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Overview: 
The purpose of the Patriot Bot is to compete in The AI Game’s AI Block Battle competition. It 
attempts to rate its Tetris Fields with a scoring algorithm that selects the best future field based 
upon the possible piece placements. I started working on this program during the summer by 
learning required programs to create a Battle Tetris engine. This included a JLWGL, which is a java 
implementation of OpenGL for display, and java thread-handling techniques. By the end of the 
summer I had a basic system up and running. During the school year I refined the system, added 
major functionality to piece management, and adjusted scoring variables. My project peaked in 17th 
place during the ongoing competition. 

 
 
 
 
 
 
 
 
 
 



   

Functional Requirements: 
Tetris is a single-player game played on a 10 wide and 22 tall 
field, the bottom 20 of which are visible. Play is divided into 
rounds containing some number of timed steps. At the 
beginning of each round, a tetromino, or a geometric shape 
consisting of 4 squares collected orthogonally, appears at the top of the field. All possible 
tetrominoes can be seen in Figure-1. During a step, the player can input any number of commands 
to either rotate the piece by 90-degress counter-clockwise or clockwise, or move the piece one space 
left, right, or down. If the piece can complete the command without intersection with another piece 
or leaving the field, it will execute. When a step’s timer concludes and the piece attempts to move 
down one space. If this move would cause a collision with another piece or case the piece to leave 
the field, the piece is locked in place and the round concludes. If there are any rows that contain 10 

solid blocks across at the end of a round, that horizontal line 
is cleared from play. All blocks above this line are then 
shifted down, and the score increments. A new piece then 
appears at the top of the field for the player to control, 
starting a new round. If this newly inserted piece intersects 

with a piece on the field, the game is over. Figure-2 shows an in-progress game of where the player 
controls an ‘I’ piece. When the piece drops 5 spaces and can drop no further, it will clear 4 lines. The 
bottom-right of Figure-2 shows the next piece that will appear at the top of the field. The general 
goal in a game of Tetris is to clear lines as quickly as possible. As the score increases, the step timer 
gets shorter and the pieces start dropping faster, making accurate piece placement harder. At the 

Figure 1 – All possible tetrominoes 

Figure 2 – Class Tetris 



   

highest levels, the player has 8 frames, or a little over 1/3 seconds, to properly align their piece 
before it hits the bottom of the field. 

Battle Tetris employs the same basic framework 
for a multiplayer game with several new rules. In this game 
an additional field is added for the other player. Each player 
has their name and score displayed above their field. Score 
is determined by the lines you clear and combo. Combo 

start at 0 and increments on every consecutive turn a player clears a 
line. If that player fails to clear a line, combo is set to 0. Score increases 
every time you clear lines according to Figure-3, plus one less than 

combo. So a combo score of 5 increase the score of sending a line by an 
additional 4 points. A T-spin is when you clear a line that can only be cleared by rotating a ‘T’ piece. 
This can be seen in Figure-4. A perfect clear happens when a player’s field has no solid blocks in it 
at the end of a turn. A player sends 1 garbage line to their opponent for every 3 points of score 
they earn. A garbage line is a horizontal line containing 8 or 9 randomly placed solid blocks which 
appear at the bottom of the field and push any blocks above further upward. These are the gray lines 
that can be seen in BlockCrusher’s field in Figure-4. Note how Stranger has scored 9 points, which 
resulted in the sending of 3 garbage lines. Additionally, a black, un-clearable line will appear at the 
bottom of the field once every 20 rounds to ensure the games end reasonably fast. There are the 
black lines at the bottom of both player’s 
fields in Figure-5. Skips allow a player to skip 
over the current piece and not have any piece 
place it for the current round. 

Figure 3 – Scoring System 

Figure 4 – T-Spin example 

Figure 5 – The AI Game’s online Tetris system 



   

Competition Details:  
The AI Block Battle competition is hosted by a website called The AI Games. Users can submit 
code in their preferred langue to be compiled. The system works on a text based interface, where the 
user submitted code must read in field-related information and print out movement instructions. 
After the user selects an active version, their bot will be randomly placed in ladder matches against 
similarly rated opponents. Match making follows a standard ELO rating system. Ever bot enters 
the competition with a 1400 rating. Winning increases your rating while losing decreases your rating. 
Winning against a higher rated opponent or losing against a lower rated opponent makes the rating 
change more severe, while winning against a lower rated opponent or losing to a higher rated one 
makes it less severe. The system tries to match similarly rated bots against each other. The goal of 
this system to adjust ratings until bots with the same rating will each win about 50% of matches. 
Current ladder rankings are displayed on a leaderboard. This system will continue to automatically 
run games until some unannounced, future date when the final competition begins. Then the top 
bots will be placed into a single elimination tournament seeded from the ladder. The total prize pool 
is a little over $2000 for the top 8 bots is. 

 

 

 

 

 

 



   

Field Rating system:  
All successful Tetris AI bots use a field rating system. The program looks over the field to analyze it 
for certain traits for all the possible piece placement locations. The different metrics are weighted to 
adjust a total field score, the best of which is used for piece placement. I broke my field analysis into 
8 categories: 

Holes: A hole is exactly what it sounds like. If there is a gap in the field where an empty space has a 
solid block anywhere above it, the hole score increments by 1. This metric is important because if a 
line has a hole in it, it is much harder to clear the line, leading to worse combos and a higher chance 
of losing by topping out. 

Bumps: A bump is a measure of unevenness of the field. Judging from the highest solid block in 
each column, the bump score increments by 1 for each vertical unit of difference between each row. 
The goal is to make the solid portion of the field as flat as Pieces generally fit better on flat surfaces, 
since causing less holes and bumps that way. It also helps to avoid board states with high peaks or 
valleys, which are harder to place pieces in.                                                                             

Covered: Covered is a measure of the solid blocks on top of a hole. Each solid block on top of each 
hole increments this score by 1. This score helps to remove holes once they are created. If many 
solid blocks are stacked on top of a hole, clearing the hole becomes much harder. This metric 
reduces the effectiveness of piece placement 

 

 

 



   

Well: A well is a valley at least 3 units deep and exactly 1 unit wide. Deep wells, at least 5 units deep, 
have a multiplier attached. Wells are extremely bad because they can only be filled using the long ‘I’ 
piece. Since there is no guarantee that one of these will appear, a well makes clearing lines without 
causing holes difficult. The effect can quickly snowball into situations requiring multiple ‘I’ pieces to 
avoid holes. Before this metric was implemented, deep wells were the single biggest cause of lost 
games. 

Max: Max scores based on the maximum height of the field. If the maximum height of the field gets 
too high it could prevent piece movement, and the bot is more likely to lose. There is also an offset, 
which increases the height at which max height starts to count. This metric reduces the effectiveness 
of piece placement except in cases where it allows for better movement when placing pieces. 

Lines: The line score is incremented if a lined is cleared, in accordance with the aforementioned 
scoring system. Clearing lines is good since it sends lines to the opponents and prevents the bot 
from losing. This metric reduces the effectiveness of placement. 

T-spin: T-spin increments in score if the piece placement would cause a T-spin. It the potential for 
earning skips and sending your opponent lines. This metric reduces the effectiveness of placement. 

T-adjustment: T-adjustments increments in score if the piece placement would allow for a future 
T-spin. It depends heavily on the ability of this bot to clears lines faster than they are received. It 
significantly reduces clear speed, and if the algorithm cannot clear them faster than they arrive, the 
bot will lose despite sending more lines. This metric is currently turned off. 

 

 

 



   

Piece Management: 
The most technical aspect of this project was ensuring accuracy of piece testing locations and 
movement. The program had to test each piece placement possibility, and then do the same for one 
move into the future. To make sure each piece could actually be placed, it would be moved to the 
far left of the screen then dropped into placed as it moved to the right of the screen. This handled 
the basic moves, but there were several more complicated actions to consider. After the piece got to 
the bottom, it might be advantageous to move the piece left or right. This helps eliminate overhangs, 
which are holes with one side exposed to open spaces. It might also want to turn a piece at bottom, 
allowing pieces the fit through gaps and fit into locations that would be unreachable through 
standard movement. At first all of these move were attempted for every single location, which 
increased calculation time dramatically. The base calculation took a maximum of 40, which comes 
for the 4 possible piece turn alignments and the 10 wide field. The analysis would have to then be 
calculated 40 times per initial fiend to check the second piece, leading to a maximum of 1600 
calculations. The new moves increased the base number from 40 to roughly 150, thus requiring 
22500 total calculations. To reduce this number, I made functions to check and see if a spin or lower 
movement would accomplish anything. This changed played a major role in reducing game time by 
90%, as the numbers would suggest. 
 
 
 
 
 
 
 
 
 
 



   

Tournament Testing System: 
One of the things that make this competition interesting is that there is no correct answer. There is 
no real way of knowing how to weight scores without testing them, or if they’re are correct or 
relevant. Since you can only run matches on the live tournament system once every 5 minutes, I 
created my own game system to allow for faster testing. My tournament testing system ran my bot 
against itself, giving different weights to the scores and printing out results. With this approach, 
making games as fast as possible became important. Faster games meant more data upon which to 
base adjustments. Battle Tetris is a high variance game. There is a lot of randomness in the way 
garbage lines appear, so the system needs many trials to get accurate results. To get information 
about changes with an accuracy of 1-2%, the tournament needs to run at least 2000 games. When I 
first implemented this system, games took 3 seconds to run. After making changes in my algorithm 
for efficiency, games took 0.3 seconds to run. The initial adjustments from this system increased the 
rating of my bot from 1500 to 1800, jumping from 60th place to 30th place. It also helped to eliminate 
unhelpful scoring metrics, like T-adjustment. One weakness with the system is that you can only test 
against your own bot. If you bot was, for instance, worse at sending lines to its opponents than most 
others it’d be facing, it might adjust for less efficient clearing than is required. Additionally, scores 
may have local maxima, so testing results might discourage the more efficient weighting. Finally, 
scores may be related in unforeseen ways. Holes and Covered, for instance, are cleared related. 
Weighing holes very highly while might increase or decrease the effectiveness of a certain hole 
weight. There is no way to tell how interconnected all the scores are. So getting the best set of scores 
would theoretically involve a number of tests that scales in factorial with the number of scores. 

 

 



   

Results: 
My bot peaked at 17th place of over 200 competing bots. Patriot Bot currently sits 34th place. 
Interestingly, its ELO rating, at 1980, is only slightly lower than at its peak. That means that over the 
past month ELO and inflated significantly. This comes as no surprise, as old players are constantly 
improving their bots to move the ceiling up, while a stream of new bots keep the floor down. 

Future Adjustments: 
The main future adjustment is to include new scores to better rate the field. One critical one is some 
adjustment to the hole scores. The current system rates all holes equally, where in reality some holes 
are more detrimental than others. Holes located above other holes are worse because to clear them 
you typically end up covering the lower hole even further. Holes covered by rows that are almost 
complete are not as bad either. Also, the T-spin system also needs to be improved in some way to 
make it more practical and less detrimental to clearing speed. Finally, there needs to be some system 
to use and adjust for skips, which can be very powerful. 

  


