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ABSTRACT

Coffee Queue Project

George Dimitrov Gargov

In this paper, a computer vision system for counting people standing in line is presented. 

In this application, common techniques such as Adaptive Background Subtraction (ABS), blob 

tracking with Kalman filter, and occlusion resistive techniques are used to detect and track 

people. Additionally, a novel method using Dual Adaptive Background Subtractors (DABS) is 

implemented for dynamically determining the line region in a real-world crowded scene, and 

also as an alternative target acquisition to regular ABS. The DABS technique acts as a temporal 

bandpass filter for motion, helping identify people standing in line while in the presence of other 

moving people. This is achieved by using two ABS with different temporal adaptiveness. Unlike 

other computer vision papers which perform tests in highly controlled environments, the DABS 

technique is tested in a crowded Starbucks© at the Cal Poly student union. For any length of 

people standing in line, result shows that DABS has a lower mean error by one or more people 

when compared to ABS. Even in challenging crowded scenes where the line can reach 19 

people in length, DABS achieves a Normalized RMS Error of 43%.
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1. Introduction

Deciding the optimal time to get a cup of coffee at conveniently located coffee 

shops can be a real hassle. Go at the wrong time, and you could be faced with a long 

line to wait in. This paper proposes a solution to alleviate this. Simply by checking a 

website, coffee aficionados can see the line size, all without violating privacy of the 

people waiting in line. 

The system that makes this solution possible is made up of several parts, as 

shown in Figure 1.1. First, a webcam is placed near the coffee shop, facing the line for 

coffee. Next, the video feed is transmitted to a server where the computer vision system, 

discussed in this paper, counts the number of people in line. The system outputs the 

number of people in line, and a confidence value to a database. This data is then 

displayed on a website for any customer to see.

�

Figure 1.1: System overview

In its most abstract, the computer vision system presented here can be broken 

down into three stages, as shown in Figure 1.2. The first stage is target acquisition, 

where people are identified in the scene. The second stage is target tracking, where 

people’s location and velocity are monitored and predicted. The third stage is the 

application specific stage, where the location of every person is used to determine who 

is in line. There are many computer vision techniques available for each stage of the  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system. In order to confine the search space of viable techniques, several design 

requirements must be put in place.

 

Figure 1.2: Three stages of the system

The system should be as autonomous as possible, in order to minimize 

manpower during deployment to various locations. This means minimal user input or 

training data. While computer vision systems that leverage machine learning can 

produce powerful results, they are too reliant on good training data; therefore, it can be 

difficult to determine if a system underperforms from poor design or if it has been 

inadequately trained. In addition, the system must be capable of working in virtually any 

environment. If a web camera can be placed in this environment, the system must be 

able to process the video feed, and extract meaningful results. Lastly, the system must 

be able to count people in real-time. Regardless of the frame rate used for computations, 

a result should be available every couple of seconds.
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2. Computer Vision System

From the aforementioned design requirements and a thorough examination of 

competing techniques, the system presented in this paper can be examined, one stage 

at a time. The general procedures performed in each of the three stages are shown in 

Figure 2.1 below. OpenCV and C++ are used to implement these three stages in a 

pipeline multi-thread design, but this will be discussed later in section 3. 

Implementation.

 

Figure 2.1: Three stages of the system in greater detail

In Stage 1 of the system shown in Figure 2.1, Adaptive Background Subtraction 

(ABS) [3][4] is used to find foreground pixels. Connected Component Analysis groups 

adjacent foreground pixels together to create blobs. This is the basis of target 

acquisition. An alternative technique is also proposed by this paper for targeting 

stationary people using Dual Adaptive Background Subtraction (DABS), and even more 

options such as HoG detection[5] are discussed in section 6.1 Target Acquisition 

Related Works. Target acquisition will be covered in greater detail in section 2.1 

System Stage 1: Target Acquisition. 

Then, in Stage 2 of the system depicted in Figure 2.1, a layer of identifiers is 

created for blob tracking. Their purpose is to be matched up with blobs from frame to 
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frame. Kalman filters are used to predict where blobs will be in the next frame. A three 

stage matching process[1] is used to find the best match for identifiers and blobs. First is 

one-to-one blob to identifier matching, next is many-to-one in the event of blob 

fragmentation, and, finally a one-to-many blob to identifier matching in the event of 

occlusion. Improvements are made to the stability of identifiers. This will be covered in 

greater detail in 2.2 System Stage 2: Target Tracking. 

Finally, in Stage 3 of the system presented in Figure 2.1, a dynamic line model is 

created using the novel DABS technique. The model is an image where every pixel is a 

probability that a line is formed in that location. The dynamic line model is then used in 

conjunction with the location of every person to determine the probability that someone 

is in line. These probabilities are then used to compute the final line count, which is 

outputted by the system. All this will be covered in greater detail in section 2.3 System 

Stage 3: Dynamic Line Model.

2.1 System Stage 1: Target Acquisition

To find regions of interest that can be classified as targets, adaptive background 

subtraction (ABS) is used. Background subtraction, or foreground extraction, is done on 

a per pixel basis using a mixture of gaussians over a user specified temporal window. 

This allows for an ever-evolving model of the background that adapts to the scene 

changes during the day. The foreground is obtained by subtracting the background 

model from the current frame and applying a threshold. This produces a binary image 

with white pixels representing the foreground and black representing the background. A 

video sequence of the background, raw video, and foreground pixels can be seen in 

Figure 2.2 below. Notice how when the people appear in the upper left corner of the 

video in the middle row of Figure 2.2, the adaptive background in the top row remains 
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unchanged, but the people are detected as part of the foreground in the bottom row of 

Figure 2.2.

Typically large impulse differences from the current frame and the background 

model are labeled as foreground. A person walking across the scene, for example, would 

trigger such an impulse and would therefore be classified as foreground. More 

sophisticated techniques such as those presented by Zoran Zivkovic [3][4] allow for 

gentle background variations from falsely being classified as foreground. For example, 

the sway of trees in the wind would not be picked up because the background variation 

is not significant enough to be classified as foreground. In addition, shadows can also be 

detected, albeit, this is largely dependent on the environment.

 

Figure 2.2: Adaptive background subtraction sequence. Top row is the adaptive 
background model, middle row is raw video frame, bottom row is the foreground or the 

difference between the raw video frame and adaptive background model

�5
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The most important parameter of ABS is its adaptiveness, meaning how slow or 

fast objects standing still fade into the background. Having a slow adaptiveness is 

beneficial for allowing people to stand still for a little bit before blending into the 

background. However, this makes the background model less resilient to noise such as 

false positives caused by changes in lighting, or movement of furniture, which would 

falsely be picked up as foreground and take longer to be absorbed back into the 

background model. Although some noise in the foreground can be observed primarily in 

the form of imperfect foreground pixels, this topic will be covered more in depth in 

section 4. Challenges and Limitations of the System. Conversely, having a faster 

adaptiveness makes the background more resilient to noise, but makes pedestrians fade 

into the background faster. 

Having a binary foreground image, the next step is to group adjacent foreground 

pixels together to create a set of blobs representing targets; this is achieved by a two-

pass algorithm called connected component analysis. Minor filtering is performed at this 

stage. Only blobs that are comprised of over a certain number of pixels are permitted to 

the set of blobs representing targets. This filters out really small blobs that are 

essentially noise. At this point, the problem of occlusion becomes very apparent. In the 

ideal scenario there would be a strict one to one relationship between people and blobs. 

However when two or more people are close together or occluding one another, this 

shows up as one large blob. Therefore, higher level analysis is needed in order to 

overcome the problem of blob occlusion as well as identifying the location of every 

pedestrian in a scene to determine who is in line or not. 
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2.2 System Stage 2: Target Tracking

The identifier[1] provides a more reliable metric of location, in addition to making 

blob velocity measurable. In the most basic terms, identifiers are objects that are 

matched up with blobs on a frame-by-frame basis and serve as a container for blob 

metrics. An identifier has a location (x, y coordinates), velocity, dimensions (height and 

width), rate of dimension change and an “age.”

Identifiers are “born” when a blob in the set of indexed blobs does not have a 

good match to an existing identifier. This new identifier has the location and dimensions 

of the unmatched blob that caused it to be born. Its velocity, rate of dimension change, 

and age are set to zero. An Identifier “dies” if it remains unmatched with a blob for a 

certain amount of consecutive frames. Unmatched identifiers update their position based 

on their current velocity.

The Kalman filter is a critical part of the tracking layer because it provides a state 

to blobs that are inherently stateless. In this paper, a first order (position, velocity) model 

is used for the Kalman filter. Each identifier stores priori position,velocity, and dimension 

information necessary for the Kalman filter to make predictions. These location and 

dimension predictions made by the Kalman filter are used to establish nearest neighbor 

matches between identifiers and blobs. After all matches are made between blobs and 

identifiers, position and dimension information is used from the matched blob as 

measurement information to update each identifiers Kalman filter matrices. Figure 2.3 

below shows an overview of how the Kalman filter is used during the matching process 

of identifiers to blobs.
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Figure 2.3: Overview of the matching process

OpenCV provides an implementation of the standard Kalman filter. To use it, 

basic knowledge is necessary and the steps to make the filter work are as follows: first, it 

is specified that 4 dynamic parameters are used, position (x,y point) and velocity (x,y 

vector). Next, it is specified that there are 2 measurement parameters, position (x,y 

point). Lastly, to keep things simple, no control data is used. Before the Kalman filter can 

be used to make predictions and take in measurements, several matrices must be 

specified. The measurement matrix is defined so only position data is kept ( [1 0 0 0 ; 0 1 

0 0 ]). The process noise covariance matrix, the measurement noise covariance matrix, 

and the error covariance matrix are set to an identity matrix with a tuned value between 

zero and one. 

To tune the Kalman filter, several test videos of pedestrians walking were used. 

The three covariance matrices have their values adjusted so the matching process is 

maximized. It is difficult to tune two Kalman filters at the same time when the 

performance of either can affect the higher level goal of maximizing matches. Also, the 

performance of the filter would vary from video to video and even from blob to blob. This 

is because there is a certain amount of randomness that cannot be eliminated. At some 

point in the tuning process, the Kalman filters performance was deemed “good enough” 

for each of the test videos. Any detailed tunings of the Kalman filter would require 

modeling the motion of the scene to identify common cases, which is out of scope.
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2.2.1 Blob Metrics

It is important to establish blob metrics before we can talk about scoring 

equations for calculating the best blob match for an identifier. First, a blob has a centroid 

(or center of mass), a height and width (dimensions), and central points [1]. Central 

points are local maxima of the distance transformation for a given blob. The distance 

transformation of a blob is the shortest distance from any “inside” pixel to any “outside” 

pixel. For example, imagine a circular blob of radius 5 pixels. The distance 

transformation of this circle would look something like in Figure 2.4, where the outer 

most pixel ring will be of distance 1 to to the “outside” and the inner most pixel ring will 

be of distance 5 to the outside. 

�

Figure 2.4: Distance transformation on a circle. Each number represents the distance 
transformation value for each ring of pixels that make up the circle of radius 5 pixels

The set of central points for a given blob is constructed by sweeping the distance 

transformation with a ’n * n’ mask. For each increment by ’n’ through the distance 

transformation with the mask, a local local maximum value is found inside the mask. If 

this local maximum is within 50% of the absolute maximum (the largest value in the 

distance transformation), its location and value are save in the set of central points for a 

1 | 2 | 3 | 4 | 5 | 4 | 3 | 2 | 1
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given blob. Figure 2.5 below helps explain this by continuing with the distance 

transformation of a circle blob.

�

Figure 2.5: Algorithm for finding central points on a circle shaped blob, which has the 
distance transformation applied to it. Transformation values increase from light to dark

Local maxima that are within 50% of the absolute maxima have their location and 

value saved in a “central point”, the central point is added to a set. The resulting set of 

central points provide multiple points for feature tracking in the instance of blob 

occlusion, when two or more blobs overlap, and the resulting blob only has a centroid for 

tracking. Sharma[1] talks extensively about why central points are a stable feature to 

track during blob occlusion.

2.2.2 Scoring Matches of Identifiers and Blobs

Having established blob and identifier metrics, it is now possible to create 

equations for determining what is a “good match” between any given blob and identifier. 

Each identifier is scored against every blob; these scores are then stored in a sorted 

array of best (lowest) score first, in each identifier. An individual score is a structure of 

three “sub-scores” which are computed with the following 3 functions respectively:

Circular blob, distance transformation. Darker region 
is higher value. Border drawn for shape visibility.

n * n mask. 
Mask moves by n units to the right 
until it reaches the the far right of the 
image. It then resets to the left side, 
and is shifted down by n units. This 
effectively “sweeps” the distance 
transformation. In each increment by 
n, a local maxima is found, and kept 
if it is with in 50% of the absolute 
maxima. 

Absolute Maximum 

Local Maxima
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D(O, B) = Euclidian distance between the (x,y) coordinates of identifier O, & blob B     (1)

A(O, B) = difference in area = [ area(O) – area(B) ] ÷ max[ area(O), area(B) ]        (2)

V(O, B) = ratio of overlapping area = overlapArea(O,B) ÷ min[area(O), area(B) ]        (3)

Functions 1, 2, 3: Scoring functions between blob B, and identifier O. The area of an 

identifier or a blob is found by multiplying their respective dimensions (height * width).

These three score functions between blob B and identifier O; distance ‘D’, 

difference in area ‘A’, and ratio of overlapping area ‘V’ are used slightly differently in each 

of the 3 stages that comprise of the matching algorithm of identifiers to blobs. The 

matching continues to the next stage only if the set of blobs for a given frame is not 

completely matched with an identifier. Note, that the matching is not necessarily one to 

one, and at the end, there may be no “good matches” for an identifier or blob. Also note 

that the identifiers location and dimensions used for scoring are the prediction made by 

the Kalman filter as shown in Figure 2.5 above. The three stages of the identifier to blob 

matching algorithm are as follows:

Matching Stage 1: In the first stage, a one-to-one matching between identifiers and 

blobs is attempted. Identifiers save the scores against every blob in a least to greatest 

sorted array. Each score in the array is computed with the three sub-score functions 

between blob B and identifier O from above. In essence, the best match for an identifier 

is a blob that is close, has nearly identical area, and has a lot of overlap.

In the following scoring Functions 4, 5, and 6; tD, tA, and tV are the threshold 

constants for max distance, max area difference, and minimum overlapping ratio 

respectively. The function maxThresh*=(T, X) returns infinity if X > T or, returns X 

otherwise. The function minThresh returns infinity if X < T, or 1 otherwise.
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S1 = maxThresh(tD, D(O,B)) * maxThresh(tA, abs[ A(O,B) ]) * minThresh(tV, V(O,B))  (4)

Function 4: Stage 1 score calculation

maxThresh(T, x) = { infinity if x > T,  x otherwise }        (5)

Function 5: Maximum threshold, essentially invalidates a score

minThresh(L, x) = { infinity if x < L,  x otherwise }        (6)

Function 6: Minimum threshold, essentially invalidates a score

Each identifier holds an array of its scores against every blob for several 

reasons. First, is so that scores are computed only once, and each successive stage 

does not require more computations. Second, is so that a one to one match can be 

established for an identifiers best valid score (meaning scores that are not infinite). 

Because of this second reason, an iterative process is defined to resolve “collisions” 

between two or more identifiers whose best (lowest) match scores are with the same 

blob. This iterative process is shown in Figure 2.6 below.

  �

Figure 2.6: Iterative process for assuring one to one matching in Stage 1 

Is there a score 
“collision” between 
any two identifiers?

All collisions 
resolved

No
Yes

The identifier with a 
larger score takes the 

next best match to be its 
“best match” 
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After scoring identifiers against each blob, sorting the matches to find the best 

match, and resolving any match collisions, the result is a set of blobs and identifiers with 

one-to-one matching. The identifier saves the parameters of the blob that it is matched 

with. This information will be used later as the “measurement” information fed into the 

Kalman filter to obtain the Kalman filter estimated position, velocity, dimensions, and rate 

of dimensions change for the identifier, as shown in Figure 2.3. If there is any 

unmatched blob, the matching algorithm continues onto Stage 2. 

Matching Stage 2: In the second stage, a one-to-many match is attempted between an 

unmatched identifier and unmatched blobs. An identifier tries to establish a match with 

many blobs who have a distance larger than tD, an overlap ratio greater than tV, and a 

smaller area, which results in A(O,B) to be positive as opposed to negative. Function 7 

shows the criteria needed for blobs to be considered for the one to many match. 

S2 = minThresh(tV, V(O, B)) AND minThresh(tA, A(O,B)) AND minThresh(tD, D(O,B)) (7)

Function 7: Scoring conditions needed for one to many match

If two or more blobs satisfy these conditions for a given identifier, they are all 

combined to create a temporary “super blob.” The identifier is then matched with this 

“super blob” and the “super blobs” centroid and height and width to update the 

measurement data of its Kalman filter. Each blob used to create this super blob is 

considered matched. The matching algorithm continues to the 3rd and final stage if there 

are any unmatched blobs. 
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Matching Stage 3: In the third and final stage, the remaining unmatched identifiers and 

blobs attempt a many-to-one match. In this stage, each remaining unmatched blob has 

it’s central points computed. Every unmatched identifier has a stage 3 match score 

computed against every central point. Basically, central points replace centroids and the 

best match is a blob whose central point is the shortest distance from an identifier. 

If an identifier has not been matched in stage 3 in the previous stage, Function 8 shows 

the Euclidian distance  between an identifier’s location and a blob’s central point, where 

tDc is the threshold for a maximum allowed Euclidean distance. However, if an identifier 

has been matched in stage 3 in the previous frame, Function 9 is used to calculate the 

score with the central point’s distance transformation value squared.

S3a = maxThresh(tDc, D(O,B-C))        (8)

Function 8: The Euclidean distance between an identifier and a central point

S3b = maxThresh(tDc, D(O,B-C)) * maxThresh(tAc, abs[ A(O,B-C) ])        (9)

Function 9: Area function between an identifier and a central point

An identifier is matched with a blob whose central point produces the lowest 

score. The blob and identifier are marked as matched. Now the Kalman filter must be 

updated with the appropriate measurement values, as was done for the prior two stages. 

The location is fairly straight-forward. The central points location is used as Kalman filter 

measurement data, and the identifiers location is updated with the Kalman filter’s 

estimated location. 

Dimensions on the other hand are not as straight forward. Sharma[1] does not 

say how the central point value is used to update the identifier’s dimensions. Because of 

Function 9, it can be assumed that the central point value must be used to update the 

�14



blob dimensions in some way. However, central point values are a single dimension and 

an identifier has two dimensions: height and width. The simple solution is to use the 

central point value as height and width measurement data. The shortcomings of this are 

discussed in greater detail farther down below as they have a fairly large impact on the 

algorithm.  

2.2.3 Identifier Stability Improvements

A contribution this paper makes to the work done by Sharma[1] is to improve the 

stability of identifiers. Because it takes some time for a Kalman filter to stabilize its 

predictions, and matches are based on hard thresholds, there will come a time when a 

blob is perpetually be matched only for a single frame. Each frame a new identifier is 

created for the blob because it failed to be matched with the identifier created in the 

previous frame. Since identifiers continue with a constant velocity for several frames until 

they “die,” it is possible for them to conflict with other identifiers ability to match to their 

corresponding blob. Other times, an identifier may miss its target for a frame or two, 

perhaps due to occlusions or other reasons, but be matched up with its blob afterwards. 

To account for this, two layers of identifiers are used: a stable set and an 

unstable set. All new identifiers start off in the unstable set. After several successive 

successful matches, an identifier is promoted to the stable set. Once in the stable set, an 

identifier is demoted if it goes unmatched for several successive frames. The stable 

identifier set goes through all three of the aforementioned matching stages. The left over 

set of unmatched blobs is then passed to the unmatched identifier set for matching using 

the same three stages. 

Having two identifier sets is quite beneficial because it relaxes the requirements 

of the Kalman filter prediction. Previously, if a Kalman filter produced a bad prediction for 
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just a single frame, the blob it was matched with would be replaced by a new identifier, 

with a newly instantiated Kalman filter. This is undesirable because Kalman filters only 

perform well after several iterations of measurement data. It is quite difficult to create a 

Kalman filter that produces accurate predictions within its first iteration. Additionally, an 

identifier is essentially allowed several frames of missed matches before a new identifier 

takes it’s place. This policy promotes older identifiers who have accumulated good 

predictive information about a particular blob and grants the identifier a few mistakes. 

2.3 System Stage 3: Dynamic Line Model

A probability image is used to describe the probability that a given pixel 

corresponds to the region a line forms in the video scene. Then the location of every 

stable identifier is plotted on this probability image to determine the probability of being 

in line or not. Then the number of people in line, along with a confidence interval, is 

reported by the system. 

During the development process, a static line model was used. This is a hand 

generated probability model of where a human thinks a line forms in the scene. 

However, this technique does not allow for the line to organically shrink or grow. This is a 

big limitation that will produce many false positives. Essentially, any person that walks 

into this image will be considered part of the line. Another key contribution of this paper 

is for a technique to dynamically determine a line region in a scene. 

The base assumption about a line is that people are standing still. To capture 

this, two ABS are used. The first ABS is very adaptive, so that it does not take long for 

an individual standing still to fade into the background. The background model of this 

ABS contains every individual standing still. This background image is then passed into 

an extremely slowly adaptive ABS in order to extract the people standing still. This 

�16



extremely slowly adaptive ABS is set to capture the “true” background model. More 

importantly though, this second ABS produces a foreground binary image that captures 

only the people standing still, but only standing still for a certain amount of time. 

This is sort of a temporal bandpass filter for motion. People walking past the line 

are not picked up. People who stand still are captured as foreground objects, and noise 

in the form of drastic changes to the background are eventually captured. To the best of 

this author’s knowledge, no other paper has used ABS in such a manner. (Side Note: 

Besides its use in generating a dynamic line probability model, this targeting technique is 

also used as an alternative to the regular blob detection technique presented earlier in 

this paper.)  

There are two additional steps that need to be taken before the binary image of 

standing people can be used. First, a large gaussian filter is used to blur the binary 

image. This gives the probability image soft edges and variable levels of certainty. The 

last step is to perform a histogram equalization on the image. This is because we want a 

full probability range from zero to one, and the gaussian blur can cause regions of the 

probability image to loose their maximum value. Figure 2.7 below shows the full system 

block diagram.

�

Figure 2.7: Block diagram of how a dynamic line model is generated 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3. Implementation

The core of this project is implemented using the extensive computer vision 

library provided by OpenCV and the great performance and parallelism provided by C+

+11. Additional libraries are used for the interface with the MySQL database. The system 

itself has a command line interface, and can be configured using a configuration file. A 

testing system is written in python to allow multiple instances of the system to be run at 

once. The testing system and configuration input file enable for autonomous system 

optimization. With over 25 different parameters, the search space for the optimal 

configuration is rather large. Performance is necessary in order to meet the real-time 

requirement, and to make searching the system configuration space feasible. 

Multithreading is used to achieve better performance. Because of the stateful 

nature, and sequential dependencies in certain system stages, a pipeline design is used. 

Each stage of the system (target acquisition, target tracking, and line probability model) 

is placed on a separate thread, all managed by the main thread which also handles 

video I/O. A protected queue is used to pass information from one stage to the next. The 

queue has a simple interface shown in Figure 3.1. Each operation is tightly protected by 

a mutex semaphore. 

�

Figure 3.1: Protected Queue Interface

ProtectedQueue<Type>(int maxSize)  

Type pop() 

void push(Type obj) 

bool empty()
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Proper multithread design is necessary to not only assure performance benefits, 

but also to reduce the change of multithread related bugs from creeping in. The pipeline 

design, along with the protected queues offer this by ensuring a proper, and secure data 

path. Figure 3.2 shows the systems multithread design. The Display Frames Queue is 

necessary to ensure that only the main thread interfaces with OpenCV’s video I/O 

operations. This is because the GUI used to display different parts of the system is on a 

separate thread due to the underlying implementation of OpenCV. The only way to 

prevent race conditions is to have only one thread handle video I/O. Besides the Display 

Frame Queue, the design follows pretty closely to the pipeline design commonly used in 

hardware for modern processors.

�

Figure 3.2: Multithreaded Pipeline Design
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4. Challenges and Limitations of the System

While many papers[1,6, 9, 10] are quick to highlight their achievements, they 

often fail to mention their limitations. Highly controlled scenarios, while important for 

generating favorable results, often fail to capture performance in less favorable 

conditions. To truly understand modern computer vision systems, it is important to look 

at failures just as much as successes. It is only through a deep examination of 

challenging video sequences that fundamental limitations of modern systems can be 

understood. Only after understanding shortcomings can new and better techniques be 

developed. Therefore, this paper will present some of the challenges faced by this 

computer vision system.

The influence of real world events and practical constraints presents a set of 

challenges, typically in the form of noise that must be overcome in order to obtain 

accurate results. Because of the sequential nature of the system, noise compounds from 

each stage, and influences the final count of people in line. To a certain degree, each of 

the follow sources of noise is orthogonal, meaning they are independent of one another, 

and reducing the effects of one  noise source does not guarantee reduction in the effects 

of another. In each stage of the system, the following noises can be attributed to a 

reduction in accuracy:

1. Camera Position

2. Lighting 

3. Homogenous Mixture of Stationary and Moving Targets

4. Extreme Occlusion 
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Figure 4.1: Example of the four noise sources. The green circle is stationary people in 
line. These targets have a perspective change due to camera position, they are 

overexposed due to lighting coming from the upper left corner, and they are subject to 
extreme occlusion. The red circle is people in motion. These people walk in front of the 

stationary targets. not only causing further occlusion, but also challenges for any 
background subtraction techniques

First, the effects of these noise sources will be examined for the target 

acquisition stage of this system, followed by target tracking stage, and finally the 

application specific stage. Mitigation of these noise sources for system performance 

analysis falls out of scope of this paper.

4.1 Target Acquisition Limitations

Adverse effects from the aforementioned noise sources are perhaps most 

influential in target acquisition. With bad targets, or partially captured targets, it makes it 

even more difficult to track and account for occlusion with the techniques discussed in 

section 2.2 Target Tracking.
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4.1.1 Camera Position Challenges in Target Acquisition 

The ideal camera position would be orthogonal and in central to a line of people, 

as to capture the space between each member of the line. Any deviation from this would 

introduce additional occlusions, or sizing differences between targets due the 

perspective. Additionally, the camera should be far enough away from the line so that a 

narrow angle lens can be used to capture the entire line in high fidelity. Wide-angle 

lenses would need to be closer to the line to capture the line in adequate fidelity, and 

being closer would introduce occlusion at the beginning and end of the line of people.

4.1.2 Lighting Challenges in Target Acquisition

The ideal lighting scenario would be fully ambient lighting. This would prevent the 

formation of shadows, sunspots, and overexposure. 

Shadows are challenging for ABS. Despite research[3,4] in shadow resistant ABS 

techniques, which usually check for darker shades of the background model, it is still 

very challenging to differentiate between a true shadow and darker colored clothing. 

Also, shadows become out of focus, the further away an object is from the shadow-

projected plane. This effect is amplified in reflective tile floors. 

Sunspots are also challenging for ABS, especially very bright spots on darker 

backgrounds. The deviation from the background model is significant enough for the 

sunspot to be interpreted as part of the foreground. Besides causing false positive 

foreground pixels sun spots, or more specifically the source of the sunspot, can be a 

source of extreme lighting dynamics. These extreme dynamics cause overexposure in 

some parts of the image or underexposure in others. Improperly exposed images could 

appear desaturated, making the color differences between the background model and 
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foreground objects smaller. This all leads to false classification of foreground or 

background pixels. 

�

Figure 4.2: Video frame of a very busy line, which presents great challenges for target 
acquisition due to occlusion, lighting, mixed motion, and camera positioning

It can be seen in Figure 4.2 above that the used video for this system has a lot of 

occlusion in the front of the line due to the camera angle. Even a human has to 

thoroughly examine dense clusters of people to accurately hand count the number of 

people in line. In fact it is the opinion of the author that virtually any targeting algorithm 

currently available (either in literature or production) will have targeting difficulties with 

the amount of occlusion present. 
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Continuing the examination of the scene in Figure 4.2, the upper left corner is 

overexposed due to the bright lighting caused by the sun shining through the sliding 

door. This causes a silhouetting effect for people in the front of the line, making them 

appear desaturated and similar in color. The extreme light dynamics furthermore are the 

source of underexposure in other parts of the image, yet again resulting in desaturation 

and a more homogenous color profile. Additionally the sliding door in the upper left 

corner causes sunspots in the lower right corner of the scene when open. It also does 

not help that the door is one of the main entrances for the building and is utilized very 

frequently. 

�

Figure 4.3: An extremely challenging scene for human and computer vision target 
acquisition systems. There are 10 people in this frame

Poor camera positioning and lighting can be tremendously challenging even for a 

human. As a challenge, examine Figure 4.3 above. If the human visual system is having 

trouble correctly counting the number of people in line an algorithm will surely struggle 
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as well. Scenes like this can often arise throughout the day and will typically cause 

severe undercounting. 

4.1.3 Mixed Motion Challenges in Target Acquisition

The ideal motion of the video scene for ABS would be constant for all targets 

needing detection. This would allow the ABS to work under the designed presumption 

that foreground objects are inherently moving, and background object are inherently 

stationary. Therefore having a homogenous mixture of both moving and stationary 

targets is fundamentally challenging for ABS. Foreground objects that stand still for long 

enough faded into the background and can be considered noise in the background 

model. Not only are they not counted as foreground pixels, but the noise could also 

cause additional foreground objects of similar color to be partially falsely classified as 

part of the background. 

Another fundamentally important fact of ABS is that the majority of temporal 

samples per pixel are part of the background model, and foreground pixels are merely 

outliers or impulses to the norm. However, real world scenarios do not offer this. During 

coffee rush hour, the line can constantly be 10+ people long for several hours. At specific 

parts of the scene, a true background pixel might not be obtained for the length of this 

time. Despite the tunable adaptivity parameter in many ABS techniques, going to the 

extremely slow learning spectrum of adaptivity would undermine key advantages of ABS. 

The noises caused by mixed motion are unfortunately present in the video used 

for this system. People waiting in line stand still, fade into the background and become 

impossible to target. Even the dual ABS technique, which targets stationary people is 

susceptible to noise caused by mixed motion. When people move forwards in line, they 
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are not targeted because they are in motion and not standing still. The effect of this 

noise source is partially captured blobs of improperly classified foreground pixels.

4.2 Target Tracking Limitations

All of the aforementioned challenges in target acquisition carry over in target 

tracking, because target tracking uses data acquired in the target acquisition stage. The 

position and target dimension predictions made by the Kalman filter become less 

accurate, and therefore the matching algorithm of identifiers to blobs makes false 

matches. That being said, noise from target acquisition is not the only challenge for the 

tracking stage of the algorithm.

4.2.1 Kalman Filter Challenges in Target Tracking

In the ideal scenario, blob shapes would be rigid, meaning every blob shape is 

constant. However, this will never be the case because of the way people walk, the size 

difference caused by perspective, and even the micro motions that occur when standing 

still. Even if target acquisition produced 100% accurate blob data, the blob centroid or 

central points used as Kalman filter measurement data could shift slightly because of the 

changes in blob shape. These slight shifts become measurement noise for the Kalman 

filter. 

To further understand this, imagine both a human and a big ball moving at a 

constant velocity in a scene. The ball will have a rigid blob shape and its centroid will 

truly be the center of the ball, and therefore the measurement data will not have noise 

when being fed into the Kalman filter. The human on the other hand will be moving their 

arms and legs when walking, altering their blob shape in each frame. This causes the 
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blob centroid to not accurately represent the center of the human, and therefore counts 

as noise in the Kalman filter measurement data. 

Another ideal scenario would be to have a tracked target’s motion be non-chaotic 

and completely described by the second order model used by the Kalman filter. People 

would not make sporadic direction changes, speed changes or suddenly come to a stop. 

These chaotic behaviors are problematic for the Kalman filter and demand multiple 

iterations for the prediction accuracy to improve. 

4.2.2 Matching Challenges in Target Tracking

All these inaccuracies; noisy target acquisition, chaotic target motion, noisy 

centroid positions, and Kalman filter convergence times, all contribute to a certain 

degree to a noisy Kalman filter prediction, which in turn leads to potentially bad matches. 

The most common case of this is a failure to establish a match. In such a case, a 

new identifier is created for any blob that has not been matched. This means a new 

Kalman filter is created for both the target position and dimensions. Normally this would 

not be a problem, but the Kalman filter demands several iterations to produce accurate 

predictions and stabilize. Prior to this, the Kalman filter is unstable and the new identifier 

could fail to be matched in the next iteration. While the stable and unstable set of 

identifiers proposed in this paper aim to alleviate this problem, it could still occur, albeit 

less often. 

Another issue with creating new identifiers for unmatched blobs is that the 

algorithm always assumes a blob is a single person. This can happen if the occlusion 

matching fails to produce a good match on a blob of two or more people, and a new 

identifier is created for the blob. However the more frequently observed case is when 

tightly clustered group of people walk into the scene. The group is counted as one 
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person, and unless the blob splits, it will continue to be counted. The occlusion resistant 

technique only works when the merged conglomerate blob consists of two or more well 

tracked blobs beforehand. 

A less common misclassification can occur during the second stage of matching. 

Sometimes two nearby blobs fail to be matched in the first stage (one to one matching) 

and proceed to the second stage of matching where the blobs are falsely assumed to be 

split. This causes undercounting because two (or more) people are counted as one. 

While the idea behind this stage is good, because sometimes a blob of an individual can 

split into two or more blobs for whatever reason, it can cause issues as in this case.

The last issue encountered in the matching algorithm occurs in the third stage of 

the matching algorithm, where multiple identifiers match to a single blob in order to deal 

with occlusion. In the ideal case, only identifiers who’s blobs have merged into one 

should ever reach this stage. Unfortunately due to noisy Kalman filter predictions, stray 

identifiers looking for a match, and tunable match parameters, sometimes identifiers will 

falsely double count a single person by falsely being matched in the third stage. This is a 

challenging problem to fix because while visually it may be obvious that a blob belongs 

to just a single person, from the algorithms perspective, it has no way of knowing. A 

more robust algorithm is needed, one that leverages a plethora of different features, to 

truly alleviate this problem. 

4.3 Line Probability Model Challenges

Two key features of the line probability model is that it relies on people standing 

still, and leverages no priori knowledge about where a line forms. While these features 

provide robustness and a general approach for a wide range of environments without 
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requiring training data for the algorithm, it can also be a shortcoming and challenge in its 

own right. 

The first challenge is capturing a probability model for only the line to place an 

order. Often times after placing an order, a person lingers around nearby the line they 

were just in, waiting to receive their order. As a result, these people stand still and are 

counted as part of the line probability model. This can cause false positives, and 

generally a larger line region.

Another challenge for the line probability model is the time it takes for a person to 

be captured as part of the background in the first ABS. The time it takes to acquire a 

target can contribute to undercounting, since a smaller line region will be observed in the 

meantime. Unfortunately, there is nothing that can be done to alleviate this. A careful 

balance must be achieved such that the dual ABS technique used to generate the line 

probability model does not capture slow walking pedestrians, and only capture people 

who have truly stopped and committed to standing still in line. Variable video FPS only 

make this problem harder since the ABS technique is frame based, and not time based.

This challenge also presents another problem. When the line advances forward, 

and everyone moves, there is a moment where every person in line is moving, and will 

therefore not be standing still. This means that they may not be counted in the line 

probability model. 
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5. Results

In order to test the computer vision system, a Python script test platform has 

been written to automate the process. This script runs the computer vision system with a 

specific configuration file, and test video. It saves the system outputs and the input video 

frames per second to an output file to later be compared with a hand generated 

expected output file. This creates a simple environment for creating multiple tests, since 

all that is needed is system inputs and expected outputs to compare against. Another 

nice feature of the testing platform is its ability to try multiple configurations files for the 

same test. This enables optimization of the system by intelligent traversal of the system 

configuration space. However this work is out of the scope of the paper. 

In order to compare system outputs to the expected outputs, discrete time 

signals must be created of both the expected and actual outputs. The actual output as 

produced by the computer vision system saves the video FPS at the top of the output 

file, followed by the line size at each frame. Having the video FPS is important since it is 

essentially the sampling rate for the discrete time signal of the actual output. The 

sampling rate is used to generate the expected output signal from the human recorded 

pairs of time and line size. For both actual and expected signals, step interpolation is 

used.

After both the expected and actual signals are generated, the Root Mean 

Squared Error (RMSE), as seen in Function 7, is computed between the two signals. 

The RMSE shows, give or take, the number of people miscounted. Low RMSE values 

are favorable because it means the system is pretty close to the truth. Also statistics are 

performed on the error signal, which is the difference between actual and expected. The 

mean and standard deviation of the error are calculated in order to see if the system is 

under counting, or over counting.
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RMSE =  � (7)

Function 7: Root Mean Squared Error between the actual ( yt ) and expected ( y )

There are two targeting algorithms being tested, with the key difference being the 

target acquisition technique being used. The first algorithm uses the traditional ABS 

technique for target acquisition. The second algorithm uses the DABS technique 

presented in this paper for the same task. It is important to remember that both 

algorithms also use the DABS technique in the dynamic line model stage, since the 

DABS technique was first developed for this purpose. 

5.1 Test Videos

Three videos are used for testing three different scenarios faced by the system: a 

short, medium, and long line. A prerequisite for any test video is that its first several 

frames should have no people in them, and no line for about one minute. This allows for 

the ABS and DABS to create a noise free background model. Without a good 

background model, the performance of the whole system suffers. 

The short line video is 11 minutes long, and has line sizes that span from zero to 

five people. It is recorded in the evening. Typically during this time there are 

(understandably) not very many people who wish to get coffee. Despite the short lines 

and relatively few people, some interesting challenges appear in this video. The slightly 

dimmer lighting causes colors to desaturate, and the relatively fast moving lines can be a 

little too fast for the DABS technique in the dynamic line model stage. Several frames of 

the video can be seen in Figure 5.1.
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Figure 5.1: Several frames from the short line video

The medium line video is 14 minutes in length and has between zero to nine 

people. This video is recorded in the afternoon. Due to the shorter days, the video 

experiences similar challenges as the short line video. Color desaturation due to poor 

lighting causes some interesting challenges. Also this video has a large group of people 

clustered at the front of the line which causes extreme occlusion. Several frames of the 

video can be seen in Figure 5.2.

Figure 5.2: Several frames from the medium line video

The long line video is 15 minutes in length and peaks at a line length of 18 

people. The video was recorded in the morning when the line for coffee was on average 

10 people long. This is probably the most challenging of the videos to process. The 

video has a lot of people walking past the line, challenging lighting in the front of the front 

of the line, and ample occlusion. Several frames of the video can be seen in Figure 5.3.
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Figure 5.3: Several frames from the long line video

5.2 Test Results

The RMSE of each test can be seen in Figure 5.4. This provides a good 

overview of performance by showing the relative miscount of the system with units being 

people. The test results for each test video and targeting algorithm can be seen in 

Figure 5.5 below. For these results, the first 1500 frames of output have been discarded 

because it takes a few minutes for the ABS and DABS to create good background 

models. As stated before, if a poor background model is used poor results are to be 

expected. The error distribution for each test result is presented in Figure 5.6. Lastly, 

Figure 5.7 shows the mean and standard deviation for these distributions.

Figure 5.4: RMS Error for each test, for both ABS targeting and DABS targeting 
algorithms, ran on the three videos
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Figure 5.5: Test results for both ABS and DABS targeting algorithms, tested on the three 
test videos. The first 1500 frames are discarded to allow for a proper background model 
to develop. Figures 1 to 3 use dual adaptive background subtraction for targeting, while 

Figures 3 to 6 use regular adaptive background subtraction for targeting

Figure 5.6: Statistical distribution of the error  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Figure 5.7: Mean and standard deviations for error distributions

5.3 Results Discussion

There are times when the system performed reasonably well, and produced 

outputs close to the expected. The system using DABS for targeting was very much on 

the mark till about frame 3500 of Figure 5.5.3, the long line test video. The system using 

ABS for targeting seemed to do well in Figure 5.5.5 till about frame 5500 of the medium 

line test video. It can be seen from the RMSE results in Figure 5.4 that DABS generally 

performs better than the ABS. For the long line test video, DABS performed 20% better 

than ABS. Additionally, throughout all the error distributions, DABS had a smaller mean 

error, albeit slightly larger standard deviation. 

In general, however, both versions of the system seem to undercount more often 

than over count. This could be attributed to the stability improvements to the identifier 

that prevent stray, unmatched, identifiers from causing double counting. Also, this could 

be attributed to the dynamic line model, which reduces the number of identifier people in 

the scene to only those that are in line. However with the omission of the dynamic line 

model, over counting was a bigger issue with earlier iterations of the system than 

undercounting.
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ABS

Short Line, 
DABS

Medium 
Line, ABS

Medium Line, 
DABS

Long Line, 
ABS

Long Line, 
DABS

Mean -1.3513 -0.15281 -3.471 -2.3629 -9.4376 -7.4494

Standard 
Deviation

2.041 2.8909 3.626 4.3531 3.7898 3.7471



While results do appear to be a little lackluster, the test videos used, and the real 

world environment produce some very challenging scenarios. For a more in depth 

examination of all the challenges faced by this system, refer back to Section

4. Challenges and Limitations of the System. Challenging scenarios can also occur to 

humans, were we have to stop and ask every once in a while if a person is in line or not. 

Perhaps the design criterion of maximum system autonomy is a bit debilitating. Having 

as much memory and knowledge about what defines a line could be beneficial to this 

computer vision system. For example if a user is allowed to give the system priori 

knowledge about where a line starts, in this case the upper left corner of the video, the 

over counting observed in Figure 5.5.1 after frame 8000 could be avoided because the 

system picks up people who are standing still after placing their order, or perhaps just 

stopping to have a conversation in from of the coffee shop. Figure 5.8 below shows the 

cause of the over counting occurring in Figure 5.5.1.

�

Figure 5.8: People standing around can be falsely counted as standing in line
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However, not all miscounts or errors in the actual results have an easy solution. 

The severe undercounting that occurs after frame 6000 in the medium line video (Figure 

5.5.2 and Figure 5.5.5) is caused by an extremely challenging video sequence. Poor 

lighting, extreme occlusion, similar colored clothing as the background, and even video 

noise contribute to the system failing to register the cluster of people shown in Figure 

5.9. Even a hand count is rather difficult, try one with the figure, and for the actual value 

refer to Figure 4.3.

Lastly, the fluctuations in the results of the long line video (Figure 5.5.3 and 

Figure 5.5.6) can be attributed to multiple points of occlusion, which can be seen in the 

last two frames of the long line video sequence in Figure 5.3. In the case of the system 

using ABS for targeting, these fluctuations can also be attributed to people standing still 

and fading into the background. Although the DABS targeting algorithm set out to 

remedy this problem by targeting people standing still, there are brief moments when the 

line moves forwards that all acquired targets disappear because they all take a few steps 

forward in line. This is part of the reason as to why the DABS targeting algorithm 

experiences fluctuations, although they are lower in frequency than those of the ABS 

targeting algorithm.
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Figure 5.9: The tight cluster of similarly colored pedestrians is responsible for the severe 
under counting seen in the medium line video results
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6. Related Works

There are many different proposed systems available to track pedestrians in a 

video, each with their inherent advantages and disadvantages. Typically tracking is 

abstracted into it’s own level and contains a set of identifiers which correspond to 

pedestrians found in a scene. Tracking systems will usually have a mechanism for target 

acquisition, matching algorithm(s) based on extracted features that try to match an 

identifier to the same person in future frames. More sophisticated systems very often 

have stateful identifiers capable of making predictions of sorts to improve accuracy and 

reduce search spaces.

6.1 Target Acquisition Related Works

Target acquisition is typically the first step of finding pedestrians in a scene. This 

can be done by hand but many autonomous techniques are available, each leveraging 

different features. One popular technique is Histogram of Gradients (HoG) detection [5] 

which uses a known visual gradient model of a pedestrian and searches for it in the 

scene. This is in contrast to DABS targeting which relies on specific motion 

characteristics instead of a visual model. However the performance of HoG detection 

relies heavily on the gradient model used and performs poorly when camera angles, 

pedestrian shape and size, or occlusion cause deviations from this model.

Adaptive background subtraction[1][3][4] is another popular technique for target 

acquisition. This is one of the technique chosen in this paper because of it’s strengths in 

acquiring targets of any shape or size. It produces foreground pixels from objects in 

motion that are later converted into blobs through connected component analysis. One 

downfall is that pedestrians can be ‘absorbed’ into the background model if they are 
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stationary for extended periods of time.  The DABS targeting technique presented in this 

paper is less susceptible to this because it specifically targets stationary people. 

Regardless of how a target is acquired, additional features may be extracted 

from the target to form a model of the particular pedestrian. These features will aid the 

frame to frame tracking done by various matching algorithms. Features are typically 

chosen based on various considerations such as accuracy, computational complexity, 

and camera environment. Features may be classified as holistic (e.g. directly identifying 

a pedestrian through HoG or ABS), a decomposition of a pedestrian (e.g. identifying sub-

parts that make up one pedestrian), or a mixture of the two (e.g. identifying a region of 

interest that could directly be a pedestrian, but extract additional features from the 

identified region in the case of occlusion). The DABS targeting technique is holistic since 

it aims to directly identify pedestrians, although the central points used for occlusion 

resilience in the tracking stage of the system could be considered a decomposition. New 

features are being proposed regularly, so it can be difficult to find  the “best” feature or 

set of features, especially when considering how the features are used for matching.

6.2 Target Tracking Related Works

Tracking happens at every frame with the goal of tracking identified pedestrian in 

the previous frame with an identified pedestrian in subsequent frames based on specific 

features or models. Many different approaches exist, each technique somewhat 

dependent on the underlying features: color, blobs, or HoG, for example. One popular 

color based tracking is Continuously Adaptive Mean Shift (Camshift)[8], which is based 

on the Mean Shift technique[7] and iterative searches. 
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Typically novel tracking techniques, such as Camshift, are developed for tracking 

a single target only. To provide the tracking system noise free features to track, a human 

hand selects the target. Autonomously selected targets, like the targets produced by the 

DABS targeting technique presented in this paper, can have noise which can degrade a 

tracker’s performance. Matching systems for multiple objects are inherently more 

complex than those that track individual objects. Additional considerations have to be 

made about how to resolve collisions in matches. The tracking system used in this paper 

is capable of tracking multiple targets based on noisy target data.

More sophisticated Camshift based trackers have also been devised based on 

target decomposition[6]. This gives multiple points to track a single target which can be 

helpful in improving the trackers accuracy, especially in the presence of occlusion. While 

the test videos in this paper have ample occlusion, trackers such as this are not viable 

because they cannot track multiple targets.

Typically, tracking systems will typically have a prediction mechanism or system 

to improve accuracy or reduce search spaces. For example, Kalman filters or particle 

filters are commonly used to provide a prediction of where a pedestrian moved in a new 

frame. Having some knowledge about where a target might be in the next frame can be 

crucial for reducing the Camshift or HoG detection search space[9,11]. The blob based 

tracker used in this paper benefits from Kalman filters since their prediction is the basis 

of finding matches between blobs. The predictive element of a tracking system does not 

have to be limited to position predictions. Adaptive appearance based tracking[2] have 

also been proposed to predict the appearance of a target. However these prediction 

systems require precise calibration for their given environment or target and may 

underperform otherwise. Also they may require a few good samples to “lock-on” to a 
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particular target. Should a target suddenly change directions or appearance, these 

prediction systems can take multiple samples to recover, if at all.
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7. Future Work

There are many things that can be done to improve the computer vision system 

presented in this paper. For starters it would be interesting to run an optimization 

algorithm with the testing platform to find a more optimal configuration for the computer 

vision system. In order to make this effective for the live video stream where the system 

is ultimately designed to run on, the webcam should be configured, if possible, to run at 

a constant frame rate. The test videos recorded from the webcam should also be the 

same frame rate because several techniques used in the system have their 

configurations depended on the sample rate. This would be an immediate way to 

improve the computer vision system without changing the algorithms and techniques 

inside it. Tangental to this, it would be nice to the the whole line counting system fulling 

running and usable by students. This means the website, server, and database need to 

be up and running 24/7. On the server, a watchdog script needs to be created to ensure 

the computer vision system, MySQL database, and node.js backend can properly 

recover from a crash, or boot up if the servers go down for maintenance. 

In terms of other algorithms to try, it is the authors belief that most of the work 

should be focused on target acquisition and to a lesser extent, tracking. The dynamic 

line model seems to perform decently enough and there are not many other techniques 

out there that can produce this kind of data. On the other hand, target tracking and 

acquisition are well established computer vision problems with many new techniques 

being developed all the time. 

For target acquisition it could be interesting to employ some sort of neural 

network or scale invariant HoG detection. This could be run in conjunction with the 

output of the first ABS of DABS targeting proposed in this paper. The adaptive 

background model of the fast ABS seems to capture perfectly people that walk in line 
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and stand still. Currently an extremely slowly adaptive ABS is used to process this 

background frame to acquire targets. However instead of this, a neural network trained 

in pedestrian detection, or a scale invariant HoG detection technique could produce very 

interesting results. 

For target tracking, the color profile of the blob could be used for Camshift, in 

conjunction with Kalman filter predictions for a reduced search space. The color profile 

of the target could be stored in the identifier (C++) class, which is currently created to 

store information about the blob being tracked. However for Camshift to be viable, 

several key problems must be overcome. First is identifier collisions, meaning two or 

more identifiers using Camshift have found a match within a very similar region. This 

needs to be addressed because if a person walks out of the frame, it would be desirable 

for the person’s identifier, which would be storing the color profile used for Camshift, to 

die in order to prevent double counting. The second thing that needs addressing is 

having a group of people walk in the frame at the same time. If the group is tightly 

clustered, each person wouldn’t have their own blob which would be sampled for color 

information, but instead it would be one large conglomerate blob which would be 

counted as one person. The only way to address this would be to use a different target 

acquisition method.
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8. Conclusion

In this paper, a computer vision system for counting people standing in line has 

been presented. The system autonomously detects targets, tracks them, and determines 

how many people are in line. Through test results, it was shown that the novel DABS 

technique outperforms regular ABS for target acquisition. Real world videos exposed 

challenges and limitations to the techniques used at each stage of the system. These 

challenges were thoroughly explored in order to give a better insight of the noise sources 

that modern computer vision systems have to overcome. 

Key contributions of this paper are piecing together the entire computer vision 

system, and getting it to produce meaningful results in challenging real world scenarios. 

Delving deeper into each of the three stages, unique contributions are made along the 

way. In the target acquisition stage, the novel DABS technique proved better then 

traditional ABS by 20% RMS Error for the long line video. In target tracking, the two 

layers of identifiers promote stability, and subdue the problem of identifiers being born 

too frequently because of poor Kalman filter predictions. Finally a method for creating a 

dynamic line model is proposed that is capable of dynamically determining parts of the 

image where a line forms. 
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APPENDICES

Appendix A: Code and User Guide

The code for the project can be found in the following github repo:

https://github.com/LineMonitoringProject/cv_algorithm

If you wish to be added to the project, email george.gargov@gmail.com

The code is broken up into several folders, each representing the three distinct stages of 

the algorithm. The segmentation folder contains the target acquisition code. In the 

segment.cpp file, ABS and DABS is used, along with connected component analysis. 

Then in the identify folder, all the material for target tracking is present. There are 

classes for Blobs, Identifiers, and Scores. The identify.cpp file contains the three stage 

matching process. The LineLogic folder contains all the code for dynamically 

determining the line region. Each of these stages is created into it’s own thread, in 

main.cpp. Additionally main.cpp holds all the logic for the command line interface used 

by the user to launch the program. 
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