FIRE PROTECTION ANALYSIS OF WARREN J. BAKER CENTER FOR SCIENCE

A Project

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillent

of the Requirements for the Degree

Master of Science in Fire Protection Engineering

by Aric Edgar Carracino June 2015

Statement of Disclaimer

This project report is a result of a class assignment; it has been graded and accepted as fulfillment of the course requirements. Acceptance of this report in fulfillment of the course requirements does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include, but may not be limited to, catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project.

© 2015

Aric Edgar Carracino

ALL RIGHTS RESERVED

COMMITTEE MEMBERSHIP

TITLE:	Fire Protection Analysis of Warren J. Baker Center for Science
AUTHOR:	Aric Edgar Carracino
DATE SUBMITTED:	June 2015
COMMITTEE MEMBER:	Frederick Mowrer, PhD Fire Protection Engineering, Director
COMMITTEE MEMBER:	Christopher Pascual, PhD Fire Protection Engineering, Graduate Coordinator

ABSTRACT

Fire Protection Analysis of Warren J. Baker Center for Science

Aric Edgar Carracino

A prescriptive and performance based analysis was performed on the Warren J Baker Center for Science on the California Polytechnic San Luis Obispo campus. The code based analysis included reviewing the building's egress components, structural fire protection, fire sprinkler system, and fire alarm system. This included the requirements of the California Building Code, as well as applicable NFPA codes. Analysis of the egress components of the building revealed several dead end corridors within the building that exceed the maximum allowed length of 50 feet. In addition, the student workspace areas on Level 3 require two exits, but are only provided with one. The structural fire protection requirements were found to meet the requirements of the California Building Code, including the required height, area and occupancy separation. The provided fire suppression system and fire alarm system were found to be compliant with the requirements of NFPA 13 and NFPA 72, respectively. A performance based analysis was conducted on the natural ventilation smoke control system within the atrium of the building. This was done by comparing the results of Pathfinder and Fire Dynamics Simulator models to determine if the available safe egress time is greater than the required safe egress time. It was found that the existing smoke control system failed performance requirements in two separate design fire scenarios. A new natural ventilation smoke control system design with 150% greater ventilation was proposed and tested using the most severe fire scenario and was found to provide an available safe egress time greater than the required safe egress time.

Keywords: Life Safety Analysis, California Building Code, Performance Based Design, Fire Dynamics Simulator, Natural Ventilation Smoke Control

ACKNOWLEDGMENTS

Professor Fred Mowrer Professor Chris Pascual Professor Thomas Korman Professor Lonny Simonian Professor Chris Lautenberger Professor David Rich Northern California / Nevada Society of Fire Protection Engineers Society of Fire Protection Engineers Greater Atlanta Chapter

LIST OF FIGURES	viii
LIST OF TABLES	х
1.0 PROJECT INTRODUCTION	1
1.1 Purpose	1
1.2 Building Description	1
1.3 Applicable Codes and Standards	3
2.0 EGRESS ANALYSIS	4
2.1 Occupancy Classification	4
2.2 Occupant Load	4
2.3 Means of egress	6
2.4 Fire Resistance of Egress Components	10
3.0 STRUCTURAL FIRE PROTECTION ANALYSIS	13
3.1 Occupancy Classification	13
3.2 Construction Type	13
3.3 Height and Area Analysis	14
3.4 Atrium Fire Separation	15
3.5 Required Fire Resistance	16
3.6 Provided Construction Materials	16
4.0 FIRE SUPPRESSION SYSTEM	17
4.1 Water Supply	17
4.2 Hazard Classification	17
4.3 Design Criteria	17
4.4 System Components	20
4.5 Hydraulic Calculations	21
4.6 Inspection, Testing, and Maintenance	27
4.7 Alternate Fire Suppression System	29
5.0 FIRE ALARM SYSTEM	31
5.1 Type of Fire Alarm System	31
5.2 Fire Alarm Control Panel	
5.3 Operating Characteristics	33

TABLE OF CONTENTS

5.4 Initiating Devices	
5.5 Notification Devices	
5.6 Power Supply	41
5.7 Mass Notification System	
5.8 Inspection, Testing, Maintenance Requirements	43
6.0 PERFORMANCE BASED ANALYSIS	45
6.1 Introduction	45
6.2 Code Requirements	50
6.3 Tenability Requirements	52
6.4 Purpose	53
6.5 Required Safe Egress Time (RSET)	54
6.6 Available Safe Egress Time (ASET)	57
6.7 Proposed Natural Ventilation Smoke Control System	
6.8 Performance Based Analysis Conclusion	92
7.0 CONCLUSION	93
REFERENCES	94
APPENDICES	96

LIST OF FIGURES

Figure 1 – Fire department access for the building [1]	2
Figure 2 – Building elevation showing total height of 108 feet and defined height of 64 feet [1]	3
Figure 3 - North end of Level 2 showing dead end corridor greater than maximum 50 feet [1]	9
Figure 4 - Dead end exceeding 50 foot maximum on Levels 4-6 of the atrium [1]	. 10
Figure 5 - Location of H-3 occupancy showing 1 hour fire rated corridor [1]	11
Figure 6 – Level 3 showing 1 hour rated fire barrier separating atrium from remainder of building [1]	. 16
Figure 7- Density and area of operation curves [5]	. 18
Figure 8 - Allowable reduction of operation area for quick response sprinklers [5]	. 19
Figure 9- Standpipe hose connection with 2 1/2" and 1 1/2" connections	. 20
Figure 10 – Remote area location on Level 6 [3]	24
Figure 11 - Pressure vs. flow curve for remote area 6-3 showing supply and demand curves [6]	. 26
Figure 12 - Plan view of fire alarm control panel in fire control center on first floor of building [10]	32
Figure 13 - Honeywell Notifier fire alarm control panel	. 32
Figure 14 - Firefighter's smoke control panel located in fire control room	.33
Figure 15 - Plan view symbol and photo of manual pull boxes within building	.34
Figure 16 - Plan symbol of smoke detector	. 35
Figure 17 - Photo of elevator lobby smoke detector and plan view [10]	.35
Figure 18 - Photo of magnetic door smoke detector and plan view [10]	. 36
Figure 19 - Plan symbol of duct smoke detector	. 36
Figure 20 - Plan symbol of beam detector receiver, imager, and photo of beam detectors in atrium	. 37
Figure 21 - Plan symbol of speaker/strobe, strobe and photo of strobe from building	. 37
Figure 22 - Plan view of classroom showing adequate coverage for visible notification devices [10]	. 38
Figure 23 - Plan view of corridor showing adequate spacing of visible notification devices [10]	. 39
Figure 24 - Plan symbol of speaker, speaker/strobe, and photo of speaker/strobe from building	. 39
Figure 25 - Plan view of bell located outside fire pump room [10]	. 40
Figure 26 - Photo and plan view of weatherproof audible device on terrace [10]	40
Figure 27 - Plan view of atrium with openings between floors highlighted [1]	45
Figure 28 - Photographs of the south (left) and north (right) openings of the atrium	45
Figure 29 - Elevation view of smoke reservoirs with exhaust vents at the top of the atrium [1]	46
Figure 30 - Plan view of two 50 square foot exhaust vents at the top of the atrium [1]	46
Figure 31 - Location of makeup air vents on Level 2 of the atrium [1]	47
Figure 32 - Location of beam detectors on Level 4 of the atrium [10]	. 48
Figure 33 - Location of spot smoke detectors in the atrium [10]	. 49
Figure 34 - Sequence of operations highlighting the atrium specific events and actions [10]	50
Figure 35 - ASET and RSET comparison showing a passing example and failing example	54
Figure 36 - Pathfinder model of the atrium of the building	. 55
Figure 37 - Smokeview rendering of the FDS model of the atrium	. 58
Figure 38 - Smokeview rendering showing the axisymmetric plume rising in the atrium	.61
Figure 39 - Plan view of Level 2 of the atrium showing the location of Design Fire #1 [1]	.61
Figure 40 - Schematic of an axisymmetric fire plume [12]	. 62
Figure 41 - Photograph of furniture used for fuel load located within the atrium	62

Figure 42 - Heat release rate for furniture similar to furniture found in the atrium [21]6	53
Figure 43 - Heat release rate curves for different t-squared fires [12]6	53
Figure 44 - FDS output of heat release rate over time6	54
Figure 45 – Temperature slice file at a time of 300 seconds showing tenable limit not being reached6	55
Figure 46 – Carbon monoxide slice file at 300 seconds showing tenable limit not being reached	55
Figure 47 – Visibility slice file of Level 2 at 300 seconds showing tenable limit not being reached	56
Figure 48 – Visibility slice file of Level 3 at 300 seconds showing tenable limit not being reached	57
Figure 49 – Visibility slice file of Level 4 showing tenable limit being reached at 190 seconds	57
Figure 50 – Visibility slice file of Level 5 showing tenable limit being reached at 190 seconds	58
Figure 51 – Visibility slice of Level 6 showing tenable limit being reached at 174 seconds6	58
Figure 52 - Exhaust volume with increasing number of cells showing convergence	71
Figure 53 - Smokeview rendering showing the balcony spill plume7	72
Figure 54 - Plan view showing location of Design Fire #2 [1]	72
Figure 55 - Schematic showing a balcony spill plume fire [12]7	73
Figure 56 - Furniture found on Level 2 of the atrium	73
Figure 57 – FDS output showing heat release rate at time of sprinkler activation	74
Figure 58 – Heat release rate over time from Design Fire #2 FDS simulation7	75
Figure 59 – Temperature slice file at 300 seconds showing tenable limit not being reached	76
Figure 60 – Carbon monoxide slice file at 300 seconds showing tenable limit not being reached	76
Figure 61 – Visibility slice file of Level 2 showing tenable limit being reached at 270 seconds	77
Figure 62 – Visibility slice file of Level 3 showing tenable limit being reached at 200 seconds	78
Figure 63 – Visibility slice file of Level 4 showing tenable limit being reached at 250 seconds	78
Figure 64 – Visibility slice file of Level 5 at 300 seconds showing tenable limit not being reached	79
Figure 65 – Visibility slice file of Level 6 at 300 seconds showing tenable limit not being reached	79
Figure 66 – Locations of queuing at Level 3 student workspace exits [1]	31
Figure 67 – Proposed 250 ft ² exhaust vent in smoke reservoir at roof of atrium [1]	32
Figure 68 - Temperature slice file at a time of 300 seconds showing tenable limit not being reached8	33
Figure 69 – CO Concentration slice file at 300 seconds showing the tenable limit not being reached 8	34
Figure 70 – Visibility slice file of Level 2 at 300 seconds showing tenable limit not being reached	35
Figure 71 – Visibility slice file of Level 3 at 300 seconds showing tenable limit not being reached	35
Figure 72 – Visibility slice file of Level 4 showing the tenable limit being reached at 264 seconds	36
Figure 73 – Visibility slice file of Level 5 showing the tenable limit being reached at 265 seconds	36
Figure 74 – Visibility slice file of Level 6 showing the tenable limit being reached at 222 seconds	37
Figure 75 Air movement due to normal and reverse stack effect [22]	38

Table 1 - Occupancy Classifications Present in Building	4
Table 2 - Occupant Load Factors for Uses Present in Building	5
Table 3 - Calculated Occupant Load per Level	
Table 4- Exit Requirements Depending on Occupant Load [2]	6
Table 5- Number of Exit Requirement based on Occupant Load of Building	
Table 6 - Means of Egress Capacity Factors	7
Table 7- Exit Capacity Calculation from Each Floor	7
Table 8 - Occupant Load vs. Egress Capacity for Each Floor	8
Table 9- Travel Distance Limits Based on Occupancy [2]	9
Table 10 – Corridor Fire Resistance Rating Requirements from CBC Table 1018.1 [2]	11
Table 11 - Openings Fire Resistance Requirements in Rated Assemblies [2]	
Table 12- Interior Finish Requirements in Components of Means of Egress [2]	12
Table 13 - Occupancy Classification [2]	13
Table 14 - Fire Resistance Rating for Building Elements [2]	13
Table 15 - Fire Resistance Ratings for Fire Separation Distances [2]	14
Table 16 – Allowable Area [2]	14
Table 17 – Provided Area	14
Table 18 - Required Occupancy Separation [2]	15
Table 19 - Allowable Height and Provided Height [2]	15
Table 20- Water Supply Information [3]	17
Table 21- Hazard Classifications for Current System	17
Table 22- Design Criteria for Current Sprinkler System [5]	18
Table 23- Design Criteria for Standpipe System	19
Table 24- Fire Pump Performance Points [6]	20
Table 25- Summary of Computer Based Hydraulic Calculations for Current System [6]	21
Table 26- Comparison of Hand Calculations and Computer Based Calculations	25
Table 27- Summary of Standpipe Calculations [6]	26
Table 28- Inspection, Testing, and Maintenance Requirements and Frequency [8]	27
Table 29- Occupancy Classifications for AutoSprink Designed System	29
Table 30- Design Criteria for AutoSprink Designed System [5]	29
Table 31- Comparison of Demand for AutoSprink System and Current System	30
Table 32-Battery calculations for all devices connected to fire alarm control panel on first floor	41
Table 33-Required standby and alarm capacity calculations [9]	42
Table 34-Battery calculations showing available spare capacity [9]	
Table 35-Inspection and testing frequency requirements for fire alarm system components [9]	43
Table 36 – Summary of Tenability Limits	53
Table 37 – Summary of Exits within Pathfinder Model	
Table 38 – Occupant Load on Each Level of Pathfinder Model	56
Table 39 – Exit Time for Each Floor from Pathfinder Model	
Table 40 – Smoke Detector Properties for FDS Model [15]	
Table 41 – FDS Reaction Properties [20]	

LIST OF TABLES

Table 42 – Summary of ASET Results from Design Fire #1	69
Table 43 – ASET/RSET Comparison for Design Fire #1	69
Table 44 – Summary of Different Mesh Configurations for Mesh Sensitivity Analysis	70
Table 45 – Summary of ASET Results for Design Fire #2	
Table 46 – ASET/RSET Analysis for Design Fire #2	
Table 47 – Summary of ASET Results for New Natural Smoke Control System Design	87
Table 48 – ASET/RSET Analysis for New Natural Smoke Control System Design	
Table 49 – ASET/RSET Analysis for Stack Effect Case	
Table 50 – ASET/RSET Analysis for Reverse Stack Effect Case	90
Table 51 – Different Soot Yield Inputs Used in Simulations	90
Table 52 – ASET Results for Different Soot Yield Values	91
Table 53 – ASET/RSET Analysis for Simulation with Soot Yield of 0.1	91
Table 54 – Different CO Yields Used in the Sensitivity Analysis	92

1.0 PROJECT INTRODUCTION

1.1 Purpose

The purpose of this report was to analyze the Warren J. Baker Center for Science (CSM) in every aspect of fire protection, including a prescriptive analysis and a performance based analysis. The prescriptive analysis included the analysis of the building's egress components, structural fire protection, the fire suppression system, and the fire alarm system. This analysis was conducted using the California Building Code (CBC) and applicable NFPA codes to determine if the current systems and construction within the building meet the requirements of the codes. Throughout this report, if discrepancies are found between existing components of the building and the requirements of the codes, recommendations will be made to show how the building could comply with the code.

In addition to the prescriptive analysis of this report, a performance based analysis was performed on the natural ventilation smoke control system within the atrium of the building. The purpose of this analysis was to determine if the smoke control system was adequate to maintain safe conditions within the atrium for a time greater than it takes the occupants to exit the space. This was determined by using the computer programs Pathfinder and Fire Dynamics Simulator (FDS) to find the required safe egress time (RSET) of the occupants and the available safe egress time (ASET). Through the performance based analysis as well as the prescriptive requirements of the applicable codes, it can be determined if the building is considered safe for occupancy.

1.2 Building Description

The Warren J. Baker Center for Science and Mathematics (CSM) is the newest building on the Cal Poly San Luis Obispo Campus. Construction was completed in 2013 and the first classes were held in the building in Fall of 2013. The building is 6 stories and 108 feet in height, but is not classified as a high-rise, and has a total area of 188,372 square feet. The CSM is classified as a separated occupancy and is Type 1B construction. The building is fully sprinklered and contains a fire pump and standpipe system. The building contains a fire alarm system that include an in-building emergency voice alarm communication system (EVACS). From Level 2 to Level 6, there is a five story atrium that separates the east and west wings of the building and is protected with a natural ventilation smoke control system. The building is primarily a Group B occupancy since it contains mainly offices, classrooms and labs, but it also contains large lecture halls, storage spaces, and hazardous storage.

1.2.1 Fire Department Access

The building has fire department access on Level 1, Level 2, and Level 3 as shown in Figure 1. On the west side of the building, there is a public way that provides fire department access to Level 1. On the north side, North Poly View Drive provides fire department access to Level 1, Level 2, and Level 3 since this road is on a steep slope.

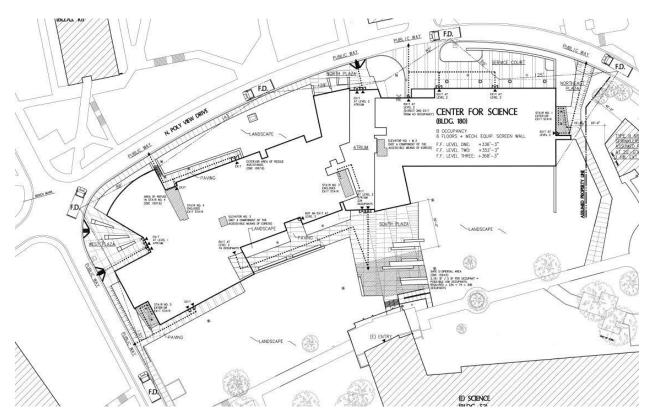
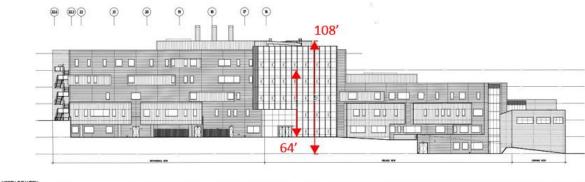
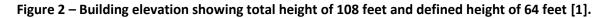




Figure 1 – Fire department access for the building [1].

1.2.2 Non High-Rise Classification

The California Building Code (CBC) defines a high-rise structure as a building of any type of construction or occupancy having floors used for human occupancy located more than 75 feet above the lowest floor level having building access [2]. Since the building is 108 feet tall, it would normally be classified as a high-rise structure. CBC Section 403.1 states, "When a building is located on sloping terrain and there is building access on more than one level, the enforcing agency may select the level that provides the most logical and adequate fire department access." [2] Since the building is on a steep grade and has adequate fire department access on Level 2, the building height can be measured from Level 2. As shown in Figure 2, the overall building height from Level 1 to the Upper Roof is 108 feet, while the height from the fire department access on Level 2 to the highest occupied floor, Level 6, is 64 feet. Since this is less than 75 feet, the building is not classified as a high-rise structure.

1.3 Applicable Codes and Standards

California Building Code (CBC), 2013 Edition

California Fire Code (CFC), 2013 Edition

NFPA 13 Automatic Sprinkler System Handbook, 2013 Edition

NFPA 14 Standard for the Installation of Standpipe and Hose Systems, 2013 Edition

NFPA 25 Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, 2014 Edition

NFPA 72 National Fire Alarm and Signaling Code, 2013 Edition

NFPA 92 Standard for Smoke Control Systems, 2015 Edition

2.0 EGRESS ANALYSIS

2.1 Occupancy Classification

The occupancy of each space of the building is classified according to Chapter 3 of the CBC. The following rooms and areas have the occupancies as indicated (Table 1).

Room Description	Occupancy	CBC Reference [2]
Lecture Hall, Conference Room	A-3	303.4
Classroom, Lab, Office, Conference Room <50 occupants, Restroom, Atrium, Corridors	В	304
Mechanical , Electrical, Telecomm, Server, Fire Pump Room	S-1	311.2
Storage, Janitorial	S-2	311.3
Chemical Storage, Hazardous Waste	H-3	307.5

Appendix A shows the floor plans for each level of the building indicating the location of each occupancy, as well as the exits, shafts, and corridors within the building. The occupancy classifications are used to determine requirements for the egress system, and since the building has multiple occupancies, the most restrictive of these requirements must be followed (CBC 1004.6).

2.2 Occupant Load

In order to calculate the occupant load of the building, each space or room must be classified by its use, which can differ from its occupancy classification. The occupant load for each floor was calculated according to the appropriate use of the space and corresponding occupant load factor (Table 2).

Occupant Load (CBC Table 1004.1.2) [2]	
Use	Occupant Load Factor (ft ² per person)
Accessory Storage/ Mechanical Equipment Room	300
Assembly without Fixed Seating, unconcentrated	15
Business	100
Educational, Classroom	20
Educational, Lab	50

Table 2 - Occupant Load Factors for Uses Present in Building

For some uses, such as educational for classrooms and labs, the use is different from the occupancy classification. The classrooms and labs in this building are considered Group B because they are intended for university classes rather than K-12 classes, but still use the occupant load factor for the educational use. Use and occupancy also differ for conference rooms with less than 50 occupants. For these rooms, the occupant load factor for assembly use is used to calculate the occupant load, but since the occupancy is less than 50 it is considered a Group B occupancy rather than a Group A-3.

The calculated occupant load per story are shown in Table 3. The occupant loads for classrooms, labs, and assembly spaces were calculated using the net area of each room. The remaining area of each floor was considered business use, since the building is predominantly a business occupancy. The entire area within the perimeter walls was used to calculate the occupant load of the business use since it is dependent on gross area.

Level	Occupant Load
1	659
2	650
3	770
4	525
5	339
6	289

Table 3 - Calculated Occupant Load per Level

2.3 Means of egress

2.3.1 Number of Exits

The requirements for number of exits for floors depending on occupant load according to CBC Table 1021.1 are shown in Table 4.

Occupant Load Per Story	Minimum Number of Exits from Story
1-500	2
501-1000	3

Table 4- Exit Requirements Depending on Occupant Load [2]

The occupant load of each story does not exceed 1000 occupants, so no story requires more than 3 exits. The required number of exits for each floor is shown in Table 5 using the above requirements and the calculated occupant loads.

Floor	Occupant Load	Required	Provided
1	659	3	3
2	650	3	6
3	770	3	4
4	525	2	3
5	339	2	2
6	289	2	2

Table 5- Number of Exit Requirement based on Occupant Load of Building

All floors are compliant with the requirements of the CBC because they all have the required number of exits based on their occupant load. The open stairway within the atrium does not count as an exit because it is not protected according to the requirements of the CBC. This stairway is not included in the number of exits or in exit capacity calculations.

2.3.2 Exit Capacity

The means of egress capacity was calculated using the factors shown in Table 6. Since the building is equipped throughout with an automatic sprinkler system and an emergency voice/alarm communication system, the factors can be reduced as shown in Table 6.

Table 6 - Means o	f Egress Capacity Factors
-------------------	---------------------------

Means of Egress Capacity				
Egress ComponentCapacity Factor (inches/person)CBC Reference [2]				
Stairways	0.2	CBC 1005.3.1, Exception 1		
Other Egress Components 0.15 CBC 1005.3.2, Exception 2		CBC 1005.3.2, Exception 1		

The egress capacity of each floor was calculated by multiplying the width of each egress component by the factors in Table 6. When two exit components that are used in series had different exit capacities, the lesser of the two was used as the limiting capacity in order to determine the overall exit capacity of each floor (Table 7).

Description	Component	Width (in)	Capacity Factor (in/person)	Capacity (people)	Limiting Capacity (people)		
	Floor 1						
Front Doors	Door	216	0.15	1440	1440		
Access to N Exit	Door	72	0.15	480	480		
N Exit	Door	96	0.15	640	460		
Stair #4	Door	36	0.15	240	240		
				TOTAL	2,160		
		Fl	oor 2				
West Wing Exit	Door	72	0.15	480	480		
Atrium North	Door	144	0.15	960	960		
Atrium South	Door	144	0.15	960	960		
East Wing Exit	Door	72	0.15	480	480		
Stair #4	Door	36	0.15	240	240		
Stall #4	Stair	48	0.2	240			
Stair #5	Door	36	0.15	240	240		
	Stair	48	0.2	240	240		
Stair #3	Door	36	0.15	240	240		
Stall #5	Stair	48	0.2	240	240		
				TOTAL	3,240		
	Floor 3						
Stair #1	Door	36	0.15	240	240		
Stair #3	Door	36	0.15	240	240		
	Stair	48	0.2	240	240		
Stair #4	Door	36	0.15	240	240		
Stall #4	Stair	48	0.2	240	240		

Table 7- Exit Capacity Calculation from Each Floor

				TOTAL	480
	Stair	48	0.2	240	
Stair #3	Door	36	0.15	240	240
Stair #1	Stair	48	0.2	240	240
C+-:- #4	Door	36	0.15	240	240
Floor 6					
				TOTAL	480
Stair #3	Stair	48	0.2	240	240
Stair #1	Door	36	0.15	240	240
	Stair	48	0.2	240	240
0 , 1	Door	36	0.15	240	240
Floor 5					
				TOTAL	720
Stair #4	Stair	48	0.2	240	240
Ctoir #4	Door	36	0.15	240	240
Stair #3	Stair	48	0.2	240	240
Ctoir #2	Door	36	0.15	240	240
Stair #1	Stair	48	0.2	240	240
Chair #4	Door	36	0.15	240	240
		Fle	oor 4	· · ·	
				TOTAL	960
Stair #5	Stair	48	0.2	240	240
Chain #E	Door	36	0.15	240	240

In order to be compliant with CBC 1005.3, the available exit capacity must be greater than the occupant load for each floor. The building is compliant with this requirement as shown in Table 8.

Floor	Occupant Load	Egress Capacity
1	659	2,160
2	650	3,480
3	770	960
4	525	720
5	339	480
6	289	480

Table 8 - Occupant Load vs. Egress Capacity for Each Floor

2.3.3 Arrangement of Exits

According to CBC 1015.2.2 Exception 2, buildings protected throughout by an automatic sprinkler system must have a separation distance between two exits not less than one-third the maximum diagonal of the room or floor [2]. All levels and rooms with more than one exit are compliant with this requirement.

Since more than two exits are required for Levels 1 through 4, the requirements of CBC 1015.2.2 must be met. This section requires that when more than two exits are required, at least two of the exits must meet the separation requirements. All floors meet this requirement of the CBC.

2.3.4 Travel Distance

The CBC requirements for exit travel distance, common path of travel, and dead end length for the occupancies present in the building are summarized in Table 9.

	Exit Travel Distance	-	Dead Ends (CBC 1018.4, Exception 2)
A	250	75	
\$-1	250	100	
S-2	400	100	50
В	300	100	
H-3	150	2	

 Table 9- Travel Distance Limits Based on Occupancy [2]

On each floor, this requirement is met due to the number and arrangement of exits for the size of the building. However, on the north end of the second floor, there is a dead end corridor in excess of 50 feet as shown in Figure 3. This does not meet the 50 foot requirement for business occupancies. In order to reduce the length, the doors leading to the corridor could be offset farther back. There will still be a dead end corridor, but this would reduce its length.

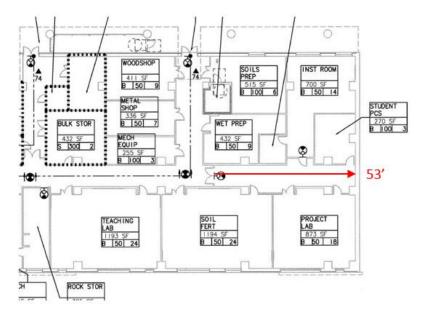


Figure 3 - North end of Level 2 showing dead end corridor greater than maximum 50 feet [1].

In addition to this dead end, on Levels 4-6 in the atrium a dead end greater than 50 feet occurs in the corridor leading to the faculty offices as shown in Figure 4.

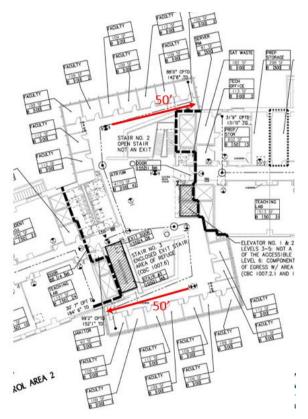


Figure 4 - Dead end exceeding 50 foot maximum on Levels 4-6 of the atrium [1].

2.3.5 Exit Signage

The locations of exit signs within the building are compliant with the requirements of CBC 1011.1. All exits from a floor or the building are marked with exit signs including any access to exits. Following the requirements of CBC 1011.1, all exit signs were placed so no point in exit access corridors is in excess of 100 feet [2].

2.4 Fire Resistance of Egress Components

Fire resistance of vertical openings, exit access corridors, and exit stairs are all shown on the plans in Appendix B.

2.4.1 Interior Exit Stairs

According to CBC 1022.2, exit stairs must be protected by 1 hour fire resistance rating for stairs serving three or fewer stories and 2 hour fire resistance rating for stairs serving four or more stories [2]. Since both interior exit stairs serve four or more floors, both must be protected by 2 hour fire resistance rating enclosures.

2.4.2 Exterior Exit Stairs

According to CBC 1026.6, outside stairs must be separated from the interior of the building by construction with the fire resistance rating required for enclosed stairs [2]. To meet this requirement,

the south exterior stair requires 1 hour fire resistance rating since it is less than four stories, and the north exterior stair requires 2 hour fire resistance rating since it is greater than 4 stories.

2.4.3 Corridors

The requirements for corridor fire resistance rating for the present occupancies from CBC Table 1018.1 are shown in Table 10 – Corridor Fire Resistance Rating Requirements from CBC Table 1018.1 Table 10.

Table 10 – Corridor Fire Resistance Rating Requirements from CBC Table 1018.1 [2]

Occupancy	Required Corridor Fire Resistance Rating (sprinklered)
H-3	1
A, B, S	0

The corridors within the building are not required to have a fire resistance rating, except where the Group H-3 occupancy is located. Since the Group H-3 is only in one location of the building that is separated from the rest of the building, only this area is required to have a 1 hour fire rated corridor, as shown in Figure 5.

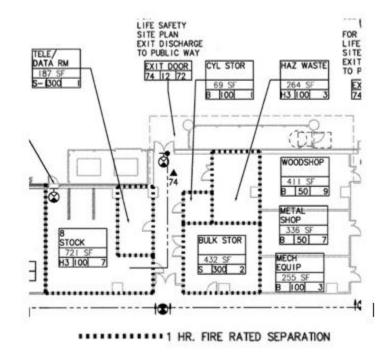


Figure 5 - Location of H-3 occupancy showing 1 hour fire rated corridor [1].

2.4.4 Vertical Openings

Vertical openings, including mechanical shafts and elevator shafts, covering four or more stories require a 2 hour fire resistance rating while shafts covering less than four stories require a 1 hour fire resistance rating according to CBC 713.4 [2].

2.4.5 Openings Protection

All openings and assemblies within fire rated construction require a fire resistance rating. The required fire resistance ratings for opening protectives in fire resistance rated assemblies are listed in Table 11.

Component	Walls (hr)	Doors (hr)	Windows (hr)
Vertical Shafts	2	1 1/2	NP
(including stairways)	1	1	NP
Exit Access Corridors	1	1/3	3/4
Fire Barriers	2	1 1/2	NP
	1	1	1

Table 11 - Openings Fire Resistance Requirements in Rated Assemblies [2]

*NP: Not Permitted

2.4.6 Interior Finish

The interior finish classification limitations for the occupancies that are present in the building are listed in Table 12 from the requirements of CBC Table 803.9 for wall and ceiling finish and CBC 804.4.2 for interior floor finish.

Table 12- Interior Finish Requirements in Components of Means of Egress [2]

Occupancy	Exits	Exit Access Corridors	Other Spaces
A-3	B	B	C
	I or II	I or II	I or II
В	B	C	C
	I or II	I or II	I or II
S	C	C	C
	I or II	I or II	I or II

3.0 STRUCTURAL FIRE PROTECTION ANALYSIS

3.1 Occupancy Classification

Since the building is primarily university classrooms, the main occupancy is Group B Business. The building also contains the occupancy classifications shown in Table 13 as determined by CBC Chapter 3.

Occupancy Classification	Area
A-3	Lobbies, Lecture Halls
	Offices, Conference Rooms < 50,
В	Laboratories
S-1	Electrical, Mechanical, Telecommunications
S-2	Storage, Janitorial
H-3	Chemical Storage

Table 13 - Occupancy Classification [2]

The occupancy classifications for the building are shown on the drawings in Appendix A.

3.2 Construction Type

The building is Type 1B construction. The fire resistance rating requirements for building elements are shown in Table 14 as determined by CBC Table 601.

Building Element	Type 1B
Primary Structural Frame	2
Exterior Bearing Walls	2
Interior Bearing Walls	2
Interior NonBearing Walls	0
Floor Construction	2
Roof Construction	1

The requirements for exterior walls are based on fire separations distance and occupancy, as well as construction type. The fire resistance rating for different fire separation distances for Group B occupancies and Type 1B construction are shown in Table 15, based on the requirements from CBC Table 602.

Fire Separation Distance (feet)	Group B, Type 1B
X<5	1
5 <x<10< td=""><td>1</td></x<10<>	1
10 <x<30< td=""><td>1</td></x<30<>	1
X>30	0

 Table 15 - Fire Resistance Ratings for Fire Separation Distances [2]

Since there is a separation distance of at least 30 feet around the entire building, the exterior walls are not required to have a fire resistance rating.

3.3 Height and Area Analysis

Since the building contains multiple occupancies, it is classified as a mixed use building in accordance with CBC Section 508. The Group H-3 occupancy spaces are required to be separated from the remainder of the occupancies as required by CBC Section 508.4. For this reason, the building is classified as a separated occupancy building. The allowable building area per story is determined by increasing the tabular area from Table 503 by 200% for sprinkler protection (CBC Section 506.3) and by 75% when the frontage area exceeds 30 feet on all sides of the building (CBC Section 506.2) as shown in Table 16. Group H-3 occupancies are not permitted to have an area increase due to sprinkler protection per CBC Section 506.3 Exception 2 [2].

Table 16 – Allowable Area [2]

Construction Type 1B	Group B	Group A-3	Group S-1	Group S-2	Group H-3
Base Area (Table 503)	UL	UL	48,000	79,000	60,000
Sprinkler Increase (506.3)	UL	UL	96,000	158,000	0*
Frontage Increase (506.2)	UL	UL	36,000	59,250	45,000
Allowable Area Per Story	UL	UL	180,000	296,250	105,000

The actual building area per story is shown in Table 17 showing compliance with the requirements from Table 16.

Table 17 – Provided Area

Floor	Area (square Feet)
1	23,146
2	43,458
3	43,209
4	33,307
5	25,294
6	19,958
Total	188,372

Since the building is classified as a separated occupancy building, the required fire resistance rating between occupancies is determined by CBC Table 508.4. These requirements are summarized in Table 18 for the present occupancies within a sprinklered building and shown on the drawings in Appendix B.

Occupancy	Α	S-2	B, S-1	H-3
Α	N	N	1	2
S-2	N	Ν	1	2
B, S-1	1	1	Ν	1
H-3	2	2	1	1

 Table 18 - Required Occupancy Separation [2]

The allowable building height is determined from the requirements of CBC Table 503 along with the allowed increase from Section 504.2 for the presence of an automatic sprinkler system. Since the building contains Group H-3 occupancy, the building height is not permitted to be increased in accordance with CBC Section 504.2 Exception 2. The determination of the allowable building height is shown in Table 19.

Table 19 - Allowable Height and Provided Height [2]

Construction Type 1B	Group B	Group A-3	Group S-1	Group S-2	Group H-3	Provided
Allowable Height (Table 503)	160				108	
Allowable Stories (Table 503)	11	11	11	11	6	6

As seen in Table 19, the building is in compliance with the allowable height and stories as required by CBC Table 503.

3.4 Atrium Fire Separation

Since the building contains a five story atrium from Levels 2 to 6, it is required that the atrium space is separated from adjacent spaces by a 1 hour fire barrier in accordance with CBC 404.6 [2]. The 1 hour fire rated separation is shown in Figure 6 on Level 3 of the atrium, which is typical on each level. Within the 1 hour fire separation between the atrium and the east and west wings of the building there are magnetically held open doors. Upon activation of the fire alarm system, the doors close to maintain the 1 hour rated separation.

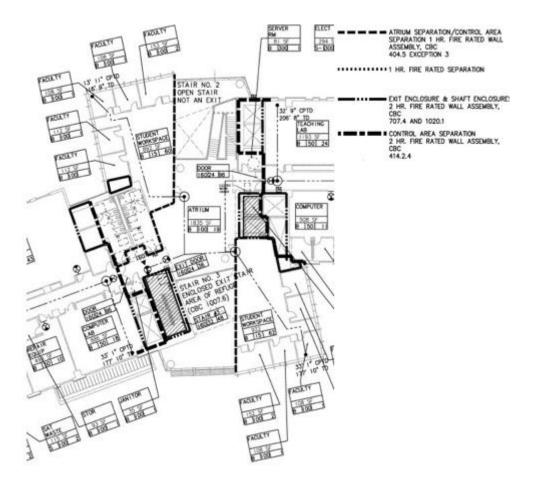


Figure 6 – Level 3 showing 1 hour rated fire barrier separating atrium from remainder of building [1].

3.5 Required Fire Resistance

Along with the fire resistance requirements of the elements in Table 14 of this report, additional fire protection of building components are listed in the CBC Table 721.1(1), (2), and (3). CBC Table 721.1(1) states the minimum protection for structural components, Table 721.1(2) states the required fire resistance rating for walls and partitions, and Table 721.1(3) states the minimum protection requirements for floor and roof systems [2].

3.6 Provided Construction Materials

The construction materials used within the building for interior rated partitions, floor assemblies, roof assemblies, and penetrations are shown in Appendix C.

4.0 FIRE SUPPRESSION SYSTEM

All information from the current system is from the plans provided by Aero Automatic Sprinkler Company and is provided in Appendix D.

4.1 Water Supply

The water supply was determined by a hydrant test conducted by the Fluid Resource Management on August 19, 2011. The water supply as determined by the flow test is shown in Table 20 including a 10% safety margin.

	Flow Test Information	10% Reduction
Static	60 psi	54 psi
Residual	55 psi	49 psi
Flow	914 gpm	914 gpm

Table 20- Water Supply Information [3]

The point of connection to the water supply system is separated from the building by 8" underground PVC pipe and an 8" Wilkins model 350ADA double check assembly [4]. The manufacturer specification sheet is shown in Appendix E.

4.2 Hazard Classification

Since the building mainly consists of classrooms, laboratories, offices and storage, the occupancy classifications present are Light Hazard and Ordinary Hazard Group 1 (Table 21).

Table 21- Hazard Classifications for Current Sy	vstem
---	-------

Description	Hazard Classification	NFPA 13 Reference [5]
Classrooms, auditoriums, corridors, offices, conference rooms	Light Hazard	5.2
Laboratories, storage, mechanical, electrical	Ordinary Hazard Group 1	5.3.1

4.3 Design Criteria

4.3.1 Sprinkler System

Design densities and areas of operation for different hazards are determined from NFPA 13 Exhibit 5.5 (Figure 7). The points used for Light Hazard and Ordinary Hazard Group 1 are identified in Figure 7.

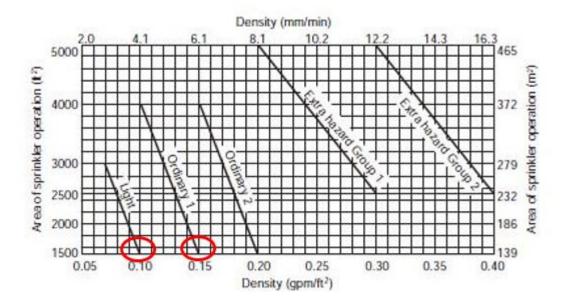


Figure 7- Density and area of operation curves [5].

Maximum spacing areas for different hazards are determined from NFPA 13 Table 8.6.2.2.1. Hose stream allowances (HSA) are determined from NFPA 13 Table 11.2.3.1.2. A summary of the design criteria for the present occupancy hazards is shown in Table 22.

Hazard	Max Area (ft^2)	Density (gpm/ft^2)	Operation Area (ft^2)	Inside HSA (gpm)	Combined HSA (gpm)	Duration (min)
Light	225	0.1	1500 (912)	0	100	30
OH Group 1	130	0.15	1500 (912)	100	250	60-90

Since the sprinklers used are quick response, the area of operation is reduced without revising the density in accordance with NFPA 13 Section 11.2.3.2.3. The area is reduced using the following equation from Figure 8.

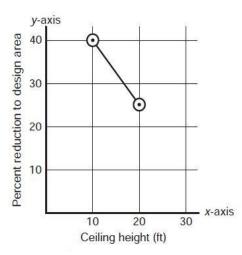


Figure 8 - Allowable reduction of operation area for quick response sprinklers [5].

$$y = \frac{-3x}{2} + 55$$

Where: x= ceiling height

y= % reduction

For a ceiling height of 10'-6", the area of operation is reduced by 39.25%. This makes the minimum area of operation 912 square feet.

4.3.2 Standpipe System

All requirements for the standpipe system are from NFPA 14 for a Class I standpipe system. Section 7.8.1 requires a minimum pressure of 100 psi and Section 7.10.1.1.1 requires a minimum flow rate of 500 gpm at the hydraulically most remote 2 ½ inch connection. For additional standpipes, Section 7.10.1.1.3 requires an additional 250 gpm per standpipe. Since there are four total standpipes, the flow would be increased to 1250 gpm, but Section 7.10.1.1.5 states that if a building is fully sprinklered, the max flow rate is 1000 gpm. Section 9.2 requires a duration of 30 minutes for standpipe flow [7]. These results are summarized in Table 23.

		NFPA 14 Reference [7]
Pressure at most remote outlet	100 psi	7.8.1
Flow at most remote outlet	500 gpm	7.10.1.1.1
Flow for each additional SP	250 gpm	7.10.1.1.3
Max Flow	1000 gpm	7.10.1.1.5
Duration	30 minutes	9.2

4.4 System Components

4.4.1 Fire Pump

The building contains an electric in-line fire pump located in the fire pump room on the first floor. The pump is a model number 6PVF10 manufactured by Peerless Pumps. The pump has an 8.24 inch impeller and an operating speed of 3550 RPM. The performance points of the fire pump are listed in Table 24. All information for the pump, including the pump curve, is in Appendix F.

	Pressure (psi)	Flow (gpm)
Churn	125	0
Design	113	750
150%	86	1125

Table 24- Fire Pump Performance Points [6]

4.4.2 Standpipe

The building contains a standpipe system with a standpipe in each of the four stairways, including the two exterior stairs and the two protected interior stairs. The standpipe system is Class I in accordance with the requirements of NFPA 14 Section 7.3.2. Since the building is fully sprinklered, the standpipes are allowed a 4 inch diameter, rather than 6 inch, in accordance with NFPA 14 Section 7.6.3 [7]. Standpipe #4 and #5 have a 4 inch diameter while standpipe #1 and #3 have a 6 inch diameter (Appendix D plans for reference). The standpipes have an outlet on each floor within the stairways that has a 2 ½ inch hose connection with a reducer to a 1 ½ inch connection (Figure 9).

Figure 9- Standpipe hose connection with 2 1/2" and 1 1/2" connections.

4.4.3 Risers

The building contains six risers, each serving the sprinkler system on a single floor. The riser to the first floor is located in the fire pump room and has a 3 inch diameter. The risers for the second through sixth floor are located in the central interior stairway. These risers come off of the standpipe in this stairway (Standpipe #3) and are all 2 ½ inch in diameter.

4.4.4 Cross Mains, Branch Lines

Locations of cross mains and branch lines as installed in the building are shown in the plans in Appendix D. All cross mains are 2 ½ inches in diameter, except for a 3 inch main on the first floor. Branch lines are mainly 1 inch in diameter, but some have a 1 ¼ inch diameter where there is higher flow. All piping in the building is schedule 40 black steel.

4.4.5 Sprinklers

All sprinklers in the building are quick response with a k factor of 5.6 and a temperature rating of 155°F. In the majority of the building where there is finished ceiling, there are pendent sprinklers while in areas such as storage and mechanical rooms there are upright sprinklers.

4.5 Hydraulic Calculations

4.5.1 Computer Based Calculations

The calculations for the current sprinkler system were performed by Aero Automatic Sprinkler Company using Hydratec software. The calculations include eight remote areas: two on the first floor, two on the third floor, and four on the sixth floor. A summary of the hydraulic calculations of these remote areas is shown in Table 25.

First Floor		
Area	1-1	
Occupancy	Lecture	
Hazard	Light Hazard	
Density	0.10 GPM/Sq Ft	
Area of Operation	1520 Sq Ft	
Area Per Head	168 Sq Ft	
Hose Stream Allowance	100 GPM inside	
PSI Req. at BOR	126.6	
GPM Req. at BOR	250.6	
PSI Req. at Source	7.27	
GPM Req. at Source	350.6	
PSI Available at Source	53.15	
PSI Safety Factor	45.88	
Area	1-2	
Occupancy	Lecture	
Hazard	Light Hazard	

Table 25- Summary	101	f Computer Based	Hvdraulic	Calculations	for Current Sv	stem [6]
	,					,

Density	0.10 GPM/ Sq Ft	
Area of Operation	1575 Sq Ft	
Area Per Head	163 Sq Ft	
Hose Stream Allowance	100 GPM inside	
PSI Req. at BOR	162.2	
GPM Req. at BOR	328.4	
PSI Req. at Source	45.59	
GPM Req. at Source	428.4	
PSI Available at Source	52.76	
PSI Safety Factor	7.17	
Th	ird Floor	
Area	3-1	
Occupancy	Lab	
Hazard	Ordinary Hazard Group 1	
Density	0.15 GPM/Sq Ft	
Area of Operation	967 Sq Ft	
Area Per Head	130 Sq Ft	
Hose Stream Allowance	100 GPM inside, 150 GPM outside	
PSI Req. at BOR	102.61	
GPM Req. at BOR	252.75	
PSI Req. at Source	-0.88	
GPM Req. at Source	502.75	
PSI Available at Source	52.35	
PSI Safety Factor	53.23	
Area	3-2	
Occupancy	Lab	
Hazard	Ordinary Hazard Group 1	
Density	0.15 GPM/Sq Ft	
Area of Operation	1135 Sq Ft	
Area Per Head	130 Sq Ft	
Hose Stream Allowance	100 GPM inside, 150 GPM outside	
PSI Req. at BOR	107.33	
GPM Req. at BOR	233.54	
PSI Req. at Source	3.22	
GPM Req. at Source	483.54	
PSI Available at Source	52.45	
PSI Safety Factor	49.23	
Six	th Floor	
Area	6-1	
Occupancy	Lab	

Hazard	Ordinary Hazard Group 1		
Density	0.15 GPM/Sq Ft		
Area of Operation	940 Sq Ft		
Area Per Head	130 Sq Ft		
Hose Stream Allowance	100 GPM inside, 150 GPM outside		
PSI Req. at BOR	95.47		
GPM Req. at BOR	233.16		
PSI Req. at Source	12.35		
GPM Req. at Source	483.15		
PSI Available at Source	54.35		
PSI Safety Factor	40.1		
	·		
Area	6-2		
Occupancy	Corridor		
Hazard	Light Hazard		
Density	0.10 GPM/Sq Ft		
Area of Operation	5 Heads		
Area Per Head	225 Sq Ft		
Hose Stream Allowance	100 GPM inside		
PSI Req. at BOR	34.5		
GPM Req. at BOR	113.1		
PSI Req. at Source	-51.52		
GPM Req. at Source	213.09		
PSI Available at Source	53.58		
PSI Safety Factor	105.1		
Area	6-3		
Occupancy	Lab		
Hazard	Ordinary Hazard Group 1		
Density	0.15 GPM/Sq Ft		
Area of Operation	920 Sq Ft		
Area Per Head	130 Sq Ft		
Hose Stream Allowance	100 GPM inside, 150 GPM outside		
PSI Req. at BOR	108.4		
GPM Req. at BOR	273.4		
PSI Req. at Source	26.71		
GPM Req. at Source	523.4		
PSI Available at Source	52.11		
PSI Safety Factor	25.4		
Area	6-4		

Occupancy	Office/Lobby	
Hazard	Light Hazard	
Density	0.10 GPM/Sq Ft	
Area of Operation	1567 Sq Ft	
Area Per Head	210 Sq Ft	
Hose Stream Allowance	100 GPM inside	
PSI Req. at BOR	116.86	
GPM Req. at BOR	347.3	
PSI Req. at Source	39.09	
GPM Req. at Source	447.3	
PSI Available at Source	52.66	
PSI Safety Factor	13.57	

4.5.2 Hand Calculations

Hand calculations were performed in order to compare results with the computer based calculations. Due to the size of the building and number of calculations required, hand calculations were only performed on remote area 6-3 on the sixth floor. This remote area contains twelve sprinklers along three branchlines and is Ordinary Hazard Group 1. These calculations are shown in Appendix G.

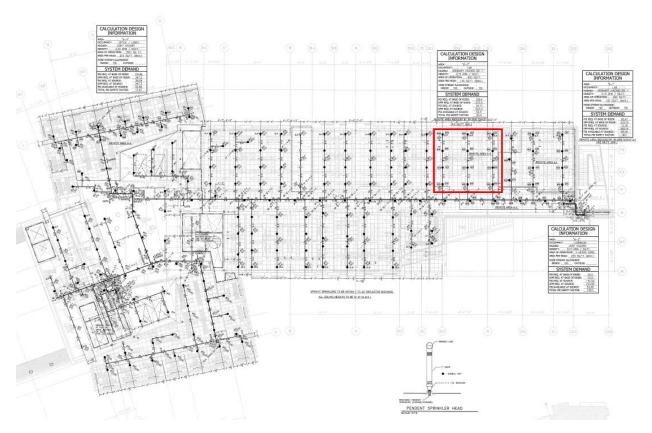
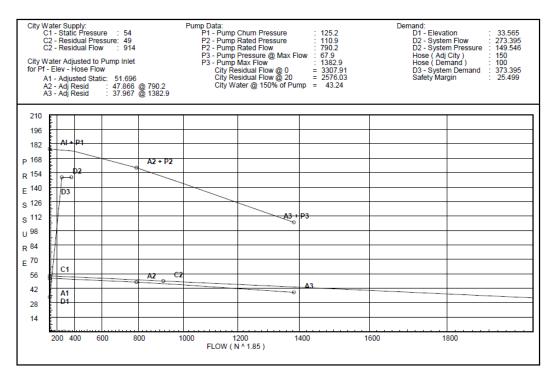


Figure 10 – Remote area location on Level 6 [3].


The calculations were performed starting at the most remote sprinkler, Node S631 (Appendix D). The flow at this sprinkler was determined to be 19.5 gpm based on the density of 0.15 gpm/ft² and area per sprinkler of 130 ft². The pressure was determined to be 12.125 psi at this sprinkler by using the k factor of 5.6 and the calculated flow. From this sprinkler, the hydraulic calculations were performed back to the base of the riser (BOR) and the source. All of the piping within the building is schedule 40 steel with a coefficient of 120 for the Hazen-Williams equation. The equivalent length of all fittings for schedule 40 steel pipe were used from NFPA 13 Table 23.4.3.11 [5]. The inside hose stream allowance of 100 gpm was added at the standpipe connection inside the building on the sixth floor and the outside allowance of 150 gpm was added at the source. Between the BOR and the source, the path of the water passes through the pump room. Based on the flow at the pump outlet, the head from the pump is subtracted during the calculations (Fire pump curve in Appendix F). There is also an 8" Wilkins model 350ADA double check assembly outside of the building before the source. This results in a fixed pressure loss based on the flow as determined by the manufacturer information in Appendix E. The summarized results of the hand calculations compared with the computer based calculations for the same remote area are compared in Table 26.

	Hand Calculation	Computer Based Calculation [6]
PSI Req. at BOR	98.4	108.4
GPM Req. at BOR	273.6	273.4
PSI Req. at Source	21.2	26.7
GPM Req. at Source	523.6	523.4
PSI Available at Source	52.1	52.1
PSI Safety Factor	30.9	25.4

 Table 26- Comparison of Hand Calculations and Computer Based Calculations

The results of both calculations were similar with a 5.5 psi difference in demand and 0.2 GPM difference at the source. There were several discrepancies between the hand calculations and the computer calculations. First, the computer calculations used a different equivalent length for elbows than that listed in NFPA 13 Table 23.4.3.11. Also, for the 8" underground PVC pipe, the computer calculations used a C factor of 140 while for the hand calculations, a C factor of 150 was used based on NFPA 13 Table 23.4.7.1. This would create a difference in the amount of pressure loss in this pipe as well as the equivalent length of fittings for these pipes since a different C factor multiplier is used from NFPA 13 Table 23.4.3.2.1. The computer calculations also included the two elbows on either side of the backflow preventer and the pipe between them as 8" PVC pipe. This pipe and these fittings should have been calculated as 8" steel pipe and was done this way in the hand calculations.

Other than these differences, the calculations came out very close and the system has a large safety factor, mainly due to the presence of the fire pump. For this area, the system supply exceeds the demand, as seen in Figure 11, the pressure vs. flow curve for the computer based calculations.

4.5.3 Standpipe Calculations

The standpipe system must also be hydraulically calculated following the requirements from Table 23. These calculations have been performed by Aero Automatic Sprinkler Company as shown in Table 27.

Standpipe #1					
Occupancy	Light/ OH				
Flow at Top Outlet	500 GPM				
Pressure at Top Outlet	100 psi				
Flow for Additional SP	500 GPM				
Total SP Flow	1000 GPM				
PSI Required at Pump Discharge	144.08				
GPM Required at Pump Discharge	1000				
PSI Required at Source	47.18				
GPM Required at Source	1000				
PSI Available at Source	48.09				
Total PSI Safety Factor	0.91				
Standpipe #4					
Occupancy	Light/OH				
Flow at Top Outlet	5000 GPM				
Pressure at Top Outlet	100 psi				
Flow for Additional SP	500 GPM				

Table 27- Summary of Standpipe Calculations [6]

Total SP Flow	1000 GPM
PSI Required at Pump Discharge	144.08
GPM Required at Pump Discharge	1000
PSI Required at Source	45.85
GPM Required at Source	1000
PSI Available at Source	48.09
Total PSI Safety Factor	2.24
Standpipe #5	
Occupancy	Light/OH
Flow at Top Outlet	500 GPM
Pressure at Top Outlet	100 psi
Flow for Additional SP	500 GPM
Total SP Flow	1000 GPM
PSI Required at Pump Discharge	143.7
GPM Required at Pump Discharge	1000
PSI Required at Source	46.8
GPM Required at Source	1000
PSI Available at Source	48.08
Total PSI Safety Factor	1.26

As can be seen from these results, the safety factor is much smaller than those from the sprinkler system hydraulic calculations. This shows that the standpipe system has a much higher demand and the fire pump is most likely sized to account for this, rather than the sprinkler system.

4.6 Inspection, Testing, and Maintenance

The inspection, testing, and maintenance requirements come from NFPA 25 Standards for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems. The type of procedure for each component, as well as the frequency it must be performed, are shown in Table 28.

Table 28- Inspection, Te	esting, and Maintenance	Requirements and Frequency [8]
--------------------------	-------------------------	--------------------------------

Component	Inspection	Frequency	Testing	Frequency	Maintenance
	Check for corrosion, loading, foreign materials, paint, physical damage, proper orientation, and obstructions. Replace		Sprinklers in service for 50 years shall be tested by a recognized testing lab. A sample of 1% but not less than 4 sprinklers shall be tested. If any fail, all sprinklers represented by sample must		Replacement sprinklers shall have the same characteristics as installed sprinklers and shall be
Sprinklers	any violations.	Annually	be replaced	10 years	new and listed
Spare Sprinklers	Proper number of sprinklers and a sprinkler wrench for each type of sprinkler	Annually			Cabinet must be located so not exposed to dust, corrosion, or 100F.

	_		,		
Pipe and Fittings	In good condition, free of mechanical damage, leakage, corrosion, misalignment, and external loading.	Annually			
Hangers and Braces	Not damaged or loose or else replaced or refastened	Annually			
Gauges	Ensure good condition and that normal supply pressure is being maintained	Monthly	Replaced or tested by comparison with a calibrated gauge. Must be within 3% of full scale or replaced.	5 years	
Alarm Devices	Free of physical damage	Quarterly	Done by opening inspector's test valve and recording time until alarm sounds	Quarterly	
Hydraulic Nameplate	Attached securely to sprinkler riser and is legible	Quarterly			
Hose Connections	Hose, hose couplings, and nozzles connected to the sprinkler system	Appually	Tested 5 years after installation following NFPA 1962. After service test, each shall be flow tested to ensure water discharge and operation of water flow alarm	2 1/02/5	Clean and dry all hoses connected to sprinkler system after use. If exposed to hazardous materials, dispose or decontaminate.
Control Valves	shall be inspected Ensure in normal open or closed position, sealed or locked, accessible, provided with appropriate wrenches, free from leaks, and has proper identification	Annually	Operation of water flow alarm Operated through full range and returned to normal position. Post indicator valves shall be opened until torsion felt, then backed a quarter turn from open position	3 years Annually	Operating stems shall be lubricated annually then completely closed and reopened.
Check Valves	Inspected internally to verify all components operate properly, move freely, and are in good condition	5 years			Internal components shall be cleaned, repaired or replaced as necessary
Fire Department Connections	Verify FDC is visible and accessible, no damage, caps and gaskets are in place, ID signs are in place, check valve no leaking and drain valve is operating	Quarterly			Components shall be repaired or replaced as necessary. Any obstructions present shall be removed

4.7 Alternate Fire Suppression System

An alternate design was done for the building using AutoSprink software. This design contained different hazard classifications and design criteria as described below.

4.7.1 Occupancy Classification

The hazard classifications for each type of room in the building are listed in Table 29.

Description	Hazard Classification	NFPA 13 Reference [5]
Classrooms, auditoriums, corridors, offices, conference rooms	Light Hazard	5.2
Laboratories, storage, mechanical, electrical	Ordinary Hazard Group 2	5.3.2

Table 29- Occupancy Classifications for AutoSprink Designed System

This design classifies laboratories, storage space, mechanical and electrical rooms as Ordinary Hazard Group 2 as opposed to the current classification of Ordinary Hazard Group 1. This is more appropriate because these spaces more closely resemble the uses listed in NFPA 13 Section 5.3.2 Ordinary Hazard (Group 2) than those listed in NFPA 13 Section 5.3.1 Ordinary Hazard (Group 1). Occupancy classifications by floor are shown in the plans in Appendix H.

4.7.2 Design Criteria

The design criteria for the alternate design are shown in Table 30. The only difference between Table 30 and the design criteria for the current system is the higher density required for Ordinary Hazard Group 2.

Hazard	Max Area (ft^2)	Density (gpm/ft^2)	Operation Area (ft^2)	Inside HSA (gpm)	Combined HSA (gpm)	Duration (min)
Light	225	0.1	1500	0	100	30
OH Group 2	130	0.2	1500	100	250	60-90

Table 30- Design Criteria for AutoSprink Designed System [5]

4.7.3 Sprinkler System Design and Layout

Using AutoSprink software, a sprinkler system layout was designed for the building and is shown in Appendix I. The plans in Appendix I display sprinkler system layouts for each individual floor, but does not represent a complete design due to the following simplifications. All sprinklers were assumed to be pendent and at a height of 10'-6". This would not be the case for areas without finished ceiling, but was done for simplicity. All piping was laid out assuming no obstructions, which would not be true due to air ducts, cable trays, and structural members. The standpipe system was not modeled using AutoSprink and can be assumed to follow the same layout as the current system. Also, the first floor does not show the fire pump room or the point of connection to the underground piping. In the plans in Appendix I, the

sprinkler system on each floor terminates at the riser for that floor and the floors are not interconnected. This design can still be used for the layout of the sprinkler system and for performing hydraulic calculations on each floor.

The sprinkler system was designed in AutoSprink using the following criteria. System risers were placed in the same locations as the current design and were assumed to be 2 ½" inches. All cross mains, branch lines and sprinklers were at constant heights. In the model, cross mains range from 2 ½" to 3" and branch lines are 1 ¼". The sprinklers were spaced with a maximum area of 225 square feet in Light Hazard areas and 130 feet in Ordinary Hazard Group 2 areas. All piping has a C factor of 120 and all sprinklers have a K factor of 5.6.

4.7.4 Hydraulic Calculations

Using the sprinkler system layout in AutoSprink, hydraulic calculations were performed in the software. A remote area on Level 3, Remote Area 3-2 on the as-built plans in Appendix D, was used for the hydraulic calculations. This remote area contains ten sprinklers in a lab area and is Ordinary Hazard Group 1 in the current design, but Ordinary Hazard Group 2 in the Autosprink design. The node analysis and hydraulic calculations are shown in Appendix J. This system had a different demand at the base of the riser than the currently installed system, as shown in Table 31.

Table 31- Comparison of Demand for AutoSprink System and Current System

	AutoSprink System	Current System
PSI Required at BOR	82.4	107.3
GPM Required at BOR	248.0	233.5

These differences are due mainly to the different elevations and diameters of the cross mains and branch lines as well as a different layout. The AutoSprink System has a greater flow demand because a density of 0.2 gpm/ft² was used for Ordinary Hazard Group 2 rather than 0.15 gpm/ft² for ordinary hazard group 1 that was used for the current system. The pressure demand is most likely lower for the AutoSprink system because the branchlines are all $1 \frac{1}{4}$ " while the current system has 1" – $1 \frac{1}{4}$ " branchlines. Assuming the same piping layout and pump is used in both systems between the base of the riser and the source, the demand of the AutoSprink designed system will meet the requirements of the supply.

5.0 FIRE ALARM SYSTEM

5.1 Type of Fire Alarm System

The fire alarm as-built plans can be seen in Appendix K. The building contains a Class B, addressable, manual fire alarm system. As defined by NFPA 72 Section 12.3.2, a Class B pathway performs as follows [9]:

- 1) Does not include a redundant path
- 2) Operational capability stops at a single open
- 3) Conditions that affect the intended operation of the path are annunciated as a trouble signal
- 4) Operational capabilities are maintained in the application of a single ground fault
- 5) A single ground condition shall result in the annunciation of a trouble signal

As defined by NFPA 72 Section 3.3.8, an addressable device is one with discrete identification that can have its status individually identified or that is used to individually control other functions [9]. With an addressable system, the name, location, and type of alarm are annunciated at the control panel in order to assist firefighters upon arrival to a fire situation, or for personnel fixing an issue with the system.

Because the building is completely sprinklered, complete automatic coverage by the fire alarm system is not required, so the installed system is a manual, partial area coverage system. This means that there is not complete coverage by smoke detection due to the presence of sprinklers as heat detectors, but the building does contain manual pull stations at each exit from the building.

Since the building contains an atrium between the second and sixth floors, there is a smoke control system installed in the building. The smoke control system contains beam smoke detectors installed throughout the atrium as well as a firefighter smoke control panel in the fire control room and vents to the exterior located at the ceiling of the atrium. The smoke control system will not be described in detail in this report, but will be addressed in a future report.

5.2 Fire Alarm Control Panel

The fire alarm control panel is located on the first floor of the building in the fire control room (Figure 12).

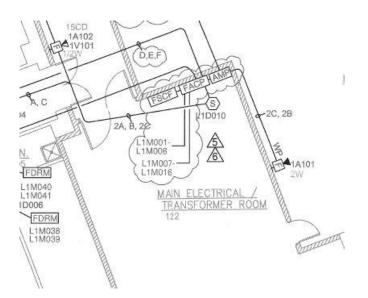


Figure 12 - Plan view of fire alarm control panel in fire control center on first floor of building [10].

The panel is manufactured by Honeywell Notifier and has a model number NFS-640 (Figure 13).

Figure 13 - Honeywell Notifier fire alarm control panel.

In the fire control room there is also a firefighter smoke control panel for control of the smoke control system in the atrium (Figure 14).

Figure 14 - Firefighter's smoke control panel located in fire control room.

5.3 Operating Characteristics

The operating characteristics of the fire alarm system are all determined from the sequence of operations matrix, which can be found in Appendix K. The following sections summarize some important operating characteristics of the fire alarm system including disposition of alarm, supervisory, and trouble signals. The sequence of operations matrix also indicates what events will result in air handling units being shut down, activation of smoke/fire dampers, release of magnetic door holders, and elevator recall. Other important information in the sequence of operations matrix includes the operation of the smoke control system, which will be discussed in a later report.

5.3.1 Alarm Signal

The following events will lead to an alarm signal and activation of the fire alarm system throughout the entire building:

- Manual pull station activation
- Spot smoke detector activation
- Duct smoke detector activation
- Sprinkler water flow activation
- Fire pump running
- Atrium smoke control system alarm
- Beam smoke detector activation

5.3.2 Supervisory Signal

The following events will result in a supervisory signal at the fire alarm control panel:

• Sprinkler tamper switch

- Fire pump loss of phase
- Fire pump phase reversal
- Shunt trip power supervision

5.3.3 Trouble Signal

The following events will result in a trouble signal at the fire alarm control panel:

- Panel trouble condition
- AC power failure
- Low battery
- Open circuit
- Ground fault

5.4 Initiating Devices

The following devices are present in the building and shown in the plans in Appendix K.

5.4.1 Manual Pull Stations

There are a total of 30 manual pull stations present throughout the building near all exit locations (Figure 15).

Figure 15 - Plan view symbol and photo of manual pull boxes within building.

According to NFPA 72 Section 17.14.8.4, manual fire alarm boxes shall be within 5 feet of each exit doorway on each floor. As seen on the plans in Appendix K, all exit doors to the exterior and to stairways are in compliance with this requirement.

5.4.2 Smoke Detectors

5.4.2.1 Spot-Type Smoke Detectors

The building does not contain complete automatic coverage of spot-type smoke detectors because it is completely sprinklered. However, there are 30 photoelectric smoke detectors in place in certain locations such as electrical rooms, elevator lobbies, and at magnetically held doors at the perimeter of the atrium. The spot smoke detectors are Notifier FSP-851(A) photoelectric smoke detectors as shown in the manufacturer specification sheet in Appendix L [11].

s>

Figure 16 - Plan symbol of smoke detector.

Although not located throughout the building, the location and spacing of spot type smoke detectors must follow the requirements of NFPA 72 Section 17.7.3.2.3.1 (1) or (2) as follows.

- The distance between smoke detectors shall not exceed a nominal spacing of 30 feet and there shall be detectors within a distance of one half the nominal spacing, measured at right angles from all walls or partitions extending upward to within the top 15 percent of the ceiling height.
- 2) All points on the ceiling shall have a detector within a distance equal to or less than 0.7 times the nominal 30 foot spacing.

Following these requirements, floor plans showing complete area coverage with spot type smoke detectors are shown in Appendix M.

5.4.2.2 Elevator Lobbies

As required by NFPA 72 Section 21.3.5, lobby smoke detectors are required to be installed within 21 feet of the centerline of each elevator door. The building contains an elevator between the first and second floor, as well as two elevators between the second and sixth floor located within the atrium. The building is in compliance with this requirement because all elevators contain a photoelectric smoke detector within the required distance (Figure 17).

Figure 17 - Photo of elevator lobby smoke detector and plan view [10].

5.4.2.3 Magnetic Doors

At the east and west ends of the atrium on each floor, there are magnetically held open doors leading to the classroom corridors. Since the doors are in fire walls that surround the atrium, they must be fire rated and are required to be closed when a fire is detected. For this reason, at each door there is a photoelectric smoke detector that will release the magnetically held open door upon activation (Figure 18

Figure 18 - Photo of magnetic door smoke detector and plan view [10].

5.4.2.4 Duct Detectors

The building contains 62 photoelectric duct detectors as located in the plans in Appendix K. All duct detectors must be installed in accordance with the requirements of NFPA 72 Section 17.7.5.5 Locations and Installation of Detectors in Air Duct Systems. Activation of duct smoke detectors shut down the associated air handling unit and close associated fire/smoke dampers if located in a duct penetrating a fire wall as indicated by the sequence of operations of the fire alarm system.

Figure 19 - Plan symbol of duct smoke detector.

5.4.2.5 Beam Detectors

There are eleven beam detector imagers and receivers located in the atrium of the building between the second and sixth floors. Beam detectors are located on each floor of the atrium from the second floor up to the fifth floor (Figure 20).

Figure 20 - Plan symbol of beam detector receiver, imager, and photo of beam detectors in atrium.

Beam detectors must be installed in accordance with NFPA 72 Section 17.7.3.7 Projected Beam-Type Smoke Detectors. The beam detectors are open-area smoke imaging detectors (OSID) manufactured by Xtralis as shown in the manufacturer specification sheet shown in Appendix N. The beam detectors are used to activate the smoke control system within the atrium, which will be discussed in more detail in the performance based analysis.

5.4.3 Sprinklers

The building is fully sprinklered, as discussed in detail in a previous report. All sprinklers within the building have an activation temperature of 155°F and are quick response. Activation of a sprinkler will activate the fire alarm system once water begins to flow and a sprinkler flow switch is triggered. For this reason sprinklers are considered initiating devices, although not necessarily being components of the fire alarm system.

5.5 Notification Devices

5.5.1 Visible Notification Devices

The visible notification devices present in the building are strobes and speaker/strobe combos (Figure 21).

Figure 21 - Plan symbol of speaker/strobe, strobe and photo of strobe from building.

Speaker/strobes are typically installed throughout the corridors and in all of the classrooms. Within the building, there are 66 visible only strobes that are typically located in small rooms, such as restrooms, and also in rooms containing speaker/strobes that do not meet the visible requirements.

5.5.1.1 Location and Spacing Requirements

All wall mounted devices must be not less than 80 inches and not greater than 96 inches above the finished floor in accordance with Section 18.5.5 of NFPA 72. Visible appliances must be spaced in rooms following the requirements of either Table 18.5.5.4.1(a) for wall mounted appliances or Table 18.5.5.4.1(b) for ceiling mounted devices. By inspection, the location and spacing of devices in rooms appears to meet the requirements of NFPA 72. For example, the following large classroom will be analyzed (Figure 22).

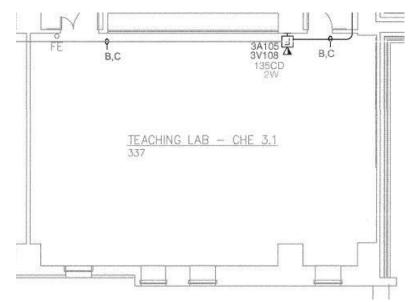


Figure 22 - Plan view of classroom showing adequate coverage for visible notification devices [10].

This room has dimensions of approximately 25 feet by 41 feet and contains one wall mounted speaker/strobe rated at 135 candella. From Table 18.5.5.4.1(a), for one 135 candella light in a room, the maximum room size can be 60 feet by 60 feet. Since the room is non-square, a square size of 60 feet by 60 feet allows the entire room to be encompassed, as required by NFPA 72 Section 18.5.5.4.5, so the room is in compliance with the code.

For spacing of visible notification devices in corridors, the requirements of NFPA 72 Section 18.5.5.5 must be met. This section states that for corridors 20 feet or less in width, visible notification appliances shall be located not more than 15 feet from the end of the corridor with a separation not greater than 100 feet between appliances. All corridors in the building meet this requirement, with an example seen in Figure 23.

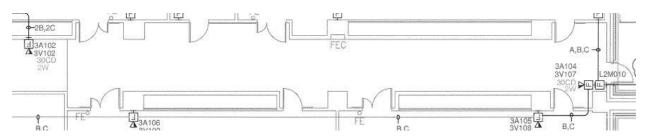


Figure 23 - Plan view of corridor showing adequate spacing of visible notification devices [10].

In this corridor, there is a device at the end of the corridor, with the next visible device separated approximately 85 feet from the first device. From this analysis, all visible notification devices within the building are spaced properly and meet the requirements of the code.

5.5.2 Audible Notification Devices

The audible notification devices present in the building are bells, speakers, and speaker/strobes (Figure 24).

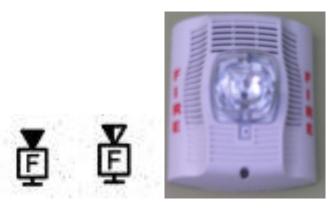


Figure 24 - Plan symbol of speaker, speaker/strobe, and photo of speaker/strobe from building.

Throughout the building there are a total of 172 speakers and 1 bell. The bell is located outside of the fire pump room on the exterior of the building (Figure 25).

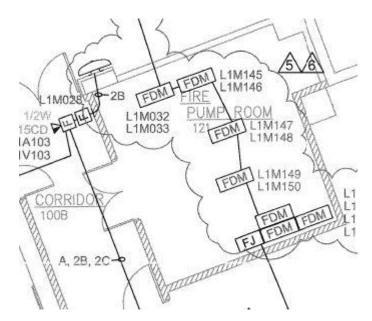


Figure 25 - Plan view of bell located outside fire pump room [10].

Combination speaker and strobe devices are installed in normally occupied spaces, such as corridors and classrooms. Audible only devices are installed in normally unoccupied areas, such as mechanical rooms as well as on the exterior of the building. The devices installed on the exterior of the building are weatherproof and are located on the terraces on the upper stories of the building as well as on the exterior of the building near exits (Figure 26).

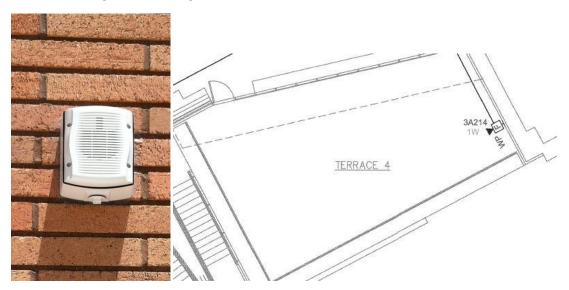


Figure 26 - Photo and plan view of weatherproof audible device on terrace [10].

5.5.2.1 Location and Spacing Requirements

Wall mounted audible devices must meet the same requirements of NFPA 72 Section 18.5.5 which states all wall mounted devices must be not less than 80 inches and not greater than 96 inches above the finished floor. Audible devices must be spaced in order to meet the requirements of NFPA 72 Section 18.4.3.1, which says for public mode signals the sound level should be at least 15 dBA above the

average ambient sound level or 5 dBA above the maximum sound level having a duration of at least 60 seconds, whichever is greater, measured at 5 feet above the floor. According to Table A.18.4.3, the average ambient sound level for an educational occupancy is 45 dBA [9]. Since the building contains a large number of classrooms and classes typically start and end at the same time, there can be large numbers of people in the corridors at one time. For this reason, it would be more appropriate to measure a maximum sound level, since this would most likely be greater than 45 dBA and last more than 60 seconds at times in between classes.

5.6 Power Supply

The fire alarm system contains a secondary power supply at the fire alarm control panel consisting of batteries with a capacity of 55 amp-hours. In accordance with NFPA 72 Section 10.6.7.2.1 (2), the secondary power supply for an in building fire emergency voice/alarm communications service shall be capable of operating under standby for 24 hours and in alarm for 15 minutes at maximum load [9]. In order to show that the provided secondary power supply of 55 amp-hours is adequate, calculations were performed for all of the devices on the first floor connected to the fire alarm control panel (Table 32).

		Standby		Alarm	
		Current	Total Standby	Current	Total Alarm
Item	Quantity	(Amps)	Current	(Amps)	Current
Fire Alarm Control Unit	1	0.2850	0.2850	0.2850	0.2850
Universal Dialer	1	0.0400	0.0400	0.1000	0.1000
Remote Annunciator	2	0.0643	0.1286	0.0643	0.1286
Power Supply Amp	1	0.0000	0.0000	0.0250	0.0250
Beam Smoke Emitter	10	0.0035	0.0350	0.0035	0.0350
Beam Smoke Imager	10	0.0310	0.3100	0.0310	0.3100
Manual Pull	29	0.0004	0.0116	0.0004	0.0116
Relay Module	9	0.0017	0.0153	0.0022	0.0198
Smoke Detector	16	0.0003	0.0048	0.0003	0.0048
Dual Monitor Module	18	0.0008	0.0144	0.0064	0.1152
Speaker Only	3	0.0000	0.0000	0.0008	0.0024
Strobe Only 15CD	7	0.0000	0.0000	0.0660	0.4620
Strobe Only 30CD	6	0.0000	0.0000	0.0940	0.5640
Strobe Only 75CD	2	0.0000	0.0000	0.1580	0.3160
Fire Fighter Phone Jack	12	0.0075	0.0900	0.0075	0.0900
Six Relay Control Module	1	0.0015	0.0015	0.0320	0.0320
10-input Monitor Module	1	0.0035	0.0035	0.0550	0.0550
Speaker Strobe 15CD	3	0.0000	0.0000	0.0710	0.2130
Speaker Strobe 30CD	14	0.0000	0.0000	0.0960	1.3440
Speaker Strobe 75CD	14	0.0000	0.0000	0.1530	2.1420
Speaker Strobe 95CD	3	0.0000	0.0000	0.1760	0.5280
Speaker Strobe 115CD	16	0.0000	0.0000	0.2050	3.2800

Table 32-Battery calculations for all devices connected to fire alarm control panel on first floor

Monitor Module	19	0.0037	0.0703	0.0037	0.0703
Dual Relay/Monitor Module	64	0.0013	0.0832	0.0240	1.5360
Duct Smoke Detector	64	0.0003	0.0192	0.0003	0.0192
				Total System	
		Total System	1.1124	Alarm	11.6889
		Standby	1.1124	Current	11.0005
		Current (Amps)		(Amps)	

From these calculations, the total system standby current was found to be 1.1124 amps and the total system alarm current was 11.6889 amps. Applying the time requirements of NFPA 72 Section 10.6.7.2.1(2), the total capacity required in amp-hours can be calculated (Table 33).

Table 33-Required standby and alarm capacity calculations [9]

					Required
Required Standby	Total System	Required Standby	Required	Total System	Alarm
Time	Standby Current	Capacity	Alarm Time	Alarm Current	Capacity
(Hours)	(Amps)	(Amp-Hours)	(Hours)	(Amps)	(Amp-Hours)
24	1.1124	26.6976	0.25	11.6889	2.9222

After applying the 20% safety margin as required by NFPA 72 Section 10.6.7.2.1(1), the total capacity required by the fire alarm system on the first floor of the building is found to be 35.5438 amp-hours, which is well below the provided capacity of 55 amp-hours (Table **34**).

Table 34-Battery calculations showing available spare capacity [9]

Required Standby Capacity (Amp-Hours)	26.6976
Required Alarm Capacity (Amp-Hours)	2.9222
Total Capacity (Amp-Hours)	29.6198
Capacity with 20% Safety Margin (Amp-Hours)	35.5438
Provided Capacity (Amp-Hours)	55
Available Spare Capacity (Amp-Hours)	19.4562

Since the provided capacity is much greater than the required capacity, the secondary power supply is adequate for this fire alarm system.

5.7 Mass Notification System

The building does not contain a mass notification system (MNS), but does contain an in-building fire emergency voice/alarm communication system (EVACS). As defined in NFPA 72, an in-building mass notification system is a system used to provide information and instructions to people in a building or other space using intelligible voice communications and including visible signals, text, graphics, tactile, or other communication methods. An in-building fire emergency voice/alarm communication system is defined in NFPA 72 as dedicated manual or automatic equipment for originating and distributing voice instructions, as well as alert and evacuation signals pertaining to a fire emergency, to the occupants of

the building [9]. The main difference between the two types of systems is that MNS can be used over the fire alarm system in order to issue different messages not related to fire emergencies. According to NFPA 72 Section 24.4.1, EVACS is used mainly in high rise buildings or large building where a total evacuation of the building would not be practical or desirable on every alarm. For this reason, the system can be used to tell certain occupants of the building to remain in place while other occupants are told to evacuate in order to limit the number of occupants in the means of egress. This allows occupants in direct threat of the fire to evacuate quicker while occupants in areas of the building not affected by the fire will not have to evacuate when there is an alarm.

5.8 Inspection, Testing, Maintenance Requirements

The requirements for inspection, testing, and maintenance for fire alarm systems and components are found in Section 14 of NFPA 72. Inspection and testing requirements relate to initial and reacceptance inspection and testing as well as periodic inspection and testing. According to NFPA Section 14.2.1, the purpose of initial inspection and testing is to ensure compliance with design documents and ensure proper installation and operation. The purpose of periodic inspection and testing is to identify obvious damage or changes to the system that will affect performance and assure operational reliability. According to Section 14.2.3, the property or building owner or the owner's designated representative shall be responsible for inspection, testing, and maintenance of the system as well as alterations or additions to the system [9].

5.8.1 Inspection

Inspection requirements and frequencies for the devices and components present in the building are listed in Table 35. All requirements are from NFPA 72 Table 14.3.1 [9].

5.8.2 Testing

According to NFPA 72 Section 14.4.1, all new systems must be inspected and tested. Changes to systems require reacceptance testing in accordance with NFPA 72 Section 14.4.2. The testing frequencies of devices and components of the fire alarm system that are present in the building are shown in Table 35. All requirements are form NFPA 72 Table 14.4.3.2, which also lists the methods for testing each component.

Component	Inspection Frequency	Testing Frequency
Primary power supply	Annually	Annually
Trouble signals	Semiannually	Annually
Digital alarm	Annually	Annually
communicator transmitter		
In-building emergency voice/alarm	Semiannual	
communication equipment		
Batteries	Monthly/Semiannual	Annually/Semiannually
Duct detectors	Semiannually	Annually
Electromechanical releasing devices	Semiannually	Annually
Manual fire alarm boxes	Semiannually	Annually
Smoke detectors	Semiannually	Annually

Table 35-Inspection and testing frequency requirements for fire alarm system components [9]

Beam smoke detectors	Semiannually	Annually
Supervisory signal devices	Quarterly	Annually
Waterflow devices	Quarterly	Semiannually
Audible notification appliances	Semiannually	Annually
Visible notification devices	Semiannually	Annually

5.8.3 Maintenance

Maintenance requirements for fire alarm systems and components are listed in NFPA 72 Section 14.5. This section states that fire alarm system equipment shall be maintained in accordance with the manufacturer's published instructions at a frequency depending on the type of equipment and the local ambient conditions. A record of inspection, testing, and maintenance must be kept following the requirements of Section 7.8.2 of NFPA 72 [9].

6.0 PERFORMANCE BASED ANALYSIS

6.1 Introduction

The CSM contains a five story atrium on Levels 2 through 6 separating the east and west wings of the building (Figure 27). The openings between each level on the north and south side of the atrium are highlighted in Figure 27. Within the north opening, there is an unprotected staircase while the south opening is completely open from Level 2 to Level 6. Photographs of each opening from Level 2 are shown in Figure 28.

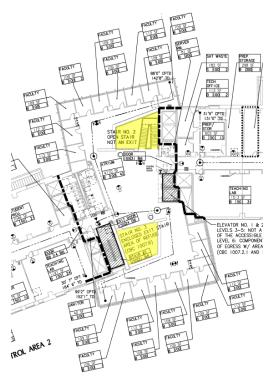
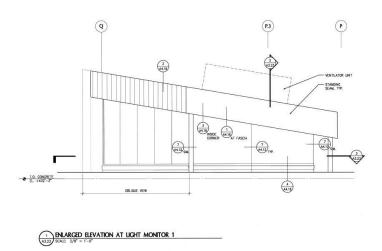
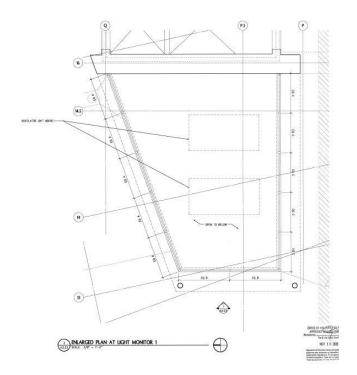


Figure 27 - Plan view of atrium with openings between floors highlighted [1].


Figure 28 - Photographs of the south (left) and north (right) openings of the atrium.

6.1.1 Existing Natural Ventilation Smoke Control System

The atrium contains a natural ventilation smoke control system that consists of exhaust and makeup vents as well as controls from the notification devices of the fire alarm system.


6.1.1.1 Ventilation Components

At the ceiling above the north and south openings within the atrium, there are smoke reservoirs as shown in Figure 29.

Figure 29 - Elevation view of smoke reservoirs with exhaust vents at the top of the atrium [1].

In each reservoir, there are two 50 square foot exhaust vents for a total of four 50 square foot exhaust vents. The plan view of the vents in the smoke reservoirs is shown in Figure 30.

Figure 30 - Plan view of two 50 square foot exhaust vents at the top of the atrium [1].

In addition to the exhaust vents, the smoke control system also provides makeup air from the north and south doors to the exterior on Level 2. These doors open when the smoke control system is activated to

provide fresh air from the exterior of the building as makeup air. The doors are 133.5 square feet each and located as shown in Figure 31.

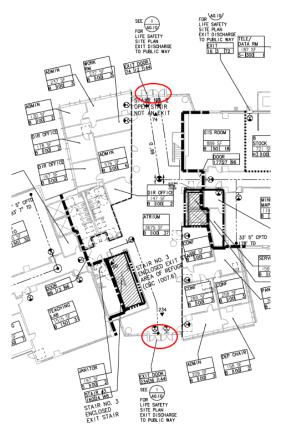


Figure 31 - Location of makeup air vents on Level 2 of the atrium [1].

6.1.1..2 Initiating Devices

Within the atrium, there are beam detectors, spot smoke detectors, sprinklers, and manual pull stations that can all activate the fire alarm system and the smoke control system. Any fire in one of the open areas of the atrium will most likely be detected by the beam detectors first. The typical locations of the beam transmitters and receivers on each level of the atrium are shown in Figure 32.

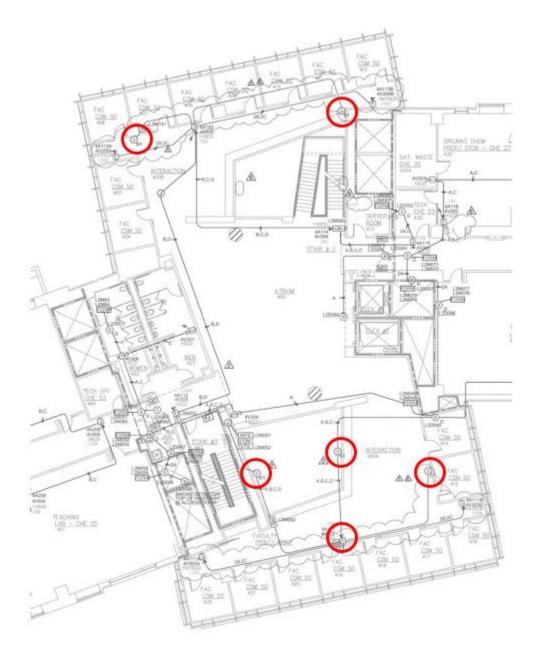


Figure 32 - Location of beam detectors on Level 4 of the atrium [10].

In addition to the beam detectors, there are also spot smoke detectors located at the magnetic doors within the 1 hour fire rated atrium separation and at the elevators within the atrium, as shown in Figure 33.

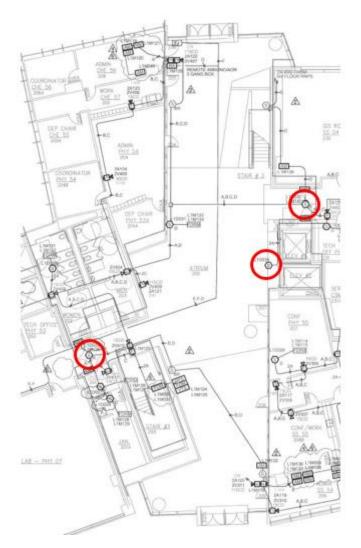


Figure 33 - Location of spot smoke detectors in the atrium [10].

Activation of any spot smoke detector, beam detector, pull station or fire sprinkler within the atrium will activate the sequences of the smoke control system highlighted in the sequence of operations shown in Figure 34. Once the fire is detected by one of these devices, the makeup air vents on Level 2 of the atrium open, the magnetic doors within the 1 hour rated atrium fire separation close, and the vents located at the top of the atrium open to exhaust smoke from the atrium.

												/	//		/
											//	/	1/3		
										/)	//	1	33/		
									/	/)	1	3	/		
							4	/	/	1	39/	/	/	1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
						1	10		/	15	//	/	/		
						P	1	/	12	1	11	/	13	\$ <u>~</u>	
					8	13	11	13	13	8/)	1	13	0/5	9/5/5/5/5/8/s ² /	
					15		5/	\$%.	%	15	3/	8/	3/0	\$1518185x813	
				15	1/2		13	5%	%	9/2	13	8/	\$/2	9.5.5.5. <u>5</u>	
			10	9/3	5/2	\$%)	13)	5%	3/3	2/2	13	5%	3/3	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		1	\$	3/	3) į	8/2	1/3	12/	9/3	2/5	1,3	18	13/	57.50/5 ⁵	
	1	18	E SE S	3/	\$),	Ŝ/ż	8/5	1.S)	5%	5/3	8/28	18	13	138 158 1	
VENT	19	3/8	12	14	187	12/	3/	2/3	18	18	2/	2/0	18	8/ 8/	
IRE ALARM CONTROL UNIT															
PANEL SUPERVISORY CONDITION (TEST BYBASS) ON ACM-24 AT	X	·			Х					X		X			
PANEL TROUBLE CONDITION (AC POWER FAIL, LOW BATTERY, OPEN CRCUIT, GROUND FAULT, ETC.)		X			X				1		X	1			
PANEL ALARM CONDITION				X		- 0	X		X		X				
MANUAL PULL STATION ACTIVATION	-		X	X	X	_	-	-	X	_	X				
SPOT SMOKE DETECTOR ACTIVATION	_		X	X		_	_		X	_	X				
DUCT SMOKE DETECTOR ACTIVATION			X	X		_	-	X	X		X		-		
AIR HANDLING UNIT DUCT SMOKE DETECTOR ACTIVATION			X	X		2	X.		-		X				
SPRINKLER TAMPER SWITCH	X				X	_		-	1	X	X				
SPRINKLER WATER FLOW ACTIVATION	-			X		_	_	-	X	_	Х				
FIRE PUMP RUNNING			X	X		_	_		X		X	4			
FIRE PUMP LOSS OF PH ASE	X.				X	_	-	-		X	-	-			
			- I	- E	XI		_		-	X	X		1		
FIRE PUMP PHASE REVERSAL	X	-													
HEAT DETECTOR ACTIVATION (ELEVATOR EQUIPMENT)	X		X	X	X	X			X	_	X				
HEAT DETECTOR ACTIVATION (ELEVATOR EQUIPMENT) ELEVATOR LOBBY/ EMR SMOKE / ELEVATOR HOISTWAYS				X	X	×	X		X		X				
HEAT DETECTOR ACTIVATION (ELEVATOR EGUIPHENT) ELEVATOR LOBBY/ EMR SMOKE / ELEVATOR HOISTWAYS ISHUNT TRIP POWER SUPERVISION	x		X	XX	XX				X	x	X	-			
HEAT DETECTOR ACTIVATION (ELEVATOR EDUIPMENT) ELEVATOR LOBBYLEMR SWORE / ELEVATOR HOSTWAYS SHUNT THP POWER SUPERVISION GENERAL ALAMK (ANYWHERE WITHIN THE BUILDING)			X	XXX	XXX		x		XXX	x	×	-			
HEAT DE RECTOR ACTIVATION (LEUVATOR ECUPINEIN) ELEVATOR LOBRY: EMR SMOKE / ELEVATOR HOGTWAYS SHAINT TRIP POWER SUPERVISION DENERAL ALLARM (ANYWHERE WITHIN THE BUILDING) ATTRUM SMOKE CONTRG. SYSTEM ALLARM		-	XXXX	X X X X	XXXXX				XXXX	x	X		X	x	
HEAT DETECTOR ACTIVATION LELEVATOR EQUIPHENT) ELEVATOR LOBBY/ EMR SMOKE / ELEVATOR HOISTWAYS SHUNT TIP POWER SUPERVISION GENERAL ALARM UNOTWHERE WITHIN THE BULDING) ATRUM SMOKE CONTOR, SYSTEM ALARM BEAM SMOKE DETECTION WITHIN ATRUM			X X X X	X X X X X	X X X X X X				XXXXX	x	X X X		×××	x	
HEAT DE TECTOR ACTIVATION (ELEVATOR ECUPHENT) ELEVATOR LOBBY: HEM SAIORE / ELEVATOR HOIS TWAYS SHUNT TRIP POWER SUPERVISION GENERAL ALLAW (INTWHERE WITHIN THE BUILDING) ATTRUM SINCRE CONTROL SYSTEM ALLARM			XXXX	X X X X X	XXXXX				XXXXXX	x	X		XXX	X X X X	

Figure 34 - Sequence of operations highlighting the atrium specific events and actions [10].

6.2 Code Requirements

The applicable codes and standards relating to the smoke control system within the atrium are listed below:

2013 California Building Code (CBC)

NFPA 92, Standard for Smoke Control System, 2015 Edition

6.2.1 CBC Requirements

6.2.1.1 404 Atriums

Since the atrium exceeds 2 stories, it is required to have a smoke control system installed in accordance with Section 909 (Section 404.5) [2]. Since atriums are large volume spaces interconnecting multiple stories, smoke and other products of combustion can spread from the point of origin of the fire to other stories within the atrium. Smoke and carbon monoxide are known to cause many deaths in fires to occupants not intimate with the fire origin, so exhausting the smoke from the atrium can maintain tenability within the atrium allowing the occupants to egress.

6.2.1.2 909 Smoke Control Systems

The smoke control system must follow the requirements of Section 909 and specifically Section 909.8 since the exhaust method will be utilized. The purpose of a smoke control system is solely to maintain a tenable environment for the duration of the evacuation of occupants (Section 909.1) [2].

6.2.1.3 909.4 Analysis

A rational analysis must be performed to justify that a smoke control system using the exhaust method will be appropriate and address the effects of the stack effect, temperature effect of the fire, wind, HVAC systems, and climate (Section 909.4.1-909.4.5) [2]. All of these items can alter the movement of

smoke within the atrium, so they must be considered within the design of the smoke control system in order to ensure that the system will be able to perform as intended. The smoke control system will need to operate for either a duration of 20 minutes or 1.5 times the calculated egress time, whichever is less (Section 909.4.6) [2]. This is to ensure a safety factor is included in the egress time and that all components of the smoke control system will be able to operate long enough for all occupants to evacuate.

6.2.1.4 909.9 Design Fire

The rational analysis must also include a design fire that has been approved by the authority having jurisdiction. In addition to the items considered in Section 909.4, the design fire must include a consideration of the fuel load, fuel configuration, heat release rate, and effectiveness of sprinklers (Section 909.9.1-909.9.4) [2]. The rational analysis must address all of these considerations to ensure that the selection of a design fire best represents the fire risk of the specific situation.

6.2.1.5 909.8 Exhaust Method

The objective of the exhaust method is to maintain the height of the smoke layer at least 6 feet above any walking surface that is used as part of a means of egress within the smoke zone (Section 909.8.1) [2]. Maintaining the smoke layer at this height will limit the exposure of occupants to the toxic products of combustion and heat. Smoke control systems using the exhaust method must be designed in accordance with NFPA 92.

6.2.2 NFPA 92 Requirements

NFPA 92 states the design objectives and requirements for smoke control systems, as well as the procedures for smoke management calculations and heat release rate data to be considered for design fires.

6.2.2.1 Chapter 4

There are four specific objectives to be achieved from a smoke control system as listed in Section 4.1.2. Since the atrium will contain an exhaust smoke control system, the design objective is to maintain the smoke layer interface at a certain elevation within the large volume space of the atrium (Section 4.1.2 (4)). Since the exhaust method will be used for the smoke control system, makeup air will need to be provided below the smoke layer interface (Section 4.4.4.1-4.4.4.2). Makeup air velocity cannot exceed 200 feet per minute where it may contact the plume, unless an engineering analysis from the use of a fire model can prove a greater velocity will not disrupt the plume (Section 4.4.4.1.4). Since the smoke control system is intended to maintain the smoke layer at a height which would allow occupants enough time to egress, an egress analysis must be performed including tenability requirements in order to determine the required operating time of the smoke control system (Section 4.5.1.2) [12].

6.2.2.2 Chapter 5

Chapter 5 discusses algebraic methods that can be used to calculate the heat release rate of the design fire as well as equations to calculate smoke layer temperature and height. A smoke control system can be designed using these algebraic equations as well as a computational fluid dynamics (CFD) model (Section 5.1.3) [12]. Fire Dynamics Simulator (FDS), a CFD model designed for thermally driven flows present in fire situations will be used to design the system to ensure the smoke exhaust capacity is adequate to maintain the smoke layer for the required time.

6.3 Tenability Requirements

The available safe egress time (ASET) is defined as the time from ignition of a fire to the time an occupant encounters an incapacitating or lethal exposure to the products of combustion and heat from the fire [13]. The results of a fire that have the largest impact on occupant tenability are the visibility resulting from the density of smoke, toxic products of combustion such as carbon monoxide, and the high temperatures and heat fluxes from the fire. These parameters will be evaluated using Fire Dynamics Simulator (FDS) in order to determine when the tenable limits for occupants are exceeded in areas remote from the fire plume.

6.3.1 Visibility

Visibility in a fire situation is an important criterion of tenability because loss of visibility can prevent an egressing occupant from being able to locate an exit. If an occupant is attempting to find an exit and the smoke becomes thick enough to prevent them from continuing forward, they will be forced to turn around or stop their egress altogether which can result in incapacitation or death. An important factor in determining the minimum visibility limit is if the occupants are assumed to be familiar or unfamiliar with the building. If an occupant is familiar with the building and knows where the exits are located, they can be assumed to travel through dense smoke with less visibility to exit the building while unfamiliar occupants will not travel through the denser smoke since they don't know if they are nearing an exit. Table 2-6.11 of the SFPE Handbook of Fire Protection Engineering suggests a tenability limit of 10 meters of visibility for buildings with large enclosures and travel distances [14]. In the SFPE Handbook, Rasbash also suggests a visibility limit of 10 meters for occupants that are not familiar with an exit route within the building [14]. For this building, since the atrium is a large volume space and occupants are assumed to be unfamiliar with the building, the tenability limit for visibility will be 10 meters.

Visibility can be evaluated within FDS and is dependent on the soot yield that is prescribed to the reaction of the fire that is taking place. The soot yield in FDS is defined as the fraction of fuel mass converted into smoke particulate [15]. In order to determine visibility, FDS uses the following equation:

$$S = C/K$$

In this equation, C is a non-dimensional constant determined by the type of object being viewed through the smoke and K is the light extinction coefficient. For a light-emitting sign, C=8, and for a light-reflecting sign, C=3, which is the FDS default [15]. The light extinction coefficient, K, is determined by the following equation [15]:

$$K = K_m \rho Y_s$$

In this equation, K_m is the mass specific extinction coefficient (FDS default 8700 m²/kg) and ρY_s is the density of smoke particulate, dependent on the soot yield, $Y_{s [15]}$. As shown in these equations, the visibility is strongly dependent on the soot yield that is prescribed by the user in FDS. For this reason, a sensitivity analysis will be performed to determine the effect of varying soot yield on the visibility within the atrium.

6.3.2 Toxic Gas Exposure

Since smoke inhalation results in more fire related deaths than direct exposure to flames, it is important to analyze the exposure of occupants to the toxic products of combustion. The burning of different materials can produce different toxic gases and irritants, but carbon monoxide is the most prevalent toxic gas. According to the NFPA Fire Protection Handbook Section 6-Chapter 2, a fractional effective dose of one is reached with a dose of 35,000 ppm CO * min resulting in incapacitation [16]. This dose over a 30 minute exposure time is equivalent to a CO concentration of 1167 ppm. This is a conservative tenability limit because this CO concentration can be tolerated by humans for 30 minutes, but for this performance based analysis it is assumed that an instantaneous concentration of 1167 ppm is the tenability limit. A CO yield will be prescribed in FDS for the most likely combustibles that will be burning in the fire and the concentration of CO throughout the atrium will be evaluated to ensure the tenable limit is not exceeded.

6.3.3 Exposure to Heat

Tenability criteria for heat exposure from a fire can be defined by the temperature that is reached or the heat flux that is tolerable for an occupant. According to the NFPA Fire Protection Handbook Section 6-Chapter 2, the tenability limit for radiant heat flux is 2.5 kW/m². At this heat flux, exposure can be tolerated for 30 minutes, but above this heat flux skin can burn rapidly. For this reason, the tenability limit for temperature was selected as 66°C in the situation of a teacher or student entering a corridor from a room [16]. This temperature assumes dry air and a brief exposure time. For this reason, a conservative tenability limit for temperature of 60°C will be used for this rational analysis. The temperatures within the atrium will be evaluated with the use of FDS to ensure that occupants are not exposed to temperatures exceeding 60°C.

6.3.4 Summary

The tenability limits for visibility, carbon monoxide and heat are listed in Table 36.

Tenability Criteria					
Visibility	10 meters				
Carbon Monoxide	1667 ppm				
Heat	60°C, 2.5 kW/m ²				

Table 36 – Summary of Tenability Limits

6.4 Purpose

The purpose of the performance based design is to ensure that the space remains tenable for a greater time than it takes for all of the occupants to exit the area. This performance based design will include an analysis of the required safe egress time (RSET) and the available safe egress time (ASET) using computer based models. RSET will be determined using the software Pathfinder while ASET will be determined using Fire Dynamics Simulator (FDS). The current smoke control system was analyzed to determine if tenability is maintained on each level of the atrium at a height of 6 feet above each walking surface as well as an alternate design.

6.5 Required Safe Egress Time (RSET)

The required safe egress time (RSET) is defined as the time from ignition of a fire and the time at which all occupants can reach an area of safety or exit [13]. In order for a building or area of a building to meet life safety requirements, the available safe egress time must be greater than the required safe egress time. This means that the area must remain tenable for a time greater than it take for all of the occupants to safely exit. An acceptable and unacceptable ASET/RSET comparison is shown in Figure 35.

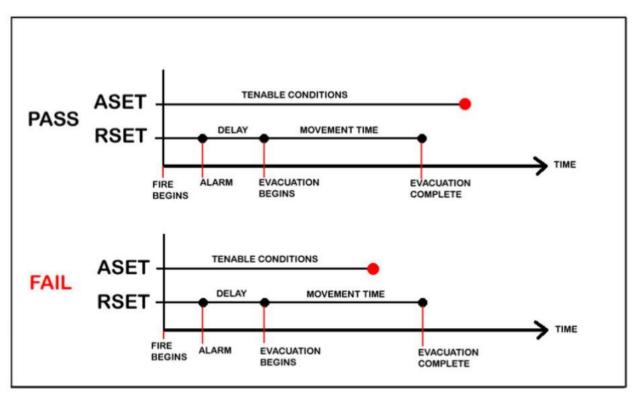


Figure 35 - ASET and RSET comparison showing a passing example and failing example.

The available safe egress time was found from the FDS simulations by determining when the tenability limits were reached on each level. The required safe egress time consists of three separate parts, as shown in Figure 35 and the following equation.

 $RSET = t_{detection} + t_{pre-movement} + t_{movement}$ $t_{detection} = Time \ from \ ignition \ to \ detection \ and \ notification$ $t_{pre-movement} = Time \ from \ notification \ to \ start \ of \ egress$ $t_{movement} = Time \ to \ completely \ evacuate$

From this equation, the detection time was determined by the first activating smoke detector, beam detector, or heat detector device in the FDS simulation. The pre-movement time was an assumed constant value of 36 seconds from Table 4.2.1 of the NFPA Fire Protection Handbook for a mid-rise office building [17]. During this time after notification of the fire, it is assumed that occupants will not

immediately begin exiting the building. Since the majority of occupants are professors and students, it is likely that they will gather their belongings, such as backpacks and laptops, before beginning to exit the building. A pre-movement time of 36 seconds represents these occupants well since they will most likely not ignore the fire alarm, but will still spend some time reacting to the situation and gathering belongings before egressing. Finally, the movement time was found from a Pathfinder model of the atrium.

6.5.1 Pathfinder Model

In order to determine the time for all of the occupants to completely exit the atrium, a model was made in Pathfinder (Figure 36). The model contains the protected stair within the atrium, but not the open stairway within the north opening of the atrium since it is not an approved means of egress.

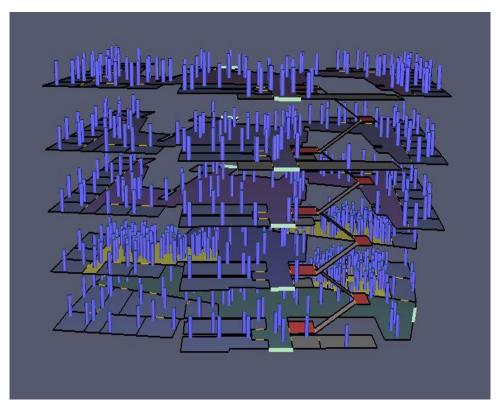


Figure 36 - Pathfinder model of the atrium of the building.

6.5.1.1 Pathfinder Model - Exits

Similar to the Pyrosim and FDS model, the Pathfinder model consisted of only the atrium. Since the atrium contains horizontal exits to the east and west wings of the building, as well as exits to the exterior on Level 2, the egress time was found when all of the occupants exit the atrium through these exits, rather than the entire building. Since the horizontal exits are in the 1 hour barrier separating the atrium from the remainder of the building, it is considered that occupants have exited the building when using a horizontal exit. A summary of the exits present in the Pathfinder atrium model is shown in Table 37.

Egress Component	Width (inches)				
Level 2					
North/South Exterior Exit	144" each				
East/West Horizontal Exits	96" each				
Level 3-4					
East/West Horizontal Exits	96" each				
Stair	36" Door 48" Stair				
Level 5-6					
East Horizontal Exit	96"				
Stair	36" Door 48" Stair				

Table 37 – Summary of Exits within Pathfinder Model

6.5.1.2 Pathfinder Model – Occupant Load

Each area of the model contained occupants according to the appropriate occupant load for the use of the space. The majority of the atrium was considered business use since it is mainly offices and the atrium space, so the occupant load factor was 100 square feet per person. On Level 2 and Level 3, there are assembly spaces that used an occupant load of 15 square feet per person. These spaces are shown in yellow in Figure 36. A summary of the occupant load per floor is shown in Table 38.

Floor	Occupants
2	155
3	170
4	88
5	91
6	91
TOTAL	595

Table 38 – Occupant Load on Each Level of Pathfinder Model

6.5.1.3 Pathfinder Model – Results

In Pathfinder, there are two different methods to predict occupant movement: steering method and SFPE method. For the steering method, occupants use the steering system to maintain a reasonable separation distance from others and doors do not act to limit the flow of occupants [18]. In the SFPE

method, occupants do not avoid one another and the egress time is determined by the flow limit and velocity through doors [18]. For this simulation, the steering method was used since it is believed to most accurately represent real life situations. The exit times from each floor are shown in Table 39.

Floor	Exit Time				
Level 2	53 seconds				
Level 3	95 seconds				
Level 4	37 seconds				
Level 5	37 seconds				
Level 6	44 seconds				

Table 39 – Exit Time for Each Floor from Pathfinder Model

6.6 Available Safe Egress Time (ASET)

The available safe egress time (ASET) is defined as the time from ignition to the time that untenable conditions occur [13]. In order to determine the ASET, a model of the atrium space was created in Pyrosim and simulations were performed using Fire Dynamics Simulator (FDS).

6.6.1 Limitations of FDS

FDS is a CFD model developed by NIST that solves a form of the Navier-Stokes equations for low Mach number thermally-driven flows. FDS uses Large Eddy Simulation to model turbulent fluid flows that are present in fire scenarios [15]. In order to increase calculation times, FDS uses a rectangular grid. All solid obstruction of the geometry must conform to the grid spacing, so geometry is restricted to the size of the mesh cells and must be rectilinear. This can make complex geometry difficult to create, and requires stair-stepping geometry in order to best represent the geometry and volume of the space. The FDS calculation is highly dependent on the size of the mesh cells, decreasing the size of the cells greatly increases calculation time. For this reason, a balance must be found between the calculation time and number and size of mesh cells to ensure accuracy of the results while maintaining realistic simulation times.

6.6.2 Model Overview

In order to assess the performance of the natural ventilation smoke control system, the atrium from Level 2 through Level 6 was modeled using Pyrosim. The model only contained the atrium space, not including the east and west wings of the building, or the offices and rooms adjacent to the atrium. Since the purpose of the smoke control system is to limit the amount of smoke and products of combustion that travel from the location of the fire to other floors and spaces of the atrium, only the open volume of the atrium was modeled. This would reduce the size of the model which would reduce the required time to perform each simulation. The model of the atrium in Smokeview with the exterior walls hidden is shown in Figure 37.

Figure 37 - Smokeview rendering of the FDS model of the atrium.

6.6.2.1 Devices

The model consists of different devices including spot smoke detectors, beam detectors and heat detectors. In addition to the devices, the exhaust vents and makeup air vents are included in the model initially closed. The vents were set to open once the first device was initiated. Spot smoke detectors were located per the fire alarm plans at the elevator on each level and at the magnetically held open doors to the east and west wing. Since the spot smoke detectors are photoelectric smoke detectors, the suggested values for Cleary Photoelectric P1 detectors from Table 15.1 of the FDS User's Guide were used [15]. These properties are summarized in Table 40.

Detector	α _e	Be	α _c . L	Bc
Cleary Photoelectric P1	1.8	-1.0	1.0	-0.8

Table 40 – Smoke Detector Properties for FDS Model [15]

Beam detectors were located within the FDS model per the fire alarm plans. This included in the south opening of the atrium as well as above the corridor leading to the faculty offices on the north side of the atrium. The activation point for the beam detectors in the FDS model were set to 35%, which is the medium sensitivity of the OSID Xtralis beam detectors that are installed within the atrium as shown on the manufacturer specification sheet in Appendix N.

In addition to the spot smoke detectors and beam detectors, the sprinklers within the atrium were input into the model as heat detectors. The sprinklers were modeled as heat detectors so the model would not be interrupted by sprinkler activation, but it could be determined when the sprinklers would activate for each fire scenario. The heat detectors were modeled with an activation temperature of 68.33°C and RTI of (50 m-s)^{1/2} to represent the quick response sprinklers within the atrium. The activation time of the first device in the FDS model was used as the detection time in the calculation of RSET.

6.6.2.2 Slice Files

In order to visually analyze the results from the FDS simulations, slice files were input into the model to be viewed in Smokeview. Velocity slice files were placed through the makeup air vents as well as through the center of the atrium in order to determine the velocity of the makeup air to make sure the requirements of NFPA 92 were met. Vertically through the center of the atrium and horizontally on each level at 6 feet above the walking surface, slice files were placed for temperature, visibility, and carbon monoxide concentration in order to determine when the tenable limits were reached. While viewing each slice file, a limit can be marked to appear in black to determine where the limit is reached within the model. This was done for each slice file, setting the determined tenability limits to black to show the location and time when untenable conditions were reached. Since CBC 909.8 requires tenable conditions to be maintained at a height of 6 feet above all means of egress, the available safe egress time was determined by observing the slice files over the duration of the simulation to find when the tenable limit was reached. The available safe egress time was determined when the tenable limit was reached to the point where an egress path was completely blocked by the tenable limit marked in black on the slice file. If the tenable limit was reached in a spot for only a brief time or where it did not completely cover an egress path, it was not determined to be the available safe egress time.

6.6.2.3 Mesh

The model consists of six separate computational meshes that each are made up of a uniform grid of 0.2m x 0.2m x 0.2m cells which resulted in a total of 3,385,600 cells. This mesh resolution was determined to be adequate by performing a mesh sensitivity analysis that will be discussed later, as well as the following calculation from the FDS User's Guide. Equation 6.1 from the FDS User's Guide is shown below [15].

$$\frac{D^*}{\delta x} = \frac{\left(\frac{\dot{Q}}{\rho_{\infty}c_p T_{\infty}\sqrt{G}}\right)^{\frac{2}{5}}}{\delta x}$$

where:

 \dot{Q} = the total heat releae rate of the fire (kW)

$$\rho_{\infty} = ambient \ density \ of \ air \ \left(\frac{kg}{m^3}\right)$$

$$c_p = Specific \ heat \ of \ air \ \left(\frac{kJ}{kg} * K\right)$$

$$T_{\infty} = Ambient \ temperature \ of \ air \ (K)$$

$$g = gravitational \ acceleration \ \left(\frac{m^2}{s}\right)$$

$$\delta_x = mesh \ cell \ size \ (m)$$

The quantity $D^*/\delta x$ is a non-dimensional expression that can be used to characterize how well the flow field is resolved for buoyant plumes [15]. According to NUREG 1824, values between 4 and 16 can be used to accurately resolve fires in various scenarios [19].

6.6.2.4 Reaction Input Properties

There are multiple user-specified properties that affect the results from the FDS simulations: soot yield, CO yield, and heat of combustion. As defined in the FDS User's Guide, the soot yield is the fraction of fuel mass converted into smoke particulate during combustion while the CO yield is the fraction of fuel mass converted into carbon monoxide [15]. An increased soot yield will cause the visibility tenable limit to be reached at a quicker time while an increased CO yield will cause the tenable limit for carbon monoxide concentration to be reached sooner. The heat of combustion is defined as the amount of heat released per unit mass of fuel during combustion. Since the heat release rate was specified in the FDS models, the mass loss rate is determined by dividing the specified heat release rate by the heat of combustion. The heat of combustion affects the mass loss rate during combustion which will determine the mass of products, including soot and CO.

Since the primary fuels of the couch being considered as the design fire are polyurethane foam and wood, properties for these materials will be considered. Table 3-4.16 from the SFPE Handbook lists values for soot yield, CO yield and heat of combustion for various fuels. For flexible polyurethane foams, the average value for heat of combustion is approximately 25,000 kJ/kg while for wood it is approximately 17,500 kJ/kg. A value of 25,000 kJ/kg was selected as the heat of combustion for the FDS model since the primary fuel is the polyurethane foam. For this same reason, a CO yield of 0.04 was selected from Table 3-4.16. In order to best represent the soot yield, an effective value was determined to best represent the combination of polyurethane foam and wood. Table 3-4.16 lists soot yield values of wood of 0.015 while for polyurethane foam the range is from 0.131 to 0.227. Since the majority of the mass of a couch is wood, an effective soot yield of 0.05 was selected. A summary of the reaction parameters are shown in Table 41. In order to determine the impact of these parameters on the tenability in the FDS simulations, a sensitivity analysis will be performed.

Property	Value	Units
Heat of Combustion	25,000	kJ/kg
Soot Yield	0.05	kg/kg
CO yield	0.04	kg/kg

Table 41 – FDS Reaction Properties [20]

6.6.2 Design Fire #1 – Axisymmetric Plume

6.6.2.1 Overview/Location

Design fire #1 is an axisymmetric plume located on Level 2, the base level of the atrium as shown in the Smokeview model in Figure 38 and the plan view in Figure 39.

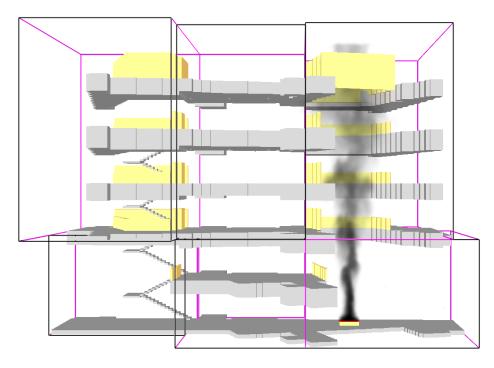


Figure 38 - Smokeview rendering showing the axisymmetric plume rising in the atrium.

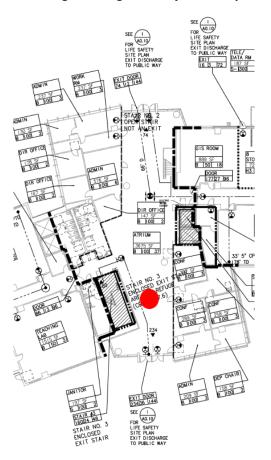


Figure 39 - Plan view of Level 2 of the atrium showing the location of Design Fire #1 [1].

As defined by NFPA 92 3.3.9.1, an axisymmetric plume is a plume that rises above a fire, does not come into contact with walls or other obstacles, and is not disrupted or deflected by airflow as shown in Figure 40 [12].

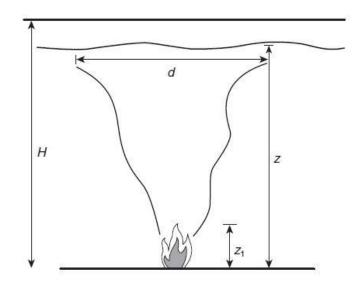


Figure 40 - Schematic of an axisymmetric fire plume [12].

In this location on Level 2 of the atrium, there is furniture that will serve as the fuel load. The actual furniture that is located within the atrium is shown in Figure 41.

Figure 41 - Photograph of furniture used for fuel load located within the atrium.

6.6.2.2 Heat Release Rate

The design fire for the axisymmetric plume for design fire #1 was selected as one of the couches shown in Figure 41. Heat release rate data for similar furniture is shown in Figure 42 from "Upholstered Furniture Heat Release Rates Measured with a Furniture Calorimeter" [21].

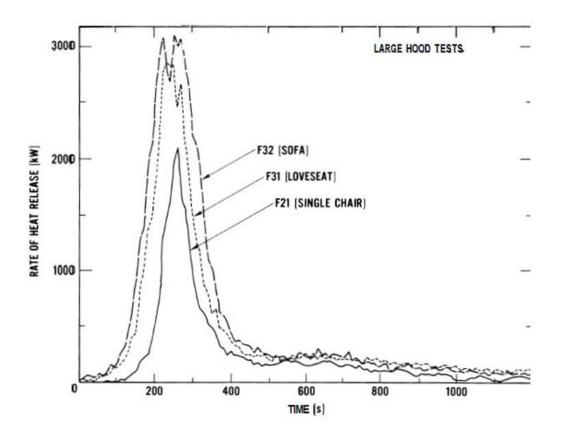


Figure 42 - Heat release rate for furniture similar to furniture found in the atrium [21].

Since the most similar piece of furniture from this test is the sofa, a peak heat release rate of 3MW was selected to be used in the FDS model. The fire was modeled as a fast t-squared fire since the heat release rate over time for the sofa most closely matches the fast curve shown in Figure 43.

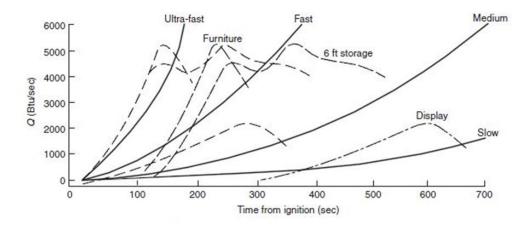


Figure 43 - Heat release rate curves for different t-squared fires [12].

Since this fire is located directly underneath one of the openings in the atrium, sprinklers will not have an effect on the fire, so the fire will be fuel-limited. In order to be conservative, it is assumed that the fire will grow as a fast t-squared fire until it reaches the peak heat release rate of 3 MW and then will remain constant at the peak heat release rate. This is conservative since a furniture fire would actually begin to decay once all of the fuel is consumed, as seen in Figure 42. The heat release rate over time output from the FDS simulation is shown in Figure 44.

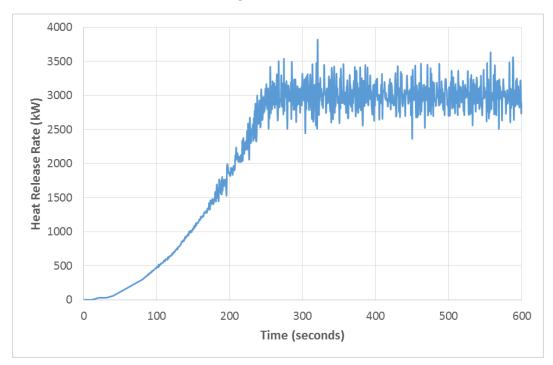
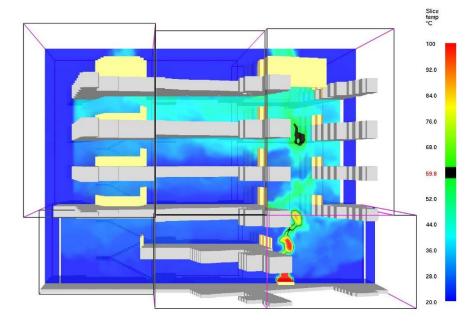


Figure 44 - FDS output of heat release rate over time.


6.6.2.3 Mesh

Using Equation 6.1 from the FDS User's Guide, the nondimensional parameter was calculated using a heat release rate of 3000 kW for design fire #1. Since this value is between 4 and 16, it is determined that the mesh spacing is adequate for this fire scenario.

$$\frac{\dot{Q}}{\delta x} = \frac{\left(\frac{(3000)}{(1.204)(1.005)(293)(\sqrt{9.81})}\right)^{\frac{2}{5}}}{0.2} = 7.44$$

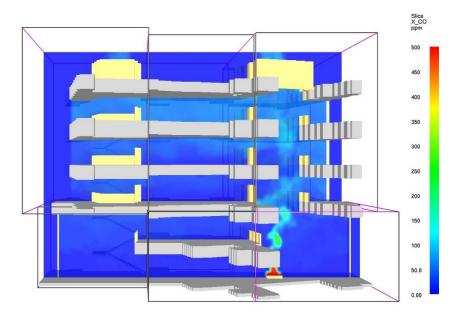
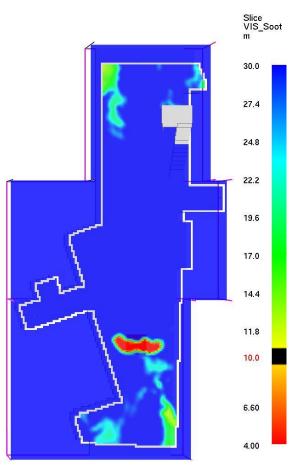
6.6.2.4 Design Fire #1 ASET Results – Temperature

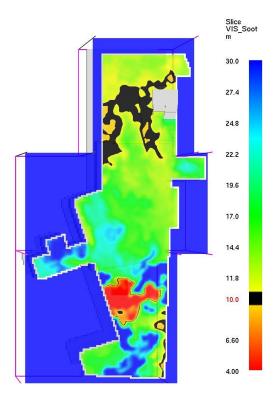
Figure 45 shows the temperature in the entire atrium at a time of 300s. The tenable limit of 60°C was not reached on any level within the atrium.

Figure 45 – Temperature slice file at a time of 300 seconds showing tenable limit not being reached.

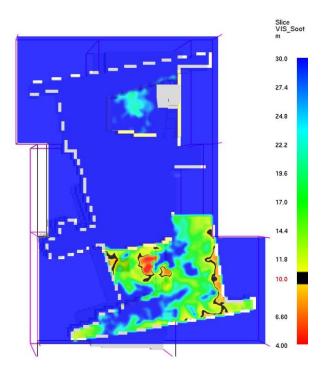
6.6.2.5 Design Fire #1 ASET Results – Carbon Monoxide

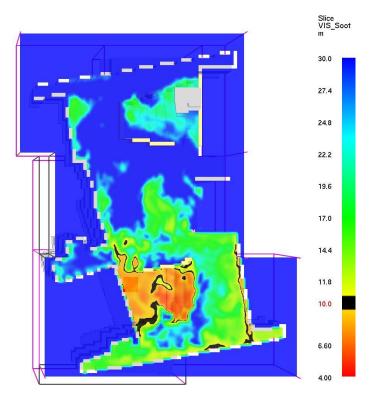
Figure 46 shows the carbon monoxide concentration in the entire atrium where a maximum value of 500 ppm is reached. The tenable limit of 1,667 ppm was not reached, so the space remained tenable for the entire simulation.


Figure 46 – Carbon monoxide slice file at 300 seconds showing tenable limit not being reached.

6.6.2.6 Design Fire #1 ASET Results – Visibility


Visibility slice files of Level 2 through Level 6 are shown in Figure 47 through Figure 51 showing the time when the tenable limit of 10 meters was reached. If the tenable limit was not reached on a level, the visibility slice file at 300 seconds is shown since this was the end of the simulation.


Figure 47 – Visibility slice file of Level 2 at 300 seconds showing tenable limit not being reached.

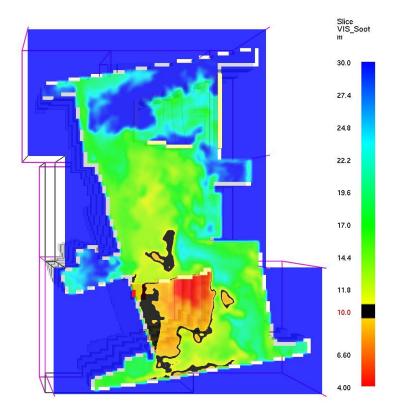

Figure 48 – Visibility slice file of Level 3 at 300 seconds showing tenable limit not being reached.

Figure 49 – Visibility slice file of Level 4 showing tenable limit being reached at 190 seconds.

Figure 50 – Visibility slice file of Level 5 showing tenable limit being reached at 190 seconds.

Figure 51 – Visibility slice of Level 6 showing tenable limit being reached at 174 seconds.

6.6.2.7 Design Fire #1 ASET/RSET Analysis

A summary of the ASET for design fire #1 is shown in Table 42.

	Temperature	Carbon Monoxide	Visibility
Level 2	Tenability maintained for 300 seconds	Tenability maintained for 300 seconds	> 300 s
Level 3			> 300 s
Level 4			190 s
Level 5			190 s
Level 6			174 s

Table 42 – Summary of ASET Results from Design Fire #	s from Design Fire #1
---	-----------------------

Table 43 shows the calculation of RSET including a 50% safety factor compared with ASET for each level. Level 6 is the only level that fails since ASET is less than RSET. The detection time of 44 seconds was from the Level 3 beam detector directly above the fire.

Floor	Detection Time	Pre-movement Time	Travel Time	Total RSET	RSET x 1.5	ASET	ASET>RSET?
2			53	133	200	> 300 s	YES
3			95	175	263	> 300 s	YES
4	44	36	37	117	176	190	YES
5			37	117	176	190	YES
6			44	124	186	174	NO

Table 43 – ASET/RSET Comparison for Design Fire #1

6.6.2.8 Recommendations

Since the current smoke control system did not pass the ASET/RSET analysis on each floor, it is not adequate for the atrium in the building. In order to increase the ASET to a time greater than the RSET, two changes can be made to the current smoke control system. First, a mechanical ventilation smoke control system could be installed in order to increase the volume of smoke exhausted from the atrium. This would be a very costly alteration to the building since it would require the addition of exhaust fans to the roof where they may not be room for such fans. The other option is to redesign the natural ventilation smoke control system to have increased venting at the ceiling to increase the volume of smoke exhausted. Since the atrium has an existing natural ventilation system, this option would be the easiest and most cost effective solution. An alternate design to the current natural ventilation smoke control system was analyzed using FDS and will be discussed later in this report.

6.6.2.9 Mesh Sensitivity Analysis

Computational fluid dynamics simulations are highly dependent on the resolution of the computational mesh. The dilemma is that although decreasing the mesh cell size produces more accurate results, the increase in the number of cells greatly increases the duration of the calculation. For this reason, a balance must be found which produces sufficiently accurate results without creating unrealistically long calculation times. In order to determine an appropriate mesh cell size for the atrium FDS model, a mesh sensitivity analysis was performed. This would tell when the mesh cell size is adequately refined to achieve accurate results with a reasonable calculation time. Three different mesh configurations were tested with mesh cell sizes ranging from 0.2 meters to 0.4 meters using the model for design fire #1. As previously mentioned, the computational domain of the model consisted of six meshes, three across the base of the atrium extending to Level 4 and three covering Levels 4 through 6 at the top of the atrium. The different mesh configurations varied the mesh cell size between 0.2 meters and 0.4 meters across the bottom three meshes and the top three as summarized in Table 44.

Mesh Configuration	Description	Number of Cells
1	All cells 0.4m	423,200
2	Bottom three meshes 0.2m, top three meshes 0.4m	1,200,200
3	All cells 0.2m	3,385,600

As shown in Table 44, the number of cells in the computational domain increases rapidly as the cell size is decreased. As the number of cells increased, the calculation duration increased. The calculation time for mesh configuration 1 was approximately 4 hours while for mesh configuration 3 it was approximately 48 hours. In order to determine when the mesh was adequately refined, the total volume of smoke exhausted in each simulation was calculated using volume flux devices in the FDS models. The results from the three different mesh configurations are shown in Figure 52.

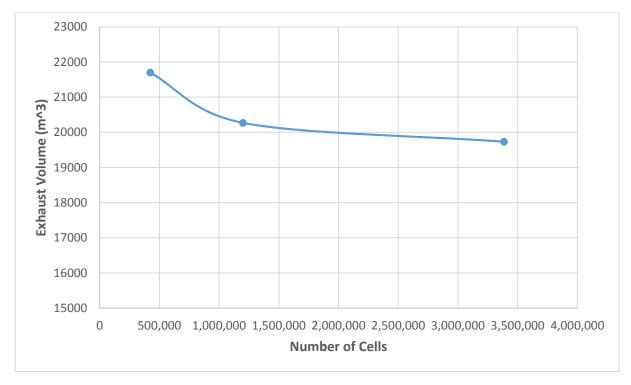


Figure 52 - Exhaust volume with increasing number of cells showing convergence.

As shown in Figure 52, as the number of cells increases the results appear to converge. A large difference can be seen between mesh configuration 1 and 2, but mesh configuration 2 and 3 only differ by 2.7%. For this reason, mesh configuration 3 is determined to be the best choice to provide the most accurate results while not taking excessively long to perform the calculation. A more refined mesh configuration was not tested due to the projected length of the calculation and the assumed minimal difference in results with mesh configuration 3 if the curve were to be extrapolated.

6.6.3 Design Fire #2 – Balcony Spill Plume

6.6.3.1 Overview/Location

Design fire #2 is a balcony spill plume located in the center of Level 2, the base level of the atrium as shown in the Smokeview model in Figure 53 and plan view in Figure 54.

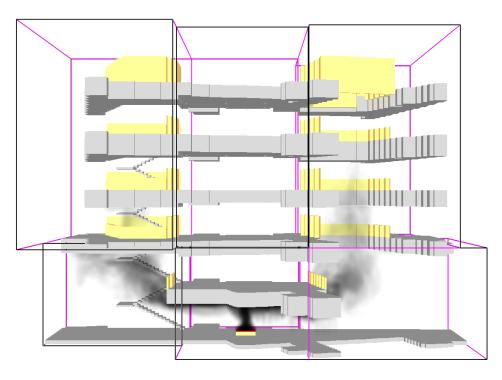


Figure 53 - Smokeview rendering showing the balcony spill plume.

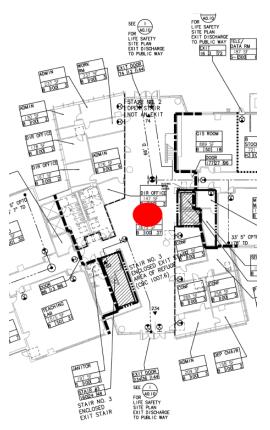


Figure 54 - Plan view showing location of Design Fire #2 [1].

As defined by NFPA 92 3.3.9.2, a balcony spill plume is a smoke plume that originates from a compartment fire, flows out the doorway, flows under a balcony, and flows upward after passing the balcony edge, as shown in Figure 55.

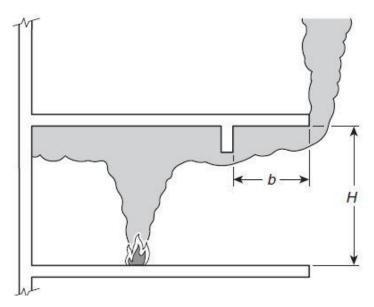


Figure 55 - Schematic showing a balcony spill plume fire [12].

The furniture shown in Figure 56 is found at this location of the atrium and will be the fuel load for design fire #2.

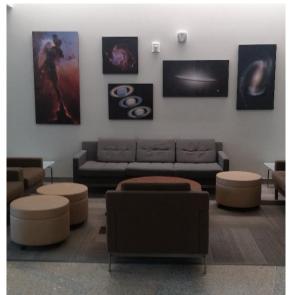
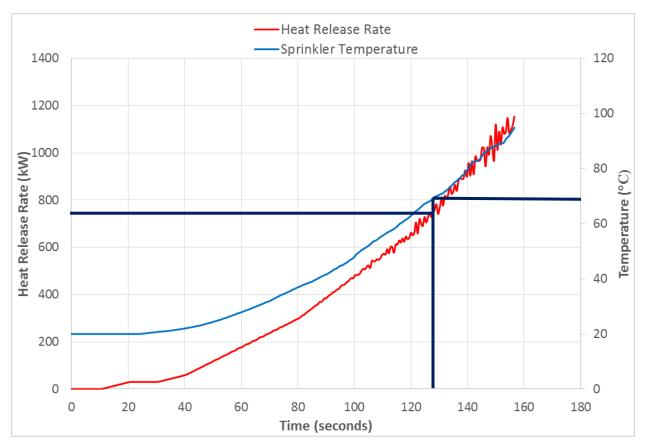



Figure 56 - Furniture found on Level 2 of the atrium.

6.6.3.2 Heat Release Rate

The same style couch that was used for design fire #1 will be used as the fuel load again for design fire #2. A fast growing t-squared fire with a peak heat release rate of 3 MW will be used for the heat release rate of the couch, but this fire will be sprinkler-controlled due to its location. The FDS model contains heat detector devices with an RTI of 50 (m-s)^{1/2} and an activation temperature of 68.33°C that represent the quick response sprinklers located within this area of the atrium. An FDS simulation was run with the fast t-squared fire to determine when the sprinklers would reach the activation temperature. The results showing the sprinkler temperature and heat release rate is shown in Figure 57.

Figure 57 – FDS output showing heat release rate at time of sprinkler activation.

As shown in Figure 57, the sprinkler activation temperature is reached at a time of 127 seconds while the heat release rate is at a value of 750 kW. Since design fire #2 is a sprinkler-controlled fire, it will be modeled as a fast t-squared fire until it reaches a heat release rate of 750 kW at a time of 127 seconds. At this point, the heat release rate will remain constant at 750 kW for the remainder of the simulation, as shown in the heat release rate output from the FDS simulation in Figure 58.

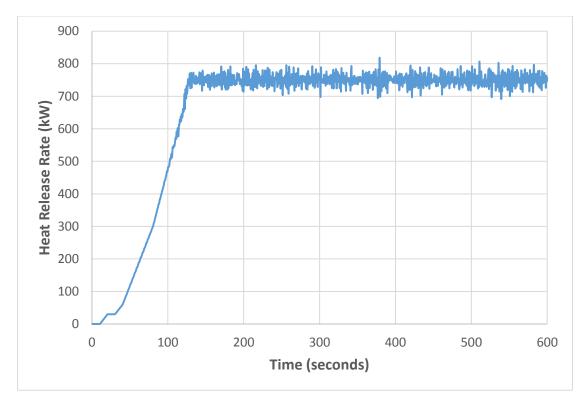


Figure 58 – Heat release rate over time from Design Fire #2 FDS simulation.


6.6.3.3 Mesh

The nondimensional parameter from Equation 6.1 of the FDS User's Guide is calculated for design fire #2 using a heat release rate of 750 kW. Since the value is between 4 and 16, it is determined that the mesh resolution is adequate for this fire scenario.

$$\frac{\dot{Q}}{\delta x} = \frac{\left(\frac{(750)}{(1.204)(1.005)(293)(\sqrt{9.81})}\right)^{\frac{2}{5}}}{0.2} = 4.27$$

6.6.3.4 Design Fire #2 ASET Results – Temperature

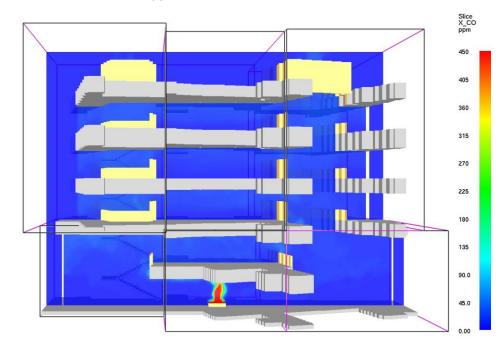
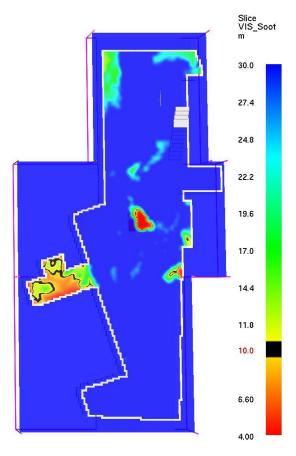

Figure 59 shows a temperature slice file of the entire atrium showing the tenable limit of 60°C not being reached for the duration of the simulation.

Figure 59 – Temperature slice file at 300 seconds showing tenable limit not being reached.

6.6.3.5 Design Fire #2 ASET Results – Carbon Monoxide


Figure 60 shows a slice file of the entire atrium showing the carbon monoxide concentration not reaching the tenable limit of 1,667 ppm.

6.6.3.6 Design Fire #2 ASET Results – Visibility

Visibility slice files of Level 6 through Level 2 are shown in Figure 61 through Figure 65 showing the time that the tenable limit of 10 meters is reached on each level. If the tenable limit was not reached, the visibility slice file at 300 seconds is shown since this was the end of the simulation.

Figure 61 – Visibility slice file of Level 2 showing tenable limit being reached at 270 seconds.

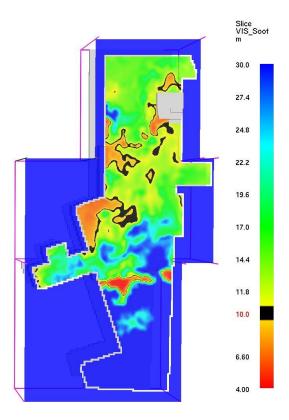


Figure 62 – Visibility slice file of Level 3 showing tenable limit being reached at 200 seconds.

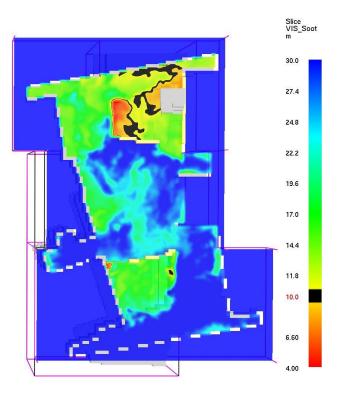
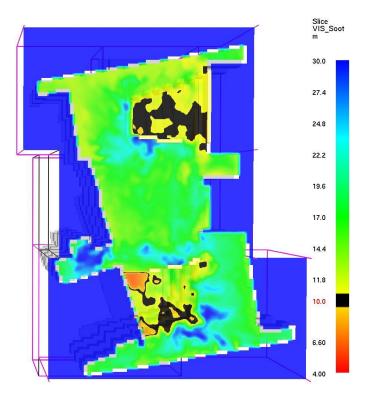



Figure 63 – Visibility slice file of Level 4 showing tenable limit being reached at 250 seconds.

Figure 64 – Visibility slice file of Level 5 at 300 seconds showing tenable limit not being reached.

Figure 65 – Visibility slice file of Level 6 at 300 seconds showing tenable limit not being reached.

6.6.3.7 Design Fire #2 ASET/RSET Analysis

A summary of the ASET times for design fire #2 is shown in Table 45.

	Temperature	Carbon Monoxide	Visibility
Level 2	Tenability maintained for 300 seconds	Tenability maintained for 300 seconds	270 s
Level 3			200 s
Level 4			250 s
Level 5			> 300 s
Level 6			> 300 s

Table 45 – Summary of ASET Results for Design Fire #2

Table 46 shows the calculation of RSET including a 50% safety factor compared with ASET for each level. Level 3 is the only level that fails since ASET is less than RSET. The detection time of 31 seconds was from the elevator spot smoke detector on Level 2.

Floor	Detection Time	Pre-movement Time	Travel Time	Total RSET	RSET x 1.5	ASET	ASET>RSET?
2			53	120	180	270	YES
3			95	162	243	200	NO
4	31*	36**	37	104	156	250	YES
5			37	104	156	> 300 s	YES
6			44	111	167	> 300 s	YES

6.6.3.8 Recommendations

Since the only level that failed the ASET/RSET comparison was Level 3, directly above the fire, it is not likely that increasing the amount of ventilation or using mechanical ventilation would increase the ASET greater than the RSET. The other option is to reduce the RSET on Level 3. The RSET on Level 3 was significantly greater than on any other level due to the queuing at the single door from the student workspace assembly spaces as shown in Figure 66.

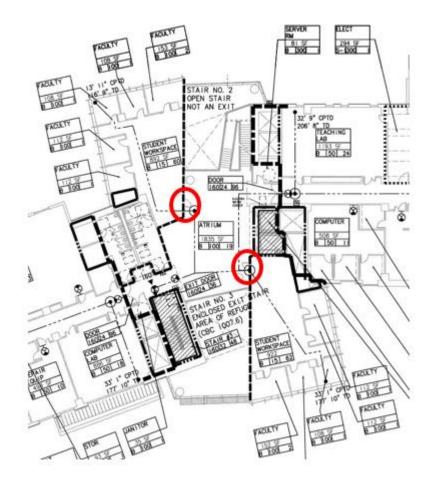


Figure 66 – Locations of queuing at Level 3 student workspace exits [1].

These spaces have an occupant load greater than 50, so there are two exits required, but only one provided as discussed previously in this report. This leads to the large number of occupants queuing at the single doors and increasing the RSET from Level 3. Although two exits are required from each of these spaces, there is not a practical way to fit a second exit from these spaces into the center of the atrium and the one-third diagonal separation rule would not be met. Two possible solutions are to change the use of the space so a business use occupant load factor of 100 can be used to decrease the occupant load, or to increase the width of the doors to reduce queuing times. Since it may not be practical to change the use of the space, increasing the width of the doors from 36 inches to 72 inches could decrease the queuing time, but would still not meet the requirement for two exits from the space. A Pathfinder model was performed with the wider 72 inch doors, which reduced the exit travel time from 95 seconds to 51 seconds. This resulted in a 1.5xRSET value of 177 seconds which is less than the ASET of 200 seconds, which passes the requirements of the performance based analysis. Although this satisfies the requirements of the performance based analysis, the prescriptive requirement for two exits from this space is still not meet.

6.7 Proposed Natural Ventilation Smoke Control System

Since the current natural ventilation smoke control system did not pass the performance based analysis on each level for each design fire, the system is not adequate for the atrium. In order to create a passing design, where ASET is greater than RSET, an alternate natural ventilation smoke control system was created. This system included increased vent area at the ceiling as well as increased makeup air vent area. An alternate option would be a mechanical smoke control system, but this would be more costly than altering the already existing natural ventilation smoke control system, so this option will not be analyzed. Since the axisymmetric plume was the most severe fire scenario, the same fire size and location as design fire #1 was used to test the proposed natural ventilation smoke control system.

6.7.1 Exhaust Vents

In order to increase the available safe egress time, the size of the exhaust vents at the ceiling were increased in the new smoke control system design. In the existing design, there is a total of 100 square feet in each of the smoke reservoirs for a total of 200 square feet of exhaust area. In the new design, the exhaust area was increased to 250 square feet in each smoke reservoir, as shown in Figure 67, for a total of 500 square feet.

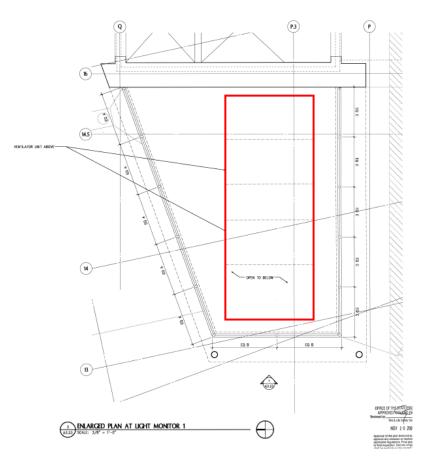


Figure 67 – Proposed 250 ft² exhaust vent in smoke reservoir at roof of atrium [1].

6.7.2 Makeup Air Vents

In the existing smoke control system, the makeup air vents are the Level 2 entrance doors at the north and south ends of the atrium. Since the area of the exhaust vents at the ceiling were increased, the area of the makeup air vents at Level 2 were increased as well. This would provide a greater amount of fresh air as makeup air since a greater volume of air is being exhausted from the atrium. Increasing the area of the makeup air vents will also decrease the velocity of the makeup air into the building so it will not disrupt the plume. The area of the makeup air vents were increased from 133.5 ft² to 341 ft² since this was as large as the vents could be made practically and was proportional to the increase in the exhaust vents.

6.7.3 New Smoke Control System ASET Results – Temperature

Figure 68 shows the temperature within the atrium at a time of 300 seconds. The tenable limit of 60°C was not reached on any level of the atrium.

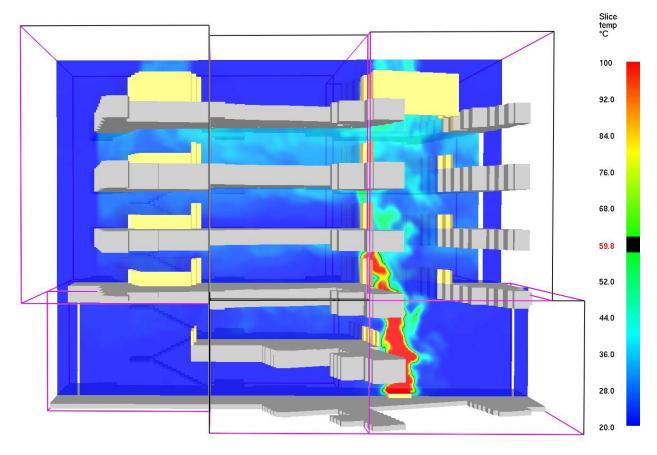
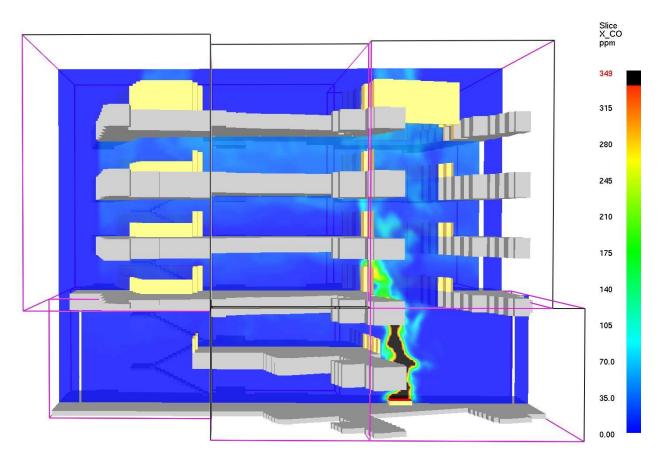
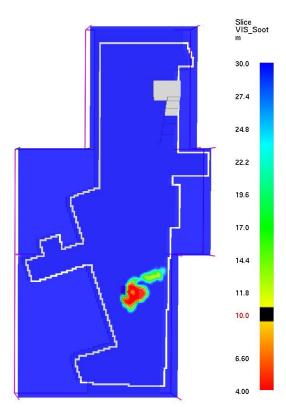
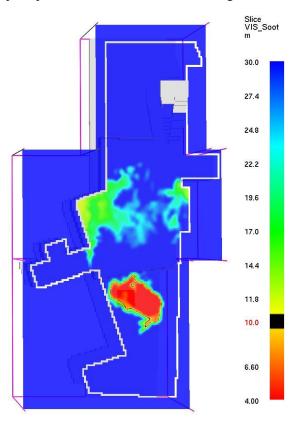



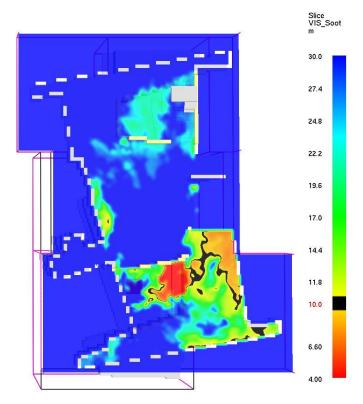
Figure 68 - Temperature slice file at a time of 300 seconds showing tenable limit not being reached.

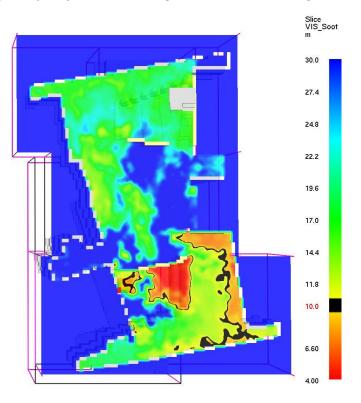
6.7.4 New Smoke Control System ASET Results - Carbon Monoxide

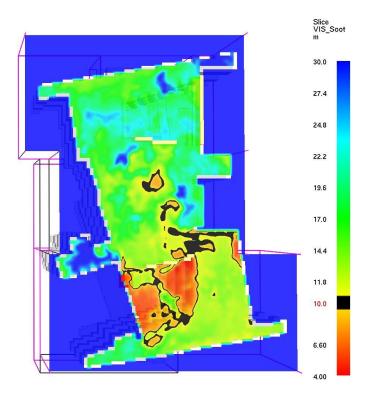

Figure 69 shows the carbon monoxide concentration in the entire atrium where a maximum value of 350 ppm is reached. Since this is less than the tenable limit of 1,667 ppm, the atrium maintains tenability for the entire simulation.


Figure 69 – CO Concentration slice file at 300 seconds showing the tenable limit not being reached.

6.7.5 New Smoke Control System ASET Results – Visibility


Figure 70 through Figure 74 show visibility slice files on Level 2 through Level 6 at the time the tenable limit of 10 meters was reached. If the tenable limit was not reached on a level, the slice file is shown at a time of 300 seconds, which was the end of the simulation.


Figure 70 – Visibility slice file of Level 2 at 300 seconds showing tenable limit not being reached.


Figure 71 – Visibility slice file of Level 3 at 300 seconds showing tenable limit not being reached.

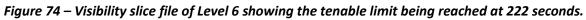


Figure 72 – Visibility slice file of Level 4 showing the tenable limit being reached at 264 seconds.

Figure 73 – Visibility slice file of Level 5 showing the tenable limit being reached at 265 seconds.

6.7.6 ASET/RSET Analysis

Table 47 shows a summary of the ASET results on each level for the new natural ventilation smoke control system

	Temperature	Carbon Monoxide	Visibility
Level 2	Tenability maintained for 300 seconds	Tenability maintained for 300 seconds	> 300 s
Level 3			> 300 s
Level 4			264 s
Level 5			265 s
Level 6			225 s

Table 47 – Summary of ASET Results for New	v Natural Smoke Control System Desian

Table 48 shows the calculation of the RSET as well as a comparison of RSET with ASET showing a passing design since ASET is greater than RSET on each level of the atrium.

Floor	Detection Time	Pre-movement Time	Travel Time	Total RSET	RSET x 1.5	ASET	ASET>RSET?
2			53	133	200	> 300	YES
3			95	175	263	> 300	YES
4	44	36	37	117	176	264	YES
5			37	117	176	265	YES
6			44	124	186	225	YES

Table 48 – ASET/RSET Analysis for New Natural Smoke Control System Design

6.7.7 Ambient Temperature Effects

Differences in exterior ambient air temperature can cause differences in smoke movement within the building. When the exterior ambient temperature is colder than the interior air temperature this is called stack effect. Since the temperature of the air inside the building is warmer, it is less dense and will rise within building shafts due to the buoyant force. This results in an outward flow at the top of the building, due to the pressure difference between the interior and exterior, and an inward flow of air at the bottom of the building (Figure 75). When the temperature within the building is colder than the exterior ambient temperature, the opposite occurs, known as reverse stack effect as shown in Figure 75.

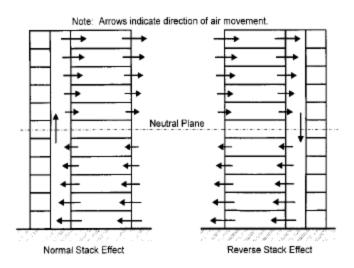


Figure 75 Air movement due to normal and reverse stack effect [22].

In order to analyze the effects of exterior ambient air temperature on the natural ventilation smoke control system, the most extreme hot and cold temperatures were analyzed in the FDS model to determine if the design passed the tenability criteria. According to Intellicast.com, the lowest recorded temperature was 12°F (-11.11°C) in December 1987 and the highest recorded temperature in San Luis Obispo was 112°F (44.44°C) in September 1971 [23]. By using these two extremes, it could be

determined if the smoke control system is adequate for all of the conditions that can occur in the environment. The ambient temperature in the FDS models was set to these values, while the interior temperature of the building was initially set at 20°C to analyze stack effect and reverse stack effect within the atrium.

6.7.7.1 Stack Effect, 12°F Ambient Temperature

Table 49 shows the ASET compared to the RSET with a 50% safety factor for the new natural ventilation smoke control system with an ambient temperature of 12°F. The ASET was determined on each level by when the visibility limit was reached, similar to determining the ASET for Design Fire #1 and #2 with the existing natural ventilation smoke control system. Tenability was maintained on each level for a time greater than the RSET including the safety factor as shown in Table 49. With stack effect, the natural ventilation smoke control system performs as well, or even better than the case without stack effect. This is due to the natural upward air movement induced by stack effect that leads to a greater volume of smoke being exhausted by the vents at the ceiling.

Floor	Detection Time	Pre-movement Time	Travel Time	Total RSET	RSET x 1.5	ASET	ASET>RSET?
2			53	143	215	> 300	YES
3			95	185	278	> 300	YES
4	54	36	37	127	191	> 300	YES
5			37	127	191	256	YES
6			44	134	201	209	YES

Table 49 – ASET/RSET Analysis for Stack Effect Case

6.7.7.2 Reverse Stack Effect, 112°F Ambient Temperature

Table 50 shows the ASET compared to the RSET with a 50% safety factor for the new natural ventilation smoke control system with an ambient temperature of 112°F. Similar to the previous case, the ASET was determined when the visibility limit was reached on each level since the temperature and CO concentration limit were not reached in the atrium. The ASET is greater than the RSET on every level except Level 6. This is due to the downward movement of air due to the reverse stack effect. This does not allow smoke to be exhausted from the exhaust vents, so Level 6 reaches the tenable limit very quickly. This may suggest that this proposed natural ventilation smoke control system design is not adequate for the atrium, but since this is the most severe temperature situation, the design may still be approved by the AHJ since the other levels maintain tenability.

Floor	Detection Time	Pre-movement Time	Travel Time	Total RSET	RSET x 1.5	ASET	ASET>RSET?
2			53	128	192	> 300	YES
3			95	170	255	> 300	YES
4	39	36	37	112	168	> 300	YES
5			37	112	168	282	YES
6			44	119	179	168	NO

Table 50 – ASET/RSET Analysis for Reverse Stack Effect Case

6.7.8 Sensitivity Analysis

Since the FDS simulations are dependent on user inputs, such as soot yield and CO yield, a sensitivity analysis was performed in order to determine the effects of varying these inputs on the results. Since these input values were determined from tabular data for free burning tests of single materials, these properties do not best represent the fire situation. For this reason, it is important to perform a sensitivity analysis to determine if changing these properties can alter the results of the simulation and if the selected properties can be considered appropriate. Different percentages of these input variables were used to analyze this. If a small change in the input variables produced an ASET less than RSET, it was determined that the selected input value needed to be re-analyzed.

6.7.8.1 Soot Yield

Since the ASET was determined by the tenable limit for visibility in every case, the soot yield is a very important parameter since it determines the amount of smoke produced by the fire. Increasing the soot yield increases the quantity of the smoke produced, so the visibility limit will be reached sooner. In addition to the value of 0.05 used in the previous analysis of the smoke control system, three more values were used as indicated in Table 51.

Soot Yield	% of Simulation Value
0.025	50
0.05	100
0.075	150
0.1	200

Table 51 –	Different Sc	ot Yield Inputs	Used in Simulations
------------	--------------	-----------------	---------------------

An FDS simulation was performed with each of these soot yield values and the ASET was compared to the calculated RSET. The ASET values on each level for each simulation are summarized in Table 52.

Floor	50%	100%	150%	200%
2	> 300 s	> 300 s	> 300 s	> 300 s
3	> 300 s	> 300 s	> 300 s	> 300 s
4	> 300 s	264 s	202 s	168 s
5	> 300 s	265 s	204 s	175 s
6	> 300 s	225 s	168 s	163 s

Table 52 – ASET Results for Different Soot Yield Values

As shown in Table 52, higher values of soot yield decrease the ASET since the visible limit of 10 meters is reached sooner when there is more smoke. For each case, the design passes the performance based analysis because the ASET is greater than the calculated RSET with the 50% safety factor. Although the ASET is reduced for the 150% and 200% cases, the calculated RSET is also reduced because the detection time is sooner when the soot yield is higher. This is because the smoke is first detected by the beam detectors that are measuring the percent obscuration. With more smoke, the beam detectors will activate sooner, which decreases the RSET. The calculation of RSET and the ASET for the most severe case of a soot yield of 0.1 is shown in Table 53.

Table 53 – ASET/RSET Analysis for Simulation with Soot Yield of 0.1

Floor	Detection Time	Pre-movement Time	Travel Time	Total RSET	RSET x 1.5	ASET	ASET>RSET?
2			53	117	176	> 300	YES
3			95	159	239	> 300	YES
4	28	36	37	101	152	168	YES
5			37	101	152	175	YES
6			44	108	162	163	YES

6.7.8.2 CO Yield

Although the ASET was always determined by the visibility limit and not the CO concentration limit, a sensitivity analysis was performed on the CO yield to determine if different input values would have different results. The different values for the CO yield that were used are summarized in

Table 54. The tenable limit for CO concentration was never reached in any of the cases. The greatest CO concentration reached in the case with a CO yield of 0.12 was 1,000 ppm, far less than the tenable limit of 1,667 ppm.

CO Yield	% of Simulation Value
0.04	100
0.08	200
0.12	300

Table 54 – Different CO Yields Used in the Sensitivity Analysis

6.7.8.3 Sensitivity Analysis Conclusion

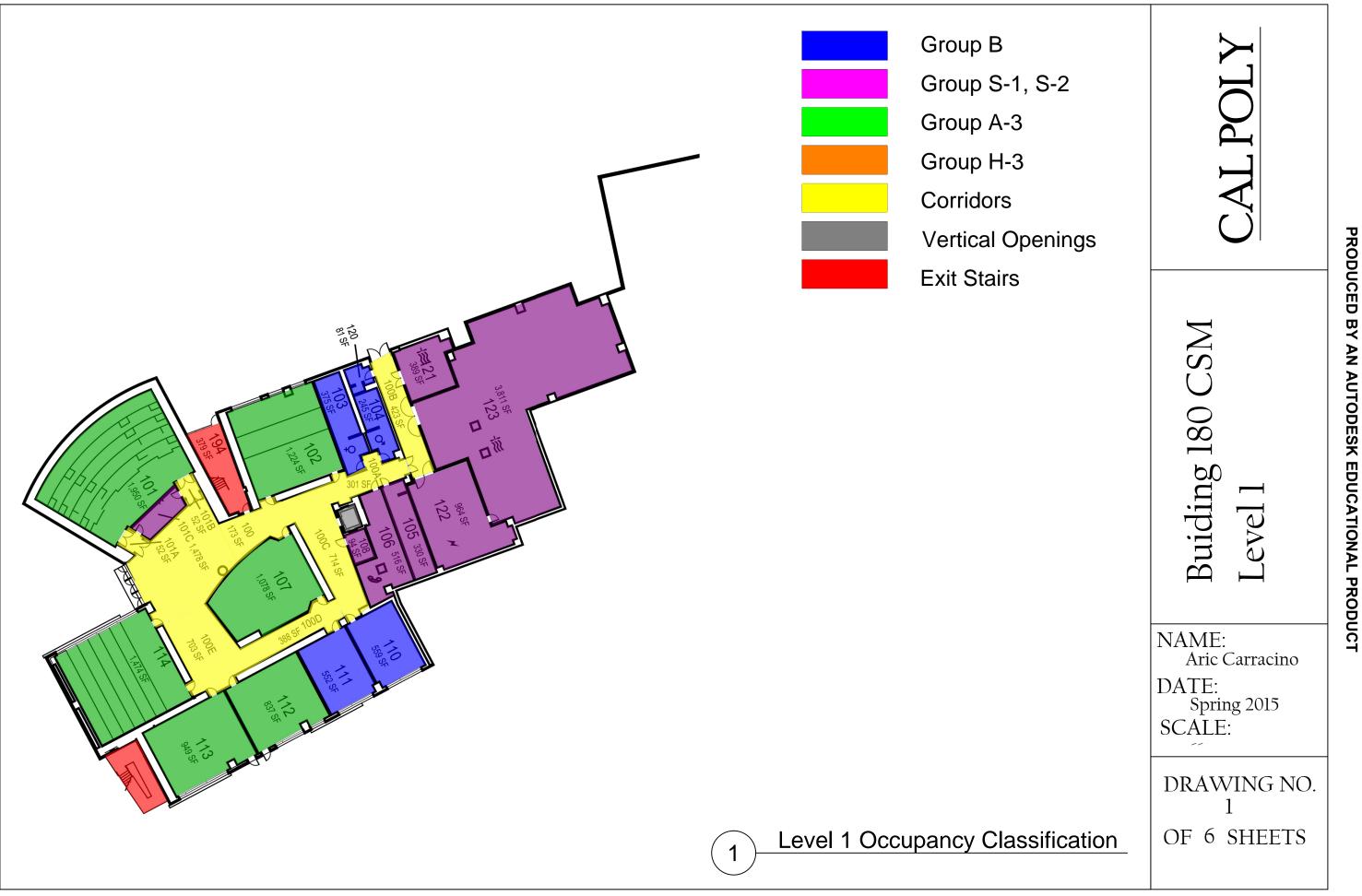
The sensitivity analysis of soot yield and CO yield showed that increasing the input values by 200% and 300% respectively did not have an effect on the ASET and RSET analysis. Since the changes in these parameters did not cause the new natural smoke control system design to fail the performance based analysis, it is safe to determine that the system is adequate for the atrium. The selected input properties are considered appropriate for the simulation since they were based on tabular data and more conservative values did not cause the smoke control system to fail.

6.8 Performance Based Analysis Conclusion

As shown in the previous analysis, the existing natural ventilation smoke control system is not adequate for the atrium since it cannot maintain tenable conditions for a time greater than it takes occupants to exit the atrium. In order to pass the performance based analysis, a new natural ventilation smoke control system has been proposed with additional venting. Using the most severe fire scenario, Design Fire #1, it was shown that this new smoke control system design is adequate for the atrium because it maintains tenability for a time greater than the egress time. Through a sensitivity analysis of input parameters and an analysis on the most severe temperature conditions for San Luis Obispo, the new smoke control system design was proven to pass the performance based analysis, except for on Level 6 for the case of reverse stack effect. Although this level did not pass, the suggested design is still more appropriate than the current design for the atrium and would be the most cost effective solution since it would only require increasing the size of the vents rather than installing a mechanical ventilation smoke control system.

7.0 CONCLUSION

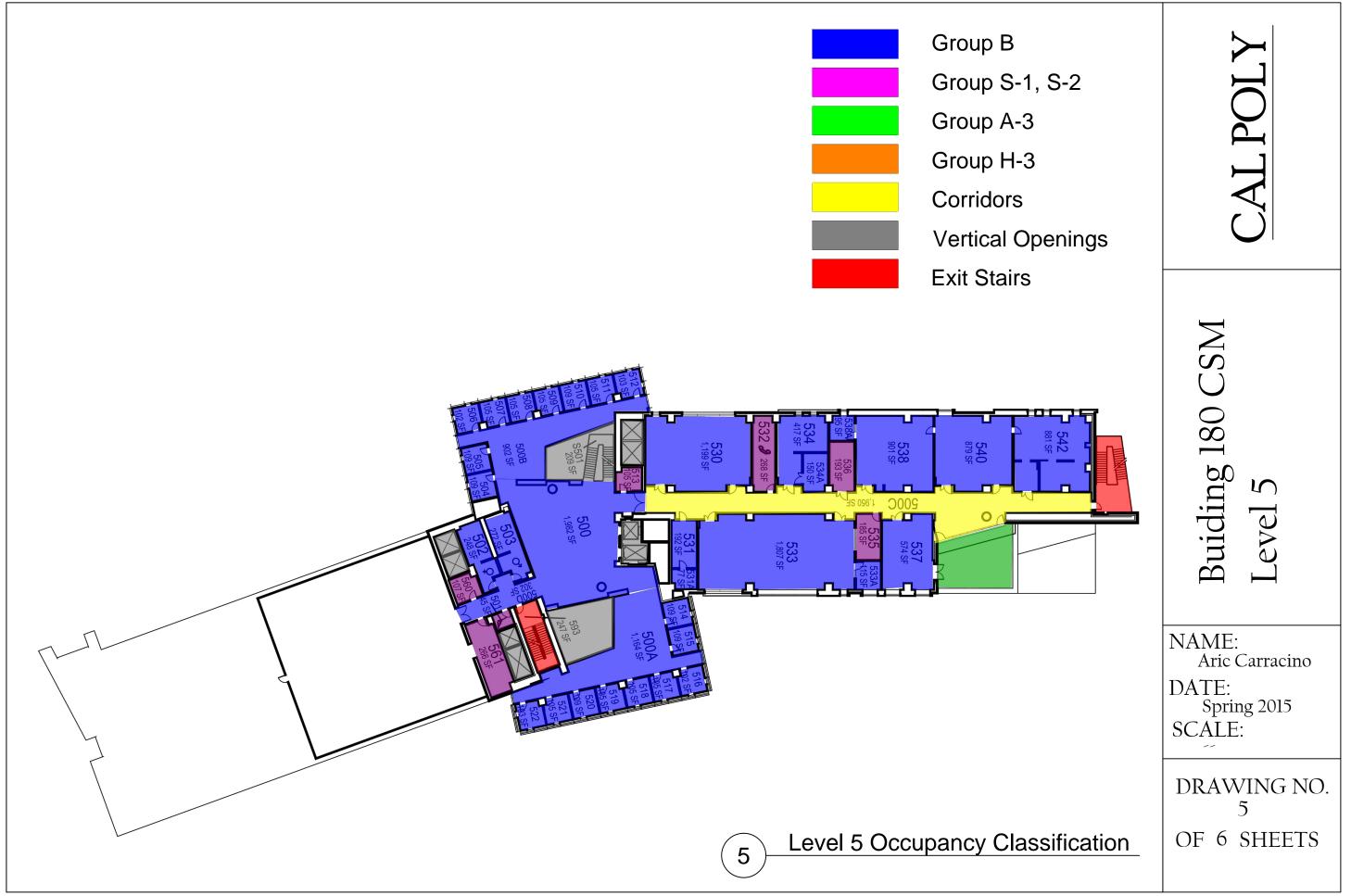
Through a prescriptive and performance based analysis, several discrepancies were found in the Warren J. Baker Center for Science. For the egress components, dead end corridors have been identified that need to be reduced in length in order to be compliant with the CBC. Also, the student workspace on Level 3 requires a second exit, as previously discussed in the report. It was determined that the building meets the requirements for structural fire protection related to the height, area, and required fire resistance ratings and separations. The hydraulic calculations for the fire sprinkler system proved that the water supply exceeds the demand and is sufficient for the building. The fire alarm system contains adequate coverage of the building and is compliant with the requirements of NFPA 72 for spacing and placement of devices. The performance based analysis proved that the existing natural ventilation smoke control system is not adequate for the atrium and a new system has been proposed and tested in FDS to prove that it can provide a passing design. With the recommendations presented in this report, the Warren J. Baker Center for Science can be code compliant and safe for occupancy.

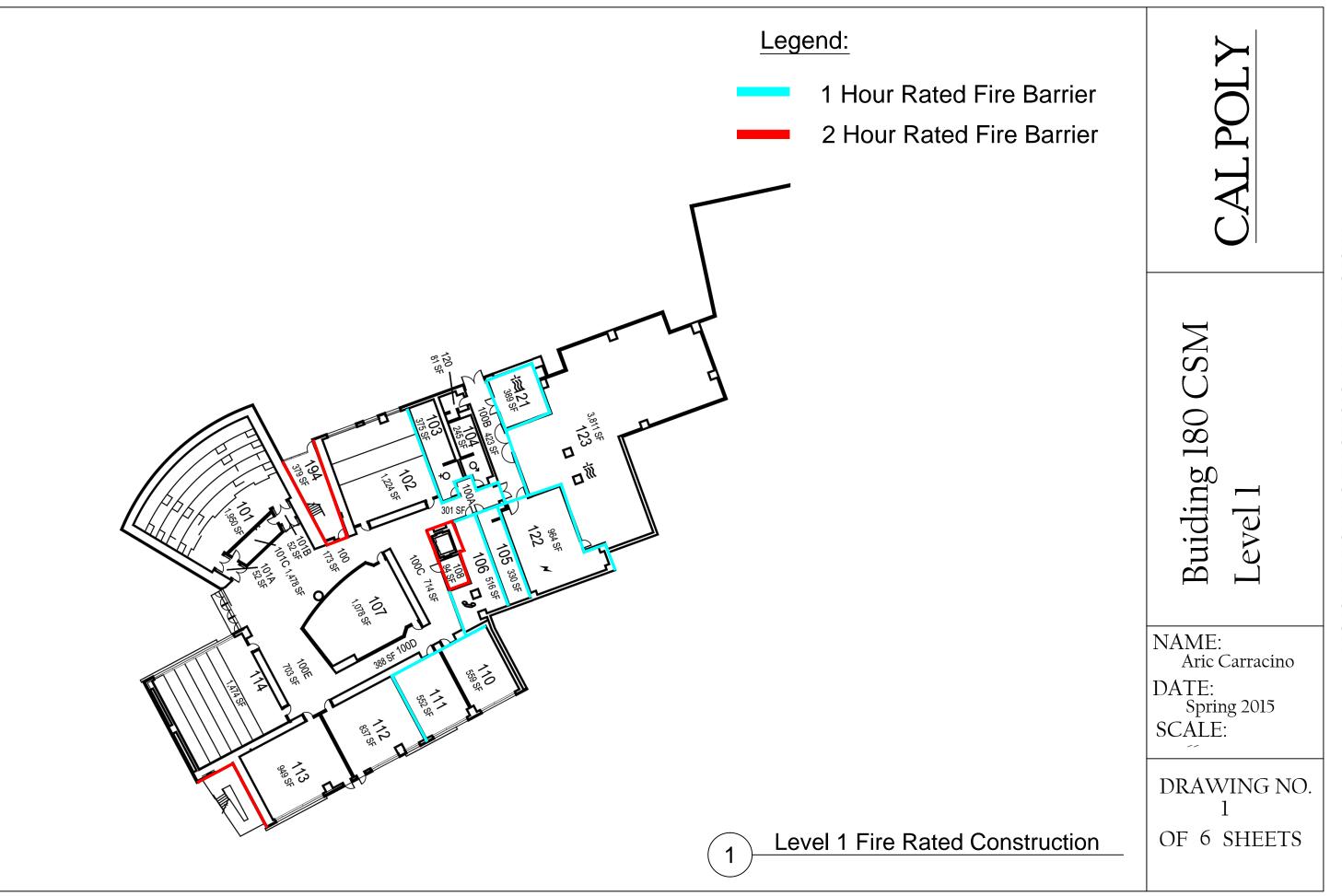

REFERENCES

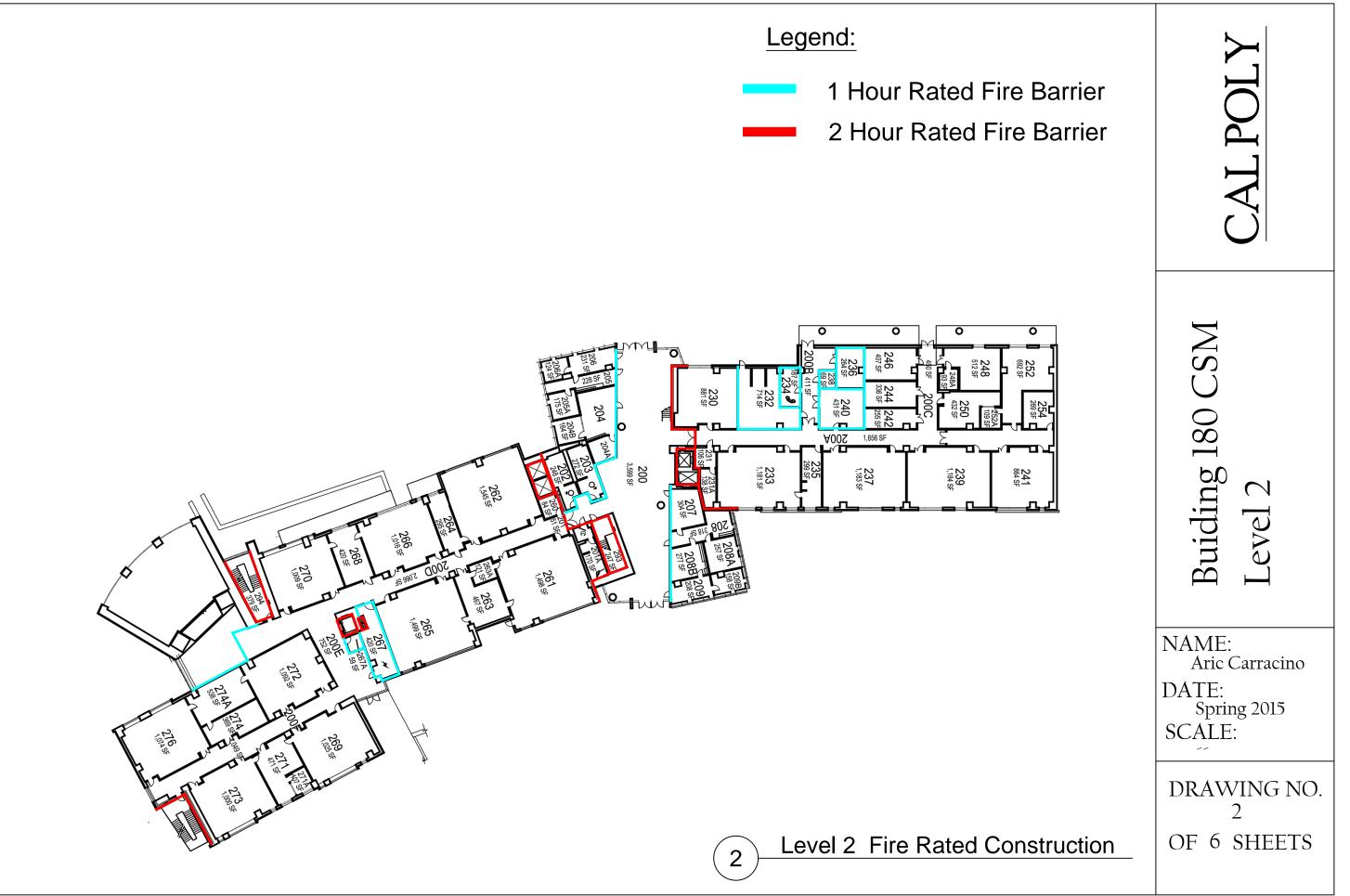
- [1] Zimmer Gunsal Frasca Architects LLP, "Center for Science," 2009, Drawings.
- [2] California Building Code. Sacramento, CA: California Building Standards Commission, 2013. Print.
- [3] Aero Automatic Sprinkler Company, "Cal Poly Center for Science," 2011, Drawings.
- [4] Aero Automatic Sprinkler Company, "Wilkins," *Hydraulic Calculations*, 2011.
- [5] *NFPA 13: Automatic Sprinkler Systems Handbook*. Quincy: National Fire Protection Association, 2013. Print.
- [6] Aero Automatic Sprinkler Company, *Hydraulic Calculations*, 2011.
- [7] *NFPA 14: Standard for the Installation of Standpipe and Hose Systems*. Quincy, MA: National Fire Protection Association, 2013. Print.
- [8] *NFPA 25: Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems*. Quincy, MA: National Fire Protection Association, 2014. Print.
- [9] *NFPA 72: National Fire Alarm and Signaling Code Handbook*. Quincy, MA: National Fire Protection Association, 2013. Print.
- [10] Deep Blue Integration, "Cal Poly Center for Math and Science 180," 2013, Drawings.
- [11] Notifier by Honeywell, "FSP-851(A) Series," https://www.notifier.com/salesandsupport/documentation/Datasheets/DN_6935.pdf.
- [12] *NFPA 92: Standard for Smoke Control Systems*. Quincy, MA: National Fire Protection Association, 2015. Print.
- [13] Proulx, Guylene, "Evacuation Time," SFPE Handbook of Fire Protection Engineering: 4th Ed. Quincy, MA Bethesda, MD: National Fire Protection Association (NFPA) Society of Fire Protection Engineers (SFPE), 2008.
- [14] Purser, David, "Assessment of Hazards to Occupants from Smoke, Toxic Gases and Heat," SFPE Handbook of Fire Protection Engineering: 4th Ed. Quincy, MA Bethesda, MD: National Fire Protection Association (NFPA) Society of Fire Protection Engineers (SFPE), 2008.
- [15] National Institute of Standards and Technology, "Fire Dynamics Simulator User's Guide," 2013.
- [16] Gann, Richard, and Bryner, Nelson, "Combustion Products and Their Effects on Life Safety," *Fire Protection Handbook*. Quincy, MA: National Fire Protection Association, 2008. Print.
- [17] Fahy, Rita, "Table 4.2.1," *Fire Protection Handbook*. Quincy, MA: National Fire Protection Association, 2008. Print.
- [18] Thunderhead Engineering, "Pathfinder User Manual," 2014.
- [19] Overholt, Kristopher, "FDS Mesh Size Calculator," http://www.koverholt.com/fds-mesh-sizecalc/, 2015.

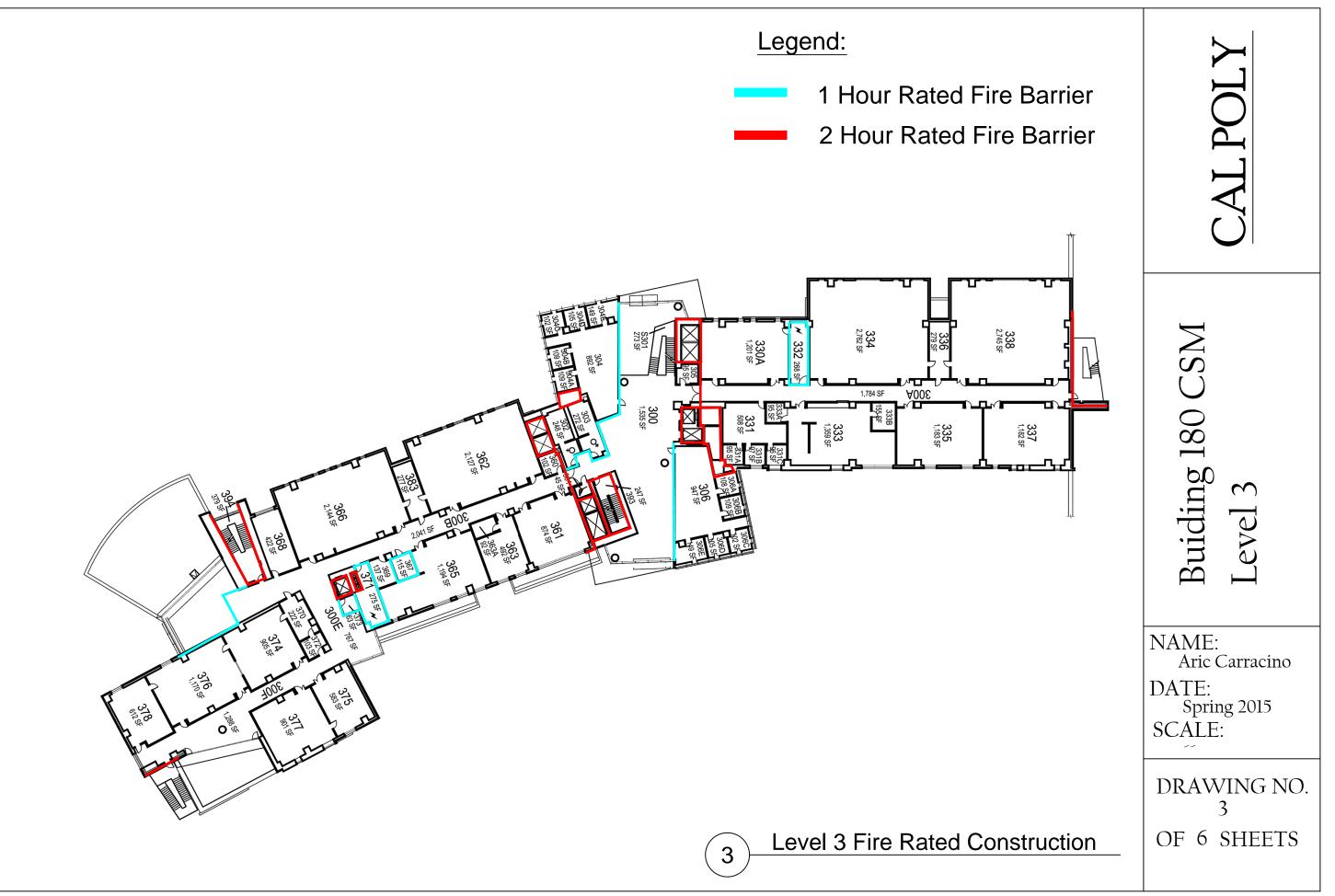
- "Table 3-4.16," SFPE Handbook of Fire Protection Engineering: 4th Ed. Quincy, MA Bethesda, MD: National Fire Protection Association (NFPA) Society of Fire Protection Engineers (SFPE), 2008.
- [21] Babrauskas, Vytenis, "Upholstered Furniture Heat Release Rates Measured with a Furniture Calorimeter," Washington DC: National Bureau of Standards, 1982.
- [22] Klote, John, Milke, James, *Principles of Smoke Management, Atlanta, GA:* American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., 2002.
- [23] Intellicast.com, "San Luis Obispo," 2015.

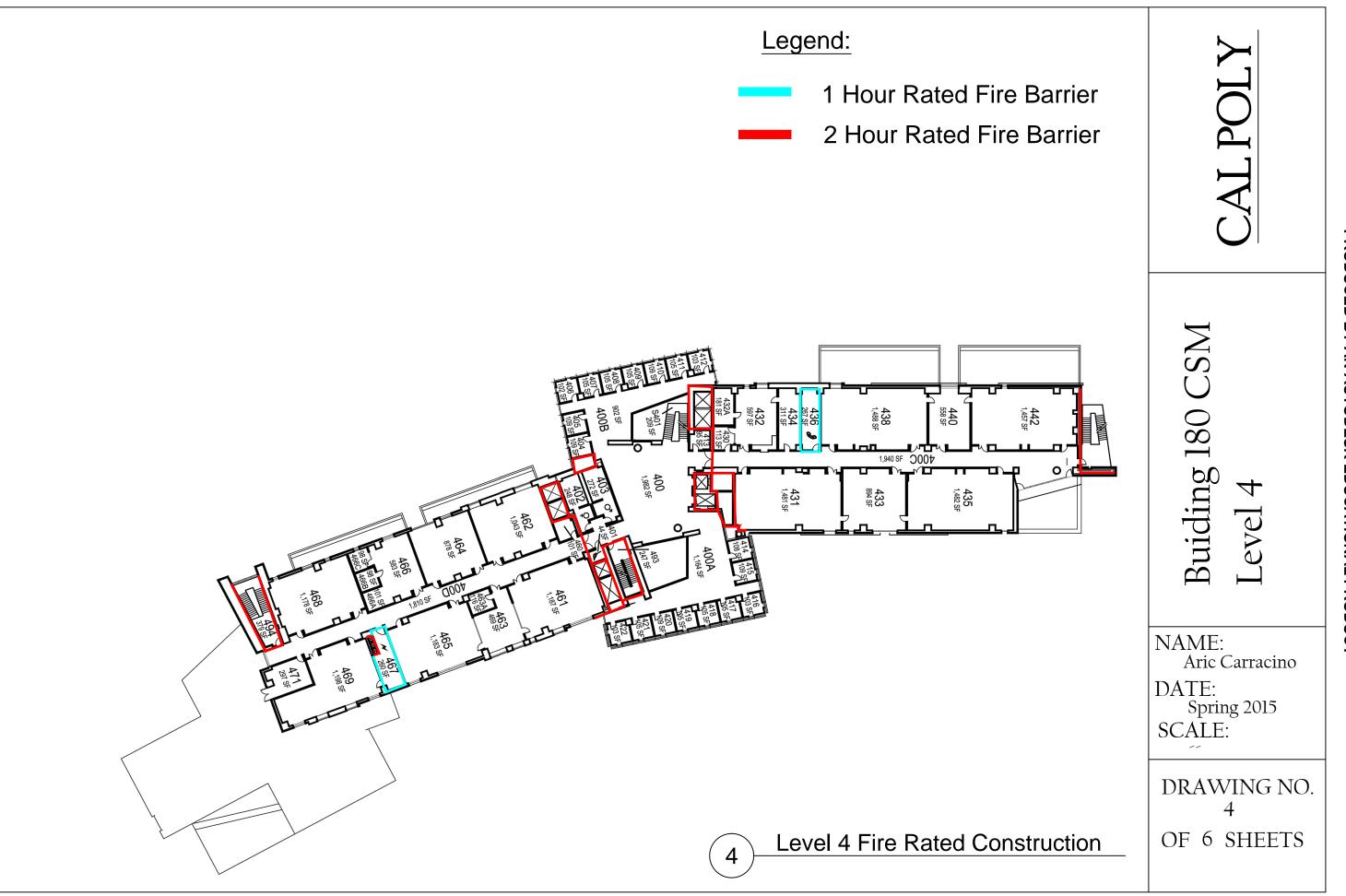
APPENDICES

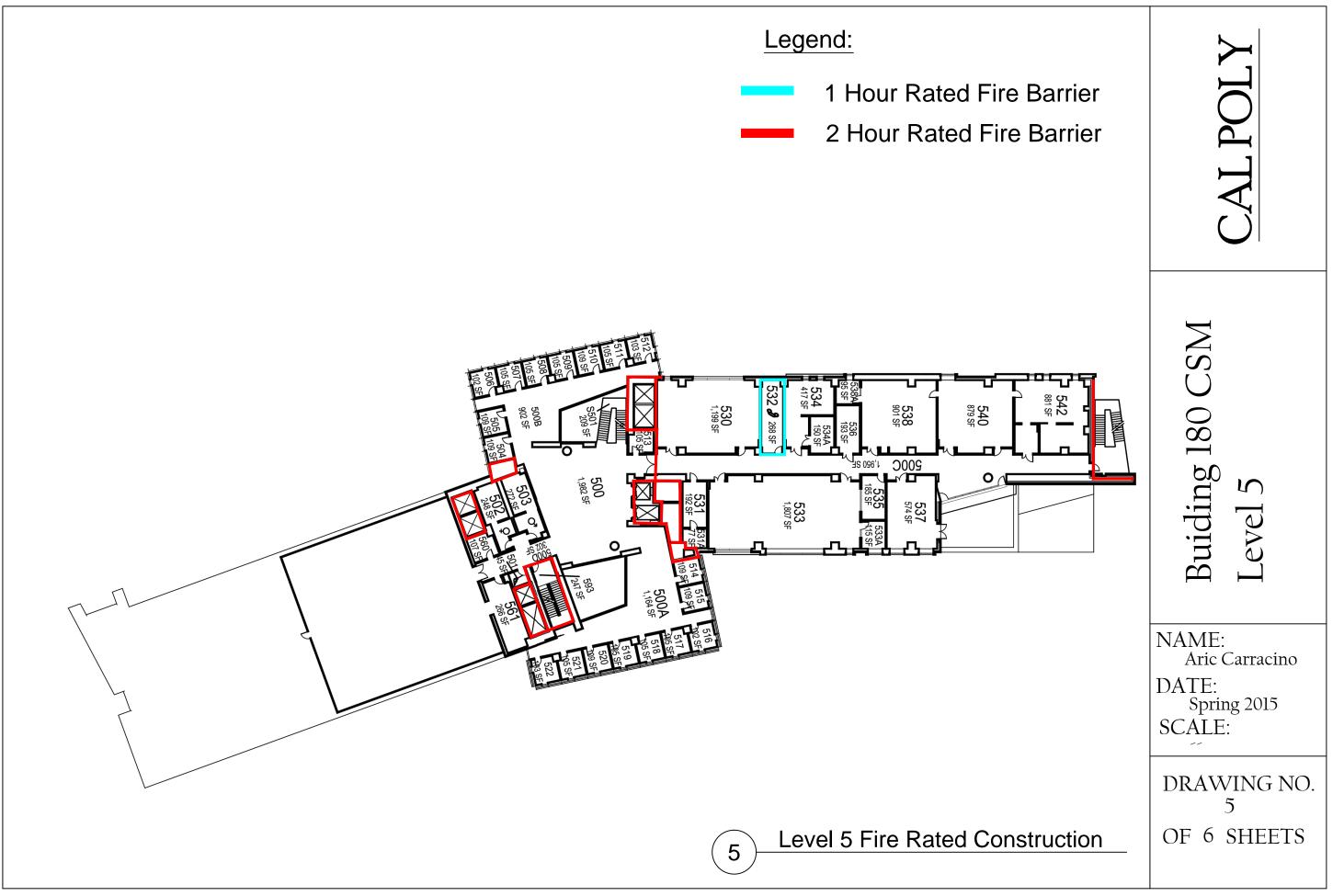

APPENDIX A – OCCUPANCY FLOOR PLANS

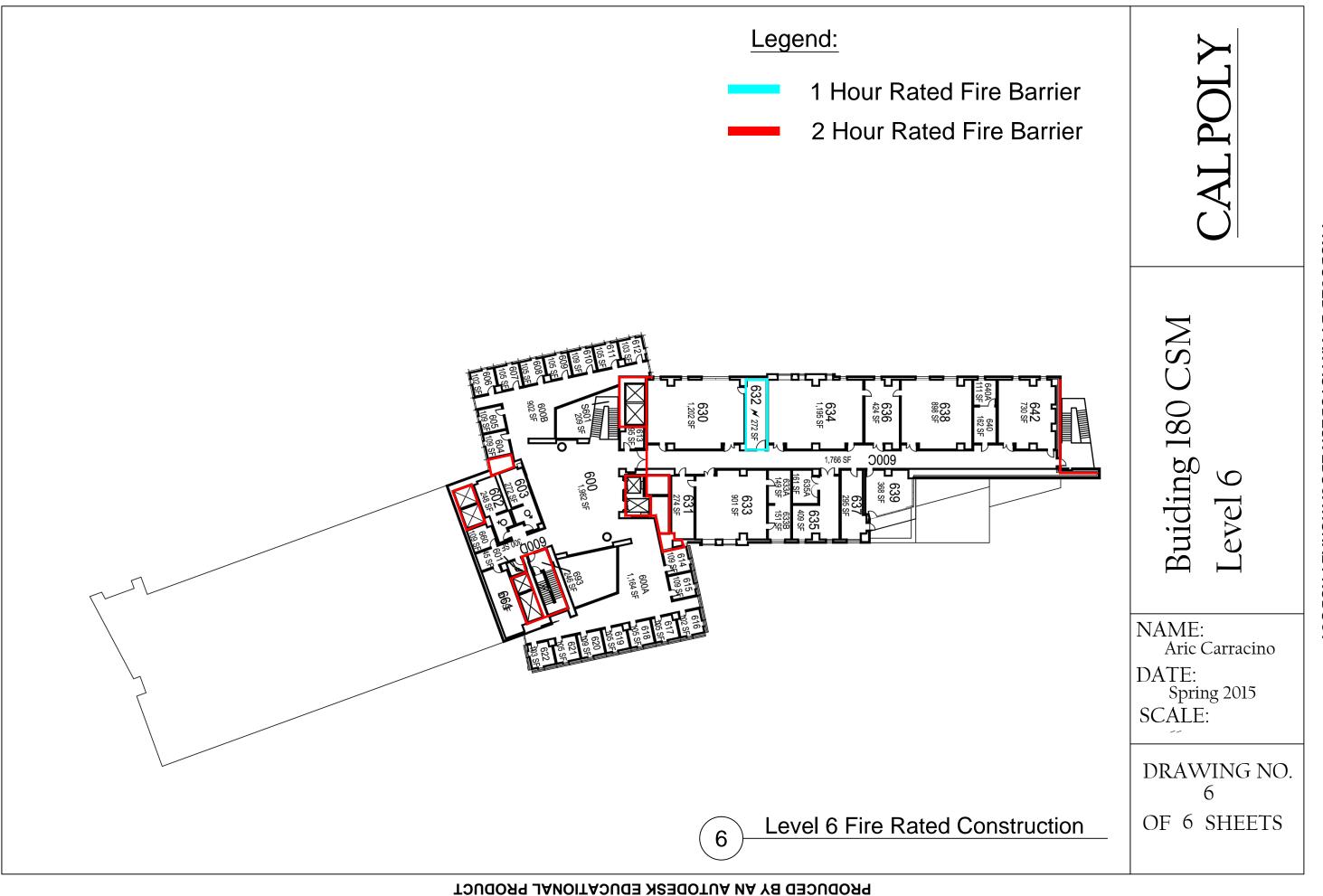


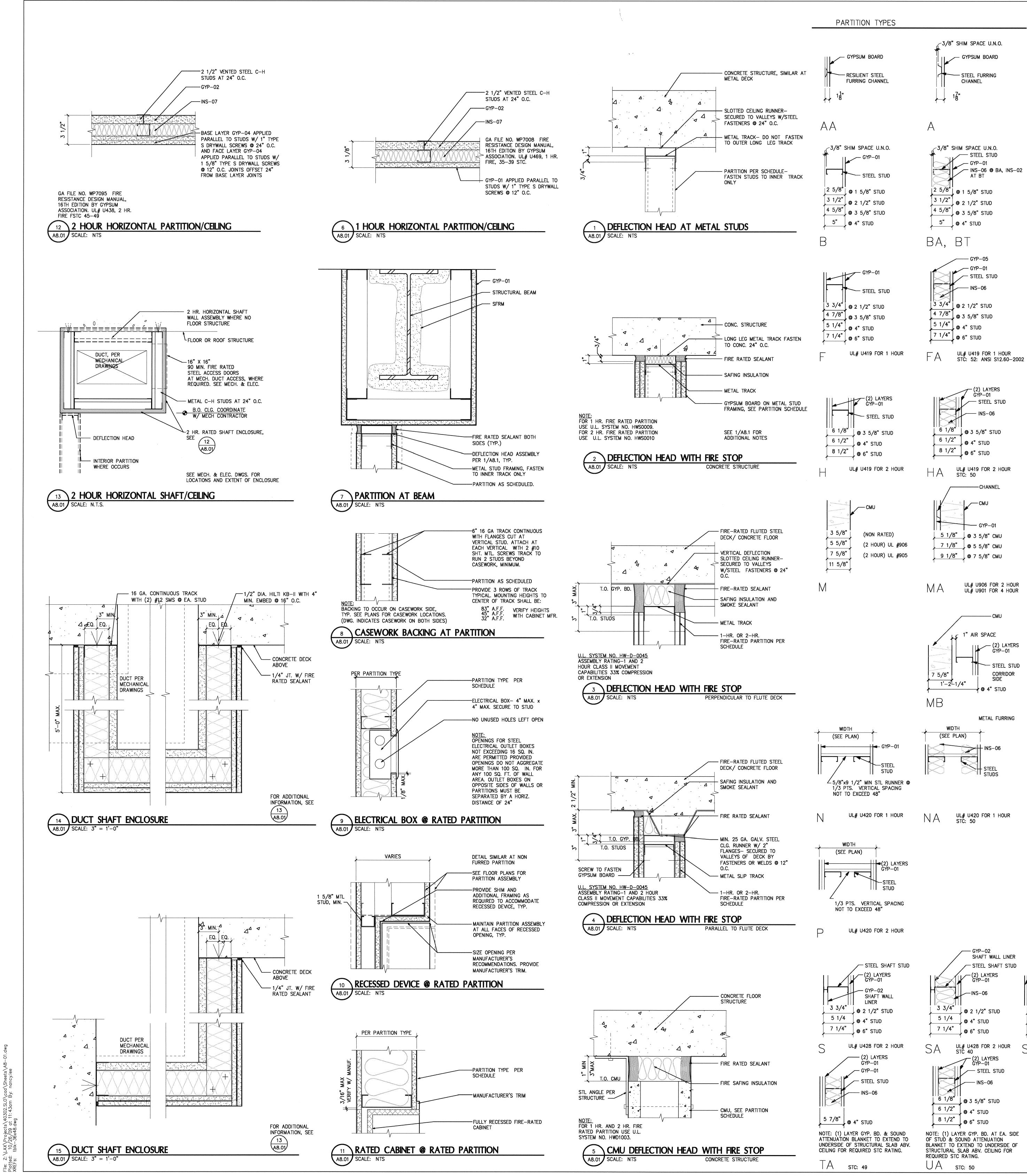


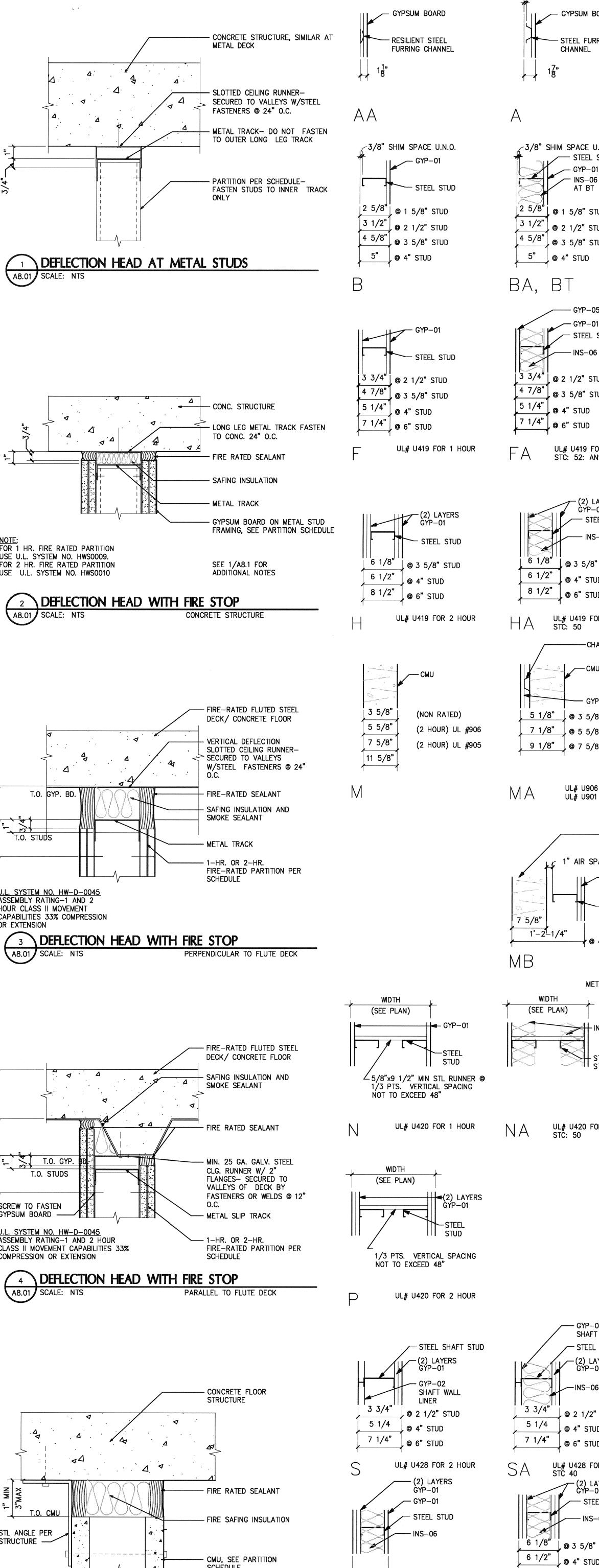


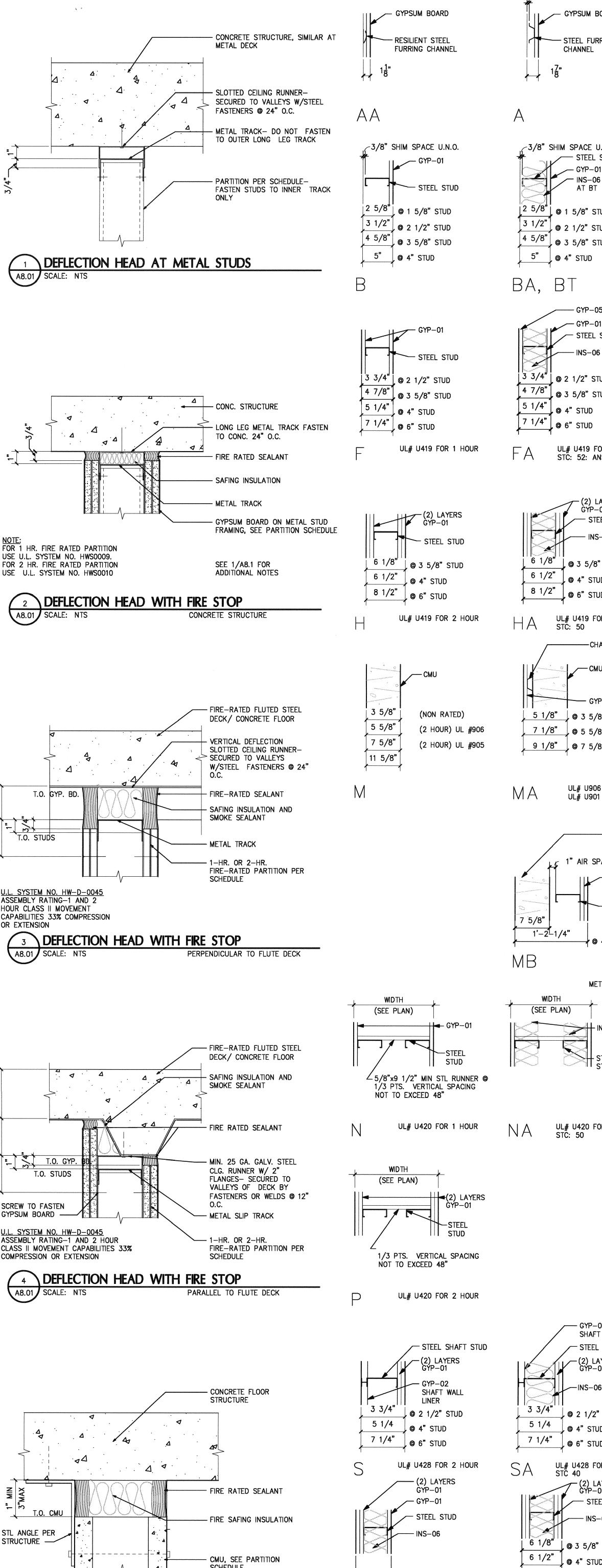



APPENDIX B – FIRE RATED CONSTRUCTION FLOOR PLANS









APPENDIX C – CONSTRUCTION MATERIALS

Z Z Z 40 G

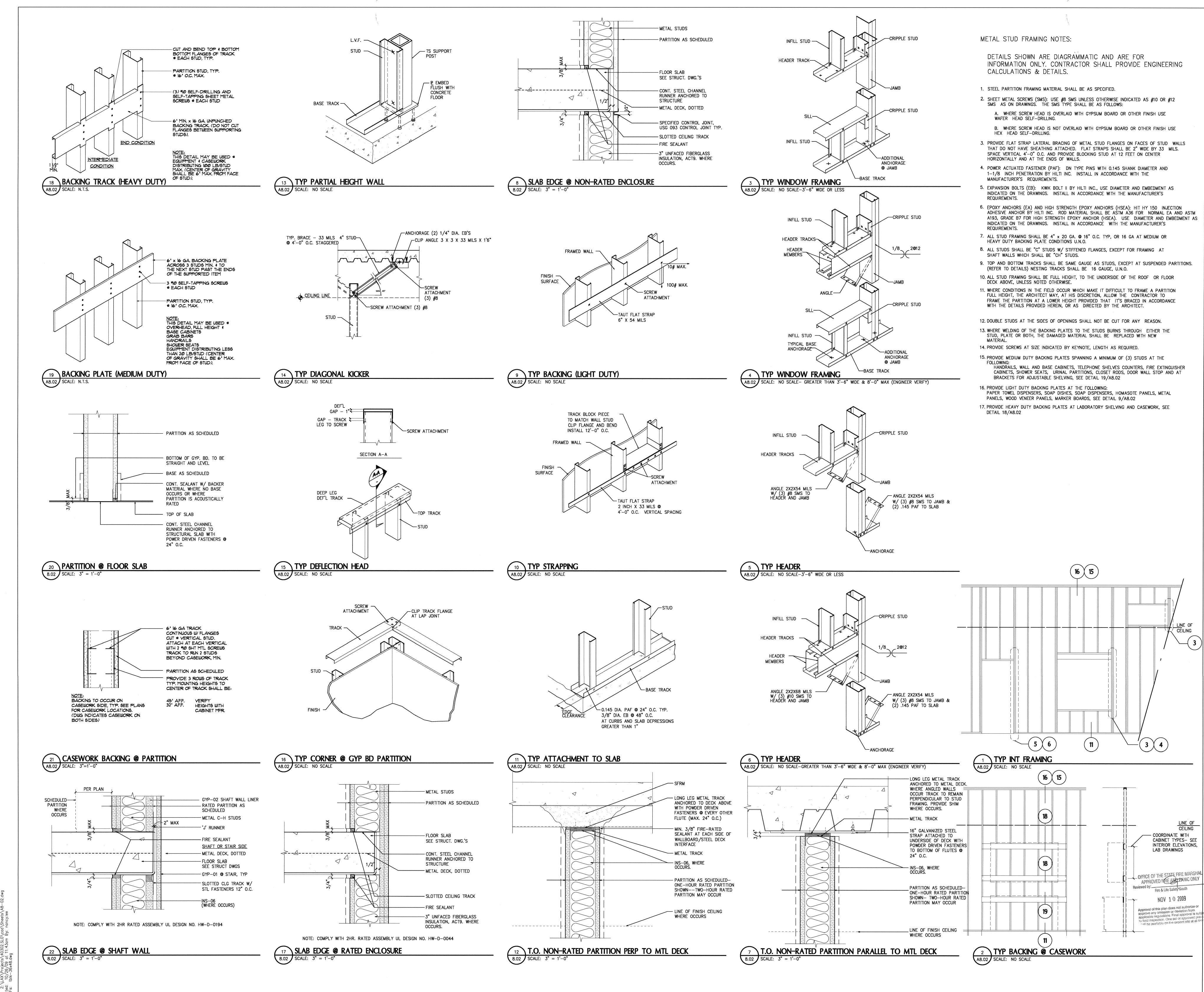
15. SEE SHEET A8.02 FOR TYP 16. SEE PLANS FOR LOCATION RATING) 17. PLAN DIMENSIONS ARE TO OF COLUMN, OR FACE OF NOTED. 18. L/360 REQUIRED AT ALL MATERIAL IS APPLIED TO L/240 18. FOR TYPICAL PENETRATIO $\begin{array}{c}
1\\
\underline{1}\\
\underline{48.03}\\
\underline{48.03}\\
\underline{48.03}\\
\underline{3}\\
\underline{48.03}\\
\underline{4$ PARTITION TYPE PLAN PARTITION CONFIGURATIO FIRE-RATING PARTITION HE DESIGNATION FRAMING SIZE DESIGN 0 = FURRING1 = 1 5/8" 2 = 2 1/2" 3 = 3 5/8" 4 = 4" 6 = 6"8 = 8" P = PER PLANCONCRETE MASONRY 4 = 3 5/8" C.M.U. 6 = 5 5/8" C.M.U. 8 = 7 5/8" C.M.U. 12 = 11 5/8" C.M.U SEE 5/A8.01 FOR RATING ASSEMBLY 2 HOUR SOLID CONCRETE 2 HOUR SOLID FLOOR OR METAL DECK AND CONCRET SPRAY-APPLIED STEEL PIP SPRAY-APPLIED FIREPROOF SPRAY-APPLIED FIREPROOF FIRE RATING / PARTI P = PARTIAL HEIGHT PARTITIOND = NON-RATED- EXTEND STUDSC = NON - RATED - EXTEND STUDSGYPSUM BD. TO UNDERSIDE ABOVE CEILING B = NON - RATED TO UNDERSIDE-(1) LAYER GYP-01 A = NON-RATED-EXTEND STUDSSTRUCTURE SHAFT WALL LINER \sim STEEL SHAFT STUD 0 = NON-RATED - TO UNDERSIDE —(2) LAYERS GYP-01 1 = (1) HOUR FIRE-RATED. 2 = (2) HOUR FIRE-RATED. ____ @ 2 1/2" STUD ____ @ 6" STUD UL# U428 FOR 2 HOUR STC 40 _____ P D C

GYP-01

- STEEL STUD

CORRIDOR

3 3/4"


5 1/4

7 1/4"

SS

GENERAL NOTES:

		ER GUNSUL.
ENE	RAL NOTES:	
_	5/8" GYPSUM BOARD ON METAL STUDS @ 16" O.C. TYPICAL UNLESS OTHERWISE NOTED. 5/8" CEMENT BOARD TYPICAL AT INTERIOR TILE FINISH. SEE INTERIOR ELEVATIONS FOR TILE LOCATION.	ELULS E
3.	ABUSE RESISTANT PANELS USED AT SPECIFIC LOCATIONS. SEE FINISH SCHEDULE.	CHITECTS
	HIGH IMPACT PANELS USED AS SUBSTRATE FOR RESINOUS COATINGS. SEE FINISH SCHEDULE.	Architecture / Planning / Interior Design Portland Seattle Los Angeles Washington DC New York
5. 6.	SOUND ATTENUATION BLANKET TO BE 3 1/2" UNLESS OTHERWISE NOTED. PROVIDE ACOUSTIC SEAL AT PERIMETER AND PENETRATIONS OF SOUND RATED PARTITIONS	515 South Flower Street, Suite 3700 Los Angeles, California 90071
7.	AND OTHER CONSTRUCTION AS REQUIRED TO ACHIEVE STC INDICATED. PROVIDE LABELED GYPSUM WALL BOARD AT FIRE RATED PARTITIONS.	(PH) 213 617 1901 (FAX) 213 617 0047
8.	FIRE RATED AND SMOKE ASSEMBLY PARTITIONS TO EXTEND TO STRUCTURE UNLESS OTHERWISE NOTED.	
9.	MAINTAIN FIRE RATING OF WALLS AROUND FIRE EXTINGUISHER CABINETS AND OTHER RECESSED ITEMS FOR TYPICAL CONDITIONS SEE.	Consultants STRUCTURAL ENGINEER John A. Martin & Associates, Inc 1212 S. Flower Street
10.	FRAME AROUND BEAMS AND OTHER STRUCTURAL ELEMENTS WHEN THEY OCCUR WITH THE SPACE OF A FIRE RATED OR ACOUSTICAL PARTITION. FOR TYPICAL CONDITIONS SEE	Los Angeles, CA 90015 MECHANICAL ENGINEER Rumsey Engineers
11.	AT LOCATIONS REQUIRING A FIRE RATED HORIZONTAL PARTITION, PROVIDE PER DETAILS $ \begin{array}{c} 6\\ \hline A8.01 \end{array} $	99 Linden Street Oakland, CA 94607 ELECTRICAL ENGINEER
12.	AT HORIZONTAL RATED DUCT ENCLOSURES, PROVIDE PER DETAILS $ \begin{array}{c} 13\\ \hline 14\\ \hline A8.01 \end{array} $ $ \begin{array}{c} 15\\ \hline A8.01 \end{array} $	Integrated Design Associates, Inc 3140 De La Cruz Boulevard, Suite 110 Santa Clara, CA 95054
13.	WHEN METAL FRAMING CONTINUES PAST INTERMEDIATE STRUCTURE -AS IN MULTI-STORY STAIR ENCLOSURES AND SIMILAR CONDITIONS. ATTACHMENT TO INTERMEDIATE STRUCTURE SHALL BE WITH A SLOTTED CONNECTION OR OTHER MEANS SO THAT STRUCTURAL DEFLECTION WILL NOT TRANSFER LOADS TO METAL FRAMING.	CIVIL ENGINEER Cannon Associates 1050 Southwood Drive San Luis Obispo, CA 93401
14.	FOR TYPICAL DEFLECTION HEAD DETAILS SEE $ \begin{array}{c} 1\\ \hline A8.01 \end{array} $ $ \begin{array}{c} 2\\ \hline A8.01 \end{array} $ $ \begin{array}{c} 4\\ \hline A8.01 \end{array} $ $ \begin{array}{c} 5\\ \hline A8.01 \end{array} $ $ \begin{array}{c} 5\\ \hline A8.01 \end{array} $	LANDSCAPE ARCHITECT Katherine Spitz and Associates 4212 1/2 Glencoe Avenue Marina del Rey, CA 90292
	SEE SHEET A8.02 FOR TYPICAL PARTITION DETAIL. SEE PLANS FOR LOCATIONS OF RATED PARTITIONS (MINIMUM 1 HOUR RATING)	LABORATORY Research Facilities Design 3965 Fifth Avenue, Suite 300
	PLAN DIMENSIONS ARE TO FACE OF PARTITION ASSEMBLY, CENTERLINE OF COLUMN, OR FACE OF CONCRETE MASONRY UNLESS OTHERWISE NOTED.	San Diego, CA 92103-3107 LIGHTING DESIGN David Nelson & Associates, LLC
18. 18.	L/360 REQUIRED AT ALL INTERIOR WALLS WHERE ADDITIONAL FINISH MATERIAL IS APPLIED TO GYP. BOARD. AT ALL OTHER LOCATIONS USE L/240 FOR TYPICAL PENETRATION DETAILS AT RATED ASSEMBLIES SEE	P.O. Box 270254 Littleton, CO 80127
	$\begin{pmatrix} 1 \\ A8.03 \end{pmatrix} \begin{pmatrix} 2 \\ A8.03 \end{pmatrix} \begin{pmatrix} 3 \\ A8.03 \end{pmatrix} \begin{pmatrix} 4 \\ A8.03 \end{pmatrix}$	
		DENTIFICATION STAMP DW. OF THE STATE ARCHITECT OFFICE OF REQULATION SERVICES APPPL 01-110181
<u>art</u>	PARTITION	AC 88 DATE SEP0_3_2009
		LJ
	FIRE-RATING /	Revisions
		BID DOCUMENTS 10/23/09
<u>KAM</u>	0 = FURRING	
	1 = 1 5/8" 2 = 2 1/2"	
	$3 = 35/8^{"}$ $4 = 4^{"}$	
	4 - 4 $6 = 6^{"}$ $8 = 8^{"}$	
	P = PER PLAN	
ONC	RETE MASONRY SIZE DESIGNATION	
	4 = 35/8" C.M.U. 6 = 55/8" C.M.U.	
	8 = 7 5/8" C.M.U. 12 = 11 5/8" C.M.U.	
	SEE 5/A8.01 FOR TOP OF WALL TERMINATION.	
<u>A TIN</u>	G ASSEMBLY	
	2 HOUR SOLID CONCRETE WALL - PER CBC 2007 EDITION TABLE NO. 721.2.1.1.	
	2 HOUR SOLID FLOOR OR ROOF SLAB - PER CBC 2007 EDITION TABLE NO. 721.2.2.1.	
	METAL DECK AND CONCRETE TOPPING ROOF/FLOOR CONSTRUCTION – ICBO ER-2614 SPRAY-APPLIED STEEL PIPE OR TUBE COLUMN FIREPROOFING – UL DESIGN NO. X771	CENTER FOR
	SPRAY-APPLIED FIREPROOFING ON W-SHAPED STEEL COLUMN - UL DESIGN NO. X772	SCIENCE san luis obispo, ca
	SPRAY-APPLIED FIREPROOFING ON W-SHAPED STEEL BEAM UL DESIGN NO. 917	
	RATING / PARTITION HEIGHT DESIGNATION	
= P	ARTIAL HEIGHT PARTITION (SEE PLAN & ELEVATIONS FOR PARTITION HT.)	Drawing Title
= N	DN-RATED- EXTEND STUDS ABOVE CEILING TO SUPPORT CEILING JOIST	PARTITION SCHEDULE
G	ON-RATED- EXTEND STUDS TO UNDERSIDE OF STRUCTURE ABOVE. EXTEND ONE SIDE OF YPSUM BD. TO UNDERSIDE OF STRUCTURE ABOVE AND EXTEND ONE SIDE OF GYPSUM BD. TO 4" BOVE CEILING	NOTES, & DETAILS
= N	ON-RATED TO UNDERSIDE OF CEILING	
	ON-RATED- EXTEND STUDS AND GYP BD. TO 4" ABOVE CEILING AND BRACE AS REQUIRED TO TRUCTURE	OF CALIFOR
= N	ON-RATED - TO UNDERSIDE OF STRUCTURE ABOVE. OFFICE OF THE STATE FIRE MARSHAL APPROVED FREAMD PANIC ONLY	TED ALAN
) HOUR FIRE-RATED. Reviewed by: Fire & Life Safety South	SIM BOOK
= (2	HOUR FIRE-RATED. NOV 1 0 2009 Approval of this plan does not authorize or	TERED RCHITE
en andere en source e	approve any omission or deviation from applicable regulations. Final approval is subject to field inspection. One set of approved plans shall be available on the provest site at all times	
		Date: OCTOBER 23, 2009
		Job No: L40302.05 Drawn By:
	CEILING	Drawn By: Checked By:
		Drawing No.
D		A8.01
P	D C B A O 1 2	

Architecture / Planning / Interior Design Portland Seattle Los Angeles Washington DC New York

515 South Flower Street, Suite 3700 Los Angeles, California 90071

> (PH) 213 617 1901 (FAX) 213 617 0047

Consultants STRUCTURAL ENGINEER John A. Martin & Associates, Inc 1212 S. Flower Street Los Angeles, CA 90015

MECHANICAL ENGINEER Rumsey Engineers 99 Linden Street Oakland, CA 94607

ELECTRICAL ENGINEER Integrated Design Associates, Inc 3140 De La Cruz Boulevard, Suite 110 Santa Clara, CA 95054

CIVIL ENGINEER Cannon Associates 1050 Southwood Drive San Luis Obispo, CA 93401

LANDSCAPE ARCHITECT Katherine Spitz and Associates 4212 1/2 Glencoe Avenue Marina del Rey, CA 90292

LABORATORY Research Facilities Design 3965 Fifth Avenue, Suite 300 San Diego, CA 92103-3107

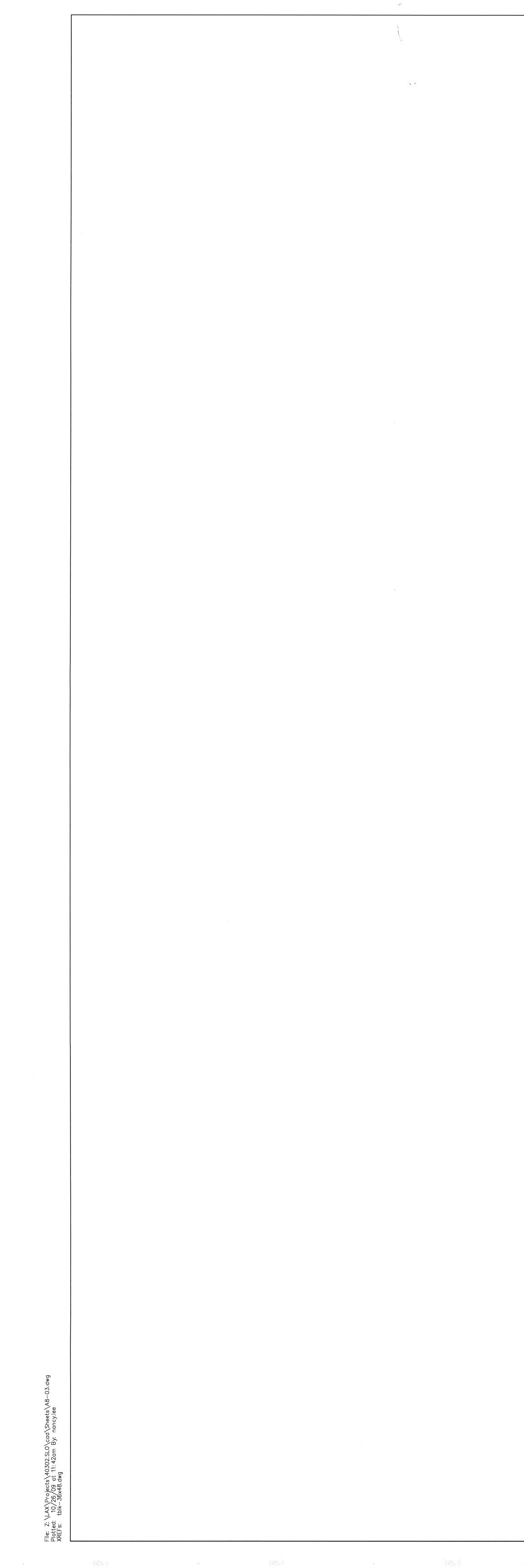
LIGHTING DESIGN David Nelson & Associates, LLC P.O. Box 270254 Littleton, CO 80127

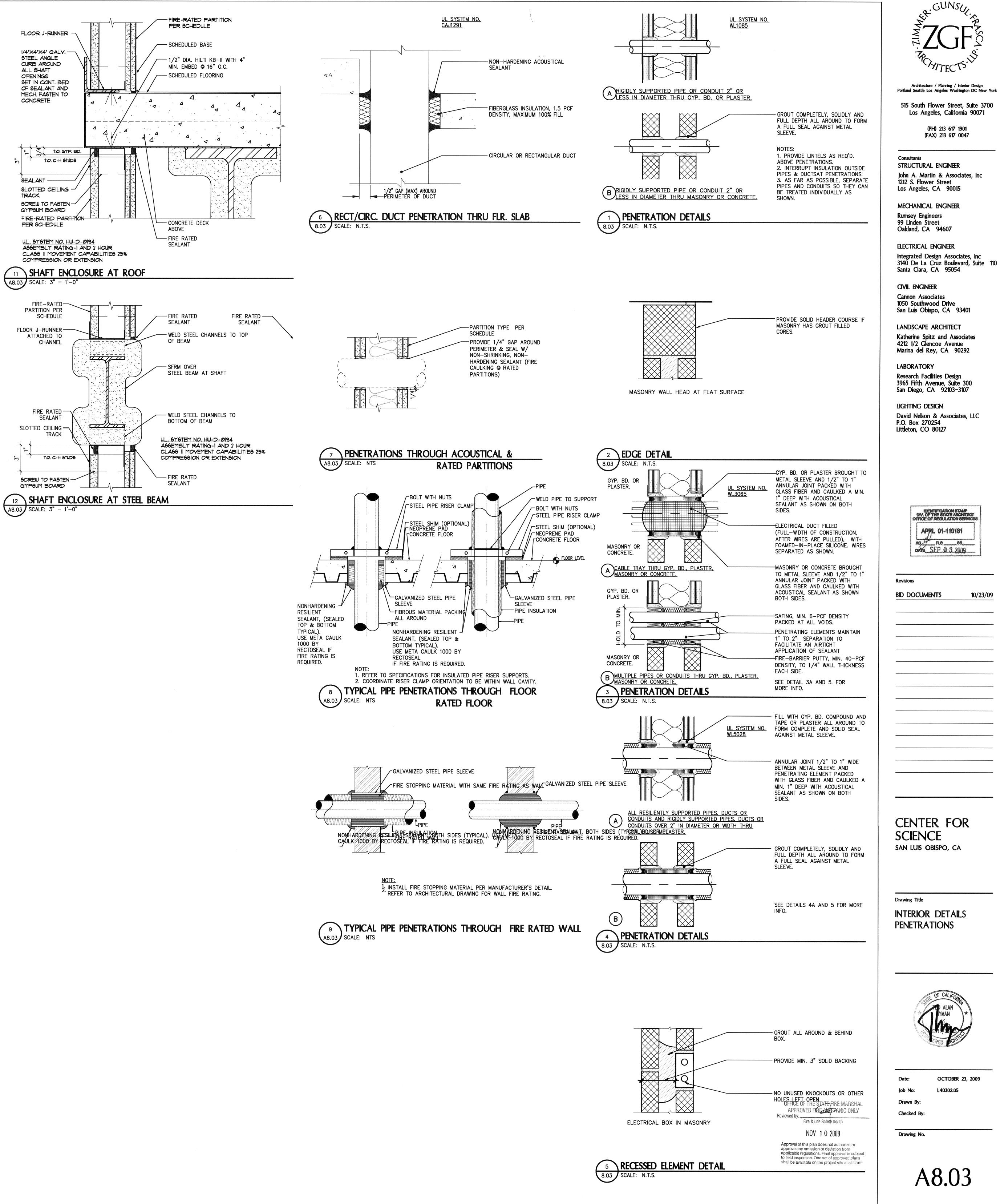
> IDENTIFICATION STAMP DIV. OF THE STATE ARCHITEC FFICE OF REGULATION SERVIC APPL 01-110181 AC 7 FL8 65 DATE SEP 0 3 2000

> > 10/23/09

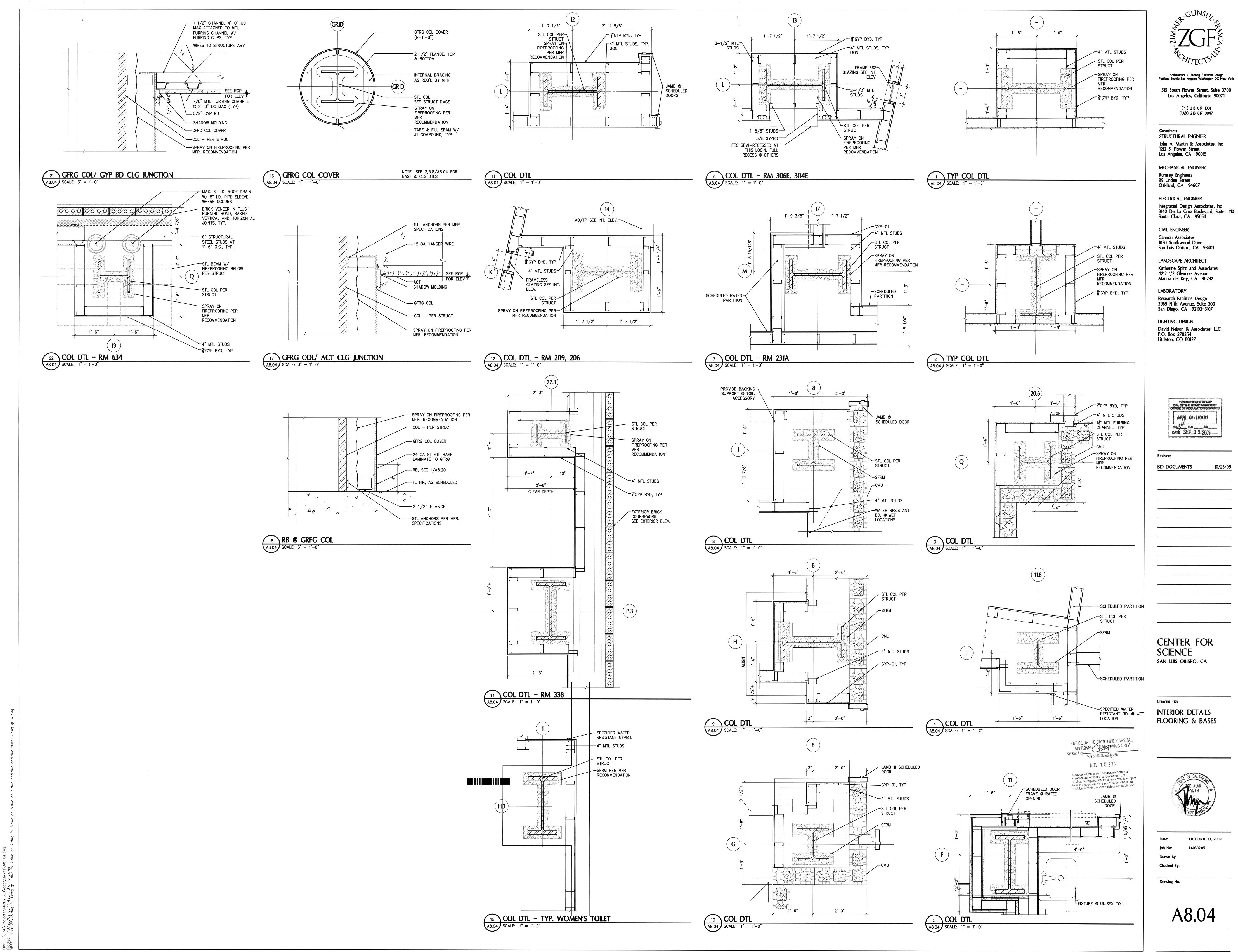
BID DOCUMENTS

CENTER FOR SCIENCE SAN LUIS OBISPO, CA

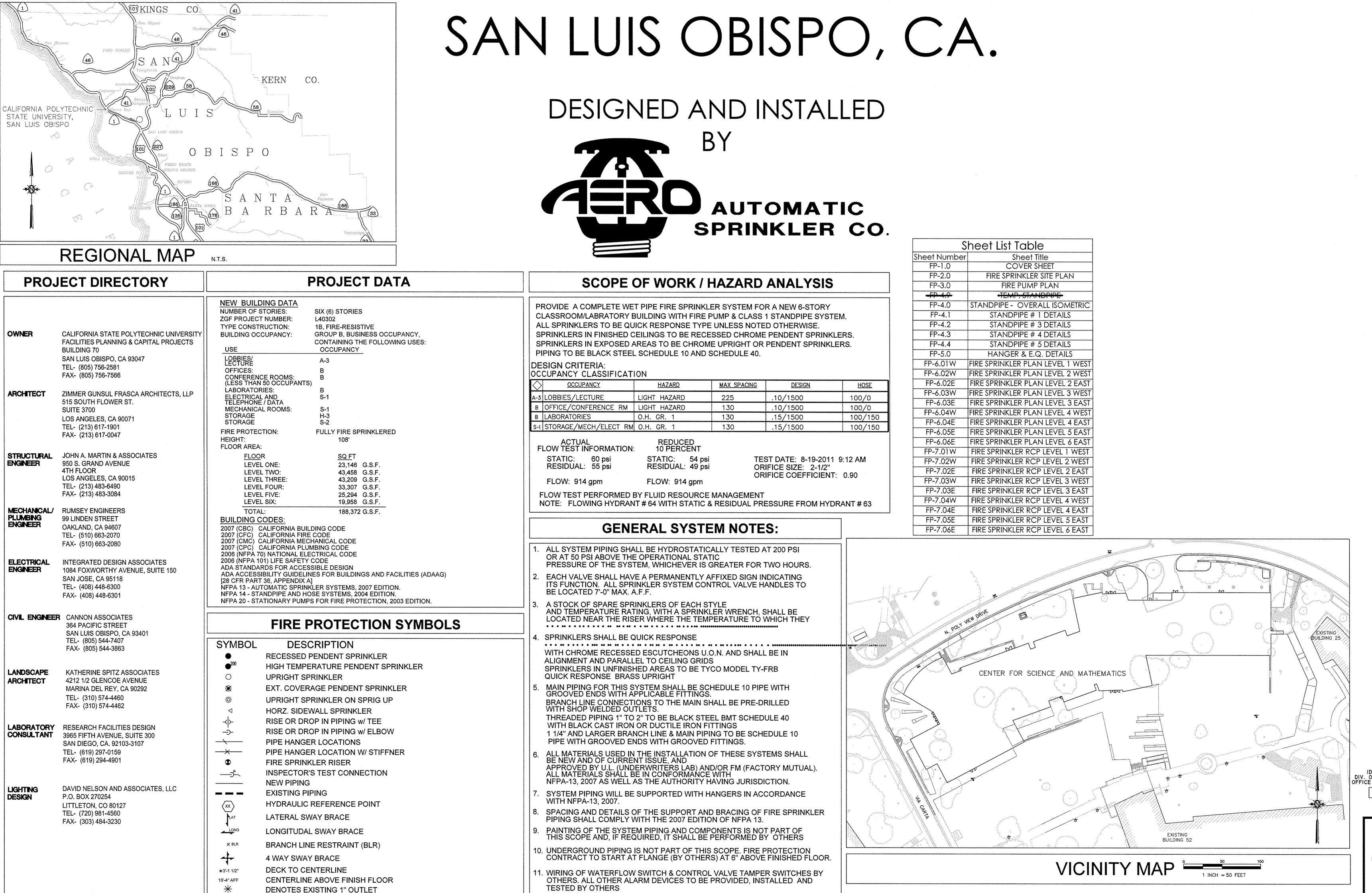

Drawing Title INTERIOR DETAILS PARTITION FRAMING DETAILS

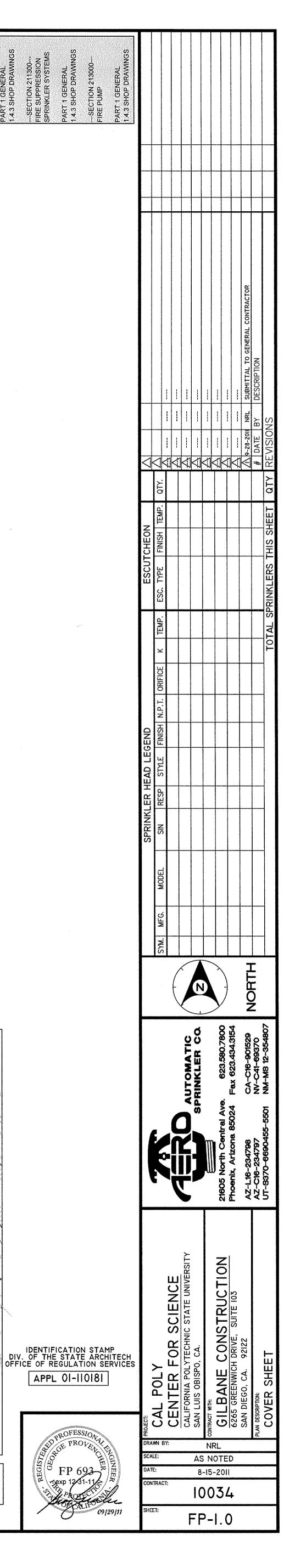


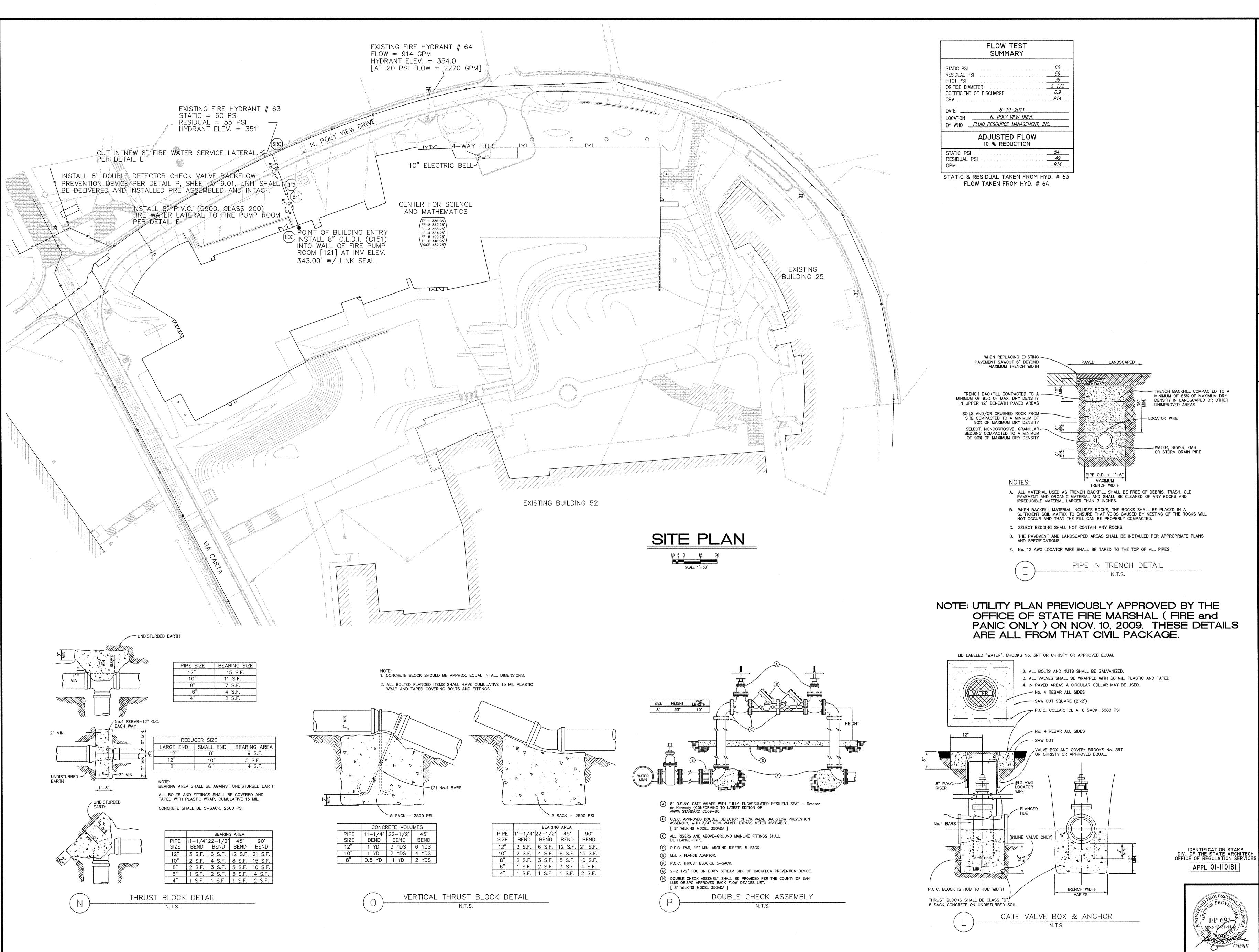
Date: OCTOBER 23, 2009 L40302.05 lob No: Drawn By: Checked By:

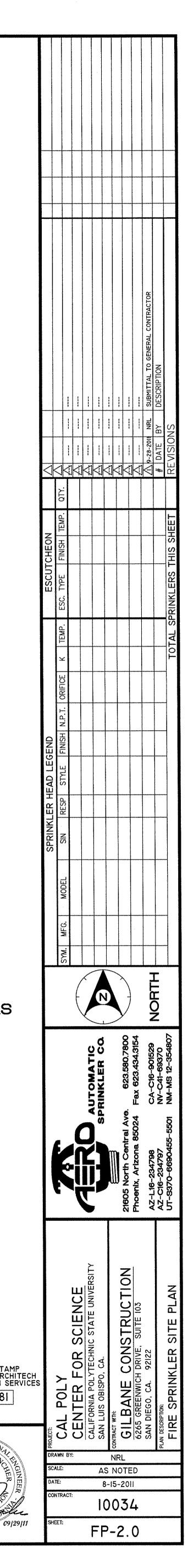

A8.02

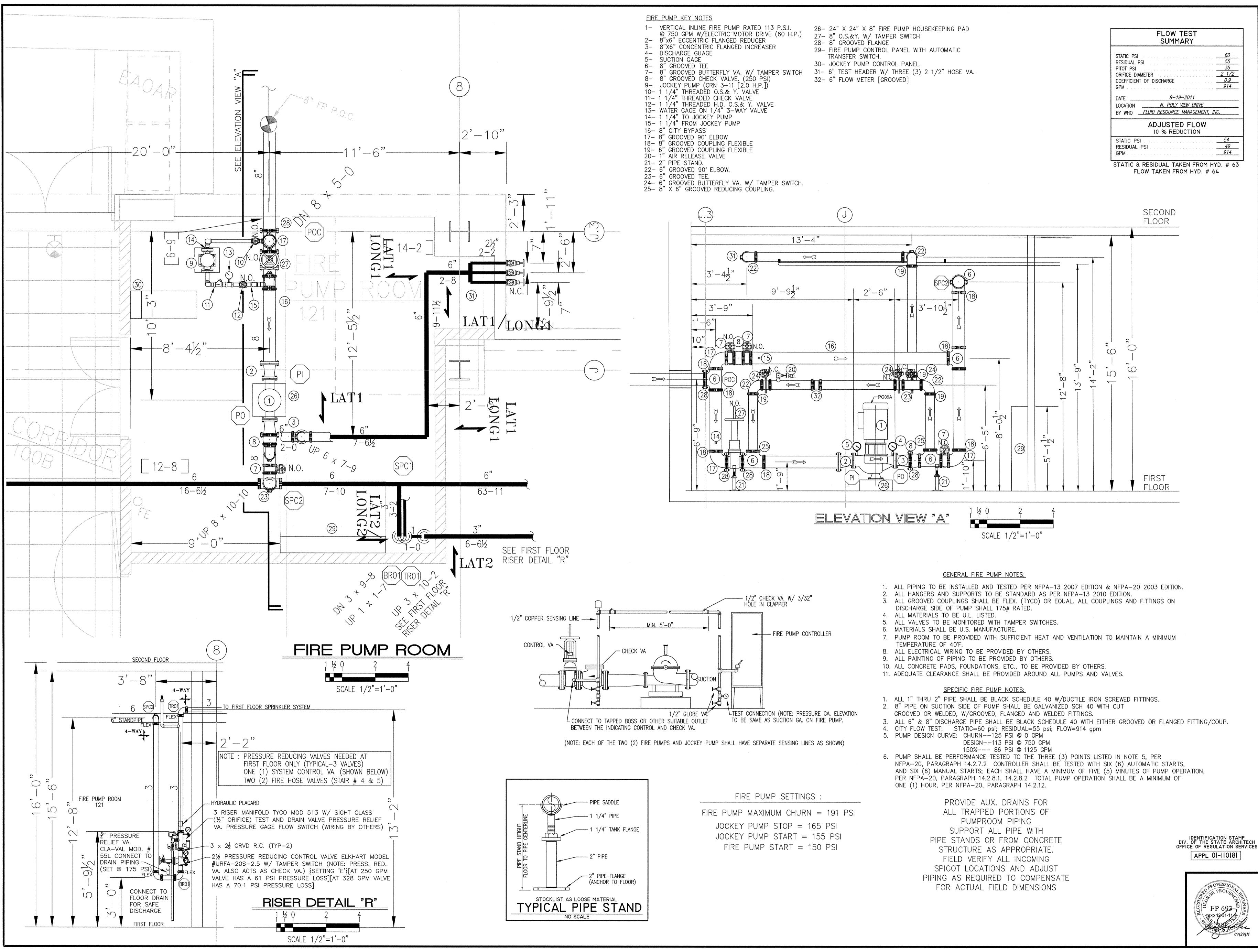
Drawing No.

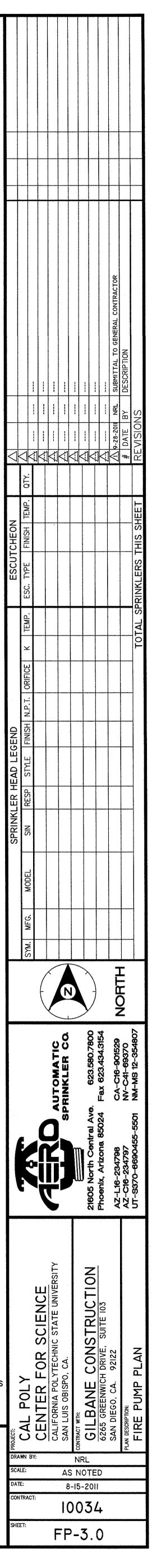


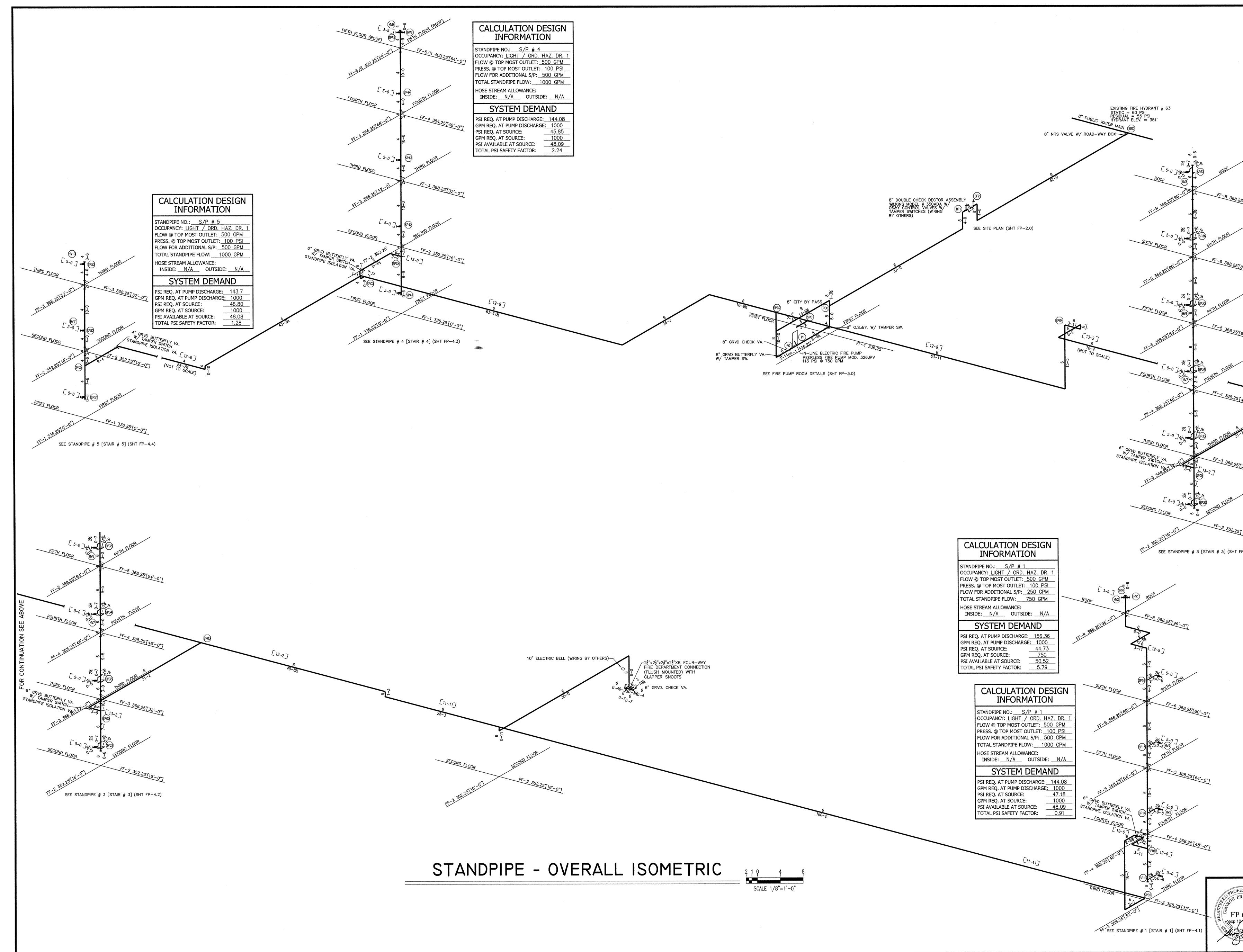

APPENDIX D – FIRE SPRINKLER PLANS

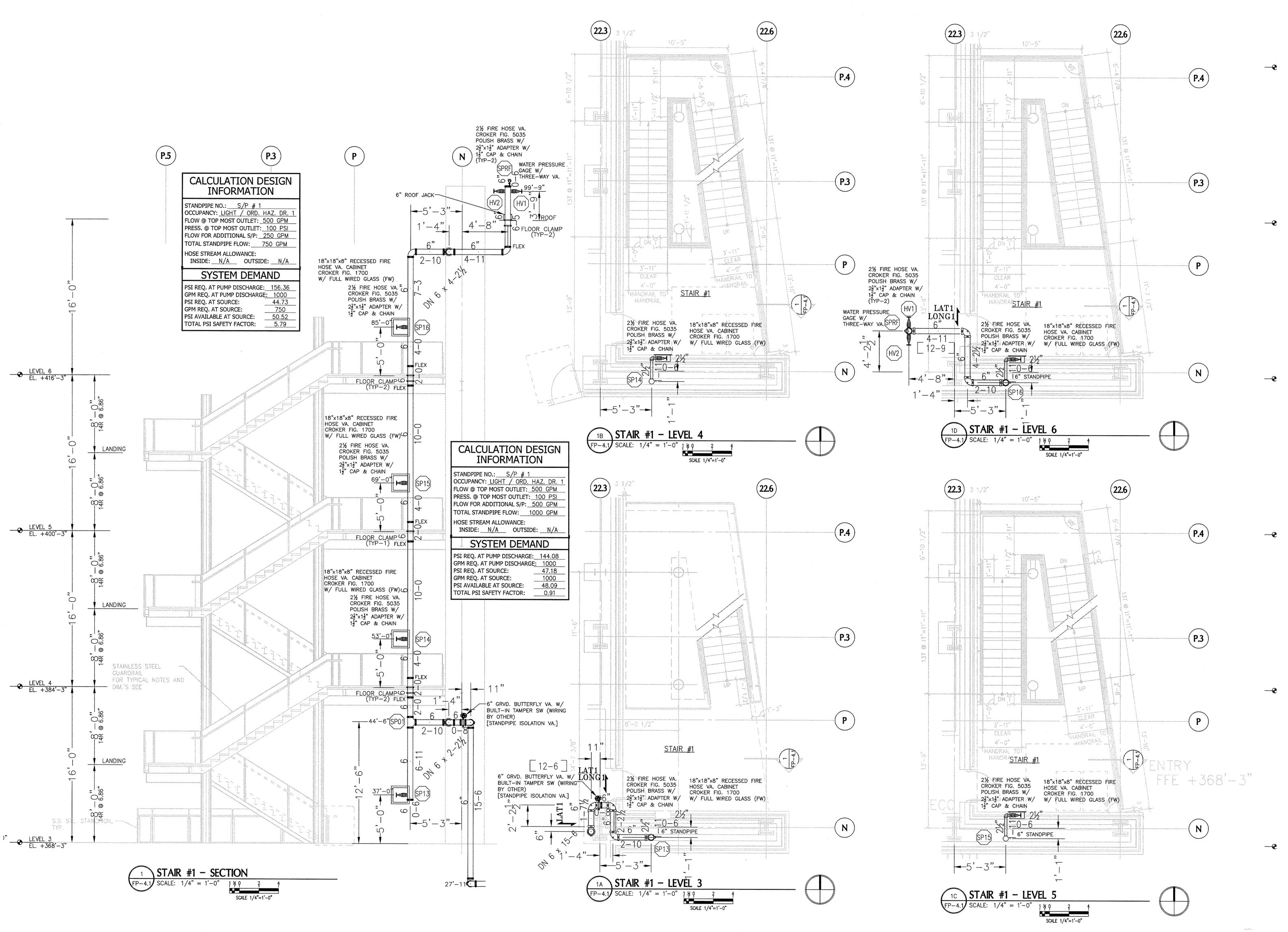

CAL POLY CENTER FOR SCIENCE CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA.

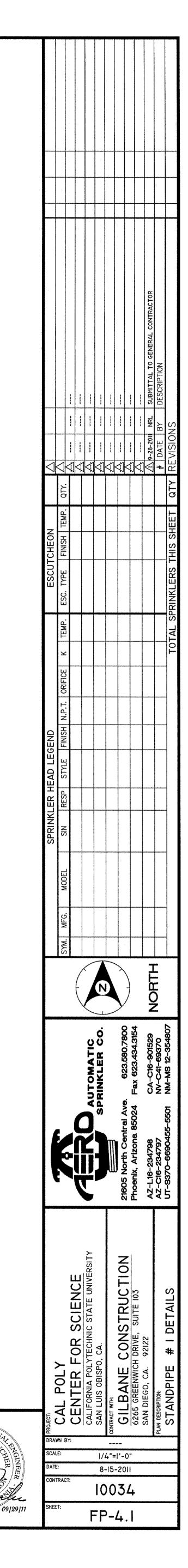


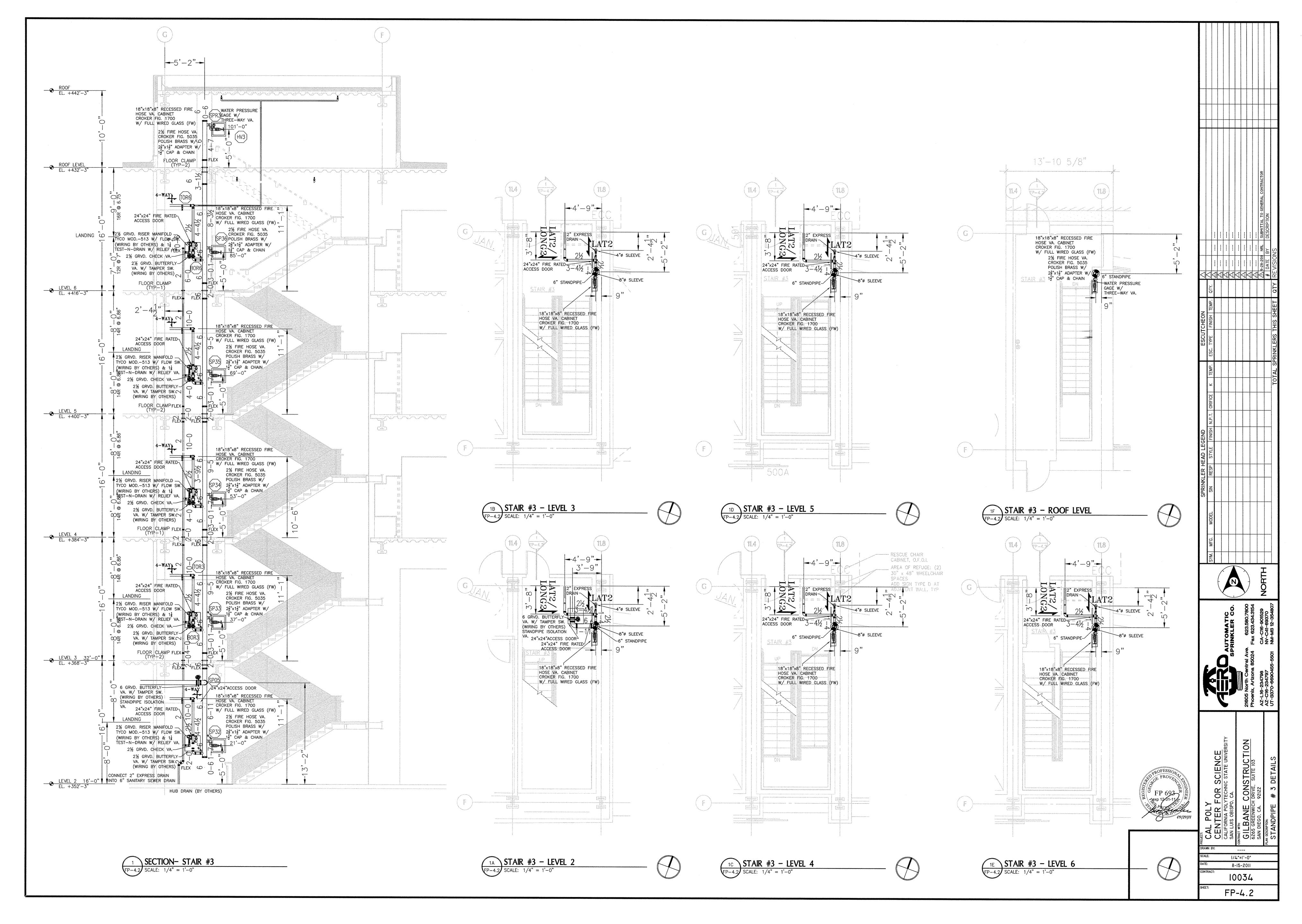

DESIGNED	AND	INSTALLED
----------	-----	-----------

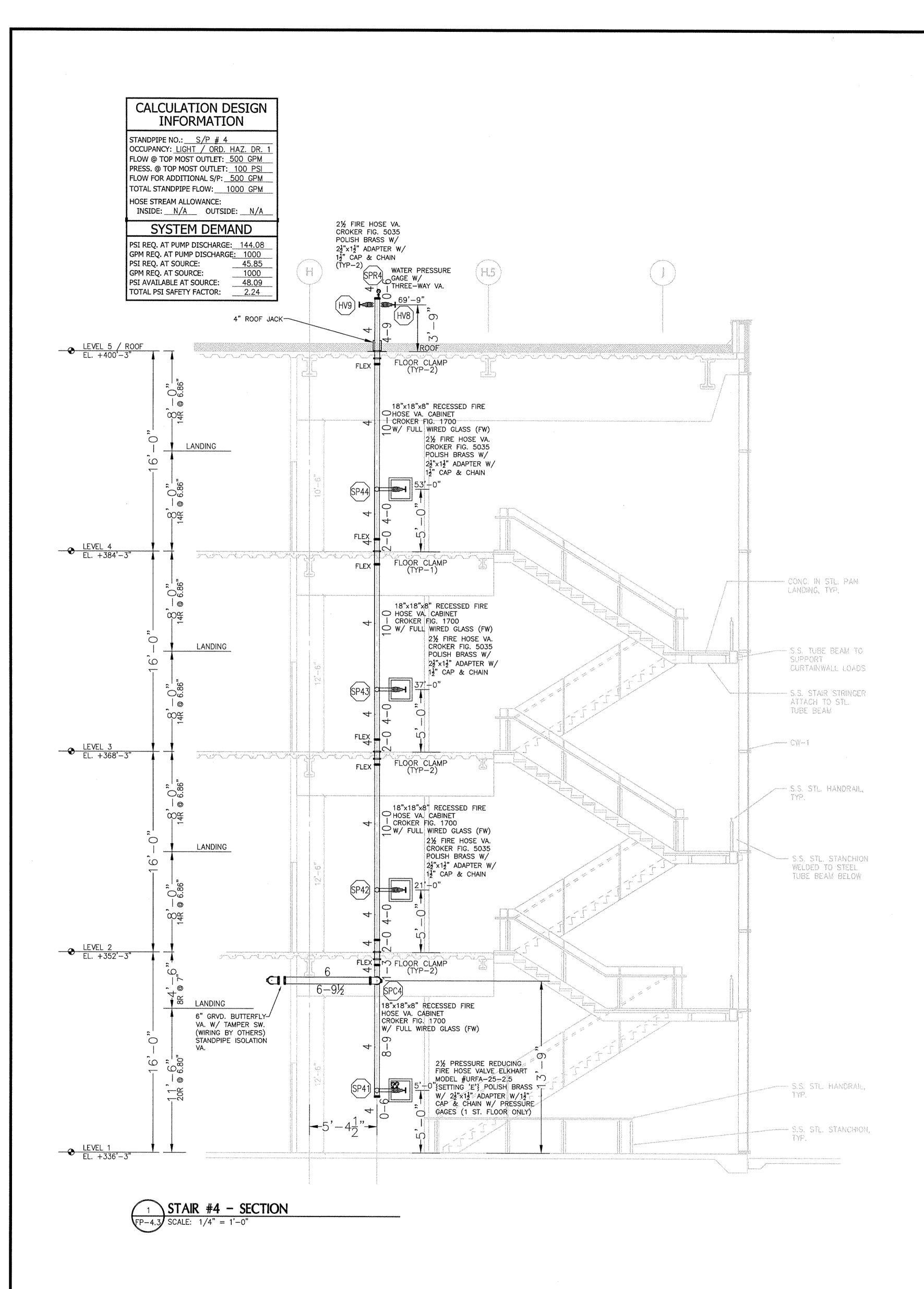

hoot List Table
heet List Table
Sheet Title
COVER SHEET
FIRE SPRINKLER SITE PLAN
FIRE PUMP PLAN
-TEMP: STANDPIPE-
STANDPIPE - OVERALL ISOMETRIC
STANDPIPE # 1 DETAILS
STANDPIPE # 3 DETAILS
STANDPIPE # 4 DETAILS
STANDPIPE # 5 DETAILS
HANGER & E.Q. DETAILS
FIRE SPRINKLER PLAN LEVEL 1 WEST
FIRE SPRINKLER PLAN LEVEL 2 WEST
FIRE SPRINKLER PLAN LEVEL 2 EAST
FIRE SPRINKLER PLAN LEVEL 3 WEST
FIRE SPRINKLER PLAN LEVEL 3 EAST
FIRE SPRINKLER PLAN LEVEL 4 WEST
FIRE SPRINKLER PLAN LEVEL 4 EAST
FIRE SPRINKLER PLAN LEVEL 5 EAST
FIRE SPRINKLER PLAN LEVEL 6 EAST
FIRE SPRINKLER RCP LEVEL 1 WEST
FIRE SPRINKLER RCP LEVEL 2 WEST
FIRE SPRINKLER RCP LEVEL 2 EAST
FIRE SPRINKLER RCP LEVEL 3 WEST
FIRE SPRINKLER RCP LEVEL 3 EAST
FIRE SPRINKLER RCP LEVEL 4 WEST
FIRE SPRINKLER RCP LEVEL 4 EAST
FIRE SPRINKLER RCP LEVEL 5 EAST
FIRE SPRINKLER RCP LEVEL 6 EAST

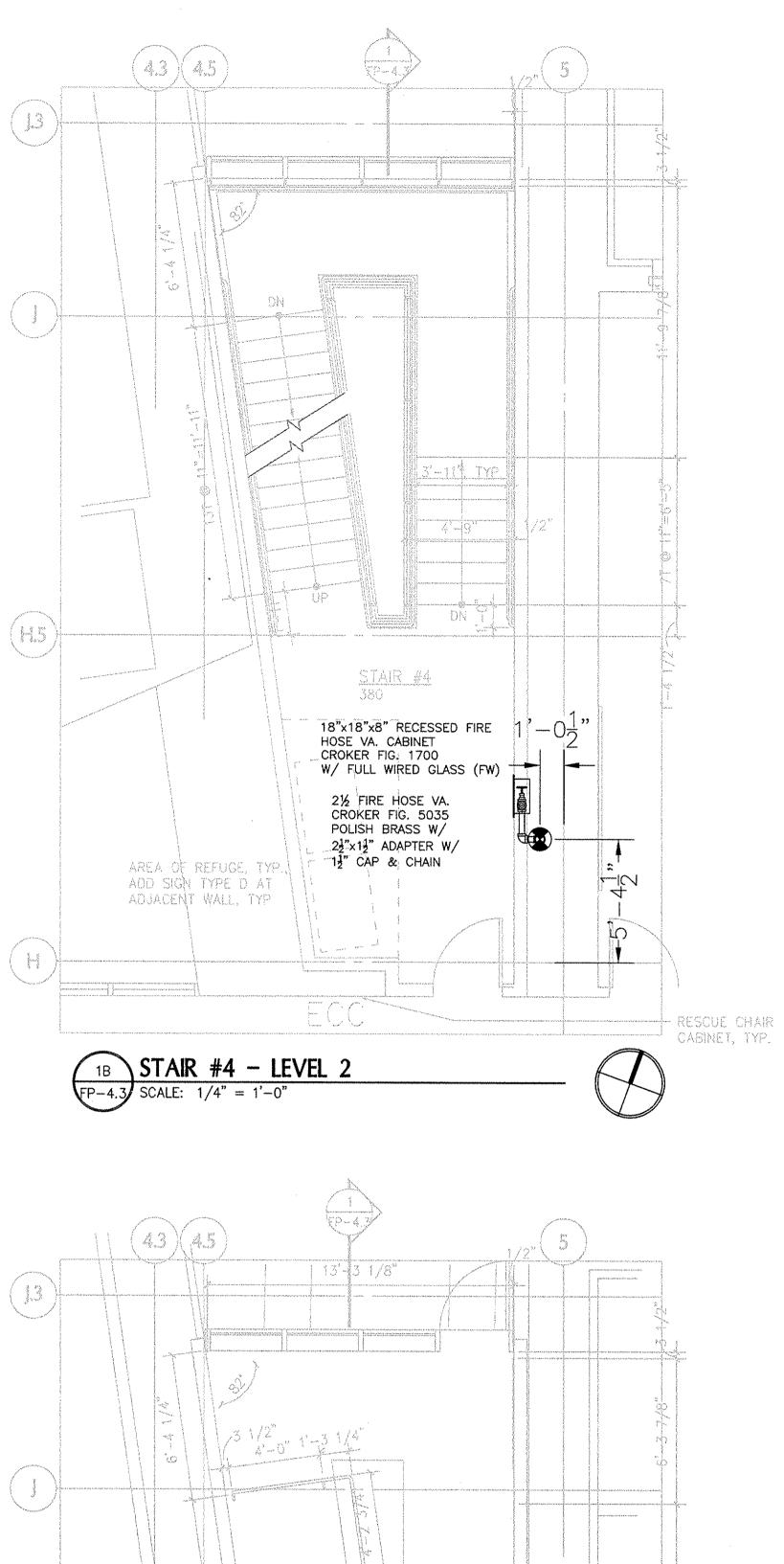


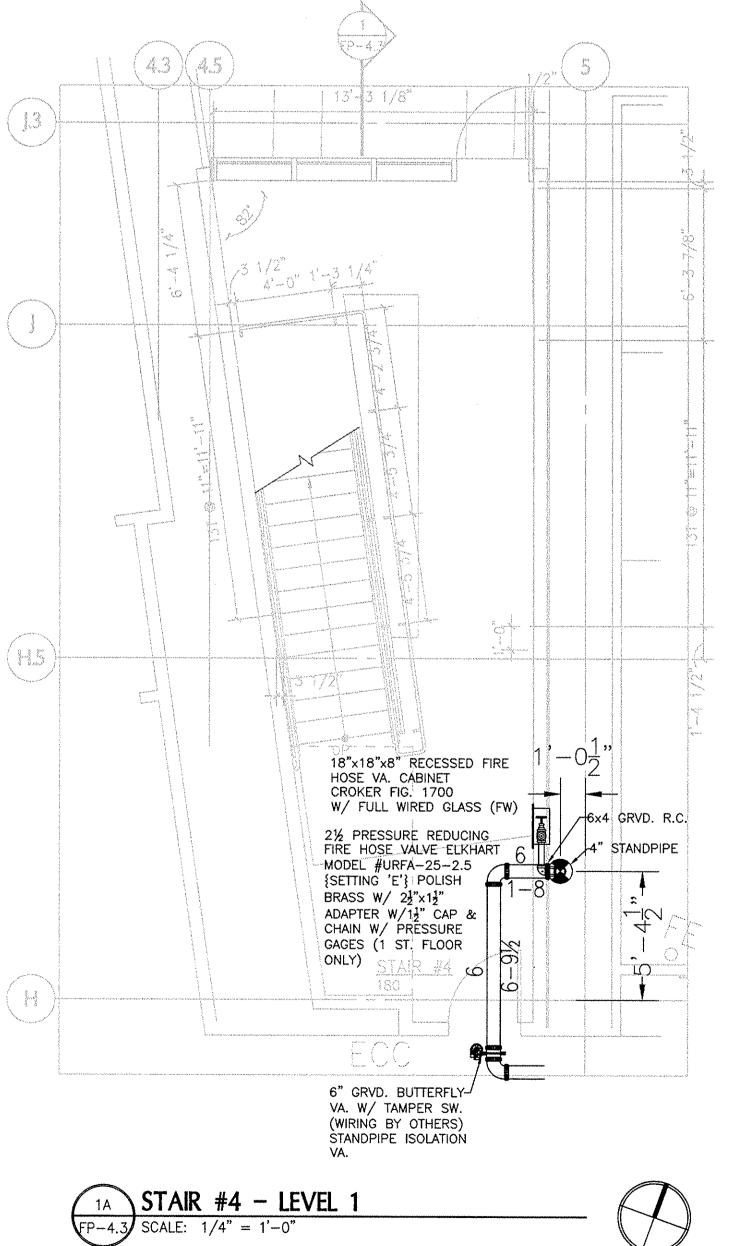


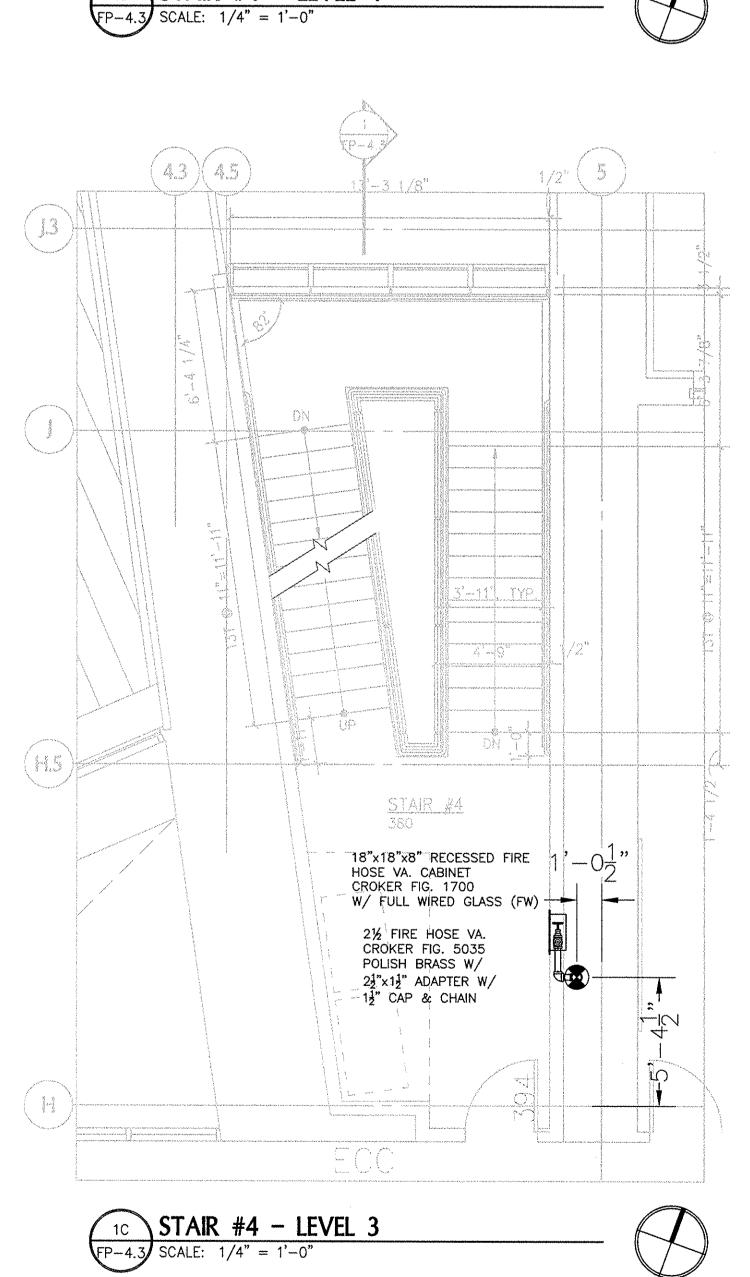


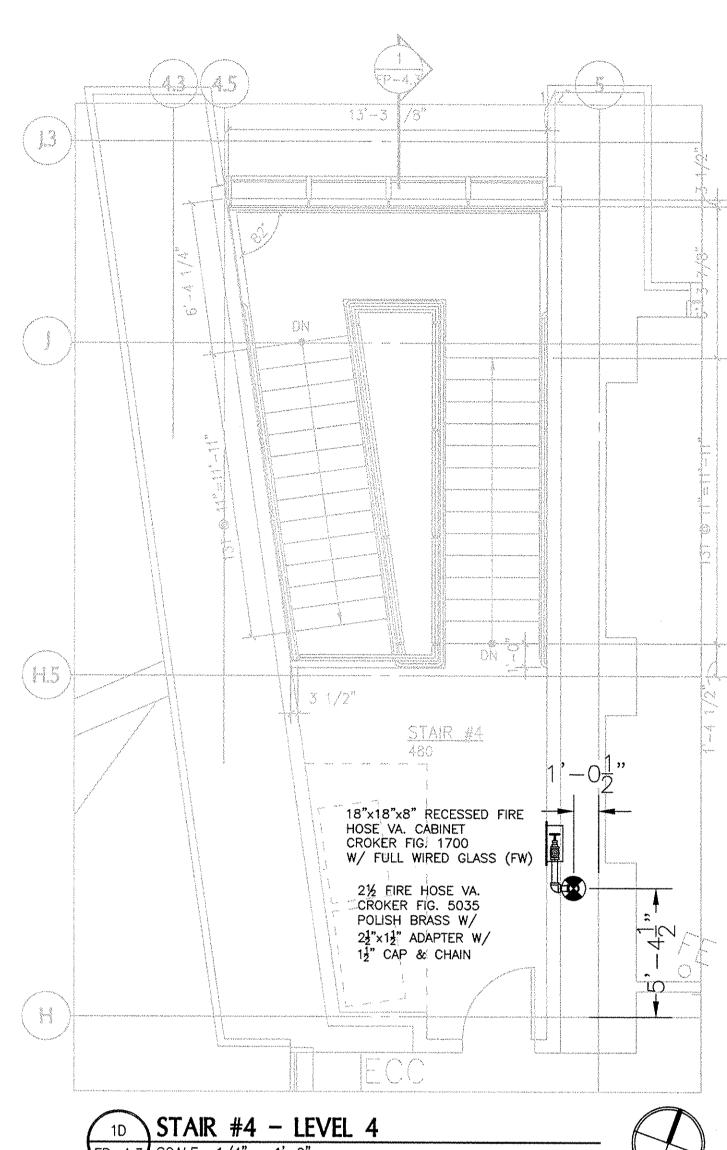


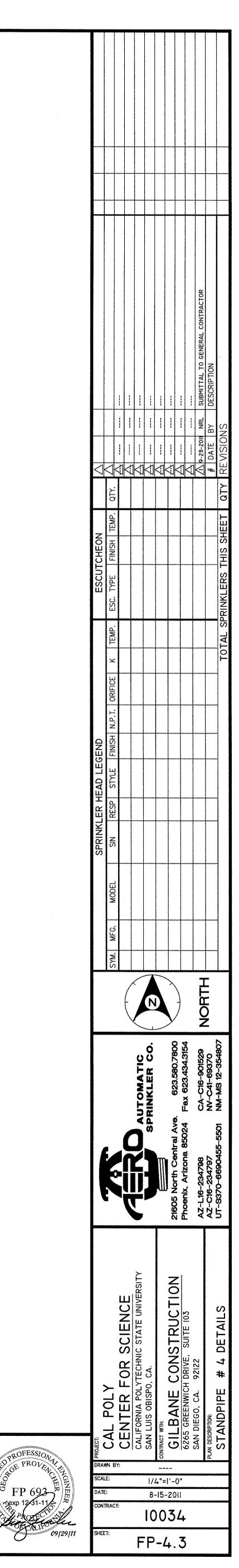

ALIF 09/29/11	PROVENCIE PROVENCIE PROVENCIE P 693			T FP-4.2)	25'[16'-0"]	25/[32'-0"]	6	25'[48'-0"]	FOR CONTIN	FOR CONTINUATION SEE BELOW		5'[80'-0"]	8.25 [96'-0"]				
SHE	DR/ DR/ SC/ DA				SPRIN	SPRINKLER HEAD LEGEND	EGEND		Ш́	ESCUTCHEON	Š -						
				SYM. MFG. MC	MODEL SIN	RESP STYLE	FINISH	N.P.T. ORIFICE K	TEMP. ESC. TYPE	YPE FINISH TEMP.	MP. QTY. 🕂						
1.	¥:		(X	3					
											$\overline{\Delta}$						
I FI	[SPRINKLER CO.									$\overline{\mathbb{A}}$	1 3 3 1 1 1 1	L				
0	1/8 8-1										$\overline{\nabla}$		1				
	8 "= 5-2										\forall						
	201	ń									\forall						
	**	Phoenix, Arizona 85024 Fax 623.434.3154									\leq						
	SAN DIEGO, CA. 92122	A7-116-034708 CA-C16-901529									\bigtriangledown	∆ 9-28-2011 NRL 5	SUBMITTAL TO GENERAL CONTRACTOR	. CONTRACTOR			
	pi an infectoriphical	NV-C41-69370									#	DATE BY	DESCRIP TION				
	STANDPIPE - OVERALL ISOMETRIC	UT-S370-6690455-5501 NM-MS 12-354807				-		TOT	TAL SPRINKLE	TOTAL SPRINKLERS THIS SHEET	ļ	QTY REVISIONS					

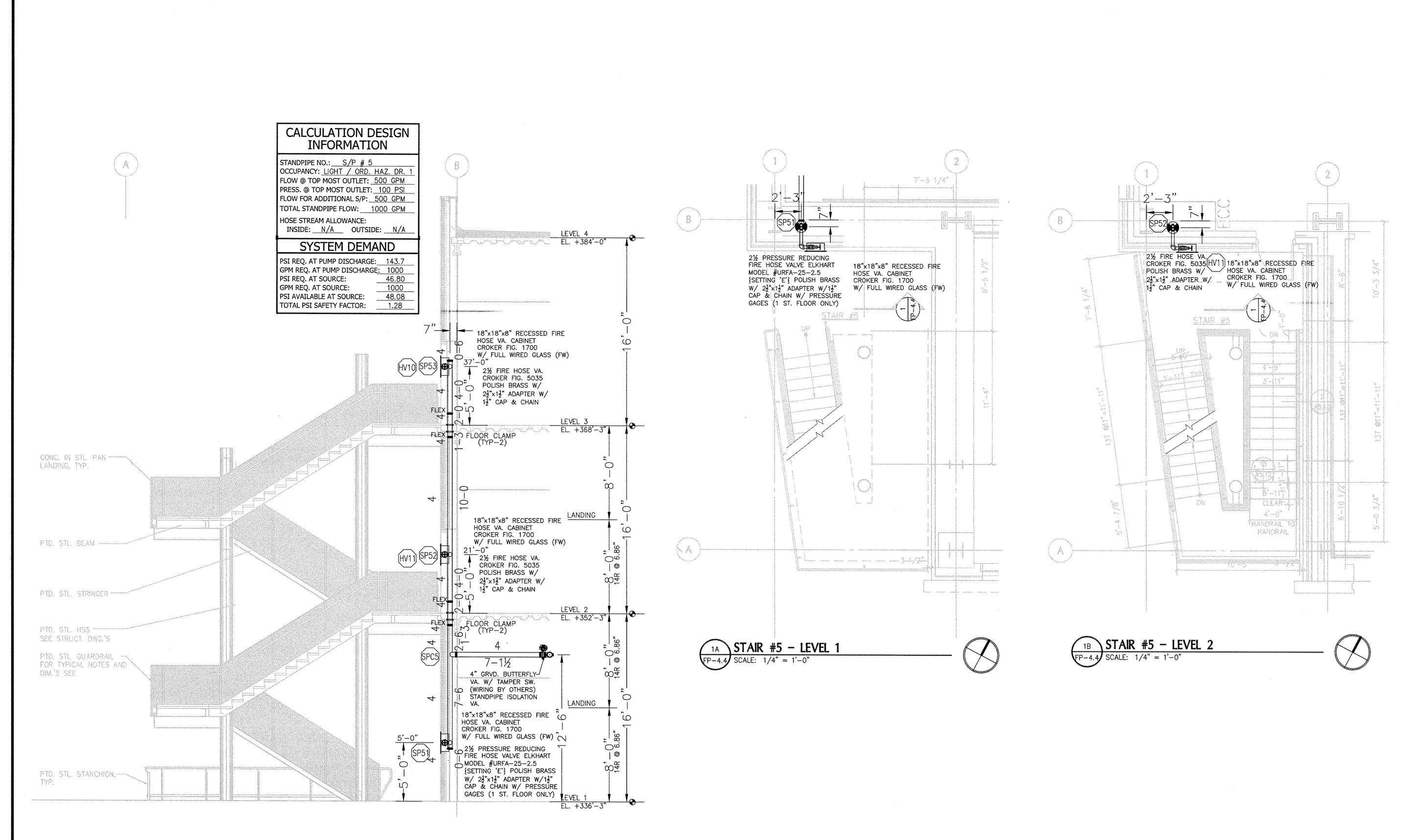


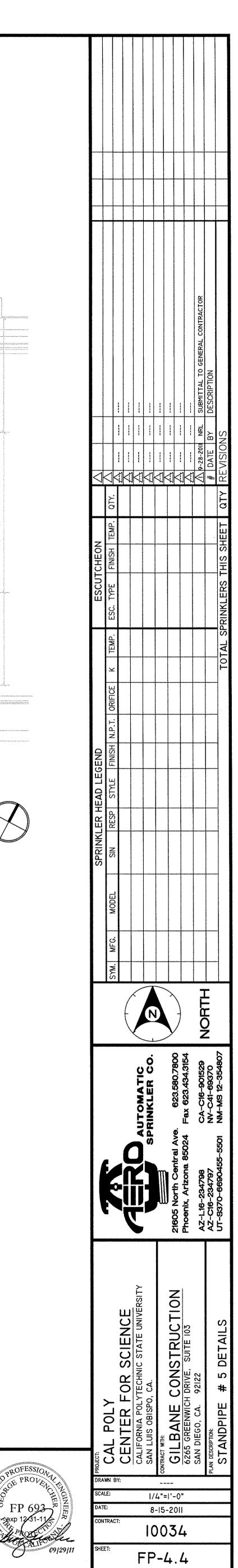


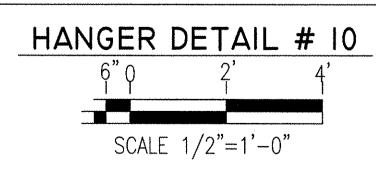


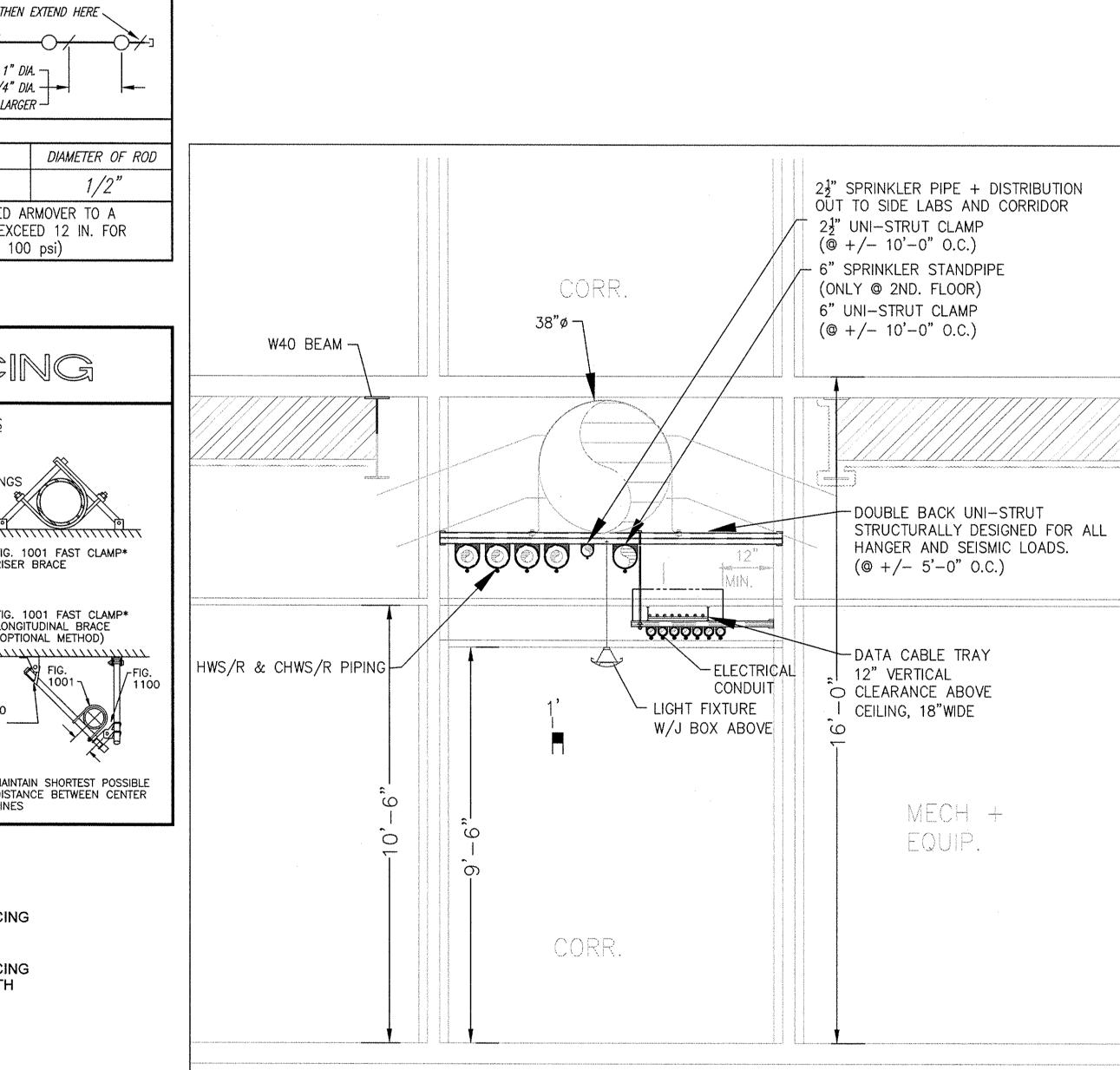


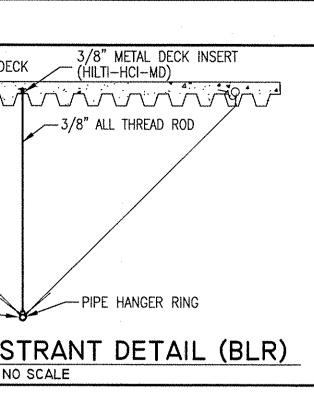




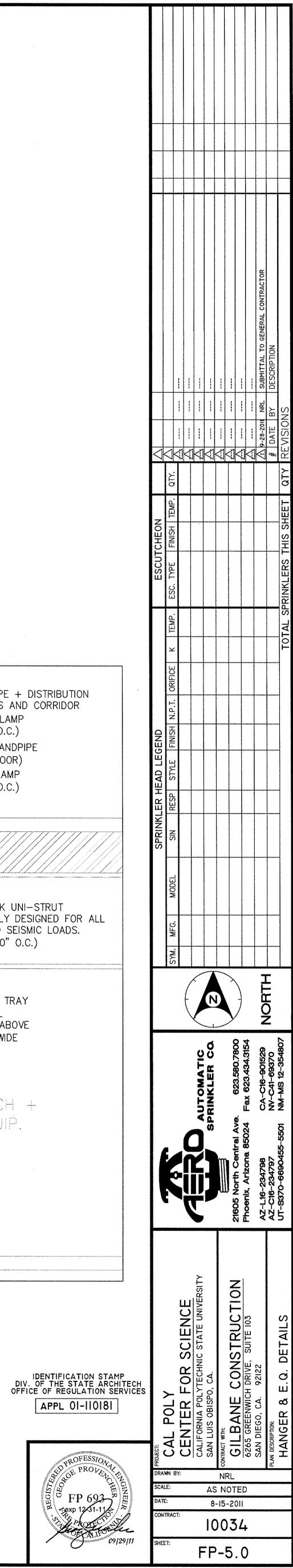


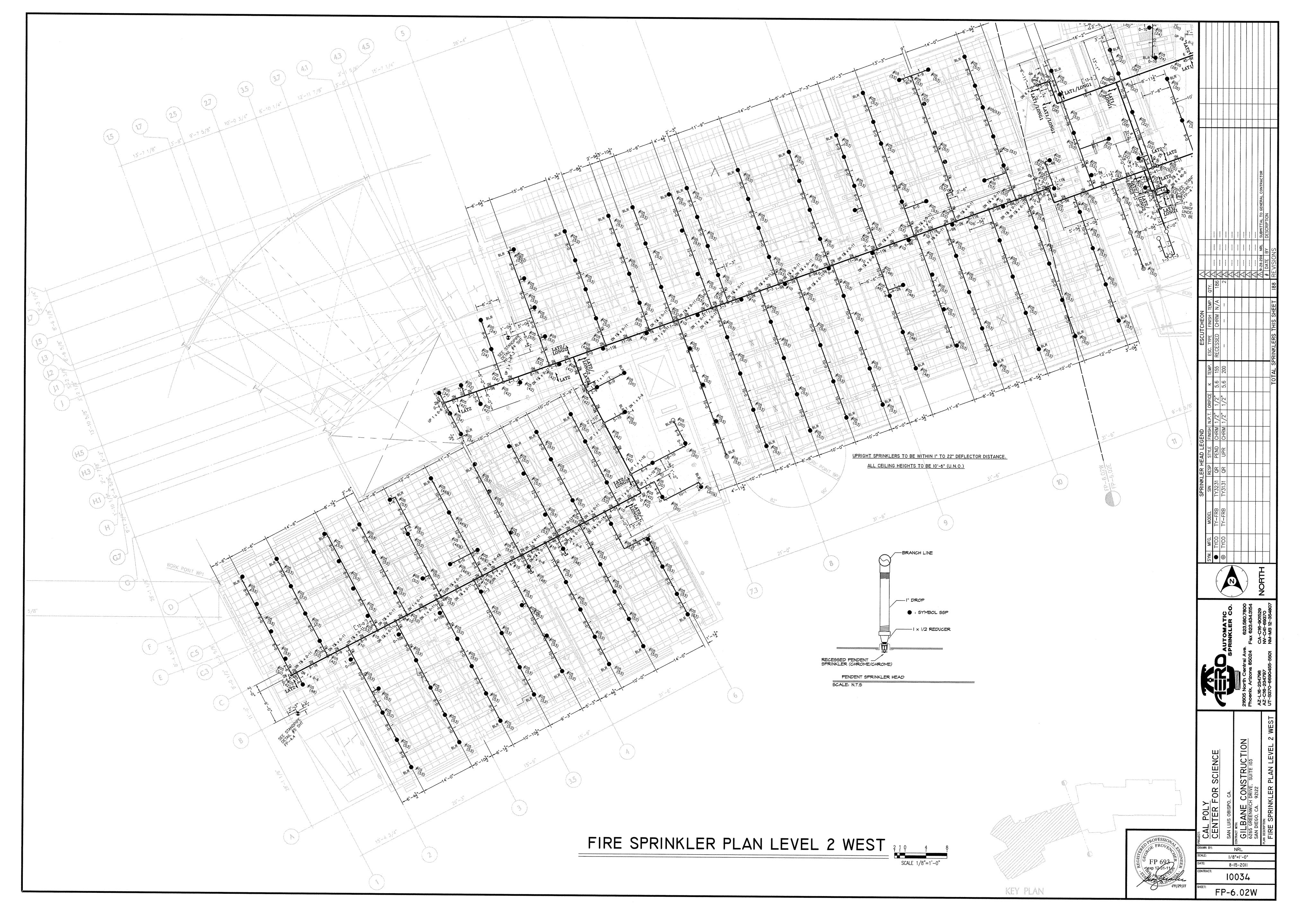

-(8) 21/2 FIRE HOSE VA. CROKER FIG. 5035 HV1018"x18"x8" RECESSED FIRE POLISH BRASS W/ LOSE VA. CABINET 21"x11" ADAPTER W/ CROKER FIG. 1700 W/ FULL WIRED GLASS (FW) STAIR 3 1 DUEAR 4'-0" HANDRAIL (A)Leven between the state of the state of the Beerla dina dan marang pilan tan adarah ing pilan tan dina ku mang pilan tan adar di kana dina di kana dina ku na bada ana ang baga di kana di Ang tan (1c) STAIR #5 - LEVEL 3FP-4.4 SCALE: <math>1/4" = 1'-0"

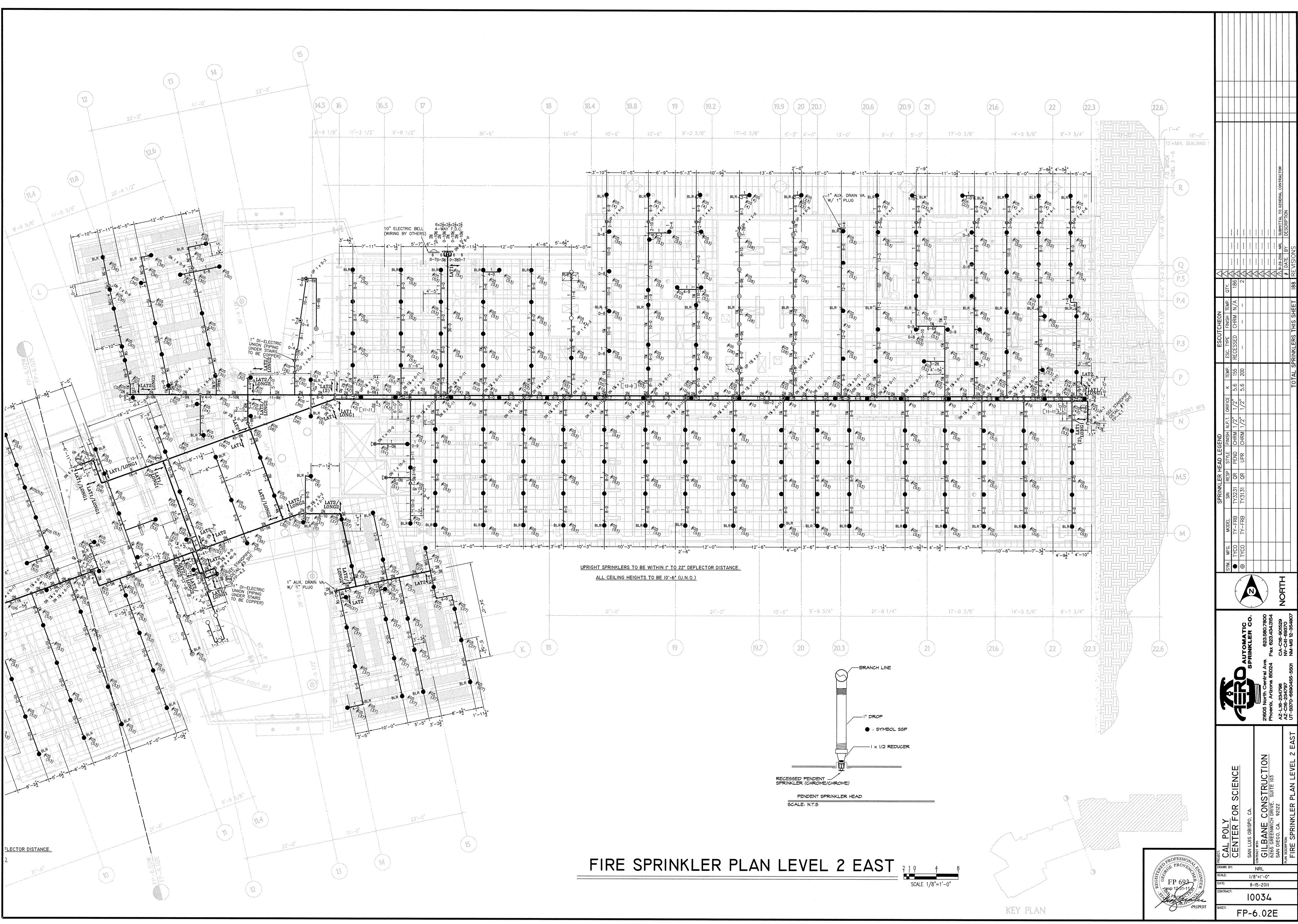


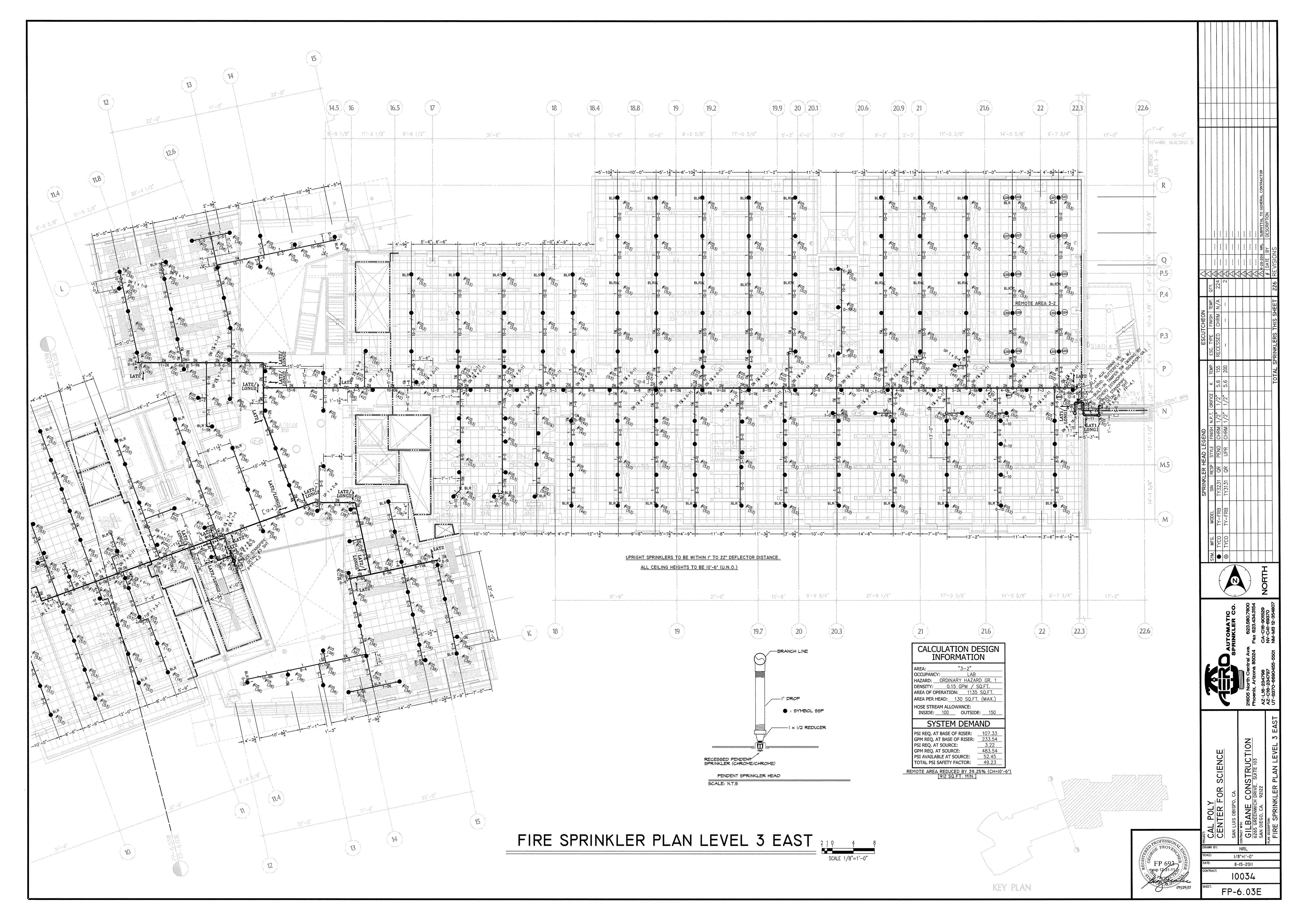


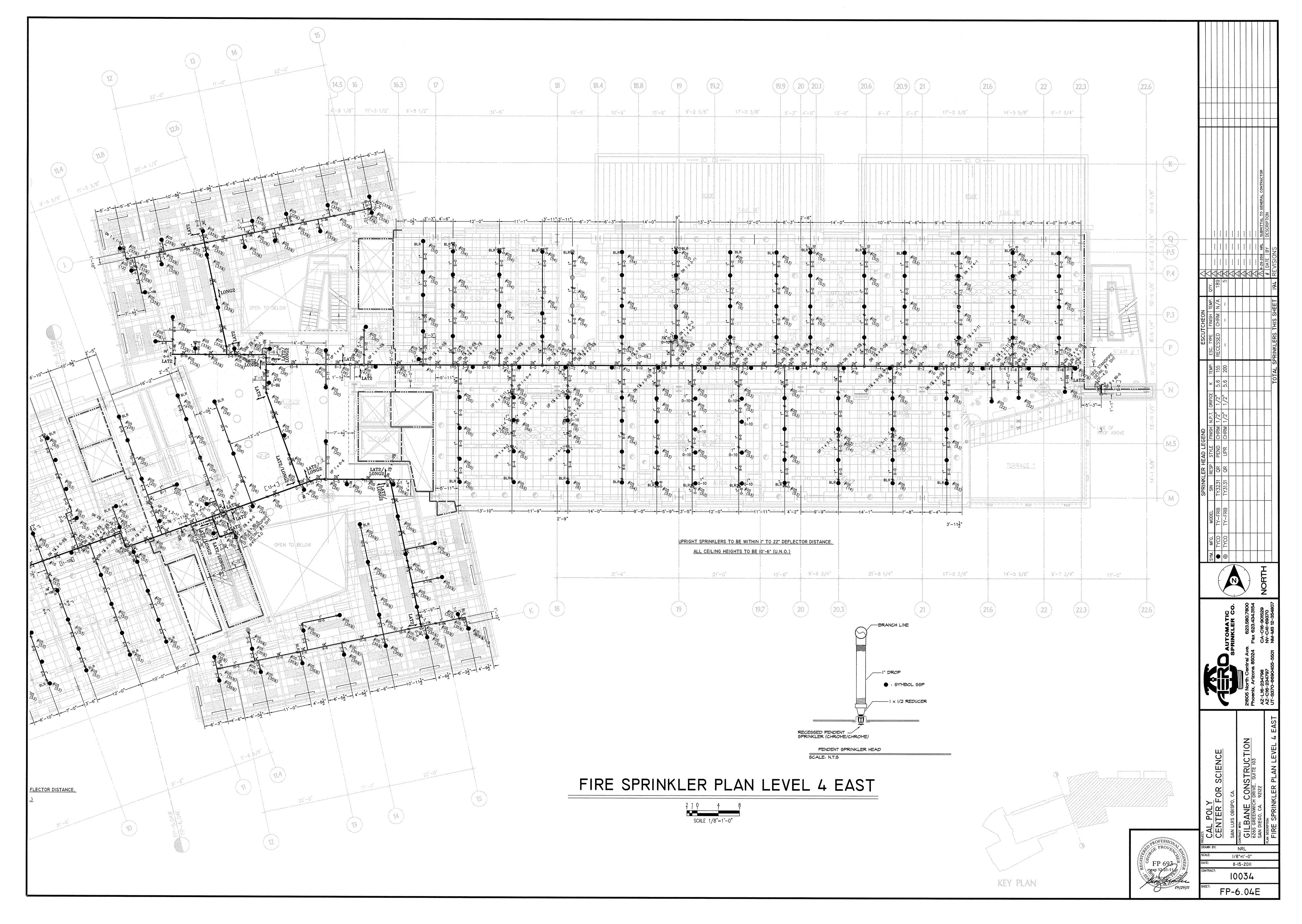
HILTI HCI-MD CONCRETE INSERT	Image: Stop Anchor Image: Stop Anchor Image: Stop An	NO. 12 WIRE OR RESTRAINT CABLE (RED) W/ 2" LOOP & 4" PIG TAIL POURED INTO 6" CONC. DECK (TYPICAL-2) BRANCH LINE PIPE HANGER RING
Tol-Brace Seismic Calculations Project Address: Calculations Project Address: Calculations Call on the Polynachnic State University Calculations San Luis Objeps, Ca. Calculations San Luis Objeps, Ca. Calculations based on 2007 MPIA Pampine #32 Tole Offormation Tole Offormation Maximum Spacing 40 °C (2219 m) Brace Information Tole Offormation Maximum Brace Length 7°C (2.14 m) Brace Information Maximum Brace Length 7°C (2.14 m) Brace Information Pasterier Information Fasterier Information Fasterier Information Fasterier Information Fasterier Orientation NPP Type A Type Load Information Frace Identification on Plans Lat rel Informet Pipe (SS Schub) Force Factor (Cp) Gene State Colspan="2">Gene State Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Brace All State Orientation NPP Type A <	Tol-Brace Seismic Calculations Project Address: fail Pety Center for Science. Colfornia Polynachnic Sante University Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10034 Catalog N. Centeral Ave. San Luke Obligon, Ca. Dob # 10037 Catalog N. Centeral Ave. Dob # 10034 Catalog N. Centeral Ave. Dob # 10037 Centeral	SPRINKLER PIPE HANGER SPACING N.F.P.A. 15, 2007 EDITIONTABLE 9.2.2.1 MAXIMUM DISTANCE BETWEEN HANGERS (FT-IN.)NOMINUL PIPE SIZE $34"$ 1" $11/4"$ $11/2"$ $2"$ $21/2"$ $3''_{24}$ 6"8"STEEL PIPE IHREADED UPREADED LIGHTMALLN/A $12-0$ $12-0$ $15-0$ $15-0$ $15-0$ $15-0$ $15-0$ $15-0$ CPPC C 5-6 $5-6$ $6-6$ $7-0$ $8-0$ $9-0$ N/A N/A FIGURE A-9.2.3.4 DISTANCE FROM SPRINKLER TO HANGER $12"$ MAX. FOR 1" DA. (100 ps) $12"$ MAX. FOR 1" DA. (100 ps) $12"$ MAX. FOR 1" DA. (100 ps) $12"$ MAX. FOR 1 1/2" DA. OR LARGERPER TABLE 9.2.2.1 $11"$ GREATER THAN 12" MAX. FOR 1" OA. $12"$ MAX. FOR 1 1/2" DA. OR LARGERTABLE 9.1.2.1 HANGER ROD SIZEPIPE SIZEDIAMETER OF ROD $10"$ TO AND $12"$ $3/8"$ $6"$ AND $8"$ $1/2"$ THE CUMULATIVE HORIZONTAL LENGTH OF AN UNSUPPORTED ARMOVER TO A SPRINKLER, SPRINKLER DROP, OR SPRIO-UP SHALL NOT EXCEED 12 IN. FOR STEEL OR 6 IN. FOR COPPER TUBE. (PRESSURE EXCEEDS 100 psi)
Percentage added for Fittings and Sprinklers 15% 116 lbs (52.62 kg) Total Adjusted Load of all pipe within Zone of Influence 889 lbs (403 kg) (Tol-Brace Version 7) Tol-Brace Seismic Calculations Aero Automatic Sprinkler C 21605 N. Central Ave. Phoenix, Az. 85024 (523)580-7847 California Polytechnic State University Aero Automatic Sprinkler C 21605 N. Central Ave. Phoenix, Az. 85024 (523)580-7847 Image: California Polytechnic State University San Luis Obispo, Ca. Job ≠ 10034 Catolations based on 2007 NFPA Pamphilet #13 Image: California Polytechnic State University Brace Information Tolco Brace Components Maximum Brace Length 7. 0° (2.14 m) Tolco Component Fig. Number Adjusted Load Fig.1001 Clamp 1007 lbs (457 kg) Image: California Polytec Load Maximum Brace Length 7. 0° (2.14 m) Fig.1001 Clamp 1007 lbs (457 kg)	Percentisge added for Filtinge and Sprinklers. 15% 130 lbs (58.97 kg) Total Adjusted Load of all pipe within Zone of Influence 1930 lbs (454 kg) (Tol-Brace Version 7) 1930 lbs (454 kg) Tol-Brace Seismic Calculations Project Address: Cal Poly Center for Science California Polytechnic State University Aero Automatic Sprinkler C 21605 N. Central Ave. Phoenix, Az: 85024 (623)580-7847 Image: Colspan="2">Colspan="2" Colspan="2" Colspan="2" </td <td>SWAY BRACE COMPONENTS FIG. 980 FYPICAL FIG. 1001 FAST CLAMPS* UNDERWRITERS LABORATORRIS LISTED MUST BE USE WITH TOLCO U.L. LISTED ATTACHMENTS. FIG. 980 SWIVEL FITTINGS FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* LONGITUDINAL BRACE FIG. 1001 FAST CLAMP* LONGITUDICAL FIG. 1001 FAST CLAMP* LONGITUDICAL FIG. 1001 FAST CLAMP* LONGITUDICAL FIG. 1001 FAST CLAMP* FIG. 1001 F</td>	SWAY BRACE COMPONENTS FIG. 980 FYPICAL FIG. 1001 FAST CLAMPS* UNDERWRITERS LABORATORRIS LISTED MUST BE USE WITH TOLCO U.L. LISTED ATTACHMENTS. FIG. 980 SWIVEL FITTINGS FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* RISER BRACE FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* LATERIAL (TRANSVERSE) FIG. 1001 FAST CLAMP* LONGITUDINAL BRACE FIG. 1001 FAST CLAMP* LONGITUDICAL FIG. 1001 FAST CLAMP* LONGITUDICAL FIG. 1001 FAST CLAMP* LONGITUDICAL FIG. 1001 FAST CLAMP* FIG. 1001 F
Bracing Material 1" Sch.40 Fig.980 Universal Swivel 1382 lbs (627 kg) Angle from Vertical 30° Min. "Calculation Based on CONCENTRIC Loading Least Rad. of Gyration 0.421" (11 mm) "Calculation Based on CONCENTRIC Loading L/R Value 200 "Calculations are for Tobic components only. Use of any other components wids these calculations and the listing of the assembly." Max Horizontal Load 1227 lbs (557 kg) Force Factor (Cp) Assembly Detail Force Factor (Cp) 0.61 TOLCO FIG. 980-UNIVERSAL SWAY BRACE TOLCO FIG. 980-UNIVERSAL SWAY BRACE Fastener Orientation NFPA Type A TOLCO FIG. 1001-FAST CLAMP STEEL PIPE Diameter 1/2 TOLCO FIG. 1001-FAST CLAMP TOLCO FIG. 1001-FAST CLAMP Length 33/4 Brace Identification on Plans LAT.2 Orientation of Brace Braced Pipe: 3" Sch.10 Steel Pipe Load Information Load Information	Bracing Material 1" Sch.40 Angle from Vertical 30° Min. Least Rad. of Gyration 0.421" (11 mm) LR Value 200 Max Horizontal Load 1227. bs (557 kg) Force Factor (Cp) 0.61 TOLCO FIG. 980 Force Factor (Cp) Diameter 1/2 Length 3.3/4 Maximum Load 1412 bs (640 kg) Braced Pipe: 3" Sch.10 Steel Pipe Load Information	HEX NUTS UNTIL LEAF SPRING DISTANCE BETWEEN CENTER INTEL NUTS UNTIL LEAF SPRING INTEL DEL NUTS INTEL LEAF SPRING DISTANCE BETWEEN CENTER INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRING DISTANCE BETWEEN CENTER INTEL LEAF SPRING INTEL LEAF SPRINKLER SWAY BRACING OF SPRINKLER SYSTEM 6" MAINS WAY BRACING OF SPRINKLER SYSTEM 6" MAINS. MAX SPACING 45'-0". INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRING PARACING INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRING INTEL LEAF SPRI
Size and Type of PipeTotal LengthTotal Calculated Load3" Sch 10 Steel Pipe (76.2 mm)35ft (10.7 m)170 lbs (77 kg)1.5" Sch 40 Steel Pipe (38.1 mm)10ft (3 m)22 lbs (10 kg)1.25" Sch 40 Steel Pipe (31.75 mm)31ft (9.4 m)55 lbs (25 kg)1" Sch 40 Steel Pipe (25.4 mm)140ft (42.7 m)175 lbs (79 kg)Percentage added for Fittings and Sprinklers15%63 lbs (28.58 kg)Total Adjusted Load of all pipe within Zone of Influence485 lbs (220 kg)	Size and Type of Pipe Total Length Total Calculated Load 3" Soh 10 Steel Pipe (76.2 mm) 80ft (24.4 m) 387 lbs (176 kg) Percentage added for Fittings and Sprinklers 15%. 58 lbs (26.31 kg) Total Adjusted Load of all pipe within Zone of Influence 446 lbs (202 kg) {Tol-Brace Version 7} 15%. 58 lbs (26.31 kg)	SEISMIC DESIGN CATEGORY D SEISMIC IMP. FACTOR 1.0 SITE SOIL PROFILE TYPE B SPECTRAL RESPONSE ACCELERATIONS: Ss = 1.26* S1 = 0.481* SEISMIC COEFFICIENT: Cp = 0.61** *Ss & S1 VALUES TAKEN FROM STRUCTURAL DRAWING S 1.01 - DATED 10-23-2009 ** VALUE INTERPOLATED FROM TABLE 9.3.5.6.2 OF N.F.P.A.

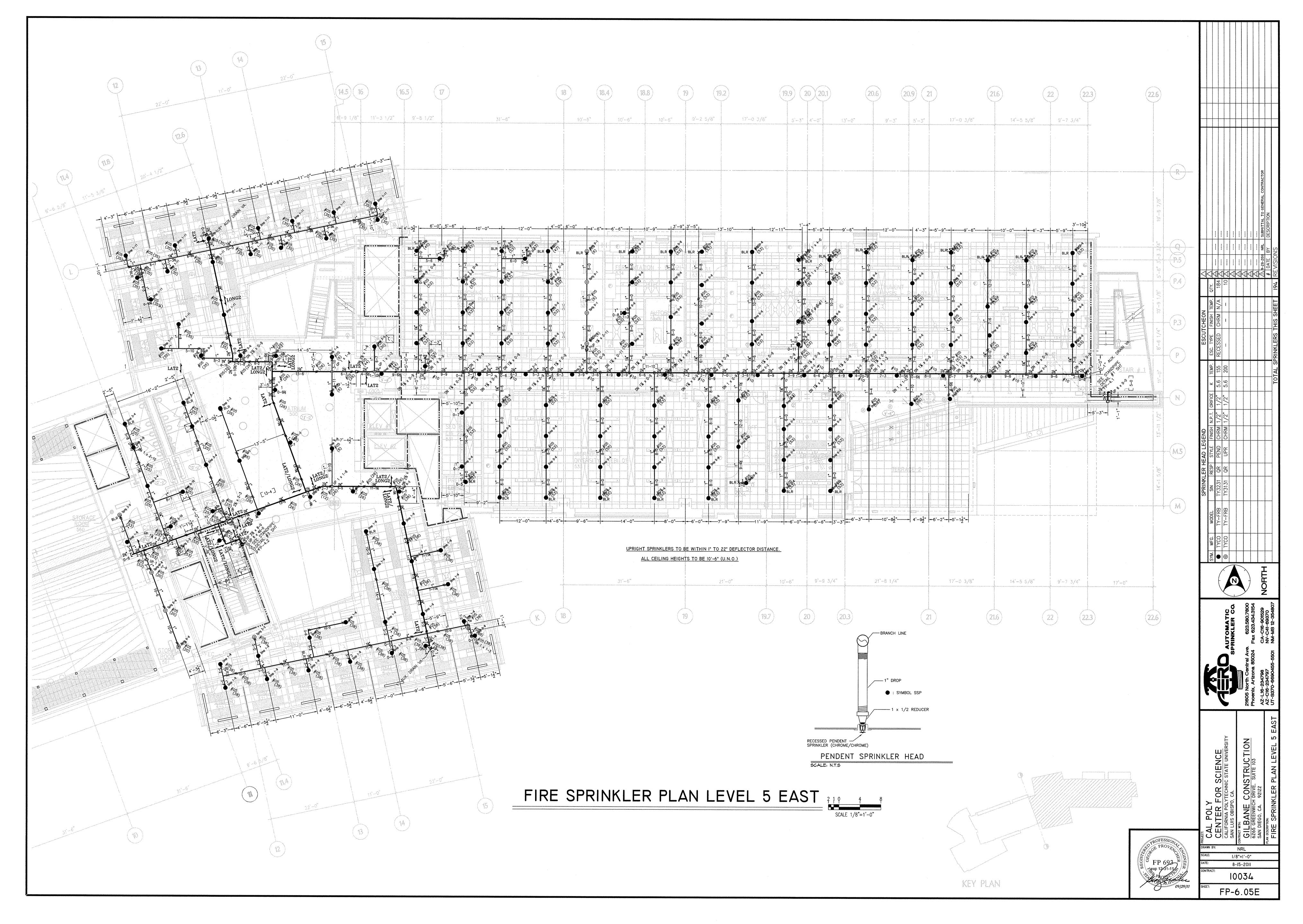

	WEIGHT OF WATER FILLED PIPE [LB./FT.]											
		NOMINAL SIZE	1"	1 1⁄4"	1 1/2"	2"	2 1⁄2"	3"	4"	6"	8"	
THREADED OR GROOVED PIPE	SCHEDULE 40	I.D.	2.05	2.93	3.61	5.13	7.89	10.82	16.40	31.69	47.70	
GROOVED PIPE	SCHEDULE 10	I.D.	NOT USED	NOT USED	NOT USED	4.22	5.89	7.94	11.78	23.03	40.08	

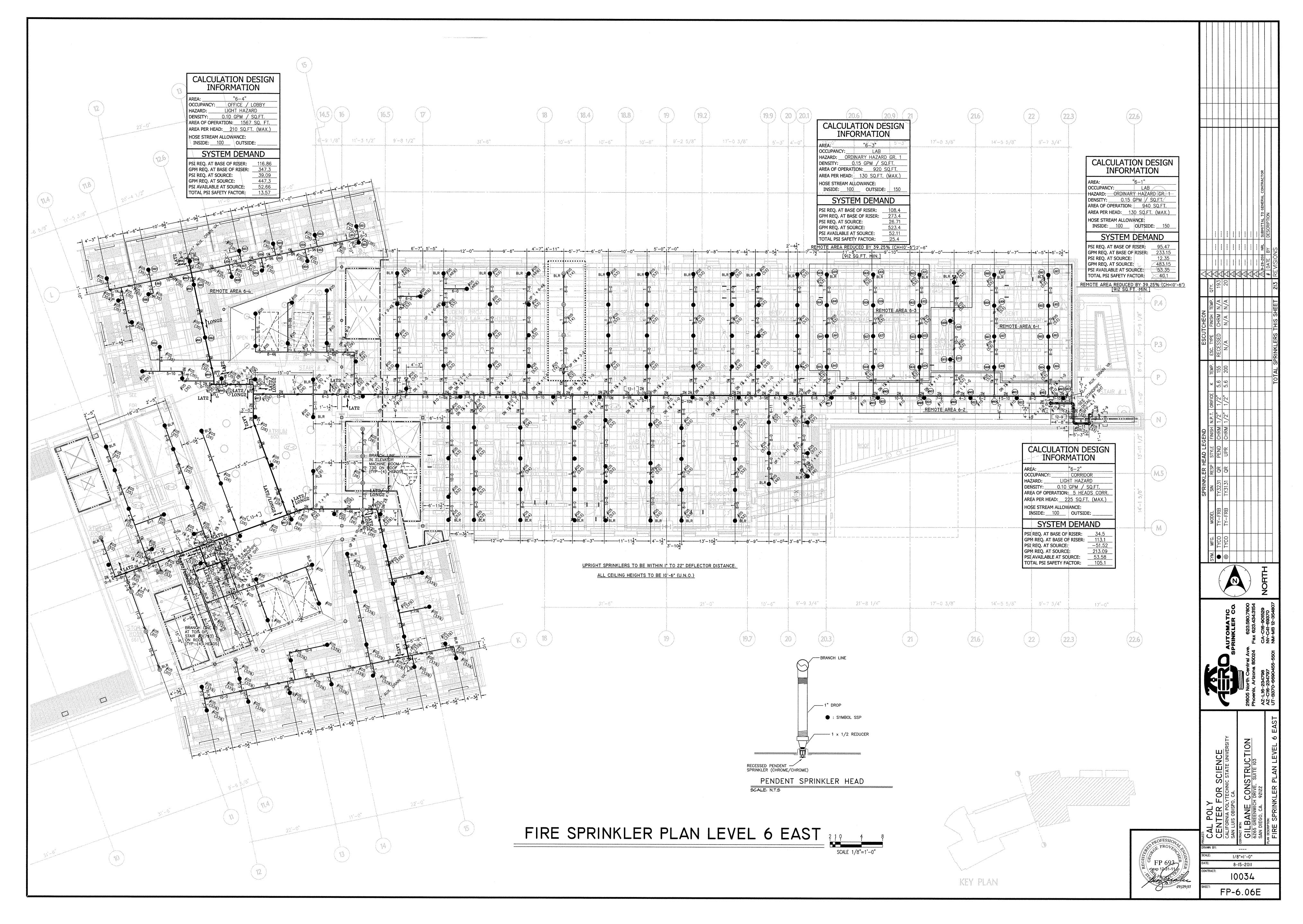


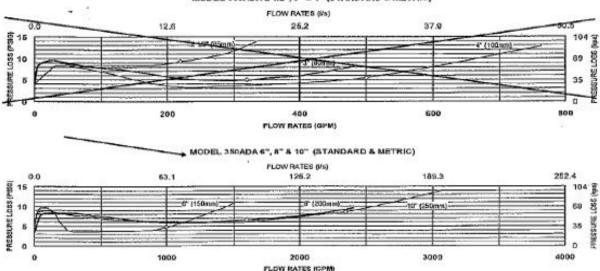








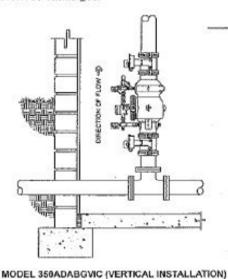


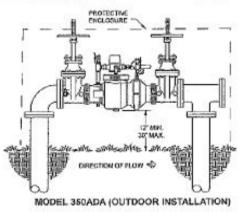


APPENDIX E – WILKINS MODEL 350ADA

Specifies And Construction With OSKY getes Specifies With OSKY getes With BGVIC valves With OSKY getes With BGVIC valves Vertice Specifies Vith OSKY getes With BGVIC valves FEATURES Specifies Sizes: 2 1/2" 2 1/2" 3" 12 1/2" 3" <th></th>	
APPLICATION Designed for installation on potable water lines connections in fire sprinkler systems to protect against both backsiphonage and backpressure of politited water into the potable water supply. Model 350ADA shall provide protection where a potential health hazard does not exist. Incorporates metered by-pass to detect leaks and unauthorized water use. STANDARDS COMPLIANCE (HORIZONTAL & VERTICAL) Maximum working water pressure Maximum working water temperature Hydrostatic test pressure End connections (Grooved for steel pipe) Maximum working water temperature (Fianged) *2 1/2" & 3" sizes use 4" body & reducer couplings	
Image: State of the state	
(Flanged) ANSI B16.1 Class 125 • FM® Approved *2 1/2" & 3" sizes use 4" body & reducer countings • Approved by the Foundation for Cross Connection	
 Approved by the Foundation for Cross Connection 	
OPTIONS Southern California (Suffixes can be combined) • With flanged end OS & Y gate valves (standard) L - with flanged end OS & Y gate valves (standard) L - less shut-off valves (grooved body connections) LM - less water meter - with remote reading meter Matterials floating fl	
□ - with gpm meter (standard) Coatings FDA Approved electrostatic epoxy finish □ - with cu ft/min meter Internals Stainless steel, 300 Series □ G - with grooved end OS&Y gate valves NORYL™, NSF Listed □ FG - with flangod inlet gate connection and grooved outlet gate connection Fasteners & springs □ PI - with Post Indicator Gate Valves (4"-10") Buna Nitrile (FDA approved) □ PI - with grooved end butterfly valves Polymers ACCESSORIES T A	
Repair kit (rubber only) Thermai expansion tank (Model XT) OS & Y Gate valve tamper switch (OSY-40) Test Cock Lock (Model TCL24)	
DIMENSIONS & WEIGHTS (do not include pkg.) MODEL SIZE GATES (GATES (GAG) GATES (GAG) WITH OSAY WITH SIZE GATES (GATES (GAG) GATES (GAC)	
in mm bs. kg bs. 20 lies 20 be. kg	
2 4/2 66 105 47.5 207 94 133 50.3 122.0 50.2 3 00 104 67 224 101.3 214 37 120.1 50.3 4 100 91 41.3 245 111 219 59.4 122 55.0 MODEL 350ADA with 12 19 10 10 10 10 10 10 10 10 10 10 10 10 10	
4 169 91 41.3 245 111 219 99.4 120 66.0 BGVIC option 2.35 171 171 171 173 183 07:0 0 100 <t< th=""><th></th></t<>	
-10 256 355 161 1010 4727 916 410.5 527 2395 .	
MODEL DIMENSION (approximate) 356 ADA A WITH BLESS C D E E WITH BUTTERFLY F G SIZE A BUTTERFLY GATE C D E BUTTERFLY F G VALVES VALVES VALVES VALVES VALVES VALVES VALVES Attention:	
2 1/2 63 39 1/8 802 32 1/8 816 20 1/8 511 4 1/2 1/4 9 2/9 18 5/9 416 19 7/8 562 8 200 0 152 7 1/4 184 (grooved body)	
0 00 00 1/0 910 30 000 20 1/0 511 4 1/2 114 9 229 10 7/0 479 15 5/0 007 e 203 5 162 7 14 164 and Model 350DA 4 100 00 1/4 972 09 1/4 645 19 7/0 009 4 1/2 114 9 229 22 5/4 570 10 1/4 404 9 1/9 232 0 152 5 205 (flange body)	
-6 150 47 1209 49 142 257 10 10 12 267 30 160 705 23 30 100 257 7 178 18 254 have different lay lengths. 8 200 82 1575 55 1397 38 12 978 10 254 12 305 37 34 959 29 14 15/16 303 8 1/2 216 11 279 lengths.	
10 250 64 50 1042 60 1/2 1465 30 1/2 376 10 254 12 385 45 64 1162 35 6 0 059 13 5/16 358 802 210 12 365	1
(Patent No. 5 913 331). Page 1 of 2	新

FLOW CHARACTERISTICS


MODEL 350ADA 2 1/2", 3" & 4" (STANDARD & METRIC)



TYPICAL INSTALLATION

Local codes shall govern installation requirements. Unless otherwise specified, the assembly shall be mounted at a minimum of 12" (305mm) and a maximum of 30" (762mm) above adequate drains with sufficient side clearance for testing and maintenance. The installation shall be made so that no part of the unit can be submerged.

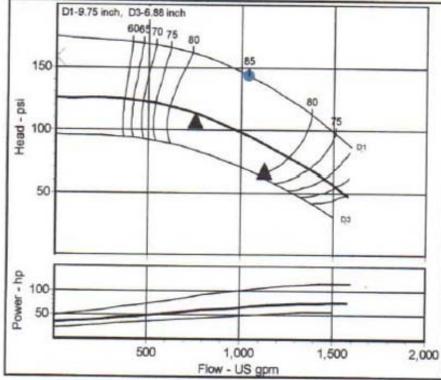
	15 ft/sec	10ft/sec	7.5 ft/sec	5 ft/sec	Pipe size
1	-224-	149	112	- 75	-2 1/2"
]	340	230	173	115	- 3"
]	-595	397	290		<u>4"</u>
]	-1351-	900	675	450	← 6 ^u
	2339	1559	1169	780	8"
]	3607	2450	1843	1229	-10"
	5208	3525	2844	1783	-12'

SPECIFICATIONS

The Double Check Detector Backflow Prevention Assembly shall be ASSE® Listed 1048, and supplied with foll port gate valves. The main body and access cover shall be epoxy coated ductile iron (ASTM A 536 Grade 4), the seat ring and check valve shall be NoryITH (NSF Listed), the stem shall be stainless steel (ASTM A 276) and the seat disc elastomers shall be EPDM. The first and second check valves shall be accessible for maintenance without removing the device from the line. The Double Check Detector Backflow Prevention Assembly shall be a WILKINS Model 350ADA.

WILKINS a Zum company, 1747 Commerce Way, Paso Robles, CA 93446 Phone:805/238-7100 Fax:805/238-5766 IN CANADA: ZURN INDUSTRIES LIMITED, 3544 Nashua Dr., Mississauga, Ontario L4V 1L2 Phone:905/405-8272 Fax:905/405-1292 Product Support Help Line: 1-877-BASKFLOW (1-877-222-5356) * Website: http://www.zurn.com

APPENDIX F – FIRE PUMP CURVE



sility When It Matters

Approved Fire Pumps

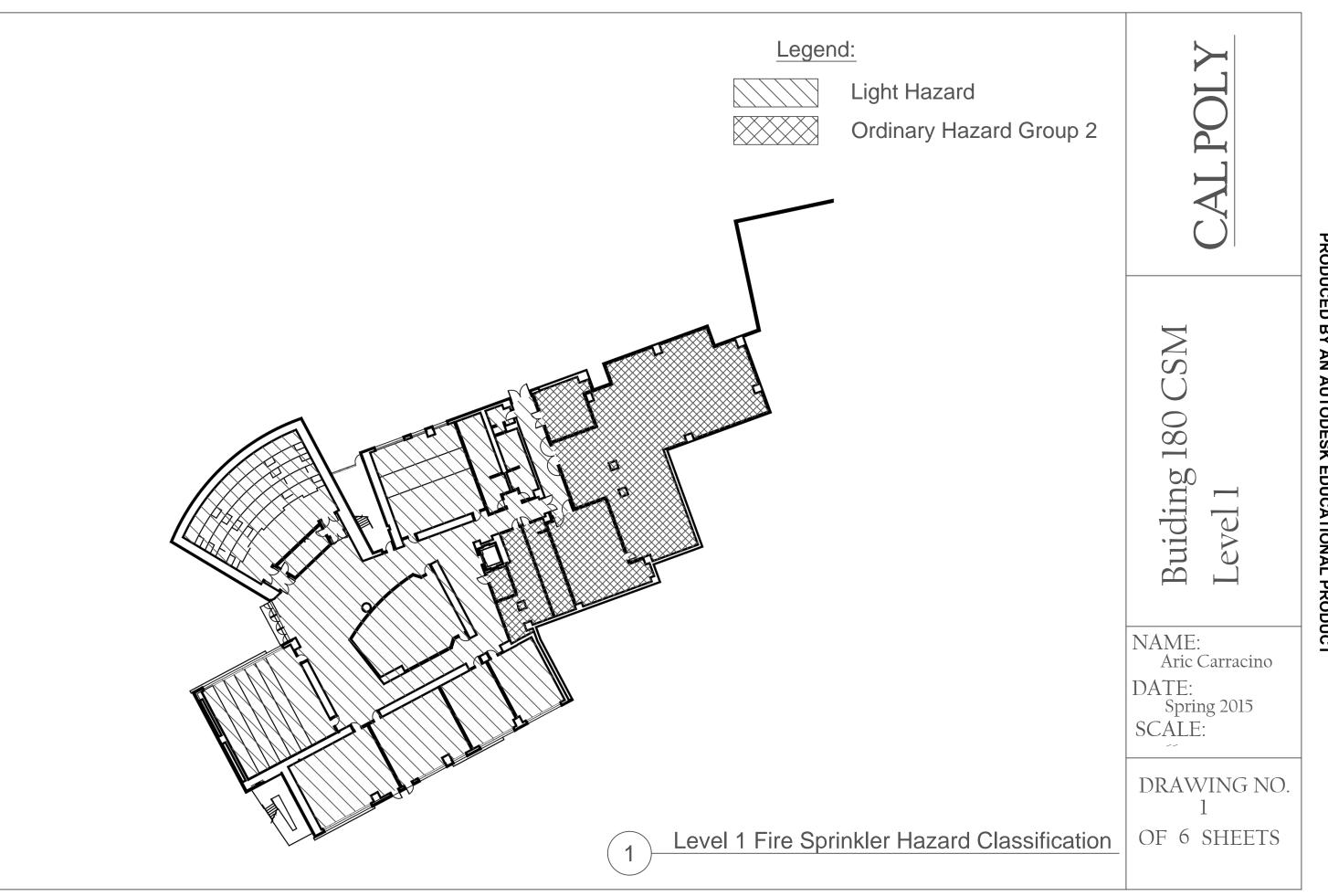
1151 N. Pomona Rd., Ste. B Corona, Ce 92882 Dana Mueller Phone 951-738-9100 Fex 951-7389191

Project : Quote Ref. :	Cal Poly Center for Science UK-999999-1	Page No : 1	Date :	Monday, February 28, 2011	
Type: Pump Model: Pump Op. Speed: Impeller Dia. Curve No.: Market :	PG - In-Line Close Coupled Fire 6PVF10 3550 RPM, 60 Hz Electric 8.24 inch 3116186 FM/UL/ULC Listed Fire Pump		item : Impeller No.: Liquid: Temperature: Viscosity: Sp. Gravity: Your Ref	1 2699332 Water 59 °F 1.14 cSt 1.00	

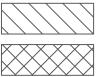
750 US gpm
113 psi
8.24 inch
58.1 hp
85.3 %
158.2 psi
73.4 psi
1125 US gpm
89 psi
69.3 hp
84.5 %
75.4 hp
125.2 psi
UL

typical performance. NPSH data is

Flow (US gpm)	Head (psi)	Pump Efficiency (%)	Power Required (hp)	NPSH Required (ft)
0.0	125.2	0.0	34.7	
197.6	125.2	36.6	39.5	-
395.1	124.2	62.8	45.7	
592.7	119.6	78.8	52.6	
790.2	110.9	86.2	59.5	
987.8	98.9	87.0	65.7	
1185.3	84.4	82.8	70.7	
1382.9	67.9	74.2	74.0	
1580.4	48.2	59.1	75.4	

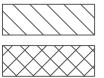

APPENDIX G – HYDRAULIC HAND CALCULATIONS

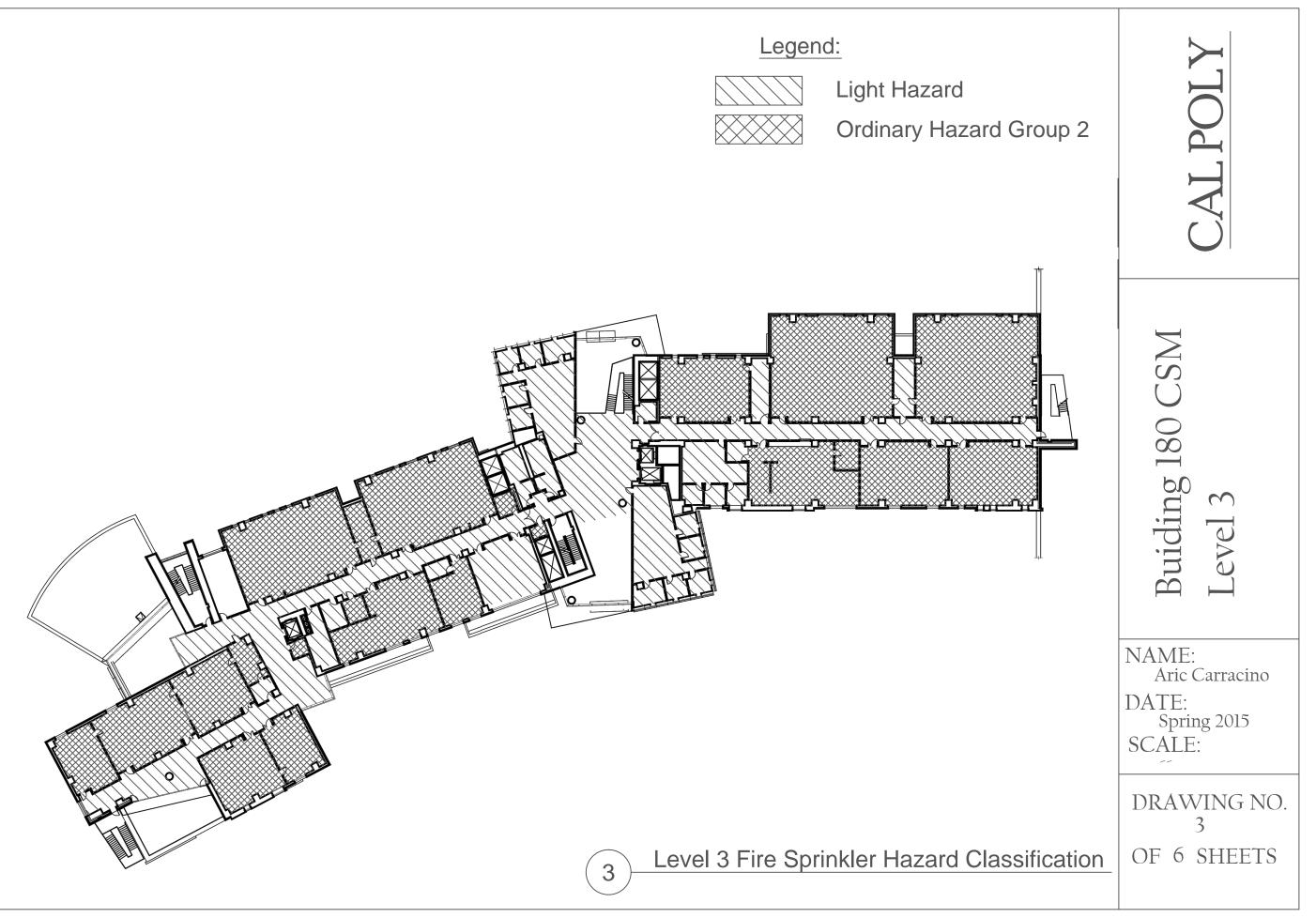
NODE		FLOW IN GPM	PIPE SIZE	PIPE FITTINGS AND DEVICES		EQUIV. PIPE LENGTH	FRICTION LOSS PSI/FT		PRESSURE UMMARY	NOTES
S631	q	19.5	0.22	1T(5)	L	0.5	1 01/11	Pt	12.125	A=130ft^2 per sprinkler
0001	Ч	1010	1.049	11(0)	F	5	0.1242	Pe	-0.2165	D=0.15 gpm/ft^2
L631	Q	19.5	21015		Т	5.5	0.12.12	Pf	0.6831	H=-0.5ft, K=5.6
L631	q				L			Pt	12.592	Keq=19.5/sqrt(12.592)
					F			Pe		Keq=5.495
	Q	19.5			т			Pf		
L631	q				L	8		Pt	12.592	
			1.049		F		0.1242	Pe		
L632	Q	19.5			т	8		Pf	0.9936	
L632	q	20.25			L	8		Pt	13.586	Keq=5.495
			1.049		F		0.4637	Ре		Q=5.495*sqrt(13.586)
L633	Q	39.75			Т	8		Pf	3.7096	Q=20.254 gpm
L633	q	22.85			L	8		Pt	17.2956	Keq=5.495
			1.049		F		1.074	Ре		Q=5.495*sqrt(17.2956)
L634	Q	62.6			Т	8		Pf	8.592	Q=22.853 gpm
L634	q	27.96		1T(6)	L	7.5		Pt	25.8876	H=+1ft
			1.38	1E(3)	F	9	0.5595	Ре	-0.433	Q=5.495*sqrt(25.8876)
MN08	Q	90.56			Т	16.5		Pf	9.232	Q=27.96 gpm
MN08	q				L			Pt	34.686	Branchline Keq
					F			Ре		Keq=90.56/sqrt(34.686)
	Q	90.56			Т			Pf		Keq=15.38
MN08	q				L	10.75		Pt	34.686	
			2.635		F		0.024	Pe		
MN10	Q	90.56			Т	10.75		Pf	0.2577	
MN10	q	90.92			L	10.75		Pt	34.944	Keq=15.38
		404.40	2.635		F	40.75	0.0868	Pe	0.0000	Q=15.38*sqrt(34.944)
MN11	Q	181.48		(T	10.75		Pf	0.9326	Q=90.916 gpm
MN11	q	92.12	a ca r	1T(12)	L	149.5	0.405.5	Pt	35.877	H=+1.33 ft
NANIA D		272.0	2.635	2E(6)	F	18	0.1854	Pe	-0.576	Q=15.38*sqrt(35.877)
MN12	Q	273.6		45(2)	T	167.5		Pf	31.055	Q=92.122 gpm
MN12	q		2 625	1F(3)		32.8	0.4054	Pt	66.356	
		17 2 C	2.635	1T(12)	F	15	0.1854	Pe Pf	0.000	
MN13	Q	273.6		25(6)	Т	47.8			8.862	µ_ 2 247 ft
MN13	q		2.635	2E(6) 1T(12)	L F	26.452 24	0.1854	Pt Pe	75.22 0.973	H=-2.247 ft
	0	770 G	2.055	11(12)			0.1054			
MN14	Q	273.6			Т	50.452		Pf	9.3538	

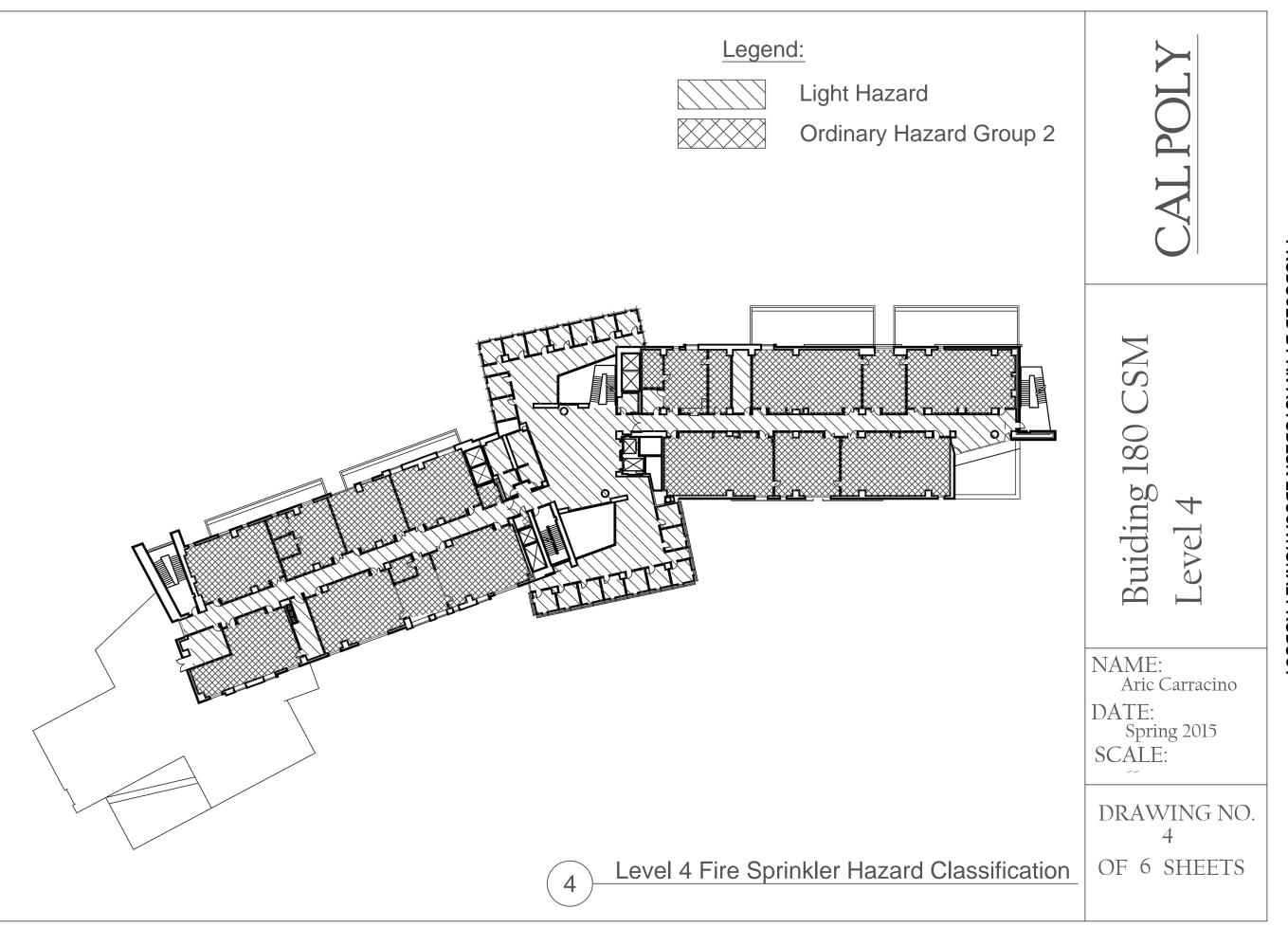

NODE		FLOW IN GPM	PIPE SIZE	PIPE FITTINGS AND DEVICES		EQUIV. PIPE LENGTH	FRICTION LOSS PSI/FT		PRESSURE UMMARY	NOTES
MN14	q			2E(6)	L	9.667		Pt	85.547	
			2.635		F	12	0.1854	Ре		
TOR6	Q	273.6			Т	21.667		Pf	4.017	
TOR6	q			1C(11)	L	7.083		Pt	89.564	H=-7.083 ft
			2.635	1B(7)	F	24	0.1854	Ре	3.067	
BOR6	Q	273.6		1E(6)	Т	31.083		Pf	5.763	
BOR6	q			1T(12)	L	1		Pt	98.394	H=+1 ft
			2.635		F	12	0.1854	Ре	-0.433	
SP36	Q	273.6			Т	13		Pf	2.41	
SP36	q	100		1T(30)	L	32		Pt	100.37	H=-32 ft
			6.065		F	30	0.0057	Ре	13.856	
SP34	Q	373.6			Т	62		Pf	0.3534	
SP34	q			1T(30)	L	23.833		Pt	114.58	H=-23.833 ft
			6.065		F	30	0.0057	Ре	10.32	
SP05	Q	373.6			Т	53.833		Pf	0.307	
SP05	q			1T(30)	L	61.66		Pt	125.207	H=-1.084 ft
			6.065	1B(10)	F	110	0.0057	Ре	0.469	
SP04	Q	373.6		5E(14)	Т	171.66		Pf	0.978	
SP04	q			2E(14)	L	79.33		Pt	126.654	H=-15.416 ft
			6.065		F	28	0.0057	Ре	6.68	
SPC1	Q	373.6			Т	107.33		Pf	0.612	
SPC1	q			1T(30)	L	7.833		Pt	133.946	
			6.065		F	30	0.0057	Ре		
SPC2	Q	373.6			Т	37.833		Pf	0.216	
SPC2	q			1B(12)	L	14.75		Pt	134.162	H=-10.83 ft
			7.981	1C(45)	F	75	0.0015	Ре	4.7	
РО	Q	373.6		1E(18)	Т	89.75		Pf	0.1346	
РО	q				L			Pt	138.99	Pump Curve
					F			Ре		At 373.6 gpm
PI	Q	373.6			Т			Pf	-125	P=125 psi
PI	q			1G(4)	L	13.29		Pt	14	H=+5 ft
			7.981	1E(18)	F	57	0.0015	Ре	-2.17	
РОС	Q	373.6		1T(45)	Т	70.29		Pf	0.105	
POC	q			1E(18)	L	41		Pt	13.885	H=+2.25 ft
			8.27		F	32.32	0.0008	Ре	-0.97	PVC pipe, C=150, 1.51
BF1a	Q	373.6			Т	73.32		Pf	0.059	D=1.189, E=32.32

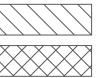
NODE		FLOW IN GPM	PIPE SIZE	PIPE FITTINGS AND DEVICES		EQUIV. PIPE LENGTH	FRICTION LOSS PSI/FT	PRESSURE SUMMARY		NOTES
BF1a	q			1E(18)	L	4	- /	Pt	12.974	H=+4 ft
			7.981		F	18	0.0015	Ре	-1.73	
BF1	Q	373.6			Т	22		Pf	0.033	
BF1	q			1Zic	L			Pt	11.277	Zurn spec sheet
			7.981		F			Ре		Fixed loss 8 psi
BF2	Q	373.6			Т			Pf	8	
BF2	q			2E(18)	L	4		Pt	19.277	H=-4 ft
			7.981		F	36	0.0015	Ре	1.73	
BF2a	Q	373.6			Т	40		Pf	0.06	
BF2a	q			1G(4)	L	42		Pt	21.07	PVC pipe, C=150, 1.51
			8.27	1T(35)	F	70.02	0.0008	Ре		D=1.189, E=32.32
SRC	Q	373.6			Т	112.02		Pf	0.0896	(39)*(1.189)*(1.51)=70.02
SRC	q	150			L			Pt	21.16	Outside HSA=150gpm
					F			Ре		
	Q	523.6			Т			Pf		

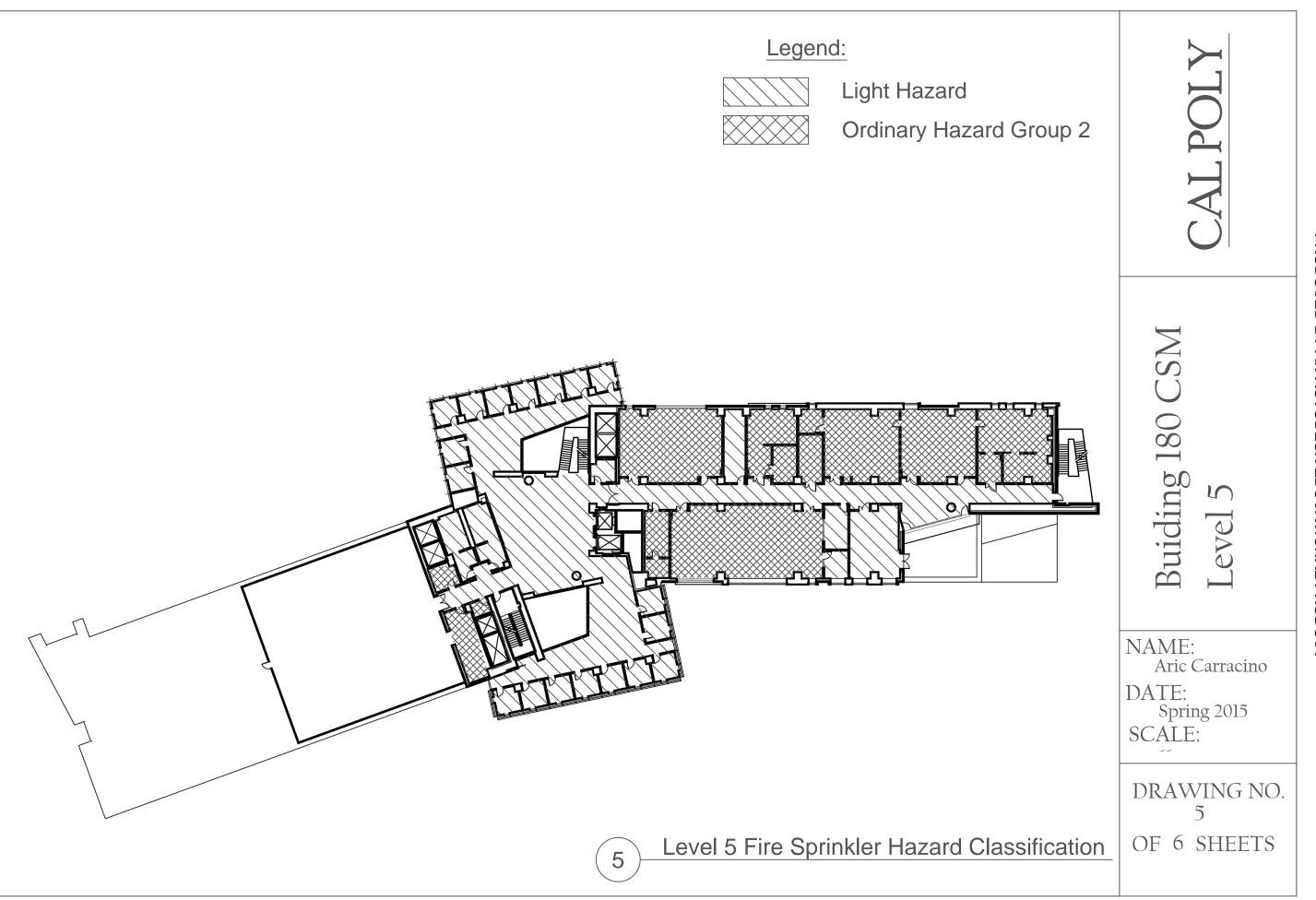
APPENDIX H – FIRE SPRINKLER HAZARD CLASSIFICATION FLOOR PLANS

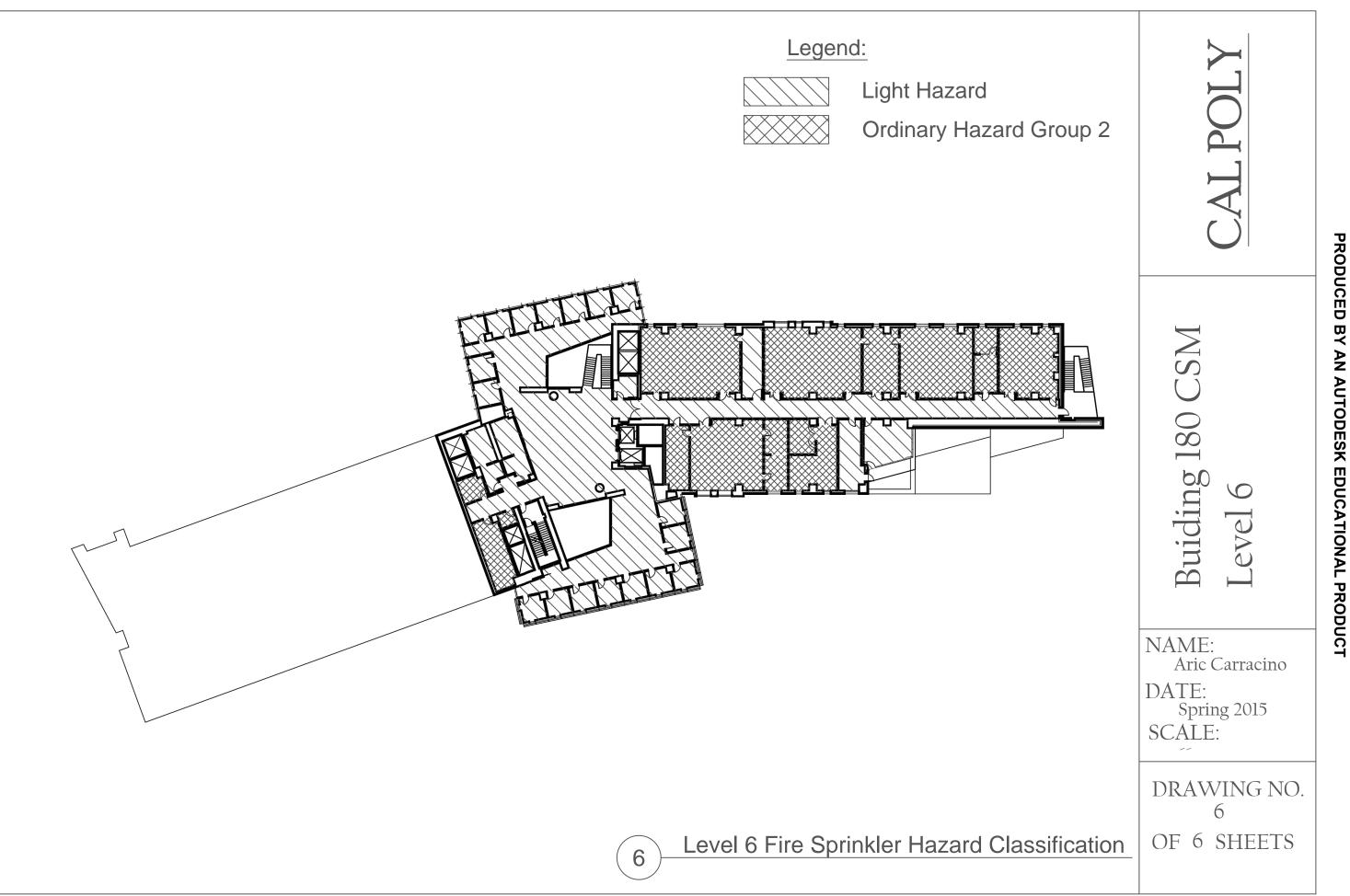


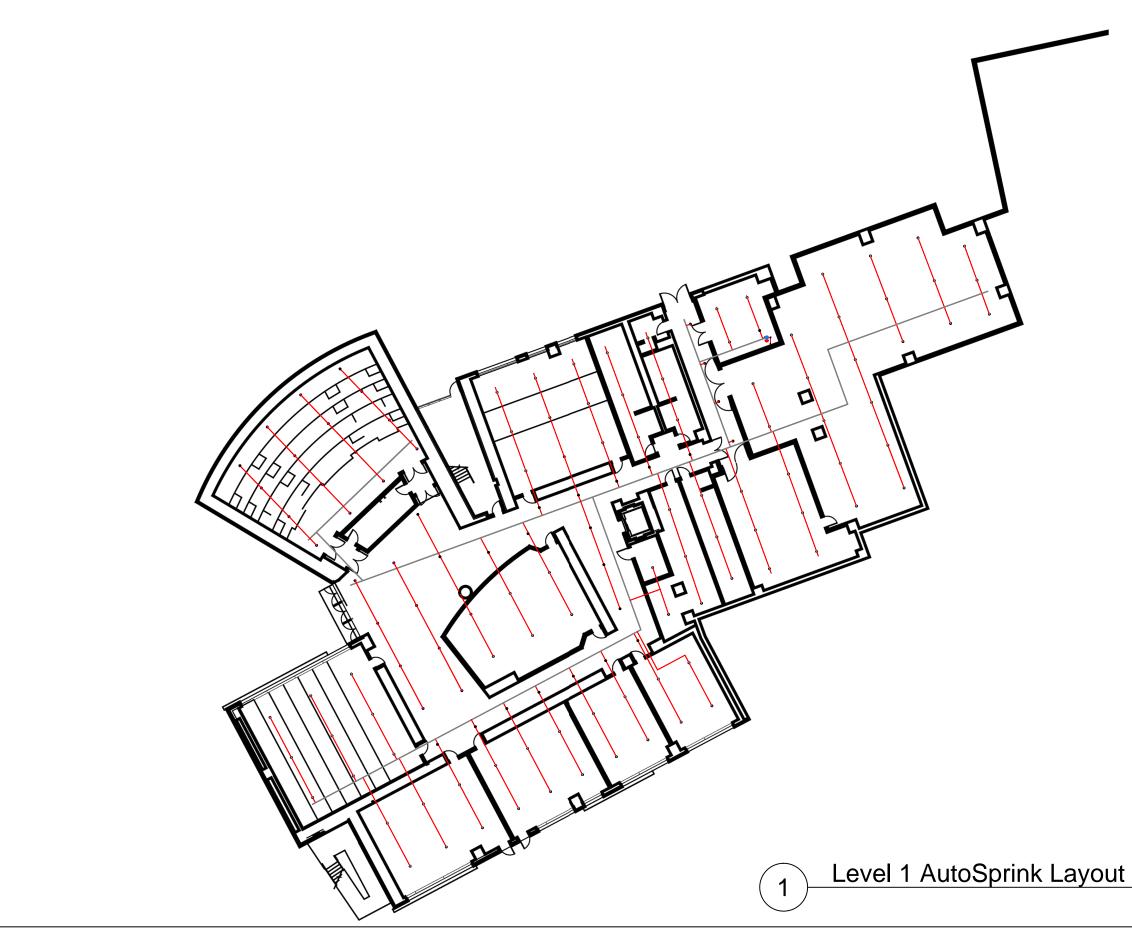


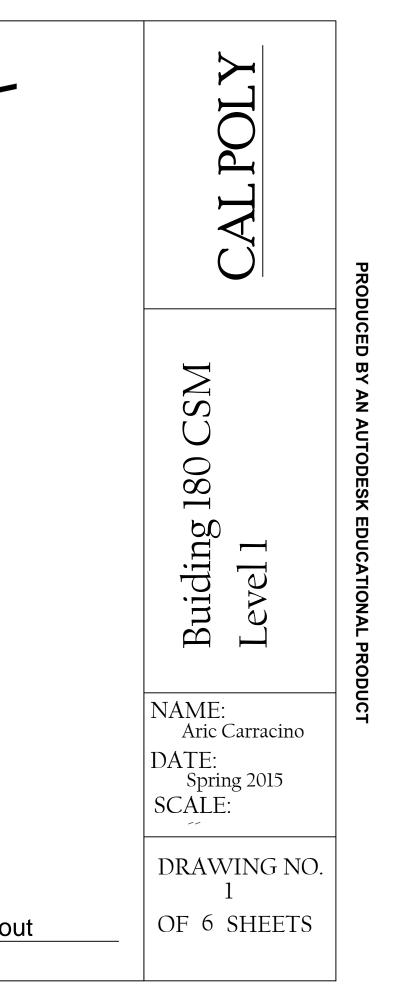


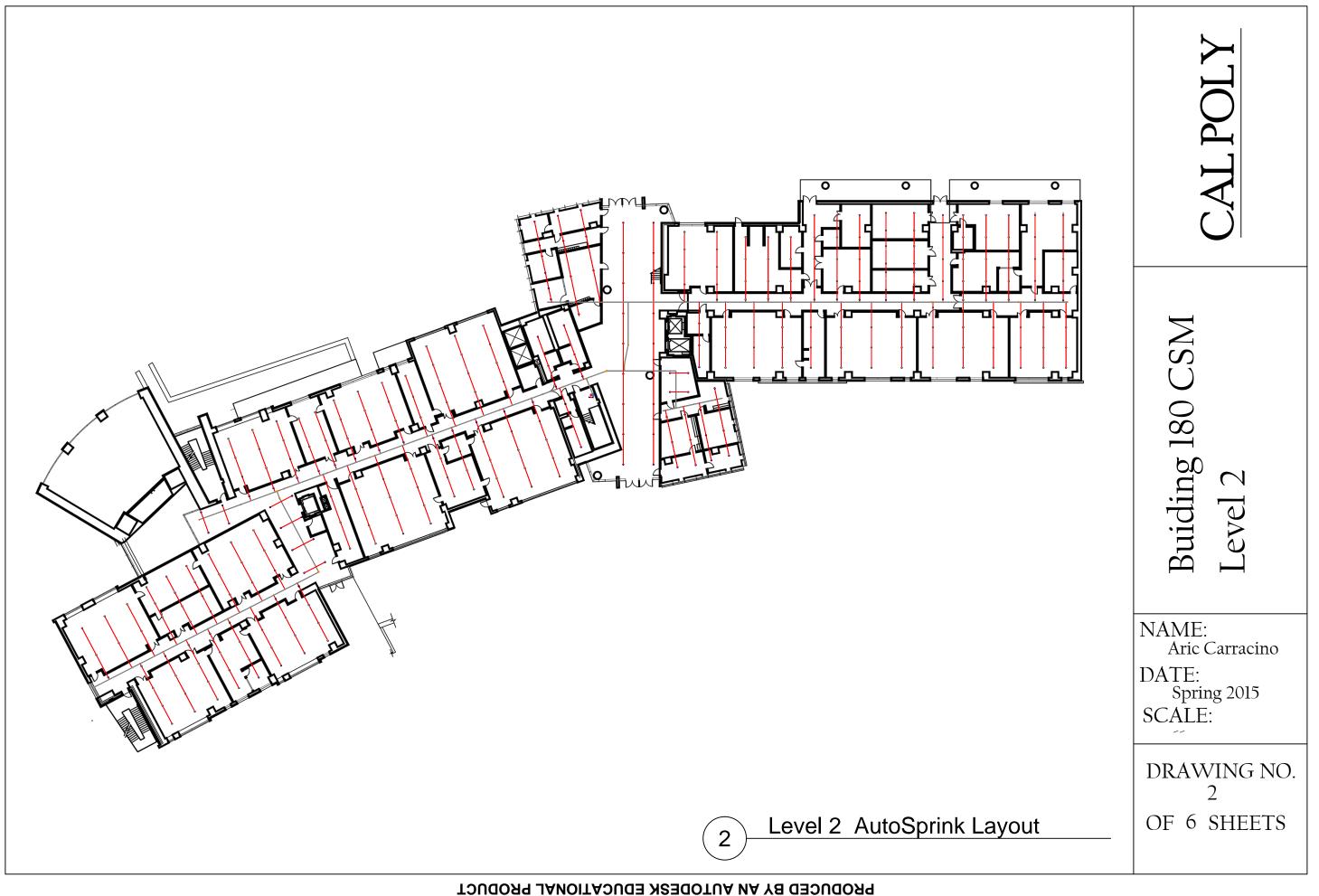


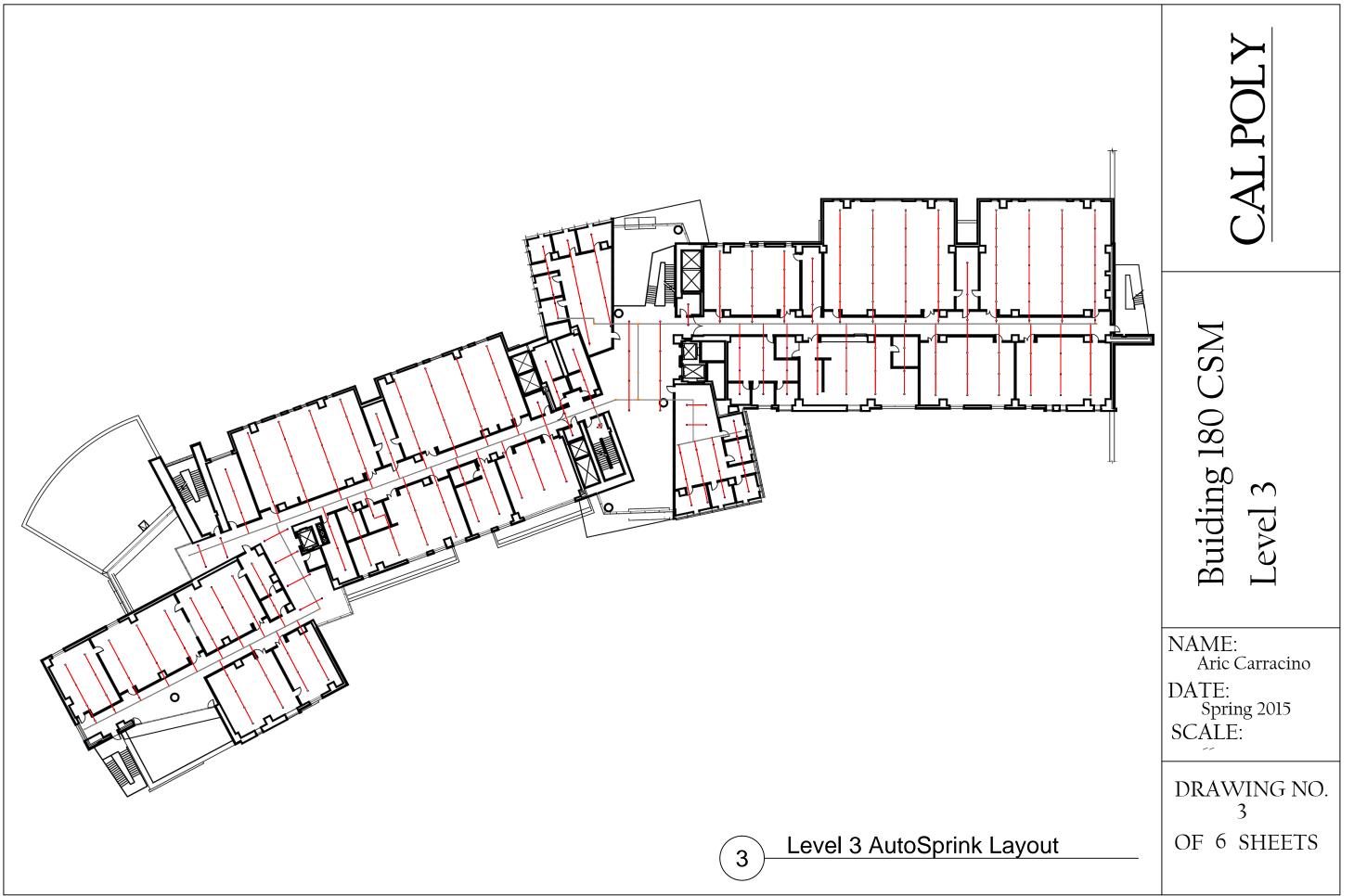


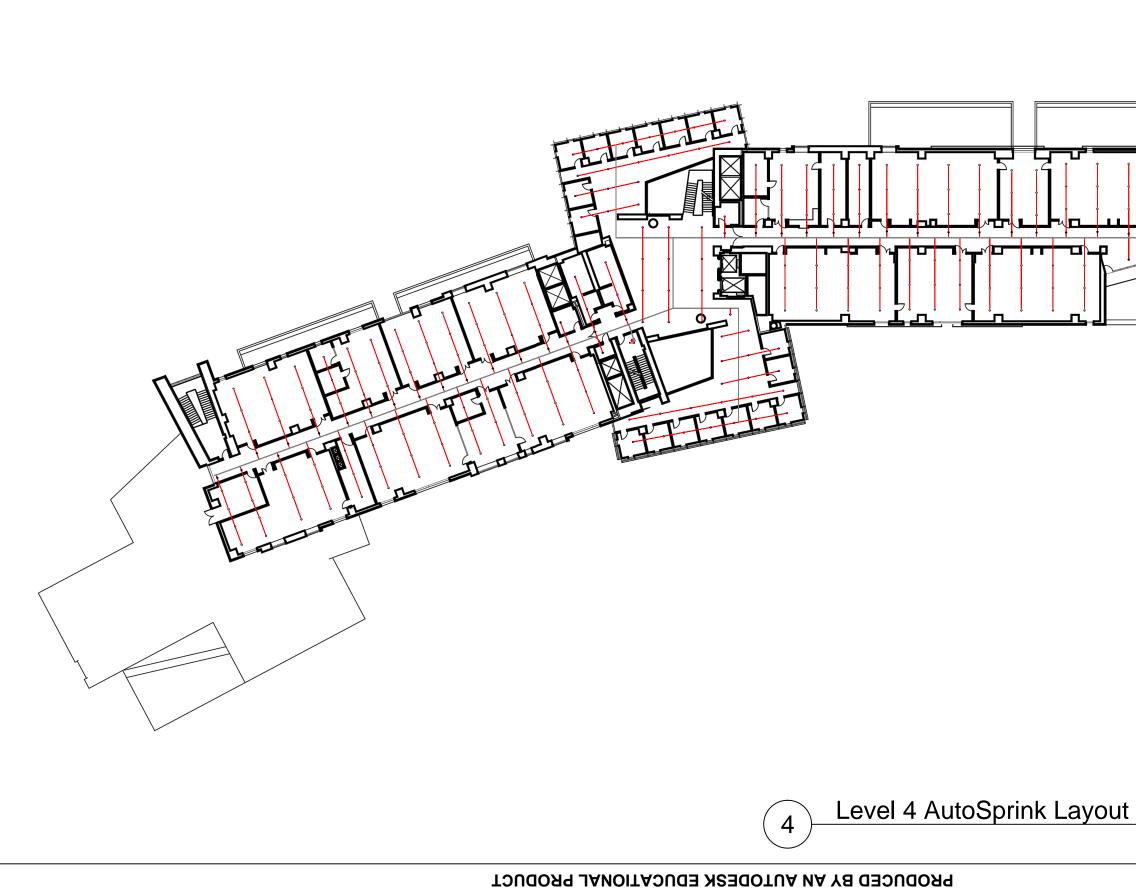


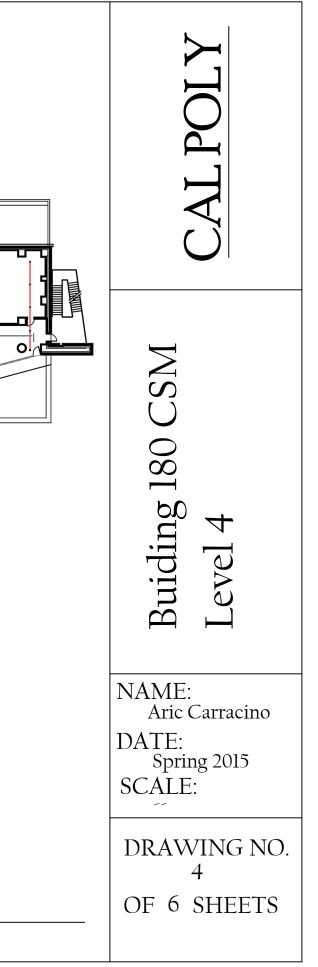


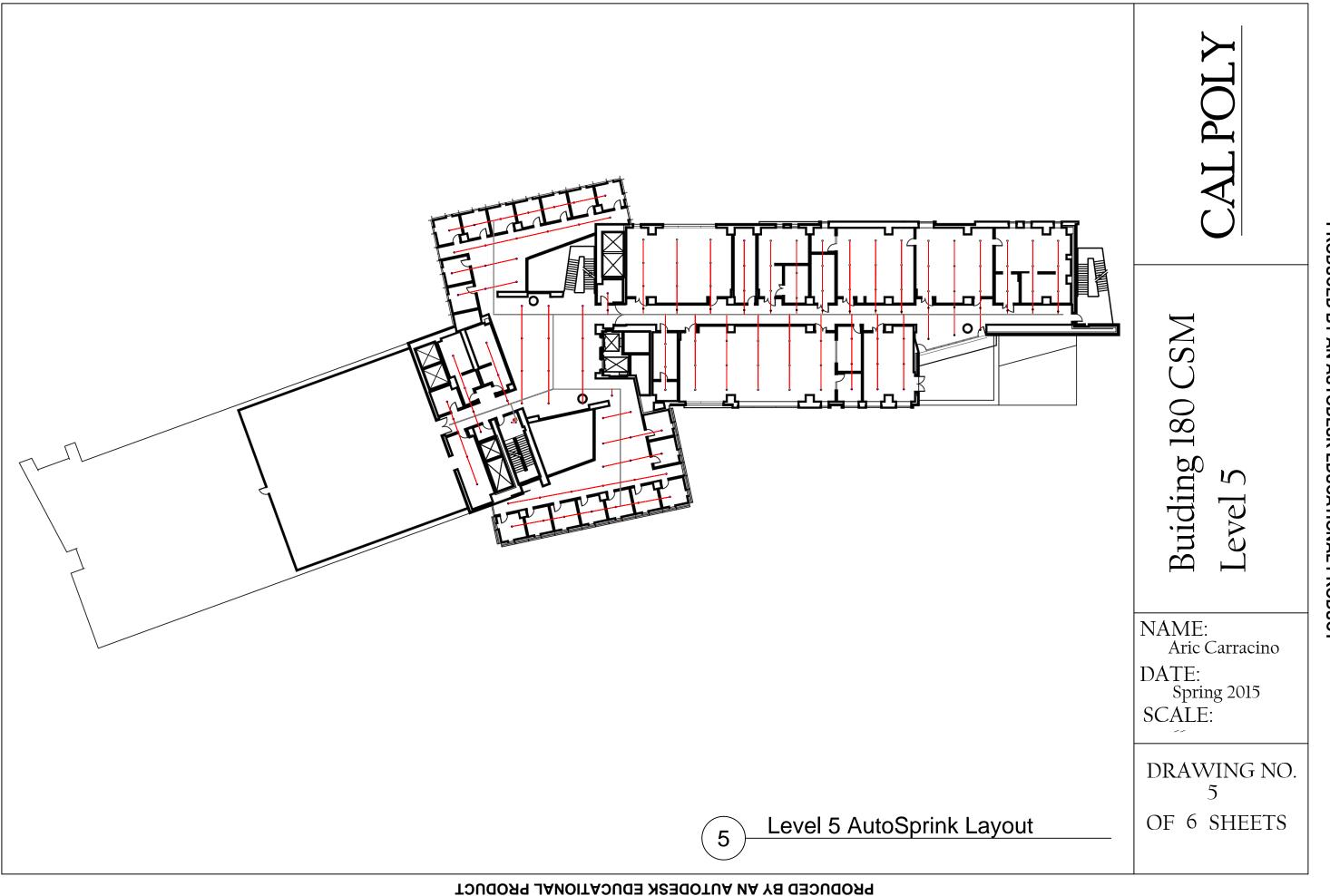


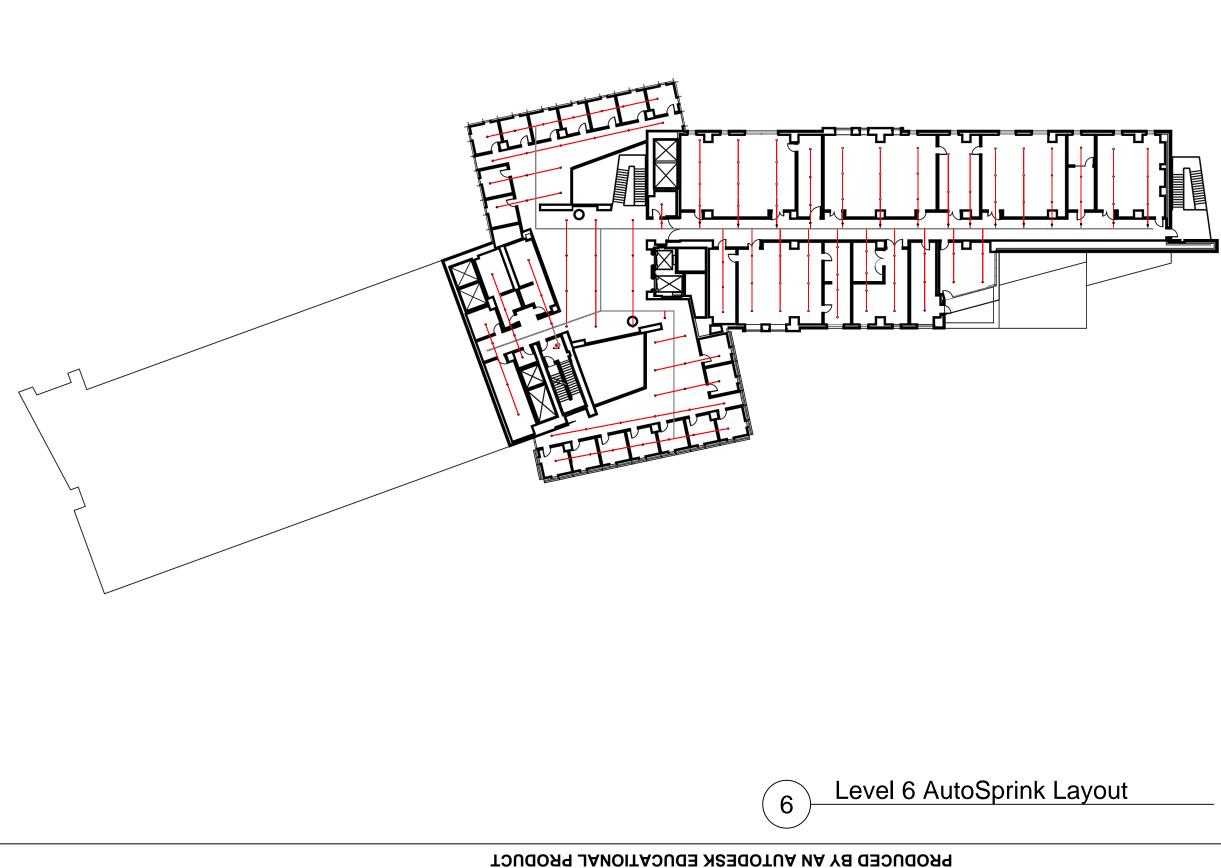


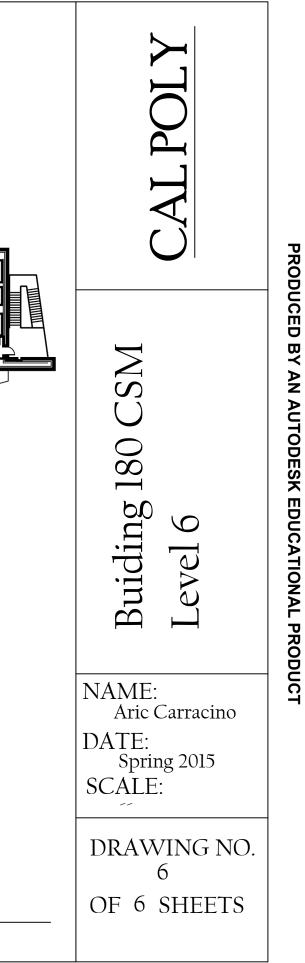

ТООООСЕР ВҮ АМ АUTODESK EDUCATIONAL PRODUCT


APPENDIX I – AUTOSPRINK FIRE SPRINKLER FLOOR PLANS









APPENDIX J – AUTOSPRINK NODE ANALYSIS

Node Analysis

osi) Discharge(gpm)	Pressure(psi)	Fittings	Elevation(Foot)	Node
	82.394		0'-0	10
23.07	16.967	Spr(-16.967)	10'-6¼	101
23.12	17.045	Spr(-17.045)	10'-6¼	102
23.16	17.110	Spr(-17.110)	10'-6¼	103
89 23.22	17.189	Spr(-17.189)	10'-6¼	104
73 23.87	18.173	Spr(-18.173)	10'-6¼	105
258 23.93	18.258	Spr(-18.258)	10'-6¼	106
25.53	20.782	Spr(-20.782)	10'-6¼	107
25.59	20.877	Spr(-20.877)	10'-6¼	109
19 28.23	25.419	Spr(-25.419)	10'-6¼	110
28.30	25.535	Spr(-25.535)	10'-6¼	112
58	17.158	T(5'-0)	13'-0	1
48	18.448	T(5'-0)	13'-0	2
:35	21.235	T(5'-0)	13'-0	3
85	26.185	T(5'-0)	13'-0	4
93	46.893	E(3'-0)	13'-0	5
'01	47.701	PO(10'-0)	15'-0	6
19	47.919	PO(10'-0)	15'-0	7
26	62.126	T(20'-2)	15'-0	8
62	77.162		8'-0	9
.42	17.242	T(5'-0)	13'-0	12
38	18.538	T(5'-0)	13'-0	13
37	21.337	T(5'-0)	13'-0	14
08	26.308	T(5'-0)	13'-0	15
04	47.104	E(3'-0)	13'-0	17
98	16.798	E(2'-0)	13'-0	18
81	16.881	E(2'-0)	13'-0	19

Hydraulic Analysis

Pipe Type Downstream Upstream DR 101 1 BL 1	1.0490	Flow Discharge	Velocity K-Factor	HWC Pt Pn	Friction Loss Fittings	Length Eq. Length Total Length		ssure nmary
DR 101 101 1 BL 1	1.0490			ation Discharge K-Factor Pt Pn Fittin				
DR 101 1 3L 1	1.0490							
101 1 3 <u>L</u> 1		23.07	8.56	120	0.169433	2'-5¾	Pf	1.268
1 L 1	10'-6¼	23.07	5.6	16.967	Sprinkler,			-1.077
1	13'-0			17.158	T(5'-0)	7'-5¾		
1	1.3800	46.23	9.92	120	0.161272			1.290
	13'-0	23.16		17.158	Flow (q) from Route 3		Pe	
2	13'-0	20110		18.448	(4)	8'-0		
	1.3800	70.10	15.04	120	0.348385			2.787
2	13'-0	23.87	13.04	18.448	Flow (q) from Route 5	0-0	Pe	2.707
		23.07			now (q) non route o			
3	13'-0			21.235	0.040045	8'-0		
BL	1.3800	95.63	20.51	120	0.618815	8'-0		4.951
3	13'-0	25.53		21.235	Flow (q) from Route 7		Pe	
4	13'-0			26.185		8'-0		
3L	1.3800	123.87	26.57	120	0.998630	17'-8¾		20.707
4	13'-0	28.23		26.185	Flow (q) from Route 9	3'-0	Pe	
5	13'-0			46.893	E(3'-0)	20'-8¾	Pv	
RN	2.0670	123.87	11.84	120	0.139607	2'-0	Pf	1.675
5	13'-0	120.01	11.01	46.893				-0.867
6	15'-0			47.701	PO(10'-0)	12'-0		0.007
		100.07	1 70		0.015179			0.040
CM	3.2600	123.87	4.76	120	0.010173	14'-4¾	1	0.218
6	15'-0			47.701			Pe	
7	15'-0			47.919		14'-4¾		
CM	3.2600	248.02	9.53	120	0.054837		1	14.206
7	15'-0	124.15		47.919	Flow (q) from Route 2	40'-3¾	Pe	
8	15'-0			62.126	2T(20'-2)	259'-0¾	Ρv	
CM	2.6350	248.02	14.59	120	0.154612	35'-0¾		12.001
8	15'-0	2.0.02		62.126		42'-6¾		
9	8'-0			77.162	Ee2(4'-1½), PO(16'-5¾),	77'-7½	-	0.000
9	0-0			11.102	C(16'-5 ³ ⁄ ₄), LtE(5'-6)	11-1/2	FV	
			10.00	100		= = = = = = = = = = = = = = = = = = = =		
FR	2.4690	248.02	16.62	120	0.212260			1.765
9	8'-0			77.162				3.467
10	0'-0			82.394	f(-0.000), ALV, GV(1'-0), S	8'-3¾	Ρv	
		0.00			Hose Allowance At Source			
10		248.02						
•••• Route 2 ••								
DR	1.0490	23.12	8.58	120	0.170162	2'-5¾	Pf	1.274
102	10'-6¼	23.12	5.6	17.045	Sprinkler,	5'-0	Pe	-1.077
12	13'-0			17.242	T(5'-0)	7'-5¾	Pv	
BL	1.3800	46.34	9.94	120	0.161965			1.296
12	13'-0	23.22	0.01	17.242	Flow (q) from Route 4		Pe	
13	13'-0	20.22		18.538	(4)	8'-0		
		70.07	45.07		0.349881			2.799
BL	1.3800	70.27	15.07	120		8-0		2.799
13	13'-0	23.93		18.538	Flow (q) from Route 6		Pe	
14	13'-0			21.337		8'-0	Pv	
BL	1.3800	95.85	20.56	120	0.621464	8'-0	Pf	4.972
14	13'-0	25.59		21.337	Flow (q) from Route 8		Pe	
15	13'-0			26.308		8'-0		
BL	1.3800	124.15	26.63	120	1.002885	17'-8¾		20 704
15	13'-0	28.30	20.00	26.308	Flow (q) from Route 10	3'-0		20.130
15		20.00			E(3'-0)	20'-8¾		
	13'-0	101.15	44.07	47.104				4 000
RN	2.0670	124.15	11.87	120	0.140202			1.682
17	13'-0			47.104				-0.867
7	15'-0			47.919	PO(10'-0)	12'-0	Pv	
••••• Route 3 ••	•••							
DR	1.0490	23.16	8.60	120	0.170755	2'-5¾	Pf	0.766
103	10'-6¼	23.16	5.6	17.110	Sprinkler,		1	-1.077
18	13'-0			16.798	E(2'-0)	4'-5¾		
BL	1.3800	23.16	4.97	120	0.044909		_	0.359
		20.10	4.91		0.0077000	0-0		0.339
18	13'-0			16.798			Pe	
1	13'-0			17.158		8'-0	PV	
•••• Route 4 ••	••••							
DR	1.0490	23.22	8.62	120	0.171489	2'-5¾	Pf	0.769
104	10'-6¼	23.22	5.6	17.189	Sprinkler,			-1.077
19	13'-0		-	16.881	E(2'-0)	4'-5¾		
BL	1.3800	23.22	4.98	120	0.045103		_	0.361
		20.22	т .90		0.010100	0-0		0.001
	13'-0			16.881			Pe	
19	13'-0			17.242		8'-0	Pv	
19 12								
19 12							_	
19 12 ● • • • • • Route 5 • •	1.0490	23.87	8.86	120	0.180553	2'-5¾	Pf	1.351
19		23.87 23.87	8.86 5.6	120 18.173	0.180553 Sprinkler,			1.351 -1.077

ipe Type Downstream Upstream	Diameter Elevation	Flow Discharge	Velocity K-Factor	HWC Pt	Pn	Friction Los Fittings	S	E	•		ssure nmary
R	1.0490	23.93	8.88	120		0.181326			2'-5¾	Pf	1.357
106	10'-6¼	23.93	5.6	18.258		Sprinkler,			5'-0	Pe	-1.077
13	13'-0			18.538		T(5'-0)			7'-5¾	Ρv	
••••• Route 7	• • • • •										
R	1.0490	25.53	9.48	120		0.204403			2'-5¾	Pf	1.530
107	10'-6¼	25.53	5.6	20.782		Sprinkler,			5'-0	Pe	-1.077
3	13'-0			21.235		T(5'-0)			7'-5¾	Ρv	
••••• Route 8	• • • • •										
R	1.0490	25.59	9.50	120		0.205270			2'-5¾	Pf	1.536
109	10'-6¼	25.59	5.6	20.877		Sprinkler,			5'-0	Pe	-1.077
14	13'-0			21.337		T(5'-0)			7'-5¾	Ρv	
••••• Route 9	• • • • •										
R	1.0490	28.23	10.48	120		0.246264			2'-5¾	Pf	1.843
110	10'-6¼	28.23	5.6	25.419		Sprinkler,			5'-0	Ре	-1.077
4	13'-0			26.185		T(5'-0)			7'-5¾	Ρv	
••••• Route 10) • • • • •										
R	1.0490	28.30	10.50	120		0.247297			2'-5¾	Pf	1.851
112	10'-6¼	28.30	5.6	25.535		Sprinkler,			5'-0	Ре	-1.077
15	13'-0			26.308		T(5'-0)			7'-5¾	Ρv	
quivalent Pipe Le	engths of Valves and	d Fittings (C=120 or	nly)		C Valu	e Multiplier					

Hydraulic Analysis

Job Number: 1

Pipe Type Downstream Upstream	Diameter Elevation		Velocity K-Factor	HWC Pt	Pn	Friction Loss Fittings	_	Length Eq. Length Total Length	Pressure Summary
Pipe Type Lege	end		U	nits Legend				Fittings Legen	d
 AO Arm-Over Branch Line Cross Main DN Drain DR Drop DY Dynamic MF eed Main FR Feed Riser MS Miscellaneou: DR Outrigger RN Riser Nipple SP Sprig ST Stand Pipe JG Underground 	s	Elevation Flow Solution Flow S	Inch Foot gpm gpm fps Sosi Foot Hazen-Williams Con Total pressure at a p Normal pressure at a Pressure loss due to Pressure due to elev Velocity pressure at	oint in a pip a point in a p friction betw ration differe	bipe ween points ence betwee		b BalV BFP BV C cplg Cr CV DelV DPV E EE Ee1 Ee2 f fd FDC fE fd FDC fE fg FN fT g GloV GV Ho Hose HV Hyd LtE mecT Noz P1 P2 PIV PO PRV PV C v C v DPV E E E T ff ff FDC ff ff FDC ff ff FDC ff ff FDC ff ff FDC ff ff FDC ff ff FDC ff ff FDC ff ff FDC ff ff FDC FDC ff FDC ff FDC FDC FDC FDC FDC FDC FDC FDC FDC FDC	Alarm Valve Angle Valve Bushing Ball Valve Backflow Prevente Butterfly Valve Cross Flow Turn 9 Coupling Cross Run Check Valve Deluge Valve Dry Pipe Valve 90° Elbow 45° Elbow 11½° Elbow 22½° Elbow Flow Device Flex Drop Fire Department C 90° FireLock(TM) 45° Fire	0° Connection Elbow Elbow g Valve g Valve lve

APPENDIX K – FIRE ALARM AS-BUILTS

GENERAL NOTES

1. NOTIFICATION DEVICES CANNOT BE T-TAPPED. ADDRESSABLE (IDC) DEVICES CAN BE T-TAPPED. ALL FIRE ALARM CABLING SHALL SHALL BE RUN FROM DEVICE TO DEVICE, WITH NO SPLICES. ANY REQUIRED TERMINATIONS MUST BE MADE IN APPROVED BOX.

2. ALL INTERIOR INITIATING DEVICES, NOTIFICATION DEVICES, AND MODULES REQUIRE 4"SQUARE SPECIAL DEEP BACK BOXES U.O.N.

3. PANEL BACK BOXES AND OTHER LISTED BACK BOXES SHALL BE PROVIDED TO THE EC BY DBI. ALL CONTROL PANELS, POWER SUPPLIES, AND BATTERY BOXES SHALL UTILIZE ONLY FACTORY KNOCKOUTS NEAR THE TOP OF THE CAN TO ALLOW PLACEMENT OF BATTERIES.

4. ALL FIRE ALARM CONDUIT TO BE $\frac{3}{4}$ " EMT MINIMUM U.O.N. FIRE ALARM CONDUIT SHALL BE SEPARATE FROM CONDUIT SYSTEM FOR SECURITY ALARM CABLING AND OTHER SYSTEMS.

5. WALL MOUNT AUDIO/VISUAL DEVICES SHALL BE MOUNTED 80" AFF TO BOTTOM OF THE STROBE LENS.

6. MANUAL PULL STATIONS SHALL BE MOUNTED 48" AFF TO CENTERLINE OF BOX. MPS SHALL BE DOUBLE ACTION AND KEYED THE SAME AS THE FACP.

7. DEDICATED 120 VAC CIRCUIT WITH LOCKOUT @ BREAKER TO BE PROVIDED BY OTHERS AT LOCATION OF PANELS AND POWER SUPPLIES.

8. KNOX BOX, PIV, SUPERVISORY SWITCHES, FLOW SWITCHES, SOLENOIDS, AND SPRINKLER BELLS SHALL BE PROVIDED BY OTHERS.

9. SMOKE DETECTORS SHALL NOT BE PLACED WITHIN 3' OF ANY SUPPLY AIR REGISTER OR WHERE THE AIR MOVEMENT EXCEEDS THE MANUFACTURER'S LISTING.

10. FIRE FIGHTER TELEPHONE RISER IS CLASS A, STYLE Z

11. VOLTAGE DROP CALCULATIONS FOR NOTIFICATION DEVICES ARE BASED ON THE LAYOUT SHOWN. DEVIATION FROM THESE PLANS COULD RESULT IN ADDITIONAL CONDUIT WORK, REENGINEERING, UPSIZED CABLE AND/OR ADDITIONAL POWER REQUIREMENTS.

12. PAINT ALL FIRE ALARM JUNCTION BOXES AND COVERS RED IN UNFINISHED AREAS (IE ABOVE CEILINGS, MECHANICAL ROOMS ETC.) IN FINISHED AREAS CONDUIT AND JUNCTION BOXES CAN BE PAINTED TO MATCH THE ROOM FINISH, THE INSIDE COVER IF THE JUNCTION BOX MUST BE IDENTIFIED AS "FIRE ALARM" AND THE CONDUIT MUST HAVE PAINTED RED BANDS $\frac{3}{4}$ " WIDE AT 10' CENTERS AND AT EACH SIDE OF A FLOOR, WALL, OR CEILING PENETRATION.

13. UPON COMPLETION OF INSTALLATION OF THE FIRE ALARM SYSTEM A SATISFACTORY TEST OF THE ENTIRE SYSTEM SHALL BE MADE IN THE PRESENCE OF THE AUTHORITY HAVING JURISDICTION (AHJ).

14. ALL NOTIFICATION DEVICES SHALL BE SYNCHRONIZED.

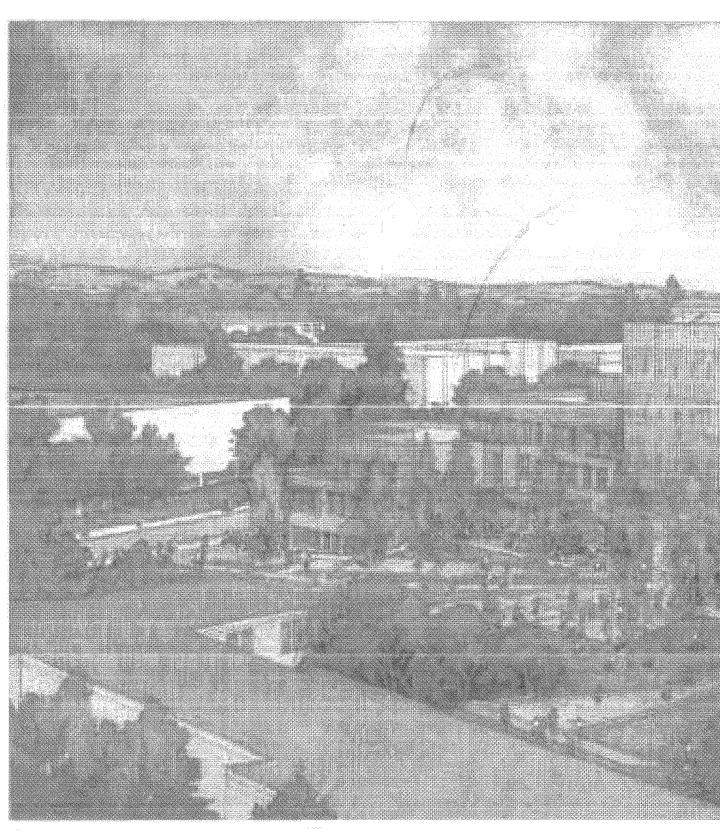
15. A STAMPED SET OF APPROVED FIRE ALARM PLANS SHALL BE AT THE JOBSITE AND USED FOR INSTALLATION.


16. SIGNALING LINE CIRCUIT IS CLASS B, STYLE 4

17. NOTIFICATION APPLIANCE CIRCUIT IS CLASS B, STYLE Y

18. ALL SMOKE DETECTORS SHALL BE INSTALLED AT LEAST 1'-0" FROM FLUORESCENT LIGHT FIXTURES TO AVOID UNWANTED ALARMS AND SHALL BE INSTALLED IN AREAS THAT DO NOT EXCEED THE MANUFACTURE'S OPERATING TEMPERATURE RANGE BETWEEN 32°F AND 120°F.

CODE REGULATIONS


CALIFORNIA CODE REGULATIONS	
APPLICABLE CODES	
2007 BUILDING STANDARDS ADMINISTRATIVE CODE	TITLE 24 PART 1
2007 CALIFORNIA BUILDING CODE (CBC)	TITLE 24 PART 2
2007 CALIFORNIA ELECTRICAL CODE (CEC)	TITLE 24 PART 3
2007 CALIFORNIA MECHANICAL CODE (CMC)	TITLE 24 PART 4
2007 CALIFORNIA PLUMBING CODE (CPC)	TITLE 24 PART 5
2007 CALIFORNIA ENERGY CODE	TITLE 24 PART 6
2007 CALIFORNIA ELEVATOR SAFETY CONSTRUCTION CODE	TITLE 24 PART 7
2007 CALIFORNIA HISTORICAL BUILDING CODE	TITLE 24 PART 8
2007 CALIFORNIA FIRE CODE (CFC)	TITLE 24 PART 9
2007 CALIFORNIA REFERENCED STANDARDS CODE	TITLE 24 PART 12
APPLICABLE STANDARDS & GUIDELINES	
2007 AUTOMATIC SRINKLER SYSTEMS	NFPA 13
2007 STATIONARY PUMPS	NFPA 20
2007 NATIONAL FIRE ALARM CODES (CALIFORNIA AMENDED)	NFPA 72
2007 STANDARD FOR INSTALLATION OF AIR-CONDITIONING	NFPA90A
2007 STANDARD FOR INSTALLATION OF WARN AIR HEATING	NFPA 90B
2006 STANDARD FOR SMOKE-CONTROL SYSTEMS UTILIZING BARRIERS AND PRESSURE DIFFERENCES	NFPA 92A
STANDARD FOR SMOKE MANAGEMENT SYSTEMS IN MALLS, 2005	NFPA 92B

4

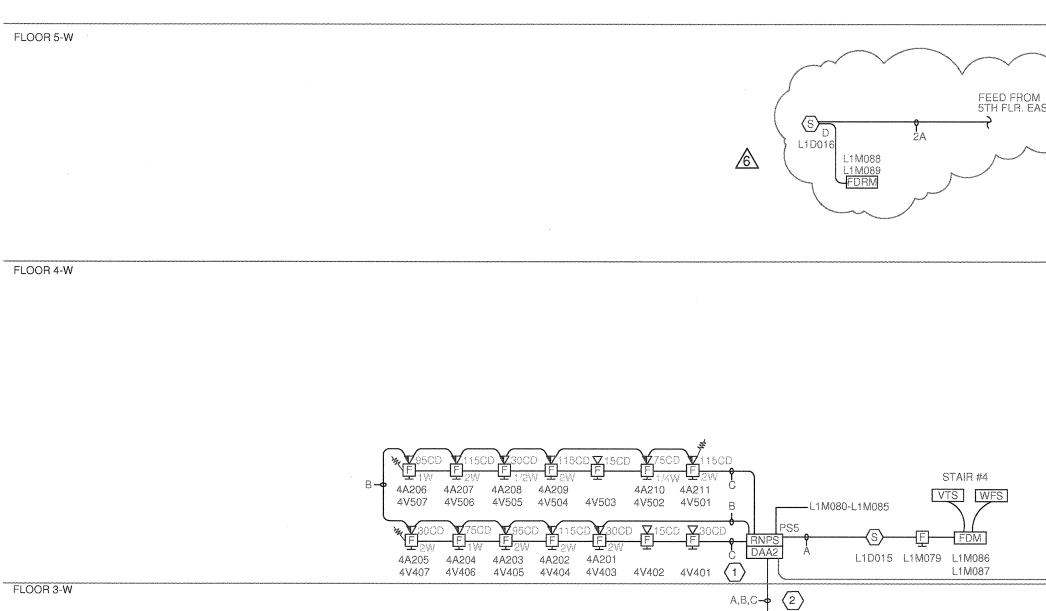
CENTER FOR SCIENCE AN CALIFORNIA STATE POLYTE SAN LUIS OBISPO, CAL FIRE ALARM & EMERGENCY COMM

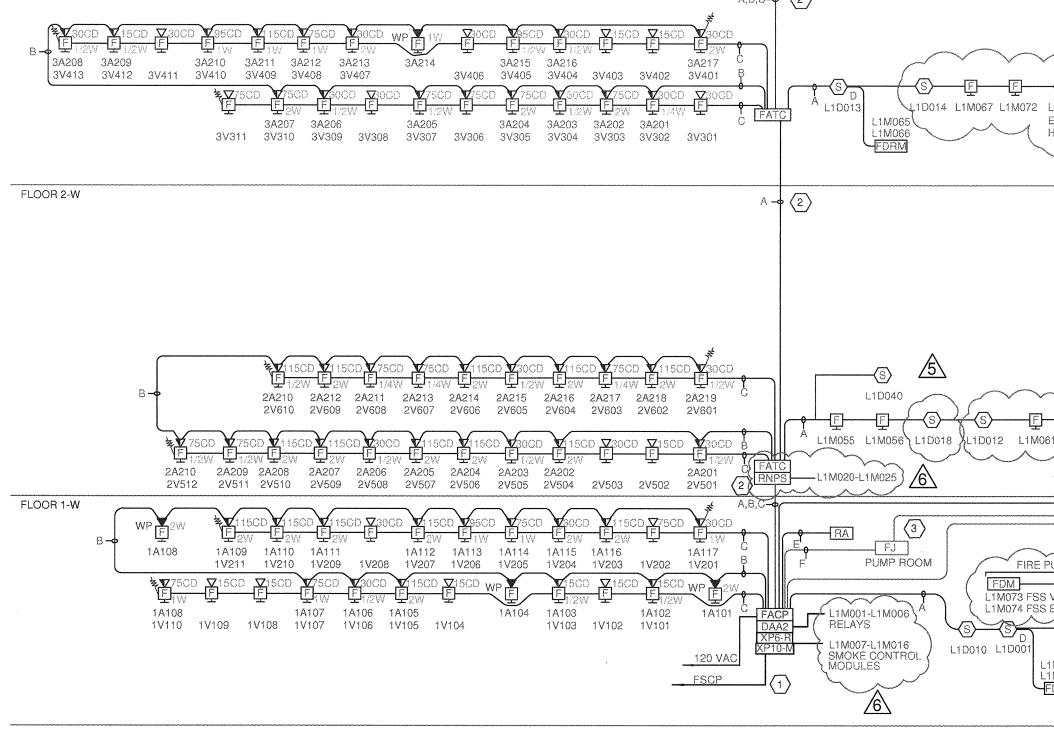
SITE PLAN

CENTER FOR SCIEN

PROJECT DESCRI

- 1. OCCUPANCY TYPE: A, B, AND H3
- 2. SYSTEM TYPE: CLASS B, ADDRESSABLE, MANUAL
- 3. METHOD OF COMMUNICATION: TELEPHONE
- 4. SCOPE OF WORK: FIRE ALARM & VOICE EVACUATION SYST

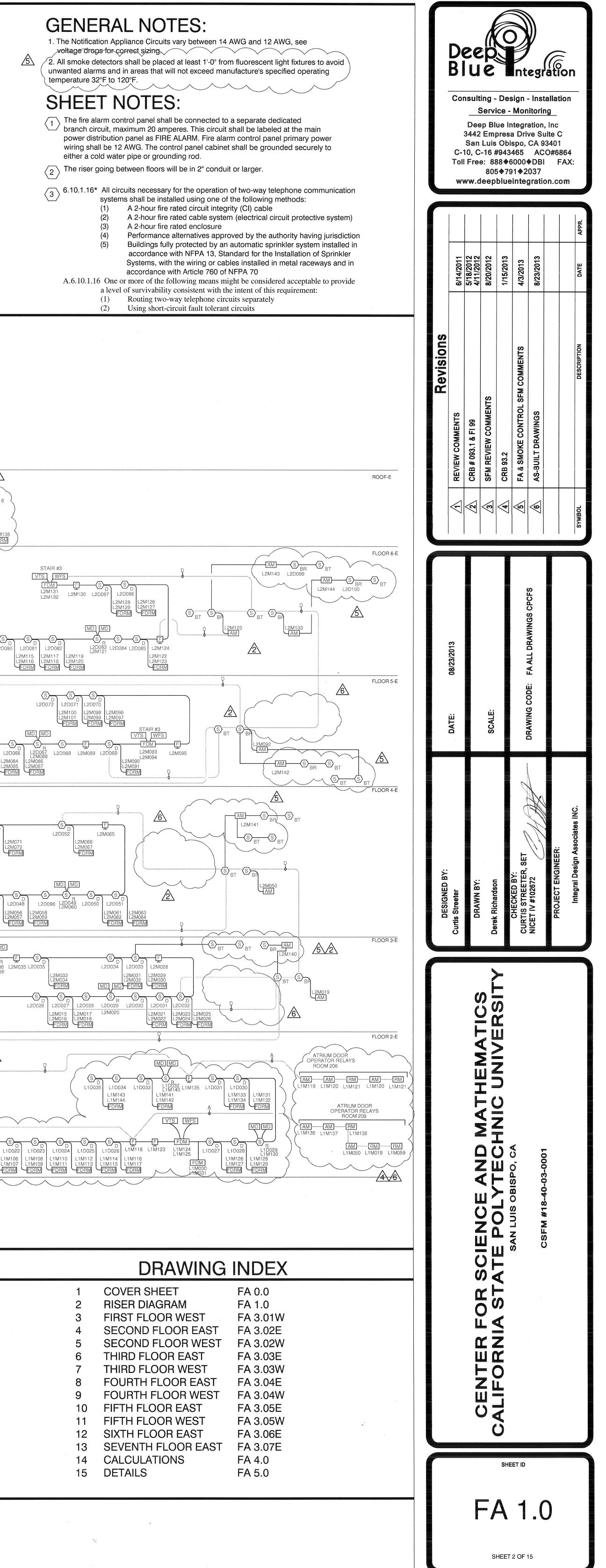

SEQUENCE OF OPERATIO


			×					
							. Ć	The state
						4	Ň	
						Ŷ		/
							_ /	/ /
			SOL AND			<u>/</u> _`	٢.	
						\$/	``\\`	1
				/	$\langle \eta \rangle$	$\sqrt{3}$	7.C)	<u>/</u>
				/	V.,	$\mathbb{N}_{\mathbb{Z}}$:Vaš	\$7
				() () ()	K)	(7 ²)		
			1à	$\mathbb{Z}^{\mathbb{N}}$	X	X de		/;
			\$ ⁰ /{	\mathcal{O}_{c}	<u>```</u>	£7.	~//	£)/
		$\langle g \rangle$	Ś		<u> 1</u>	XŠ.	(ssp)	$\langle \diamond \rangle$
EVENT	/ 2	\$%	2/2	<u>}</u> /{{	\$%	S/ S	<u>5) / X</u>	Ľ,
		$\langle \cdots \rangle$	E CHI HI		`	<u> </u>		
FIRE ALARM CONTROL UNIT					****			
PANEL SUPERVISORY CONDITION (TEST BYBASS) ON ACM-24 AT	X				X			
PANEL TROUBLE CONDITION (AC POWER FAIL, LOW BATTERY, OPEN CIRCUIT, GROUND FAULT, ETC.)		+ x			X	1	<u> </u>	
PANEL ALARM CONDITION			X	X	X		X	
MANUAL PULL STATION ACTIVATION		+	X	X	X			
SPOT SMOKE DETECTOR ACTIVATION		****	X	Х	X			
DUCT SMOKE DETECTOR ACTIVATION		1	X	Х	X	1		
AIR HANDLING UNIT DUCT SMOKE DETECTOR ACTIVATION		-	X	Х	X		X	
SPRINKLER TAMPER SWITCH	X	1	1		X	1		
SPRINKLER WATER FLOW ACTIVATION		1	X	Х	Х	1		
FIRE PUMP RUNNING		1	X	Х	Х	1		
FIRE PUMP LOSS OF PH ASE	Х				X			human
FIRE PUMP PHASE REVERSAL	X		1		X			
HEAT DETECTOR ACTIVATION (ELEVATOR EQUIPMENT)			X	X	X	X		
ELEVATOR LOBBY/ EMR SMOKE / ELEVATOR HOISTWAYS			X	Х	X			X
SHUNT TRIP POWER SUPERVISION	X				X			
GENERAL ALARM (ANYWHERE WITHIN THE BUILDING)			X	X	X		X	
ATRIUM SMOKE CONTORL SYSTEM ALARM		ļ	X	Х	X			L
BEAM SMOKE DETECTION WITHIN ATRIUM			X	Х	X			Ļ
PULL STATION WITHIN ATRIUM		ļ	X	Х	X	ļ	ļ	ļ
SPRINKLER WATER FLOW WITHIN ATRIUM		<u> </u>	X	X	X	<u> </u>		

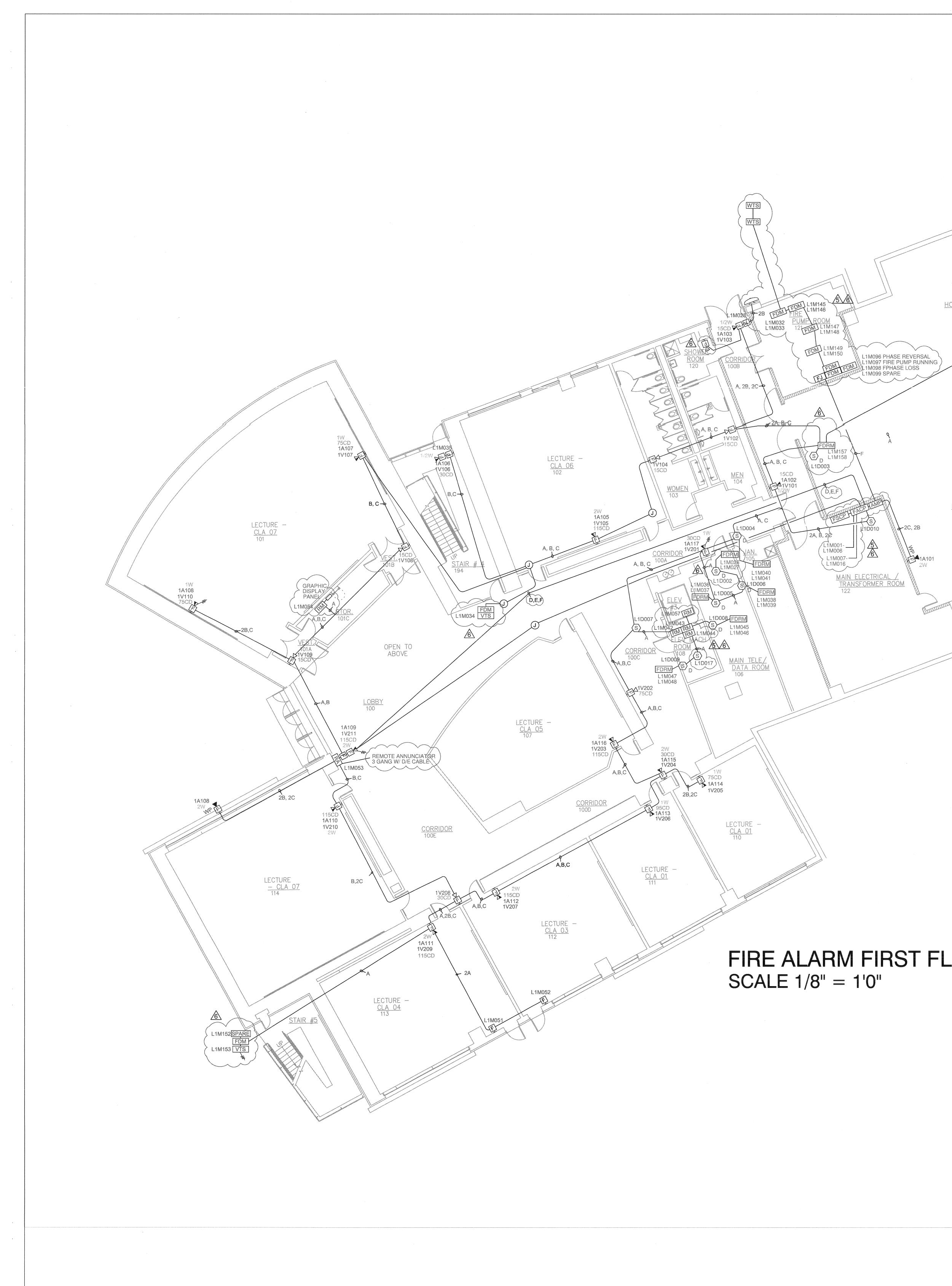
	SYMBOL LEGEND											
ND MATHEMATICS	COUNT FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #	De Bl	ep ue	Integra						
ECHNIC UNIVERSITY	31 F MANUAL PULL STATION	NBG-12LX	7150-0028:0199	Con		esign - Install	lation					
_IFORNIA 93407	73 F STROBE ONLY	SW	7320-1653:201	3	Deep Blue	- Monitoring Integration, Ir sa Drive Suite	nc					
MUNICATION SYSTEM	165 V SPEAKER/STROBE	SPWS	7320-1653:201	C-1	San Luis O 0, C-16 #94 Free: 8884	bispo, CA 934 I3465 ACO≴ ♦6000♦DBI	01 #6864					
	6 F SPEAKER ONLY	SPW	7320-1653:201	WW		791 \$2037 Jeintegration	.com					
	7 WP F SPEAKER - WEATHER PROOF	SPWK	7320-1653:201				PPR.					
	(H) HEAT DETECTOR	FST-851	7270-0028:196		12 12 12	2 0 0 0						
	18 (S) SMOKE DETECTOR	FSP-851	7272-0028:206	6/14/20	5/18/201 4/11/201 8/20/201	4/3/2013 8/23/2015	DATE					
	64 (S) SMOKE DETECTOR - DUCT	DNR	3242-1653:209									
	23 (S) BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121	ons		NTS	PTION					
	15 S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121	Revisions		A COMMENTS	DESCRIF					
	1 FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243		MENTS	rrol sfm GS						
	5 RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	COMMENTS	# 093.1 & FI 99 REVIEW COMMENTS	DRAWINGS						
	4 FATC FIRE ALARM TERMINAL CABINET	N/A	N/A	REVIEW (CRB # 093.1 & FI 99 SFM REVIEW COMM	FA & SMOKE AS-BUILT DR						
	32 美 END OF LINE RESISTOR	N/A	N/A				6					
	2 RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209				SYMB					
	8 MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS									
	AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219			ocFS						
	12 RM RELAY MODULE	FRM-1	7300-0028:219			WINGS CF						
	16 WFS WATER FLOW SWITCH	N/A	BY OTHERS	23/2013		ALL DRAV						
	6 10 VTS VALVE TAMPER SWITCH	N/A	BY OTHERS	08/2		DE: FA						
NCE	1 FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219	DATE:	SCALE:	WING CO						
	64 FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	D	sc	DRA						
RIPTION	12 FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182									
	4 DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				INC.					
	1 XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				sociates					
TEMS	A XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219	3Y:		P ER. SET	VGINEER: Design As					
				DESIGNED s Streeter	DRAWN BY: k Richardson	CHECKED B TIS STREET ET IV #102675	PROJECT E					
	WIRING LEG	iEND		Curtis	Dere	CHE CURTIS NICET IV						
	LABEL GAUGE USE	TYPE (OR EQU	•		\succ	orandi eta in 1000 arte da						
	A 16/2 UTP SLC B 16/2 TSP SPEAKER C 14 NAC VISUAL	WEST PENN D WEST PENN D THHN			SCS							
	D 14 24 VDC E 16/4 TS ANNUNCIATOR	THHN WEST PENN 9			ATIC ER							
ONS MATRIX	F 14/2 TSP FIRE FIGHTERS PHONE	WEST PENN D	995		NN/							
					E E E C E							
					A MA							
	DRAWING IN					0, CA -0001						
					M T T	OBISP -40-03-						
	1 COVER SHEET	FA 0.0			NC NC	I LUIS FM #18						
	3 FIRST FLOOR WEST	FA 1.0 FA 3.01W				SAN						
CINPLOC CINVAC AND	5 SECOND FLOOR WEST	FA 3.02E FA 3.02W FA 3.03E			s sc TAT							
	7 THIRD FLOOR WEST	FA 3.03W FA 3.04E			U U U U U U							
X X X X X X X X X X	10 FIFTH FLOOR EAST	FA 3.04W FA 3.05E										
X X X X X X X X	12 SIXTH FLOOR EAST	FA 3.05W FA 3.06E FA 3.07E			ЩЩС							
X X X X X X	14 CALCULATIONS	FA 4.0 FA 5.0										
X X X X X X X X X X X X X X X		1 /										
	A.7 - 131	Jí			S	HEET ID						
2 3 4					,							
					FA	4-0						
		VER S	HEET		SHEE	T 1 OF 15						
				C.								

SYMBOL LEGEND

		FIRE AL	ARM SYMBOLS	MODEL #	CSFM LISTING #
	31	F	MANUAL PULL STATION	NBG-12LX	7150-0028:0199
	73	L F	STROBE ONLY	SW	7320-1653:201
	165	F	SPEAKER/STROBE	SPWS	7320-1653:201
	6	F	SPEAKER ONLY	SPW	7320-1653:201
	7	WP F	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201
A	0	(H)	HEAT DETECTOR	FST-851	7270-0028:196
5	18	S	SMOKE DETECTOR	FSP-851	7272-0028:206
	64	(S) _D	SMOKE DETECTOR - DUCT	DNR	3242-1653:209
Δ	23		BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121
	15	(S) _{BR}	BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121
	1	FACP	FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243
	5	RNPS	REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248
	4	FATC	FIRE ALARM TERMINAL CABINET	N/A	N/A
	32	草	END OF LINE RESISTOR	N/A	N/A
	2	RA	REMOTE ANNUNCIATOR	FDU-80	7120-0028:209
	8	MD	MAGNETIC DOOR HOLDER	N/A	BY OTHERS
	21	AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219
	12	RM	RELAY MODULE	FRM-1	7300-0028:219
	16	WFS	WATER FLOW SWITCH	N/A	BY OTHERS
	10	VTS	VALVE TAMPER SWITCH	N/A	BY OTHERS
A	21	[FDM]	DUAL MONITOR MODULE	FDM-1	7300-0028:0219
	64	FDRM	DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219
	12		FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182
	4	DAA2	DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224
		XP6-R	SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219
4	1	XP10-M	TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219



WEST


FIRE ALARM RISER DIAGRAM NTS

	ļ	4					
	7120-0028:209						
	BY OTHERS						
	7300-0028:0219						
	7300-0028:219						
	BY OTHERS						
	BY OTHERS						
	7300-0028:0219						
	7300-0028:0219						
~	7300-1652:0182					STAIR 3	
	7170-0028:223 7170-0028:224					Y 5/7	<u>/6)</u>
_	7300-0028:0219					6A116A 6V313A	10CD X30CD X15CD X5CD X
_	7300-0028:0219					FF 6A116B	5CD $6A116$ $6A115$ $6V212$ $6V211$ $6V210$ $6V210$
						6A116B 6V313B	
						¢	
~							110CD ¥30CD ▼ 15CD ▼ 15CD ▼
~~~						STA	₩ [™] ┍ <u>-¹₽_{2₩} </u> <u>₽</u> _{1/4₩} <u>₽</u> <u>₽</u> <u>₽</u>
S							$\left\{ \begin{array}{c} \mathbf{v}_{15/75CD} \mathbf{v}_{15/75CD} \\ \mathbf{F}_{1/2W}  \mathbf{F}_{1/2W} \end{array} \right\}$
							5A115B 5A115A 5V313B 5V313A F
							(
		STAIR 4					
						[FJ]	B <b>-</b> •
							FT75CD FT15CD
							4A108 4A107B 4 4V107 4V106B 4
		<del>e</del> F				<b>6</b> -F	
							B→ B→ B→ B→ B→ B→ B→ B→ B→ B→
		· FJ				FJ	3V211 3V210 3V2 3V211 3V210 3V2 3V211 3V210 3V2
EL H(	LEV. #3 DISTWAY						3A109 3A108 3A107 3A1 3V112 3V111 3V110 3V1
••••							
		<b>₽</b> -F				<b>⊷</b> ⊢F	B
							× 11500 1500 ▼1 F2W F1/4W F1 2A120 2A119
	Â	3				3	2A120 2A119 2V311 2V310 2V30
~						FJ IN ATF	B- <b>-</b> RIUM 2A10 2V20
1	L1M062 L1M063						2020 ₩ \Z30CD \Z30CD \Z15CD \Z3 F F F
							도 도구W 도 도 2A107 2V111 2V110 2V109 2V10
	A A F			GRAPHIC DISPLAY	STAIR #5		
	MP MONITOR	STAIR #4		RM         F           L1M054         L1M053         L1M	M052 L1M051 L1M052 L1M053		
s, S	ALVES L1M075 1ST FLOOR YPASS L1M076 VALVE TAM		{\$ <u>}_{</u> {\$}_ <u>{</u> {}_{}}}	_ ( )	<u>56</u>		
		6 L1M098 L1M033 L1M035   7 L1M099 L1M034	L1M026 L1M036 L1M038	L1D007 L1M042 L1M043 L L1M040 (EM)	2008 L1D017 L1D009	7	ſ
D	1017 L1M157 L1M097 1018 L1M158 RM FDRM	(AM) L1M032 OS&Y	L1M027 FDRM FDRM FDRM	EDRM	CIMO46 LIMO46 FDRM FDRM	8	
							real sector of the sector of t

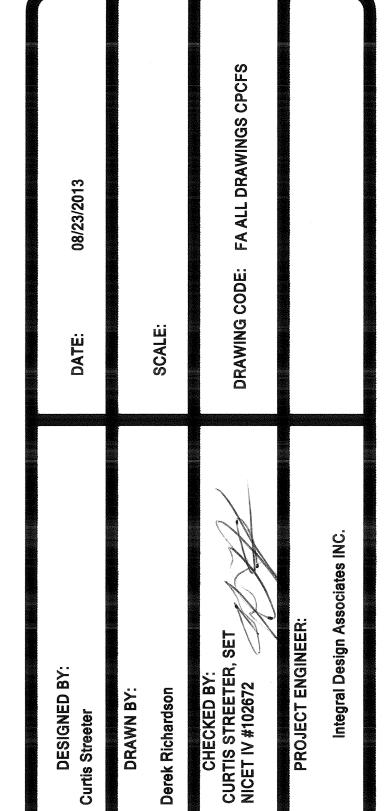


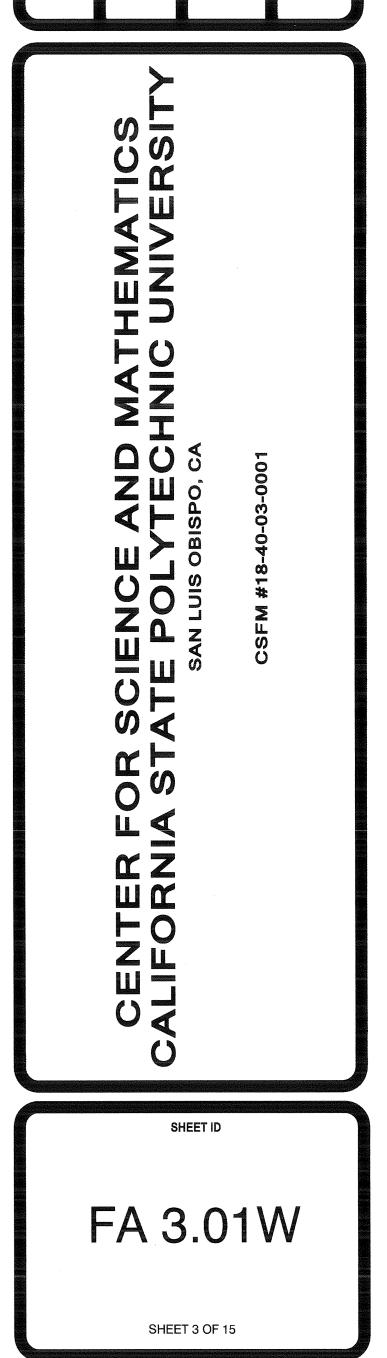


	WIR	NG LEGEND		D
LABEL A B C D E F	GAUGE USE 16/2 UTP SLC 16/2 TSP SPEAKER 14 NAC VISUA 14 24 VDC 16/4 TS ANNUNCIA 14/2 TSP FIRE FIGHT	WES WES L THH THH TOR WES	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	COVER S RISER DIA FIRST FLO SECOND SECOND THIRD FL THIRD FL FOURTH FOURTH FIFTH FLO SIXTH FLO SEVENTH CALCULA DETAILS

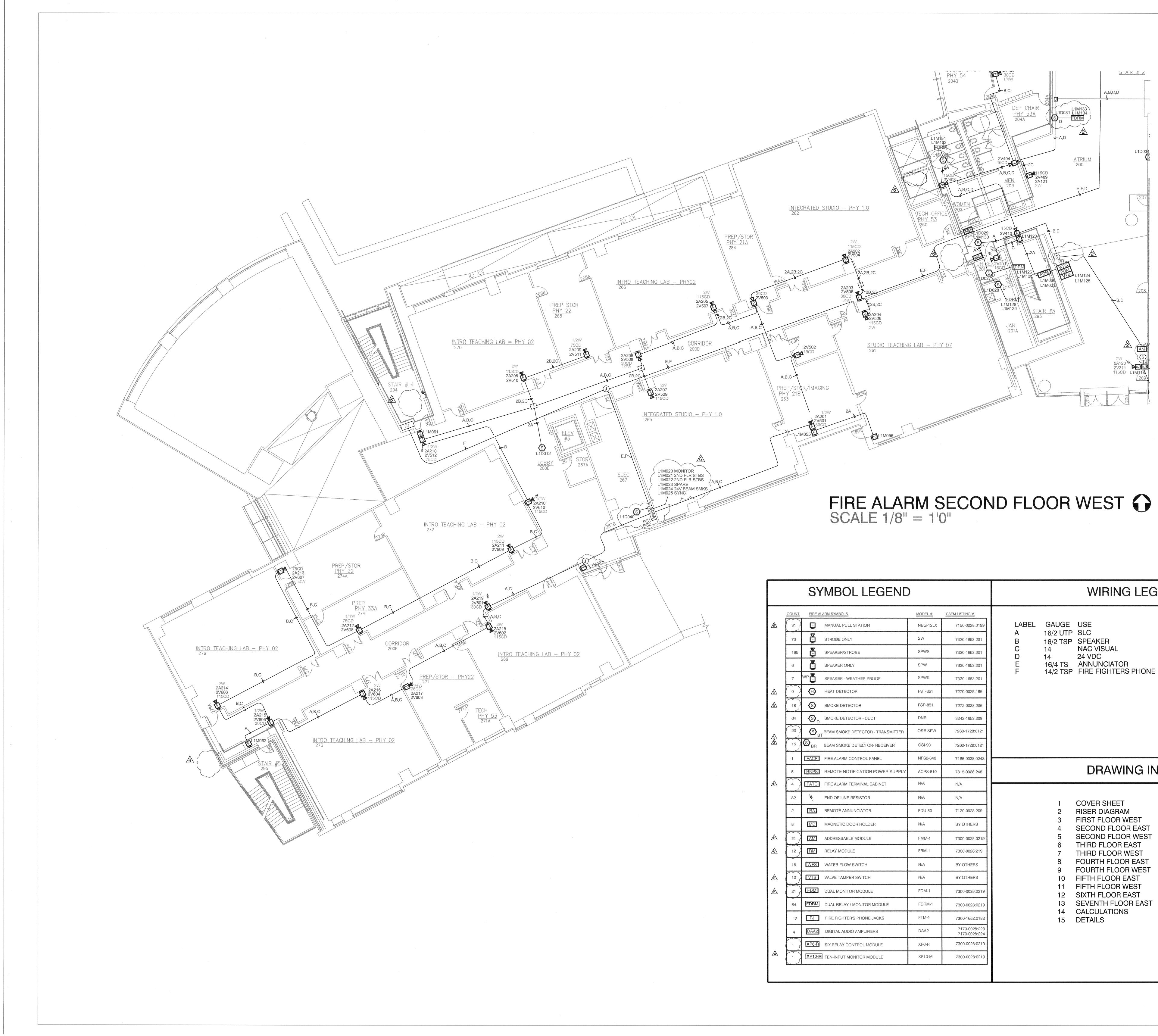


<u>PIPE CHASE</u> <u>ABOVE</u>	
HORIZONTAL DUCT & PIPE CHASE	
FDRM S L1D001	
A	
MECHANICAL 123	
LOOR WEST 🕢	


2W


			SYMBOL LE	GEND	
	COUNT	FIRE ALAR	M SYMBOLS	MODEL #	CSFM LISTING #
			IANUAL PULL STATION	NBG-12LX	7150-0028:0199
	73	 又	TROBE ONLY	SW	7320-1653:201
	165	V7	PEAKER/STROBE	SPWS	7320-1653:201
	6	▼	PEAKER ONLY	SPW	7320-1653:201
	7		PEAKER - WEATHER PROOF	SPWK	7320-1653:201
ß	$\square$		EAT DETECTOR	FST-851	7270-0028:196
<u></u>			MOKE DETECTOR	FSP-851	
237	64		MOKE DETECTOR	DNR	7272-0028:206
	23			OSE-SPW	3242-1653:209
		6	EAM SMOKE DETECTOR - TRANSMITTER		
			EAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121
				NFS2-640	7165-0028:0243
	5		EMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248
203	$\left(\begin{array}{c} 4\\ \end{array}\right)$	L			N/A
	32	\ 		N/A	N/A
	2		EMOTE ANNUNCIATOR	FDU-80	7120-0028:209
<u>,</u>	8	MD M	AGNETIC DOOR HOLDER	N/A	BY OTHERS
Â		AM A	DDRESSABLE MODULE	FMM-1	7300-0028:0219
	(12)	RM R	ELAY MODULE	FRM-1	7300-0028:219
	16	WFS W	ATER FLOW SWITCH	N/A	BY OTHERS
		VTS V	ALVE TAMPER SWITCH	N/A	BY OTHERS
A	(21)	FDM D	UAL MONITOR MODULE	FDM-1	7300-0028:0219
	64	FDRM D	UAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219
	12	FJ F	IRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182
	4	DAA2 D	IGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224
•	$\left( \right)$	XP6-R S	X RELAY CONTROL MODULE	XP6-R	7300-0028:0219
	$\left( \right)$	XP10-M TI	EN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219
			WIRING LEC	GEND	
LA A B C D E F	BEL	16/2 U ⁻ 16/2 TS 14 14 16/4 TS	E USE TP SLC SP SPEAKER NAC VISUAL 24 VDC S ANNUNCIATOR SP FIRE FIGHTERS PHO	WE WE TH THI WE	
			DRAWING I	NDEX	
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	CALCULATIONS	FA 3.02 FA 3.02 FA 3.03 FA 3.03 FA 3.04 FA 3.04 FA 3.05 FA 3.05 FA 3.05	

Co	nsult	ing -	Des	ign -	- Ins	tallat	tion						
		Servi	ce -	Mon	itori	ng							
Deep Blue Integration, Inc 3442 Empresa Drive Suite C													
San Luis Obispo, CA 93401													
	-												
Tol	I Free						FAX:						
W	ww.d					on.c	om						
								APPR.					
								AP					
-	20	8	~		m								
/201	/201	/201	/201	2013	/201			DATE					
6/14	5/18	8/20	1/15	4/3/2	8/23			ā					
				လ				NO					
				ENT				RIPT					
				MMC				DESCRIPTION					
				M CC									
	6/14/2011 6/14/2011 A	Dee 3442 San C-10, C Toll Free www.d	Servi Deep Bl 3442 Emp San Luis C-10, C-16 # Toll Free: 88 805 www.deep	Service - Deep Blue In 3442 Empresa San Luis Obis C-10, C-16 #9434 Toll Free: 888¢6 805¢79 www.deepblue	Service - Mon         Deep Blue Integra         3442 Empresa Driv         San Luis Obispo,         C-10, C-16 #943465         Toll Free:         805\$791\$2         www.deepblueinteg         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013         11/11/12/013 <t< th=""><th>Service - Monitoria         Deep Blue Integration         3442 Empresa Drive Si         San Luis Obispo, CA 9         C-10, C-16 #943465         C-10, C-16 #943465         Toll Free:         88\$6000\$DB         805\$791\$2037         www.deepblueintegration         11/12/5013         8/20/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         9/11/2014         101         11/12/2015         8/3/2013         8/3/2013         8/3/2013         9/3/2013         9/3/2013         11/12/2015         11/12/2015         11/12/2015         11/12/2015         11/12/2015         11/12/2013         11/12/2013         11/12/2013         11/12/2013         12/12/2013         13/2013         13/2013         14/3/2013         15/2013          16/2013     &lt;</th><th>Service - Monitoring           Deep Blue Integration, Inc           3442 Empresa Drive Suite G           San Luis Obispo, CA 9340           C-10, C-16 #943465           Toll Free:           805\$791\$2037           www.deepblueintegration.c</th><th>Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\\$6000\\$DBI FAX: 805\\$791\\$2037 www.deepblueintegration.com</th></t<>	Service - Monitoria         Deep Blue Integration         3442 Empresa Drive Si         San Luis Obispo, CA 9         C-10, C-16 #943465         C-10, C-16 #943465         Toll Free:         88\$6000\$DB         805\$791\$2037         www.deepblueintegration         11/12/5013         8/20/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         8/3/2013         9/11/2014         101         11/12/2015         8/3/2013         8/3/2013         8/3/2013         9/3/2013         9/3/2013         11/12/2015         11/12/2015         11/12/2015         11/12/2015         11/12/2015         11/12/2013         11/12/2013         11/12/2013         11/12/2013         12/12/2013         13/2013         13/2013         14/3/2013         15/2013          16/2013     <	Service - Monitoring           Deep Blue Integration, Inc           3442 Empresa Drive Suite G           San Luis Obispo, CA 9340           C-10, C-16 #943465           Toll Free:           805\$791\$2037           www.deepblueintegration.c	Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\\$6000\\$DBI FAX: 805\\$791\\$2037 www.deepblueintegration.com					


Deep Blue Integration

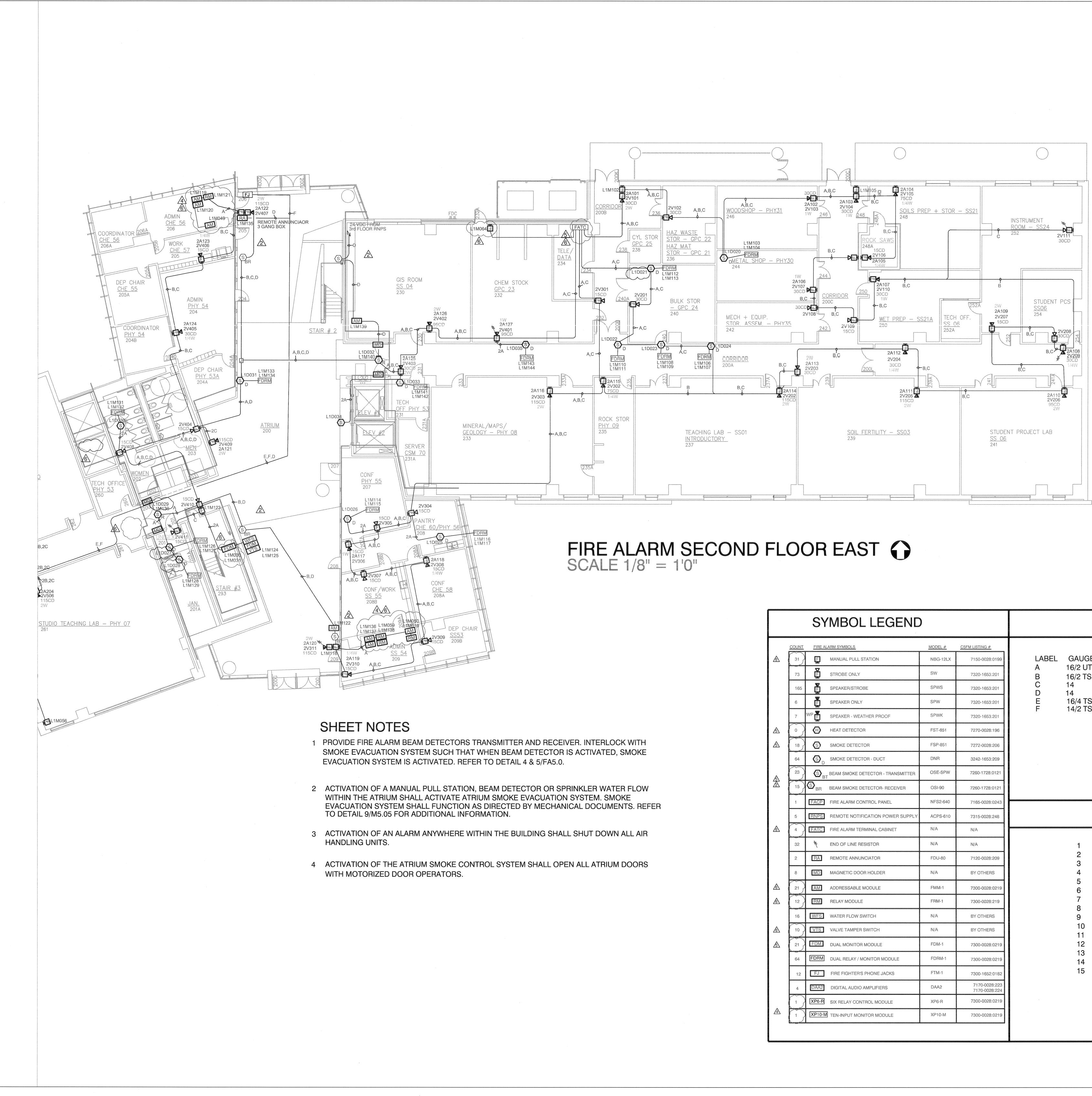
# 





VALENT)




	F	٢E		A	٢N	/	5	C	$\bigcirc$	$\mathbb{N}$	D		J	$\bigcup$	$\prec$
3(		AL		/8	NUMANUMANA NUMANUMANA		I ()								

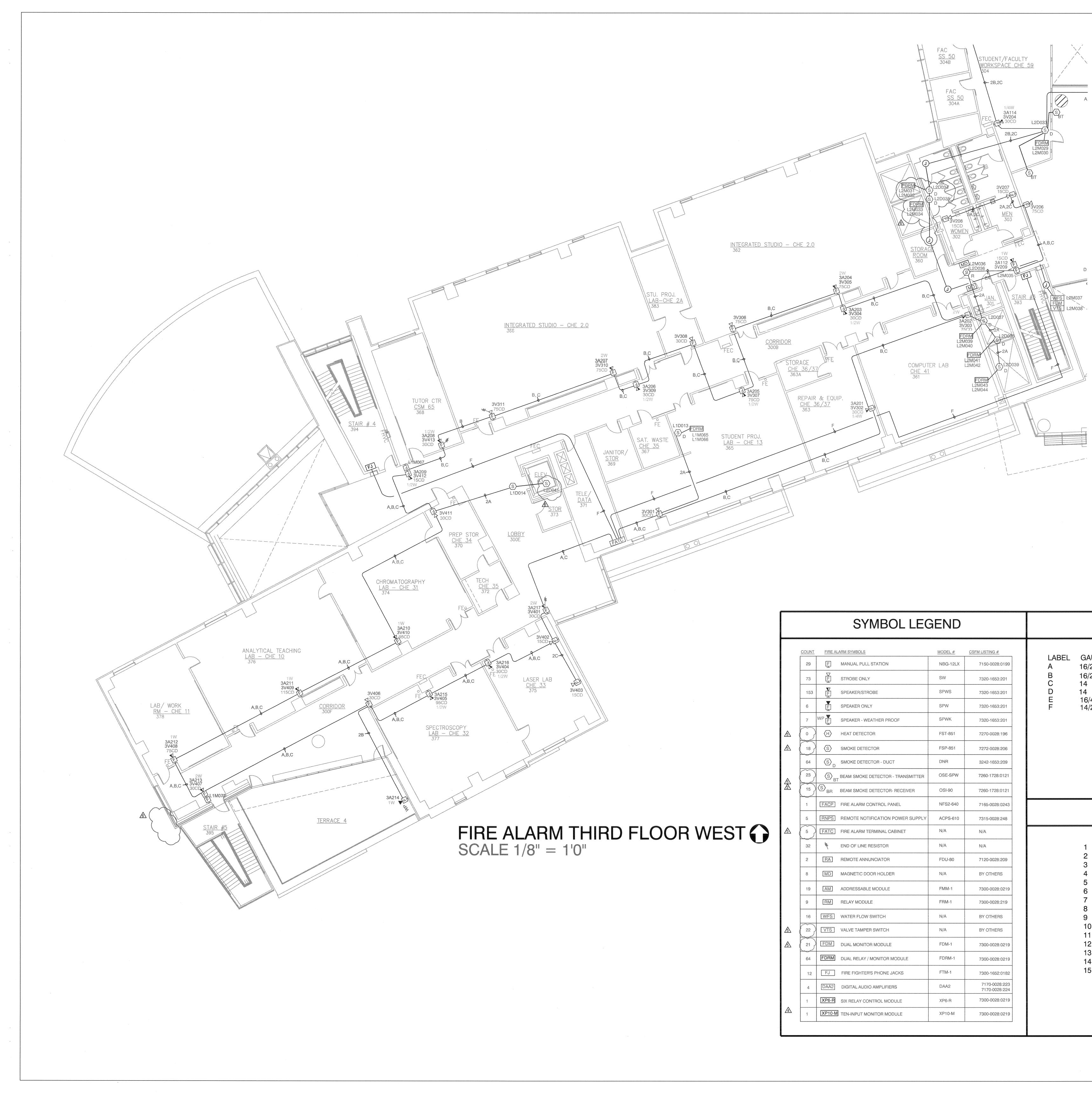
		SY	MBOL LEGEND	)				WIRING LEG	END
	COUNT	<u>FIRE AI</u>	LARM SYMBOLS	MODEL #	CSFM LISTING #				
ß	31	F	MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL	GAUGE	USE	TYPE (OF
	73	E	STROBE ONLY	SW	7320-1653:201	A B	16/2 UTP 16/2 TSP	_	WEST PE WEST PE
	165		SPEAKER/STROBE	SPWS	7320-1653:201	C D	14 14	NAC VISUAL 24 VDC	THHN THHN
	6	Ē	SPEAKER ONLY	SPW	7320-1653:201	E F	16/4 TS	ANNUNCIATOR	WEST PE WEST PE
	7	WPE	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	Г	14/2 15P	FIRE FIGHTERS PHONE	WESTPE
∕	$\bigcirc$	<b>(H)</b>	HEAT DETECTOR	FST-851	7270-0028:196				
∕	18	6	SMOKE DETECTOR	FSP-851	7272-0028:206				
	64	(S) _D	SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
A	23	© _B	BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121				
A A	15	𝔅 _{BR}	BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121				
	1	FACP	FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243				
	5	RNPS	REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248			<b>DRAWING IN</b>	DEX
	(4)	FATC	FIRE ALARM TERMINAL CABINET	N/A	N/A				
	32	草	END OF LINE RESISTOR	N/A	N/A		1	COVER SHEET	FA 0.0
	2	RAI	REMOTE ANNUNCIATOR	FDU-80	7120-0028:209		2	RISER DIAGRAM	FA 1.0
	8	[MD]	MAGNETIC DOOR HOLDER	N/A	BY OTHERS		3 4	FIRST FLOOR WEST SECOND FLOOR EAST	FA 3.01W FA 3.02E
ß	21	AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219		5	SECOND FLOOR WEST	FA 3.02W
Â	12	RM	RELAY MODULE	FRM-1	7300-0028:219		6 7	THIRD FLOOR EAST THIRD FLOOR WEST	FA 3.03E FA 3.03W
	16	WFS	WATER FLOW SWITCH	N/A	BY OTHERS		8 9	FOURTH FLOOR EAST FOURTH FLOOR WEST	FA 3.04E FA 3.04W
Â	10	VTS	VALVE TAMPER SWITCH	N/A	BY OTHERS		9 10	FIFTH FLOOR EAST	FA 3.05E
A	21	FDM	DUAL MONITOR MODULE	FDM-1	7300-0028:0219		11 12	FIFTH FLOOR WEST SIXTH FLOOR EAST	FA 3.05W FA 3.06E
	64	FDRM	DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219		13	SEVENTH FLOOR EAST	FA 3.07E
	12	FJ	FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182		14 15	CALCULATIONS DETAILS	FA 4.0 FA 5.0
	4	DAA2	DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				
		XP6-R	SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				
A		XP10-M	TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219				

YPE (OR EQUIVALENT) VEST PENN D990 VEST PENN D991 THHN HHN VEST PENN 993 VEST PENN D995

Deep Blue Integration Consulting - Design - Installation Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\$6000\$DB1 FAX: 805�791�2037 www.deepblueintegration.com 6/14/2011 5/18/2012 4/11/2012 8/20/2012 ____ Revisions AND MATHEMATICS TECHNIC UNIVERSI⁻ spo, cA CENTER FOR SCIENCE ALIFORNIA STATE POLY SAN LUIS OE SHEET ID FA 3.02W

SHEET 4 OF 15




		SYMBOL LEGEN	)		WIRING LEGEND	
	COUNT	FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #		
	31	F MANUAL PULL STATION	NBG-12LX	7150-0028:0199		•
	73	STROBE ONLY	SW	7320-1653:201	A 16/2 UTP SLC WES B 16/2 TSP SPEAKER WES	
	165	SPEAKER/STROBE	SPWS	7320-1653:201	C14NAC VISUALTHHD1424 VDCTHH	
	6	F SPEAKER ONLY	SPW	7320-1653:201	E 16/4 TS ANNUNCIATOR WES F 14/2 TSP FIRE FIGHTERS PHONE WES	ST F
	7	WP F SPEAKER - WEATHER PROOF	SPWK	7320-1653:201		
\$	$\bigcirc$	HEAT DETECTOR	FST-851	7270-0028:196		
\$	18	SMOKE DETECTOR	FSP-851	7272-0028:206		
	64	SMOKE DETECTOR - DUCT	DNR	3242-1653:209		
A	23	S BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121		
	15	BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121		
	Annual A	FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243		
	5	RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	DRAWING INDEX	
<u>6</u>	$\left(\begin{array}{c}4\end{array}\right)$	FATC FIRE ALARM TERMINAL CABINET	N/A	N/A		
	32	专 END OF LINE RESISTOR	N/A	N/A	1 COVER SHEET FA 0.0	
	2	RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209	2 RISER DIAGRAM FA 1.0 3 FIRST FLOOR WEST FA 3.01V	V
	8	MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS	4 SECOND FLOOR EAST FA 3.02E	
<u></u>	21	AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219	5 SECOND FLOOR WEST FA 3.02V 6 THIRD FLOOR EAST FA 3.03E	
<u></u>	12	RM RELAY MODULE	FRM-1	7300-0028:219	7 THIRD FLOOR WEST FA 3.03V	
	16	WFS WATER FLOW SWITCH	N/A	BY OTHERS	- 8 FOURTH FLOOR EAST FA 3.04E 9 FOURTH FLOOR WEST FA 3.04V	
$\land$	10	VTS VALVE TAMPER SWITCH	N/A	BY OTHERS	10 FIFTH FLOOR EAST FA 3.05E 11 FIFTH FLOOR WEST FA 3.05V	
∕₳	21	FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219	12 SIXTH FLOOR EAST FA 3.06E	
	64	FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	13 SEVENTH FLOOR EAST FA 3.07E 14 CALCULATIONS FA 4.0	•
	12	FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182	15 DETAILS EASO	
	4	DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224		
	$\left( \begin{array}{c} 1 \end{array} \right)$	XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219		
4		XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219		

	Deception       State         State       State         State <t< th=""></t<>									
	APPR.									
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013			DATE	
Revisions		2 CRB # 093.1 & FI 99	SFM REVIEW COMMENTS	4 CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	AS-BUILT DRAWINGS			SYMBOL	
	DATE: 08/23/2013		SCALE:			URAWING CODE: FA ALL URAWINGS CPCFS				
DESIGNED BY:	DESIGNED BY: Curtis Streeter		Derek Richardson		CHECKED BY: CURTIS STREETER, SET	NICET IV #102672	PROJECT ENGINEER:	Integral Design Associates INC.		
CENTER FOR SCIENCE AND MATHEMATICS CALIFORNIA STATE POLYTECHNIC UNIVERSITY SAN LUIS OBISPO, CA CSFM #18-40-03-0001										
SHEET ID FA 3.02E										

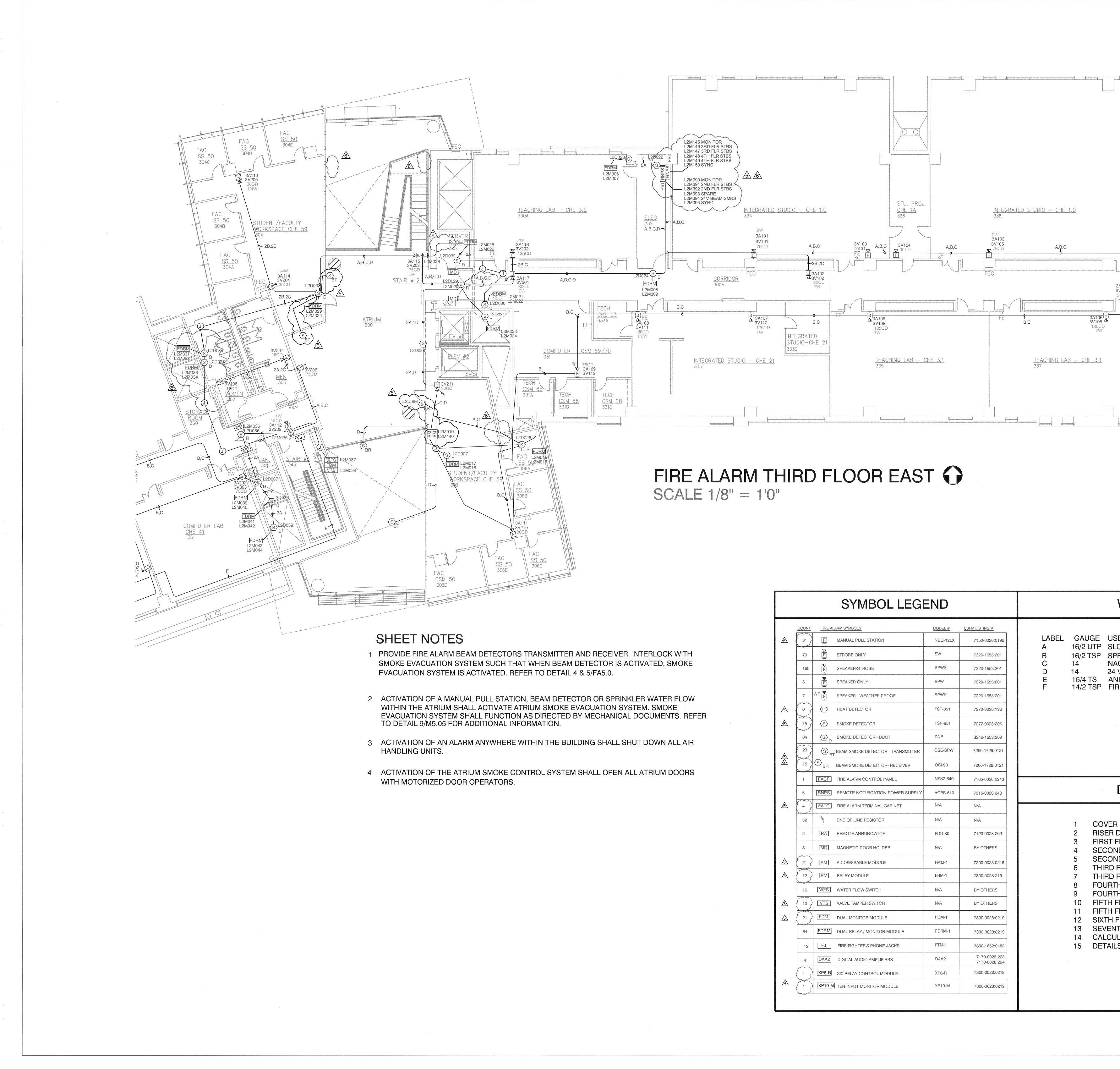
# GEND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

## NDEX

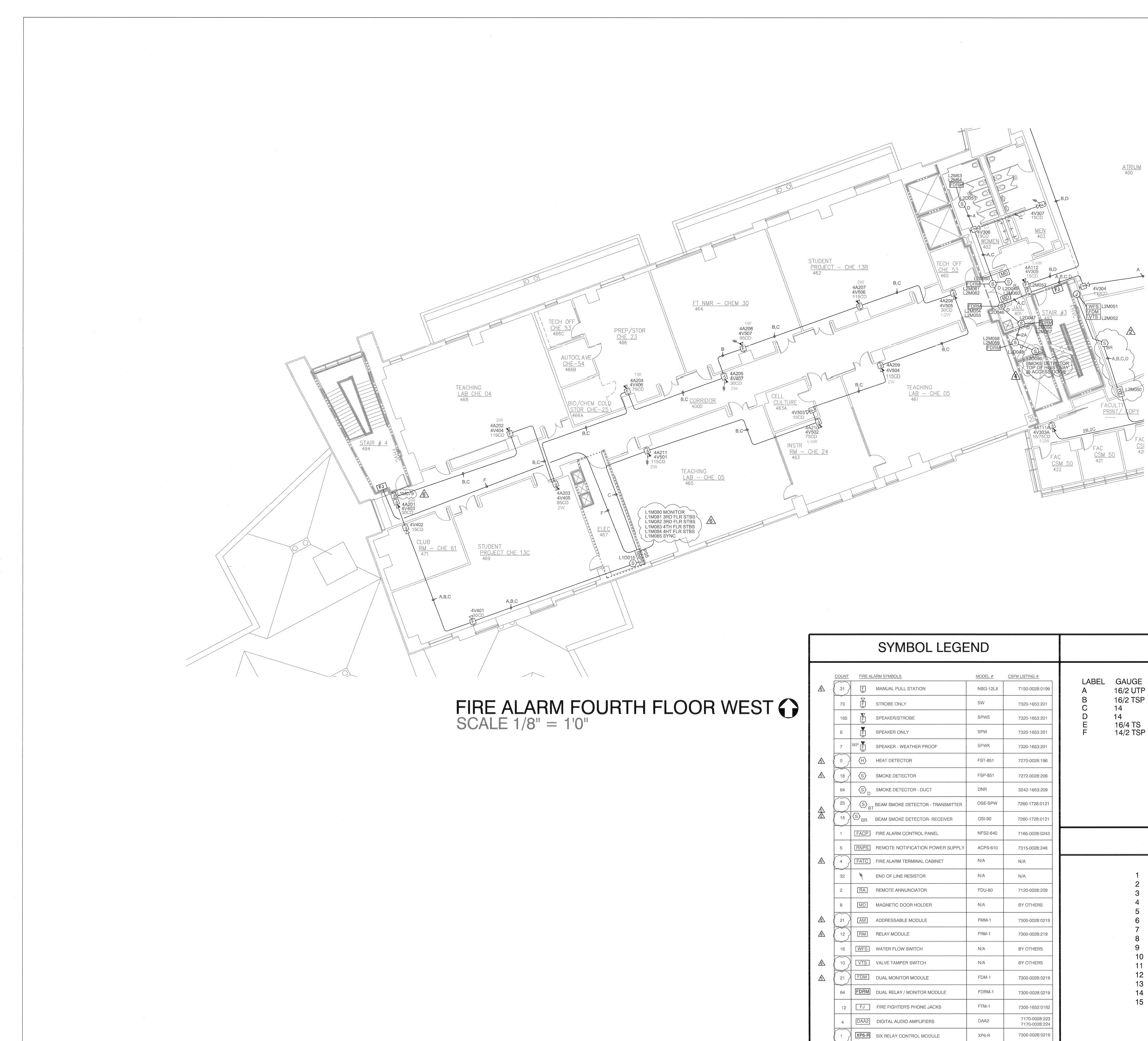


WIRING LE		SYMBOL LEGEND							
		CSFM LISTING #	MODEL #	E ALARM SYMBOLS	FIRE AL	COUNT			
GAUGE USE 16/2 UTP SLC		7150-0028:0199	NBG-12LX	MANUAL PULL STATION		29			
16/2 TSP SPEAKER 14 NAC VISUAL	B 16/2	7320-1653:201	SW	STROBE ONLY	V F	73			
14 24 VDC	D 14	7320-1653:201	SPWS	SPEAKER/STROBE		153			
16/4 TS ANNUNCIATOR 14/2 TSP FIRE FIGHTERS PHON		7320-1653:201	SPW			6			
		7320-1653:201	SPWK	SPEAKER - WEATHER PROOF	WP F	7			
		7270-0028:196	FST-851	HEAT DETECTOR	H	$\bigcirc$	ß		
		7272-0028:206	FSP-851	SMOKE DETECTOR	s	18	∕あ		
		3242-1653:209	DNR	SMOKE DETECTOR - DUCT	(S) _D	64			
		7260-1728:0121	OSE-SPW	BEAM SMOKE DETECTOR - TRANSMITTER	(S) _{bt}	23	A		
		7260-1728:0121	OSI-90	R BEAM SMOKE DETECTOR- RECEIVER	(S) _{BR}	15			
		7165-0028:0243	NFS2-640	P FIRE ALARM CONTROL PANEL	FACP	1			
DRAWING		7315-0028:248	ACPS-610	S REMOTE NOTIFICATION POWER SUPPLY	RNPS	5			
		N/A	N/A	C FIRE ALARM TERMINAL CABINET	FATC	5	∕₿		
1 COVER SHEET	1	N/A	N/A	END OF LINE RESISTOR	M	32			
2 RISER DIAGRAM 3 FIRST FLOOR WEST		7120-0028:209	FDU-80	REMOTE ANNUNCIATOR	RA	2			
4 SECOND FLOOR EAST	4	BY OTHERS	N/A	MAGNETIC DOOR HOLDER	MD	8			
5 SECOND FLOOR WEST 6 THIRD FLOOR EAST		7300-0028:0219	FMM-1	ADDRESSABLE MODULE	AM	19			
7 THIRD FLOOR WEST	7	7300-0028:219	FRM-1	RELAY MODULE	RM	9			
<ul><li>8 FOURTH FLOOR EAST</li><li>9 FOURTH FLOOR WEST</li></ul>		BY OTHERS	N/A	S WATER FLOW SWITCH	WFS	16			
10 FIFTH FLOOR EAST 11 FIFTH FLOOR WEST		BY OTHERS	N/A	S VALVE TAMPER SWITCH	VTS	22	∕		
12 SIXTH FLOOR EAST	12	7300-0028:0219	FDM-1	DUAL MONITOR MODULE	FDM	21	∕₿		
<ul><li>13 SEVENTH FLOOR EAST</li><li>14 CALCULATIONS</li></ul>	_	7300-0028:0219	FDRM-1	M DUAL RELAY / MONITOR MODULE	FDRM	64			
15 DETAILS		7300-1652:0182	FTM-1	FIRE FIGHTER'S PHONE JACKS	FJ	12			
		7170-0028:223 7170-0028:224	DAA2	2 DIGITAL AUDIO AMPLIFIERS	DAA2	4			
		7300-0028:0219	XP6-R	R SIX RELAY CONTROL MODULE	XP6-R	4			
		7300-0028:0219	XP10-M	0-M TEN-INPUT MONITOR MODULE	XP10-M	1			


	Cor C- ⁻ Tol	Dee 3442 San 10, C	ing - Servi P Bl Emp Luis -16 # e: 88	ice - ue In presa 0bi \$943 38\$6 5\$79	sign - Mon tegra a Driv spo, 465 50004 01◆2	- Ins ation ve S CA 9 AC DB 037	, Inc uite ( )3401 ;O#6	ion 864 AX:		
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013			DATE APPR.	
Revisions		2 CRB # 093.1 & FI 99	SFM REVIEW COMMENTS	4 CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	6 AS-BUILT DRAWINGS			SYMIBOL	
	DATE: 08/23/2013		SCALE:		DRAWING CODE: FA ALL DRAWINGS CPCFS					
DESIGNED BY:	DESIGNED BY: Curtis Streeter		Derek Richardson		CHECKED BY: CURTIS STREETER, SET	NICET IV #102672	PROJECT ENGINEER:	Internal Design Associates INC		
	CALIFORNIA STATE POLYTECHNIC UNIVERSITY SAN LUIS OBISPO, CA CSFM #18-40-03-0001									
	SHEET ID FA 3.03W									

# LEGEND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 HONE WEST PENN D995


# **A INDEX**

FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0

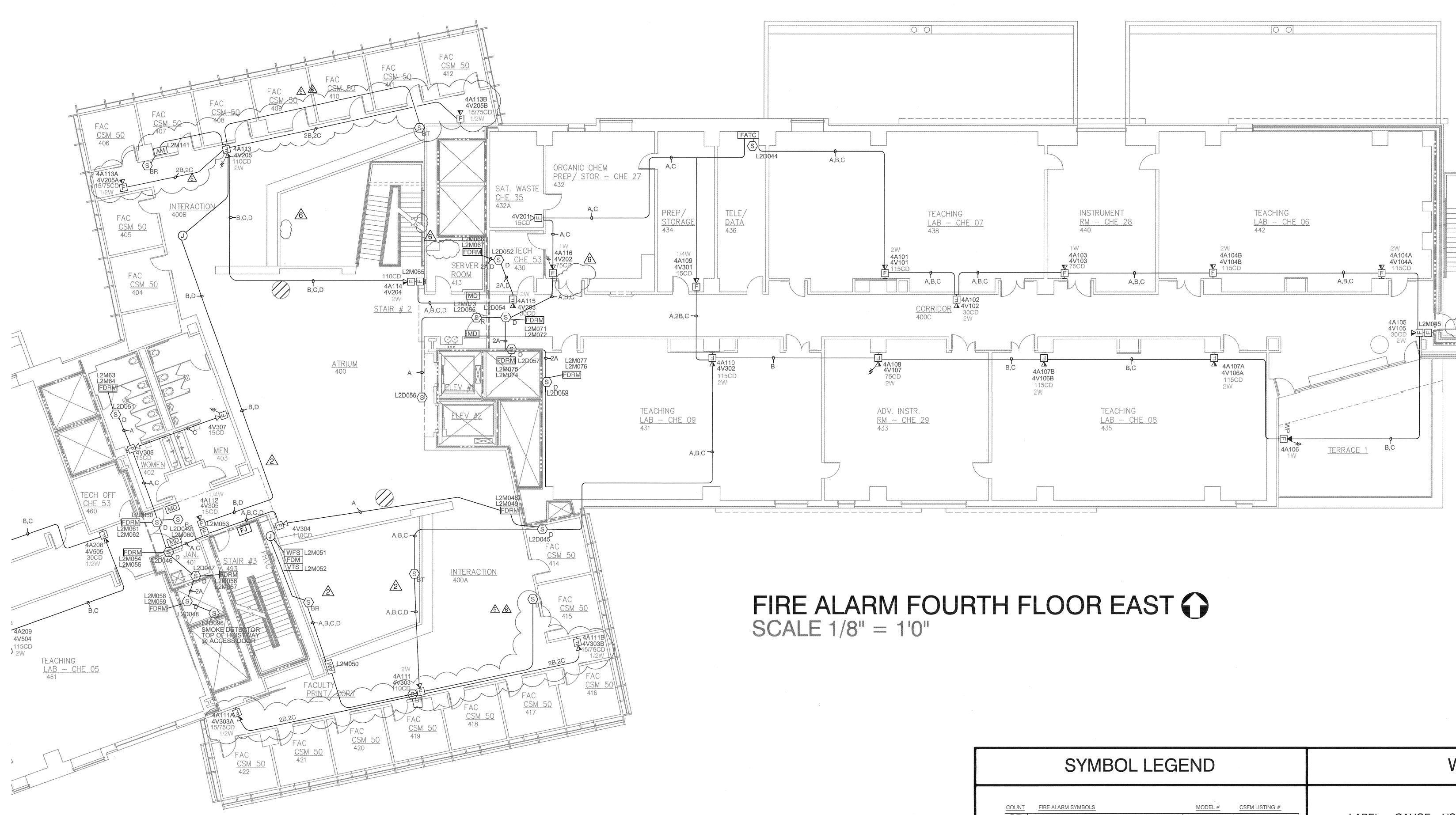


TED STUDIO - CHE 1.0 STUDIO -	TED STUDD D-E LD ABO STUDD D-E LD STUDD D-E LD STU	Image: State of the state
THIRD FLOOR EAST O	WIRING LEGEND	DESIGNED BY:     DATE:     08/23/2013       Curtis Streeter     DRAWN BY:     08/23/2013       DRAWN BY:     DRAWN BY:     SCALE:       Derek Richardson     SCALE:     SCALE:       CHECKED BY:     SCALE:     SCALE:       CHECKED BY:     SCALE:     SCALE:       CURTIS STREETER, SET     MMING CODE:     FAALL DRAWINGS CPCFS       PROJECT IV #102672     MMING CODE:     FAALL DRAWINGS CPCFS       Integral Design Associates INC.     Integral Design Associates INC.
COUNTFIRE ALARM SYMBOLSMODEL #CSFM LISTING #Image: constraint of the symbol of t	LABEL       GAUGE       USE       TYPE (OR EQUIVALENT)         A       16/2 UTP       SLC       WEST PENN D990         B       16/2 TSP       SPEAKER       WEST PENN D991         C       14       NAC VISUAL       THHN         D       14       24 VDC       THHN         E       16/4 TS       ANNUNCIATOR       WEST PENN 993         F       14/2 TSP       FIRE FIGHTERS PHONE       WEST PENN D995	CE AND MATHEMATICS LYTECHNIC UNIVERSITY S OBISPO, CA 18-40-03-0001
32       *       END OF LINE RESISTOR       N/A       N/A         2       IRA       REMOTE ANNUNCIATOR       FDU-80       7120-0028:209         8       MD       MAGNETIC DOOR HOLDER       N/A       BY OTHERS         21       IAM       ADDRESSABLE MODULE       FMM-1       7300-0028:0219         12       IRM       RELAY MODULE       FRM-1       7300-0028:0219         16       IVFS       WATER FLOW SWITCH       N/A       BY OTHERS         10       IVTS       VALVE TAMPER SWITCH       N/A       BY OTHERS         64       FDRM       DUAL MONITOR MODULE       FDM-1       7300-0028:0219         12       FJ       FIRE FIGHTER'S PHONE JACKS       FTM-1       7300-0028:0219         12       FJ       FIRE FIGHTER'S PHONE JACKS       DAA2       71170-0028:223	1COVER SHEETFA 0.02RISER DIAGRAMFA 1.03FIRST FLOOR WESTFA 3.01W4SECOND FLOOR EASTFA 3.02E5SECOND FLOOR WESTFA 3.02W6THIRD FLOOR EASTFA 3.03E7THIRD FLOOR WESTFA 3.03W8FOURTH FLOOR EASTFA 3.04E9FOURTH FLOOR WESTFA 3.04W10FIFTH FLOOR EASTFA 3.05E11FIFTH FLOOR WESTFA 3.05W12SIXTH FLOOR EASTFA 3.06E13SEVENTH FLOOR EASTFA 3.07E14CALCULATIONSFA 4.015DETAILSFA 5.0	CENTER FOR SCIENC ALIFORNIA STATE PO SAN LUI

SHEET 7 OF 15



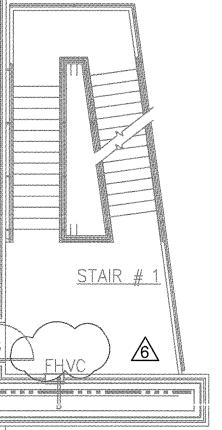
DUNT     FIRE ALARM SYMBOLS       31     F       MANUAL PULL STATION	MODEL #					
		CSFM LISTING #				
	NBG-12LX	7150-0028:0199	LABEL A	GAUGE 16/2 UTP	USE SLC	,
73 F STROBE ONLY	SW	7320-1653:201	B C	16/2 TSP 14	SPEAKER NAC VISUAL	,
165 <b>V</b> SPEAKER/STROBE	SPWS	7320-1653:201	D	14	24 VDC	
6 F SPEAKER ONLY	SPW	7320-1653:201	E F	16/4 TS 14/2 TSP	ANNUNCIATOR FIRE FIGHTERS PHONE	
7 WP SPEAKER - WEATHER PROOF	SPWK	7320-1653:201				
0 (H) HEAT DETECTOR	FST-851	7270-0028:196				
18 S SMOKE DETECTOR	FSP-851	7272-0028:206				
64 $\langle S \rangle_{D}$ SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
23 (S) BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121				
15 S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121				
1 FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243				
5 RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248			DRAWING IN	U
4 FATC FIRE ALARM TERMINAL CABINET	N/A	N/A				
32 美 END OF LINE RESISTOR	N/A	N/A		1	COVER SHEET	F
2 RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209		2 3	FIRST FLOOR WEST	F
8 MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS		4	SECOND FLOOR EAST	F
21 AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219		6	THIRD FLOOR EAST	F
12 RM RELAY MODULE	FRM-1	7300-0028:219		7	THIRD FLOOR WEST FOURTH FLOOR FAST	F
16 WFS WATER FLOW SWITCH	N/A	BY OTHERS		9	FOURTH FLOOR WEST	F
10 VTS VALVE TAMPER SWITCH	N/A	BY OTHERS		10 11	FIFTH FLOOR EAST FIFTH FLOOR WEST	F
21 FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219		12	SIXTH FLOOR EAST	F
64 FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219		13	CALCULATIONS	F
12 FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182		15	DETAILS	F
4 DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				
1 XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				
1 XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219				
	7       WP F       SPEAKER - WEATHER PROOF         0       (H)       HEAT DETECTOR         18       (S)       SMOKE DETECTOR         64       (S)       D         64       (S)       MOKE DETECTOR         7       (S)       BEAM SMOKE DETECTOR - DUCT         7       (S)       BEAM SMOKE DETECTOR - DUCT         7       (S)       BEAM SMOKE DETECTOR - TRANSMITTER         15       (S)       BR       BEAM SMOKE DETECTOR - TRANSMITTER         15       (S)       BR       BEAM SMOKE DETECTOR - RECEIVER         1       (FACP)       FIRE ALARM CONTROL PANEL       E         10       (FATC)       FIRE ALARM TERMINAL CABINET       E         12       (RM)       RELAY MODULE       E         14       (DAA)       DADRESSABLE MODULE       E         15       VALVE TAMPER SWITCH       E       E	7       WP I SPEAKER - WEATHER PROOF       SPWK         0       HEAT DETECTOR       FST-851         18       S       SMOKE DETECTOR       FSP-851         64       S       D       SMOKE DETECTOR - DUCT       DNR         23       S       BEAM SMOKE DETECTOR - TRANSMITTER       OSE-SPW         24       S       BEAM SMOKE DETECTOR - RECEIVER       OSI-90         15       S       BR       BEAM SMOKE DETECTOR - RECEIVER       OSI-90         1       IFACP       FIRE ALARM CONTROL PANEL       NFS2-640         5       IENPS       REMOTE NOTIFICATION POWER SUPPLY       ACPS-610         64       IFATC       FIRE ALARM TERMINAL CABINET       N/A         7       END OF LINE RESISTOR       N/A         20       IEA       REMOTE ANNUNCIATOR       FDU-80         8       MD       MAGNETIC DOOR HOLDER       N/A         21       IAM       ADDRESSABLE MODULE       FIMM-1         12       IEM       RELAY MODULE       FRM-1         14       WES       WATER FLOW SWITCH       N/A         15       VALVE TAMPER SWITCH       N/A         16       IVES       VALVE TAMPER SWITCH       N/A	7         WP         SPEAKER - WEATHER PROOF         SPWK         7320-1663:201           0         H         HEAT DETECTOR         FST-861         7220-0028:198           18         (S)         SMOKE DETECTOR         FSP-851         7272-0028:206           64         (S)         SMOKE DETECTOR         DNR         3242-1663:209           23         (S)         BEAM SMOKE DETECTOR - DUCT         DNR         3242-1663:209           23         (S)         BEAM SMOKE DETECTOR - TRANSMITTER         OSE-SPW         7260-1728:0121           15         (S)         BEAM SMOKE DETECTOR - RECEIVER         OSI-80         7280-1728:0121           15         (S)         BR         BEAM SMOKE DETECTOR - RECEIVER         OSI-80         7280-1728:0121           16         (FACP)         FIRE ALARM CONTROL PANEL         NFS2-640         7165-0028:023         5           17         (FACP)         FIRE ALARM TERMINAL CABINET         N/A         N/A         N/A           24         EATC         FIRE ALARM TERMINAL CABINET         N/A         N/A         N/A           32         END OF LINE RESISTOR         N/A         N/A         N/A         S           21         EAM         ADDRESSABLE MODULE         FMM-1<	7         WP II         SPEAKER - WEATHER PROOF         SPWK         7320-1633-201           0         (F)         HEAT DETECTOR         FST-851         7270-028-196           18         (S)         SMOKE DETECTOR         FST-851         7272-028-2806           18         (S)         SMOKE DETECTOR         FST-851         7272-028-2806           18         (S)         SMOKE DETECTOR - DUCT         DNR         3242-1653-209           23         (S)         MCKE DETECTOR - TRANSMITTER         0SE-SPW         7280-1728-0121           15         (S)         BR         BEAM SMOKE DETECTOR - TRANSMITTER         0SE-SPW         7280-1728-0121           15         (S)         BR         BEAM SMOKE DETECTOR - RECEIVER         0SI-90         7260-1728-0121           16         (FACE)         FIRE ALAPM CONTROL PANEL         NFS2-840         7136-0028-0243           16         [FACE)         FIRE ALAPM CONTROL PANEL         N/A         N/A           17         FACE         FIRE ALAPM CONTROL PANEL         N/A         N/A           18         [FACE]         FIRE ALAPM CONTROL PANEL         N/A         N/A           12         [FA]         REMOTE ANNUNCIATOR         FDU-90         7120-0028-0219	7         WF III         SPEAKER - WEATHER PROOF         SPWK         7380-1653.201           0         (H)         HEAT DETECTOR         FST-851         7270-0028.196           18         (S)         SMOKE DETECTOR         FST-851         7270-0028.196           18         (S)         SMOKE DETECTOR         FST-851         7270-0028.206           23         (S)         D         SMOKE DETECTOR - DUCT         DNR         3242-1663.201           15         (S)         BR         DEAM SMOKE DETECTOR - RECEIVER         OSI-90         7260-1728.0121           16         (S)         BR         DEAM SMOKE DETECTOR - RECEIVER         OSI-90         7260-1728.0121           17         (FACE)         FIRE ALARM CONTROL PANEL         N-FS240         7165-0028.0248           10         (FATE)         FREADER MONTONE OPWER SUPPLY         ACPS-610         7315-0028.248           2         (FAC)         REMOTE ANNUNCIATOR         FDU-80         7120-0028.299         3           2         (FAC)         REMOTE ANNUNCIATOR         FDU-80         7120-0028.299         3           3         (MD)         MAGHETIC DOOR HOLDER         N/A         8Y OTHERS         5           41         MOD DESSABLE MODULE	7         9 ⁺ E         3 ⁺ EARDER WEATHER PRIOD         5 ⁺ W/K         7350 1483 301           0         (C)         HEAT DETEOTOR         FBT 651         7227-002 200           1         (C)         HEAT DETEOTOR         FBT 651         7227-002 200           2         (C)         SMORE DETECTOR         DNP         SMORE DETECTOR         DNP           3         (C)         (C)         FBT 643         7270-020 200         DOE           3         (C)         (C)         DNP         SMORE DETECTOR         DNN           3         (C)         (C)         (C)         DNN         SMORE DETECTOR         DNN           1         (EC)         RREALARM CONTROL PANEL         MF02-40         /166-0285-204         DRAWING INI           1         (EC)         RARAM CONTROL PANEL         MF02-40         /166-0285-204         RISER DIAGRAM           2         (EC)         REMOTE NOTIFICATON FOWER SUPPLY         ACP6-510         7315-029-204         PANA         1         COVER SHEET           2         (EC)         MAGNETIC DOOR HOUSER         N/A         PO 07HERS         4         SECOND FLOOR WEST           2         (EC)         MAGNETIC DOOR HOUSER         N/A         PO 07HERS


	3 C-1 Toll	Dee 3442 San 0, C Free	ing - Servi Emp Luis -16 # 805	Des ce - ue In oresa Obis 9434 88 \$6 5 \$79	ign - Mon tegra a Driv spo, 465 0004 1 <b>*</b> 2	egr Inst itorin ation, ve Su CA 9 AC DBI 037 gratic	allat Ig lite C 3401 O#68	ion 364 AX:	
	6/14/2011	5/18/2012 4/11/2012	8/20/2012	1/15/2013	4/3/2013	8/23/2013		DATE APPR.	
Revisions		2 CRB # 093.1 & FI 99	3 SFM REVIEW COMMENTS	▲ CRB 93.2	5 FA & SMOKE CONTROL SFM COMMENTS	6 AS-BUILT DRAWINGS		SYMIBOL DESCRIPTION	
	Curtis Streeter DATE: 08/23/2013	DRAWN BY:	Derek Richardson		CHECKED BY: CURTIS STREETER, SET		PROJECT ENGINEER:	Integral Design Associates INC.	
					SAN LUIS OBISPO, CA	CSFM #18_40_03_0001			
			A		- •	)4	W	/	

END

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

# DEX


FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0



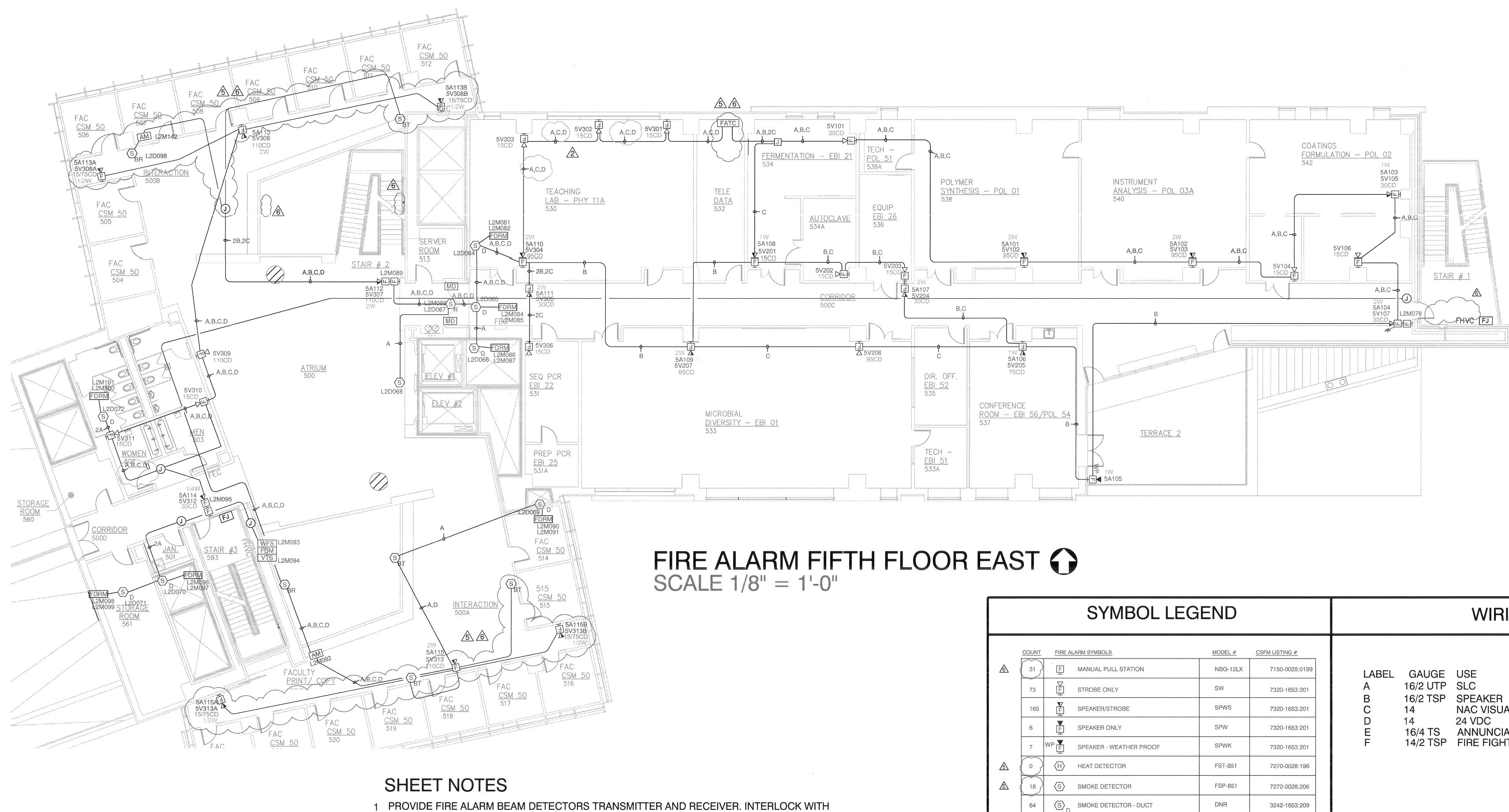
## SHEET NOTES

- PROVIDE FIRE ALARM BEAM DETECTORS TRANSMITTER AND RECEIVER. INTERLOCK WITH SMOKE EVACUATION SYSTEM SUCH THAT WHEN BEAM DETECTOR IS ACTIVATED, SMOKE EVACUATION SYSTEM IS ACTIVATED. REFER TO DETAIL 4 & 5/FA5.0.
- 2 ACTIVATION OF A MANUAL PULL STATION, BEAM DETECTOR OR SPRINKLER WATER FLOW WITHIN THE ATRIUM SHALL ACTIVATE ATRIUM SMOKE EVACUATION SYSTEM. SMOKE EVACUATION SYSTEM SHALL FUNCTION AS DIRECTED BY MECHANICAL DOCUMENTS. REFER TO DETAIL 9/M5.05 FOR ADDITIONAL INFORMATION.
- 3 ACTIVATION OF AN ALARM ANYWHERE WITHIN THE BUILDING SHALL SHUT DOWN ALL AIR HANDLING UNITS.
- 4 ACTIVATION OF THE ATRIUM SMOKE CONTROL SYSTEM SHALL OPEN ALL ATRIUM DOORS WITH MOTORIZED DOOR OPERATORS.

		SYMBOL LEGE	END		WIRING LEG
	<u>COUNT</u> <u>FIF</u>	RE ALARM SYMBOLS	MODEL #	<u>CSFM LISTING #</u>	
$\bigtriangleup$	(31) E	MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL GAUGE USE A 16/2 UTP SLC
	73 F	7 STROBE ONLY	SW	7320-1653:201	B 16/2 TSP SPEAKER
	165 F	SPEAKER/STROBE	SPWS	7320-1653:201	C 14 NAC VISUAL D 14 24 VDC
	6 F		SPW	7320-1653:201	D 14 24 VDC E 16/4 TS ANNUNCIATOR F 14/2 TSP FIRE FIGHTERS PHON
	7 WP	SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	
$\bigtriangleup$	0 (H	HEAT DETECTOR	FST-851	7270-0028:196	
ß	18 (5	SMOKE DETECTOR	FSP-851	7272-0028:206	
	64 (S	SMOKE DETECTOR - DUCT	DNR	3242-1653:209	
A	- N - / I	BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121	
	15 S _B	R BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121	
	1 [FAC	P FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243	DRAWING IN
	5 RNI	PS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	DNAVING IN
Â	4 FAT	C FIRE ALARM TERMINAL CABINET	N/A	N/A	
	32 考	END OF LINE RESISTOR	N/A	N/A	1 COVER SHEET FA
	2 R/	A REMOTE ANNUNCIATOR	FDU-80	7120-0028:209	2 RISER DIAGRAM FA 3 FIRST FLOOR WEST FA
	8 MI	D MAGNETIC DOOR HOLDER	N/A	BY OTHERS	4 SECOND FLOOR EAST FA 5 SECOND FLOOR WEST FA
	21 AM	ADDRESSABLE MODULE	FMM-1	7300-0028:0219	6 THIRD FLOOR EAST FA
		M RELAY MODULE	FRM-1	7300-0028:219	7 THIRD FLOOR WEST FA 8 FOURTH FLOOR EAST FA
	16 WF	S WATER FLOW SWITCH	N/A	BY OTHERS	9 FOURTH FLOOR WEST FA
		S VALVE TAMPER SWITCH	N/A	BY OTHERS	10 FIFTH FLOOR EAST FA 11 FIFTH FLOOR WEST FA
ß	21 FD	M DUAL MONITOR MODULE	FDM-1	7300-0028:0219	12 SIXTH FLOOR EAST FA 13 SEVENTH FLOOR EAST FA
	64 FDF	M DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	14 CALCULATIONS FA
	12 F.	J FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182	15 DETAILS FA
	4 [DA	A2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224	
١		3-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219	
		10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219	



# GEND


NE

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

## NDEX

FA 0.0 FA 1.0 FA 3.01W FA 3.02E FA 3.02W FA 3.03E FA 3.03W FA 3.04E FA 3.04W FA 3.05E FA 3.05W FA 3.06E FA 3.07E FA 4.0 FA 5.0

Blue **Consulting - Design - Installation** Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888 \$6000 \$DBI FAX: 805�791�2037 www.deepblueintegration.com 8 4 2 0 HEMATICS UNIVERSI CENTER FOR SCIENCE AND MAT ALIFORNIA STATE POLYTECHNIC SAN LUIS OBISPO, CA U SHEET ID FA 3.04E SHEET 9 OF 15

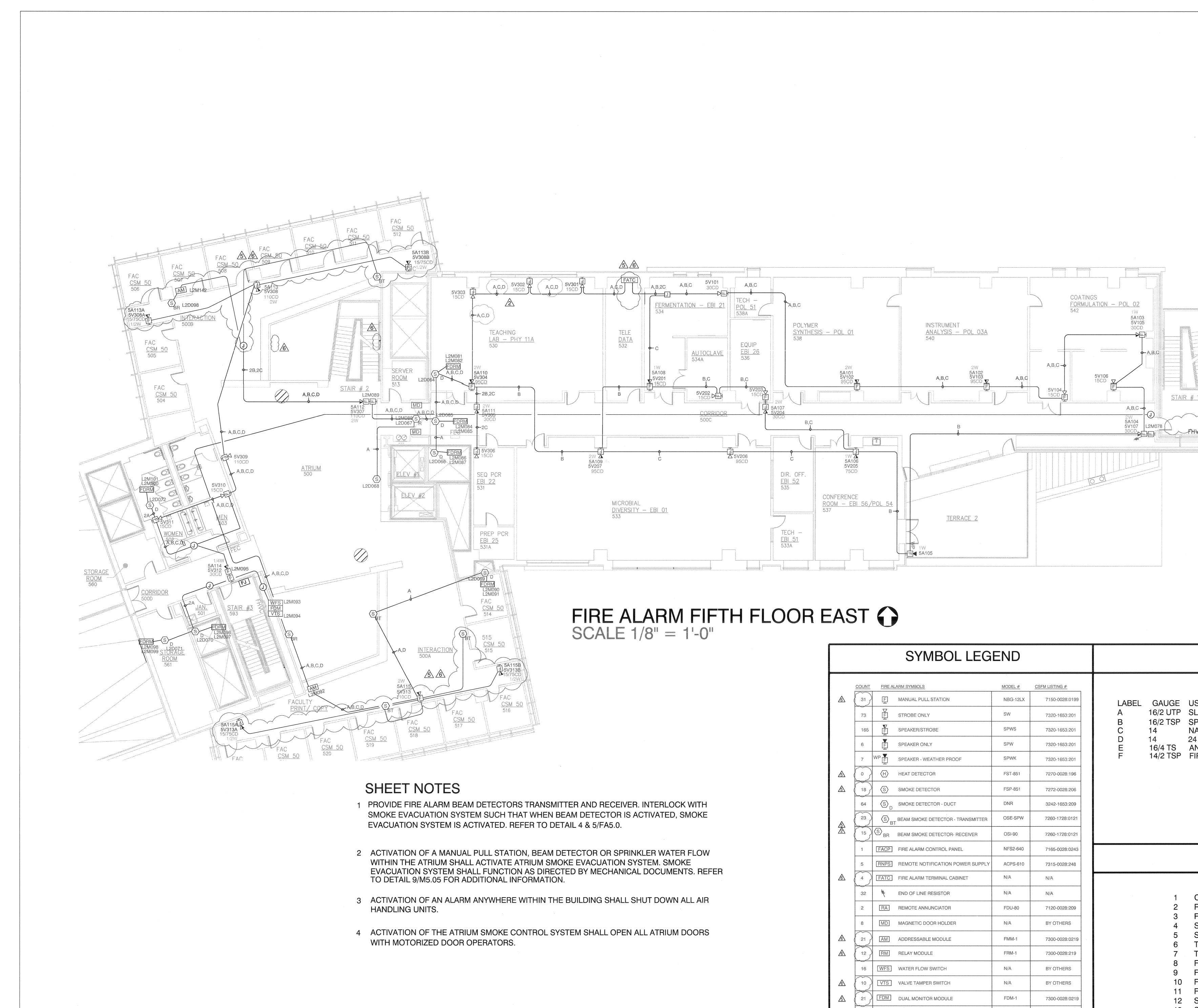


SMOKE EVACUATION SYSTEM SUCH THAT WHEN BEAM DETECTOR IS ACTIVATED, SMOKE EVACUATION SYSTEM IS ACTIVATED. REFER TO DETAIL 4 & 5/FA5.0.

2 ACTIVATION OF A MANUAL PULL STATION, BEAM DETECTOR OR SPRINKLER WATER FLOW WITHIN THE ATRIUM SHALL ACTIVATE ATRIUM SMOKE EVACUATION SYSTEM. SMOKE EVACUATION SYSTEM SHALL FUNCTION AS DIRECTED BY MECHANICAL DOCUMENTS. REFER TO DETAIL 9/M5.05 FOR ADDITIONAL INFORMATION.

3 ACTIVATION OF AN ALARM ANYWHERE WITHIN THE BUILDING SHALL SHUT DOWN ALL AIR HANDLING UNITS.

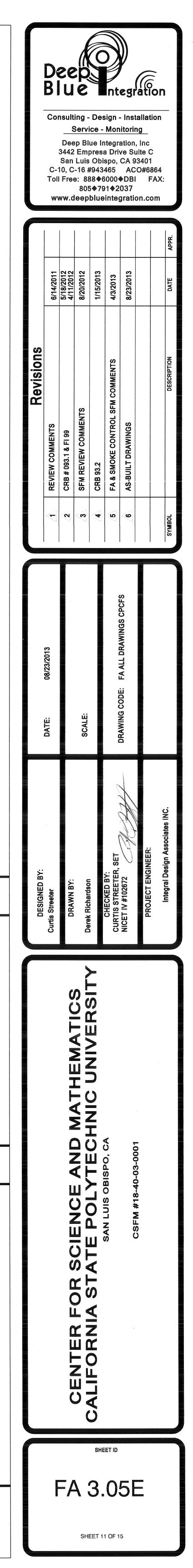
4 ACTIVATION OF THE ATRIUM SMOKE CONTROL SYSTEM SHALL OPEN ALL ATRIUM DOORS WITH MOTORIZED DOOR OPERATORS.

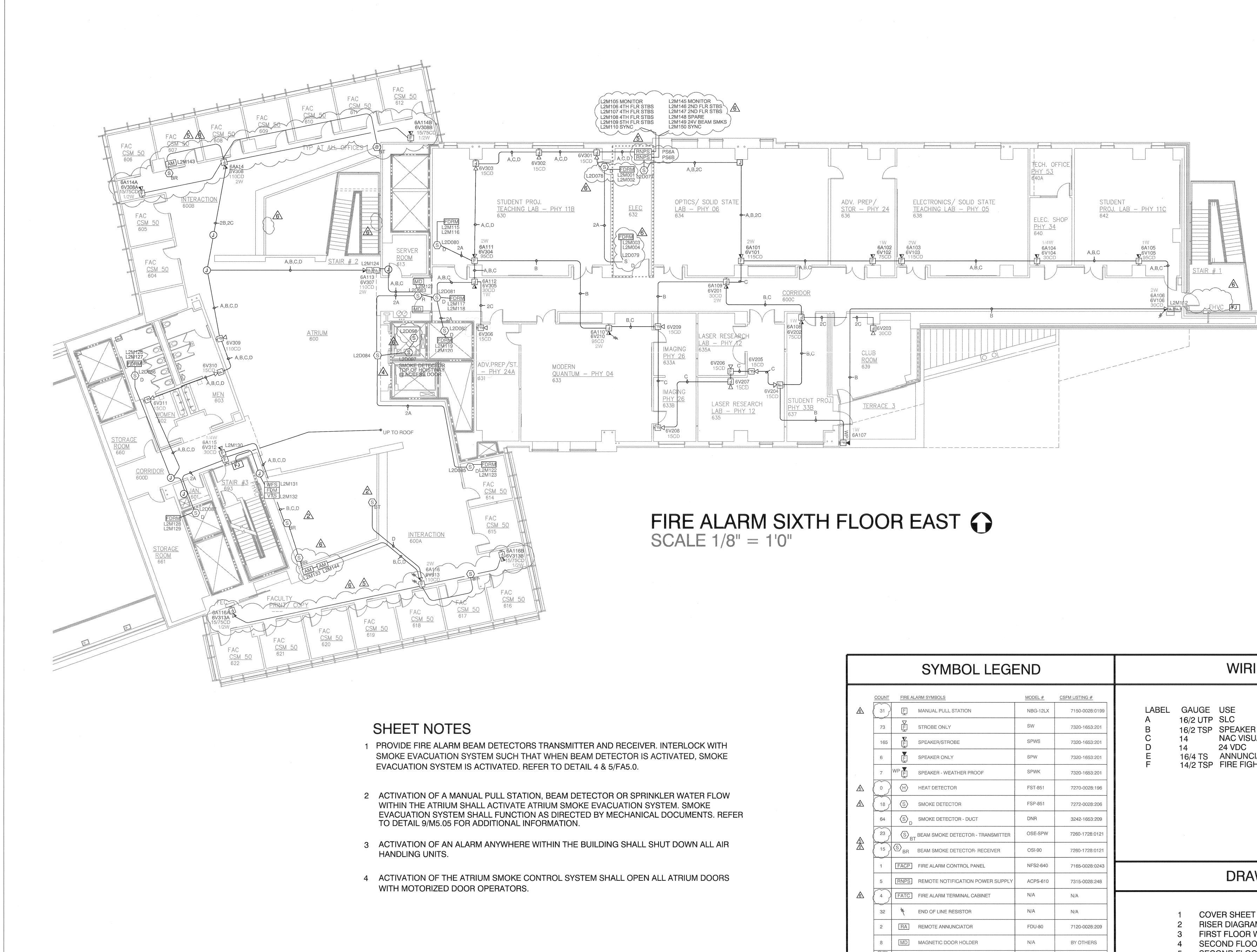

	SYMBOL LEGE	END		WIRING LEGEND
	COUNT FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #	
$\land$	31 F MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL GAUGE USE TYPE (OR
	73 F STROBE ONLY	SW	7320-1653:201	A16/2 UTPSLCWEST PEIB16/2 TSPSPEAKERWEST PEI
	165 F SPEAKER/STROBE	SPWS	7320-1653:201	C 14 NAC VISUAL THHN
	6 F SPEAKER ONLY	SPW	7320-1653:201	D 14 24 VDC THHN E 16/4 TS ANNUNCIATOR WEST PE F 14/2 TSP FIRE FIGHTERS PHONE WEST PE
	7 WP SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	F 14/2 TSP FIRE FIGHTERS PHONE WEST PE
5	0 H HEAT DETECTOR	FST-851	7270-0028:196	
\$	18 (S) SMOKE DETECTOR	FSP-851	7272-0028:206	
	64 (S) SMOKE DETECTOR - DUCT	DNR	3242-1653:209	
A	23 S BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121	
\$ 2	15 S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121	
	1 FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243	
	5 RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248	DRAWING INDEX
A	4 FATC FIRE ALARM TERMINAL CABINET	N/A	N/A	
	32 考 END OF LINE RESISTOR	N/A	N/A	1 COVER SHEET FA 0.0
	2 RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209	2 RISER DIAGRAM FA 1.0
	8 MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS	3 FIRST FLOOR WEST FA 3.01W 4 SECOND FLOOR EAST FA 3.02E
$\bigtriangleup$	21 AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219	5 SECOND FLOOR WEST FA 3.02W
$\land$	12 RM RELAY MODULE	FRM-1	7300-0028:219	6 THIRD FLOOR EAST FA 3.03E 7 THIRD FLOOR WEST FA 3.03W
	16 WFS WATER FLOW SWITCH	N/A	BY OTHERS	8 FOURTH FLOOR EAST FA 3.04E 9 FOURTH FLOOR WEST FA 3.04W
$\land$	10 VTS VALVE TAMPER SWITCH	N/A	BY OTHERS	10 FIFTH FLOOR EAST FA 3.05E
ß	21 FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219	11FIFTH FLOOR WESTFA 3.05W12SIXTH FLOOR EASTFA 3.06E
	64 FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219	13 SEVENTH FLOOR EAST FA 3.07E
	12 FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182	14CALCULATIONSFA 4.015DETAILSFA 5.0
	4 DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224	
	1 XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219	
4	1 XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219	

## ND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

# EX


Blue Integration **Consulting - Design - Installation** Service - Monitoring Deep Blue Integration, Inc 3442 Empresa Drive Suite C San Luis Obispo, CA 93401 C-10, C-16 #943465 ACO#6864 Toll Free: 888\$6000\$DBI FAX: 805 \$791 \$2037 www.deepblueintegration.com 6/14/ 5/18/ 4/11/ 8/20/ 4/3/ Q Q 4 Q 4 THEMATICS C UNIVERSIT CENTER FOR SCIENCE AND MAT ALIFORNIA STATE POLYTECHNIC SAN LUIS OBISPO, CA SHEET ID FA 3.05E SHEET 11 OF 15




		SYMBOL LEG	END				WIRING LEGE	END
		FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #				
	31	F MANUAL PULL STATION	NBG-12LX	7150-0028:0199	LABEL	GAUGE	USE	TYPE (C
	73	♥ F STROBE ONLY	SW	7320-1653:201	A	16/2 UTP 16/2 TSP	SLC SPEAKER	WEST P WEST P
	165		SPWS	7320-1653:201	B C	14	NAC VISUAL	THHN
	6	SPEAKER ONLY	SPW	7320-1653:201	D E	14 16/4 TS	24 VDC ANNUNCIATOR	THHN WEST F
	7	WP SPEAKER - WEATHER PROOF	SPWK	7320-1653:201	F	14/2 TSP	FIRE FIGHTERS PHONE	WEST F
A	$\bigcirc$	H HEAT DETECTOR	FST-851	7270-0028:196				
∕₼	18	S SMOKE DETECTOR	FSP-851	7272-0028:206				
	64	S SMOKE DETECTOR - DUCT	DNR	3242-1653:209				
A	23	S BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121				
	15	S BR BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121				
	1	FACP FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243				
	5	RNPS REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248			DRAWING INI	JEX
$\land$	4	FATC FIRE ALARM TERMINAL CABINET	N/A	N/A				
	32	キ END OF LINE RESISTOR	N/A	N/A		1	COVER SHEET	FA 0.0
	2	RA REMOTE ANNUNCIATOR	FDU-80	7120-0028:209		2 3	RISER DIAGRAM FIRST FLOOR WEST	FA 1.0 FA 3.01V
	8	MD MAGNETIC DOOR HOLDER	N/A	BY OTHERS		3 4	SECOND FLOOR EAST	FA 3.02E
∕	21	AM ADDRESSABLE MODULE	FMM-1	7300-0028:0219		5 6	SECOND FLOOR WEST THIRD FLOOR EAST	FA 3.02V FA 3.03E
Â	(12)	RM RELAY MODULE	FRM-1	7300-0028:219		7	THIRD FLOOR WEST	FA 3.03V
	16	WFS WATER FLOW SWITCH	N/A	BY OTHERS		8 9	FOURTH FLOOR EAST FOURTH FLOOR WEST	FA 3.04E FA 3.04V
$\bigtriangleup$	10	VTS VALVE TAMPER SWITCH	N/A	BY OTHERS		10		FA 3.05E
ß	21	FDM DUAL MONITOR MODULE	FDM-1	7300-0028:0219		11 12	FIFTH FLOOR WEST SIXTH FLOOR EAST	FA 3.05V FA 3.06E
	64	FDRM DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219		13 14		FA 3.07E FA 4.0
	12	FJ FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182		15		FA 5.0
	4	DAA2 DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223 7170-0028:224				
		XP6-R SIX RELAY CONTROL MODULE	XP6-R	7300-0028:0219				
		XP10-M TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219				

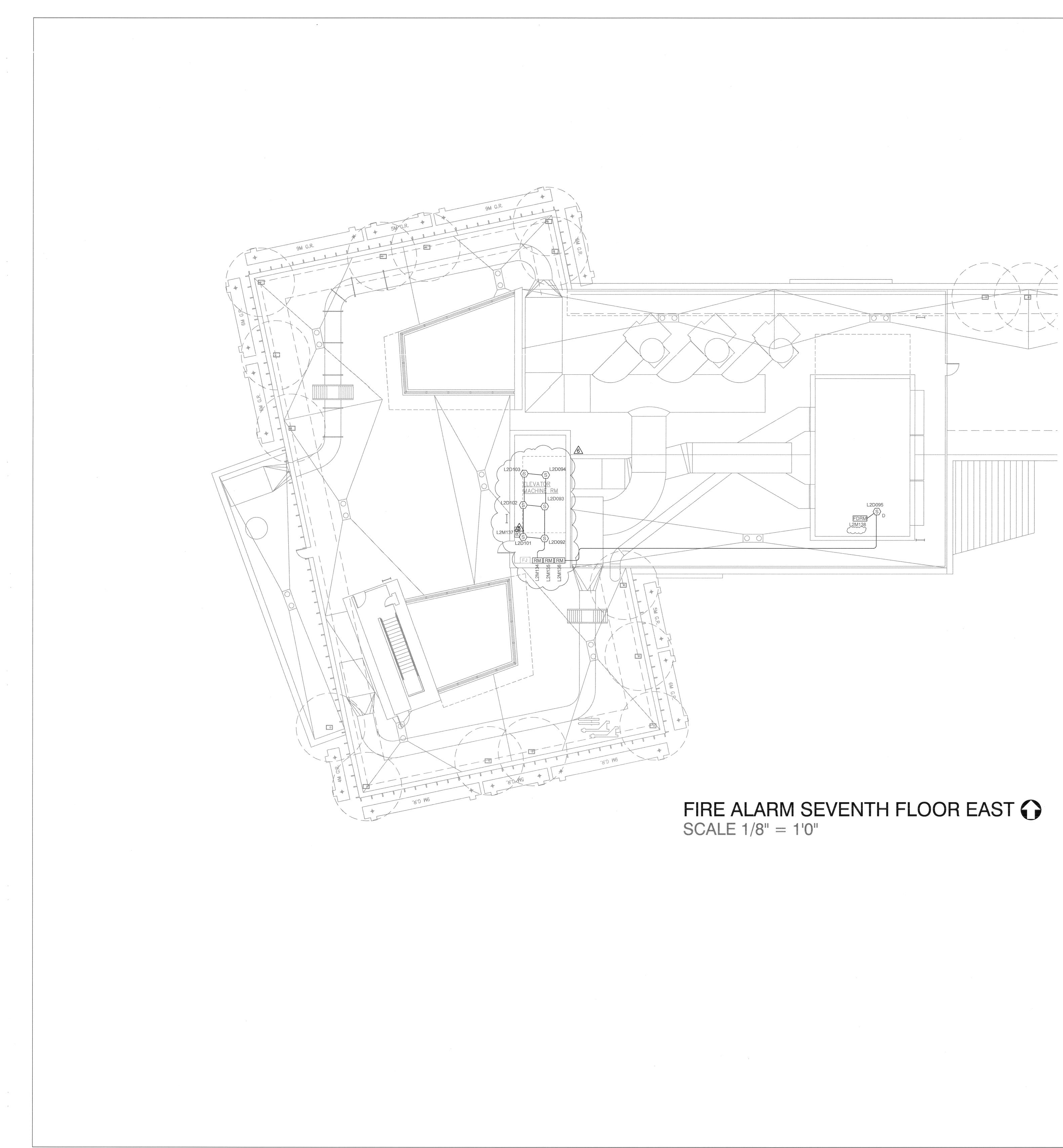
TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 WEST PENN D995

1.0 A 3.01W A 3.02E A 3.02W A 3.03E 4 3.03W A 3.04E A 3.04W A 3.05E A 3.05W A 3.06E A 3.07E 4.0 5.0

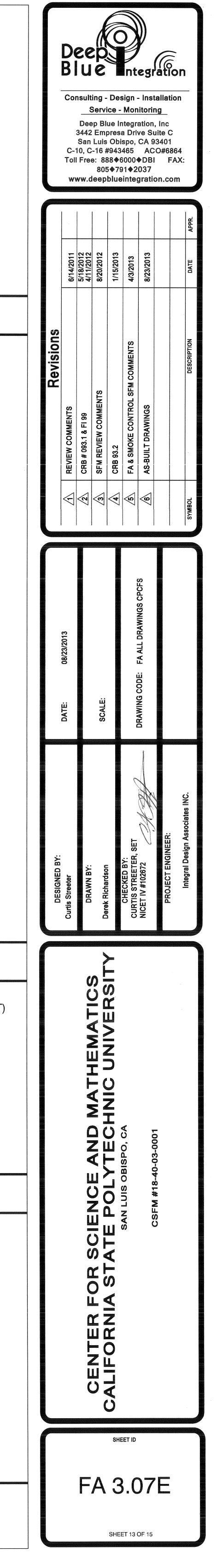




	SYMBC	DL LEGEND			WIRIN	IG LE
	COUNT FIRE ALARM SYMBOLS	MODEL #	CSFM LISTING #			
	31 E MANUAL PULL STATIO	N NBG-12LX	7150-0028:0199	LABEL	GAUGE USE	
	73 F STROBE ONLY	SW	7320-1653:201	A B	16/2 UTP SLC 16/2 TSP SPEAKER	
	165 <b>V</b> SPEAKER/STROBE	SPWS	7320-1653:201	C D	14NAC VISUAL1424 VDC	-
	6 F SPEAKER ONLY	SPW	7320-1653:201	E F	16/4 TS ANNUNCIAT	
	7 WP SPEAKER - WEATHER	PROOF SPWK	7320-1653:201	Г	14/2 TSP FIRE FIGHT	ENS PAU
$\Delta$	0 (H) HEAT DETECTOR	FST-851	7270-0028:196			
	18 S SMOKE DETECTOR	FSP-851	7272-0028:206			
	64 (S) SMOKE DETECTOR - D	UCT DNR	3242-1653:209			
X	23 (S) BEAM SMOKE DETECT	OR - TRANSMITTER OSE-SPW	7260-1728:0121			
	15 S BR BEAM SMOKE DETECT	OR- RECEIVER OSI-90	7260-1728:0121			
	1 FACP FIRE ALARM CONTROL	PANEL NFS2-640	7165-0028:0243			
	5 RNPS REMOTE NOTIFICATIO	ON POWER SUPPLY ACPS-610	7315-0028:248		DRAW	/ING
2	4 FATC FIRE ALARM TERMINAI	. CABINET N/A	N/A			
	32	R N/A	N/A		1 COVER SHEET	
	2 RA REMOTE ANNUNCIATO	R FDU-80	7120-0028:209		2 RISER DIAGRAM	OT
	8 MD MAGNETIC DOOR HOL	DER N/A	BY OTHERS		<ul><li>3 FIRST FLOOR WE</li><li>4 SECOND FLOOR</li></ul>	
2	21 AM ADDRESSABLE MODU	_E FMM-1	7300-0028:0219		5 SECOND FLOOR EAS 6 THIRD FLOOR EAST	
2	12 RM RELAY MODULE	FRM-1	7300-0028:219		7 THIRD FLOOR WI	EST
	16 WFS WATER FLOW SWITCH	N/A	BY OTHERS		<ul><li>8 FOURTH FLOOR</li><li>9 FOURTH FLOOR</li></ul>	
	10 VTS VALVE TAMPER SWITC	H N/A	BY OTHERS		10 FIFTH FLOOR EA	
$\overline{\Sigma}$	21 FDM DUAL MONITOR MODU	LE FDM-1	7300-0028:0219		<ul><li>11 FIFTH FLOOR WE</li><li>12 SIXTH FLOOR EA</li></ul>	
	64 FDRM DUAL RELAY / MONITO	R MODULE FDRM-1	7300-0028:0219		<ul><li>13 SEVENTH FLOOF</li><li>14 CALCULATIONS</li></ul>	≀ EAST
	12 FJ FIRE FIGHTER'S PHON	E JACKS FTM-1	7300-1652:0182		15 DETAILS	
	4 DAA2 DIGITAL AUDIO AMPLI	FIERS DAA2	7170-0028:223 7170-0028:224			
	1 XP6-R SIX RELAY CONTROL N	10DULE XP6-R	7300-0028:0219			
<u>4</u>	1 XP10-M TEN-INPUT MONITOR I	/ODULE XP10-M	7300-0028:0219			


## EGEND

TYPE (OR EQUIVALENT) WEST PENN D990 WEST PENN D991 THHN THHN WEST PENN 993 PHONE WEST PENN D995

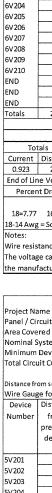

# **INDEX**

FA C	0.0
FA 1	.0
FA 3	8.01W
FA 3	3.02E
FA 3	3.02W
FA 3	3.03E
	8.03W
	3.04E
	3.04W
-	8.05E
	8.05W
	8.06E
	3.07E
FA 4	
FA 5	

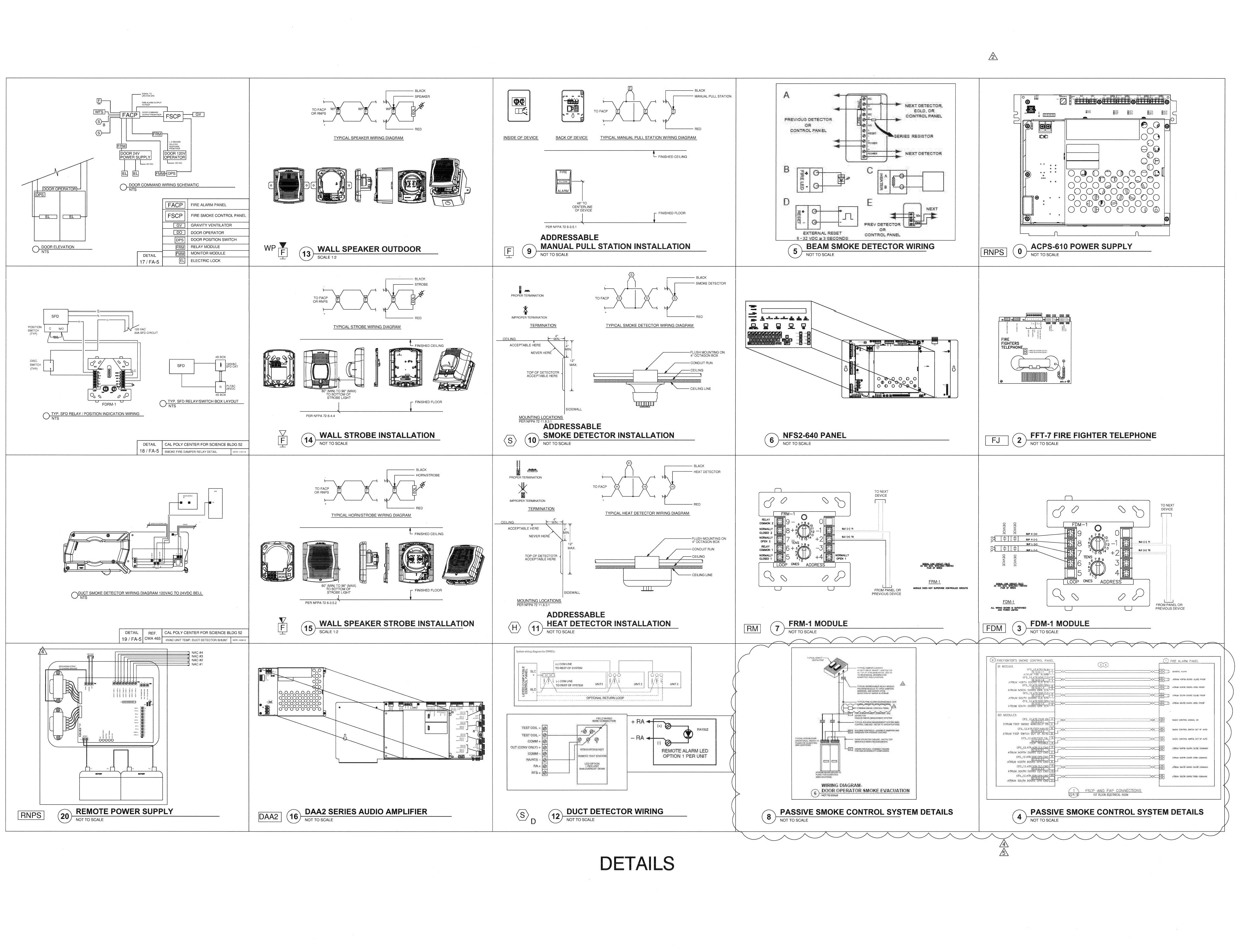
			Revisions	
		Curtis Streeter 08/23/2013	A REVIEW COMMENTS 6/14/2011	Cor C-  Toll
		DRAWN BY:	2 CRB # 093.1 & FI 99 5/18/2012 4/11/2012 4/11/2012	Dee 3442
S S		Derek Richardson	3 SFM REVIEW COMMENTS 8/20/2012	ing - Servi Emp Luis -16 # e: 88
	CALIFORNIA U A I B		4 CRB 93.2 1/15/2013	ue In oresa Obi \$943 \$8\$6 5\$79
3.(			5 FA & SMOKE CONTROL SFM COMMENTS 4/3/2013	ign Mon itegra a Driv spo, 465 60004
			6 AS-BUILT DRAWINGS 8/23/2013	- Inst itorin ation ve Si CA 9 AC DB 037
SE		PROJECT ENGINEER:		ng , Inc uite ( )3401 ;O#6   F
8		Integral Design Associates INC.	DESCENTION	ion 864 FAX:



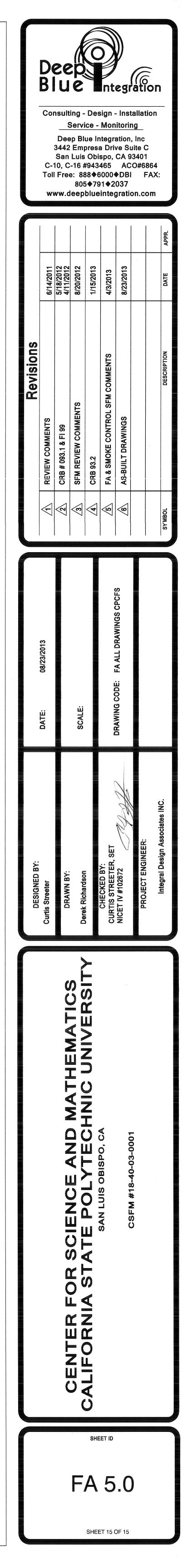
			SYMBOL LE	GEND	)
		FIRE AL/	ARM SYMBOLS	MODEL #	CSFM LISTING #
	(31)	Ē	MANUAL PULL STATION	NBG-12LX	7150-0028:0199
	73	Ē	STROBE ONLY	SW	7320-1653:201
	165	 F	SPEAKER/STROBE	SPWS	7320-1653:201
	6		SPEAKER ONLY	SPW	7320-1653:201
	7	WP E	SPEAKER - WEATHER PROOF	SPWK	
۸					7320-1653:201
Â	P		HEAT DETECTOR	FST-851	7270-0028:196
Â	18		SMOKE DETECTOR	FSP-851	7272-0028:206
	64	(S) _D	SMOKE DETECTOR - DUCT	DNR	3242-1653:209
A	23		BEAM SMOKE DETECTOR - TRANSMITTER	OSE-SPW	7260-1728:0121
	(15)	S BR	BEAM SMOKE DETECTOR- RECEIVER	OSI-90	7260-1728:0121
		FACP	FIRE ALARM CONTROL PANEL	NFS2-640	7165-0028:0243
	5	RNPS	REMOTE NOTIFICATION POWER SUPPLY	ACPS-610	7315-0028:248
	4	FATC	FIRE ALARM TERMINAL CABINET	N/A	N/A
	32	幸	END OF LINE RESISTOR	N/A	N/A
	2		REMOTE ANNUNCIATOR	FDU-80	7120-0028:209
A	8	[MD]	MAGNETIC DOOR HOLDER	N/A	BY OTHERS
Â	21		ADDRESSABLE MODULE	FMM-1	7300-0028:0219
Â		RM	RELAY MODULE	FRM-1	7300-0028:219
	16	[WFS]	WATER FLOW SWITCH	N/A	BY OTHERS
	(10)	VTS	VALVE TAMPER SWITCH	N/A	BY OTHERS
A	21	FDM	DUAL MONITOR MODULE	FDM-1	7300-0028:0219
	64	FDRM	DUAL RELAY / MONITOR MODULE	FDRM-1	7300-0028:0219
	12	FJ	FIRE FIGHTER'S PHONE JACKS	FTM-1	7300-1652:0182
	4	DAA2	DIGITAL AUDIO AMPLIFIERS	DAA2	7170-0028:223
			SIX RELAY CONTROL MODULE	XP6-R	7170-0028:224
	K		TEN-INPUT MONITOR MODULE	XP10-M	7300-0028:0219
			WIRING LE	GEND	
L/ A B C D E F	;	16/2 ( 16/2 ⁻ 14 14 16/4 ⁻	GE USE JTP SLC ISP SPEAKER NAC VISUAL 24 VDC TS ANNUNCIATOR TSP FIRE FIGHTERS PHON	WE WE THF THF WE	
A B C D		16/2 ( 16/2 ⁻ 14 14 16/4 ⁻	JTP SLC TSP SPEAKER NAC VISUAL 24 VDC TS ANNUNCIATOR	WE WE THF THF WE	ST PENN D990 ST PENN D991 IN ST PENN 993 ST PENN D995




Fire Alarm Voltage Drop Calculations         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Notifier RNPS, PS5- Circuit 4V4         Area Covered       4th Floor West         Nominal System Voltage       24         Minimum Device Voltage       20         Total Circuit Current       0.897		Fire Alarm Voltage Drop Calculations         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Notifier RNPS, PS5- Circuit 4V5         Area Covered       4th Floor West         Nominal System Voltage       24         Minimum Device Voltage       20         Total Circuit 1.129       Wire       Ohm's         Gauge       PEF 1000
Distance from source to 1st device         50         14         3.07           Wire Gauge for balance of circuit         14         3.07           Device         Distance from previous device         Voltage         Current in amps.         Device Model #           4V401         50         23.72         0.275         1.15%         0.094         System Sensor         SCR           4V402         40         23.53         0.473         1.97%         0.066         System Sensor         SCR           4V404         40         23.32         0.676         2.82%         0.210         System Sensor         SCR           4V404         40         23.32         0.676         2.82%         0.210         System Sensor         SCR           4V404         40         23.32         0.676         3.83%         0.188         System Sensor         SCR           4V406         45         23.20         0.799         3.33%         0.188         System Sensor         SCR           4V407         30         23.18         0.816         3.40%         0.000         Image: Sistem Sensor         SCR           END         0         23.18         0.816         3.40%         0.000         Image: Sistem Se	Device Type         Candela Rating           ST         30           ST         15           ST         30           ST         115           ST         95           ST         75           ST         30           ST         95           ST         75           ST         30           -         -           -         -           -         -           -         -	Distance from source to 1st device         37         14         3.07           Wire Gauge for balance of circuit         14         3.07           Device         Distance         Cruit         14         3.07           Number         from previous device         Voltage         Current in mercious         Device         Device         Device         Candela Rating           4V501         37         23.74         0.256         1.07%         0.210         System Sensor         SCR         ST         115           4V502         50         23.46         0.539         2.24%         0.158         System Sensor         SCR         ST         115           4V502         50         23.42         0.571         2.38%         0.066         System Sensor         SCR         ST         115           4V504         25         23.32         0.678         2.83%         0.210         System Sensor         SCR         ST         115           4V505         40         23.20         0.797         3.32%         0.094         System Sensor         SCR         ST         115           4V507         35         23.09         0.908         3.78%         0.000         Image         Imag
Current       Distance       Drop         0.897       235       0.82         End of Line Voltage       23.18         Percent Drop       3.40%         Standard Wire Resistance in Ohms per 1000 feet.         18=7.77       16=4.89         14=3.07       12=1.98         18=7.77       16=4.89         14=3.07       12=1.98         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         14=3.07       12=1.98         10=1.24       18=7.77         16=4.89       14=3.07         12=1.98       10=1.24         18=7.77       16=4.89         14=3.07       12=1.98         12=1.04 Mug = Stranded Conductors         Notes:       Wire resistance is doubled in the calculations for two wires (Positive and Negative)         The voltage calculated to the last device must not be lower than         the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Notifier RNPS, PS5- Circuit 3V3         Area Covered       3rd Floor West         Nominal System Voltage       20 <tr< td=""><td>), Device Candela</td><td>Current       Distance       Drop         1.129       224       0.91         End of Line Voltage       23.09         Percent Drop       3.78%         Standard Wire Resistance in Ohms per 1000 feet.         18=7.77       16=4.89         14=3.07       12=1.98         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         14=3.07       12=1.98         10=       Fire Alarm Voltage Drop Calculations         Frie Alarm Voltage Drop Calculations       14         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Not</td></tr<>	), Device Candela	Current       Distance       Drop         1.129       224       0.91         End of Line Voltage       23.09         Percent Drop       3.78%         Standard Wire Resistance in Ohms per 1000 feet.         18=7.77       16=4.89         14=3.07       12=1.98         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         18=7.77       16=4.89         14=3.07       12=1.98         10=       Fire Alarm Voltage Drop Calculations         Frie Alarm Voltage Drop Calculations       14         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Not
previous device         At Drop from Device         Percent Source         amps.         Device Model #           3V301         17         23.85         0.148         0.62%         0.094         System Sensor         SCR           3V302         65         23.32         0.676         2.82%         0.094         System Sensor         SCR           3V303         50         22.95         1.054         4.39%         0.158         System Sensor         SCR           3V304         20         22.81         1.186         4.94%         0.094         System Sensor         SCR           3V305         30         22.63         1.366         5.69%         0.158         System Sensor         SCR           3V306         30         22.48         1.517         6.32%         0.158         System Sensor         SCR           3V307         20         22.40         1.598         6.66%         0.158         System Sensor         SCR           3V308         30         22.13         1.691         7.05%         0.094         System Sensor         SCR           3V309         25         22.25         1.754         7.31%         0.0158         System Sensor         SCR	Type         Rating           ST         30           ST         30           ST         75           ST         30           ST         30           ST         30           ST         75           ST	previous device         At At         Drop from Device         Percent source         amps.         Device Model #         Type         Rating           3V401         40         23.63         0.366         1.53%         0.094         System Sensor         SCR         ST         30           3V402         12         23.53         0.469         1.96%         0.066         System Sensor         SCR         ST         15           3V403         12         23.43         0.568         2.36%         0.094         System Sensor         SCR         ST         15           3V404         40         23.12         0.879         3.66%         0.094         System Sensor         SCR         ST         30           3V404         40         23.12         0.879         3.66%         0.094         System Sensor         SCR         ST         30           3V405         20         22.98         1.022         4.26%         0.181         System Sensor         SCR         ST         30           3V407         50         22.55         1.450         6.04%         0.094         System Sensor         SCR         ST         115           3V408         15         22.48
18=7.77       16=4.89       14=3.07       12=1.98       10=1.24         18=14 Awg = Solid Conductors       12-10 Awg = Stranded Conductors         Notes:       Wire resistance is doubled in the calculations for two wires (Positive and Negative)         The voltage calculated to the last device must not be lower than         the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC         Project Name       Fire Alarm Voltage Drop Calculations         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Notifier FACP- Circuit 2V5         Area Covered       2nd Floor West         Nominal System Voltage       20         Total Circuit Current       1.808       Wire         Gauge       Per 1000         Distance from source to 1st device       60       14       3.07         Wire Gauge       Distance       Voltage       in	).	18=7.77       16=4.89       14=3.07       12=1.98       10=1.24         18=14 Awg = Solid Conductors       12-10 Awg = Stranded Conductors       Notes:         Wire resistance is doubled in the calculations for two wires (Positive and Negative)       The voltage calculated to the last device must not be lower than         The voltage calculated to the last device must not be lower than       the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC).         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Notifier FACP- Circuit 2V6         Area Covered       Znd Floor West         Nominal System Voltage       Z4         Minimum Device Voltage       Z0         Total Circuit Current       1.712       Wire Ohm's         Gauge       Per 1000         Distance from source to 1st device       40       14       3.07         Wire Gauge for balance of circuit       14       3.07       Device Candela
previous device         At Drop from Device         Percent Percent         amps.         Device Model #           2V501         60         23.33         0.666         2.78%         0.094         System Sensor         SCR           2V502         23         23.09         0.908         3.78%         0.066         System Sensor         SCR           2V503         25         22.84         1.161         4.84%         0.094         System Sensor         SCR           2V504         30         22.55         1.447         6.03%         0.210         System Sensor         SCR           2V505         13         22.45         1.547         6.45%         0.094         System Sensor         SCR           2V506         8         22.06         1.945         8.10%         0.210         System Sensor         SCR           2V507         68         22.01         1.994         8.31%         0.094         System Sensor         SCR           2V509         46         21.86         2.143         8.93%         0.210         System Sensor         SCR           2V510         48         21.74         2.256         9.40%         0.158         System Sensor         SCR	Type         Rating           ST         30           ST         15           ST         10           ST         115           ST         75           ST         75	previous device         At Dop from Device         Percent source         amps. Percent Drop         Device Model #         Type         Rating           2V601         40         23.58         0.420         1.75%         0.094         System Sensor         SCR         ST         30           2V602         30         23.28         0.719         2.99%         0.210         System Sensor         SCR         ST         115           2V603         30         23.02         0.978         4.07%         0.158         System Sensor         SCR         ST         115           2V604         25         22.83         1.170         4.87%         0.210         System Sensor         SCR         ST         115           2V606         20         22.52         1.477         6.16%         0.210         System Sensor         SCR         ST         115           2V606         20         22.52         1.477         6.16%         0.210         System Sensor         SCR         ST         115           2V607         60         22.25         1.749         7.29%         0.158         System Sensor         SCR         ST         115           2V608         40         21.11
Standard Wire Resistance in Ohms per 1000 feet.         18=7.77       16=4.89       14=3.07       12=1.98       10=1.24         18=14 Awg = Solid Conductors       12=10 Awg = Stranded Conductors       Notes:         Wire resistance is doubled in the calculations for two wires (Positive and Negative)         The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC)         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Notifier FACP- Circuit 1V1         Area Covered       Lit Floor West         Nominal System Voltage       20         Total Circuit Current       1.016         Wire Gauge for balance of circuit       14         3.07       Wire Gauge for balance of circuit         Voltage       in amps.         Device       Distance         Number       from previous         At       Drop from	). Device Candela Type Rating	Standard Wire Resistance in Ohms per 1000 feet.         18=7.77       16=4.89       14=3.07       12=1.98       10=1.24         18=14 Awg = Solid Conductors       12-10 Awg = Stranded Conductors       Notes:         Wire resistance is doubled in the calculations for two wires (Positive and Negative)       The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC).         Fire Alarm Voltage Drop Calculations         Project Name       Cal Poly Building 52: Computer Math and Science         Panel / Circuit #       Notfier FACP- Circuit 1V2         Area Covered       1st Floor West         Nominal System Voltage       20         Total Circuit Current       1.829       Wire         Obistance from source to 1st device       40       14       3.07         Wire Gauge for balance of circuit       14       3.07       Urent       in amps.         Device       Distance       Voltage       Current       in amps.       Device Model #       Device Candela Rating
device         At         Drop from         Percent           Device         source         Drop         Drop           1V101         30         23.81         0.187         0.78%         0.066         System Sensor         SCR           1V102         20         23.70         0.304         1.27%         0.066         System Sensor         SCR           1V103         30         23.53         0.467         1.94%         0.066         System Sensor         SCR           1V104         50         23.28         0.718         2.99%         0.066         System Sensor         SCR           1V105         50         23.05         0.949         3.95%         0.210         System Sensor         SCR           1V106         35         22.93         1.065         4.44%         0.094         System Sensor         SCR           1V107         30         22.85         1.148         4.78%         0.158         System Sensor         SCR           1V108         35         22.79         1.210         5.04%         0.066         System Sensor         SCR           1V109         40         22.70         1.299         5.41%         0.000	ST       15         ST       75         ST       75         ST       75         ST       75         ST       75	device         At         Drop from         Percent         Drop         Drop           1V201         40         23.55         0.449         1.87%         0.094         System Sensor         SCR         ST         30           1V202         45         23.07         0.929         3.87%         0.158         System Sensor         SCR         ST         75           1V203         15         22.93         1.074         4.47%         0.210         System Sensor         SCR         ST         115           1V204         15         22.68         1.317         5.49%         0.158         System Sensor         SCR         ST         30           1V205         15         22.68         1.317         5.49%         0.188         System Sensor         SCR         ST         95           1V206         10         22.35         1.649         6.87%         0.210         System Sensor         SCR         ST         115           1V208         10         22.31         1.694         7.06%         0.094         System Sensor         SCR         ST         115           1V209         10         22.17         1.322         7.67%         0.210         Syst
Percent Drop         5.41%           Standard Wire Resistance in Ohms per 1000 feet.         18=7.77           18=7.77         16=4.89         14=3.07         12=1.98         10=1.24           18=14 Awg = Solid Conductors         12=1.0 Awg = Stranded Conductors         Notes:           Wire resistance is doubled in the calculations for two wires (Positive and Negative)         The voltage calculated to the last device must not be lower than           the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC         VDC		Standard Wire Resistance in Ohms per 1000 feet.         18=7.77       16=4.89       14=3.07       12=1.98       10=1.24         18-14 Awg = Solid Conductors       12-10 Awg = Stranded Conductors         Notes:       Wire resistance is doubled in the calculations for two wires (Positive and Negative)         The voltage calculated to the last device must not be lower than         the manufactures listed minimum operating voltage (IE: rated operating voltage 20-32 VDC).


	20			2.13%	0.094	System Sensor	SCR	ST	30
	25	23.49 23.34	0.511	2.74%	1		SCR	ST	
			0.657		0.158	System Sensor			75
	46	23.12	0.879	3.66%	0.210	System Sensor	SCR	ST	115
	41	22.98	1.025	4.27%	0.210	System Sensor	SCR	ST	115
	120	22.70	1.296	5.40%	0.210	System Sensor	SCR	ST	115
	53	22.65	1.347	5.61%	0.158	System Sensor	SCR	ST	75
		22.65	1.347	5.61%	0.000				1
		22.65	1,347	5.61%	0.000				
		22.65	1.347	5.61%	0.000				
		22.65	1.347	5.61%	0.000	1			
		22.65	1.347	5.61%	0.000				
-		22.65	1.347	5.61%	0.000				1
_	355	End of Lin	e Voltage	22.65	1.250				
				to Point M					
		(	CIRCUIT	IS WITH	N LIMITS	S			
ot	als				Voltage				
t	Distance				Drop				
-	355				1.35				
ir	e Voltage				22.65				
	t Drop				5.61%				
	, bioh	L	Standard	Viro Post-		hmc nor 1000 f		I	
						hms per 1000 fee	ι,		
77		14=3.07		10=1.24					
vg	= Solid Co	nauctors	12-10 A	wg = Stran	uea Condi	JUTORS			
			ast device r num operat			an I operating voltag	ge 20-32 VI	DC).	
			E:	Alarm V-	ltage Dray	Calculations		1	
	mo						~~		
	ime	Notifier P				er Math and Scien	.e		
	rcuit #		NPS, PS2- (	JICUIT 3V I					
	red	3rd Floor I	zast 🛛					1	
			0.4						
	ystem Vol		24						
n	Device Vo	Itage	24 20	115	<u>.</u>				
n				Wire	Ohm's				
ກ ແ	Device Vo it Current	ltage 1.920	20	Gauge	Per 1000				
n cu fri	Device Vo Jit Current	ltage 1.920 p 1st device	20 48	Gauge 14	Per 1000 3.07				
n cu fri	Device Vo lit Current om source to ge for balar	ltage 1.920 p 1st device	20 48	Gauge	Per 1000 3.07 3.07	P			
n cu fri	Device Vo Jit Current	ltage 1.920 p 1st device	20 48 Jit	Gauge 14	Per 1000 3.07				
n cu fri	Device Vo lit Current om source to ge for balar	ltage 1.920 p 1st device	20 48	Gauge 14	Per 1000 3.07 3.07			Device	Condel
n ci fri	Device Vo uit Current om source to ge for balar Distance	ltage 1.920 p 1st device	20 48 Jit	Gauge 14	Per 1000 3.07 3.07 Current in	Device M	odel #	Device	
n ci fri	Device Vo uit Current om source to te for balar Distance from previous	Itage 1.920 p 1st device nce of circu	20 48 Jit Voltage	Gauge 14 14	Per 1000 3.07 3.07 Current	Device M	odel #	Device Type	
n ci fri	Device Vo lit Current om source to ge for balar Distance from	Itage 1.920 o 1st device nce of circu At	20 48 Jit Voltage Drop from	Gauge 14 14 Percent	Per 1000 3.07 3.07 Current in	Device M	odel #		
n ci fri	Device Vo nit Current on source to te for balar Distance from previous device	Itage 1.920 o 1st device nce of circu At Device	20 48 Jit Voltage Drop from source	Gauge 14 14 Percent Drop	Per 1000 3.07 3.07 Current in amps.			Туре	Rating
n ci fri	Device Vo ait Current on source to ge for balar Distance from previous device 48	Itage 1.920 o 1st device nce of circu At Device 23.43	48 Jit Voltage Drop from source 0.566	Gauge 14 14 Percent Drop 2.36%	Per 1000 3.07 3.07 Current in amps. 0.158	System Sensor	SCR	Туре ST	Rating
n ci fri	Device Vo bit Current om source to ge for balar Distance from previous device 48 8	Itage 1.920 o 1st device nce of circu At Device 23.43 23.35	48 Jit Voltage Drop from source 0.566 0.652	Gauge 14 14 Percent Drop 2.36% 2.72%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094	System Sensor System Sensor	SCR SCR	Type ST ST	Rating 75 30
n ci fri	Device Vo iit Current om source to te for balar Distance from previous device 48 8 38	Itage 1.920 b 1st device core of circu At Device 23.43 23.35 22.96	48 uit Voltage Drop from source 0.566 0.652 1.042	Gauge 14 14 Percent Drop 2.36% 2.72% 4.34%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158	System Sensor System Sensor System Sensor	SCR SCR SCR	Type ST ST ST ST	Rating 75 30 75
n ci fri	Device Vo bit Current om source to ge for balar Distance from previous device 48 8	ltage 1.920 o 1st device nce of circu At Device 23.43 23.35 22.96 22.88	48 Jit Voltage Drop from source 0.566 0.652	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094	System Sensor System Sensor	SCR SCR	Type ST ST ST ST ST	Rating 75 30
n ci fri	Device Vo iit Current om source to te for balar Distance from previous device 48 8 38	Itage 1.920 b 1st device core of circu At Device 23.43 23.35 22.96	48 uit Voltage Drop from source 0.566 0.652 1.042	Gauge 14 14 Percent Drop 2.36% 2.72% 4.34%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158	System Sensor System Sensor System Sensor	SCR SCR SCR	Type ST ST ST ST	Rating 75 30 75
n ci fri	Device Vo iit Current om source te ge for balar Distance from previous device 48 8 38 8 8	ltage 1.920 o 1st device nce of circu At Device 23.43 23.35 22.96 22.88	20 48 voltage Drop from source 0.566 0.652 1.042 1.116	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094	System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR	Type ST ST ST ST ST	Rating 75 30 75 30
n ci fri	Device Vo iit Current on source to te for balar Distance from previous device 48 8 38 8 38 25	ltage 1.920 o 1st device nce of circu At Device 23.43 23.35 22.96 22.88 22.67	20 48 iit Voltage Drop from source 0.652 1.042 1.116 1.333 1.642	Gauge 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR	Type ST ST ST ST ST ST	Rating 75 30 75 30 75
n ci fri	Device Vo iit Current or source to the for balar Distance from previous device 48 8 38 8 8 8 25 40 11	1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.9200 1.9200 1.9200 1.9200 1.9200 1.9200 1.9200 1.9200 1	20 48 Jit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716	Gauge 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR	Type           ST	Rating 75 30 75 30 75 75 30
n ci fri	Device Vo iit Current or source to the for balar Distance from previous device 48 8 38 8 38 8 25 40 11 15	tage 1.920 b 1st device the of circl At Device 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.19	20 48 Jit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809	Gauge 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 5.55% 6.84% 7.15% 7.54%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.058 0.158 0.158 0.158 0.158	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST	Rating 75 30 75 30 75 75 30 135
n ci fri	Device Vo iit Current om source te fe for balar Distance from previous device 48 8 8 8 8 8 8 8 25 40 11 15 65	Itage 1.920 b 1st device ce of circu At Device 23.43 22.96 22.88 22.67 22.36 22.28 22.19 21.88	20 48 48 Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120	Gauge 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.15% 8.83%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST	Rating 75 30 75 30 75 75 30 135 135
n ci fri	Device Vo iit Current om source to te for balar Distance from previous device 48 8 8 8 8 25 40 11 15 65 33	tage 1.920 1.51 device 1.51 device 1.51 device 2.43 2.343 2.96 2.2.88 22.67 22.36 22.28 22.19 21.88 21.77	20 48 iit Voltage 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.54% 8.83% 9.30%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135
n ci fri	Device Vo iit Current orn source to the for balar Distance from previous device 48 8 8 8 8 8 8 25 40 11 11 15 65 33 30	tage 1.920 1.51 device acc of circu At Device 23.43 23.35 22.96 22.88 22.67 22.36 22.28 22.19 21.88 21.77 21.71	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 5.55% 6.84% 7.55% 6.84% 7.55% 8.83% 8.83% 9.30% 9.54%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
n ci fri	Device Vo iit Current om source to te for balar Distance from previous device 48 8 8 8 8 25 40 11 15 65 33	tage 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.920 1.9200 1.9200 1.9200 1.9200 1.9200 1.9200 1.9200 1.9200 1.	20 48 Jit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336	Gauge 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 7.54% 8.83% 9.30% 9.54% 9.54%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228 0.094 0.228	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135
n ci fri	Device Vo iit Current on source te fe for balan Distance from previous device 48 8 8 8 8 25 40 40 11 15 65 33 30 30	tage 1.920 b 1st device co of circu At Device 23.43 22.96 22.88 22.67 22.28 22.28 22.19 21.88 21.77 21.71 21.66	20 48 48 bit Voltage Drop from source 0.6652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.230 2.336 2.336	Gauge 14 14 14 Percent Drop 2.35% 4.34% 4.65% 5.5% 6.84% 7.15% 7.54% 8.83% 9.30% 9.54% 9.74%	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.028 0.094 0.228 0.094 0.228 0.094	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
n ci fri	Device Vo iit Current orn source to the for balar Distance from previous device 48 8 8 8 8 8 8 25 40 11 11 15 65 33 30	tage 1.920 b 1st device co of circu At Device 23.43 22.96 22.88 22.67 22.28 22.28 22.19 21.88 21.77 21.71 21.66	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.30% 9.374% 9.74% 21.66	Per 1000 3.07 3.07 Current jn amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228 0.228 0.228 0.024	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	30 75 30 75 30 135 135 135 30
n ci fri	Device Vo iit Current on source te fe for balan Distance from previous device 48 8 8 8 8 25 40 40 11 15 65 33 30 30	tage 1.920 b 1st device co of circu At Device 23.43 22.96 22.88 22.67 22.28 22.28 22.19 21.88 21.77 21.71 21.66	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.35% 4.34% 4.65% 5.5% 6.84% 7.15% 7.54% 8.83% 9.30% 9.54% 9.74%	Per 1000 3.07 3.07 Current jn amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228 0.228 0.228 0.024	System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
n ci fri	Device Vo iit Current on source te fe for balan Distance from previous device 48 8 8 8 8 25 40 40 11 15 65 33 30 30	1.920 1.920 1.51 device 1.51 device 1.51 device 2.43 2.343 2.96 2.2.96 22.88 22.67 22.36 22.88 22.67 22.36 22.88 22.97 21.66 21.66 21.66 End of Line	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.333 1.642 1.716 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.7	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.220 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 00	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
m ccu frr ug	Device Vo iit Current om source to te for balar Distance from previous device 48 8 8 8 8 25 40 11 15 65 33 30 33 30 33 30 33 30	1.920 1.920 1.51 device 1.51 device 1.51 device 2.43 2.343 2.96 2.2.96 22.88 22.67 22.36 22.88 22.67 22.36 22.88 22.97 21.66 21.66 21.66 End of Line	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.809 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.7	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.944 0.945 0.944 0.945 0.944 0.945 0.944 0.945 0.944 0.945 0.944 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
m ccu frr ug	Device Vo iit Current orn source to the for balar Distance from previous device 48 8 8 8 8 8 25 40 111 15 65 33 30 33 30 33 354	1.920 1.920 1.51 device 1.51 device 1.51 device 2.43 2.343 2.96 2.2.96 22.88 22.67 22.36 22.88 22.67 22.36 22.88 22.97 21.66 21.66 21.66 End of Line	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.333 1.642 1.716 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.7	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.094 0.228 0.094 0.228 0.094 0.094 0.094 0.094 0.028 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
m ccu frr ug	Device Vo iit Current on source te fe for balan Distance from previous device 48 8 8 8 8 25 40 40 11 15 65 33 30 00 33 33 	1.920 1.920 1.51 device 1.51 device 1.51 device 2.43 2.343 2.96 2.2.96 22.88 22.67 22.36 22.88 22.67 22.36 22.88 22.97 21.66 21.66 21.66 End of Line	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.333 1.642 1.716 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.7	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.094 0.228 0.094 0.094 0.228 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
m ccu	Device Vo iit Current om source te fe for balar Distance from previous device 48 8 8 8 8 8 25 40 11 15 65 33 30 33 30 33 30 33 40 25 40 25 40 25 40 25 40 25 40 25 40 25 40 25 33 30 33 35 4 25 4 25 4 25 4 25 25 4 25 25 25 25 25 25 25 25 25 25 25 25 25	1.920 1.920 1.51 device 1.51 device 1.51 device 2.43 2.343 2.96 2.2.96 22.88 22.67 22.36 22.88 22.67 22.36 22.88 22.97 21.66 21.66 21.66 End of Line	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.333 1.642 1.716 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.7	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.228 0.028 0.228 0.028 0.228 0.028 0.228 0.0294 0.228 0.020 1.920 ethod N LIMITS Voltage Drop 2.34	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
m ccu	Device Vo iit Current on source te fe for balan Distance from previous device 48 8 8 8 8 25 40 40 11 15 65 33 30 00 33 33 	1.920 1.920 1.51 device 1.51 device 1.51 device 2.43 2.343 2.96 2.2.96 22.88 22.67 22.36 22.88 22.67 22.36 22.88 22.97 21.66 21.66 21.66 End of Line	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.333 1.642 1.716 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.7	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.234 0.234 0.248 0.094 0.234 0.248 0.094 0.248 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.094 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.2588 0.2588 0.2588 0.2588 0.2588 0.2588 0.2	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30
m cu	Device Vo iit Current om source te fe for balar Distance from previous device 48 8 8 8 8 8 25 40 11 15 65 33 30 33 30 33 30 33 40 25 40 25 40 25 40 25 40 25 40 25 40 25 40 25 33 30 33 35 4 25 4 25 4 25 4 25 25 4 25 25 25 25 25 25 25 25 25 25 25 25 25	1.920 1.920 1.51 device 1.51 device 1.51 device 2.43 2.343 2.96 2.2.96 22.88 22.67 22.36 22.88 22.67 22.36 22.88 22.97 21.66 21.66 21.66 End of Line	20 48 iit Voltage Drop from source 0.566 0.652 1.042 1.116 1.333 1.642 1.716 1.333 1.642 1.716 2.120 2.231 2.290 2.336 2.336 2.336 2.336 2.336 2.336	Gauge 14 14 14 Percent Drop 2.36% 2.72% 4.34% 4.65% 5.55% 6.84% 7.15% 8.83% 9.30% 9.30% 9.54% 9.30% 9.74% 9.74% 9.74% 9.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.74% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.7	Per 1000 3.07 3.07 Current in amps. 0.158 0.094 0.158 0.094 0.158 0.094 0.158 0.094 0.228 0.094 0.228 0.028 0.228 0.028 0.228 0.028 0.228 0.0294 0.228 0.020 1.920 ethod N LIMITS Voltage Drop 2.34	System Sensor System Sensor	SCR SCR SCR SCR SCR SCR SCR SCR SCRH SCRH	Type           ST           ST	Rating 75 30 75 30 75 75 30 135 135 135 30

	device	At	Drop from	Percent				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Device	source	Drop					
4V201	60	23.73	0.266	1.11%	0.066	System Sensor	SCR	ST	15
4V 202	15	23.67	0.326	1.36%	0.158	System Sensor	SCR	ST	75
4V203	15	23.63	0.372	1.55%	0.094	System Sensor	SCR	ST	30
4V 204	25	23.57	0.434	1.81%	0.202	System Sensor	SCR	ST	110
4V 205	70	23.48	0.521	2.17%	0.202	System Sensor	SCR	ST	110
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
END		23.48	0.521	2.17%	0.000				
Totals	185	End of Lin		23.48	0.722				
				o Point M	ethod				
			RCUITI	S WITHI		3			
Tot	alc				Voltage				
Current	Distance				Drop				
0.722	185				0.52				
	and an owner the second s				23.48				
	e Voltage								
Percer	it Drop	L	<u></u>		2:17%	,			
					ance in Ol	nms per 1000 feet			
18=7.77	16=4.89	14=3.07	12=1.98	10=1.24					
	= Solid Co	nductors	12-10 A	vg = Strand	ded Condu	ictors			
Notes:									
Wire resis	tance is do	publed in t	he calculati	ons for tw	o wires (P	ositive and Negat	ive)		
The voltage	ge calculate	ed to the la	ast device r	nust not be	e lower th	an			
the manul	factures lis	ted minim	um operati	ing voltage	e (IE: rated	operating voltag	e 20-32 VD	C).	
			Fire	Alarm Vo	ltage Dro	o Calculations			
Project Na	ame		Cal Poly E	3uilding 52	: Compute	er Math and Scien	ce		
Project Na Panel / Cir		Notifier R	Cal Poly E NPS, PS2-			er Math and Scien	ce		
	rcuit #	Notifier R 3rd Floor I	NPS, PS2-			er Math and Scien	ce		
Panel / Cir Area Cove	rcuit #	3rd Floor I	NPS, PS2-			er Math and Scien	ce		
Panel / Cii Area Cove Nominal S	rcuit # red	3rd Floor I tage Itage	NPS, PS2- East			er Math and Scien	ce		
Panel / Cir Area Cove Nominal S Minimum	rcuit # red system Vol	3rd Floor I tage Itage	NPS, PS2- East 24			er Math and Scien	ce		
Panel / Cir Area Cove Nominal S Minimum	rcuit # red system Vol Device Vo	3rd Floor I tage Itage	NPS, PS2- East 24	Circuit 3V2	2	er Math and Scien	ce		
Panel / Ciu Area Cove Nominal S Minimum Total Circu	rcuit # red system Vol Device Vo	3rd Floor I tage Itage 1.212	NPS, PS2- East 24 20	Circuit 3V2 Wire	Ohm's Per 1000 3.07	er Math and Scien	ce		
Panel / Cir Area Cove Nominal S Minimum Total Circu Distance fro	rcuit # red ystem Vol Device Vo uit Current	3rd Floor I tage Itage 1.212 o 1st device	NPS, PS2- East 24 20 80	Circuit 3V2 Wire Gauge	Ohm's Per 1000	er Math and Scien	ce		
Panel / Cir Area Cove Nominal S Minimum Total Circu Distance fro	rcuit # red system Vol Device Vo uit Current om source t	3rd Floor I tage Itage 1.212 o 1st device	NPS, PS2- East 24 20 80 iit	Circuit 3V2 Wire Gauge 14	Ohm's Per 1000 3.07	er Math and Scien	<u></u>		
Panel / Cir Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug	rcuit # ired iystem Vol Device Vo uit Current om source t ge for balar	3rd Floor I tage Itage 1.212 o 1st device	NPS, PS2- East 24 20 80	Circuit 3V2 Wire Gauge 14	Ohm's Per 1000 3.07 3.07	er Math and Scien	<u>ce</u>		
Panel / Cir Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device	rcuit # rred Device Vo uit Current om source t ge for balar Distance from	3rd Floor I tage Itage 1.212 o 1st device	NPS, PS2- East 24 20 80 iit	Circuit 3V2 Wire Gauge 14	Ohm's Per 1000 3.07 3.07 Current in	Pr Math and Scien		Device	
Panel / Cir Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device	rcuit # rred Device Vo Jit Current om source t ge for balar Distance from previous	3rd Floor   tage ltage 1.212 o 1st device nce of circu	NPS, PS2- East 24 20 80 Jit Voltage	Wire Gauge 14 14	Ohm's Per 1000 3.07 3.07 Current			Device Type	
Panel / Cir Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device	rcuit # rred Device Vo uit Current om source t ge for balar Distance from	3rd Floor 1 tage 1tage 0 1st device nce of circu At	NPS, PS2- East 24 20 80 Jit Voltage Drop from	Vire Gauge 14 14 Percent	Ohm's Per 1000 3.07 3.07 Current in			1	
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fri Wire Gaug Device Number	rcuit # red bystem Vol Device Vo uit Current om source t te for balar Distance from previous device	3rd Floor I tage Itage 1.212 o 1st device nce of circu At Device	NPS, PS2- East 24 20 iit Voltage Drop from source	Wire Gauge 14 14 Percent Drop	Ohm's Per 1000 3.07 3.07 Current in amps.	Device M	iodel #	Туре	Ratir
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201	rcuit # red vystem Vol Device Vo jit Current om source t te for balan Distance from previous device 80	3rd Floor 1 tage Itage 1.212 o 1st device nce of circu At Device 23.40	NPS, PS2- East 24 20 80 Jit Voltage Drop from source 0.595	Wire Gauge 14 14 Percent Drop 2.48%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094	Device M System Sensor	lodel #	Type ST	Ratir 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fin Wire Gaug Device Number 3V201 3V201	rcuit # red ystem Vol Device Vo iit Current om source t e for balar Distance from previous device 80 10	3rd Floor   tage ltage 1.212 o 1st device nce of circu At Device 23.40 23.34	NPS, PS2-           East           24           20           80           iit           Voltage           Drop from source           0.595           0.664	Wire Gauge 14 14 Percent Drop 2.48% 2.77%	Ohm's Per 1000 3.07 Current in amps. 0.094 0.228	Device M System Sensor System Sensor	odel # SCR SCRH	Type ST ST	Ratir 30 135
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 3V201 3V201 3V202 3V203	rcuit # red ystem Vol Device Vo iit Current om source t te for balar Distance from previous device 80 10 40	3rd Floor 1 tage ltage 1.212 o 1st device of circu At Device 23.40 23.34 23.12	NPS, PS2-           East           24           20           80           lit           Voltage           Drop from           source           0.595           0.664           0.883	Circuit 3V2 Wire Gauge 14 14 14 Percent Drop 2.48% 2.77% 3.68%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158	Device M System Sensor System Sensor System Sensor	odel # SCR SCRH SCR	Type ST ST ST ST	Ratir 30 135 75
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 3V201 3V201 3V202 3V203 3V204	rcuit # red ystem Vol Device Vo iit Current om source t ge for balar Distance from previous device 80 10 40 50	3rd Floor 1 tage 1tage 1.212 o 1st device orce of circu At Device 23.40 23.34 23.12 22.89	NPS, PS2- East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107	Circuit 3V2 Wire Gauge 14 14 14 2.48% 2.48% 3.68% 4.61%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094	Device M System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR	Type ST ST ST ST ST	Ratir 30 135 75 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 3V201 3V201 3V202 3V203 3V204 3V205	rcuit # red ystem Vol Device Vo iit Current om source t ge for balar Distance from previous device 80 10 40 50 32	3rd Floor I tage Itage 1.212 o 1st device occ of circu At Device 23.40 23.42 23.12 22.89 22.77	NPS, PS2- East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233	Circuit 3V2 Wire Gauge 14 14 14 14 2.47% 2.77% 3.68% 4.61% 5.14%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.094	Device M System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR	Type ST ST ST ST ST ST	Ratir 30 135 75 30 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V205 3V206	rcuit # red vystem Vol Device Vo uit Current te for balar Distance from previous device 80 10 40 50 32 65	3rd Floor 1 tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.34 23.34 22.89 22.77 22.55	NPS, PS2- East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450	Circuit 3V2 Wire Gauge 14 14 14 14 14 2.48% 2.77% 3.68% 4.61% 5.14% 6.04%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.094 0.094 0.158	Device M System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR	Type ST ST ST ST ST ST ST	Ratir 30 135 75 30 30 30 75
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V203 3V205 3V205 3V205	rcuit # red iystem Vol Device Vo iit Current bistance from previous device 80 10 40 50 32 65 8	3rd Floor I tage 11.212 o 1st device o 1st device of circu 23.40 23.34 23.12 22.89 22.77 22.55 22.53	NPS, PS2- East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469	Vire Gauge 14 14 14 14 2.77% 3.68% 4.61% 5.14% 6.04% 6.12%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.094 0.158 0.066	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR	Type ST ST ST ST ST ST ST ST	Ratir 30 135 75 30 30 75 15
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 3V201 3V201 3V202 3V203 3V204 3V206 3V206 3V207 3V208	rcuit # red vystem Vol Device Vo bit Current om source t ge for balar Distance from previous device 80 10 40 50 32 65 8 8 20	3rd Floor I tage Itage 1.212 o 1st device occ of circu 23.40 23.34 23.12 22.89 22.77 22.53 22.53 22.49	NPS, PS2- East 24 20 80 iit Voltage 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508	Circuit 3V2 Wire Gauge 14 14 14 14 14 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.28%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.158 0.066 0.066	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST	Ratir 30 135 75 30 30 75 15 15
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V203 3V205 3V205 3V205	rcuit # red iystem Vol Device Vo iit Current bistance from previous device 80 10 40 50 32 65 8	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.55 22.49 22.43	NPS, PS2- East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469	Circuit 3V2 Wire Gauge 14 14 14 14 Percent Drop 2.48% 4.61% 5.14% 6.04% 6.12% 6.28% 6.28%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.094 0.158 0.066	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR	Type ST ST ST ST ST ST ST ST	Ratir 30 135 75 30 30 75 15
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V205 3V206 3V206 3V207 3V208 3V209 3V210	rcuit # red vystem Vol Device Vo ait Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75	3rd Floor 1 tage 1.212 o 1st device occ of circu At Device 23.40 23.40 23.12 22.89 22.77 22.55 22.53 22.43 22.43	NPS, PS2- East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657	Circuit 3V2 Wire Gauge 14 14 14 14 14 14 9 Percent Drop 2.48% 2.77% 3.68% 4.61% 6.14% 6.12% 6.24% 6.54% 6.54%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.158 0.094 0.158 0.066 0.066 0.066 0.094	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratir 30 135 75 30 30 75 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V204 3V205 3V206 3V207 3V208 3V209	rcuit # red ystem Vol Device Vo iti Current om source t ge for balar Distance from previous device 	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.55 22.49 22.43	NPS, PS2- East 24 20 80 iit Voltage 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.508 1.570	Circuit 3V2 Wire Gauge 14 14 14 14 14 9 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.28% 6.54% 6.90% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.158 0.094 0.158 0.066 0.066	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST	Ratir 30 135 75 30 30 75 15 15 15 15
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V205 3V206 3V206 3V207 3V208 3V209 3V210	rcuit # red vystem Vol Device Vo ait Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.40 23.12 22.89 22.77 22.55 22.53 22.43 22.43	NPS, PS2- East 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657	Circuit 3V2 Wire Gauge 14 14 14 14 14 14 9 Percent Drop 2.48% 2.77% 3.68% 4.61% 6.14% 6.12% 6.24% 6.54% 6.54%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.158 0.094 0.158 0.066 0.066 0.066 0.094	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratir 30 135 75 30 30 75 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance frr Wire Gaug Device Number 3V201 3V202 3V202 3V203 3V204 3V205 3V206 3V207 3V206 3V207 3V208 3V209 3V210	rcuit # red vystem Vol Device Vo ait Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75	3rd Floor I tage 1.212 o 1st device o 1st device of circu 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.49 22.49 22.34 22.31	NPS, PS2- East 24 20 80 wit Voltage Drop from source 0.595 0.664 0.883 1.07 1.233 1.450 1.469 1.508 1.577 1.694	Circuit 3V2 Wire Gauge 14 14 14 14 14 9 Percent Drop 2.48% 2.77% 3.68% 4.61% 5.14% 6.04% 6.12% 6.28% 6.54% 6.90% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.158 0.094 0.158 0.066 0.066 0.066 0.094	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratin 30 135 75 30 30 75 15 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 3V201 3V202 3V203 3V203 3V203 3V205 3V205 3V205 3V205 3V206 3V207 3V208 3V207 3V208	rcuit # red vystem Vol Device Vo ait Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75	3rd Floor I tage Itage 1.212 o 1st device occ of circu 23.40 23.34 23.12 22.89 22.77 22.53 22.49 22.43 22.34 22.34 22.31 22.31	NPS, PS2- East 24 20 80 10 10 10 10 10 10 10 10 10 1	Wire           Gauge           14           14           14           2.77%           3.68%           4.61%           5.14%           6.04%           6.28%           6.54%           6.90%           7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.094 0.158 0.066 0.066 0.066 0.066 0.094 0.094	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratin 30 135 75 30 30 75 15 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V205 3V206 3V206 3V207 3V208 3V209 3V210 END END	rcuit # red ivstem Vol Device Vo jit Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75 65	3rd Floor I tage Itage 1.212 o 1st device occ of circu 23.40 23.34 23.12 22.89 22.77 22.53 22.49 22.43 22.34 22.34 22.31 22.31	NPS, PS2- iast 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657 1.694 1.694 1.694 e Voltage	Circuit 3V2 Wire Gauge 14 14 14 14 2.48% 4.61% 5.14% 6.04% 6.04% 6.12% 6.28% 6.54% 6.54% 6.54% 7.06% 7.06%	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.094 0.158 0.066 0.066 0.066 0.066 0.066 0.066 0.094 0.094	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratin 30 135 75 30 30 75 15 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fr Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V205 3V206 3V206 3V207 3V208 3V209 3V210 END END	rcuit # red ivstem Vol Device Vo jit Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75 65	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	NPS, PS2- iast 24 20 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657 1.694 1.694 1.694 1.694 9 Voltage Point	Vire Gauge 14 14 14 14 14 14 14 14 14 14 14 14 14	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.094 0.094 0.056 0.066 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.094 0.094 0.000 1.212 ethod	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratin 30 135 75 30 30 75 15 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fin Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V204 3V205 3V206 3V207 3V206 3V207 3V206 3V207 3V209 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V20 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V	rcuit # red iystem Vol Device Vo bit Current ter for balar Distance from previous device 80 10 40 50 40 50 65 8 20 40 75 65 65	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	NPS, PS2- iast 24 20 80 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657 1.694 1.694 1.694 e Voltage	Vire Gauge 14 14 14 14 14 14 14 14 14 14 14 14 14	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.094 0.094 0.094 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.0694 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.000	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratir 30 135 75 30 30 75 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fir Wire Gaug Device Number 3V201 3V202 3V202 3V203 3V204 3V205 3V206 3V207 3V206 3V207 3V206 3V207 3V208 3V207 3V208 3V201 3V201 3V201 Totals	rcuit # red ivystem Vol Device Vo uit Current be for balar Distance from previous device 80 10 40 50 65 8 20 40 55 65 65 65 485 20 40 75 65	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	NPS, PS2- iast 24 20 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657 1.694 1.694 1.694 1.694 9 Voltage Point	Vire Gauge 14 14 14 14 14 14 14 14 14 14 14 14 14	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.228 0.158 0.094 0.094 0.094 0.094 0.066 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.094 0.009 1.212 ethod N LIMITS Voltage	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratir 30 135 75 30 30 75 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circc Distance fr Wire Gaug Device Number 3V201 3V202 3V203 3V203 3V204 3V203 3V205 3V205 3V205 3V205 3V205 3V205 3V205 3V205 3V205 3V205 3V205 3V207 3V205 3V205 3V205 3V205 3V205 3V201 Totals Tot Current	rcuit # red vystem Vol Device Vo bit Current om source t e for balar Distance from previous device 80 10 40 50 32 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	NPS, PS2- iast 24 20 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657 1.694 1.694 1.694 1.694 9 Voltage Point	Vire Gauge 14 14 14 14 14 14 14 14 14 14 14 14 14	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.228 0.158 0.094 0.094 0.094 0.094 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.1212 ethod N LIMITS Voltage Drop	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratir 30 135 75 30 30 75 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fin Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V205 3V206 3V205 3V206 3V205 3V206 3V205 3V206 3V207 3V210 3V210 3V210 3V210 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V20 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V	rcuit # red vystem Vol Device Vo uit Current om source te for balan Distance from previous device 80 10 40 50 32 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 20 485	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	NPS, PS2- iast 24 20 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657 1.694 1.694 1.694 1.694 9 Voltage Point	Vire Gauge 14 14 14 14 14 14 14 14 14 14 14 14 14	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.094 0.228 0.094 0.228 0.094 0.158 0.094 0.158 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.094 0.094 0.094 0.1212 ethod N LIMITS Voltage Drop 1.69	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	Ratin 30 135 75 30 30 75 15 15 15 15 30
Panel / Cii Area Cove Nominal S Minimum Total Circu Distance fin Wire Gaug Device Number 3V201 3V202 3V203 3V204 3V205 3V206 3V205 3V206 3V205 3V206 3V205 3V206 3V207 3V210 3V210 3V210 3V210 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V20 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V201 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V200 3V	rcuit # red vystem Vol Device Vo uit Current Distance from previous device 80 10 40 50 32 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 75 65 8 20 40 20 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	3rd Floor I tage 1.212 o 1st device occ of circu At Device 23.40 23.34 23.12 22.89 22.77 22.55 22.53 22.43 22.43 22.43 22.31 22.31 22.31 22.31 End of Lin	NPS, PS2- iast 24 20 iit Voltage Drop from source 0.595 0.664 0.883 1.107 1.233 1.450 1.469 1.570 1.657 1.694 1.694 1.694 1.694 9 Voltage Point	Vire Gauge 14 14 14 14 14 14 14 14 14 14 14 14 14	Ohm's Per 1000 3.07 3.07 Current in amps. 0.094 0.228 0.158 0.094 0.228 0.158 0.094 0.094 0.094 0.094 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.094 0.094 0.1212 ethod N LIMITS Voltage Drop	Device M System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor System Sensor	odel # SCR SCRH SCR SCR SCR SCR SCR SCR SCR SCR SCR SCR	Type           ST           ST	135 75 30 30 75 15 15 15 30


CIND		23.40	0.599	2.50%	0.000			
END		23.40	0.599	2.50%	0.000			
END		23.40	0.599	2.50%	0.000			
END		23.40	0.599	2.50%	0.000			
END		23.40	0.599	2.50%	0.000			
Totals	219	End of Lin	e Voltage	23.40	0.776			
			Point	to Point M	ethod			
		C	IRCUIT	IS WITHI	N LIMITS	;		7
To	tals				Voltage			-
Current	Distance				Drop			
0.776	219				0.60			-
End of Lir	ne Voltage				23.40			
Percer	nt Drop				2.50%			
			Standard \	Nire Resist	ance in Of	ms per 1000 feet		
18=7.77	16=4.89	14=3.07	12=1.98	10=1.24				
18-14 Awg	g = Solid Co	onductors	12-10 A	wg = Stran	ded Condu	ctors		
Notes:						**************************************		
Wire resis	tance is do	oubled in t	he calculat	ions for tw	o wires (P	ositive and Negat	ive)	
		ed to the la						
	-					operating voltage	e 20-32 VD	C).
*******		dan barken i den son den er som da so						
			Fir	e Alarm Vo	ltage Droi	o Calculations		
Project Na	me					er Math and Scien	ce	
Panel / Ci	rcuit #	Notifier <b>R</b>	NPS, PS3-	Circuit 4V3	3			
Area Cove	red	4th Floor I	East					
Nominal S	System Vol	tage	24	,				
	Device Vo		20	3				
Total Circu	uit Current	0.878		Wire	Ohm's			
				Gauge	Per 1000			
		o 1st device		14	3.07			
		nce of circu	uit	14	3.07			
Device	Distance		Voltage		Current			
Number	from		vonage		in			Devi
	previous				amps.	Device N	lodel #	Typ
	device	At	Drop from	Percent				.,,
		Device	source	Drop				
4V301	37	23.80	0.199	0.83%	0.066	System Sensor	SCR	ST
4V302	17	23.72	0.284	1.18%	0.210	System Sensor	SCR	ST
4V 303	104	23.33	0.669	2.79%	0.202	System Sensor	SCR	ST
4V304	70	23.16	0.841	3.50%	0.202	System Sensor	SCR	ST
4V305	20	23.14	0.865	3.60%	0.066	System Sensor	SCR	ST
4V306	30	23.11	0.889	3.70%	0.066	System Sensor	SCR	ST
4V307	20	23.10	0.897	3.74%	0.066	System Sensor	SCR	ST
END		23.10	0.897	3.74%	0.000			
END		23.10	0.897	3.74%	0.000			
END		23.10	0.897	3.74%	0.000			
END		23.10	0.897	3.74%	0.000			
END		23.10	0.897	3.74%	0.000		1	
END		23.10	0.897	3.74%	0.000			
Totals	298	End of Lin		23.10	0.878			
				to Point M	and the second s	<b>.</b>		
		C	RCUIT			 }		-
Tot	als	<u>`</u>			Voltage			-1
Current		1			Drop			
0.878	298				0.90			
	e Voltage				23.10			
					3.74%			
Percer	nt Drop	L	Chan day 11	Aline Devi-				
40.7.77	10 4 00				ance in Of	nms per 1000 feet		
18=7.77	16=4.89				1.10.1			
	s = Solid Co	nauctors	12-10 A	wg = Stran	ued condu	ICLOTS		
Notes:								



SHEET 14 OF 15



.



## APPENDIX L – NOTIFIER FSP-851(A)

## FSP-851(A) Series

Intelligent Plug-In Photoelectric Smoke Detectors with FlashScan®

Intelligent/Addressable Devices

NOTIFIER®

by Honeywell

#### General

Notifier FSP-851(A) Series intelligent plug-in smoke detectors with integral communication provide features that surpass conventional detectors. Detector sensitivity can be programmed in the control panel software. Sensitivity is continuously monitored and reported to the panel. Point ID capability allows each detector's address to be set with rotary, decimal address switches, providing exact detector location for selective maintenance when chamber contamination reaches an unacceptable level. The FSP-851(A) photoelectric detector's unique optical sensing chamber is engineered to sense smoke produced by a wide range of combustion sources. Dual electronic thermistors add 135°F (57°C) fixed-temperature thermal sensing on the FSP-851T(A). The FSP-851R(A) is a remote test capable detector for use with DNR(A)/DNRW duct detector housings. FSP-851(A) series detectors are compatible with Notifier Onyx and CLIP series Fire Alarm Control Panels (FACPs).

**FlashScan®** (U.S. Patent 5,539,389) is a communication protocol developed by Notifier that greatly increases the speed of communication between analog intelligent devices. Intelligent devices communicate in a grouped fashion. If one of the devices in the group has new information, the panel's CPU stops the group poll and concentrates on single points. The net effect is response speed greater than five times that of earlier designs.

#### **Features**

- Sleek, low-profile design.
- Addressable-analog communication.
- · Stable communication technique with noise immunity.
- Low standby current.
- Two-wire SLC connection.
- Compatible with FlashScan® and CLIP protocol systems.
- Rotary, decimal addressing (1-99 on CLIP systems, 1-159 on FlashScan systems).
- Optional remote, single-gang LED accessory.
- Dual LED design provides 360° viewing angle.
- Visible bi-color LEDs blink green every time the detector is addressed, and illuminate steady red on alarm (*FlashScan* systems only).
- · Remote test feature from the panel.
- Walk test with address display (an address on 121 will blink the detector LED: 12-[pause]-1(*FlashScan systems only*).
- Built-in functional test switch activated by external magnet.
- · Built-in tamper-resistant feature.
- · Sealed against back pressure.
- Constructed of off-white fire-resistant plastic, designed to commercial standards, and offers an attractive appearance.
- 94-5V plastic flammability rating.
- · SEMS screws for wiring of the separate base.
- Optional relay, isolator, and sounder bases.

#### **Specifications**

Sensitivity: 0.5% to 2.35% per foot obscuration Size: 2.1" (5.3 cm) high; base determines diameter.

- B210LP(A): 6.1" (15.5 cm) diameter.
- B501(A): 4.1" (10.4 cm) diameter.
- B200S(A): 6.875" (17.46 cm) diameter.



- B200SR(A): 6.875" (17.46 cm) diameter.

- B224RB(A): 6.2" (15.748 cm) diameter.
- B224BI(A): 6.2" (15.748 cm) diameter.

Shipping Weight: 5.2oz. (147g).

**Operating Temperature range:** FSP-851(A), 0°C to 49°C (32°F to 120°F). FSP-851T(A), 0°C to 38°C (32°F to 100°F). Low temperature signal for FSP-851T(A) at 45°F +/- 10°F (7.22°C +/- 5.54°C). FSP-851R(A) installed in a DNR(A)/DNRW, -20°C to 70°C (-4°F to 158°F).

**UL/ULC Listed Velocity Range:** 0-4000 ft/min. (1219.2 m/ min.), suitable for installation in ducts.

Relative Humidity: 10%-93% noncondensing.

Thermal Ratings: Fixed-temperature setpoint 135°F (57°C).

#### DETECTOR SPACING AND APPLICATIONS

Notifier recommends spacing detectors in compliance with NFPA 72. In low airflow applications with smooth ceiling, space detectors 30 feet (9.144m) for ceiling heights 10 feet (3.148m) and higher. For specific information regarding detector spacing, placement, and special applications refer to NFPA 72. *System Smoke Detector Application Guide*, document A05-1003, is available at systemsensor.com

#### **ELECTRICAL SPECIFICATIONS**

Voltage Range: 15-32 volts DC peak.

Standby Current (max. avg.): 300µA @ 24VDC (one communication every five seconds with LED enabled).

LED Current (max.): 6.5mA @ 24 VDC ("ON").

#### Installation

FSP-851(A) plug-in detectors use a separate base to simplify installation, service, and maintenance. A special tool allows maintenance personnel to plug in and remove detectors without using a ladder.

Mount base (all base types) on an electrical backbox which is at least 1.5" (3.81 cm) deep. For a chart of compatible junction boxes, see *DN-60054*.

**NOTE:** 1) Because of inherent supervision provided by the SLC loop, end-of-line resistors are not required. Wiring "T-taps" or branches are permitted for Style 4 (Class "B") wiring. 2) When using relay or sounder bases, consult the ISO-X(A) installation

sheet I56-1380 for device limitations between isolator modules and isolator bases.

#### **Agency Listings and Approvals**

These listings and approvals apply to the modules specified in this document. In some cases, certain modules or applications may not be listed by certain approval agencies, or listing may be in process. *Consult factory for latest listing status.* 

- UL Listed: S1115.
- ULC Listed: S1115 (FSP-851A, FSP-851RA, FSP-851TA).
- MEA Listed: 225-02-E .
- FM Approved.
- CSFM: 7272-0028:0206 .
- Maryland State Fire Marshal: Permit # 2122 .
- BSMI: CI313066760036.
- CCCF: Certif. # 2004081801000017 (FSP-851T) Certif. # 2004081801000016 (FSP-851).
- U.S. Coast Guard: 161.002/42/1 (NFS-640); 161.002/50/0 (NFS2-640/NFS-320/NFS-320C, excluding B210LP(A)).
- Lloyd's Register: 11/600013 (NFS2-640/NFS-320/NFS-320C, excluding B210LP(A)).

### **Product Line Information**

NOTE: "A" suffix indicates ULC Listed model.

**FSP-851:** Low-profile intelligent photoelectric sensor. Must be mounted to one of the bases listed below.

FSP-851A: Same as FSP-851 but with ULC listing.

**FSP-851T:** Same as FSP-851 but includes a built-in 135°F (57°C) fixed-temperature thermal device.

FSP-851TA: Same as FSP-851T but with ULC listing.

**FSP-851R:** Low-profile intelligent photoelectric sensor, remote test capable. For use with DNRA/DNRW.

**FSP-851RA:** Same as FSP-851R but with ULC listing. For use with DNRA.

#### INTELLIGENT BASES

NOTE: "A" suffix indicates ULC Listed model.

NOTE: For details on intelligent bases, see DN-60054.

B210LP(A): Standard U.S. flanged low-profile mounting base.

B210LPBP: Bulk pack of B210LP; package contains 10.

B501(A): Standard European flangeless mounting base.

B501BP: Bulk pack of B501; package contains 10.

**B200S(A):** Intelligent, programmable sounder base capable of producing sound output in high or low volume with ANSI Temporal 3, ANSI Temporal 4, continuous tone, marching tone, and custom tone.

**B200SR(A):** Intelligent sounder base capable of producing sound output with ANSI Temporal 3 or continuous tone. Replaces B501BH series bases in retrofit applications.

**B224RB(A):** Plug-in System Sensor **relay** base. Screw terminals: up to 14 AWG (2.0 mm²). Relay type: Form-C. Rating: 2.0 A @ 30 VDC resistive; 0.3 A @ 110 VDC inductive; 1.0 A @ 30 VDC inductive.

**B224BI(A):** Plug-in System Sensor *isolator* detector base. Maximum 25 devices between isolator bases .

#### ACCESSORIES

**F110:** Retrofit flange to convert B210LP(A) to match the B710LP(A) profile, or to convert older high-profile bases to low-profile.

F110BP: Bulk pack of F110; package contains 15.

F210: Replacement flange for B210LP(A) base.

**RA100Z(A):** Remote LED annunciator. 3 - 32 VDC. Mounts to a U.S. single-gang electrical box. For use with B501(A) and B210LP(A) bases only.

SMB600: Surface mounting kit

M02-04-00:Test magnet.

M02-09-00: Test magnet with telescoping handle.

**XR2B:** Detector removal tool. Allows installation and/or removal of detector heads from bases in high ceiling applications.

**XP-4:** Extension pole for XR2B. Comes in three 5-foot (1.524 m) sections.

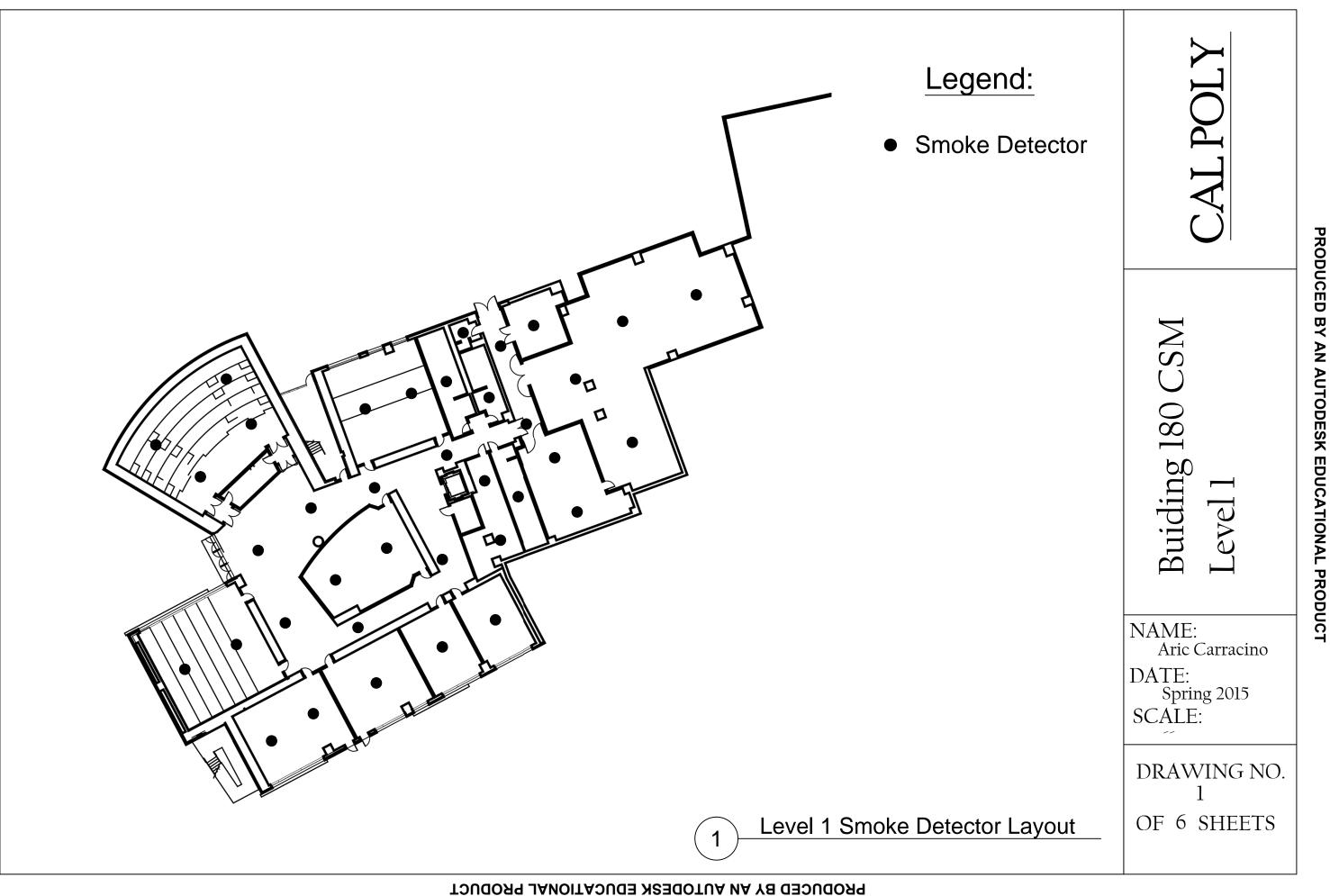
T55-127-010: Detector removal tool without pole.

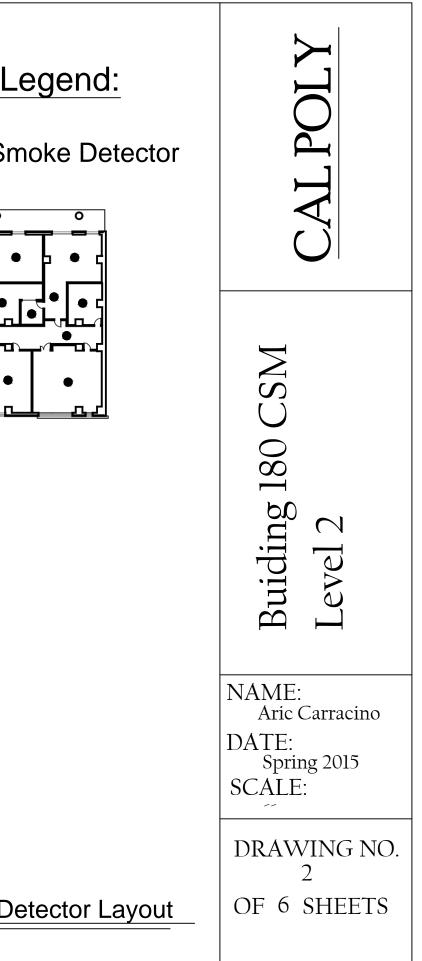
**BCK-200B:** Black detector covers for use with FSP-851(A) only; box of 10.

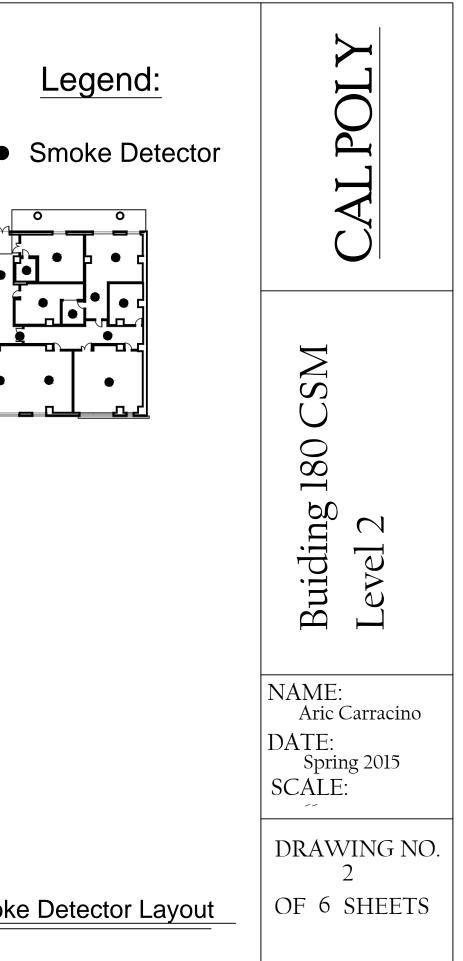
**WCK-200B:** White detector covers for use with FSP-851(A) only; box of 10.

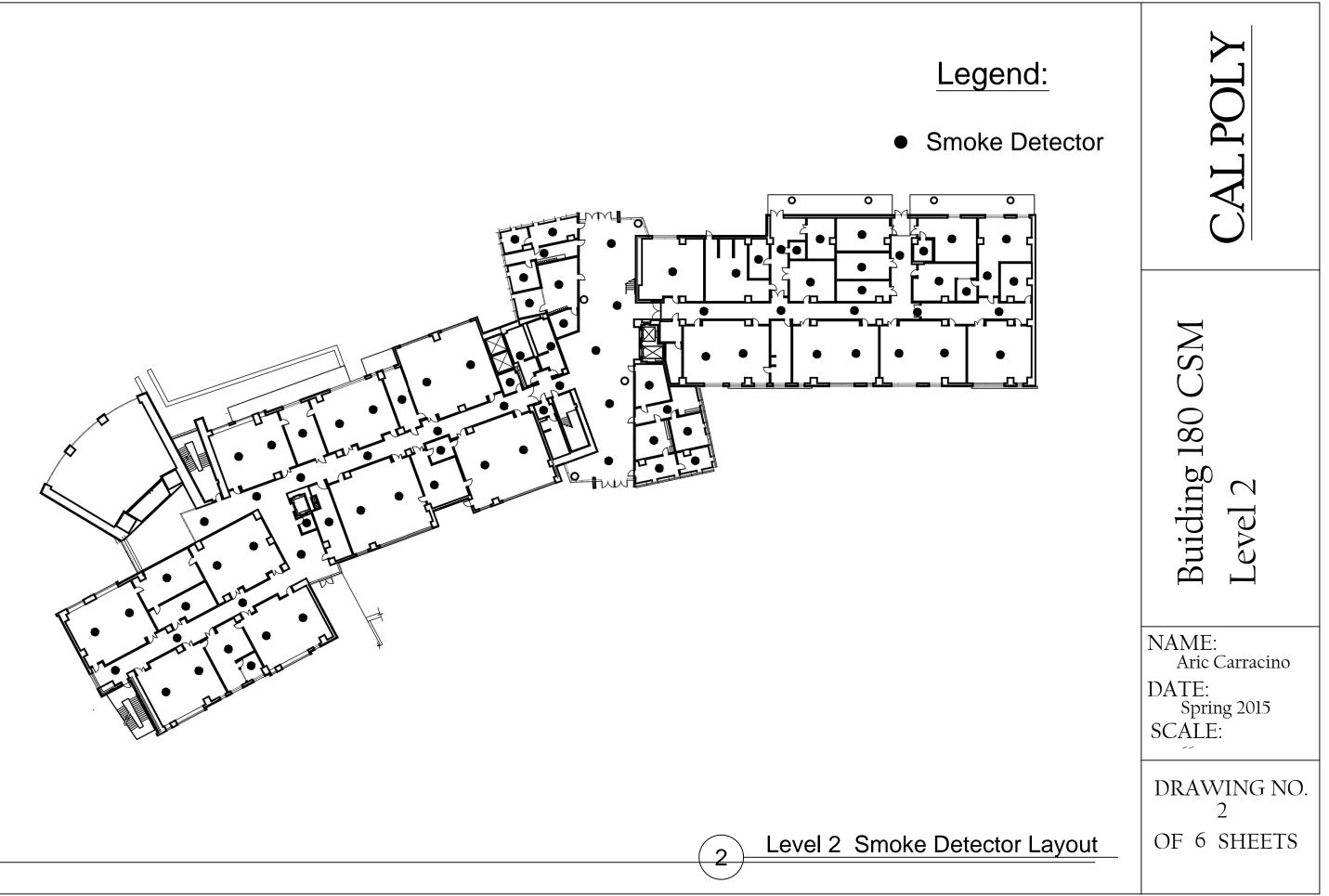
-Notifier  $\ensuremath{\mathbb{R}}$  and FlashScan  $\ensuremath{\mathbb{B}}$  are registered trademarks of Honeywell International Inc.

©2011 by Honeywell International Inc. All rights reserved. Unauthorized use of this document is strictly prohibited.

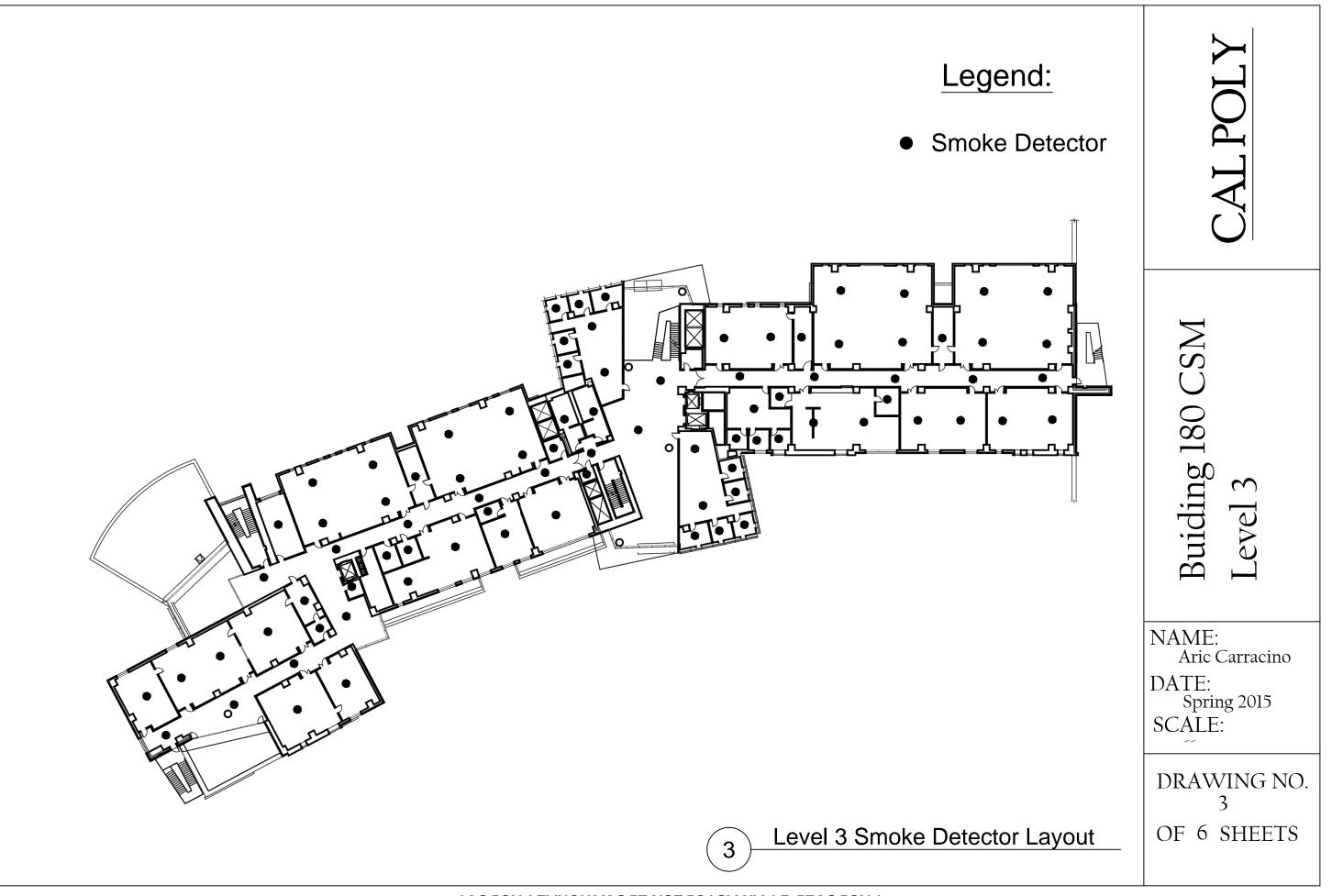




This document is not intended to be used for installation purposes. We try to keep our product information up-to-date and accurate. We cannot cover all specific applications or anticipate all requirements. All specifications are subject to change without notice.

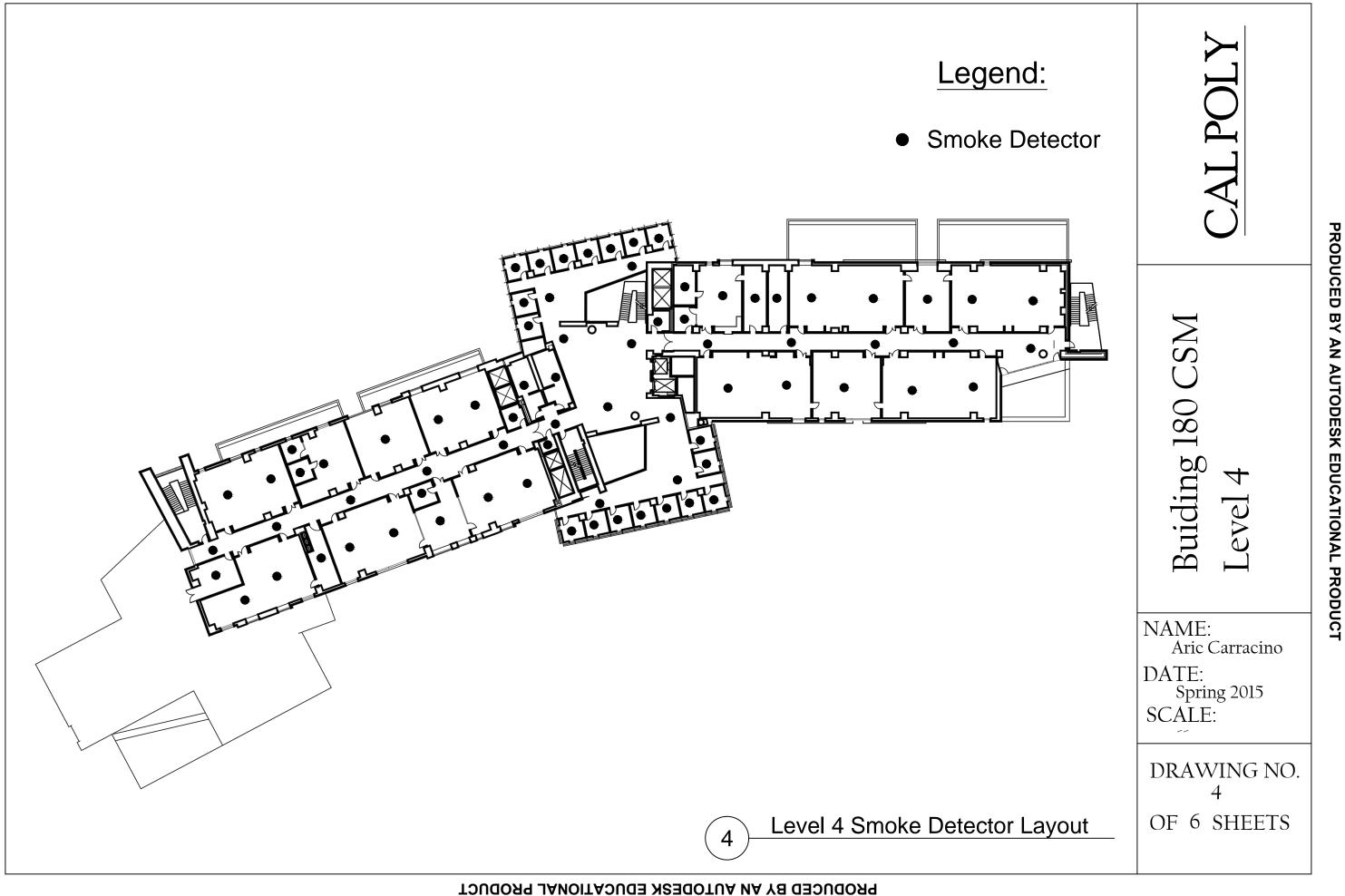


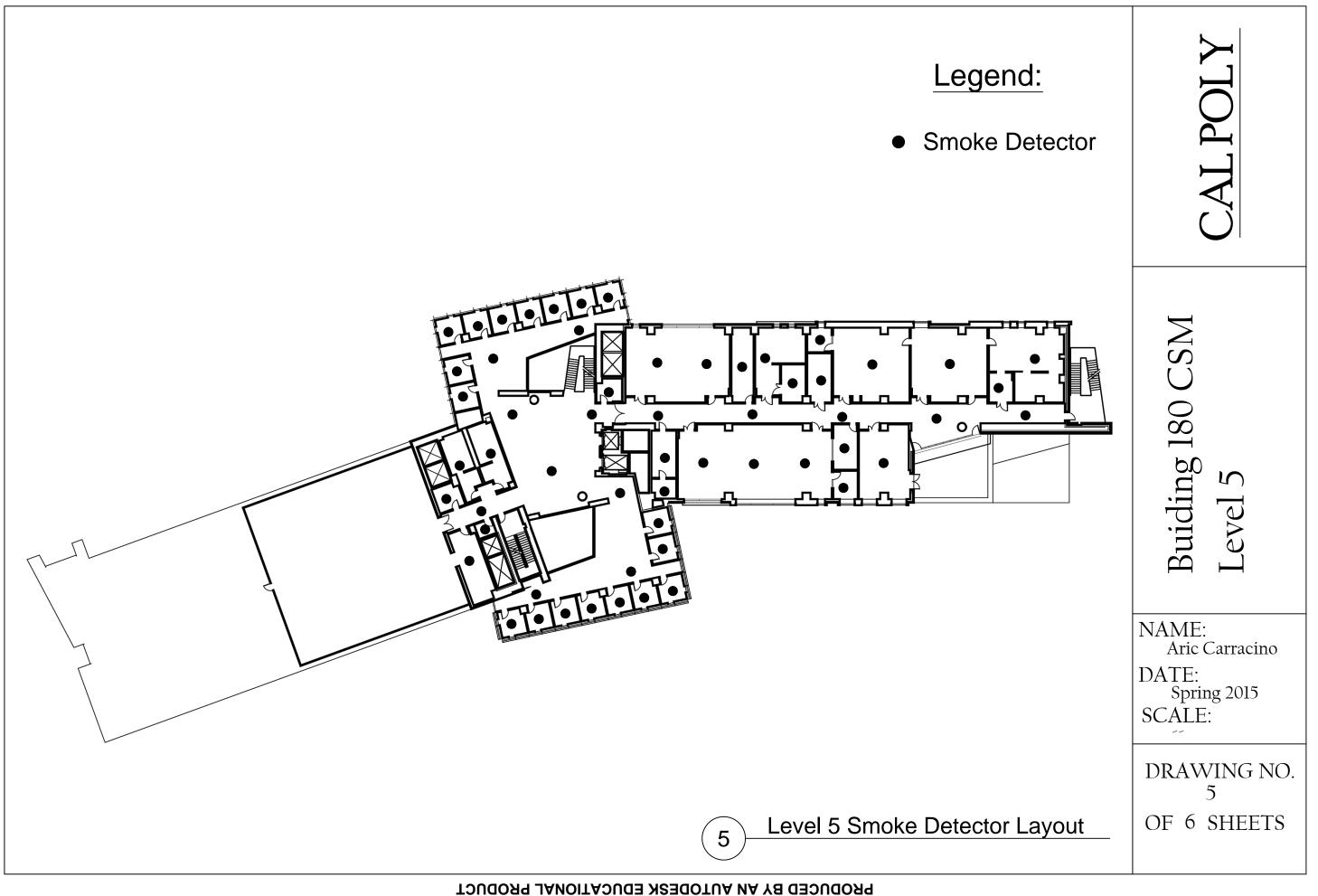


For more information, contact Notifier. Phone: (203) 484-7161, FAX: (203) 484-7118. www.notifier.com

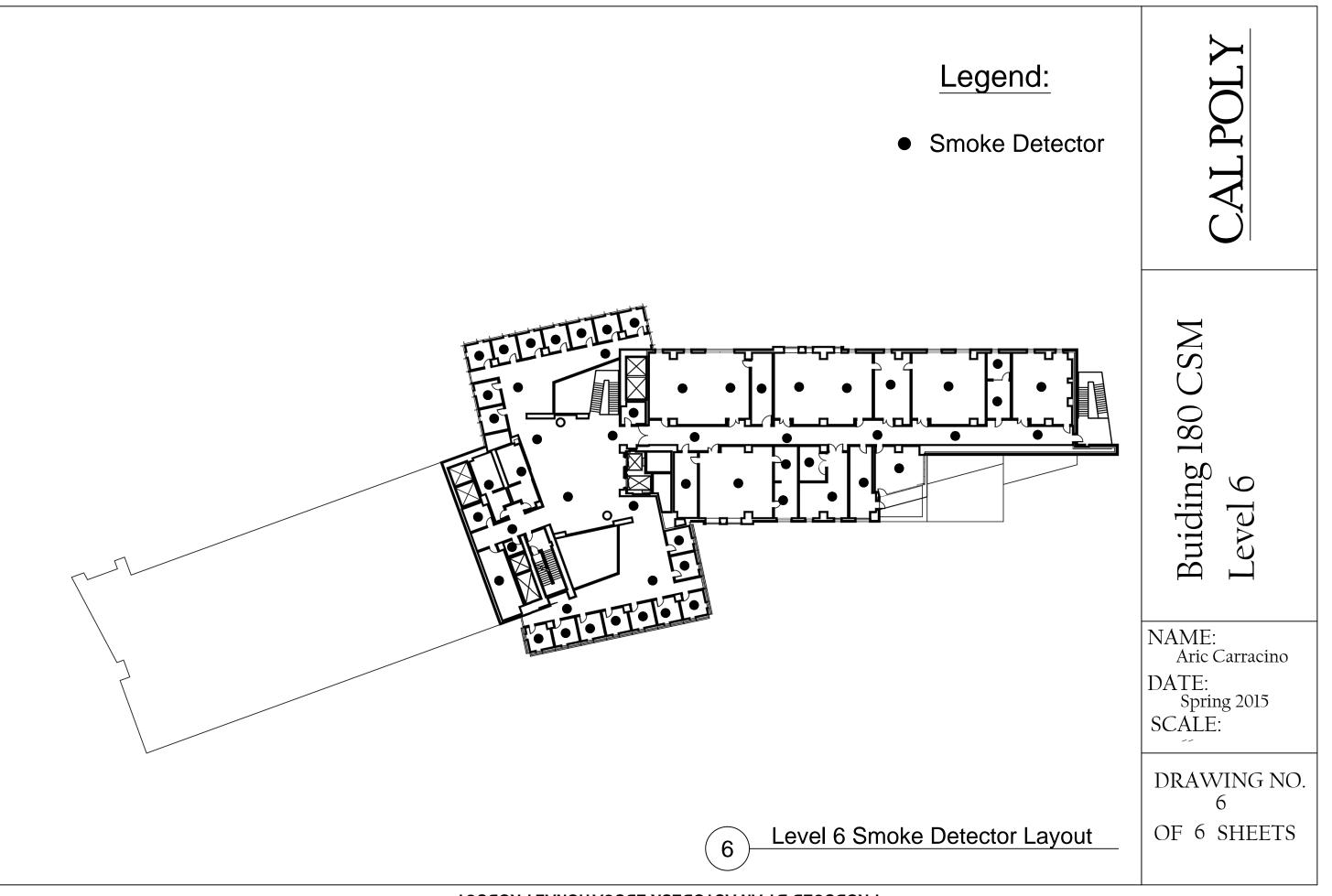
### <u>APPENDIX M – COMPLETE SMOKE DETECTOR COVERAGE FLOOR PLANS</u>







РЯОРИСЕР ВҮ АМ АИТОРЕЗК ЕРИСАТІОИАL РЯОРИСТ



ТООООСЕР ВҮ АМ АUTODESK EDUCATIONAL PRODUCT







## APPENDIX N – OSID BY XTRALIS

## **OSID** Smoke Detection

Open-area Smoke Imaging Detection (OSID) by Xtralis is a new innovation in projected beam smoke detection technology. By using advanced dual wavelength projected beams and optical imaging technology for early warning smoke detection, OSID provides a low-cost, reliable and easy-to-install solution that overcomes typical beam detection issues such as false alarm incidents and alignment difficulties.



## **Unique Detection Technology**

The OSID system measures the level of smoke entering beams of light projected over an area of protection. A single OSID Imager can detect up to seven Emitters to provide a wide coverage area. Two innovations in smoke detection technology have been developed for the revolutionary OSID smoke detector:

#### **Dual Wavelength Particle Detection**

The beam projected from each Emitter contains a unique sequence of ultraviolet (UV) and infrared (IR) pulses that are synchronised with the Imager and enable the rejection of any unwanted light sources.

By using two wavelengths of light to detect particles, the system is able to distinguish between particle sizes. The shorter UV wavelength interacts strongly with both small and large particles while the longer IR wavelength is affected only by larger particles. Dual wavelength path loss measurements therefore enable the detector to provide repeatable smoke obscuration measurements, while rejecting the presence of dust particles or solid intruding objects.

#### **Optical Imaging with a CMOS Imaging Chip**

An optical imaging array in the OSID Imager provides the detector with a wide viewing angle to locate and track multiple Emitters. Consequently, the system can tolerate a much less precise installation and can compensate for the drift caused by natural shifts in building structures.

Optical filtering, high-speed image acquisition and intelligent software algorithms also enable the OSID system to provide new levels of stability and sensitivity with greater immunity to high level lighting variability.

### Operation

Status information (Fire Alarm, Trouble and Power) is communicated through the Imager via Status LEDs, dedicated Trouble and Alarm relays, and the Remote Indicator interface. Specific Trouble (Fault) conditions are identified through coded flashes of the Trouble LED.

An internal heating option is also provided on the Imager to prevent condensation on the optical surface, and a reset input enables an external signal to reset the device.

## Simple Installation and Maintenance

The OSID system consists of up to seven Emitters, for the 45° and 90° Imager units, located along the perimeter of the protected area, and an Imager mounted opposite. Each component can be mounted directly to the surface or can be secured with the supplied mounting brackets. Battery powered Emitters with up to five years battery life are also available to reduce installation time and cost.

#### **Features**

- Maximum detection range of 150 m (492 ft) for the OSI-10
- Status LEDs for Fire, Trouble and Power
- High false alarm immunity
- Dust and intrusive solid object rejection
- Easy alignment with large adjustment and viewing angles
- No need for precise alignment
- Tolerant of alignment drift
- Automatic commisioning in under ten minutes
- Simple DIP switch configuration
- Dual wavelength LED-based smoke detection
- Simple and easy maintenance requirements
- Conventional alarm interface for straightforward fire system integration
- Three selectable alarm thresholds

### Listings/Approvals

- UL
- ULC
- FM
- AFNOR
- CE Mark
- VdS
- ActivFire
- BOSEC
- Major Agency Approvals pending



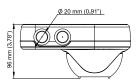
## **OSID** Smoke Detection

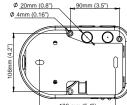
On the Imager, a termination card provides all field wiring terminals, and DIP switches enable the user to configure the detector for particular applications.

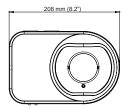
Alignment of the Emitter is simply achieved using a laser alignment tool to rotate the optical spheres until the laser beam projected from the alignment tool is close to the Imager.

The Imager is aligned in a similar way so that its Field of View (FOV) encompasses all Emitters. A Trouble or Fault will be indicated if an Emitter is missing or outside the Imager field of view.

The OSID system is highly tolerant to dust and dirt and requires little maintenance in practice. Preventative maintenance is limited to occasionally cleaning the optical faces of the detector components.


#### **Configuration Options**


OSID systems may be configured to suit a range of detection spaces by selecting the number of Emitters and type of Imager. Each type of Imager differs by the lens used in the unit, which determines the field of view and range of the system.


	Field o	of View		Detecti	on Range		Max.	
Imager	Horizontal	Vertical	Standa	rd Power	High	Power	Number of	
	Horizontai	ventical	Min	Мах	Min	Max	Emitters	
10°	7°	4°	30 m (98 ft)	150 m (492 ft)			1	
45°	38°	19°	15 m (49 ft)	60 m (197 ft)	30 m (98 ft)	120 m (393 ft)	7	
90°	80°	48°	6 m (20 ft)	**34 m (111 ft)	12 m (39 ft)	**68 m (223 ft)	7	

** Maximum Distances measured for the Center Field of View of the Imager. For more details on distances for the Imager, see the OSID Product Guide.

## **Emitter / Imager Dimensions**









#### **Ordering Codes**

OSI-10	Imager - 7º coverage
OSI-45	Imager - 38º coverage
OSI-90	Imager - 80° coverage
OSE-SP-01	Emitter - Alkaline Battery
OSE-SPW	Emitter - Standard Power, Wired
OSID-EHE	Emitter environmental housing IP66
OSID-EHI	Imager environmental housing IP66
OSE-ACF	Anti-condensation film for Emitters
OSEH-ACF	Anti-condensation film for OSID- EHE and OSID-EHI environmental housings

OSE-HPW	En
OSID-INST	05
OSP-001	FT
OSP-002	La
OSID-WG	Wi
OSE-RBA	Sp
OSE-RBL	Re

Emitter - High Power, Wired OSID Installation Kit FTDI Cable 1.5m Laser Alignment tool Wire Guard Spare alkaline battery pack for Emitter units Replacement Lithium Ion Kit

#### www.xtralis.com

UK and Europe +44 1442 242 330 D-A-CH +49 431 23284 1 The Americas +1 781 740 2223 Middle East +962 6 588 5622 Asia +86 21 5240 0077 Australia and New Zealand +61 3 9936 7000 The contents of this document are provided on an "as is" basis. No representation or warranty (either express or implied) is made as to the completeness, accuracy or reliability of the contents of this document. The manufacture reserves the right to change designs or specifications without obligation and without further notice. Except as otherwise provided, all warranties, express or implied, including without limitation any implied warranties of merchantability and fitness for a particular purpose are expressly excluded.

merchantability and titness for a particular purpose are expressly excluded. Xtralis, Xtralis logo, The Sooner You Know, VESDA, (LAM, ECO, OSID, HeiTel, ADPRO, IntrusionTrace, and LoiterTrace are trademarks and/ or registered trademarks of Xtralis and/or its subsidiaries in the United States and/or other countries. Other brand names mentioned herein are for identification purposes only and may be trademarks of their respective holder(s). Your use of this document does not constitute or create a licence or any other right to use the name and/or trademark and/or label.

This document is subject to copyright owned by Xtralis. You agree not to copy, communicate to the public, adapt, distribute, transfer, sell, modify or publish any contents of this document without the express prior written consent of Xtralis.

### **Specifications**

Supply Voltage 20 to 30 VDC (24 VDC nominal)

#### **Imager Current Consumption**

Nominal (at 24 VDC): 8mA (1 Emitter) 10mA (7 Emitters) Peak (at 24 VDC) during training mode: 31mA

#### **Emitter Current Consumption**

Wired Version (at 24 VDC): 350µA Std Power, 800µA High Power Battery Version (1.9 - 3.2 VDC): Built-in 5 Year Replaceable Battery

#### **Field Wiring**

Cable Guage 0.2 - 4mm² (26-12 AWG)

#### Alarm Threshold Levels:

Low - Highest sensitivity / earliest alarm: 20% (0.97 dB) Medium - Medium sensitivity:

35% (1.87 dB)

High - Lowest sensitivity / maximum immunity to nuisance smoke conditions: 50% (3.01 dB)

#### **Adjustment Angle**

±60° (horizontal) ±15° (vertical)

Maximum Misalignment Angle ±2°

Dimensions (WHD)

Emitter / Imager: 208 mm x 136 mm x 96 mm (8.19 in. x 5.35 in. x 3.78 in.)

#### **Operating Conditions***

Temperature: -10 °C to 55 °C (14 °F to 131 °F)* Humidity:

10 to 95% RH (non-condensing)

Please consult your Xtralis office for operation outside these parameters.

#### IP Rating

IP 44 for Electronics IP 66 for Optics Enclosure

Status LEDs Fire Alarm (Red) Trouble / Power (Bi-color Yellow / Green)

Event log 10,000 events

#### **Approvals Compliance**

Please refer to the Product Guide for details regarding compliant design, installation and commissioning.

* Product UL listed for use from 0°C to 39°C (32°F to 103°F)



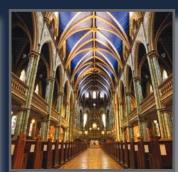
## OPEN-AREA SMOKE IMAGING DETECTION (OSID) REFERENCE GUIDE



OSID (Open-area Smoke Imaging Detector) combines dual wavelength (IR and UV) beams with CMOS imaging detection. This technology features high tolerance to vibration and structural movement and OSID differentiates better between smoke and environmental conditions than traditional beam detectors.. OSID operates in both pitch dark as well as bright sunlight.

One Imager (receiver) can have up to 7 Emitters and provides easy 3D coverage for atria etc.

Fast and easy installation and commissioning is achieved through the flexible ball & socket arrangement and the use of the laser alignment tool. Trouble shooting is simple thanks to the on-board memory and the OSID Diagnostic SW package, both unique for this industry.


Below is an overview of this award winning OSID range.

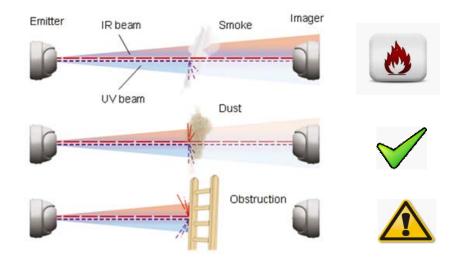
OSI-10	Imager 8° FOV	
	Distance 30-150 m with OSE-SP/W.	
	This configuration is for a 1 on 1 system.	
	The OSI-10 is not suited to work with High Powered Emitters.	
OSI-45	Imager 38° FOV Distance 12-60 m with OSE-SP/W Distance 24-120 m with OSE-HPW	
	The OSI-45 can operate with up to 7 Emitters.	
OSI-90	Imager 80° FOV Distance 6-34 m with OSE-SP/W Distance 12-68 m with OSE-HPW The OSI-45 can operate with up to 7 Emitters.	
OSE-SP-01	<b>Emitter battery powered-alkaline battery</b> Using battery powered Emitters, with a guaranteed 5 year life, drastically reduce the wiring and installation costs.	
OSE-HP-01	<b>Emitter High Power battery powered-alkaline battery</b> Using battery powered Emitters, with a guaranteed 3 year life, drastically reduce the wiring and installation costs.	
OSE-SPW	Emitter Wired 24 Vdc A preferred solution when 24 Vdc is close by.	
OSE-HPW	<b>Emitter High Power Wired 24 Vdc</b> Allows to double the detection ranges of the OSI-45 and OSI- 90.	
OSID-INST	<b>OSID Installation Kit</b> Kit including laser alignment tool, test filter, PC cable, cleaning cloth, reflectors and manual.	



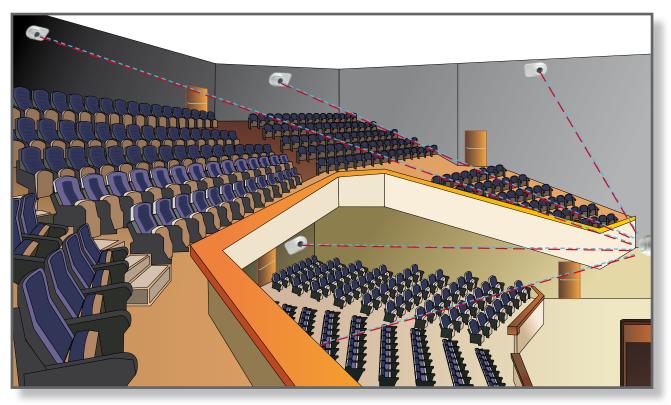


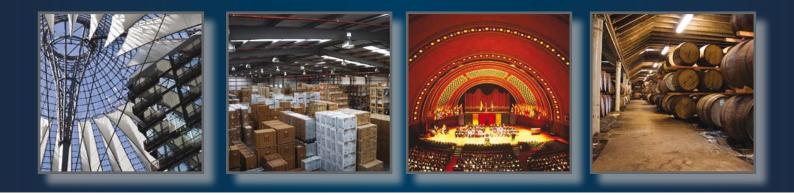





VKT-301	<b>OSID Demo kit</b> Kit consisting of 2 X OSE-SP-01, 1 X OSI-90, 1 X OSID-INST and mounting plates, fitted in a rugged carry case.	
OSP-001	<b>FTDI Cable 1.5m</b> Allows to connect a PC and hence OSID Diagnostic SW to the Imager. The FTDI cable can be extended with another 20 m using cable with an active USB amplifier.	
OSP-002	Laser Alignment tool A unique alignment tool for fast alignment. Aligns and locks the eyeball. Does also activate Emitters when locked.	
OSID-WG	<b>Wire Guard</b> A steel cage to protect OSID Imagers and Emitters from vandalism and accidental damage.	
OSID-EHI	<b>Imager Environmental Housing</b> Custom designed IP 66, NEMA 4-4X protective and environmental housings protect OSID Imagers from dust and water ingress in industrial environments.	
OSID-EHE	<b>Emitter Environmental Housing</b> Custom designed IP 66, NEMA 4-4X protective and environmental housings protect OSID Emitters from dust and water ingress in industrial environments.	
OSE-ACF	<b>Anti-condensation film for Emitters</b> An easy applicable film that provide long time resistance to condensation on the acrylic Emitter lens.	
OSEH-ACF	<b>Anti-condensation film for OSID-EH housings</b> An easy applicable film that provide long time resistance to condensation on the glass fronts	
OSID Diagnostic Tool	<b>Diagnostic software package</b> A unique software program that allows visualisation of the Imager's view, quality of alignment and IR/UV real time graphs. The program also features real time logging capability for trouble shooting and site evaluation purposes.	
OSID Selection Assistant	<b>System selection tool</b> The program is an intuitive Excel based program that for a given area will calculate 90°, 45° and 10° OSID solutions as well offer a price comparison with traditional beams. It also gives the exact location to point the alignment laser tool for optimal FOV for the Imagers in multi-Emitter solutions.	
OSE-RBL	Emitter replacement battery Lithium	
OSE-RBA	Emitter replacement battery Alkaline	

## AVAILABLE FIELDS OF VIEW AND DETECTION RANGES


Image	Usable Fie	eld of View		Dete	ction Range		Max.
Lens	Uerizentel	Vertical	Standar	d Power	High	Power	Number of
Туре	Horizontal	Vertical	Min	Max	Min	Max	Emitters
10°	7°	4°	30 m (98 ft)	150 m (492 ft)	-	-	1
45°	38°	19°	15 m (49 ft)	60 m (197 ft)	30m (98 ft)	120 m (393 ft)/ 100 m (328 ft) *	7
50°	80°	48°	6m (20 ft)	34 m (111 ft)	12m (39 ft)	68 m (223 ft)/ 50 m (164 ft) *	7


* Range with OSE-HP-01

## ONE-ON-ONE APPLICATION AND THEORY OF OPERATION



## TYPICAL MULTI-EMITTER APPLICATION





## **PRODUCT SPECIFICATIONS**

General	
Alarm Thresholds (Configurable)	Low - Highest sensitivity / earliest alarm: 20% (0.97 dB) Medium - Medium sensitivity: 35% (1.87 dB) High - Lowest sensitivity / maximum immunity to nuisance smoke conditions: 50% (3.01 dB)
Alarm Latching (Configurable)	Latching / Non-latching configured via DIP switch
Status LEDs (Imager)	Red: Fire Alarm; Bi-color Yellow/Green: Trouble or Normal
IP Rating	IP 44 for Electronics; IP 66 for Optics Enclosure
DIP Switch Configuration (Termination Card)	Configuration for alarm thresholds, number of Emitters and alarm latching/non latching.
Electrical	
Imager Supply voltage	20-30 VDC (24 VDC nominal)
Imager Current Consumption	Typical at 24 VDC: 8 mA (one Emitter), 10 mA (seven Emitters)
Emitter Current Consumption	Externally powered Emitter (at 24 VDC): 350 µA Standard Power, 800 µA High Power Battery-powered Emitter: Built-in 5 Year Replacement Alkaline Battery,3 Year Replacement with OSE-HP-01
Cable Gauge	0.2 - 4 mm² (26-12 AWG)
Trouble/Fault Relay	2 A @ 30 VDC, NO-C-NC Dry Relay Contacts
Fire Alarm Relay	2 A @ 30 VDC, NO-C-NC Dry Relay Contacts
Heater Input Power	24 VDC, 16 mA (400 mW)
Environmental	
Operating Temperature	-10°C to 55°C (14°F to 131°F)
Humidity	10 to 95% RH Non-condensing
Mechanical	
Dimensions (WHD)	208 mm x 136 mm x 96 mm (8.2 in x 5.4 in x 3.8 in)
Weight	Imager: 610 g; Emitter (battery powered): 1.2 kg Emitter (wired): 535 g
Adjustment Angle	Horizontal: ±60°; Vertical: ±15°
Maximum Misalignment Angle	±2°

## **OSID AWARDS**









## **OSID WEBSITE**

Visit the OSID website at

### WWW.XTRALIS.COM

and discover application flyers, application notes, software, brochures and much more.



www.xtralis.com

UK and Europe +44 1442 242 330 D-A-CH +49 431 23284 1 The Americas +1 781 740 2223 Middle East +962 6 588 5622 Asia +86 21 5240 0077 Australia and New Zealand +61 3 9936 7000