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Abstract 
 
 This thesis investigates an approach for determining water resources vulnerability 

caused by climate change and applies it to a case-study for the New York City Water 

Supply System (NYCWSS).The results provide potential responses of the system to 

changes in climate and guidance that can inform short and long-term planning decisions. 

This research models the hydrology and operations of the NYCWSS and includes a 

statistical model of turbidity concentration in the Ashokan Reservoir. Using a stochastic 

weather generator, incremental changes are made to precipitation and temperature and 

used to drive the coupled hydrology-simulation model. The results are aggregated and 

examined to show the sensitivity of the system, and in particular Ashokan Reservoir 

turbidity, to changes in climate. The results are briefly compared with the latest GCM 

data to provide insight into expected changes in turbidity over the next half-century. 
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1. INTRODUCTION 

1.1. Planning in Water Resources 

 This thesis investigates an approach for determining water resources vulnerability 

caused by climate change and applies it to a case-study for the New York City Water 

Supply System (NYCWSS). The results provide potential responses of the system to 

changes in climate and guidance that can inform short and long-term planning decisions. 

Well-informed water resources planning is required to design, build, and operate the 

infrastructure related to the regulation of water. Such infrastructure includes dams, 

reservoirs, levees, flood-plains, supply systems, and spillways. Traditionally, these 

projects are planned using a cost-benefit approach: rather than protect against the entire 

realm of possible extreme events, designs are selected to minimize the combination of 

risks and costs of hazards while maximizing benefits (Stakhiv, 2011). Events used to plan 

(design events) are chosen based on the product of their probability of occurring and the 

potential damage from their occurrence. This planning strategy is predicated on the 

ability to accurately project the risks and potential costs that these ‘hazards’ may cause. 

Until recently, these risks have been categorized by the assumed stationarity of the 

hydrologic cycle. Stationarity is the concept that natural systems fluctuate within a fixed 

envelope of variability; this implies that the probability density function of a variable can 

be estimated from an instrument record (Milly et al., 2008), or more simply, that an event 

of a certain magnitude has a direct probability associated with it that can be derived from 

the historic record.  

 Recently, an ideological shift in the field of water resources has called for an 

alternative planning and management strategy that is not predicated on stationarity (Milly 
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et al., 2008). This shift has occurred due to the growing body of literature documenting 

the changes in the Earth’s climate. The National Climate Assessment (NCA; USGCRP, 

2013) has reported that recent observations of the Northeast U.S. show warming and an 

increase in heavy precipitation events. These extreme events, as well as other changes, 

have been occurring with greater frequency in many parts of the world 

(Intergovernmental Panel on Climate Change, 2012).  

 This paper demonstrates a method that can be used to estimate the impacts of 

climate change in a water resources management setting. The risk of the associated 

changes in climate can be estimated by aggregating the results of a multitude of climate 

projections and both the risks and costs can be used in cost-benefit planning (Brown et 

al., 2011). This systemic cataloging of threats to the system, their costs, and their 

likelihoods (as well as system assets and capabilities) is a vulnerability analysis and it 

acts as the first of the four common stages in water resources planning (WUCA, 2010). 

Computer models are used to conduct vulnerability analyses to illustrate the impacts of 

various potential scenarios. Computer models can simulate the behavior of reservoir 

systems and associated hydrology to allow planners to test for sensitivities. The 

information in the vulnerability analysis can be used to guide planning, allowing 

emphasis to be placed on portions of the system that are susceptible to failure. 

Historically, the water industry has used the stationarity assumption when performing 

vulnerability analyses of water systems, using the historic record to drive the simulation 

models. Recognizing the recent changes in hydrologic stationarity, new approaches are 

necessary to incorporate climate change scenarios into water resources vulnerability 

analyses (WUCA, 2010). The approach described in this paper draws heavily on the 
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current water resources and climate change literature to incorporate the new criteria for a 

water resources vulnerability analyses. 

1.2. Planning Under Climate Change 

 There are two common planning approaches used to incorporate climate change 

into vulnerability analyses. For the purposes of this discussion, they will be described 

simply as a top-down approach and a bottom-up approach (Dessai and Hulme, 2004).  

The top-down approach is scenario-driven with the basic premise being to plan for 

specific events, or a range of events, guided either by climate-science data or by scenarios 

that are generated to explore a range of potential futures. The bottom-up approach 

focuses on the system characteristics under investigation with the goal of gathering 

specific information on the water resources system of interest.  

 In the context of climate change, top-down vulnerability analyses generally make 

use of General Circulation Models (GCMs, also referred to as Global Climate Models) 

for projections to drive the water resources model. GCM’s are mathematical models that 

simulate the earth-atmosphere system and can use a number of greenhouse gas emission 

scenarios supplied from the IPCC as inputs (Kisparsky et al., 2012). Outputs from these 

models include projections of temperature, precipitation, and other climate-related 

variables; the output from these models inform the vulnerability analyses by projecting 

the hazards the system will face under climate change and the resulting costs of the 

hazards. 

 GCM models are selected on a study-by-study basis, often based upon their 

ability to replicate past, observed conditions. It is often necessary to bias-correct these 

models during the verification process to more accurately reproduce historic climate. To 
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achieve the resolution necessary for watershed-scale simulations, GCM outputs are 

‘downscaled’ using a variety of emerging techniques that are tailored to the specific study 

(Wilby et al., 2004). The climate models are then driven with a selection of emission 

scenarios to produce a range of output variables. Water resource planning studies will 

typically incorporate more than one GCM by creating model ensembles.  

 Results from the GCM simulations are used to select input variables for local 

hydrology models, such as temperature, precipitation, wind speed, radiation, and 

humidity. The hydrology model simulates the physics of the basin to project time-series 

values of the variables that will drive the system simulation models used for planning 

studies, such as snowmelt and streamflow (Wiley and Palmer 2008; Christensen et al., 

2004). Studies directly incorporating GCM outputs are typically applying the top down 

approach, as the planning is tailored to the scenarios projected by the GCM’s.   

 The use of GCM projections as inputs to water resources models to categorize 

risks has been questioned because of the uncertainty associated with the projections. 

Uncertainty in water resources modeling is inescapable and arises from a variety of 

sources, including a lack of understanding of the physical system (short historical record, 

poor characterization of hydrology), the social system (changing water demands, 

changing social priorities), or the economic system (changing prices).  Uncertainty is also 

inescapable with GCM’s because the resolutions of the models is much coarser than 

needed for watershed basins, in fact, their original intent was to project the effects of 

various greenhouse gas emission scenarios on the Earth’s atmosphere (Kundzewicz, 

2010). The limitations of GCM to replicate past climate and the uncertainties if using 

them to forecast projections are well documented but seem to be irreducible with the 
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current versions of the models (WUCA, 2009). To be useful in hydrology models, GCM 

results must be downscaled regionally and bias corrected and this also introduced new 

sources of uncertainty.  (Kundzewicz, 2010). Projections also muddle the ‘risk’ term used 

in a cost-benefit approach to planning, as there is no exact uncertainty range, or 

probability estimate, to the individual projections.  

 Bottom up vulnerability analyses are focused on the responses of the system to 

various scenarios and have been used recently by planners to understand the risks to 

water systems (Jones, 2001; Lempert et al., 2004). As early as 1962, engineers began 

taking advantage of the rising computational power available by creating unlimited 

records of synthetic input data that conformed to the observed characteristics of the local 

historic data in order to study the responses of their system models (Thomas and Fiering, 

1962). This method has been more recently adapted to suit climate change vulnerability 

analyses by using input data that resembles climate change projections rather than 

historic weather.  

 The methodology used in this thesis closely resembles the bottom-up climate 

change vulnerability analyses though it draws more specifically from the decision-scaling 

method recently introduced to water resources literature (Brown et al., 2011). Decision-

scaling combines a number of bottom-up analyses to determine the stress on a system 

caused by changes in climate. The desired basin climate statistics are incrementally 

varied when creating time-series of synthetic weather to produce different scenarios 

(Brown and Wilby, 2012). The resulting system performance associated with the 

different scenarios are analyzed and related to the climate statistics that produced the 

scenario. Different thresholds of acceptable values of system variables can be determined 
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with the help of the system stakeholders and acceptable levels of change that produce 

results up-to but not including the threshold values can be determined. Decision-scaling 

then utilizes available climate information to determine the risk, or probability, that the 

threshold values will be exceeded. (Brown et al., 2012; Moody and Brown, 2012) 

 With very large systems, such as with the New York City Water Supply System, 

bottom-up and decision-scaling style vulnerability analyses can require extensive 

amounts of time and resources because of the large number of scenarios. This study 

demonstrates the effectiveness of a bottom-up style vulnerability analysis using a 

screening tool simulation model to facilitate rapid turnover and analysis of a wide-range 

of climate change scenarios. The screening tool consists of a simplified water resources 

simulation model created to simulate operations accurately and quickly. 
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2. PROBLEM BACKGROUND 

2.1. New York City Water Supply System (NYCWSS) 

 Today, the New York City Water Supply System (NYCWSS) delivers 

approximately 1.04 billion gallons of water per day to the more than nine million 

consumers in New York City and the four surrounding counties that border on the City 

and the supply system. Water demands peaked in 1979 at about 1.5 billion gallons per 

day and have been near or below 1.1 billion gallons per day since 2003. The major supply 

components of the system have been in place since 1964. The New York City 

Department of Environmental Protection (NYCDEP) is responsible for the operation and 

maintenance of the NYCWSS as well as investment planning. The Bureau of Water 

Supply, within the NYCDEP, is responsible for managing, operating, and protecting the 

water supply system and watersheds. The NYCWSS places an emphasis on source water 

protection programs resulting in repeated Filtration Avoidance Determinations (FADs) 

from the United States Environmental Protection Agency (EPA), with the most recent 10-

year FAD issued in July 2007. The FAD maintains New York City’s status as one of only 

five large cities in the country with a surface drinking water supply of such high quality 

that filtration is not required. These five cities are: Seattle, WA; Portland, OR; San 

Francisco, CA; Boston, MA; and New York, NY (Alcott et al., 2013). As part of the 

agreement, New York City continues to enhance existing watershed protection programs 

while developing new efforts such as land acquisition, land management, and 

partnerships with local environmental and non-profit organizations (NYCDEP, 2012). 

 The system stores water in three upstate reservoir systems that include 19 

reservoirs, three controlled lakes and a total storage capacity of approximately 580 billion 
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gallons. The watersheds providing this water are approximately 2,000 square miles. 

Three separate water supply subsystems compose the NYCWSS: the Croton system is 

located just North of NYC in Westchester County and contains 12 reservoir basins, the 

Catskill/Delaware system, referred to together as the West-of-Hudson (WOH) system, 

consist of six reservoirs located as far as 125 miles North and West of NYC, and a 

groundwater system in the Queens borough of NYC (Figure 1). The separate water 

collection systems were designed and built with various interconnections to increase 

flexibility by permitting exchange of water from one to another. This feature mitigates 

localized droughts and takes advantage of excess water in any of the systems. (NYCDEP, 

2014a).  
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Figure 1. Schematic of the NYCWSS (NYCDEP, 2007) 

  The Croton system is used as a transfer station for WOH water heading towards 

the city though in times of low supply the Croton system is drawn down to meet demand. 
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Use of the groundwater supply is limited to emergencies. In 2012, 100% of the drinking 

water was supplied by the WOH system (NYCDEP, 2012). The WOH supply can be 

divided into two systems: the Delaware system and the Catskill system; on average, the 

Delaware system provides 60 percent of the city’s daily water needs while the Catskill 

system provides the other 40 percent. The Delaware system contains three reservoirs that 

operate in parallel, Cannonsville (95.7 billion gallon capacity), Neversink (34.9 billion 

gallons capacity), and Pepacton (140.2 billion gallon capacity), feeding into a fourth 

reservoir, Rondout (49.6 billion gallon capacity). The Catskill system contains two 

reservoirs that operate in series, with the Schoharie Reservoir (17.6 billion gallon 

capacity) feeding the Ashokan Reservoir (122.9 billion gallon capacity). Water from 

Rondout reservoir travels via the Delaware Aqueduct through the Croton system and the 

Kensico Reservoir (30 billion gallon capacity) on the edge of the Croton system before 

entering the NYC distribution system. Likewise, water from the Ashokan Reservoir 

travels directly to the Kensico Reservoir via the Catskill Aqueduct before entering the 

NYC distribution system.  

 The Delaware system is located in the Western portion of the Catskill Mountain 

Range in the headwaters of the Delaware River. The Delaware River is regulated by the 

Delaware River Basin Commission (DRBC), a regional body created in a 1961 

agreement between the federal government and the four states which share the Delaware 

River and its watersheds: Delaware, New Jersey, Pennsylvania, and New York. This 

body was created 7 years after a U.S. Supreme Court decree in 1954 in the case of New 

Jersey v. New York which established minimum releases from the reservoirs downstream 

to the Delaware River ensuring equitable allocation of the region’s resources. The DRBC 
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is currently responsible for ensuring all parties, including the NYCDEP, are abiding to 

the code, regulations, and rules of practice established by the Supreme Court decision.  

 The New York City Bureau of Water Supply’s (NYCBWS) primary mission is to 

ensure the delivery of a sufficient quantity of high quality drinking water. As noted 

previously, the quantity of water provided by NYCBWS has steadily decreased for the 

past four decades with current demand nearly 40% below 1980s levels despite a 15% 

growth in population. The most recent safe yield estimates for the system are between 

1,225 and 1,370 MGD, with the higher range of values including infrastructure 

improvements that are not yet completed. The safe yield of this system is defined by the 

drought of the 1960s. Safe yield projections exceed projected water demands by 11% 

(NYCDEP, 2011), signifying that the NYCWSS faces very little risk of being unable to 

deliver a sufficient quantity of water, even in worst-case scenarios. Maintaining the high 

quality of the drinking water is the highest priority for the NYCBWS.  

 One component of the NYCWSS that has required special attention is the 

Ashokan Reservoir, which has periodic turbidity events, a water-quality parameter 

regulated under the Safe Drinking Water Act (1974). This reservoir has been closely 

monitored by the NYCDEP to ensure that drinking water meets all regulatory 

requirements and in 2013 the NYCDEP agreed to an updated constraint order with the 

NYC Department of Environmental Conservation (NYCDEC) to further regulate and 

monitor the water quality in the Ashokan Reservoir 

2.2. Turbidity in the Ashokan Reservoir 

 The Ashokan Reservoir is located in Ulster County, about 13 miles west of 

Kingston and 73 miles north of New York City. Located on Esopus Creek, the dam and 
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reservoir consists of two basins separated by a concrete dividing weir and roadway. The 

facility was placed into service in 1915 and has a capacity of 122.9 billion gallons. It has 

a watershed drainage basin of 255 miles that includes parts of 11 towns (NYCDEP, 

2014b). Average flows into the reservoir are approximately 350 MGD.  

 The Ashokan is one of two reservoirs in the Catskill Water Supply System. The 

other is the Schoharie, located 27 miles to the north.  Schoharie’s releases flows into the 

Ashokan via the Shandaken Tunnel and the Esopus Creek. Including transfers from the 

Schoharie Reservoir, the Ashokan supplies about 40% of New York City's daily drinking 

water in non-drought periods. Water enters the Ashokan's West Basin and, after a settling 

period, is typically transferred to the East Basin by a gate in the dividing weir. During 

special circumstances, such as a large event, water may spill over the weir into the East 

Basin or be released from the West Basin to the downstream portion of Esopus Creek. 

From the East Basin, water is transported southeast under the Hudson River via the 92-

mile Catskill Aqueduct, which has a maximum depth of 1,114 feet. It ordinarily enters 

the Kensico Reservoir in Westchester for further settling, where it mixes with Delaware 

system water and then travels south in two aqueducts before entering New York City's 

water supply distribution. (NYCDEP, 2014b) 

 The foremost operational challenge in managing the Ashokan Reservoir is 

periodic turbidity events in the West Basin. The source of the turbidity is clay mineral 

particles that are transported from the Esopus Creek watershed during storms. Extensive 

stream channel erosion of glacial clay deposits has been identified as the main cause of 

high levels of turbidity in many of the tributaries draining the Catskill watersheds (Nagle 

et al., 2007). The vast majority of eroded sediments in all streams are transported during 
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high flow events (Wolman and Miller, 1960). Increases in reservoir turbidity impacts 

water quality and has the potential to affect the NYCWSS operations when water in 

Ashokan’s West Basin is too turbid to be transferred to the East Basin (Effler et al., 1998; 

Gelda et al., 2009). In this case, the East Basin is drafted lower than desired by the 

NYCDEP, leaving the system vulnerable to subsequent large rainfall or drought events.  

2.3. Climate Change and the NYCWSS 

 The NYCDEP, NYCBWS, the New York State Department of Environmental 

Conservation, the NYC Department of City Planning, and other New York City and New 

York State agencies have been leaders in defining the impacts of climate change on New 

York City and in exploring a range of management alternatives (NYCDEP, 2008). One 

example of this is the formation of the Second New York City Panel on Climate Change 

(NPCC2). This group includes leading climate and social scientists and risk management 

experts charged with advising the Mayor of New York City on issues related to climate 

change and adaptation as well providing up-to-date scientific information and analyses on 

climate risks. The latest report from NPCC2, “Climate Risk Information 2013 – 

Observations, Climate Change Projections, and Maps” (New York City Panel on Climate 

Change, 2013) presents observed data from the past century, results of GCM simulations 

from the Coupled Model Intercomparison Project Phase 5 (CMIP5), and data developed 

for the upcoming IPCC Fifth Assessment Report (AR5). The observed and projected 

climates for New York City are summarized in a regional and global context, with an 

emphasis on observed trends over large spatial scales (New York City Panel on Climate 

Change, 2013).  
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 The report indicates the following: Temperature and precipitation trends indicate 

overall increases from 1900 to 2011 in New York City but with inter-annual and decadal 

variations; temperature has increased by 4.4 °F and precipitation has increased by 7.7 

percent. There has also been evidence of increasing variability in year-to-year 

precipitation in NYC when comparing the first half of the 20th century to the second half. 

The temperature trends are broadly similar to the trends for the entire Northeastern 

United States; the precipitation trends in the Northeast are similar but cannot necessarily 

be distinguished from natural variability (New York City Panel on Climate Change, 

2013). 

 Extreme events are climate occurrences that are especially intense and can have 

significant impacts on New York City. These can include heavy rainfall, heat waves, and 

coastal floods. There is rarely statistical significance in the evidence at local scales to 

unveil trends in extreme events because of high natural variability and limited record 

length (Horton et al., 2011). At regional and global scales there can be statistically 

significant trends; changes in extreme events at these spatial scales have been attributed 

to human influences on the global climate (IPCC, 2012). There has been a slight trend 

towards an increase in extreme precipitation events in New York City since 1900, though 

it cannot be distinguished statistically from random variability (New York City Panel on 

Climate Change, 2013). Over the larger Northeast U.S. region, there has been an 

approximately 70 percent increase in intense precipitation events (defined as the heaviest 

1 percent of all daily events) over the period from 1958 to 2011 (USGCRP, 2013). 

 The NPCC2 report provides climate projections for the 2020s and 2050s (Table 

1). As in all climate forecasts, the report notes that the precipitation projections are 
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considered less certain than the temperature projections with some climate models 

suggesting an increase in precipitation and other suggesting a decrease (New York City 

Panel on Climate Change, 2013). The report also notes that there are several reasons why 

future climate changes may not conform to these forecasts, noting potential changes in 

greenhouse gas emissions, potential changes to the climate’s sensitivity to greenhouse 

gases, and other climate changes outside model-based estimates. It is also important to 

recognize that although the projections show relatively small percentage increases in 

annual precipitation, larger percentage increases are expected in the frequency, intensity, 

and duration of extreme precipitation at daily timescales (New York City Panel on 

Climate Change, 2013). 

Table 1. NYC Climate Projections 

Air Temperature Baseline 
(1971 - 2000) 54 °F 

Low-estimate 
(10th percentile) 

Middle range (25th 
to 75th percentile) 

High-estimate 
(90th percentile) 

2020s +1.5 °F +2.0 °F to 3.0 °F +3.0 °F 
2050s +3.0 °F +4.0 °F to 5.5 °F +6.5 °F 

Precipitation Baseline 
(1971 - 2000) 50.1 inches 

Low-estimate 
(10th percentile) 

Middle range (25th 
to 75th percentile) 

High-estimate 
(90th percentile) 

2020s 0 percent 0 to +10 percent +10 percent 
2050s 0 percent +5 to +10 percent +15 percent 

 

 Recent studies of the NYCWSS using GCM projections conclude that the water 

supply system will most likely continue to be highly robust, indicating a low probability 

that the system will experience failure due to a water shortage and, that if low storage 

occurs, it will likely return to more normal conditions quickly (Matonse et al., 2012). 

This positive outlook for the NYCWSS supply variables is due in part to a rise in 

monthly inflows for almost all months with the greatest changes during winter and early 

spring due to a combined effect of more rainfall and snowmelt associated with higher 
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temperatures (Matonse et al., 2011). The Matonse et al (2012) study concluded that under 

the climate change projections the reservoirs will fill earlier with inflows more evenly 

distributed during winter and early spring, shifting the peak spring runoff earlier into the 

winter. The study also projected a decrease in the average number of days that both the 

Catskill and Delaware reservoir systems would be under drought emergency, warning, or 

watch conditions. Equally important, water demands for the region have decreased 

dramatically making a water shortage less likely now and in the next several decades. 

2.3.1. Climate Change and Turbidity  

 Because high flows in the streams that supply water can result in turbidity events, 

the overall number of turbidity events is expected to increase as monthly inflows to the 

reservoirs increase due to higher average values of monthly precipitation. In addition, the 

timing of snowpack runoff is expected to change due to increase in temperature. The 

potential for an increase in extreme precipitation events with climate change also presents 

a potential for increased erosion and subsequent turbidity events. Studies simulating 

climate change scenarios have resulted in annual Ashokan West turbidity increases of 3% 

and 5% for the 2050s and 2090s, respectively (Samal et al., 2013). Additionally, the 

study found that the average winter reservoir turbidity increased by 11% and 17% for the 

2050s and 2090s, respectively, while the turbidity from April to May decreased, though 

peak average turbidity still occurs in April. This projected change in the turbidity 

seasonality is attributed to the shifting of the peak spring runoff earlier into the winter, 

resulting in higher winter streamflows and lower spring streamflows. The Samal et al. 

(2013) study simulated climate change using three GCMs and three future emission 

scenarios. 
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2.4. Project Goals and Objectives 

 The goal of this research is to identify climate-related vulnerabilities of the 

NYCWSS to inform future decision-making and operations. Because the NYCWSS will 

likely maintain high resilience, high annual reliability, and relatively low water-supply 

vulnerability in the future, the research focuses on the system vulnerability to turbidity 

events, as the NYCDEP has identified this as a topic of great interest.  

 This project utilizes an analysis approach that assesses the sensitivities of the 

system to incremental changes in climate by testing their impacts in a simulation model 

that includes both water balances, turbidity modeling, and detailed systems operations. A 

synthetic weather generator is used to create time-series with adjustments to the annual 

statistics of precipitation and temperature. The nature and range of scenarios can be 

determined through stakeholder discussion and are not necessarily confined to being 

likely, or even plausible, but instead to allow the researchers to determine sources of 

vulnerability in the system (Brown and Wilby, 2012).  

 Previous studies conducted by the NYCDEP and associated partners have led to 

the development of The Operational Analysis and Simulation of Integrated Systems 

(OASIS) model (HydroLogics Inc., 2007) and the Operations Support Tool (OST), both 

used by operators and managers to support NYCWSS operations and planning 

(NYCDEP, 2010). The NYC OASIS model has also been linked to a Qual-W2 water 

quality model (referred to as OASIS-W2) that is capable of estimating in-reservoir 

contaminant concentrations (Cole and Wells, 2002). Both the OASIS-W2 model and the 

OST are very sophisticated models, with relatively demanding computational 

requirements. Since a research goal is to explore a large number of future scenarios, the 
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computational requirements of using these models for the analysis appeared to preclude 

their use. To conduct this research, a “screening-tool” model is needed that allows rapid 

evaluation of each scenario. Climate scenarios that expose vulnerabilities in the system 

can be identified, investigated further, and then examined in great detail in OASIS and in 

the OST. Further investigation identifies different weather and hydrologic regimes on 

various time-scales that are causing the system vulnerabilities as well as the projected 

likelihood of the scenario.  

 The general approach for this research is to generate, test, and interpret 

incrementally-changing climate scenarios and their impacts on the NYC water supply. 

The research objectives are as follows: 

1) Generate synthetic time-series of precipitation and temperature that capture trends 

in the historic data but allow for adjustments to mean precipitation and mean 

temperature. 

2) Test a wide-range of precipitation and temperature scenarios in a screening tool 

that accurately simulates the hydrology and operations of the NYCWSS. 

3) Analyze these results and develop climate response functions for system variables 

of interest. Specifically this includes identifying the climate drivers of turbidity in 

the Ashokan Reservoir. 
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3. METHODOLOGY 

3.1. Model Framework 

 The project utilizes three separate computer models to generate the desired 

results. The models used are: 1) a multivariate, multisite daily weather generation model, 

2) a watershed hydrology model, and 3) a reservoir operations screening tool model. The 

modeling process proceeds logically from changes in climate, to impacts on hydrology 

and then to systems operations. The three models were loosely integrated using the 

statistical computing program R (R Core Team, 2012) to execute iterative, batch files as 

well as for the aggregation of model outputs and data analysis.  

3.2. Weather Generator 

 A semi-parametric multivariate, multisite weather generator (Steinschneider and 

Brown, 2013) is used that employs an autoregressive model to simulate annual climate 

conditions and a Markov chain and k-nearest-neighbor (KNN) resampling method to 

simulate daily weather variables. The model allows for changes to be made to mean 

precipitation, mean temperature, and precipitation variance by a quantile mapping 

procedure to simulate a range of climate changes. The model operates in R.  

 Historic daily climate data consisting of precipitation and maximum and 

minimum temperatures were gathered for each of the seven watershed areas of the West-

of-Hudson reservoir systems over the period of January 1, 1950 to December 31, 1999 

from the gridded observed meteorological dataset produced by Maurer et al. (2002). The 

observed precipitation data exemplified typical properties of the Northeastern U.S., with 

relatively infrequent and less intense storms in the winter and bimodal peaks in the spring 

and fall. These data were used to calibrate the weather generation model  
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 The model was used to replicate daily precipitation and maximum and minimum 

temperature from the observed time period. Average monthly maximum and minimum 

temperatures were calculated from the model results for 50 separate model-runs of 50 

years each, presented in Figures 2 and 3 with the historic values represented by the red 

triangles. Figure 4 shows a similar plot for average monthly precipitation. The model 

accurately and precisely replicated the observed temperature and predicts precipitation 

within the 25th to 75th percentile range for eight of the twelve months. The weather 

generator introduces some statistical variability when creating time-series of precipitation 

so it is expected that the simulated precipitation would vary slightly from the observed 

record of precipitation. Percent cumulative errors (Thomann, 1982) between simulated 

and observed, calculated using the formula in Equation 1, were low for all three 

variables, with the highest being 2% for precipitation over the 50-year comparison 

period, and maximum and minimum temperatures having values of 0.2 and 0.4 percent, 

respectively. 

 

 
Figure 2. Minimum Temperature, Modeled and Historic 
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Figure 3. Maximum Temperature, Modeled and Historic 

 
Figure 4. Precipitation, Modeled and Historic 
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3.3. GWLF Hydrology Model 

 Inflows to the each of the seven reservoirs are simulated on a daily time step 

using the Generalized Watershed Loading Functions-Variable Source Area (GWLF-

VSA) watershed model (Haith and Shoemaker, 1987; Schneiderman et al., 2002; 

Schneiderman et al., 2007). The model was implemented in the computer simulation 

program Vensim DSS (Ventana Systems Inc., 2013). The GWLF-VSA is a lumped-

parameter continuous simulation model that simulates daily stream flow and various 

water quality parameters on a watershed scale. Inputs to the model include air 

temperature, precipitation, incoming solar radiation and relative humidity. The outputs 

from the model used in this analysis are streamflow, snowpack depth, and potential 

evapotranspiration for each of the seven watershed basins. Historic observed incoming 

solar radiation and relative humidity are used as inputs to the hydrology model during the 

climate change analysis. Incoming solar radiation is based upon the reservoirs’ position 

on the globe and is not expected to change under climate change scenarios. Relative 

humidity varies under the climate change scenarios, but the effects of relative humidity 

on the outputs of the model are small, as demonstrated by trial model runs with relative 

humidity values fixed at the 25th and 75th percentile values of their historic observed 

values for which the resulting time-series correlation values were above 0.999 for all 

reservoirs. 

 This hydrology model has been adopted by the NYCDEP Water Quality 

Modeling Group for the majority of their hydrologic analysis and has been extensively 

calibrated (Schneiderman et al., 2002; Schneiderman et al., 2007). Model results were 

verified for a selection of reservoirs and statistics. The verification statistics evaluated in 
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the calibration/verification process included the percent cumulative error, correlation (r), 

and the Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970), presented in Equations 1, 2, 

and 3, respectively. These statistics were calculated for daily, monthly, annual, and 

annual maximum-daily flows in the Cannonsville, Neversink, and Schoharie watersheds 

between 1950 and 1975. The sites were chosen as a representative sample of the seven 

reservoirs modeled for this research, the observed flow values were obtained from the 

USGS archives. The GWLF reservoir model watershed area values were adjusted to 

represent the location of the gages as the outlets of the model. The statistics are available 

in Tables 2, 3, and 4.  

 

� = 	 � ∑(��� ∗	���)�(∑ ��� )(∑ ���)
��(∑ ��� �)�(∑ ��� )���(∑ ����)�(∑ ���)�                                                                                   ( 2 ) 

  

��� = � − 	 ∑(������� )�

∑(����� ���	���)�                                                                                                      ( 3 ) 

 

 

Table 2. GWLF Correlation Coefficient Values 

 Daily Monthly Annual Annual Max Daily 
Cannonsville 0.716 0.924 0.843 0.528 
Neversink 0.797 0.941 0.929 0.67 
Schoharie 0.786 0.905 0.88 0.744 

 

Table 3. GWLF Cumulative Error Values (%) 

 
Daily Monthly Annual Annual Max Daily 

Cannonsville 3.98 4.12 5.63 18.26 
Neversink -4.2 -4.01 -4.58 -0.91 
Schoharie 0.39 0.58 -0.54 10.28 
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Table 4. GWLF Nash-Sutcliffe Efficiency Values 

 
Daily Monthly Annual Annual Max Daily 

Cannonsville 0.379 0.838 0.416 -0.409 
Neversink 0.622 0.874 0.822 0.387 
Schoharie 0.555 0.818 0.754 0.241 

  

 The model is most effective on a monthly time-scale, but still exhibits strong 

correlation and low percentage cumulative error on daily time steps. Year-to-year, the 

model shows strong correlation between observed and simulated flows, with relatively 

low cumulative error. The Nash-Sutcliffe values for all time periods indicate that the 

model is a good fit and outperforms the observed means as a predictor of flows. For 

predicting the annual maximum-daily flow, the model performs relatively well 

considering the difficulty of capturing a single event in the course of a year, with the 

model proving to be a better predictor than the observed mean in two of the three cases 

and correlation values slightly above the ‘weak’ category for all three watersheds.  

3.4. STATS Screening Tool 

 The Screening Tool for the Assessment of Turbidity and Supply (STATS) was 

created to complete the proposed analysis of system sensitivity to climate changes. 

Similar to the GWLF model, STATS was constructed using Vensim software (Ventana 

Systems Inc., 2013). STATS is a mass balance model of the NYCWSS, assigning various 

amounts of water through the system loosely based upon a variation of the “Space Rule” 

known as the “New York City Rule” (Guzman and Lund, 1999). This rule defines 

releases from reservoirs based upon the probability of refill by June 1 to minimize the 

probability of spills and thus the minimization of expected shortages. The screening tool 

also incorporates all of the Federal and State regulations and agreements necessary to 
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accurately and precisely simulate the actual operations of the system. The full list of 

regulations used in STATS is available in APPENDIX A.  

 A critical component of the STATS tool is simulation of turbidity loading into the 

Ashokan West Reservoir as well as the total concentration of turbidity within the 

reservoir. STATS utilizes a multiple regression model derived from Mukundan et al. 

(2013) to predict mean daily turbidity flowing into the reservoir:   

 

����� ���= �. ��	���(�� ) − �. ���	������ + �. ����	��� − �. ��                          ( 4 ) 

Where:  MDT = Mean Daily Turbidity (NTU) 
  QD = Stream Discharge (MGD) 
  SEASON = 1 for November thru April, otherwise 0 
  ADD = Antecedent Dry Days 
 

 The reservoir is assumed to be a completely-mixed reactor to predict a 0-order 

turbidity concentration within the reservoir. The size distribution of the sediment flowing 

into the reservoir is predicted based upon the flow into the reservoir. If flow is above 913 

MGD, then the incoming sediment consists of 10 percent large, 45 percent medium, and 

45 percent small particles; for flow below 913 MGD, the percentage distribution of large, 

medium, and small particles is 10, 65, and 25 percent, respectively (Gelda et al., 2009). 

STATS uses the size distributions of the suspended sediment to determine the settling 

rate of turbidity in both basins of Ashokan Reservoir, with larger particles settling more 

quickly than smaller particles (Gelda et al., 2009).  

 The rules governing the operations of STATS were manually calibrated to best 

match the observed annual, seasonal, and monthly storages. The accuracy of STATS in 

simulating storages, yields, and turbidity was verified using OASIS data to ensure 

accurate and precise results during the climate change analysis. STATS was verified 
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using OASIS-W2 data because the operations of the NYCWSS have changed drastically 

over the past 50 years and comparisons with historic storage and turbidity would not have 

reflected the ability of STATS to simulate current and future system operations and 

conditions. The OASIS-W2 model results were supplied by the NYCDEP Water Quality 

Modeling Group specifically to help in calibrating STATS; Table 6 displays the 

calculated correlations and Nash-Sutcliffe Efficiencies between the STATS model and 

the OASIS model for the 50-year period between January 1, 1950 and December 31, 

1999. 

Table 5. STATS Correlation and NSE Values 

 

Delaware 
Storage 

Catskill 
Storage 

Ashokan 
Storage 

Ashokan 
West 

Turbidity 

Ashokan 
East 

Turbidity 
Correlation 0.964 0.946 0.936 0.690 0.688 
NSE 0.877 0.759 0.805 0.302 0.268 

 

 STATS performs well when allocating storage in the NYCWSS, exhibiting high 

correlation and high Nash-Sutcliffe values for the entire 50-year period for both major 

subsystems (Delaware and Catskill) as well as for the Ashokan Reservoir (total of both 

East and West basins). STATS turbidity modeling exhibited medium correlation values in 

both the West and East basins; the Nash-Sutcliffe values were low in both basins but well 

above a 0-value, which would indicate the observed mean as a more accurate predictor 

than the model. Details on the calibration and verification of STATS are presented in 

DeChristofaro (2014). 
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3.5. Analysis 

 The weather generation model was used to create ensemble time-series of 40 

weather scenarios. Each time-series contained 50 years of daily values of precipitation 

and temperature. Each scenario represented an incremental change in either precipitation, 

temperature, or both; mean temperature increased from 0 to 7 degrees Celsius at 1 degree 

increments and mean precipitation varied from 90% to 130% of the observed mean at 

10% increments. For instance, the final of the 40 scenarios contained 50 years of daily 

precipitation and temperature with the annual average temperature fixed at 7 degrees 

Celsius above the mean and annual precipitation fixed at 130% of mean precipitation. 

This process was repeated 10 times to develop 10 separate “runs”, each with the same 40 

scenarios representing the equivalent annual statistics but producing different daily time-

series because of the natural variability introduced by the model. 

 The weather time-series were used to drive the GWLF hydrology model, which 

outputted simulated streamflow values to be used as inflows for all seven of the 

NYCWSS reservoirs modeled in STATS. The STATS model simulated the operations of 

the system and the turbidity concentration of the Ashokan Reservoir.  

 To better understand the sensitivity of Ashokan Reservoir turbidity to changes in 

climate, a series of concentration values were selected that represented important limits 

for the operations of the NYCWSS. These threshold concentration values were selected 

with expertise input from the NYCDEP Water Quality Modeling Group and included two 

thresholds in Ashokan West, 10 and 25 NTU, and two thresholds in Ashokan East, 5 and 

10 NTU. The Ashokan West threshold values were selected as general indicators of the 

total amount of turbidity caused by the changes in climate. The Ashokan East threshold 
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values were chosen because of their operational importance. When concentration exceeds 

5 NTU, Catskill Aqueduct flow to the Kensico Reservoir is often reduced to an amount 

such that the product of concentration (NTU) and flow (MGD) is less than 3,000. When 

concentration rises above 10 NTU, the use of stop shutters within the aqueduct may be 

necessary to further reduce flow. These reductions in flow are necessary to keep turbidity 

concentrations low in the Kensico Reservoir and Croton Supply so as to not violate the 

terms of the Filtration Avoidance Determination from the EPA and they may put strain 

on other parts of the system. It is important to note that these operational decisions are 

not formal and actual operations are made based on the best available current 

information, such as quality and flow conditions and meteorological forecasts.  

 The number of times that the turbidity concentration exceeded the threshold was 

noted in the model for both reservoirs and all four threshold values. These binary time-

series of turbidity threshold exceedances were summed over the 50-year simulation 

period by month and then averaged across the 10 runs for each of the 40 scenarios. The 

resulting data was used to draw conclusions between scenario characteristics (precip, 

temp) and the numbers of monthly turbidity threshold exceedances in that scenario.   
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4. RESULTS 

4.1. Climate-altered Hydrology Results 

Incremental changes in precipitation have relatively uniform effects on the inflows into 

the reservoir; as precipitation increases, inflows increase for all months (Figure 5). 

Incremental increases in precipitation causes the largest increases in inflows in the peak 

inflow month of April, while the increases in inflow are less in the summer and winter.  

 Incremental changes in temperature have dramatic effects on the seasonality of 

inflows into the Ashokan West Reservoir (Figure 6). Increasing temperature causes 

higher inflows from December to February, though there is a diminishing effect as the 

temperature increase approaches 4°C. Subsequently, flows from March until November 

are decreased, with the largest decreases in flow happening in April and May. These 

changes in the seasonality of inflows into the Ashokan West Reservoir are caused by the 

decrease of snowpack in the winter months, as precipitation falls as rain rather than snow 

in higher temperature scenarios. The resulting volume of inflow over the year is slightly 

reduced as temperature increases, due to an increase in evapotranspiration.  
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Figure 5. Sensitivity of Ashokan West Inflows to Changes in Precipitation 

 

 
Figure 6. Sensitivity of Ashokan West Inflows to Changes in Temperature 
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4.2. Climate-altered Turbidity Results 

 Across all thresholds, the total numbers of turbidity exceedances are sensitive to 

precipitation (Figures 7, 9, 11, and 13). Increasing precipitation to 130% of the historic 

mean resulted in as much as a 3-fold increase in turbidity exceedances for peak months in 

the Ashokan West Reservoir. In Ashokan East, turbidity events in general display a 

positive correlation with increasing precipitation but there are instances where increased 

precipitation results in a lower number of exceedances (Figure 13). These departures 

from the general trend are likely caused by operational decisions, where the increased 

precipitation across the entire system forces the model to decrease transfers to Ashokan 

East from Ashokan West’s highly-turbid water. 

 Increasing temperatures have a slight inverse relationship with the number of 

turbidity exceedances across the different thresholds (Figures 8, 10, 12, and 14). In 

general, both reservoirs’ turbidity levels exhibit much less sensitivity to changes in 

temperature than to changes in precipitation. 

 While seasonality does not appear to be effected by changes in precipitation, 

increasing temperatures show changes in monthly trends. The historic high peak months 

of April and November remain peak months and the typically less-turbid months of 

February and August continue to experience a low number of events when changes are 

made to precipitation. Shifts in seasonality can be seen when examining the effects of 

temperature changes, as increasing temperatures appear to reduce the number of events 

happening in April and increasing the number of events occurring in the winter months. 

 Evaluating the effects of changes in temperature and precipitation simultaneously, 

Ashokan West turbidity exceedances are highly correlated with increased precipitation 
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and slightly negatively correlated with increasing temperature (Figures 15, 16, 17, and 

18). The Ashokan East turbidity exceedances show different trends across months and 

threshold values (Figures 19, 20, 21, and 22). In general, the peak number of exceedances 

above 5 NTU in the Ashokan East reservoir seems to be associated with peak 

precipitation, with an exception in February.  

 The number of exceedances above 10 NTU in Ashokan East demonstrate a bi-

modal behavior due to changes in  precipitation, as January through March and August 

through October all show peak turbidity exceedances occurring when mean precipitation 

is reduced to 90% of mean. April to July and November and December demonstrate an 

increasing number of exceedances as precipitation levels increase. Again, these results 

most likely reflect the ability of the systems model to operate the system to prevent the 

movement of turbid water Ashokan West and Ashokan East. It should also be noted that, 

in general, the months showing decreasing exceedances with increasing precipitation are 

months which experience, on average, a lower number of events than other months.  
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Figure 7. Sensitivity of Ashokan West 10 NTU Threshold to Changes in Precipitation 
 

Figure 8. Sensitivity of Ashokan West 10 NTU Threshold to Changes in Temperature 
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Figure 9. Sensitivity of Ashokan West 25 NTU Threshold to Changes in Precipitation 
 

 
Figure 10. Sensitivity of Ashokan West 25 NTU Threshold to Changes in Temperature 
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Figure 11. Sensitivity of Ashokan East 5 NTU Threshold to Changes in Precipitation 

 

 
Figure 12. Sensitivity of Ashokan East 5 NTU Threshold to Changes in Temperature 
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Figure 13. Sensitivity of Ashokan East 10 NTU Threshold to Changes in Precipitation 

 

 
Figure 14. Sensitivity of Ashokan East 10 NTU Threshold to Changes in Temperature 
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Figure 15. Sensitivity of Ashokan West 10 NTU Threshold to Precipitation and 

Temperature for January through June 
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Figure 16. Sensitivity of Ashokan West 10 NTU Threshold to Precipitation and 

Temperature for July through December 
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Figure 17. Sensitivity of Ashokan West 25 NTU Threshold to Precipitation and 

Temperature for January through June 
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Figure 18. Sensitivity of Ashokan West 25 NTU Threshold to Precipitation and 

Temperature for July through December 
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Figure 19. Sensitivity of Ashokan East 5 NTU Threshold to Precipitation and Temperature 

for January through June 
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Figure 20. Sensitivity of Ashokan East 5 NTU Threshold to Precipitation and Temperature 

for July through December 
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Figure 21. Sensitivity of Ashokan East 10 NTU Threshold to Precipitation and Temperature 

for January through June 
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Figure 22. Sensitivity of Ashokan East 10 NTU Threshold to Precipitation and Temperature 

for July through December 



51 
 

4.3. Operational Effects 

 The turbidity concentration in the Ashokan East Reservoir is an important 

consideration for NYCWSS operators when making management decisions. Changes to 

the number of exceedances above the 5 and 10 NTU thresholds will have significant 

impacts on the frequency that flow reduction in the Catskill Aqueduct or stop shutter 

deployment is necessary.  

 Using the NPCC projections from Section 2.3 and the threshold sensitivities from 

Appendix B, the total number of threshold exceedances can be estimated and thus the 

change in frequency of flow reduction measures, including stop shutter usage. Using the 

‘Middle Range’ projections for both the 2020s and 2050s, there are temperature increases 

of approximately 1°C and 3°C, respectively, and precipitation increases of 5% and 10%, 

respectively. The total number of exceedances for both thresholds and timeslices were 

estimated (Table 7). 

Table 6. Estimated Number of Total Exceedances for Baseline, 2020s, and 2050s 

  

ASE 5 NTU Threshold 
Exceedances 

ASE 10 NTU Threshold 
Exceedances 

Baseline 2020s 2050s Baseline 2020s 2050s 
January 25 20 25 3 2 0 
February 14 14 14 2 1.5 0.5 
March 25 15 20 1 1 0 
April 40 40 10 10 10 5 
May 40 40 20 4 2 2 
June 30 20 10 0.5 0.5 0.5 
July 20 20 10 0.5 0.5 0.5 
August 15 15 10 0.8 1 1 
September 20 20 10 1 1 1 
October 20 30 25 5.5 6 5.5 
November 40 50 50 9 9 10 
December 45 50 50 4 6 6 
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 Considering the Ashokan East 5 NTU threshold to represent instances when the 

reservoir operators must reduce flow and the 10 NTU threshold to represent instances 

when the operators must use stop shutters to further reduce flow, the exceedances 

estimates give direct insight into the possible changes in frequency of these operations for 

the 2020s and 2050s. 

4.4. Climate and Turbidity Regression 

 Regression equations were explored to estimate the number of exceedances above 

the Ashokan West 10 NTU threshold for a 50 year period given changes in precipitation 

and temperature. Multiple regressions using both precipitation and temperature yielded 

coefficients for temperature that, on average, had insignificant p-values, resulting in the 

final form of the regression (Equation 5) which utilized only the squared and cubed 

values of precipitation. Table 6 contains the coefficient values for use in Equation 5 as 

well as the resulting correlation between the regressions estimate for total number of 

exceedances and the model results.  

 

� = 	 ���� + ���� + �                                                             ( 5 ) 

Where:               z = Number of Exceedances over 50 year period 
  y = Precipitation Change from Mean (%) 
  β = Coefficient	values	found	in	Table	6 
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Table 7. Regression Coefficients and Correlation Values for Ashokan West 10 NTU 
Threshold 

  �� �� � R2 
January 0.07 -2.17 485 0.63 
February 0.05 -1.62 330 0.62 
March 0.06 -1.75 387 0.55 
April 0.06 -1.75 675 0.28 
May 0.05 -1.67 659 0.26 
June 0.05 -1.64 551 0.36 
July 0.05 -1.65 504 0.40 
August 0.05 -1.48 429 0.43 
September 0.05 -1.44 379 0.52 
October 0.06 -1.90 493 0.60 
November 0.08 -2.39 640 0.62 
December 0.08 -2.54 659 0.62 

 

 R2 values range from 0.26 in May to 0.63 in January. Regressions using only the 

linear and quadratic forms of precipitation resulted in much lower correlation values for 

this particular threshold. The linear regression had an average R2 value of 0.22 across all 

months and the quadratic regression had an average R2 of 0.27 across all months. This 

cubic regression showed a significant increase to correlation and as such, the cubic form 

was chosen to represent the relationship.  

 This model can be used to accurately predict the number of exceedances above 

the Ashokan West 10 NTU threshold for any month and change in precipitation or 

temperature. These predictions can be compared with baseline estimates of exceedances 

to give operators an idea of the change in exceedances for various levels of climate 

change. Individual regressions for each month may prove useful moving forward, as the 

effects of changes in temperature appear to differ depending on the month.  
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5. CONCLUSIONS 

5.1. Comments on Results 

 Results from the analysis provide insights into the sensitivity of turbidity levels in 

the Ashokan Reservoir to changes in climate and there are a number of conclusions that 

can be drawn.  

1) The results of this study confirm that turbidity events in the Ashokan West 

Reservoir will increase in frequency with increasing precipitation. For both the 10 and 25 

NTU thresholds, only February and March did not experience consistent increases in total 

exceedances as precipitation was increased. Generally, the proportion of increases month-

to-month is similar, with no single month effected by increasing precipitation more than 

others. 

2) Temperature increases will decrease the number of turbidity events in the 

Ashokan West Reservoir and can be a more powerful driver of the total number of events 

than precipitation in some months. The results of this analysis show a general decline in 

the total number of exceedances with increasing temperature for all months for both 10 

and 25 NTU threshold values. Some months are more effected by changes in temperature 

than others, as increasing temperature is shown to drastically decrease the number of 

events in the peak month of April while only slightly decreasing the number of events in 

January. This is likely because of higher temperature causing precipitation in the winter 

to fall as rain, reducing snowpack runoff in the spring. 

3) Increasing precipitation will generally increase the number of turbidity 

exceedances above 5 NTU in the Ashokan East Reservoir, though some months do not 

show a consistent positive relationship, such as March. Temperature appears to be very 
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negatively correlated with turbidity exceedances above 5 NTU, with peak exceedances 

occurring at mean temperature for all months. 

4) Exceedances of the 10 NTU turbidity threshold in the Ashokan East Reservoir 

appear more random than the other exceedances metrics tested. It appears that the ability 

of operators to make decisions that keep the concentration low play a crucial part in the 

number of exceedances. For instance, in January, the total number of exceedances 

decreases as precipitation approaches 120% of mean, and then bounces back and rises as 

it approaches 130% of mean. The operational decisions that allowed the number of 

exceedances to fall as precipitation approached 120% may be useful to the NYCDEP, as 

well as understanding what caused the turbidity to rise immediately after that level of 

precipitation was crossed.  

 5) From January to September, the number of times that operators must reduce 

flow because of high turbidity concentrations is either reduced or unchanged for both the 

2020s and 2050s. From October to December, that number is increasing or unchanged for 

both time slices. These changes to the frequency of flow reduction are likely caused by 

the projection’s moderate increases to temperature compared to the slight increases in 

precipitation. As seen in the results portion, higher temperatures tend to increase the 

number of exceedances in the colder months and decrease in other parts of the year 

because of the increased flows in the winter and decrease of snowpack throughout the 

rest of the year. 

 6) The number of times that stop shutters are used appears to follow the same 

general trend as flow reduction measures for the 2020s and 2050s. From January to 

September the frequency is decreasing or remaining neutral, from October to December, 
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the frequency increases. Again, this change in frequency is likely caused by the increased 

temperature in these scenarios and the subsequent changes to the seasonality of inflows, 

as seen in Section 4.1. 

5.2. Revisiting Objectives 

 This thesis used a Decision-Scaling style framework to evaluate the sensitivity of 

Ashokan Reservoir turbidity to changes in climate. To do this, time-series of precipitation 

and temperature were generated that captured the historic data’s trends but also altered 

the annual means of precipitation and temperature. These time-series allowed for the 

testing of the GWLF hydrology model and STATS simulation model under a wide range 

of climate scenarios. This sensitivity analysis gives important insight to the NYCDEP 

regarding how their system responds to change. The results of the testing were analyzed 

and the responses of the system to changes in climate were well-catalogued and cross-

examined with the latest climate projections to estimate the changes in operations that the 

NYCWSS may experience under future climate scenarios. In the future, other metrics of 

interests can be explored in the same fashion that this study explored the total number of 

turbidity threshold exceedances to give further insight into the response of the NYCWSS 

to changes in climate. 
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APPENDIX A 

LIST OF REGULATIONS USED IN STATS 
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Supreme Court Decree 1954 
 
 
Flexible Flow Management Program Agreement(s) — June 1, 2012 and June 1, 2013 
 
 
New York State Department of Environmental Conservation/New York City Department 
of Environmental Protection (DEC/DEP) Interim Ashokan Release Protocol. — October 
18, 2011 
 
 
New York City’s Operations Support Tool (OST) White Paper Prepared for The 
Delaware River Basin Supreme Court Decree Parties. — October 8, 2010 
 
 
New York State Department of Environmental Protection Regulations: Chapter X,  
Part 670: Reservoir Releases Regulations: Schoharie Reservoir Shandaken Tunnel-
Esopus Creek 
Part 671: Reservoir Releases Regulations: Cannonsville, Pepacton and Neversink 
Reservoirs 
Part 672: Reservoir Releases Regulations: Other 
Subpart 672-1: Reservoir Releases Regulations – General 
Subpart 672-2: Ashokan, Kensico, Rondout and Schoharie Reservoirs  



64 
 

APPENDIX B 
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