
COFFEE QUEUE PROJECT

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

George Dimitrov Gargov

March 2016

© 2016 
George Dimitrov Gargov

ALL RIGHTS RESERVED

�ii

COMMITTEE MEMBERSHIP

TITLE: Coffee Queue Project

AUTHOR: George Dimitrov Gargov

DATE SUBMITTED: March 2016

COMMITTEE CHAIR: John Oliver, Ph.D.

Associate Professor & Director of Computer Engineering Program

COMMITTEE MEMBER: Jane Zhang, Ph.D.

Professor & Graduate Coordinator of Electrical Engineering

COMMITTEE MEMBER: John Saghri, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Wayne Pilkington, Ph.D.

Associate Professor of Electrical Engineering  

�iii

ABSTRACT

Coffee Queue Project

George Dimitrov Gargov

In this paper, a computer vision system for counting people standing in line is presented.

In this application, common techniques such as Adaptive Background Subtraction (ABS), blob

tracking with Kalman filter, and occlusion resistive techniques are used to detect and track

people. Additionally, a novel method using Dual Adaptive Background Subtractors (DABS) is

implemented for dynamically determining the line region in a real-world crowded scene, and

also as an alternative target acquisition to regular ABS. The DABS technique acts as a temporal

bandpass filter for motion, helping identify people standing in line while in the presence of other

moving people. This is achieved by using two ABS with different temporal adaptiveness. Unlike

other computer vision papers which perform tests in highly controlled environments, the DABS

technique is tested in a crowded Starbucks© at the Cal Poly student union. For any length of

people standing in line, result shows that DABS has a lower mean error by one or more people

when compared to ABS. Even in challenging crowded scenes where the line can reach 19

people in length, DABS achieves a Normalized RMS Error of 43%.

�iv

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

CHAPTER

1. Introduction 1

2. Computer Vision System 2

2.1 System Stage 1: Target Acquisition 4

2.2 System Stage 2: Target Tracking 7

2.2.1 Blob Metrics 9

2.2.2 Scoring Matches of Identifiers and Blobs 10

2.2.3 Identifier Stability Improvements 15

2.3 System Stage 3: Dynamic Line Model 16

3. Implementation 18

4. Challenges and Limitations of the System 20

4.1 Target Acquisition Limitations 21

4.1.1 Camera Position Challenges in Target Acquisition 22

4.1.2 Lighting Challenges in Target Acquisition 22

4.1.3 Mixed Motion Challenges in Target Acquisition 25

4.2 Target Tracking Limitations 26

4.2.1 Kalman Filter Challenges in Target Tracking 26

4.2.2 Matching Challenges in Target Tracking 27

4.3 Line Probability Model Challenges 28

5. Results 30

5.1 Test Videos 31

5.2 Test Results 33

5.3 Results Discussion 35

6. Related Works 39

6.1 Target Acquisition Related Works 39

�v

6.2 Target Tracking Related Works 40

7. Future Work 43

8. Conclusion 45

REFERENCES 46

APPENDICES

Appendix A: Code and User Guide 47

�vi

LIST OF FIGURES

Figure Page

1.1: System overview 1

1.2: Three stages of the system 2

2.1: Three stages of the system in greater detail 3

2.2: Adaptive background subtraction sequence. Top row is the adaptive background
model, middle row is raw video frame, bottom row is the foreground or the difference
between the raw video frame and adaptive background model

5

2.3: Overview of the matching process 8

2.4: Distance transformation on a circle. Each number represents the distance
transformation value for each ring of pixels that make up the circle of radius 5 pixels

9

2.5: Algorithm for finding central points on a circle shaped blob, which has the distance
transformation applied to it. Transformation values increase from light to dark

10

2.6: Iterative process for assuring one to one matching in Stage 1 12

2.7: Block diagram of how a dynamic line model is generated 17

3.1: Protected Queue Interface 18

3.2: Multithreaded Pipeline Design 19

4.1: Example of the four noise sources. The green circle is stationary people in line.
These targets have a perspective change due to camera position, they are
overexposed due to lighting coming from the upper left corner, and they are subject to
extreme occlusion. The red circle is people in motion. These people walk in front of the
stationary targets. not only causing further occlusion, but also challenges for any
background subtraction techniques

21

4.2: Video frame of a very busy line, which presents great challenges for target
acquisition due to occlusion, lighting, mixed motion, and camera positioning

23

4.3: An extremely challenging scene for human and computer vision target acquisition
systems. There are 10 people in this frame

24

5.1: Several frames from the short line video 32

5.2: Several frames from the medium line video 32

5.3: Several frames from the long line video 33

5.4: RMS Error for each test, for both ABS targeting and DABS targeting algorithms,
ran on the three videos

33

�vii

5.5: Test results for both ABS and DABS targeting algorithms, tested on the three test
videos. The first 1500 frames are discarded to allow for a proper background model to
develop. Figures 1 to 3 use dual adaptive background subtraction for targeting, while
Figures 3 to 6 use regular adaptive background subtraction for targeting

34

5.6: Statistical distribution of the error 34

5.7: Mean and standard deviations for error distributions 35

5.8: People standing around can be falsely counted as standing in line 36

5.9: The tight cluster of similarly colored pedestrians is responsible for the severe
under counting seen in the medium line video results

38

�viii

1. Introduction

Deciding the optimal time to get a cup of coffee at conveniently located coffee

shops can be a real hassle. Go at the wrong time, and you could be faced with a long

line to wait in. This paper proposes a solution to alleviate this. Simply by checking a

website, coffee aficionados can see the line size, all without violating privacy of the

people waiting in line.

The system that makes this solution possible is made up of several parts, as

shown in Figure 1.1. First, a webcam is placed near the coffee shop, facing the line for

coffee. Next, the video feed is transmitted to a server where the computer vision system,

discussed in this paper, counts the number of people in line. The system outputs the

number of people in line, and a confidence value to a database. This data is then

displayed on a website for any customer to see.

�

Figure 1.1: System overview

In its most abstract, the computer vision system presented here can be broken

down into three stages, as shown in Figure 1.2. The first stage is target acquisition,

where people are identified in the scene. The second stage is target tracking, where

people’s location and velocity are monitored and predicted. The third stage is the

application specific stage, where the location of every person is used to determine who

is in line. There are many computer vision techniques available for each stage of the  

�1

system. In order to confine the search space of viable techniques, several design

requirements must be put in place.

Figure 1.2: Three stages of the system

The system should be as autonomous as possible, in order to minimize

manpower during deployment to various locations. This means minimal user input or

training data. While computer vision systems that leverage machine learning can

produce powerful results, they are too reliant on good training data; therefore, it can be

difficult to determine if a system underperforms from poor design or if it has been

inadequately trained. In addition, the system must be capable of working in virtually any

environment. If a web camera can be placed in this environment, the system must be

able to process the video feed, and extract meaningful results. Lastly, the system must

be able to count people in real-time. Regardless of the frame rate used for computations,

a result should be available every couple of seconds.

�2

Stage 1

Target
Acquisition

Stage 2

Target
Tracking

Stage 3

Who is in Line?
Video
Feed

Line
Count

2. Computer Vision System

From the aforementioned design requirements and a thorough examination of

competing techniques, the system presented in this paper can be examined, one stage

at a time. The general procedures performed in each of the three stages are shown in

Figure 2.1 below. OpenCV and C++ are used to implement these three stages in a

pipeline multi-thread design, but this will be discussed later in section 3.

Implementation.

Figure 2.1: Three stages of the system in greater detail

In Stage 1 of the system shown in Figure 2.1, Adaptive Background Subtraction

(ABS) [3][4] is used to find foreground pixels. Connected Component Analysis groups

adjacent foreground pixels together to create blobs. This is the basis of target

acquisition. An alternative technique is also proposed by this paper for targeting

stationary people using Dual Adaptive Background Subtraction (DABS), and even more

options such as HoG detection[5] are discussed in section 6.1 Target Acquisition

Related Works. Target acquisition will be covered in greater detail in section 2.1

System Stage 1: Target Acquisition.

Then, in Stage 2 of the system depicted in Figure 2.1, a layer of identifiers is

created for blob tracking. Their purpose is to be matched up with blobs from frame to

�3

Video
Feed

Line
Count

Stage 1
Adaptive Background

Subtraction

Connected Component
Analysis

Stage 2
Kalman filter prediction

updates identifier position

Three stage matching
of identifiers to blobs

Stage 3
Dynamic line model

generated with DABS

Find probability that
someone is in line

blobs

People
Position

frame. Kalman filters are used to predict where blobs will be in the next frame. A three

stage matching process[1] is used to find the best match for identifiers and blobs. First is

one-to-one blob to identifier matching, next is many-to-one in the event of blob

fragmentation, and, finally a one-to-many blob to identifier matching in the event of

occlusion. Improvements are made to the stability of identifiers. This will be covered in

greater detail in 2.2 System Stage 2: Target Tracking.

Finally, in Stage 3 of the system presented in Figure 2.1, a dynamic line model is

created using the novel DABS technique. The model is an image where every pixel is a

probability that a line is formed in that location. The dynamic line model is then used in

conjunction with the location of every person to determine the probability that someone

is in line. These probabilities are then used to compute the final line count, which is

outputted by the system. All this will be covered in greater detail in section 2.3 System

Stage 3: Dynamic Line Model.

2.1 System Stage 1: Target Acquisition

To find regions of interest that can be classified as targets, adaptive background

subtraction (ABS) is used. Background subtraction, or foreground extraction, is done on

a per pixel basis using a mixture of gaussians over a user specified temporal window.

This allows for an ever-evolving model of the background that adapts to the scene

changes during the day. The foreground is obtained by subtracting the background

model from the current frame and applying a threshold. This produces a binary image

with white pixels representing the foreground and black representing the background. A

video sequence of the background, raw video, and foreground pixels can be seen in

Figure 2.2 below. Notice how when the people appear in the upper left corner of the

video in the middle row of Figure 2.2, the adaptive background in the top row remains

�4

unchanged, but the people are detected as part of the foreground in the bottom row of

Figure 2.2.

Typically large impulse differences from the current frame and the background

model are labeled as foreground. A person walking across the scene, for example, would

trigger such an impulse and would therefore be classified as foreground. More

sophisticated techniques such as those presented by Zoran Zivkovic [3][4] allow for

gentle background variations from falsely being classified as foreground. For example,

the sway of trees in the wind would not be picked up because the background variation

is not significant enough to be classified as foreground. In addition, shadows can also be

detected, albeit, this is largely dependent on the environment.

Figure 2.2: Adaptive background subtraction sequence. Top row is the adaptive
background model, middle row is raw video frame, bottom row is the foreground or the

difference between the raw video frame and adaptive background model

�5

1 2 3 4

The most important parameter of ABS is its adaptiveness, meaning how slow or

fast objects standing still fade into the background. Having a slow adaptiveness is

beneficial for allowing people to stand still for a little bit before blending into the

background. However, this makes the background model less resilient to noise such as

false positives caused by changes in lighting, or movement of furniture, which would

falsely be picked up as foreground and take longer to be absorbed back into the

background model. Although some noise in the foreground can be observed primarily in

the form of imperfect foreground pixels, this topic will be covered more in depth in

section 4. Challenges and Limitations of the System. Conversely, having a faster

adaptiveness makes the background more resilient to noise, but makes pedestrians fade

into the background faster.

Having a binary foreground image, the next step is to group adjacent foreground

pixels together to create a set of blobs representing targets; this is achieved by a two-

pass algorithm called connected component analysis. Minor filtering is performed at this

stage. Only blobs that are comprised of over a certain number of pixels are permitted to

the set of blobs representing targets. This filters out really small blobs that are

essentially noise. At this point, the problem of occlusion becomes very apparent. In the

ideal scenario there would be a strict one to one relationship between people and blobs.

However when two or more people are close together or occluding one another, this

shows up as one large blob. Therefore, higher level analysis is needed in order to

overcome the problem of blob occlusion as well as identifying the location of every

pedestrian in a scene to determine who is in line or not.

�6

2.2 System Stage 2: Target Tracking

The identifier[1] provides a more reliable metric of location, in addition to making

blob velocity measurable. In the most basic terms, identifiers are objects that are

matched up with blobs on a frame-by-frame basis and serve as a container for blob

metrics. An identifier has a location (x, y coordinates), velocity, dimensions (height and

width), rate of dimension change and an “age.”

Identifiers are “born” when a blob in the set of indexed blobs does not have a

good match to an existing identifier. This new identifier has the location and dimensions

of the unmatched blob that caused it to be born. Its velocity, rate of dimension change,

and age are set to zero. An Identifier “dies” if it remains unmatched with a blob for a

certain amount of consecutive frames. Unmatched identifiers update their position based

on their current velocity.

The Kalman filter is a critical part of the tracking layer because it provides a state

to blobs that are inherently stateless. In this paper, a first order (position, velocity) model

is used for the Kalman filter. Each identifier stores priori position,velocity, and dimension

information necessary for the Kalman filter to make predictions. These location and

dimension predictions made by the Kalman filter are used to establish nearest neighbor

matches between identifiers and blobs. After all matches are made between blobs and

identifiers, position and dimension information is used from the matched blob as

measurement information to update each identifiers Kalman filter matrices. Figure 2.3

below shows an overview of how the Kalman filter is used during the matching process

of identifiers to blobs.

�7

Figure 2.3: Overview of the matching process

OpenCV provides an implementation of the standard Kalman filter. To use it,

basic knowledge is necessary and the steps to make the filter work are as follows: first, it

is specified that 4 dynamic parameters are used, position (x,y point) and velocity (x,y

vector). Next, it is specified that there are 2 measurement parameters, position (x,y

point). Lastly, to keep things simple, no control data is used. Before the Kalman filter can

be used to make predictions and take in measurements, several matrices must be

specified. The measurement matrix is defined so only position data is kept ([1 0 0 0 ; 0 1

0 0]). The process noise covariance matrix, the measurement noise covariance matrix,

and the error covariance matrix are set to an identity matrix with a tuned value between

zero and one.

To tune the Kalman filter, several test videos of pedestrians walking were used.

The three covariance matrices have their values adjusted so the matching process is

maximized. It is difficult to tune two Kalman filters at the same time when the

performance of either can affect the higher level goal of maximizing matches. Also, the

performance of the filter would vary from video to video and even from blob to blob. This

is because there is a certain amount of randomness that cannot be eliminated. At some

point in the tuning process, the Kalman filters performance was deemed “good enough”

for each of the test videos. Any detailed tunings of the Kalman filter would require

modeling the motion of the scene to identify common cases, which is out of scope.

�8

Kalman filter predicts
location and

dimensions for every
identifier

Prediction results to
find matches

between every blob
and every identifier

Identifier location
and dimensions

updated with Kalman
filter estimate, based

on matched blob
metrics

2.2.1 Blob Metrics

It is important to establish blob metrics before we can talk about scoring

equations for calculating the best blob match for an identifier. First, a blob has a centroid

(or center of mass), a height and width (dimensions), and central points [1]. Central

points are local maxima of the distance transformation for a given blob. The distance

transformation of a blob is the shortest distance from any “inside” pixel to any “outside”

pixel. For example, imagine a circular blob of radius 5 pixels. The distance

transformation of this circle would look something like in Figure 2.4, where the outer

most pixel ring will be of distance 1 to to the “outside” and the inner most pixel ring will

be of distance 5 to the outside.

�

Figure 2.4: Distance transformation on a circle. Each number represents the distance
transformation value for each ring of pixels that make up the circle of radius 5 pixels

The set of central points for a given blob is constructed by sweeping the distance

transformation with a ’n * n’ mask. For each increment by ’n’ through the distance

transformation with the mask, a local local maximum value is found inside the mask. If

this local maximum is within 50% of the absolute maximum (the largest value in the

distance transformation), its location and value are save in the set of central points for a

1 | 2 | 3 | 4 | 5 | 4 | 3 | 2 | 1

�9

given blob. Figure 2.5 below helps explain this by continuing with the distance

transformation of a circle blob.

�

Figure 2.5: Algorithm for finding central points on a circle shaped blob, which has the
distance transformation applied to it. Transformation values increase from light to dark

Local maxima that are within 50% of the absolute maxima have their location and

value saved in a “central point”, the central point is added to a set. The resulting set of

central points provide multiple points for feature tracking in the instance of blob

occlusion, when two or more blobs overlap, and the resulting blob only has a centroid for

tracking. Sharma[1] talks extensively about why central points are a stable feature to

track during blob occlusion.

2.2.2 Scoring Matches of Identifiers and Blobs

Having established blob and identifier metrics, it is now possible to create

equations for determining what is a “good match” between any given blob and identifier.

Each identifier is scored against every blob; these scores are then stored in a sorted

array of best (lowest) score first, in each identifier. An individual score is a structure of

three “sub-scores” which are computed with the following 3 functions respectively:

Circular blob, distance transformation. Darker region
is higher value. Border drawn for shape visibility.

n * n mask.
Mask moves by n units to the right
until it reaches the the far right of the
image. It then resets to the left side,
and is shifted down by n units. This
effectively “sweeps” the distance
transformation. In each increment by
n, a local maxima is found, and kept
if it is with in 50% of the absolute
maxima.

Absolute Maximum

Local Maxima

�10

D(O, B) = Euclidian distance between the (x,y) coordinates of identifier O, & blob B (1)

A(O, B) = difference in area = [area(O) – area(B)] ÷ max[area(O), area(B)] (2)

V(O, B) = ratio of overlapping area = overlapArea(O,B) ÷ min[area(O), area(B)] (3)

Functions 1, 2, 3: Scoring functions between blob B, and identifier O. The area of an

identifier or a blob is found by multiplying their respective dimensions (height * width).

These three score functions between blob B and identifier O; distance ‘D’,

difference in area ‘A’, and ratio of overlapping area ‘V’ are used slightly differently in each

of the 3 stages that comprise of the matching algorithm of identifiers to blobs. The

matching continues to the next stage only if the set of blobs for a given frame is not

completely matched with an identifier. Note, that the matching is not necessarily one to

one, and at the end, there may be no “good matches” for an identifier or blob. Also note

that the identifiers location and dimensions used for scoring are the prediction made by

the Kalman filter as shown in Figure 2.5 above. The three stages of the identifier to blob

matching algorithm are as follows:

Matching Stage 1: In the first stage, a one-to-one matching between identifiers and

blobs is attempted. Identifiers save the scores against every blob in a least to greatest

sorted array. Each score in the array is computed with the three sub-score functions

between blob B and identifier O from above. In essence, the best match for an identifier

is a blob that is close, has nearly identical area, and has a lot of overlap.

In the following scoring Functions 4, 5, and 6; tD, tA, and tV are the threshold

constants for max distance, max area difference, and minimum overlapping ratio

respectively. The function maxThresh*=(T, X) returns infinity if X > T or, returns X

otherwise. The function minThresh returns infinity if X < T, or 1 otherwise.

�11

S1 = maxThresh(tD, D(O,B)) * maxThresh(tA, abs[A(O,B)]) * minThresh(tV, V(O,B)) (4)

Function 4: Stage 1 score calculation

maxThresh(T, x) = { infinity if x > T, x otherwise } (5)

Function 5: Maximum threshold, essentially invalidates a score

minThresh(L, x) = { infinity if x < L, x otherwise } (6)

Function 6: Minimum threshold, essentially invalidates a score

Each identifier holds an array of its scores against every blob for several

reasons. First, is so that scores are computed only once, and each successive stage

does not require more computations. Second, is so that a one to one match can be

established for an identifiers best valid score (meaning scores that are not infinite).

Because of this second reason, an iterative process is defined to resolve “collisions”

between two or more identifiers whose best (lowest) match scores are with the same

blob. This iterative process is shown in Figure 2.6 below.

 �

Figure 2.6: Iterative process for assuring one to one matching in Stage 1

Is there a score
“collision” between
any two identifiers?

All collisions
resolved

No
Yes

The identifier with a
larger score takes the

next best match to be its
“best match”

�12

After scoring identifiers against each blob, sorting the matches to find the best

match, and resolving any match collisions, the result is a set of blobs and identifiers with

one-to-one matching. The identifier saves the parameters of the blob that it is matched

with. This information will be used later as the “measurement” information fed into the

Kalman filter to obtain the Kalman filter estimated position, velocity, dimensions, and rate

of dimensions change for the identifier, as shown in Figure 2.3. If there is any

unmatched blob, the matching algorithm continues onto Stage 2.

Matching Stage 2: In the second stage, a one-to-many match is attempted between an

unmatched identifier and unmatched blobs. An identifier tries to establish a match with

many blobs who have a distance larger than tD, an overlap ratio greater than tV, and a

smaller area, which results in A(O,B) to be positive as opposed to negative. Function 7

shows the criteria needed for blobs to be considered for the one to many match.

S2 = minThresh(tV, V(O, B)) AND minThresh(tA, A(O,B)) AND minThresh(tD, D(O,B)) (7)

Function 7: Scoring conditions needed for one to many match

If two or more blobs satisfy these conditions for a given identifier, they are all

combined to create a temporary “super blob.” The identifier is then matched with this

“super blob” and the “super blobs” centroid and height and width to update the

measurement data of its Kalman filter. Each blob used to create this super blob is

considered matched. The matching algorithm continues to the 3rd and final stage if there

are any unmatched blobs.

�13

Matching Stage 3: In the third and final stage, the remaining unmatched identifiers and

blobs attempt a many-to-one match. In this stage, each remaining unmatched blob has

it’s central points computed. Every unmatched identifier has a stage 3 match score

computed against every central point. Basically, central points replace centroids and the

best match is a blob whose central point is the shortest distance from an identifier.

If an identifier has not been matched in stage 3 in the previous stage, Function 8 shows

the Euclidian distance between an identifier’s location and a blob’s central point, where

tDc is the threshold for a maximum allowed Euclidean distance. However, if an identifier

has been matched in stage 3 in the previous frame, Function 9 is used to calculate the

score with the central point’s distance transformation value squared.

S3a = maxThresh(tDc, D(O,B-C)) (8)

Function 8: The Euclidean distance between an identifier and a central point

S3b = maxThresh(tDc, D(O,B-C)) * maxThresh(tAc, abs[A(O,B-C)]) (9)

Function 9: Area function between an identifier and a central point

An identifier is matched with a blob whose central point produces the lowest

score. The blob and identifier are marked as matched. Now the Kalman filter must be

updated with the appropriate measurement values, as was done for the prior two stages.

The location is fairly straight-forward. The central points location is used as Kalman filter

measurement data, and the identifiers location is updated with the Kalman filter’s

estimated location.

Dimensions on the other hand are not as straight forward. Sharma[1] does not

say how the central point value is used to update the identifier’s dimensions. Because of

Function 9, it can be assumed that the central point value must be used to update the

�14

blob dimensions in some way. However, central point values are a single dimension and

an identifier has two dimensions: height and width. The simple solution is to use the

central point value as height and width measurement data. The shortcomings of this are

discussed in greater detail farther down below as they have a fairly large impact on the

algorithm.

2.2.3 Identifier Stability Improvements

A contribution this paper makes to the work done by Sharma[1] is to improve the

stability of identifiers. Because it takes some time for a Kalman filter to stabilize its

predictions, and matches are based on hard thresholds, there will come a time when a

blob is perpetually be matched only for a single frame. Each frame a new identifier is

created for the blob because it failed to be matched with the identifier created in the

previous frame. Since identifiers continue with a constant velocity for several frames until

they “die,” it is possible for them to conflict with other identifiers ability to match to their

corresponding blob. Other times, an identifier may miss its target for a frame or two,

perhaps due to occlusions or other reasons, but be matched up with its blob afterwards.

To account for this, two layers of identifiers are used: a stable set and an

unstable set. All new identifiers start off in the unstable set. After several successive

successful matches, an identifier is promoted to the stable set. Once in the stable set, an

identifier is demoted if it goes unmatched for several successive frames. The stable

identifier set goes through all three of the aforementioned matching stages. The left over

set of unmatched blobs is then passed to the unmatched identifier set for matching using

the same three stages.

Having two identifier sets is quite beneficial because it relaxes the requirements

of the Kalman filter prediction. Previously, if a Kalman filter produced a bad prediction for

�15

just a single frame, the blob it was matched with would be replaced by a new identifier,

with a newly instantiated Kalman filter. This is undesirable because Kalman filters only

perform well after several iterations of measurement data. It is quite difficult to create a

Kalman filter that produces accurate predictions within its first iteration. Additionally, an

identifier is essentially allowed several frames of missed matches before a new identifier

takes it’s place. This policy promotes older identifiers who have accumulated good

predictive information about a particular blob and grants the identifier a few mistakes.

2.3 System Stage 3: Dynamic Line Model

A probability image is used to describe the probability that a given pixel

corresponds to the region a line forms in the video scene. Then the location of every

stable identifier is plotted on this probability image to determine the probability of being

in line or not. Then the number of people in line, along with a confidence interval, is

reported by the system.

During the development process, a static line model was used. This is a hand

generated probability model of where a human thinks a line forms in the scene.

However, this technique does not allow for the line to organically shrink or grow. This is a

big limitation that will produce many false positives. Essentially, any person that walks

into this image will be considered part of the line. Another key contribution of this paper

is for a technique to dynamically determine a line region in a scene.

The base assumption about a line is that people are standing still. To capture

this, two ABS are used. The first ABS is very adaptive, so that it does not take long for

an individual standing still to fade into the background. The background model of this

ABS contains every individual standing still. This background image is then passed into

an extremely slowly adaptive ABS in order to extract the people standing still. This

�16

extremely slowly adaptive ABS is set to capture the “true” background model. More

importantly though, this second ABS produces a foreground binary image that captures

only the people standing still, but only standing still for a certain amount of time.

This is sort of a temporal bandpass filter for motion. People walking past the line

are not picked up. People who stand still are captured as foreground objects, and noise

in the form of drastic changes to the background are eventually captured. To the best of

this author’s knowledge, no other paper has used ABS in such a manner. (Side Note:

Besides its use in generating a dynamic line probability model, this targeting technique is

also used as an alternative to the regular blob detection technique presented earlier in

this paper.)

There are two additional steps that need to be taken before the binary image of

standing people can be used. First, a large gaussian filter is used to blur the binary

image. This gives the probability image soft edges and variable levels of certainty. The

last step is to perform a histogram equalization on the image. This is because we want a

full probability range from zero to one, and the gaussian blur can cause regions of the

probability image to loose their maximum value. Figure 2.7 below shows the full system

block diagram.

�

Figure 2.7: Block diagram of how a dynamic line model is generated 

�17

3. Implementation

The core of this project is implemented using the extensive computer vision

library provided by OpenCV and the great performance and parallelism provided by C+

+11. Additional libraries are used for the interface with the MySQL database. The system

itself has a command line interface, and can be configured using a configuration file. A

testing system is written in python to allow multiple instances of the system to be run at

once. The testing system and configuration input file enable for autonomous system

optimization. With over 25 different parameters, the search space for the optimal

configuration is rather large. Performance is necessary in order to meet the real-time

requirement, and to make searching the system configuration space feasible.

Multithreading is used to achieve better performance. Because of the stateful

nature, and sequential dependencies in certain system stages, a pipeline design is used.

Each stage of the system (target acquisition, target tracking, and line probability model)

is placed on a separate thread, all managed by the main thread which also handles

video I/O. A protected queue is used to pass information from one stage to the next. The

queue has a simple interface shown in Figure 3.1. Each operation is tightly protected by

a mutex semaphore.

�

Figure 3.1: Protected Queue Interface

ProtectedQueue<Type>(int maxSize)

Type pop()

void push(Type obj)

bool empty()

�18

Proper multithread design is necessary to not only assure performance benefits,

but also to reduce the change of multithread related bugs from creeping in. The pipeline

design, along with the protected queues offer this by ensuring a proper, and secure data

path. Figure 3.2 shows the systems multithread design. The Display Frames Queue is

necessary to ensure that only the main thread interfaces with OpenCV’s video I/O

operations. This is because the GUI used to display different parts of the system is on a

separate thread due to the underlying implementation of OpenCV. The only way to

prevent race conditions is to have only one thread handle video I/O. Besides the Display

Frame Queue, the design follows pretty closely to the pipeline design commonly used in

hardware for modern processors.

�

Figure 3.2: Multithreaded Pipeline Design

�19

4. Challenges and Limitations of the System

While many papers[1,6, 9, 10] are quick to highlight their achievements, they

often fail to mention their limitations. Highly controlled scenarios, while important for

generating favorable results, often fail to capture performance in less favorable

conditions. To truly understand modern computer vision systems, it is important to look

at failures just as much as successes. It is only through a deep examination of

challenging video sequences that fundamental limitations of modern systems can be

understood. Only after understanding shortcomings can new and better techniques be

developed. Therefore, this paper will present some of the challenges faced by this

computer vision system.

The influence of real world events and practical constraints presents a set of

challenges, typically in the form of noise that must be overcome in order to obtain

accurate results. Because of the sequential nature of the system, noise compounds from

each stage, and influences the final count of people in line. To a certain degree, each of

the follow sources of noise is orthogonal, meaning they are independent of one another,

and reducing the effects of one noise source does not guarantee reduction in the effects

of another. In each stage of the system, the following noises can be attributed to a

reduction in accuracy:

1. Camera Position

2. Lighting

3. Homogenous Mixture of Stationary and Moving Targets

4. Extreme Occlusion

�20

Figure 4.1: Example of the four noise sources. The green circle is stationary people in
line. These targets have a perspective change due to camera position, they are

overexposed due to lighting coming from the upper left corner, and they are subject to
extreme occlusion. The red circle is people in motion. These people walk in front of the

stationary targets. not only causing further occlusion, but also challenges for any
background subtraction techniques

First, the effects of these noise sources will be examined for the target

acquisition stage of this system, followed by target tracking stage, and finally the

application specific stage. Mitigation of these noise sources for system performance

analysis falls out of scope of this paper.

4.1 Target Acquisition Limitations

Adverse effects from the aforementioned noise sources are perhaps most

influential in target acquisition. With bad targets, or partially captured targets, it makes it

even more difficult to track and account for occlusion with the techniques discussed in

section 2.2 Target Tracking.

�21

4.1.1 Camera Position Challenges in Target Acquisition

The ideal camera position would be orthogonal and in central to a line of people,

as to capture the space between each member of the line. Any deviation from this would

introduce additional occlusions, or sizing differences between targets due the

perspective. Additionally, the camera should be far enough away from the line so that a

narrow angle lens can be used to capture the entire line in high fidelity. Wide-angle

lenses would need to be closer to the line to capture the line in adequate fidelity, and

being closer would introduce occlusion at the beginning and end of the line of people.

4.1.2 Lighting Challenges in Target Acquisition

The ideal lighting scenario would be fully ambient lighting. This would prevent the

formation of shadows, sunspots, and overexposure.

Shadows are challenging for ABS. Despite research[3,4] in shadow resistant ABS

techniques, which usually check for darker shades of the background model, it is still

very challenging to differentiate between a true shadow and darker colored clothing.

Also, shadows become out of focus, the further away an object is from the shadow-

projected plane. This effect is amplified in reflective tile floors.

Sunspots are also challenging for ABS, especially very bright spots on darker

backgrounds. The deviation from the background model is significant enough for the

sunspot to be interpreted as part of the foreground. Besides causing false positive

foreground pixels sun spots, or more specifically the source of the sunspot, can be a

source of extreme lighting dynamics. These extreme dynamics cause overexposure in

some parts of the image or underexposure in others. Improperly exposed images could

appear desaturated, making the color differences between the background model and

�22

foreground objects smaller. This all leads to false classification of foreground or

background pixels.

�

Figure 4.2: Video frame of a very busy line, which presents great challenges for target
acquisition due to occlusion, lighting, mixed motion, and camera positioning

It can be seen in Figure 4.2 above that the used video for this system has a lot of

occlusion in the front of the line due to the camera angle. Even a human has to

thoroughly examine dense clusters of people to accurately hand count the number of

people in line. In fact it is the opinion of the author that virtually any targeting algorithm

currently available (either in literature or production) will have targeting difficulties with

the amount of occlusion present.

�23

Continuing the examination of the scene in Figure 4.2, the upper left corner is

overexposed due to the bright lighting caused by the sun shining through the sliding

door. This causes a silhouetting effect for people in the front of the line, making them

appear desaturated and similar in color. The extreme light dynamics furthermore are the

source of underexposure in other parts of the image, yet again resulting in desaturation

and a more homogenous color profile. Additionally the sliding door in the upper left

corner causes sunspots in the lower right corner of the scene when open. It also does

not help that the door is one of the main entrances for the building and is utilized very

frequently.

�

Figure 4.3: An extremely challenging scene for human and computer vision target
acquisition systems. There are 10 people in this frame

Poor camera positioning and lighting can be tremendously challenging even for a

human. As a challenge, examine Figure 4.3 above. If the human visual system is having

trouble correctly counting the number of people in line an algorithm will surely struggle

�24

as well. Scenes like this can often arise throughout the day and will typically cause

severe undercounting.

4.1.3 Mixed Motion Challenges in Target Acquisition

The ideal motion of the video scene for ABS would be constant for all targets

needing detection. This would allow the ABS to work under the designed presumption

that foreground objects are inherently moving, and background object are inherently

stationary. Therefore having a homogenous mixture of both moving and stationary

targets is fundamentally challenging for ABS. Foreground objects that stand still for long

enough faded into the background and can be considered noise in the background

model. Not only are they not counted as foreground pixels, but the noise could also

cause additional foreground objects of similar color to be partially falsely classified as

part of the background.

Another fundamentally important fact of ABS is that the majority of temporal

samples per pixel are part of the background model, and foreground pixels are merely

outliers or impulses to the norm. However, real world scenarios do not offer this. During

coffee rush hour, the line can constantly be 10+ people long for several hours. At specific

parts of the scene, a true background pixel might not be obtained for the length of this

time. Despite the tunable adaptivity parameter in many ABS techniques, going to the

extremely slow learning spectrum of adaptivity would undermine key advantages of ABS.

The noises caused by mixed motion are unfortunately present in the video used

for this system. People waiting in line stand still, fade into the background and become

impossible to target. Even the dual ABS technique, which targets stationary people is

susceptible to noise caused by mixed motion. When people move forwards in line, they

�25

are not targeted because they are in motion and not standing still. The effect of this

noise source is partially captured blobs of improperly classified foreground pixels.

4.2 Target Tracking Limitations

All of the aforementioned challenges in target acquisition carry over in target

tracking, because target tracking uses data acquired in the target acquisition stage. The

position and target dimension predictions made by the Kalman filter become less

accurate, and therefore the matching algorithm of identifiers to blobs makes false

matches. That being said, noise from target acquisition is not the only challenge for the

tracking stage of the algorithm.

4.2.1 Kalman Filter Challenges in Target Tracking

In the ideal scenario, blob shapes would be rigid, meaning every blob shape is

constant. However, this will never be the case because of the way people walk, the size

difference caused by perspective, and even the micro motions that occur when standing

still. Even if target acquisition produced 100% accurate blob data, the blob centroid or

central points used as Kalman filter measurement data could shift slightly because of the

changes in blob shape. These slight shifts become measurement noise for the Kalman

filter.

To further understand this, imagine both a human and a big ball moving at a

constant velocity in a scene. The ball will have a rigid blob shape and its centroid will

truly be the center of the ball, and therefore the measurement data will not have noise

when being fed into the Kalman filter. The human on the other hand will be moving their

arms and legs when walking, altering their blob shape in each frame. This causes the

�26

blob centroid to not accurately represent the center of the human, and therefore counts

as noise in the Kalman filter measurement data.

Another ideal scenario would be to have a tracked target’s motion be non-chaotic

and completely described by the second order model used by the Kalman filter. People

would not make sporadic direction changes, speed changes or suddenly come to a stop.

These chaotic behaviors are problematic for the Kalman filter and demand multiple

iterations for the prediction accuracy to improve.

4.2.2 Matching Challenges in Target Tracking

All these inaccuracies; noisy target acquisition, chaotic target motion, noisy

centroid positions, and Kalman filter convergence times, all contribute to a certain

degree to a noisy Kalman filter prediction, which in turn leads to potentially bad matches.

The most common case of this is a failure to establish a match. In such a case, a

new identifier is created for any blob that has not been matched. This means a new

Kalman filter is created for both the target position and dimensions. Normally this would

not be a problem, but the Kalman filter demands several iterations to produce accurate

predictions and stabilize. Prior to this, the Kalman filter is unstable and the new identifier

could fail to be matched in the next iteration. While the stable and unstable set of

identifiers proposed in this paper aim to alleviate this problem, it could still occur, albeit

less often.

Another issue with creating new identifiers for unmatched blobs is that the

algorithm always assumes a blob is a single person. This can happen if the occlusion

matching fails to produce a good match on a blob of two or more people, and a new

identifier is created for the blob. However the more frequently observed case is when

tightly clustered group of people walk into the scene. The group is counted as one

�27

person, and unless the blob splits, it will continue to be counted. The occlusion resistant

technique only works when the merged conglomerate blob consists of two or more well

tracked blobs beforehand.

A less common misclassification can occur during the second stage of matching.

Sometimes two nearby blobs fail to be matched in the first stage (one to one matching)

and proceed to the second stage of matching where the blobs are falsely assumed to be

split. This causes undercounting because two (or more) people are counted as one.

While the idea behind this stage is good, because sometimes a blob of an individual can

split into two or more blobs for whatever reason, it can cause issues as in this case.

The last issue encountered in the matching algorithm occurs in the third stage of

the matching algorithm, where multiple identifiers match to a single blob in order to deal

with occlusion. In the ideal case, only identifiers who’s blobs have merged into one

should ever reach this stage. Unfortunately due to noisy Kalman filter predictions, stray

identifiers looking for a match, and tunable match parameters, sometimes identifiers will

falsely double count a single person by falsely being matched in the third stage. This is a

challenging problem to fix because while visually it may be obvious that a blob belongs

to just a single person, from the algorithms perspective, it has no way of knowing. A

more robust algorithm is needed, one that leverages a plethora of different features, to

truly alleviate this problem.

4.3 Line Probability Model Challenges

Two key features of the line probability model is that it relies on people standing

still, and leverages no priori knowledge about where a line forms. While these features

provide robustness and a general approach for a wide range of environments without

�28

requiring training data for the algorithm, it can also be a shortcoming and challenge in its

own right.

The first challenge is capturing a probability model for only the line to place an

order. Often times after placing an order, a person lingers around nearby the line they

were just in, waiting to receive their order. As a result, these people stand still and are

counted as part of the line probability model. This can cause false positives, and

generally a larger line region.

Another challenge for the line probability model is the time it takes for a person to

be captured as part of the background in the first ABS. The time it takes to acquire a

target can contribute to undercounting, since a smaller line region will be observed in the

meantime. Unfortunately, there is nothing that can be done to alleviate this. A careful

balance must be achieved such that the dual ABS technique used to generate the line

probability model does not capture slow walking pedestrians, and only capture people

who have truly stopped and committed to standing still in line. Variable video FPS only

make this problem harder since the ABS technique is frame based, and not time based.

This challenge also presents another problem. When the line advances forward,

and everyone moves, there is a moment where every person in line is moving, and will

therefore not be standing still. This means that they may not be counted in the line

probability model.

�29

5. Results

In order to test the computer vision system, a Python script test platform has

been written to automate the process. This script runs the computer vision system with a

specific configuration file, and test video. It saves the system outputs and the input video

frames per second to an output file to later be compared with a hand generated

expected output file. This creates a simple environment for creating multiple tests, since

all that is needed is system inputs and expected outputs to compare against. Another

nice feature of the testing platform is its ability to try multiple configurations files for the

same test. This enables optimization of the system by intelligent traversal of the system

configuration space. However this work is out of the scope of the paper.

In order to compare system outputs to the expected outputs, discrete time

signals must be created of both the expected and actual outputs. The actual output as

produced by the computer vision system saves the video FPS at the top of the output

file, followed by the line size at each frame. Having the video FPS is important since it is

essentially the sampling rate for the discrete time signal of the actual output. The

sampling rate is used to generate the expected output signal from the human recorded

pairs of time and line size. For both actual and expected signals, step interpolation is

used.

After both the expected and actual signals are generated, the Root Mean

Squared Error (RMSE), as seen in Function 7, is computed between the two signals.

The RMSE shows, give or take, the number of people miscounted. Low RMSE values

are favorable because it means the system is pretty close to the truth. Also statistics are

performed on the error signal, which is the difference between actual and expected. The

mean and standard deviation of the error are calculated in order to see if the system is

under counting, or over counting.

�30

RMSE = � (7)

Function 7: Root Mean Squared Error between the actual (yt) and expected (y)

There are two targeting algorithms being tested, with the key difference being the

target acquisition technique being used. The first algorithm uses the traditional ABS

technique for target acquisition. The second algorithm uses the DABS technique

presented in this paper for the same task. It is important to remember that both

algorithms also use the DABS technique in the dynamic line model stage, since the

DABS technique was first developed for this purpose.

5.1 Test Videos

Three videos are used for testing three different scenarios faced by the system: a

short, medium, and long line. A prerequisite for any test video is that its first several

frames should have no people in them, and no line for about one minute. This allows for

the ABS and DABS to create a noise free background model. Without a good

background model, the performance of the whole system suffers.

The short line video is 11 minutes long, and has line sizes that span from zero to

five people. It is recorded in the evening. Typically during this time there are

(understandably) not very many people who wish to get coffee. Despite the short lines

and relatively few people, some interesting challenges appear in this video. The slightly

dimmer lighting causes colors to desaturate, and the relatively fast moving lines can be a

little too fast for the DABS technique in the dynamic line model stage. Several frames of

the video can be seen in Figure 5.1.

�31

Figure 5.1: Several frames from the short line video

The medium line video is 14 minutes in length and has between zero to nine

people. This video is recorded in the afternoon. Due to the shorter days, the video

experiences similar challenges as the short line video. Color desaturation due to poor

lighting causes some interesting challenges. Also this video has a large group of people

clustered at the front of the line which causes extreme occlusion. Several frames of the

video can be seen in Figure 5.2.

Figure 5.2: Several frames from the medium line video

The long line video is 15 minutes in length and peaks at a line length of 18

people. The video was recorded in the morning when the line for coffee was on average

10 people long. This is probably the most challenging of the videos to process. The

video has a lot of people walking past the line, challenging lighting in the front of the front

of the line, and ample occlusion. Several frames of the video can be seen in Figure 5.3.

�32

Figure 5.3: Several frames from the long line video

5.2 Test Results

The RMSE of each test can be seen in Figure 5.4. This provides a good

overview of performance by showing the relative miscount of the system with units being

people. The test results for each test video and targeting algorithm can be seen in

Figure 5.5 below. For these results, the first 1500 frames of output have been discarded

because it takes a few minutes for the ABS and DABS to create good background

models. As stated before, if a poor background model is used poor results are to be

expected. The error distribution for each test result is presented in Figure 5.6. Lastly,

Figure 5.7 shows the mean and standard deviation for these distributions.

Figure 5.4: RMS Error for each test, for both ABS targeting and DABS targeting
algorithms, ran on the three videos

�33

RMS Error for Each Test

Pe
op

le

0

4

8

12

Test Video Input
Short Medium Long

ABS
Dual ABS

Figure 5.5: Test results for both ABS and DABS targeting algorithms, tested on the three
test videos. The first 1500 frames are discarded to allow for a proper background model
to develop. Figures 1 to 3 use dual adaptive background subtraction for targeting, while

Figures 3 to 6 use regular adaptive background subtraction for targeting

Figure 5.6: Statistical distribution of the error  

�34

1 2 3

4 5 6

Figure 5.7: Mean and standard deviations for error distributions

5.3 Results Discussion

There are times when the system performed reasonably well, and produced

outputs close to the expected. The system using DABS for targeting was very much on

the mark till about frame 3500 of Figure 5.5.3, the long line test video. The system using

ABS for targeting seemed to do well in Figure 5.5.5 till about frame 5500 of the medium

line test video. It can be seen from the RMSE results in Figure 5.4 that DABS generally

performs better than the ABS. For the long line test video, DABS performed 20% better

than ABS. Additionally, throughout all the error distributions, DABS had a smaller mean

error, albeit slightly larger standard deviation.

In general, however, both versions of the system seem to undercount more often

than over count. This could be attributed to the stability improvements to the identifier

that prevent stray, unmatched, identifiers from causing double counting. Also, this could

be attributed to the dynamic line model, which reduces the number of identifier people in

the scene to only those that are in line. However with the omission of the dynamic line

model, over counting was a bigger issue with earlier iterations of the system than

undercounting.

�35

Distribution Short Line,
ABS

Short Line,
DABS

Medium
Line, ABS

Medium Line,
DABS

Long Line,
ABS

Long Line,
DABS

Mean -1.3513 -0.15281 -3.471 -2.3629 -9.4376 -7.4494

Standard
Deviation

2.041 2.8909 3.626 4.3531 3.7898 3.7471

While results do appear to be a little lackluster, the test videos used, and the real

world environment produce some very challenging scenarios. For a more in depth

examination of all the challenges faced by this system, refer back to Section

4. Challenges and Limitations of the System. Challenging scenarios can also occur to

humans, were we have to stop and ask every once in a while if a person is in line or not.

Perhaps the design criterion of maximum system autonomy is a bit debilitating. Having

as much memory and knowledge about what defines a line could be beneficial to this

computer vision system. For example if a user is allowed to give the system priori

knowledge about where a line starts, in this case the upper left corner of the video, the

over counting observed in Figure 5.5.1 after frame 8000 could be avoided because the

system picks up people who are standing still after placing their order, or perhaps just

stopping to have a conversation in from of the coffee shop. Figure 5.8 below shows the

cause of the over counting occurring in Figure 5.5.1.

�

Figure 5.8: People standing around can be falsely counted as standing in line

�36

However, not all miscounts or errors in the actual results have an easy solution.

The severe undercounting that occurs after frame 6000 in the medium line video (Figure

5.5.2 and Figure 5.5.5) is caused by an extremely challenging video sequence. Poor

lighting, extreme occlusion, similar colored clothing as the background, and even video

noise contribute to the system failing to register the cluster of people shown in Figure

5.9. Even a hand count is rather difficult, try one with the figure, and for the actual value

refer to Figure 4.3.

Lastly, the fluctuations in the results of the long line video (Figure 5.5.3 and

Figure 5.5.6) can be attributed to multiple points of occlusion, which can be seen in the

last two frames of the long line video sequence in Figure 5.3. In the case of the system

using ABS for targeting, these fluctuations can also be attributed to people standing still

and fading into the background. Although the DABS targeting algorithm set out to

remedy this problem by targeting people standing still, there are brief moments when the

line moves forwards that all acquired targets disappear because they all take a few steps

forward in line. This is part of the reason as to why the DABS targeting algorithm

experiences fluctuations, although they are lower in frequency than those of the ABS

targeting algorithm.

�37

�

Figure 5.9: The tight cluster of similarly colored pedestrians is responsible for the severe
under counting seen in the medium line video results

�38

6. Related Works

There are many different proposed systems available to track pedestrians in a

video, each with their inherent advantages and disadvantages. Typically tracking is

abstracted into it’s own level and contains a set of identifiers which correspond to

pedestrians found in a scene. Tracking systems will usually have a mechanism for target

acquisition, matching algorithm(s) based on extracted features that try to match an

identifier to the same person in future frames. More sophisticated systems very often

have stateful identifiers capable of making predictions of sorts to improve accuracy and

reduce search spaces.

6.1 Target Acquisition Related Works

Target acquisition is typically the first step of finding pedestrians in a scene. This

can be done by hand but many autonomous techniques are available, each leveraging

different features. One popular technique is Histogram of Gradients (HoG) detection [5]

which uses a known visual gradient model of a pedestrian and searches for it in the

scene. This is in contrast to DABS targeting which relies on specific motion

characteristics instead of a visual model. However the performance of HoG detection

relies heavily on the gradient model used and performs poorly when camera angles,

pedestrian shape and size, or occlusion cause deviations from this model.

Adaptive background subtraction[1][3][4] is another popular technique for target

acquisition. This is one of the technique chosen in this paper because of it’s strengths in

acquiring targets of any shape or size. It produces foreground pixels from objects in

motion that are later converted into blobs through connected component analysis. One

downfall is that pedestrians can be ‘absorbed’ into the background model if they are

�39

stationary for extended periods of time. The DABS targeting technique presented in this

paper is less susceptible to this because it specifically targets stationary people.

Regardless of how a target is acquired, additional features may be extracted

from the target to form a model of the particular pedestrian. These features will aid the

frame to frame tracking done by various matching algorithms. Features are typically

chosen based on various considerations such as accuracy, computational complexity,

and camera environment. Features may be classified as holistic (e.g. directly identifying

a pedestrian through HoG or ABS), a decomposition of a pedestrian (e.g. identifying sub-

parts that make up one pedestrian), or a mixture of the two (e.g. identifying a region of

interest that could directly be a pedestrian, but extract additional features from the

identified region in the case of occlusion). The DABS targeting technique is holistic since

it aims to directly identify pedestrians, although the central points used for occlusion

resilience in the tracking stage of the system could be considered a decomposition. New

features are being proposed regularly, so it can be difficult to find the “best” feature or

set of features, especially when considering how the features are used for matching.

6.2 Target Tracking Related Works

Tracking happens at every frame with the goal of tracking identified pedestrian in

the previous frame with an identified pedestrian in subsequent frames based on specific

features or models. Many different approaches exist, each technique somewhat

dependent on the underlying features: color, blobs, or HoG, for example. One popular

color based tracking is Continuously Adaptive Mean Shift (Camshift)[8], which is based

on the Mean Shift technique[7] and iterative searches.

�40

Typically novel tracking techniques, such as Camshift, are developed for tracking

a single target only. To provide the tracking system noise free features to track, a human

hand selects the target. Autonomously selected targets, like the targets produced by the

DABS targeting technique presented in this paper, can have noise which can degrade a

tracker’s performance. Matching systems for multiple objects are inherently more

complex than those that track individual objects. Additional considerations have to be

made about how to resolve collisions in matches. The tracking system used in this paper

is capable of tracking multiple targets based on noisy target data.

More sophisticated Camshift based trackers have also been devised based on

target decomposition[6]. This gives multiple points to track a single target which can be

helpful in improving the trackers accuracy, especially in the presence of occlusion. While

the test videos in this paper have ample occlusion, trackers such as this are not viable

because they cannot track multiple targets.

Typically, tracking systems will typically have a prediction mechanism or system

to improve accuracy or reduce search spaces. For example, Kalman filters or particle

filters are commonly used to provide a prediction of where a pedestrian moved in a new

frame. Having some knowledge about where a target might be in the next frame can be

crucial for reducing the Camshift or HoG detection search space[9,11]. The blob based

tracker used in this paper benefits from Kalman filters since their prediction is the basis

of finding matches between blobs. The predictive element of a tracking system does not

have to be limited to position predictions. Adaptive appearance based tracking[2] have

also been proposed to predict the appearance of a target. However these prediction

systems require precise calibration for their given environment or target and may

underperform otherwise. Also they may require a few good samples to “lock-on” to a

�41

particular target. Should a target suddenly change directions or appearance, these

prediction systems can take multiple samples to recover, if at all.

�42

7. Future Work

There are many things that can be done to improve the computer vision system

presented in this paper. For starters it would be interesting to run an optimization

algorithm with the testing platform to find a more optimal configuration for the computer

vision system. In order to make this effective for the live video stream where the system

is ultimately designed to run on, the webcam should be configured, if possible, to run at

a constant frame rate. The test videos recorded from the webcam should also be the

same frame rate because several techniques used in the system have their

configurations depended on the sample rate. This would be an immediate way to

improve the computer vision system without changing the algorithms and techniques

inside it. Tangental to this, it would be nice to the the whole line counting system fulling

running and usable by students. This means the website, server, and database need to

be up and running 24/7. On the server, a watchdog script needs to be created to ensure

the computer vision system, MySQL database, and node.js backend can properly

recover from a crash, or boot up if the servers go down for maintenance.

In terms of other algorithms to try, it is the authors belief that most of the work

should be focused on target acquisition and to a lesser extent, tracking. The dynamic

line model seems to perform decently enough and there are not many other techniques

out there that can produce this kind of data. On the other hand, target tracking and

acquisition are well established computer vision problems with many new techniques

being developed all the time.

For target acquisition it could be interesting to employ some sort of neural

network or scale invariant HoG detection. This could be run in conjunction with the

output of the first ABS of DABS targeting proposed in this paper. The adaptive

background model of the fast ABS seems to capture perfectly people that walk in line

�43

and stand still. Currently an extremely slowly adaptive ABS is used to process this

background frame to acquire targets. However instead of this, a neural network trained

in pedestrian detection, or a scale invariant HoG detection technique could produce very

interesting results.

For target tracking, the color profile of the blob could be used for Camshift, in

conjunction with Kalman filter predictions for a reduced search space. The color profile

of the target could be stored in the identifier (C++) class, which is currently created to

store information about the blob being tracked. However for Camshift to be viable,

several key problems must be overcome. First is identifier collisions, meaning two or

more identifiers using Camshift have found a match within a very similar region. This

needs to be addressed because if a person walks out of the frame, it would be desirable

for the person’s identifier, which would be storing the color profile used for Camshift, to

die in order to prevent double counting. The second thing that needs addressing is

having a group of people walk in the frame at the same time. If the group is tightly

clustered, each person wouldn’t have their own blob which would be sampled for color

information, but instead it would be one large conglomerate blob which would be

counted as one person. The only way to address this would be to use a different target

acquisition method.

�44

8. Conclusion

In this paper, a computer vision system for counting people standing in line has

been presented. The system autonomously detects targets, tracks them, and determines

how many people are in line. Through test results, it was shown that the novel DABS

technique outperforms regular ABS for target acquisition. Real world videos exposed

challenges and limitations to the techniques used at each stage of the system. These

challenges were thoroughly explored in order to give a better insight of the noise sources

that modern computer vision systems have to overcome.

Key contributions of this paper are piecing together the entire computer vision

system, and getting it to produce meaningful results in challenging real world scenarios.

Delving deeper into each of the three stages, unique contributions are made along the

way. In the target acquisition stage, the novel DABS technique proved better then

traditional ABS by 20% RMS Error for the long line video. In target tracking, the two

layers of identifiers promote stability, and subdue the problem of identifiers being born

too frequently because of poor Kalman filter predictions. Finally a method for creating a

dynamic line model is proposed that is capable of dynamically determining parts of the

image where a line forms.

�45

REFERENCES

[1] Sharma, V., "A blob representation for tracking robust to merging and fragmentation,"
in Applications of Computer Vision (WACV), 2012 IEEE Workshop on , vol., no., pp.
161-168, 9-11 Jan. 2012

[2] Hare, S.; Saffari, A.; Torr, P.H.S., "Struck: Structured output tracking with kernels," in
Computer Vision (ICCV), 2011 IEEE International Conference on , vol., no., pp.
263-270, 6-13 Nov. 2011

[3] Zivkovic, Z., and Ferdinand van der Heijden. “Efficient adaptive density estimation per
image pixel for the task of background subtraction”. Pattern recognition letters, 27(7):
773–780, 2006.

[4] Zivkovic, Z. “Improved adaptive gaussian mixture model for background subtraction”.
In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on, volume 2, pages 28–31. IEEE, 2004.

[5] Dalal, N., and B. Triggs. "Histograms of Oriented Gradients for Human Detection."
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05)

[6] Xiu, Chunbo, Shian Wei, Rongfeng Wan, Yi Cheng, Jing Luo, and Huixin Tian.
"CamShift Tracking Method Based on Target Decomposition." Mathematical
Problems in Engineering 2015

[7] Comaniciu, D., and P. Meer. "Mean Shift: A Robust Approach toward Feature Space
Analysis." IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE
Trans. Pattern Anal. Machine Intell. 24.5 (2002)

[8] Bradski, G.r. "Real Time Face and Object Tracking as a Component of a Perceptual
User Interface." Proceedings Fourth IEEE Workshop on Applications of Computer
Vision. WACV'98 (Cat. No.98EX201)

[9] Xu, Gang, Dong Zhao, Qi Zhou, and Ding Huang. "Moving Target Tracking Based on
Adaptive Background Subtraction and Improved Camshift Algorithm." 2012
International Conference on Audio, Language and Image Processing (2012)

[10] Exner, David, Erich Bruns, Daniel Kurz, Anselm Grundhofer, and Oliver Bimber.
"Fast and Robust CAMShift Tracking." 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Workshops (2010)

[11] Li, Changyan, Lijun Guo, and Yichen Hu. "A New Method Combining HOG and
Kalman Filter for Video-based Human Detection and Tracking." 2010 3rd
International Congress on Image and Signal Processing (2010) 

�46

APPENDICES

Appendix A: Code and User Guide

The code for the project can be found in the following github repo:

https://github.com/LineMonitoringProject/cv_algorithm

If you wish to be added to the project, email george.gargov@gmail.com

The code is broken up into several folders, each representing the three distinct stages of

the algorithm. The segmentation folder contains the target acquisition code. In the

segment.cpp file, ABS and DABS is used, along with connected component analysis.

Then in the identify folder, all the material for target tracking is present. There are

classes for Blobs, Identifiers, and Scores. The identify.cpp file contains the three stage

matching process. The LineLogic folder contains all the code for dynamically

determining the line region. Each of these stages is created into it’s own thread, in

main.cpp. Additionally main.cpp holds all the logic for the command line interface used

by the user to launch the program.

�47

https://github.com/LineMonitoringProject/cv_algorithm

