. 

Generation is lower over the summer when flows are low, but increase in the autumn and winter 

when energy prices make power generation appealing.  Since Northfield Mountain and Turners 

Falls are operated together (i.e. the lower reservoir of Northfield Mountain is the tailwater 

reservoir of Turners Falls), their operations have been more difficult to model.  Since the 
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facilities rely on each other to ensure that enough water is available to meet minimum flow 

requirements, in reality, their operations are coordinated. 

Northfield takes advantage of daily energy price variability to ensure that a loss of energy can 

translate into a profit.  This energy production constraint is included in the model, however, since 

this is not included as a component of the optimization function, and only as a constraint, 

(income is included as a component of the objective function) CREAM does not replicate 

historic generation as well as at the other traditional facilities.  The estimations for energy 

production efficiency values were provided by operators, however, the numbers are estimates.  

Using an energy equation that accounts for hydropower head and turbine efficiency was not 

utilized, since the variability of tailwater in the reservoirs cannot be implemented in a linear 

optimization function.  Because of hydropower production efficiency, the incentive in the 

optimization model to utilize Northfield to produce energy in the Northfield/Turners Falls system 

outweighs using Turners Falls.  As a result, CREAM over predicts Northfield’s hydropower 

income. 

Since CREAM’s hydropower generation value objective function is limited by a single year’s 

energy price signal, the reality of these operations shows that Northfield is not utilized to 

produce as much energy as is modeled.  Since the optimization solver takes advantage of perfect 

foresight in its solutions, the exact energy price difference during a time period (usually daily 

fluctuations for Northfield) is known, and the model can utilize the best volume of water to 

maximize the energy value produced.  In reality, the accuracy of the future energy prices is 

limited, and operators are forced to use judgment to generate power at Northfield.  The energy 

losses associated with Northfield, and the single year energy price signal causes the model to 

overestimate its generation.   
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5.2. CREAM MODEL RUNS 

Model runs are produced to demonstrate the insights generated by CREAM as it incrementally 

evaluates the tradeoffs offered by potential operational changes.  CREAM generates a plethora of 

output, so a structured, disciplined approach is needed in analyzing output and deriving insights.  

This research uses CREAM to analyze how the implementation of ecological targets can impact 

optimal operations within the system.   

A multi-objective programming approach using the weighting method is used to generate trade-

offs between the value of energy produced and attaining desired environmental flows.  Each 

model run was analyzed for a variety of post-processed metrics to assess how well each scenario 

met each objective. 

Optimizing the system solely for the value of hydropower produced illustrates how optimal 

hydropower operations disrupt the natural flow regime while producing hydropower for the 

operators.  The operations generated in these optimized runs closely resemble the historic 

patterns exhibited in the USGS historic flow data, as well as the operators’ historic storage and 

release data (Figure 6 & 7).  This suggests that historic operations in the system (the status quo 

condition) are similar to the optimized operational conditions revealed in this model.  The 

operators are generally aware of energy price trends and currently operate the system very 

efficiently to generate hydropower. 

A multiple hydropower and ecological objective function weighting scheme was run to 

investigate the flow regime when ecological targets are emphasized as part of an operations plan.  

For this scenario, the system is optimized for both hydropower production and meeting 

ecological targets.  This scenario weights an objective that attempts to naturalize the flow regime 
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in the system.  The introduction of the ecological terms as part of the optimization framework 

forces the model to produce flows that are more closely related to the natural flow regime.  By 

limiting the fluctuations from natural flows, the reservoir release is more similar to the inflow 

into the reservoir.   

These two optimization function weighting schemes have different impacts on the flow regime 

(Figure 9) and the effect that these objective function have on the deviation from CRUISE 

natural flow can be evaluated.   

 

Figure 9 -Average hourly flow deviation at all eco-nodes for two optimization model run objective function weighting schemes.  

Hydropower optimized run only includes the hydropower objective in CREAM, while Hydropower and Eco-Target optimized 

run includes both the hydropower objective and the ecological penalty objective. 

To better demonstrate the alterations in streamflow that occur under different objective function 

weighting schemes, the average hourly deviation from the CRUISE natural flow at all four eco-

node locations is calculated (Figure 9).  This figure presents the average deviation overage over 
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43 years of operation for an hourly time step.  The black line shows significant fluctuations, with 

disruptions of the natural flow regime approaching 5000 cfs often.  Once the ecological 

objectives are weighted more heavily in the objective function, the flows at the eco-nodes more 

closely resemble the natural CRUISE flow.  Patterns emerge, and sub-daily fluctuations show 

that the flow is increased in the first few months of the year, and through the summer.  In the 

spring, flows are less than their natural values.  The average deviation for the hydropower 

optimized run is ±2540 cfs.  For the hydropower and ecological target optimized run, the average 

deviation is greatly reduced, to ±700 cfs. 

When optimized only for hydropower, the system responds by timing reservoir releases to follow 

the energy price signal.  Over the course of an average day, the flows fluctuate dramatically 

under this condition, as seen in Figure 10-a.  On an average day, the sub-daily variation extends 

beyond 20% of the maximum daily average flow.  These fluctuations are not seen, however, 

when the system is operated to account for the ecological targets.  Figure 10-b shows that once 

ecological targets are introduced into the optimization, sub-daily fluctuation is greatly reduced.  
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Figure 10 – a) Sub-daily Eco-Node flow fluctuations under the hydropower only optimization  b) Sub-daily Eco-Node flow 

fluctuations under hydropower + eco optimization 

5.3. ASSESSMENT METRICS 

For each eco-node flow location, as well as releases at reservoirs, a variety of metrics is used to 

assess the flow regime.  These metrics are used during the calibration process to calibrate the 

model output to historic USGS gage and historic operations data.  These metrics assess and 

quantify sub-daily flow regime alterations that can be utilized to meet ecological targets.  Table 5 

presents metrics used to assess sub-daily flow fluctuations.   

Table 4 - Metrics used to assess flow fluctuations based on hourly flow data 

Metric Description Reference 

Richards-

Baker 

flashiness 

    
∑     |       |  |       | 

 
   

∑   
 
   

 

Where q is hourly flow, n is the number of records over the analysis 

(Baker, Richards, 

Loftus, & Kramer, 2004) 
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index (RBF) period (24 hrs). 

Reversals Count of the number of changes between rising and falling periods of 

the hydrograph over a 24 hr period. 

(Zimmerman, Letcher, 

Nislow, Lutz, & 

Magilligan, Determining 

the Effects of Dams on 

Subdaily Variation in 

River Flows at a Whole 

Basin Scale, 2009) 

Percent of 

total flow 

(PTF) 

    
                           

                    
 

Ratio of the range of the diurnal cycle to total daily discharge.  This is 

a measure of the percentage of total discharge being added or removed 

each day. 

Coefficient of 

daily variation 

Standard deviation of hourly flows divided by mean flow for a 24 hr 

period. 

Eco-Node 

Target Index 

(ENTI) 

    

 
∑    |         |              |         |            

 
   

∑   
 
   

 

Where Dev1below and Dev1above are deviations beyond allowable flow 

prescription bound1, Dev2below and Dev2above are deviations beyond the 

second set of allowable flow prescription bounds, q is hourly flow, and 

n is the number of timesteps.  This is a direct quantification of meeting 

ecological targets. 

 

 

Three of the five metrics (the Richards-Baker flashiness index (RFB), ratio of the range of 

diurnal cycle to total discharge (PTF), and the coefficient of daily variation) quantify various 

properties of the volume of water that was added or removed over a 24 hour period by a 

reservoir, relative to the mean daily flow, or total daily discharge.  These metrics are useful in 

determining flow fluctuations at a specific location, but do not quantify the overall pattern of 

variability.  The Richards-Baker Flashiness Index measures oscillations in flow relative to total 

flow, and as such, appears to provide a useful characterization of the way water is processed 

through the system on an hourly scale.  The Number of Reversals metric estimates overall flow 
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variability at a site by counting the number of changes between a rising and falling hydrograph 

over a 24 hour cycle.  This information does not provide information about the volume of water 

added or removed with each reversal.  The final metric is a quantification of meeting the eco-

node flow prescription targets.  This metric is useful to determine the severity of deviation 

beyond the flow prescription targets recommended at the eco-nodes. 

5.4. FLASHINESS THRESHOLDS 

Flashiness thresholds for each metric identify the flow characteristics above which, sub-daily 

flow would be considered flashy.  Flashiness thresholds have been established for a variety of 

metrics, specifically for the Connecticut River.  The flashiness thresholds were established based 

on previous research done by Zimmerman et. al (2009) in the Connecticut River on sub-daily 

flow variability.  The thresholds were estimated based on the approximate inflection point on a 

curve of distribution of observations.   

5.5. FREQUENCY OF FLASHINESS FOR ASSESSMENT METRICS 

Zimmerman et. al (2009) showed that sites downstream of peaking hydropower dams had 

significantly more days per year with high sub-daily flow variation than unregulated sites.  

CREAM model results validate this hypothesis, when the model is operated to optimize for 

hydropower production.  Their analysis showed that all sites downstream of peaking hydropower 

dams had more days with flashy flows than would be expected for unregulated sites for all 

measured metrics.  The results from CREAM show that with the implementation of a dynamic 

eco-target into the operations of the facilities that the number of days with flashy flows would 

decrease per year. The White River (USGS gage 01144000 at West Hartford, Vermont) is an 

unregulated stream upstream of Wilder in the Connecticut River Basin which was used to 

provide a comparison for a natural uncontrolled system.  Since a limited amount of sub-daily 
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data was available for this location, an average was used to assess these metrics.  The period of 

record at this gage used for analysis is 1990-2012.  There is some overlap with CREAM model 

results, however, an average over the entire historic period of record was used to assess metrics 

in this analysis. 

5.5.1. RICHARDS BAKER FLASHINESS INDEX 

The Richards Baker Flashiness Index (RBF) quantifies the volume of water that was added or 

removed over a 24-hour period relative to the total flow, and is used to provide a useful 

characterization of the way watersheds process hydrologic inputs into their streamflow outputs.  

Individual index values for each day were calculated, for each condition, and a threshold of 0.05 

was used to designate flashy flow conditions.  Figure 11 presents the number of days above the 

threshold.  This unregulated stream shows that there are, on average, few days that are 

considered peaky.  Some years had 1 day above the threshold, with the most days above the 

threshold for any year at 3 days.  Since the RBF is a measure of the sum of changes in hourly 

flow, it is expected that the natural condition would have extremely low days above this 

flashiness threshold.  
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Figure 11 – Richards Baker Flashiness Index days above threshold.  The Hydropower only modeled run shows a high number of 

days above the 0.05 threshold used to assess flashiness.  The average unregulated White River value shows that the typical 

unregulated condition has significantly less days above the flashiness threshold, with the Eco + Hydro optimized run falling in 

between the two. 

The hydropower only modeled scenario shows that there are over 150 days per year with RBF 

indices that exceed the flashiness threshold.  This number is increased in dry years, and 

decreased slightly during wet years.  The implementation of eco-node targets decreases the days 

per year that this threshold is exceeded, however, there are still between 50-100 days per year for 

every year where the conditions are considered flashy.  Although this is still flashier than the 

natural condition, the addition of eco-flows improves the flow regime compared with the 

hydropower modeled scenario. 

5.5.2. REVERSALS 

Post-processing CREAM outputs provide insights to how the sub-daily assessments metrics for 

reversals are impacted under different optimization scenarios.  The reversals metric is a measure 

of the change in rising or falling flow at each eco-node location, that is, the number of times the 
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hydrograph changes from rising to falling (or vice versa) over a 24-hour period provides the 

number of reversals per day.  Figure 12 shows the average number of days per year within a 

certain threshold bound, indicated on the horizontal axis.   

 

 

Figure 12 - Average days per year with reversals between thresholds, indicated on the horizontal axis. 

The USGS gage at North Walpole shows the average historic reversal to be 6.14 reversals per 

day in the observed record so an initial threshold of 6 reversals per day was used.  At all eco-

nodes, the average number of reversals for they hydropower optimized run is 4.84 reversals/day, 

and 4.75 reversals per day for the eco and hydropower optimized run.  The optimized solutions 

produce less reversals/day compared with the historic gage, because the optimized solution 

accounts for perfect foresight into the future with respect to both energy prices and inflows.  The 

energy price signal used in the model has four inflection points, so the output can be expected to 
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have at least four reversals.  Since the optimization model can predict exactly the future 

hydrologic conditions, it can alter flows at optimal times to maximize hydropower production 

and maximizing eco-targets, eliminating the need for excess reversals.   

At a threshold of 6 reversals per day, the hydropower optimized scenario actually has fewer days 

above the threshold.  Since the hydropower optimized run operates by following an energy price 

signal, the repetitive nature of the daily price signal will create similar flow change patterns each 

day, actually minimizing the number of reversals.  When the system is operated for hydropower 

and ecological targets, there are more reversals, since operators will not have repetitive energy 

price patterns to follow each day.  The natural hydrology of the system cannot be predicted as 

well as the energy price signal may be, and more reversals come as a result of the lack of 

repetition in the optimization function.  For the highest reversal numbers, 7-8 reversals/day, it is 

interesting to note that the eco and hydropower optimized run produces drastically less days with 

reversals over the threshold.  The model is limiting days per year with high numbers of reversals. 

5.5.3. PERCENT OF TOTAL FLOW 

Percent of total flow is the ratio of the range of the daily flow cycle to total daily discharge.  This 

is a measure of the percentage of total discharge being added or removed each day.  In this 

system, most of the reservoir capacities are relatively small compared with the flows they 

receive, and the hydraulic retention time is lower than other facilities in the basin.  As a result, 

these facilities do not have the volume to alter the flows significantly, and a low threshold for 

flashiness was used for this metric.  Figure 13 shows the average days above this threshold per 

year, for different operational scenarios, and the CRUISE estimated natural flow.   
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Figure 13 - Percent of total flow - days above percent of total flow threshold. 

A threshold of 0.03 was used, meaning that a day was considered “flashy” when more than 3% 

of the total cumulative flow for that day was altered.  This threshold showed that the hydropower 

operations are significantly altering the flow, as there are more than 100 days per year, for every 

year, where the threshold is exceeded and more than 3% of cumulative flow is altered.  The 

implementation of ecological targets greatly decreases the number of days per year over the 

threshold.  With a threshold of 3% change in percent of total flow, the implementation of eco-

targets decreases the number of days by, on average, over 90%.  The sensitivity of this threshold, 

however, changes the apparent benefits of implementing eco-targets for this metric.  Figure 14 

shows how different thresholds affect the number of days above the target.  For a low threshold 

(when 1% of the change in flow is considered “flashy”), the number of days above the threshold 
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for a hydropower only run is approximately 300 days, while the implementation of eco-targets 

decreases by 50% to 150 days. 

 

Figure 14 - Sensitivity of Percent of Total Flow threshold for each optimization run.  A low threshold of 0.01 shows that the 

implementation of eco-targets improves the number of days above the threshold by half, while a higher threshold yields less 

benefits returned. 

5.5.4. COEFFICIENT OF DAILY VARIATION 

The coefficient of daily variation (CDV) is a measure of the standard deviation of hourly flows 

divided by mean flow for a 24 hour period.  This measure quantifies the variation from the 

average, normalized for the mean flow over a day.  A threshold of 0.15 was used and days with 

values above this threshold were considered to be ‘flashy’.  Figure 15 shows the days above the 

threshold for each modeled year.   

0

50

100

150

200

250

300

350

0.01 0.02 0.03 0.05

N
u

m
b

e
r 

o
f 

d
ay

s 
ab

o
ve

 P
e

rc
e

n
t 

o
f 

To
ta

l F
lo

w
  T

h
re

sh
o

ld
 

Percent of Total FlowThreshold 

HYDRO

ECO and HYDRO

USGS White River Average



   

52 

 

 

Figure 15 - Days above the Coefficient of Daily Variation (CDV) threshold per year.  A threshold of 0.15 was used, and this 

figure illustrates the total number of days per year where the CDV is greater than or equal to the threshold. 

Figure 15 shows that with the implementation of an eco-node target in the objective function, 

the number days when CDV exceeds the threshold are less, despite still not being as low as the 

natural condition.  There is some variability in this metric shown in the unregulated White River.  

The average number of days above the threshold was 46 for the White River.  The eco+hydro 

modeled run results show that that CDV values are close to this number, and the implementation 

of ecological targets brings this metric closer to the unregulated condition. 

Wet and dry years have different effects on this metric.  Wet years (1974 and 1990 are the two 

wettest years) show that the hydropower only optimization run produces fewer days exceeding 

the threshold than an average year for this run.  The increased water in the system raises the 

mean flow and decreases the CDV.  The peaking actions that hydropower facilities operate under 

are less significant in the hydrograph.  For dry years (the 1960s were dry, with 1965 being the 
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driest year), the model produces more flashy days above the threshold, as there is less water in 

the system to dull the effects of the peaking operations. 

5.5.5. ECO-NODE TARGET INDEX 

The eco-node target index (ENTI) is a direct measure of the ecological target function in the 

objective function of CREAM.  It is expressed as the total volume of penalties received in the 

objective function as a percentage of the cumulative volume of water passing the eco-node 

location.  It is a measure of the volume of water as an objective function penalty that flows 

beyond the allowable flow deviation bounds.  It is difficult to quantify success at meeting these 

ecological targets precisely and consistently (as the potential loss associated with larger 

deviations is not a simple linear functions), but this index calculates one measure of the losses 

associated with deviations from ecological targets that can be incorporated into the objective 

function.  Table 6 shows the values for each eco-node location and eco optimization model run 

scenario.  The Hydropower run scenario produces high ENTI values, as there are a higher 

number of penalties.  The average ENTI value for the hydropower run scenario is 40.6%.  Once 

eco-nodes are implemented, the average ENTI at the eco-nodes is 13.2%.   

Table 5 - Eco-Node Target Index values at each eco-node location for two optimization model run scenarios. 

 EcoNode 1 EcoNode 2 EcoNode 3 EcoNode 4 

ENTI – Hydropower Run 24.0% 50.3% 42.3% 45.9% 

ENTI – Hydro + Eco Run 10.8% 11.6% 10.8% 19.7% 

During the hydropower run scenario, there is no incentive for the model to meet the eco-targets 

and we would expect deviations from natural flows and a large value of ENTI to be low, 

emulating natural conditions.  It is more useful to use the ENTI to quantify meeting natural flows 
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under the eco and hydropower weighted run scheme.  Future research can explore the sensitivity 

of the ecological target flow prescriptions, to assess the optimal values for allowable flow 

deviations, with respect to the ENTI.  Figure 16 illustrates the pareto-optimal trade-off between 

the value of hydropower production and ENTI. The ENTI index decreases significantly, meaning 

flows are more natural, while decreasing the ability for hydropower facilities to produce income. 

5.6. WET AND DRY YEAR VARIATION 

For different natural hydrologic conditions, different years will experience different fluctuations 

and variability in sub-daily flow.  The total volume of water passing each eco node location was 

aggregated and summed for each year to calculate the driest and wettest year of record.  The 

calendar year 1965 is estimated to be the lowest flow year on record.  The highest flow year was 

1974.  During a dry year, the objective to produce hydropower is the same as during a wet year.  

Each facility has fixed turbine constraints, and during a dry year, the volumes of flow set in those 

constraints are a greater percentage of the total flow passing the facility.  For example, at 

Bellows Falls, the maximum turbine capacity is 11,010 cfs.  The average flow past the eco-node 

directly below the Bellows Falls release during the dry year of 1965 is 9,775 cfs.  During the 

wettest year, 1974, the average flow past this location is nearly 16,000 cfs.  The dry year has the 

potential for more sub-daily fluctuations, since the entire river can be handled through the 

generating turbine.  Operators have the ability to alter 100% of the flow in the river in this dry 

year.  During a wet year, the flows exceed the maximum turbine capacity, and the operators 

cannot alter all water passing.  During a wet year, 70% of the flow can be altered.  During both 

of these conditions, however, the flow is not altered to the maximum allowable deviation, since 

there are additional constraints put on the system, such as minimum flow requirements.  Figure 

16 shows that there is a difference in the flow disruption between these two scenarios.  This 
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figure shows single year average daily flow values for the hydropower optimized model run.  

During the dry year scenario, flow is altered to around 20% of maximum daily average flow, a 

change of 80%.  During the wet year scenario, flow is altered to 60% of the maximum daily 

average flow, a change of 40%.  This indicates that during years with lower overall natural 

inflow, the hydropower peaking fluctuations that have driven historic operations have a much 

greater influence on drier years than wetter years.    

 

Figure 16 - Average Flow as a percent of maximum daily average for the wettest and driest year of records.  The dry year (1965) 

and wet year (1974) show that there is a greater flow fluctuations as a percentage of the maximum flow during the dry year, when 

flows are lower throughout the system. 

There are significant differences in the tradeoffs associated with operating during a dry versus 

operating during a wet year.  Figure 17 compares the tradeoffs generated during the wet and dry 

years.  During the dry year, 1965, the tradeoff curve shape is much more curvaceous than the wet 

year, 1974.  The ENTI for the dry year also shows significant improvement, down from 50 to 
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less than 15 under the most natural scenario.  In the wet year, the ENTI improvement was not as 

dramatic, improving from 60 to 35.  A more dramatic curve shown in the wet year, indicates that 

a specific output set of flows can generate similar income while greatly improving the ENTI.  

During a wet year, this change is more gradual, as there is less water – relative to the entire 

system – that the facility can use to generate income. 

 

Figure 17 - Average Flow as a percent of maximum daily average for the wettest and driest year of records.  The dry year (1965) 

and wet year (1974) show that there is a greater flow deviation as a percentage of the maximum flow during the dry year, when 

flows are lower throughout the system. 

When these two tradeoff scenarios are plotted together, we see that the natural hydrology of the 

system has a large impact on both the amount of income generated, but also the ability meet 

natural flow conditions using ENTI.  Figure 18 shows that in 1965 – the dry year – the 

optimization frontier produces more natural flows while producing less electricity than during 

1974. 
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Figure 18 – Dry and Wet year Tradeoff curves. 

Figure 18 shows the range of possible tradeoff curves, assuming that 1965, and 1974 are 

accurate representations of the extreme dry and wet flow regimes.  The period of record used in 

this analysis was 43 years (1961-2003).  This is not a long period of record to say with certainty 

that these are the extreme flow regimes in the system.   

Figure 19 shows how the facilities individually respond to dry and wet years.  During 1965, each 

facility shows a distinct tradeoff shape.  Northfield’s tradeoff curve is very sharp, where Wilder, 

Bellows Falls, and Vernon are much more gradual curves.   
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Figure 19 – Individual system tradeoffs during wet and dry years. 

 During 1974, all ENTI values generally increase, but Northfield’s ENTI increases much more 

compared with the other facilities.  The environmental impact of Northfield during a wet year is 

greater than the other facilities, however, during a dry year, Northfield’s impact is generally the 

same. 

5.7. OPERATIONAL CHANGES 

The hydropower facilities currently operate to account for sub-daily energy price fluctuations 

and generate power accordingly, to maximize profit.  The model shows that current operations 

are similar to the hydropower optimized run, and that current operations are close to optimal for 

hydropower production.  By increasing the emphasis on natural flows in the operations of each 

facility, some loss of hydropower production value (profit from producing hydropower, in 

dollars).  Figure 20 shows the tradeoff expected when hydropower operators begin to operate in 

a more natural way.  The tradeoff curve shows that large benefits can be redeemed for the 

ecological targets with moderate losses to hydropower income, shown on the shallow slope on 
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the top of the optimization frontier.  The eco-penalty of the objective function can be improved 

by half (i.e. flows are halfway closer to natural than during hydropower only operation) while 

trading off approximately 15% of income.  This curve was created by constraining the 

hydropower income to be above a certain threshold.  The model was then run to see what optimal 

ENTI values could be achieved.  During the FERC relicensing process, the use of this tradeoff 

can provide insight into how much environmental progress can be made given certain income 

constraints. 

 

Figure 20– Tradeoff showing the optimization frontier of the two components of the objective function.  On the vertical axis: the 

hydropower facility income generated, and on the horizontal axis; a measure of the eco-penalty in the objective function.  A 

lower eco-penalty means a more natural flow. 

Facility operators can achieve more natural conditions by attempting to limit the sub-daily 

fluctuations.  All of the assessment metrics presented in Section 5.5 show that there is significant 

sub-daily variation under the hydropower optimized solution, which is a realistic representation 
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of current operating conditions.  Specifically, limiting the use of storage in the facility and 

maintaining more nature flows will decrease the sub-daily variation that has been prevalent.  

Facilities would need to use a simulation model to analyze how specific operational changes will 

affect hydropower production and profit at each facility.   

5.8. PENALTY FUNCTION ANALYSIS 

The timing of flows that cause environmental penalties in the optimization model provides 

operators insights into when significant deviations from natural flow are causing detrimental 

flows in the system.  The hydropower facilities in this system have relatively small storage 

capacities compared with the flow passing through them.  As a result, these facilities use most of 

their storage capacity to alter daily flow patterns.  The limited storage capacity makes it 

unattractive to store water for release longer time periods later (seasonally, or annually) to 

generate hydropower.  Figure 21 shows the average number of days per year with penalties 

during each hour of the day.  The left plot shows results under a hydropower only scenario.  This 

operational scheme uses the energy price signal to drive flows in the system, and when energy 

prices are low – in the early morning between 12:00 am and 5:00 am – the hydropower facilities 

use their storage capacity to hold back water.  Storing water during this time produces more 

hours with flow penalties, as the system will release flows that are detrimentally low for the eco-

targets.  When water is released to generate electricity later in the day, the number of days with 

penalties during this time is decreased.  Operators sustain the most environmental penalties when 

they use the facility to store in the early morning hours to generate electricity later in the day.  

This cycle usually involves the hydropower facility slightly altering the flow below the lower 

allowable flow bound for several hours in the morning as water is stored in the system.  A more 
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efficient way of filling the reservoir in the early morning can limit the ecological disruptions 

during this time.   

 

Figure 21 - Average number of days per year with penalties for each hour of the day.  a) In the early morning, between 0:00 and 

5:00 am, there are more penalties than during the later morning, afternoon, and evening. b) By implementing eco-targets, the 

model will attempt to meet more natural flows, although there are still days with penalties at each hour per year.  These are 

distributed evenly throughout the day. 

The Hydropower + Eco Run scenario uses the implementation of the ecological targets to 

minimize penalties.  Once penalties are minimized, the number of days with penalties at each 

hour per year is decreased to just over 100 days per year.  The linear shape of this curve shows 

that CREAM evenly distributes the penalties throughout the day, and there is no preference for 

the model to incur a penalty at any specific time of day.  

Monthly variability in the penalty function can provide insight into seasonal penalty function 

trends.  Figure 22 shows the monthly variation in penalty functions.   



   

62 

 

 

Figure 22 – a) Average monthly penalty (cubic feet of water) b) average hours per month with penalty.  Seasonal variation in 

penalty as measured in total volume of penalty.  The plots show that on average, the month of April causes the most days with 

penalties.  The magnitude of the penalties in April are much greater than in other months, because of high spring flows. 

Figure 22a shows the total cumulative volume of water that causes a penalty.  This is a direct 

measure of the total volume of water flow that occurs outside of the allowable flow bounds for 

the given month.  The month of April produces the greatest volume of penalty flows.  April has 

the highest average flows of any month during the year, as snow melts to boost runoff and any 

penalty will be greater than during a drier month.  Figure 22b shows the number of hours per 

month with penalties.  Even though the month of April produces a greater total penalty volume, 

the total hours where penalties occur is not significantly greater than surrounding months.  When 

there is a penalty occurring, the penalty during the month of April is much greater than in other 

months, although the total number of penalties is not significantly different than May and June.   
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6. CONCLUSION 

The Connecticut River Environmental Assessment Model (CREAM) optimizes the operations of 

five hydropower projects along the Connecticut River.  The model results were validated with 

USGS gage data, as well as historic energy price and historic facility information provided by the 

facility operators.  To achieve this calibration, the model was operated with hydropower as the 

only component of the model’s objective function, indicating that current reservoir operations 

are similar to the hydropower only optimized operations.  Current operations greatly disrupt the 

natural hydrology of the system and sub-daily flow variations throughout the system are 

significant.  All of the metrics used to analyze sub-daily flow variability demonstrate that current 

operations are similar to the “hydropower only” optimized solution and current operations 

respond to price signals to generate high valued hydropower energy.  With a framework that 

brings flows closer to their natural condition, dynamic flow deviation penalty functions were 

implemented in the optimization objective function.  These operational changes result in flows 

that better match a variety of ecological targeted species and produce flows that more closely 

resemble those found in the natural flow regime.  Forecasted natural streamflow or estimates of 

natural flow based on the previous day’s natural streamflow will be needed to guide operators to 

specific flow requirements that they should follow to emulate the natural condition.  By reducing 

the depth of fluctuations while following the natural streamflow pattern will limit the 

environmental penalties in the flow regime. 

CREAM generates tradeoffs between hydropower production and ecological flow targets.  

Adjusting operations to limit the degree of sub-daily variation in historic operations provides 

ecological benefits to flow species within the Middle Connecticut River, but these adjustments 

come with losses in hydropower production income.  CREAM verifies that current hydropower 
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facilities are causing significant deviations from natural flow in various aspects of the flow 

regime.  Sub-daily analysis shows that significant penalties to the designated eco-species occurs 

when the hydropower facilities store water and decrease their releases; operating with a daily 

hydropower peaking cycle.  For the facilities in the model, this is most extreme in the morning, 

when energy demand is low.  Limiting the volume of storage used during this time period will 

provide great benefits to the eco-species by limiting the variability in the daily flow regime. 

These analyses illustrate that hydropower production conflicts with the objective of minimizing 

deviations from natural and CREAM provides an analytical tool that quantifies the tradeoffs 

between these two objectives.  The research results include the following: 

 Current operations of hydropower facilities result in minor changes in seasonal flow, with 

higher deviations in the spring and little deviations in winter flow. 

 Current operations of the facilities result in significant hourly variation from natural 

flows in the daily streamflow patterns with higher deviations occurring when demand is 

low and flows are reduced. 

 Current operations operate with higher than natural number of reversals of flow per day, 

and the implementation of eco-nodes can decrease the frequency of such reversals.  

 The CREAM model incorporates eco-nodes that reflect aquatic scientists and biologists 

consensus on preferred flows that address aquatic needs for a variety of ecological 

species at ecological node locations. 

 The CREAM model is capable of generating operating releases that meet both 

environmental flow targets and hydropower production depending on the weighting of 

these two objectives. 
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 Tradeoffs between the environmental flow targets and hydropower production shows that 

flow penalties can be reduced by 50% with a 15% loss in hydropower. 

 The results from the optimization model show that limiting the storage used and by 

attempting to mimic some forecasted or estimated natural flow regime will increase 

benefits to species. 

The natural dynamic character of a riverine ecosystem affects the ecological integrity.  The flow 

regime of a river is the most significant variable that affects the entire river ecosystem.  The 

natural system is strongly dependent on the natural hydrologic conditions.  Hydropower provides 

a reliable energy source that can be quickly utilized; however, these river impoundments can 

impose many environmental constraints on a natural system.  A range of feasible tradeoffs 

between these two operating objectives shows that significant improvements to the natural flow 

regime can be achieved with modifications to the historic operating schemes of the hydropower 

facilities in the Connecticut River.   
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