

CALPOLY STUDENT RECREATION CENTER FIRE PROTECTION REVIEW

CULMINATING PROJECT prepared by Alain N. Mamada

MSc. FPE PROGRAM

CALPOLY – SPRING – 2014

INSTRUCTORS:

- Prof. Frederick W. Mowrer, Ph.D., P.E., FSFPE
- Prof. Christopher Pascual, Ph.D., P.E.

Statement of Disclaimer

This project report is a result of a class assignment; it has been graded and accepted as fulfillment of the course requirements. Acceptance of this report in fulfillment of the course requirements does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include, but may not be limited to, catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project

KEYWORDS

- FDS
- ASET
- RSET
- Pathfinder
- Egress
- Performance-based
- Prescriptive
- Visibility

ABBREVIATIONS

- Rec Center: Recreation Center
- Cal Poly : California Polytechnic State University
- SPL : Sound Pressure Level
- CMDA : Control Mode Density Area

CALPOLY RECREATION CENTER

Table of Contents

LIST OF TABL	ES	5
LIST OF FIGURES		8
	EXECUTIVE SUMMARY	12
	INTRODUCTION	13
PART I	PRESCRIPTIVE ANALYSIS	
Chapter 1	Structural Analysis	15
	Fire Resistance Rating of Construction Elements	17
Chapter 2	Fires Alarm and Detection System	25
	Types and Operating Characteristic of Fire Alarm System	25
	Types and Location of Initiating Devices	27
	Location, Spacing and Placement of Fire Detectors	31
	Alarm and Notification Appliances	
	Notification Appliance Power Requirements	45
	System Commissioning, Inspection, Testing and Mainten	ance54
Chapter 3	Water-Based Fire Suppression System	58
	Types and Design Criteria	58
	Water Supply	61
	Manual Hydraulic Calculations	69
	Inspection, Testing and Maintenance	73
Chapter 4	Egress Analysis	78
	Occupancy Classification	78
	Egress Capacity Calculations	80
	Occupant Load for each Space	82
	Egress Capacity	83
	Number of Exits	

Multi-Story Egress Capacity85
Converging Egress Capacity86
Minimum Width87
Occupant Loads and Egress Capacity Results
Exit Stairway Calculations91
Arrangement of Exits93
Illumination of Means of Egress101
Means of Egress Components102
Human Behavior116
Emergency Movement120
Computer Simulation124

PART II	PERFORMANCE BASED ANALYSIS	127
	Goal	127
	Objectives	127
	Performance Criteria	127
	Process Schematic	129
	Egress Time Analysis Assumptions	130
	Design Fire Scenarios	130
	Design Fire Scenario 1: Concert Fire:132	
	Design Fire Scenario 2: Fire under Bleachers:	
CONCLUSION	AND RECOMMENDATIONS 144	
APPENDIX A: Recreation Center Floor Maps		
APPENDIX B: Partitions and Penetration Enclosure Drawings		
APPENDIX C: Fire Alarm and Detection As-built Drawings		
APPENDIX D: Water-Based Suppression System – Hydraulic Calculations		
APPENDIX E: Recreation Center – Sprinkler Piping Arrangement		
APPENDIX F: Recreation Center – Life Safety Drawings		
APPENDIX G: Recreation Center – Fire Safety Management Plan		

LIST OF TABLES

PART 1: PRESCRIPTIVE ANALYSIS

CHAP 1: STRUCTURAL

Table 1.1:	Occupation Classification
Table 1.2:	Extract from Table 503: Allowable Building Heights and Areas
Table 1.3:	Summary of Increased Areas for Building Construction Types
	Due to Automatic Sprinkler System Installation
Table 1.4:	Extract from IBC Table 601: Fire Resistance Rating
Table 1.5:	Extract from IBC Table 602: Fire Resistance Rating

CHAP 2: FIRE ALARM AND DETECTION SYSTEM

Table 2.1:	Initiating Devices in Recreation Center
Table 2.2:	Smoke Detectors in Recreation Center
Table 2.3:	Heat Detectors in Recreation Center
Table 2.4:	Manual Fire Alarm Boxes in Recreation Center
Table 2.5:	Sprinkler Flow Switches in Recreation Center
Table 2.6:	Sprinkler Control Valve Supervisory and Trouble Signal Devices
Table 2.7:	Extract from NFPA 72, Table A.18.4.3 Average Ambient Sound Level
Table 2.8:	Typical Spacing Requirements for Visible Appliances
Table 2.9:	Extract from Typical System Sensor Speaker-Strobe Average Current
Table 2.10:	Extract from NEC-Table 8-Conductor Properties

CHAP 3: WATER-BASED FIRE SUPPRESSION SYSTEM

Table 3.1:	Extract from NFPA13, Table 11.2.3.2.1.2
Table 3.2:	Density and Design Area of Operation
Table 3.3:	Remote Area A
Table 3.4:	Remote Area C1
Table 3.5:	Remote Area D2
Table 3.6:	Remote Area B2
Table 3.7:	Remote Area C2
Table 3.8:	Remote Area E
Table 3.9:	Remote Area E1
Table 3.10:	Remote Area E2
Table 3.11:	System Demand Results
Table 3.12:	Individual Sprinkler Performance
Table 3.13:	Extract from NFPA13-Maintenance Schedule

CHAPTER 4: EGRESS ANALYSIS

Table 4.1:	Room/Space Occupancy Use Classification
Table 4.2:	Color-Coding Legend
Table 4.3a:	Extract from LSC-Table 7.3.1.2
Table 4.3b:	Extract from LSC-Table 7.3.1.2
Table 4.4:	LSC Egress Capacity Factor
Table 4.5:	Number of Exits
Table 4.6:	LSC Minimum Stair Width
Table 4.7:	Occupancy Load Calculations for 1st Floor
Table 4.8:	Occupancy Load Calculations for 2nd Floor
Table 4.9:	Stairway Capacity Calculations
Table 4.10:	Stairway Width Calculations using LSC 2009
Table 4.11:	Calculations for Main Gym Exit Capacity
Table 4.12:	Common Path, Dead-End and Travel Distance

Table 4.13:	Existing Stairs Dimensional Requirements
Table 4.14:	Extract from LSC-Existing Stairs Dimensional Details
Table 4.15:	Flow Capacity Calculations
Table 4.16:	Boundary Layer Widths
Table 4.17:	Maximum Specific Flow
Table 4.18:	Constants for Evacuation Speed Equation
Table 4.19:	Conversion Factors for Relating Line Distance to Vertical Travel

II PERFORMANCE-BASED ANALYSIS

Table II-1	Tenability Limits for Asphyxiants
Table II-2	Heat Exposure and Tenability Limits
Table II-3	Fuel Property Calculation
Table II-4	FDS Summary-Concert Fire
Table II-5	FDS Summary-Fire under Bleachers

LIST OF FIGURES

CHAPTER 1: STRUCTURAL ANALYSIS

Figure 1.1:	Typical Interior CFRG Column Cover
Figure 1.2:	Typical Interior Metal Column Cover
Figure 1.3:	Typical Gypsum Wallboard Column Cover
Figure 1.4:	Typical Exterior GFRC Column Cover
Figure 1.5:	Typical Beam Metal Cover
Figure 1.6:	Typical Suspended Plaster/Gypsum Wallboard
Figure 1.7:	Typical Metal Plate Wall Cladding
Figure 1.8:	Typical 1 hour Rated Partition Details

CHAPTER 2: FIRE ALARM AND DETECTION SYSTEM

Figure 2.1:	Typical FACP NFS2-640 Installed in The Recreation Center
Figure 2.2:	Typical Sample Connections of NFS2-640 FACP
Figure 2.3:	Typical Area Smoke Detector in Recreation Center Fire Alarm System
Figure 2.4:	Typical Duct Detector in Recreation Center Fire Alarm System
Figure 2.5:	Typical Heat Detector in Recreation Center Fire Alarm System
Figure 2.6:	Typical Manual Fire Alarm Box in Recreation Center Fire Alarm System
Figure 2.7:	Typical Concealed Sprinkler Head in Recreation Center
Figure 2.8:	Typical Upright Sprinkler Head installed in the Center
Figure 2.9:	Typical Pendant Sprinkler Head installed in the Center
Figure 2.10:	Typical Recessed Sprinkler Head installed in the Center
Figure 2.11:	Typical Gate Valve OSY2 Tamper Switch for Recreation Center Fire Alarm
Figure 2.12:	Typical Sprinkler Riser Manifold
Figure 2.13:	Typical Speaker Strobe in Recreation Center
Figure 2.14:	Typical Horn/Strobe in Recreation Center

Figure 2.15:	Typical Mounting Elevation Details in Recreation Center
Figure 2.16:	Typical Center Gymnasium Audible/Visible Appliances Coverage
Figure 2.17:	Battery Sizing for Fire Control Panel
Figure 2.18:	Battery Sizing for Remote Power Supply for Notification Appliances
Figure 2.19:	Battery Sizing for Remote Power Supply for Notification Appliances
Figure 2.20:	Battery Sizing for Remote Power Supply for Notification Appliances
Figure 2.21:	Battery Sizing for Remote Power Supply for Notification Appliances
Figure 2.22:	Batter Sizing for Remote Power Supply for Notification Appliances
Figure 2.23:	Voltage Drop Calculations for NAC
Figure 2.24:	Voltage Drop Calculations for NAC
Figure 2.25:	Voltage Drop Calculations for NAC
Figure 2.26:	Voltage Drop Calculations for NAC
Figure 2.27:	Voltage Drop Calculations for NAC
Figure 2.28:	Sequence of Operation of Recreation Center Fire Alarm System

CHAPTER 3: WATER-BASED FIRE SUPPRESSION SYSTEM

Figure 3.1:Extract from NFPA13-Figure 11.2.3.1.1
Figure 3.2: Extract from NFPA13, Design Area Reduction for QRS
Figure 3.3: REC Center Key Plan for Remote A, B, C and D
Figure 3.4: Storage Room
Figure 3.5: Key Plan-Remote Area E
Figure 3.6: Riser Details: South West Main Gymnasium Room
Figure 3.7: Viking Concealed Sprinkler Heads
Figure 3.8:Viking Upright Sprinkler Heads

Figure 3.9:	Viking Pendant Sprinkler Heads
Figure 3.10:	Viking Recessed Sprinkler Heads
Figure 3.11:	Gymnasium Sprinkler Piping Arrangement
Figure 3.12:	Water Supply Hydraulic Curve

CHAPTER 4: EGRESS ANALYSIS

Figure 4.1a:	Color-Coding of Space Designations: 1st Floor
Figure 4.1b:	Color-Coding of Space Designations: 1st Floor
Figure 4.2:	Color-Coding of Space Designations: 2nd Floor
Figure 4.3:	LSC Exhibit of Exit Access
Figure 4.4:	LSC Exhibit of Various Forms of Exits
Figure 4.5:	LSC Exhibit of Spaces Constituting Exit Discharge
Figure 4.6:	LSC-Corridor Capacity
Figure 4.7:	Extract from LSC-Minimum Number of Means of Egress
Figure 4.8:	LSC Capacity of Exits Stairs Serving Multiple Floors
Figure 4.9:	Extract from LSC-Exhibit of Converging Egress Capacity
Figure 4.10:	LSC Minimum Egress Door Width
Figure 4.11:	Remoteness Assessment
Figure 4.12:	Extract from 2nd Floor
Figure 4.13:	North-West Common Path of Travel
Figure 4.14:	South West Common Path of Travel
Figure 4.15:	South-East Common Path of Travel
Figure 4.16:	North East Common Paths of Travel
Figure 4.17:	Dead-End Corridor
Figure 4.18:	Exit Access Path Obstruction
Figure 4.19:	Egress Capacity and Permitted Obstructions
Figure 4.20:	Door-Leaf Encroachment
Figure 4.21:	Recessed Pocket Corridor
Figure 4.22:	Extract from LSC-Tread Measurements

Figure 4.23:	Typical Stairway Details in the Recreation Center
Figure 4.24:	Typical Handrail Details for the Recreation Center
Figure 4.25:	Typical Stair Section Details at Center
Figure 4.26:	Wall Mounted Handrail
Figure 4.27:	Head Room Measurement
Figure 4.28:	Typical Ramp Details
Figure 4.29:	Extract from SFPE Handbook-Decision Processes in a Fire
Figure 4.30:	Pathfinder Theater Evacuation Model
Figure 4.31:	Pathfinder Model for Recreation Center Evacuation

II PERFORMANCE-BASED ANALYSIS

Figure II-1	. Performance-Based Analysis Schematic
Figure II-2	. Tenability Acceptance Criteria
Figure II-3	. Fire Scenario on 1st Floor
Figure II-4	. Fire Scenario on 2nd Floor
Figure II-5	. Concert Fire Diagram
Figure II-6	. Pyrosim Model-Gymnasium Concert Fire
Figure II-7	. DETACT-Model Concert Fire Scenario
Figure II-8	. Pathfinder Model-Gymnasium Concert Fire
Figure II-9	. Visibility-2m above walking ground floor
Figure II-10	Visibility-2m above walking 2nd floor
Figure II-11	Carbon Monoxide Concentration-Concert Fire
Figure II-12	Hot Layer Gas Temperature
Figure II-13	Peak HRR for 1L Gasoline Spill Fire
Figure II-14	Pyrosim Model-Fire under Bleachers
Figure II-15	DETACT-Model-Fire under Bleachers
Figure II-16	Pathfinder Model-Fire under Bleachers
Figure II-17	Visibility-2m above Walking Floor
Figure II-18	Carbon Monoxide Concentration-Fire under Bleachers
Figure II-19	Hot Layer Gas Temperature

EXECUTIVE SUMMARY

This report summarizes the analysis of the existing fire protection features and systems installed in the Recreation Center building on the Cal Poly campus. The analysis is conducted into two different approaches.

A prescriptive analysis approach will examine installed fire protection features and systems in accordance with the International Building Code. The analysis will consider the building as existing building as per IBC provisions.

A performance-based approach will assess whether the building occupants will egress the building before conditions become untenable. Fire dynamic simulations will be used to determine the available safe egress time and evacuation simulations will performed to estimate the required safe egress time.

Two fire scenarios were analyzed to assess tenability conditions. The first fire scenario assuming a stage fire during a fully-packed-gymnasium concert has revealed that conditions become quickly untenable for second floor bleachers top seat occupants. The same conclusion was reached for the assessment of the second fire scenario assuming fire under bleachers on the second floor.

The following recommendations were put forward to enhance safety of personnel and users of the Rec Center:

- Training of personnel in enforcement of life safety management procedures and regular fire safety awareness campaigns were suggested as important tools to improve safety factor between ASET and RSET.
- Re-assessment of installed sprinkler system in the gymnasium as existing system was designed for light hazard occupancy while the bleachers flammability study revealed that the gymnasium should be classified as extra ordinary hazard occupancy.

Performance-based analysis of postulated fire scenarios is encouraged in order to formulate comprehensive improvement life safety measures for the Rec Center.

INTRODUCTION

The Recreation Center opened in 1993 as the first comprehensive facility of its kind in the California State University system. It became an instant recreational hub for California Polytechnic State University students and San Luis Obispo community. As Cal Poly enrollment continued to grow as the usage of the Recreation Center increased to the point of overcrowding; a decision to renovate and expand was taken in 2008 after student protest actions.

In 2009, through the shared vision, hard work and financial commitment of Cal Poly students, the construction works started.

The expanded Recreation Center was opened in January 2012 as a welcoming destination for Cal Poly community to relax, recreate and socialize. The renovated Recreation Center is 165000 square feet of recreation space that includes three separate exercise areas filled with state of the art weight and cardio equipment, three fitness studios for group exercise classes, an indoor track, a lounge area, a leisure pool, locker rooms with individual showers, a martial arts training room and much more variety of fitness and recreation programs that promote lifelong healthy habits.

The project work will analyze the current conditions of the fire protection systems installed in the Recreation Center based on the prescriptive requirements of applicable codes. The fire protection systems that are analyzed include structural fire protection, water-based fire suppression systems, fire alarm and detection systems, and egress systems.

A performance-based analysis will be conducted to assess the gymnasium egress time assuming two fire scenarios. The first scenario assumes a fire emanating from sound equipment on a stage during a concert held in the main gymnasium with all bleachers in fully expanded positions. The other scenario simulates a fire under bleachers on the second floor of the main gymnasium with bleachers on the first floor in retracted position

The following codes and standards, applicable as per August 1st 2007, formed the design basis for the construction and operation of the Recreation Center:

- 2007 California Administration Code, Part 1, Title 24
- 2007 California Building Code (CBC), Part 2, Title 24 (2006 International Building Code with 2007 California requirements)
- 2007 California Electrical Code (CEC), Part 3, Title 24 (2005 National Electrical Code with 2007 California requirements)
- 2007 California Mechanical Code (CMC), Part 4, Title 24 (2006 Uniform Mechanical Code with 2007 California requirements)
- 2007 California Fire Code (CFC), Part 9, Title 24 (2006 International Fire Code with 2007 California requirements)

- 2007 California Referenced Standards Code, Part 12, Title 24
- Applicable NFPA standards:
 - NFPA 13: Automatic Sprinkler systems (2003 Edition)
 - NFPA 14: Standpipes Systems (2002 Edition)
 - NFPA 72: National Fire Alarm Codes (2007 edition)

PART I: PRESCRIPTIVE APPROACH

CHAPTER 1: STRUCTURAL ANALYSIS

The Cal Poly Recreation Center would be classified as group A in accordance with IBC Use and Occupancy Classification requirements, referring to IBC 2009-Section 303: "Assembly Group A occupancy includes, among others, the use of a building or structure, or a portion thereof, for the gathering of persons for purpose such civic, social or religious functions; recreation, food or drink consumption or awaiting transportation".

In particular, the Rec Center main gymnasium complies with the definition of an atrium (as per ICC-2009, Section 404.1.1); therefore the Rec Center shall comply with requirements as prescribed in section 404.2 to 404.9

However it is recognized that the Rec Center is a mixed and non-separated occupancy building, as defined by IBC section 508.3.1. As such, it shall comply with all requirements that are applicable to each of the purposes for which the room or space will be occupied.

Use of room / Space	Occupancy Classification
Gymnasium	A-3
Fitness	A-3
Offices / Administration	В
Yoga / Meditation	A-3
Storage rooms	S
Mechanical/Electrical Equipment rooms/spaces	Accessory (Incidental use)

Table 1.1: Occupation Classification

Section 503 of IBC-2009 is used to determine what building construction type the Rec Center can be classified into based on its occupancy type and physical dimensions.

The Rec Center has the following physical dimensions:

- a) Number of stories: 2
- b) Height: 65 ft (average height of highest roof)
- c) Total area: 165 715 Square ft

Based on the physical dimensions, the Rec Center can be classified to be Type I-B building construction in accordance with IBC-2009, Table 503. Refer to Table 1.2 below for details.

I	TABLE 503 ALLOWABLE BUILDING HEIGHTS AND AREAS* Building height limitations shown in feet above grade plane. Story limitations shown as stories above grade plane. Building area limitations shown in square feet, as determined by the definition of "Area, building," per story											
						ТҮРЕ	OF CONSTRUC	TION				I
			TYP		TYP	EI	TYP		TYPE IV	TYP	EV	Ļ
			A	В	A	В	A	В	HT	A	В	ł
		HEIGHT(feet)	UL	160	65	55	65	55	65	50	40	ł
•	GROUP						IE\$(\$) A (A)					
	A-I	S A	UL UL	5 UL	3 15,500	2 8,500	3 14,000	2 8,500	3 15,000	2 11,500	1 5,500	
_	A-2	S A	UL UL	11 UL	3 15,500	2 9,500	3 14.000	2 9,500	3 15.000	2 11.500	1 6.000	
	A-3	S A	UL UL	뱂	3 15,500	2 9,500	3 14,000	2 9,500	3 15,000	2 11,500	1 6,000	
	A-4	S A	UL UL	11 UL	3 15,500	2 9,500	3 14,000	2 9,500	3 15,000	2 11,500	1 6,000	
	A-5	s	υL	υL	UL	μĻ	υL	υĽ	υL	ür	υĽ	
L	в	S A	UL UL	UL UL	5 37,500	3 23,000	5 28,500	3 19,000	5 36,000	3 18,000	2 9,000	İ
	E	S A	UL UL	5 UL	3 26,500	2 14,500	3 23,500	2 14,500	3 25,500	1 18,500	1 9,500	
	F-1	S A		11 UL	4 25,000	2 15,500	3 19,000	2 12,000	4 33,500	2 14,000	1 8,500	
	F-2	S A	UL UL	11 11	5 37,500	3 23,000	4 28,500	3 18,000	5 50,500	3 21,000	2 13,000	

Table 1.2: Extract from Table 503: Allowable Building Heights and Areas

However with addition of fire protection features, there is a need to check if other building types would have been allowed.

IBC section 504.2 allows for the values specified in Table 503 for maximum building height to be increased by 20 ft and the maximum number of stories to be increased by one, where a building is equipped throughout with an approved automatic sprinkler system in accordance with IBC section 903.1.1.1.

IBC section 506.1, the building areas limited by IBC Table 503 shall be permitted to be increased due to frontage (I_f) and automatic sprinkler system protection (I_s) in accordance with the following formula:

$$A_a = \{A_t + [A_t x I_f] + [A_t x I_s]\}$$

Where a building has more than 25% of its perimeter on a public way or open space having a minimum width of 20 ft, the frontage increase shall be determined in accordance with:

 $I_f = [F/P-0.25] W/30$

Where:

F= Building perimeter that fronts on a public way or open space having 20 ft open minimum width.

P= Perimeter of entire building

W= Width of public way or open space

When a building is equipped throughout with an approved automatic sprinkler system in accordance with IBC Section 903.3.1.1, the building area limitation in Table 503 is permitted to be increased by an additional 200 % for building with more than one story above grade plane.

In our analysis, it appears that the total area of the Rec Center is the driving factor of the building type determination. Calculations were performed to determine the increased areas due to the installation of an approved automatic sprinkler system throughout the building.

Table 1.3 gives a summary of the increased areas of other construction types.

Summary of increased tabular values:

Table 1.3: Summary of Increased Areas for Building Construction Types due to Automatic Sprinkler System Installation

Occupancy Groups	Ту	pe II	Туре III		Туре	Тур	e V			
	A B		A	В	IV	A	В			
	Group A-3									
Tabular A	15500	9500	14000	9500	15000	11500	6000			
Increased A	49083	30083	44333	30083	47500	36416	19000			
			Group	В						
Tabular A	37500	23000	28500	19000	36000	18000	9000			
Increased A	118750	72833	90250	60166	114000	57000	28500			

The increased areas and story heights due to frontage and automatic sprinkler system installation revealed that no other building construction types would have been allowed in accordance with IBC provisions; therefore the design selection limiting factor is the building floor area.

FIRE RESISTANCE RATING OF CONSTRUCTION ELEMENTS

Building elements of the Rec Center shall have a fire-resistance rating not less than that specified in IBC-2009, Table 601 and applicable provision of Section 703.2; and non-load bearing exterior walls shall have a fire-resistance rating not less than the specified in Table 602.

Building Element	Fire Resistance Ratings
Primary structural frame	2
Exterior bearing walls	2
Interior bearing walls	2
Exterior nonbearing walls & partitions	See Table 602
Interior nonbearing walls & partitions	0
Floor construction & secondary members	2
Roof construction & secondary members	1

Table 1.4: Extract from IBC Table 601: Fire Resistance Rating

Table 1.5: Extract from IBC Table 602: Fire Resistance Rating

	FIRE-RESISTANCE RATING REQUIREMENTS FOR EXTERIOR WALLS BASED ON FIRE SEPARATION DISTANCE.										
I	FIRE SEPARATION DISTANCE =x (feet)	TYPE OF CONSTRUCTION	OCCUPANCY GROUPH'	OCCUPANCY GROUP F-1, M, S-19	OCCUPANCY GROUP A, B, E, F-2, I, R, S-29, ub						
	$X \le 5^{\circ}$	All	3	2	1						
	5≤X <10	IA Others	3 2	2 1							
	$10 \le X < 30$	IA,IB IIB, VB Others	2 1 1	1 0 1	14 0 14						
	$X \ge 30$	All	0	0	0						

TADLE 600

For SI: 1 foot = 304.8 mm.

IBC-2009, Section 602.1.1 prescribes minimum requirements as the following: "a building or portion thereof shall not be required to conform to the details of a type of construction higher than that type which meets the minimum requirements based on occupancy even though certain features of such a building actually conform to a higher type of construction".

Building elements in construction Type I-B are of noncombustible materials. The Rec Center building elements shall meet the following minimum fire-resistance ratings in accordance with IBC requirements as shown in Table 1.4 and 1.5.

The following building elements in the Rec Center were selected for assessment:

a) Columns:

Columns are part of the primary structure of the Rec Center; columns are of different physical properties, but they are all protected with a spray applied fire resistive material to meet required fire rating of 2 hours (refer to Table 1.4) and enclosed in concrete, metal cover, glass fiber reinforced gypsum for interior steel columns (GFRG) or in glass fiber reinforced concrete (GFRC) for exterior columns.as shown in the drawings below:

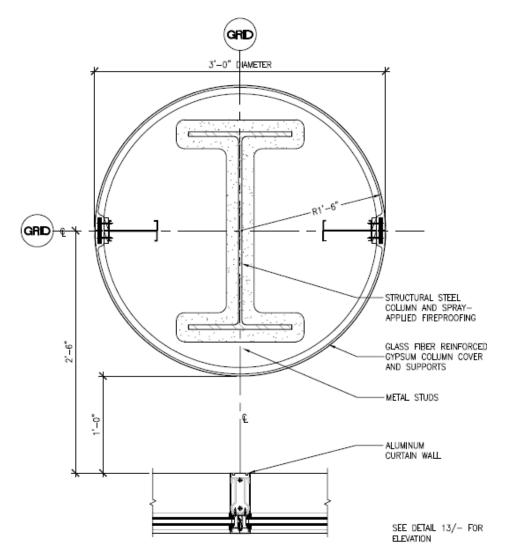


Figure 1.1: Typical Interior CFRG Column Cover

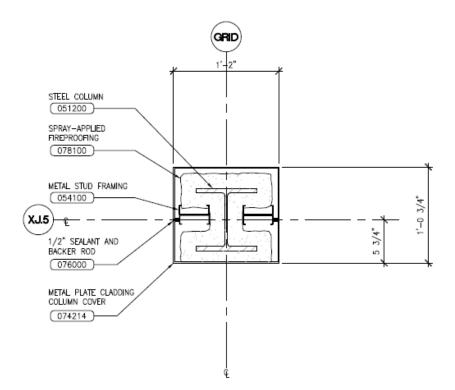


Figure 1.2: Typical Interior Metal Column Cover

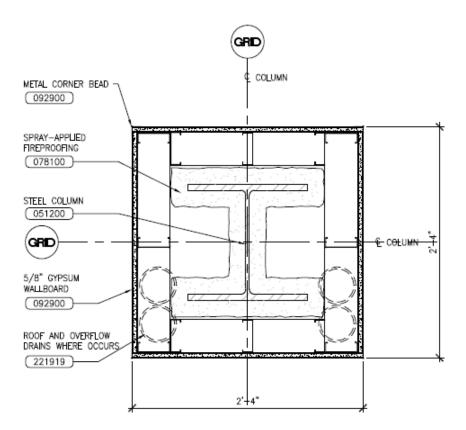


Figure 1.3: Typical Gypsum Wallboard Column Cover

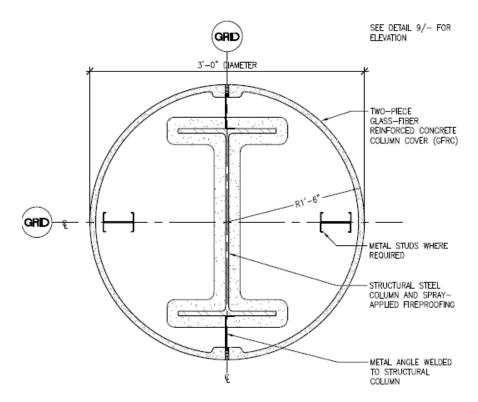


Figure 1.4: Typical Exterior GFRC Column Cover

b) Beams

Columns and beams part of the primary structure are sprayed with a fire resistant material in order to meet the 2 hours fire-resistance rating as required. In addition to SFRM some beams are enclosed in metal cover as shown in the drawing below:

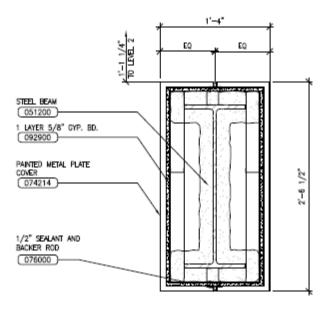


Figure 1.5: Typical Beam Metal Cover

c) Floor and Roof Assemblies

Floor and roof assemblies are rated for 2 hours; different designs are used in order to meet the required fire-resistance of 2 hours. Depending on type of ceiling, suspended floor/ceiling are covered with 5/8" gypsum wallboard or with 7/8" plaster over metal lath

The following drawings illustrate different roof and floor designs used at the Rec Center.

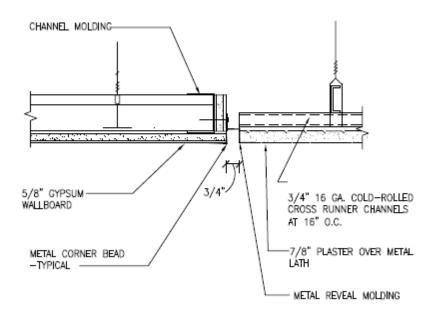


Figure 1.6: Typical Suspended Plaster/Gypsum Wallboard

d) Exterior and Interior Walls

The loading bearing interior and exterior walls are constructed with 2 hours fire-resistance. Several designs are used to achieve the required fire-resistance rating, some walls have 5/8" gypsum wallboard cover over the metal stud framing (Component additive method)



Figure 1.7: Typical Metal Plate Wall Cladding

e) Partitions

There are no fire-resistance requirements for non-load bearing partitions as per IBC-2009, Table 601. However the Rec Center building has non-rated partitions, 1 hour and 2 hour fire-rated (UL system) partitions. See Appendix B for non-rated typical details.

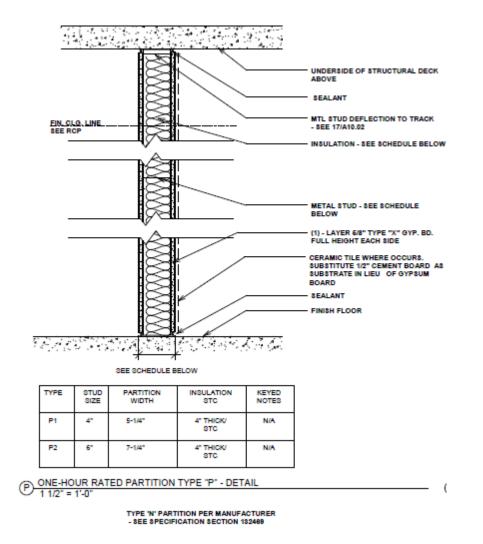


Figure 1.8: Typical 1 Hour Rated Partition Details

CHAPTER 2: FIRE ALARM AND DETECTION SYSTEM

TYPES AND OPERATING CHARACTERISTIC OF FIRE ALARM SYSTEM

The fire alarm system in the Rec Center is made of addressable initiating devices and notification appliances. Each device has got a specific electronic address, at any point of time the fire alarm control panel (FACP) gets feedback from those devices and each device status can be checked on the FACP display panel and also is displayed on the fire alarm annunciator display panel. The fire alarm control panel differentiate between three types of signals:

- a. Alarm signals: which indicate a fire or fire signature conditions; the fire alarm control panel activates notification appliances (audible and visual) to alert occupants to evacuate. The signals are automatically transmitted to the proprietary supervising station to organize appropriate intervention.
- b. Supervisory signals: which are indicative of a need for action in connection with other systems connected to the fire alarm system; the FACP relay automatically the signal to the proprietary supervising station located at the campus police department. The operator in attendance informs the campus Electrical Service Department in order to take appropriate measures (fix the problem).
- c. Trouble signals: these signals are initiated by a device or a system to indicate a fault in the monitored device or system. The signals get transmitted to the operator in the proprietary supervising station to organize intervention.


The fire alarm system also interfaces with other auxiliary systems, such as elevator recall system, and smoke management system, which are activated in fire conditions.

The Rec Center fire alarm system is a building fire alarm system as defined in NFPA72 (2010 edition) §**3.3.95.4.1** that is connected to a proprietary supervising station alarm system connecting all the individual building fire alarm systems installed on the Cal Poly campus. The supervising station is located in the university police department building. There are operators in attendance at all times supervising, monitoring and responding to the campus individual building fire alarm system signals.

The campus Electrical Service Department is in charge of maintenance of all the campus building fire alarm systems.

The main purpose of the Rec Center building fire alarm system is to activate local audible and visible alarm notification appliances to notify the occupants that they must evacuate the protected building in a fire condition and to send fire alarm signal to the supervising station.

The building fire alarm system uses Honeywell model NFS2-640 fire alarm control panel; located in the same room as the main electric power supply cabinets. This room is locked and access is limited to authorize people only.

The NFS2-640 intelligent Fire Alarm Control Panel is part of the ONYX[®] Series of Fire Alarm Controls from NOTIFIER. In stand-alone or network configurations, NOTIFIER claims that this product meets virtually every application requirements. The model is designed with modularity and for ease of system planning, the NFS2-640 can be configured with just a few devices for small building applications, or for a large campus application. The model NFS2-640 is Listed to UL Standard 864, 9th edition.

NFS2-640 Figure 2.1: Typical FACP NFS2-640 Installed in the Recreation Center

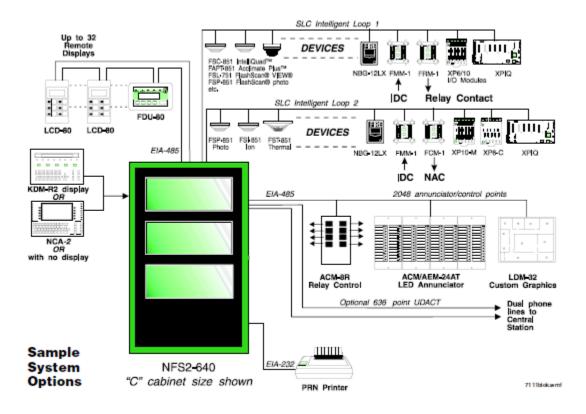


Figure 2.2: Typical Sample Connections of NFS2-640 FACP

A fire alarm annunciator panel is conveniently located in the reception area, behind the front desk counter where selected devices status are displayed. In this location, maintenance people and first fire respondents can assess signal conditions of the building fire alarm system and coordinate actions accordingly.

TYPES AND LOCATION OF INITIATING DEVICES

The initiating devices are located in several rooms and on each floor area.

Most of the initiating devices used in the Rec Center fire alarm system are from a single manufacturer .i.e. Honeywell; this has many advantages as it ensures compatibility, easy integration of the system as whole; hence makes maintenance planning easier as spares management is simplified and provided by one single supplier.

The following devices are installed in the Rec Center building fire alarm system:

a) Smoke Detector:

NOTIFIER (by Honeywell): Low-Profile Intelligent Photoelectric Smoke Detector: FSP-851. NOTIFIER 851 Series intelligent (addressable) plug-in smoke detectors with integral communication and detector sensitivity can be programmed in the control panel software. Sensitivity is continuously monitored and reported to the panel. Point ID capability allows each

FSP-851 with B710LP base

detector's address to be set with decade address switches, providing exact detector location for selective maintenance when chamber contamination reaches an unacceptable level. The FSP-851 photoelectric detector's unique optical sensing chamber is engineered to sense smoke produced by a wide range of combustion sources. FSP-851 detectors are compatible with all NOTIFIER intelligent Fire Alarm Control Panels (FACP).

Figure 2.3: Typical Area Smoke Detector in Recreation Center Fire Alarm System

NOTIFIER model B710LP base is the typical addressable and clip flanged type mounting base used for area smoke and heat detectors installed in the Recreation Center. To the exception of smoke detectors installed inside of air duct, which use B501 type mounting base.

b) Duct-type Smoke Detector:

NOTIFIER (by HoneyWell): Intelligent Photoelectric Duct Smoke Detector: FSD-751PL

NOTIFIER FSD-751PL Intelligent (addressable) Photoelectric Smoke Duct Detectors provide lowflow technology that enables duct smoke detection throughout a broad range of airflow environments in HVAC applications. The low-flow technology can detect smoke at air speed velocities of 100 feet per minute (0.5 m/sec) or greater, while continuing the same reliable performance to 4,000 feet per minute (20.32 m/sec). The intelligent low-flow duct detectors sample air currents passing through a duct and gives dependable performance for shutdown of

fans, blowers, and air conditioning systems, preventing the spread of toxic smoke and fire gases through the protected area. FSD-751PL is compatible with all NOTIFIER addressable panels.

Figure 2.4: Typical Duct Detector in Recreation Center Fire Alarm System

c) Heat Detector:

NOTIFIER (by HoneyWell): Intelligent Heat Detector: FST-851.

NOTIFIER FST-851 Series intelligent plug-in heat detectors with integral communication provide features that surpass conventional detectors. Detector sensitivity can be programmed in the control panel software. Sensitivity is continuously monitored and reported to the panel. Point ID capability allows each detector's address to be set with decade address switches, providing exact detector locations for selective maintenance when chamber contamination reaches an unacceptable level. FST-851 Series thermal detectors use an innovative thermistor sensing circuit to produce 135°F/57°C fixed-temperature (FST- 851). These thermal detectors provide cost

FST-851 Series in B710LP base

effective, intelligent property protection in a variety of applications. FST-851 Series detectors are compatible with all NOTIFIER Intelligent Fire Alarm Control Panels (FACPs).

Figure 2.5: Typical Heat Detector in Recreation Center Fire Alarm System

d) Manual Fire Alarm Box:

NOTIFIER (by HoneyWell) Intelligent Manual Pull Station: NBG-12LX NOTIFIER model NBG-12LX is a state-of-the-art, dual-action (i.e., requires two motions to activate)

The NBG-12LX

pull station that includes an addressable interface for most NOTIFIER intelligent control series panels. Because the NBG-12LX is addressable, the control panel can display the exact location of the activated manual station. This leads fire personnel quickly to the location of the alarm.

Figure 2.6: Typical Manual Fire Alarm Box in Recreation Center Fire Alarm System

e) Wet-pipe Fire Sprinkler Heads:

The entire Center is fully covered by a water-based fire suppression system. The sprinkler heads are thermal elements that are activated by heat. When a sprinkler head is activated, water flows through broken thermal glass; and hence a flow switch installed in the sprinkler riser manifold connected to the building FACP initiates an alarm signal.

Water-based fire suppression system installed in the Rec Center is discussed in chapter 3.

f) Supervisory Signal Initiating Devices

I. Gate valve OSY monitoring switch: SYSTEM SENSOR, model OSY2, is equipped with tamper resistant cover screws to prevent unauthorized entry. Inside, two sets of SPDT

(Single pole, double throw- a simple type of changeover electrical switch) synchronized switches are enclosed in a durable terminal block to assure reliable performance. There is also a 100 percent synchronization with the installed fire alarm control panel.

Figure 2.11: Typical Gate Valve OSY2 Tamper Switch for Recreation Center Fire Alarm

II. Flow Switch and Tamper Switch: POTTER, model VSC.

The exclusive and dedicated flow switch designed for the riser manifolds has been tested and Listed for use in this specific configuration by UL and FM. The riser manifold connects the sprinkler valve to the rest of wet piping system. The flow switch and tamper switch in a single assembly provides the necessary signals (alarm, supervisory and trouble). The model VSC is suitable for indoor or outdoor use with factory installed gasket and die-cast housing:

- NEMA 4/IP55 rated enclosure use with appropriate conduit fitting.
- Temperature range: 40°F to 120°F (4.5°C to 49°C)

Figure 2.12: Typical Sprinkler Riser Manifold

The following table summarizes the type and location of signaling devices in the Rec Center building:

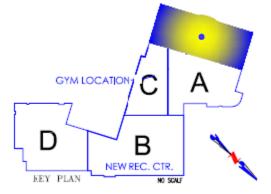


Figure 2.13: Rec Center Key Plan – Zone Details (E is Highlighted)

The table below shall be read with reference to floor maps in Appendix A

Table 2.1: Initiating Devices installed in the Recreation Center

Device Type Numbers of devices					
First Floor	Zone A	Zone B	Zone C	Zone D	Zone E
Area smoke detectors	0	6	15	1	6
Duct-type air smoke detectors	0	0	1	0	1
Heat detectors	0	1	2	0	0
Manual fire alarm box (manual pull station)	6	3	4	4	1

Device Type	Numbers of devices				
Flow switches and Tamper switches	0	2 and 2	0	0	1 and 1
Second Floor	Zone A	Zone B	Zone C		Zone E
Area smoke detectors	4	6	7		0
Duct-type air smoke detectors	0	0	0		0
Heat detectors	0	0	0		0
Manual fire alarm box (manual pull station)	1	2	1		1
Flow switches and Tamper switches	0	0	0		0
Roof		С	ommon Zo	one	
Duct-type air smoke detectors			8		
Manual fire alarm box (manual pull station)			4		

LOCATION, SPACING AND PLACEMENT OF FIRE DETECTORS

The general requirements stipulated in NFPA72, chap 17 will be used in this section to study compliance of fire detectors installed in the Rec Center. We have recognized that the building fire alarm system was designed in accordance with NFPA 72-2007 edition, however for our analysis we are going to use NFPA 72-2010 as tasked.

NFPA 17.4.5 stipulates that initiating devices shall be installed in all areas, compartments, or locations where required by other governing laws, codes, or standards. NFPA 72, chapter 17 answers the questions relative to how many devices are required and how they should be installed.

In the absence of performance objectives of the fire alarm system installed; we can assume however that the system design followed at least the code prescriptive requirements. This assumption enables us to assess the location, spacing and placement of the signaling devices based purely on the prescriptive requirements under applicable sections of NFPA72, chapter 17.

We will assess location, spacing and placement of each installed initiating device in the following order:

- Area smoke detectors;
- Duct-type smoke detectors;
- Heat detectors;
- Manual fire alarm boxes (manual pull station); and
- Devices used for supervisory signals.

The technical specifications of typical initiating devices installed in the Rec Center are summarized below:

a) Smoke detector:

Spot-type, addressable. Photoelectric detector, UL and FM approved for nominal spacing of 30 ft (7.14 m) for ceiling height up to 10 ft (3.148 m) and higher.

There are installed either ceiling mounted or inside of return air ducts:

i. Ceiling mounting

NFPA 72, 2010 edition, §**17.7.3.2.1**: Spot-type smoke detectors shall be located on the ceiling or, if on a sidewall, between the ceiling and 12 in. (300 mm) down from the ceiling to the top of the detector.

ii. Inside of return air ducts

NFPA 72, 2010 edition, §17.7.5.4.2.2: Unless otherwise modified by 17.7.5.4.2.2(A) or 17.7.5.4.2.2(B), if the detection of smoke in the return air system is required by other NFPA standards, a detector(s) listed for the air velocity present shall be located where the air leaves each smoke compartment, or in the duct system before the air enters the return air system common to more than one smoke compartment.

A.17.7.5.4.2.2: Detectors listed for the air velocity present can be permitted to be installed at the opening where the return air enters the common return air system. The detectors should be installed up to 12 in. (300 mm) in front of or behind the opening and spaced according to the following opening dimensions [see Figure A.17.7.5.4.2.2(a) through Figure A.17.7.5.4.2.2(c)]:

b) Duct-type smoke detector:

Duct-type smoke detector. Spot-type, photoelectric and addressable. Can operate in duct air velocity: 0.5 to 20.32 m/s and under temperature 32 to 135 $^{\circ}$ C.

NFPA 72, 2010 edition, §**17.7.5.5.2 (2)**: Air duct detectors shall be installed in such a way as to obtain a representative sample of the airstream. This installation shall be permitted to be achieved by rigid mounting to the wall of the duct with the sensing element protruding into the duct.

A.17.7.5.5.2: Where duct detectors are used to initiate the operation of smoke dampers, they should be located so that the detector is between the last inlet or outlet upstream of the damper and the first inlet or outlet downstream of the damper.

The assessment of location, spacing and placement of area smoke detectors were based on the available fire alarm system drawings and site walk downs. The following observations were made.

Refer to Appendix C for detector layout floor plan details.

Table 2.2: Smoke Detectors installed in the Recreation Center

Location	Placement and Spacing	
First Floor		
Zone A		
No area or air duct smoke detectors. This is deemed adequate as area has got manual pull stations and emergency telephones at each exit door.		

Location	Placement and Spacing		
Zone B			
Elevator 2 lobby room 130: L1D016	Located on flat smooth ceiling just above elevator door; placement deemed compliant.		
Elevator 2 machine room: L1D017	Located on flat smooth ceiling, spacing compliant as per room size		
Intramurals office room 134: L1D019	In-duct smoke detector; placement deemed compliant		
Electrical room 136: L1D020 and L1D023	One area smoke detector on ceiling(D020), one in-duct detector; placement deemed compliant as per room size		
Work room: DSD022	In-duct smoke detector, placement deemed compliant		
	Zone C		
Electric room 113: L1D001	Located on flat smooth ceiling, spacing compliant as per room size		
Elevator 1 machine room 115: L1D002	Located on level ceiling with beam height greater than 10 percent of ceiling height. §17.7.3.2.4.2.2(b) applied, compliant to the code		
Elevator 1 lobby room 111: L1D004	Located on smooth ceiling just above elevator 1 door; placement deemed compliant		
Telecom room 114: L1D005, L1D006, L1D007 & L1D008	In-duct smoke detectors, placement deemed compliant		
Control room110C: L1D010	Located on flat smooth ceiling, spacing compliant as per room size		
Men's locker room 117: L1D011,L1D012 & L1D013	In-duct smoke detectors, placement deemed compliant		
Building power supply room 190: L1D014	Above the fire alarm control panel, mounted on flat smooth ceiling, spacing compliant as per room size		
Mechanical room 191: L1D025 and L1D102	One air handling unit smoke detector (D025) and the other area smoke detector located on flat smooth ceiling, placement of smoke detector adequate as per room size		
1 st floor storage room 111: L1D103 and L1D104	Room served by zones (C and E), each zone has two area air smoke detectors. Detectors spacing adequate, extra detectors required		
Zone D			
Electrical room 172: L1D021	Located on flat smooth ceiling, spacing complaint as per room size		
Zone E			

Location	Placement and Spacing		
1 st floor storage room 111: L1D105 and L1D106	Room served by zones (C and E), each zone has two area air smoke detectors. Detectors spacing adequate, extra detectors required		
Equipment room 187: L1D107	Mounted on flat smooth ceiling, placement adequate as per room size		
Corridor C102: L1D108	Mounted on flat smooth ceiling, placement inadequate; detector to be relocated toward the middle of the corridor		
Wrestling room (electrical compartment) 100C and 100D: L1D110, L1D109 and L1D114	Area smoke detectors on flat smooth ceiling (D109 and D110) and one air handling unit smoke detector; placement deemed compliant		
Main gym room 100: L1D113	Air handling unit smoke detector; placement deemed compliant		
	Second Floor		
	Zone A		
Telecom and data room 210: L1D136, L1D137, L1D138, L1D139 and L1D140	In-duct smoke detectors; placement deemed compliant		
	Zone B		
Telecom room 226: L1D044 and L1D045	In-duct detectors, placement deemed compliant		
Electrical room 227: L1D046, L1D047 and L1D048	One area smoke detector on flat smooth ceiling (D046) and two in- duct air smoke detectors; spacing deemed adequate as per room size		
Stretching area 224A: L1D159	Area smoke detector on flat smooth ceiling above elevator door		
Zone C			
Women's restroom room 206: L1D031	In-duct air smoke detector, spacing deemed adequate as per room size		
Electrical room 208: L1D032	Smoke detector located on flat smooth ceiling, spacing adequate as per room size		
Elevator 1 lobby areas: L1D033 and L1D034	Smoke detectors on flat smooth ceiling in passage areas above both East and West elevator doors. Placement adequate		
Storage room 213A: L1D041	In-duct air smoke detector, placement deemed compliant		
Jogging track 2: L1D042	In-duct air smoke detector, placement deemed compliant		

Location	Placement and Spacing		
Zone E			
No area or air duct smoke detectors. This is deemed adequate as the gymnasium has manual pull stations and emergency telephones at each exit door.			
Roof			
Roof electrical room: L1D158	Area smoke detector on flat smooth ceiling, spacing adequate as per room size		
Air Handling Unit 1: L1D117	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 2: L1D118	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 3: L1D119	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 4: L1D120	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 5: L1D121	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 6: L1D122	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 7: L1D123	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 8: L1D124	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 9: L1D125	Duct-type smoke detector, placement deemed adequate		
Air Handling Unit 10: L1D126	Duct-type smoke detector, placement deemed adequate		

c) Heat detectors (Spot type detectors) Spot-type, addressable. Fixed-temperature set point of 135 °F (57 °C). UL approved for 50 feet (15.24 m) center to center and FM approved for 25 feet (7.62 x 7.62 m) spacing.

NFPA72, 2010 edition, §**17.6.3.1.1**: One of the following requirements shall apply: (1) The distance between detectors shall not exceed their listed spacing, and there shall be detectors within a distance of one-half the listed spacing, measured at right angles from all walls or partitions extending upward to within the top 15 percent of the ceiling height. (2) All points on the ceiling shall have a detector within a distance equal to or less than 0.7 times the listed spacing (0.7 S).

The spacing and location were assessed in accordance with the code NFPA72 requirements; the following observations were made:

Table 2.3: Heat Detectors installed in the Recreation Center

Location	Placement and Spacing
Elevator 1 machine room: L1D003 and L1D024	Located on level ceiling with beam height more than 100 mm below ceiling. When §17.6.3.3.1.2 applied, spacing is compliant to the code
Elevator 2 machine room: L1D018	Located on level ceiling with beam height more than 100 mm below ceiling. When §17.6.3.3.1.2 applied, spacing is compliant to the code

d) Manual fire alarm box

Manual pull station. Addressable, suitable for indoors in dry location, ambient temperature range 32 to 120 0 F (0 to 49 0 C). Pushing in and pulling down on the handle for activation. UL and FM approved.

NFPA72, 2010 edition, §**17.14.5**: Manual fire alarm boxes shall be installed so that they are conspicuous, unobstructed, and accessible. NFPA 72, 2010 edition, §**17.14.6**: Manual fire alarm boxes shall be located within 60 in. (1.52 m) of the exit doorway opening at each exit on each floor.

It was observed that placement and location of manual fire alarm boxes (manual pull stations) were compliant to code requirements:

Location	Placement			
First Floor				
Zone A				
Vestibule area 106: L1M001 and L1M098	Located next to West and East exit doors			
Wellness reception area 108: L1M002	Located next to East exit door			
Training room 109: L1M03	Located next to East exit door			
Pre-function room 101: L1M04	Located next to East exit door			
Main Gym room 100: L1M097	Located next to East exit door			
Zone B				
Lobby room 110: L1M06 and L1M07	Located next to both North exit doors			
Circulation (lobby south) area 130: L1M08	Located next to South exit door			

Table 2.4: Manual Fire Alarm Boxes (Manual pull stations) installed in the Recreation Center

Location	Placement							
Zone C								
Hallway area 123: L1M09	Located next to South exit door							
Men's vestibule room 117A: L1M010	Located next to South exit door							
Women's vestibule room 118A: L1M011	Located next to South exit door							
Passageway area 102: L1M012	Located next to South exit door							
	Zone D							
Circulation area 156B: L1M013	Located next to exit West door							
MAC room 170: L1M014 and L1M015	Located next to both South exit doors							
MAC lobby area 170D: L1M016	Located next to exit South door							
	Zone E							
Event storage room 185: L1M05	Located next to North exit door							
Pool pump room 180: L1M017 and L1M018	Located next to both West and East exit doors							
Pool equipment room 184: L1M019	Located next to East exit door							
Main Gym room 100: L1M096	Located next to West exit door							
	Second Floor							
	Zone A							
North stairwell: L1M041	Located at exit door connecting to vestibule 106							
	Zone B							
Passage stair 201: L1M042	Located next to stairs leading to first floor							
Cardio fittingness 2 room 224: L1M023	Located next to stairs leading to first floor							
	Zone C							
Passage 202: L1M102	Located next South exit door							
Zone E								
North Gym 200B: L1M160	Located next to West exit door							
Roof								
Roof West: L1M131	Located next to stairs							

Location	Placement
Roof East: L1M132	Located next to stairs
Roof North-East: L1M133	Located next to AHU 3
Roof South: L1M134	Located next AHU 2

e) Automatic sprinkler system:

The entire building is protected by an automatic sprinkler system. The sprinkler heads installed are all VIKING with the following head designs:

- Concealed fire sprinkler heads used in suspended metal ceiling
- Upright fire sprinkler heads used in exposed areas with no suspended ceiling like in gymnasium rooms
- Pendant fire sprinkler heads used in suspended ceiling where surface mount ceiling obstruction exists
- Recessed fire sprinkler heads used in suspended ceiling where no surface mount obstruction exists.
- f) Sprinkler flow switch alarm initiating devices:
 Flow switch model: POTTER model VSC are designed, tested and UL Listed and FM approved for alarm initiating devices.

Location	Placement
East sprinkler connection: L1M023 and L1M026	Each connected to 2" wet-pipe riser manifolds; code compliant
West sprinkler valve connection: L1M028	Connected to 2" wet-pipe riser manifold, code compliant

- g) Sprinkler control valve supervisory and trouble signal-initiating devices:
 - Sprinkler control valve Outside Screw and York (OSY) tamper switch: SYSTEM SENSOR OSY2 model; reliable performance and UL Listed and FM approved.
 - Riser manifold flow switch POTTER, model VSC is equipped with tamper switch cover, UL Listed and FM approved for the application.

Location	Placement
Main fire water connection: L1M095	Tamper switch connected to main water supply gate valves; code compliant
East sprinkler valve connection: L1M024 and L1M027	Tamper switch covers of flow switches L1M023 and L1M026 respectively; code compliant
West sprinkler valve connection: L1M029	Tamper switch encased in flow switch L1M028; code compliant

Table 2.6: Sprinkler Control Valve Supervisory and Trouble Signal-Initiating Devices

ALARM AND NOTIFICATION APPLIANCES

It is a code requirement that actuation of notification appliances, emergency voice communications, fire safety functions, and annunciation at the protected premises shall occur within 10 seconds after the activation of an initiating device. NFPA 72-2010, §**23.8.1.1**.

The Rec Center fire alarm system is equipped with notification appliances in order to provide audible, visual and voice stimuli for initiating emergency actions and to provide information to staffs, users and to emergency response personnel from fire department or dispatch from the supervising station.

A. Types of Signaling Notification Appliances

The following notification appliances are installed in the Recreation Center fire alarm system:

1. Speaker-Strobes (Audible/visible devices)

SYSTEM SENSOR (SpectrAlert Advance) SPSCW model; a combination speaker strobe listed to UL

and approved for fire protection notification systems. These speakers have field selectable sound output power taps which are selected by rotary switches. The Center fire alarm system uses typically two sound outputs settings 1W and ½ W with 82 and 79 dB @10 ft SPL respectively. The strobe light consists of a xenon flash tube and associated lens/reflector system of standard candela range (15 cd to 115 cd).

There can be wall or ceiling mounted; indoors or outdoors with appropriate weather-resistant back box.

Figure 2.13: Typical speaker strobe installed in the Recreation Center

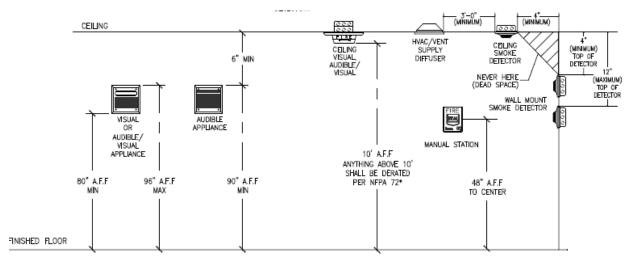
2. Horn / Strobes

SYSTEM SENSOR (SpectrAlert Advance) model. Three different models are used in the Center fire

alarm installation depending whether they are wall or ceiling mounted, of red or white colors.

These models comply with the American with Disabilities Act requirements for visible signaling appliances, flashing at 1 Hz over the strobe operating voltage range. They have 11 field selectable candela settings. The strobe consists of a xenon flash tune and associated lens/reflector system. The horn has three audibility options and an option to switch between a temporal and a non-temporal (continuous) pattern. Options are set by a multiple position switch. The horn is rated at 88+ dBA at 16 Volts.

Figure 2.14: **Typical Horn/Strobe installed in the Recreation Center**


B. Location of Signaling Notification Appliances

To convey reliably the intended alarm information to the intended personnel and users of the facility during emergency; the notification appliances installed shall meet requirements of sections 18.4 and 18.5 of NFPA 72.

Audible appliances location shall meet NFPA 72-2010, §18.4.8.1: if ceiling heights allow, and unless otherwise permitted by 18.4.8.2 through 18.4.8.5, wall-mounted appliances shall have their tops above the finished floors at heights of not less than 90 in. (2.29m) and below the finished ceilings at distances of not less than 6 in. (150 mm).

Visible appliances location shall meet NFPA 72-2010, §**18.5.4.1**: wall-mounted appliances shall be mounted such that the entire lens is not less than 80 in. (2.03 m) and not greater than 96 in. (2.44 m) above the finished floor or at the mounting height specified using the performance-based alternative of **18.5.4.5**.

Recreation Center device mounting elevation details are shown in the figure below, which clearly indicate that NFPA 72 audible and visible requirements were met.

* DE-RATED STROBES SHALL MEET THE REQUIREMENTS OF SECTION 7.5.4.3. "PERFORMANCE - BASED ALTERNATIVE".

Figure 2.15: Device Mounting Elevation Details in the Recreation Center

C. Spacing and Placement of Notification Appliances

Refer to Appendix C for details of notification appliances installed in the Rec Center.

1) Audible Signaling:

The Rec Center can be classified as places of assembly in accordance with NFPA 72-2010, Table A.18.4.3.

Table 2.7: Extract from NFPA 72-2010, Table A.18.4.3 Average Ambient Sound Level

TABLE A.18.4.3	Average	Ambient	Sound	Level	According
to Location					

Location	Average Ambient Sound Level (dBA)
Business occupancies	55
Educational occupancies	45
Industrial occupancies	80
Institutional occupancies	50
Mercantile occupancies	40
Mechanical rooms	85
Piers and water-surrounded structures	40
Places of assembly	55
Residential occupancies	35
Storage occupancies	30
Thoroughfares, high-density urban	70
Thoroughfares, medium-density urban	55
Thoroughfares, rural and suburban	40
Tower occupancies	35
Underground structures and windowless buildings	40
Vehicles and vessels	50

Audible appliances shall be at least 15 dBA above average ambient sound level. A typical speaker installed in the Center is of minimum sound output ($\frac{1}{2}$ W) and 79 dBA. This is greater than the recommended minimum value for the application: 55 + 15 = 70 dBA. Any horn/strobe installed is rated at 88 dBA, which indicates the minimum sound level requirement is met in the entire building.

Using the rule of thumb of 6 dBA method .i.e. in any open room, where sound does not reflect off surfaces, SPL decreases by about 6 dB every time the distance from the source is doubled.

The gymnasium is used in our analysis to illustrate compliance of notification appliance spacing and placement. The gymnasium room 120 is equipped with 7 audible-strobe (speaker/strobe) combination appliances wall mounted of 82 dBA. So as shown in figure 2.16 below; the room is adequately covered.

Each square is covered by an audible/strobe of 110 cd and 88 dBA sound level horn output

Each square represents a coverage of 110 cd audible/strobe.

Figure 2.16: Typical Center Gymnasium Audible/Visible Appliances Coverage

2) Visible signaling:

Spacing shall be in accordance with either Table 18.5.4.3.1(a) for wall-mounted visible appliances or Table 18.5.4.3.1(b) for ceiling-mounted visible appliances.

Table 2.8: Typical Spacing Requirements for Visible Appliances, NFPA 72-2010

Maximun	n Room Size		Required Light Output tive Intensity (cd)]
ft	m	One Light per Room	Four Lights per Room (One Light per Wall)
20×20	6.10 × 6.10	15	NA
28×28	8.53×8.53	30	NA
30×30	9.14×9.14	34	NA
40×40	12.2×12.2	60	15
45×45	13.7×13.7	75	19
50×50	15.2×15.2	94	30
54×54	16.5×16.5	110	30
55×55	16.8×16.8	115	30
60×60	18.3×18.3	135	30
63×63	19.2×19.2	150	37
68×68	20.7×20.7	177	43
70×70	21.3×21.3	184	60
80×80	24.4×24.4	240	60
90×90	27.4×27.4	304	95
100×100	30.5×30.5	375	95
110×110	33.5×33.5	455	135
120×120	36.6×36.6	540	135
130×130	39.6×39.6	635	185

 TABLE 18.5.5.4.1(a)
 Room Spacing for Wall-Mounted

 Visible Appliances
 Provide Comparison

NA: Not allowable.

The strobes installed in the Center gymnasium are 110 cd, however 95 cd would have been adequate. The coverage as illustrated in figure 2.16 indicates that the spacing of those strobes is code compliant.

D. Voltage Drop Calculations

Due to the size of the facility and number of initiating devices and notification appliances; the building fire alarm system is equipped with remote power supplies in each floor and covering specific areas power needs.

The gymnasium is used for voltage drop calculations as it contains the highest number of strobes of high effective intensity; eight speaker-strobes of 110 cd are connected on this Notification Appliance Circuit powered from RPS located in Electrical room 136.

$$V_{load} = V_{term} - (I_{load}R_{cond})$$

$$R_{cond} = \frac{(V_{term} - V_{load})}{I_{load}}$$

Where:

-V_{load} = 16 volt min operating voltage of typical appliance

 $-V_{tem}$ = 20.4 volt min operating voltage of control unit

-I_{load} = rated current draw of all connected appliances

-R_{cond} = total conductor resistance in ohms

Table 2.9: Extract from Typical SYSTEM SENSOR Speaker-Strobe Average Current Ratings

UL Max. Strobe	Current Dra	w (mA R/ 8–17.5		16-33 \	/olts
	Candela	DC	FWR	DC	FWR
Standard	15*	123	128	66	71
Candela Range	15/75*	142	148	77	81
	30 *	NA	NA	94	96
	75 *	NA	NA	158	153
	95 *	NA	NA	181	176
	110	NA	NA	202	195
	115	NA	NA	210	205
High	135	NA	NA	228	207
Candela Range	150	NA	NA	246	220
	177	NA	NA	281	251
	185	NA	NA	286	258

UL Current Draw Data

Total I_{load} = 8 x 0.202 = 1.616 A; therefore

$$R_{cond} = \frac{(V_{term} - V_{load})}{I_{load}} = \frac{(20.4 - 16)}{1.616} = 2.72 \text{ ohms}$$

The last strobe on this circuit is approximately 135 meters from the remote power supply (in electrical room 136), hence total wire length would be 135 x 2= 270 meters. The resistance of conductor per km would be:

$$R_{cond} = \frac{(2.72 \ x \ 1000)}{270} = \frac{10.07 \ ohms}{Km}$$

Therefore the required wire gauge size would be selected from Table 8 of NEC (NFPA 70):

			Conductors					Direct-Current Resistance at 75°C (167°F)							
			Str	anding			Ow	erall			Cop	per			
Size (AWG	Ar	ea		Dia	meter	Dian	eter	Are	a	Unce	ated	Cos	ated	Alu	ninum
or kcmil)	mm ²	Circular mils	Quantity	mm	in.	mm	in.	mm ²	in.2	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT
18 18	0.823 0.823	1620 1620	1 7	0.39	0.015	1.02 1.16	0.040 0.046	0.823 1.06	0.001 0.002	25.5 26.1	7.77 7.95	26.5 27.7	8.08 8.45	42.0 42.8	12.8 13.1
16 16	1.31 1.31	2580 2580	1 7	0.49	0.019	1.29 1.46	0.051 0.058	1.31 1.68	0.002 0.003	16.0 16.4	4.89 4.99	16.7 17.3	5.08 5.29	26.4 26.9	8.05 8.21
14 14	2.08 2.08	4110 4110	1 7	0.62	0.024	1.63 1.85	0.064 0.073	2.08 2.68	0.003 0.004	10.1 10.3	3.07 3.14	10.4 10.7	3.19 3.26	16.6 16.9	5.06 5.17
12 12	3.31 3.31	6530 6530	1 7	0.78	0.030	2.05 2.32	0.081 0.092	3.31 4.25	0.005 0.006	6.34 6.50	1.93 1.98	6.57 6.73	2.01 2.05	10.45 10.69	3.18 3.25
10 10	5.261 5.261	10380 10380	1 7	0.98	0.038	2.588 2.95	0.102 0.116	5.26 6.76	0.008 0.011	3.984 4.070	1.21 1.24	4.148 4.226	1.26 1.29	6.561 6.679	2.00 2.04
	0.077	10010				0.004	0.100	0.07	0.010	0.000	0.754	0.000	0.707	1.100	1.07

TABLE 8 Conductor Properties

From the Table 2.10; conductor 12 AWG size would be the appropriate minimum allowable size conductor to be used for this application.

If coated copper is used, resistance would be 6.57 ohms/Km; actual voltage drop would then be

$$V_{drop} = 1.616 x \frac{(6.57 x 270)}{1000} = 2.87 V$$

The actual last speaker-strobe voltage would be

 $V_{load} = V_{term} - V_{drop} = 20.4 - 2.87 = 17.53 V,$ higher than minimum requirement of 16V

This indicates that there is enough spare capacity on this NAC.

NOTIFICATION APPLIANCE POWER REQUIREMENTS

The provisions of NFPA72-2010, §10.5 shall apply to power supplies used for the Recreation Center.

The NFPA72-2010, §**10.5.2** prescribes: "All power supplies shall be installed in conformity with requirements of NFPA 70, National Electrical Code, for such equipment and with the requirements indicated in this subsection". And §**10.5.3**: Unless configured in compliance with **10.5.4**, at least two independent and reliable power supplies shall be provided, one primary and one secondary.

The Rec Center fire alarm and detection system is supplied with commercial power as primary supply.

The secondary power supply is provided by batteries dedicated to the building fire alarm and communication systems. The secondary power supply is designed such to provide power automatically to the building fire alarm system within 10 seconds whenever the primary power supply fails to provide the minimum voltage required for proper operation.

The proper amount of battery standby capacity for the Rec Center was calculated to include the normal standby supervisory quiescent load for 24 hours as well as the load during 15 minutes period of alarm.

The secondary power supply to the Rec Center fire alarm system consists of 1x (one) power supply dedicated to the main fire alarm control panel supplying the entire building and 5x(five) remote power supplies for audio/visual notification appliances grouped as follows:

- 1 Remote Power Supply located in electrical room 113 to supply NAC zones A,C,E of first floor
- 1 Remote Power Supply located in electrical room 136 to supply NAC zones B of first floor
- 1 Remote Power Supply located in electrical room 172 to supply NAC zones D of first floor
- 1 Remote Power Supply located in electrical room 206 to supply NAC zones A,C and E of second floor
- 1 Remote Power Supply located in electrical room 227 to supply NAC zones B of second floor

The secondary power to building Emergency Communication System is subdivided into two remote power supplies as follows:

- 1 dedicated supply located in electrical room 113
- 1 dedicated supply located in electrical room 136

The Rec Center fire alarm system uses model FCPS-24S8 (8 amps) remote power supplies with battery chargers for supervision and expanded power driving capability of Notification Appliance Circuits. This model provides regulated and filtered 24 VDC power to NAC and also contains a battery charger capable of charging up to 18 amp-hours batteries. The model is UL-listed, FM, CSFM approved for fire protection system applications.

The following extracts illustrate the calculations performed to determine battery sizes:

AL POLY SLO - STUDE	INT RECREATION CENTER				
AIN FIRE ALARM CONT					
		Standby	Total Standby	Alarm	Total Alarn
uantity Device Type	Model Number	Current	Current	Current	Curren
1 NFS2-640	CPU2-640 w/CPS-24	0.32500	0.32500	0.28500	0.28500
1 NFS2-640	KDM-R2	0.10000	0.10000	0.10000	0.10000
1 Voice	DVC&DVC-KD	0.50000	0.50000	0.50000	0.50000
32 Control Relay	FRM-1	0.00026	0.00816	0.00650	0.20800
11 Duct Det	DNR w/ FSP-851	0.00036	0.00396	0.00686	0.07546
2 Heat Det	FST-851	0.00030	0.00060	0.00650	0.01300
3 Monitor	DIMM	0.00060	0.00180	0.03000	0.09000
4 Monitor	FDM-1	0.00075	0.00300	0.00640	0.02560
9 Monitor	FMM-1	0.00035	0.00315	0.00500	0.04500
4 Pull Station	FMM—101 w/Pull Sta.	0.00038	0.00150	0.00038	0.00150
19 Pull Station	NBG-12LX	0.00038	0.00713	0.00688	0.13063
46 Smoke Det	FSP-851	0.00030	0.01380	0.00680	0.31280
4 Pull Station	NBG-12LOB	0.00000	0.00000	0.00000	0.00000
37 Speaker 25V	Speaker - 1/2 Watt	Tap0.00000	0.00000	0.02000	0.74000
1 Dialer	UDACT	0.04000	0.04000	0.10000	0.10000
7 Relay	PR-1 (Shutdown)	0.00000	0.00000	0.01500	0.10500
23 Remote LED	RA100Z	0.00000	0.00000	0.01000	0.23000
			Standby Load		Alarm Loge
			1.008		2.962
Chandley	and: 1.000 Amon		Alarm Load:	0.060	A
Standby I	oad: 1.008 Amps			2.962	
Standby		. <u>-</u> .	Alarm Time:		Minutes
Total Standby I	.oad: 24.19 Amp*H	iours lot	tal Alarm Load:	0.74	Amp*Hours
Batteries Prov			Available Battery	30.40	
Battery		Lo	ed (ALM + STBY)	24.93	
De-Rated Size(8	30%): 30.40 A.H.		Spare Capacity	5.47	A.H.

Figure 2.17: Battery Sizing for Fire Alarm Control Panel

BATTERY SIZING CALCULATION				
CAL POLY SLO - STUDENT RECREATION CE	NTER			
REMOTE POWER SUPPLY - RPSHI • ELEC RO	OM #136			
	Standby	Total Standby	Alarm	Total Alarm
Quantity Device Type Model Number	Current	Current	Current	Current
1 FCPS-24S8 FCPS-24S8	0.06500	0.06500	0.14500	0.14500
1 S/S (Strobe ONLY) SPSW (15cd)	0.00000	0.00000	0.06600	0.06600
1 S/S (Strobe ONLY) SPSW (75cd)	0.00000	0.00000	0.15800	0.15800
10 S/S (Strobe ONLY) SPSW (110cd)	0.00000	0.00000	0.20200	2.02000
5 Strobe SW (15cd)	0.00000	0.00000	0.06600	0.33000
1 Strobe SW (75cd)	0.00000	0.00000	0.15800	0.15800
		Standby Load		Alarm Load
		0.065		2.877
Standby Load: 0.065	Amps	Alarm Load:	2.877	Amps
Standby Time: 24	Hours	Alarm Time:	15	Minutes
Total Standby Load: 1.56	Amp*Hours To	tal Alarm Load: 🗍	0.72	Amp*Hours
	_			
Batteries Provided: (2) BAT-1270]	Available Battery	5.60	A.H.
Battery Size: 7.00	ГА.Н. 🖬	oed (ALM + STBY)	2,28	A.H.
De-Rated Size(80%): 5.60	A.H.	Spare Capacity	3.32	A.H.

Figure 2.18: Battery Sizing for Remote Power Supply from Elec. Room 136 for Notification Appliances

	SLO - STUDENT F					
	<u>°OWER SUPPLY - R</u>	<u> - 544 • ELEC. H</u>	Standby	Total Standby	Alarm	Total Alarm
Quantity D	evice Type	Model Number	Current	Current	Current	Current
1 F	CPS-24S8	FCPS-24S8	0.06500	0.06500	0.14500	0.14500
6 S	S/S (Strobe ONLY)	SPSW (15cd)	0.00000	0.00000	0.06600	0.39600
3 S	S/S (Strobe ONLY)	SPSW (30cd)	0.00000	0.00000	0.09400	0.28200
4 S	S/S (Strobe ONLY)	SPSW (75cd)	0.00000	0.00000	0.15800	0.63200
5 S	S/S (Strobe ONLY)	SPSW (110cd)	0.00000	0.00000	0.20200	1.01000
11 S	Strobe	SCW (15cd)	0.00000	0.00000	0.06600	0.72600
3 S	Strobe	SCW (30cd)	0.00000	0.00000	0.09400	0.28200
13 S	Strobe	SW (15cd)	0.00000	0.00000	0.06600	0.85800
2 S	Strobe (WP)	SCRK (15cd)	0.00000	0.00000	0.06600	0.13200
				Standby Load		Alarm Load
				0.065		4.463
	Standby Load:	0.065	Amps	Alarm Load:	4.463	Amps
	Standby Time:	24	Hours	Alarm Time:	15	Minutes
T	otal Standby Load:			tal Alarm Load:		Amp*Hours
	Batteries Provided:			Available Battery	5.60	
	Battery Size:	7.00	A.H. Lo	ad (ALM + STBY)	2.68	A.H.
De	e-Rated Size(80%):	5.60	A.H	Spare Capacity	2.92	A.H.

Figure 2.19: Battery Sizing for Remote Power Supply from Elec. Room 115 for Notification Appliances

BATTERY SIZING CALCULATION					
CAL POLY SLO - STUDENT					
REMOTE POWER SUPPLY - F	<u> 198 #2 • ELEC. R</u>		Total Standby	Alarm	Total Alarm
Quantity Device Type	Model Number	Standby Current	Total Standby Current	Current	Current
1 FCPS-24S8	FCPS-24S8	0.06500	0.06500	0.14500	0.14500
1 S/S (Strobe ONLY)		0.00000	0.00000	0.06600	0.06600
	· · · ·	0.00000	0.00000	0.09400	0.09400
1 S/S (Strobe ONLY)	SPSW (30cd)				
1 S/S (Strobe ONLY)		0.00000	0.00000		0.15800
9 S/S (Strobe ONLY)	· · · · ·	0.00000	0.00000	0.20200	1.81800
1 S/S (WP Strobe)	· · · · · · · · · · · · · · · · · · ·		0.00000		0.15800
5 Strobe	SCW (15cd)	0.00000	0.00000	0.06600	0.33000
1 Strobe	SW (15cd)	0.00000	0.00000	0.06600	0.06600
			Standby Load		Alarm Load
			0.065		2.835
Standby Load:	0.085	Amps	Alarm Load:	2.835	Amos
Standby Time:		Hours	Alarm Time:		Minutes
			al Alarm Load:		
Total Standby Load:	1.56	Amp*Hours Tot	al Alarm Load:	0.71	Amp*Hours
Batteries Provided:	(2) BAT-1270	1	Available Battery	5.60	А.Н.
Battery Size:		'А.Н. Lo	ed (ALM + STBY)	2.27	А.Н.
De-Rated Size(80%):		A.H.	Spare Capacity	3.33	А.Н.

Figure 2.20: Battery Sizing for Remote Power Supply from Elec. Room 172 for Notification Appliances

BATTERY SIZING CALCULATION					
CAL POLY SLO - STUDENT		-			
REMOTE POWER SUPPLY - F	PSIS • ELEC RC		Total Standby	Alaura	Total Alarm
Quantity Davidas Turas	Madel Number	Standby	Total Standby	Alarm	
Quantity Device Type	Model Number	Current	Current	Current	Current
1 FCPS-2458	FCPS-24S8	0.06500	0.06500	0.14500	0.14500
2 S/S (Strobe ONLY)	SPSW (15cd)	0.00000	0.00000	0.06600	0.13200
2 S/S (Strobe ONLY)	SPSW (30cd)	0.00000	0.00000	0.09400	0.18800
7 S/S (Strobe ONLY)	SPSW (75cd)	0.00000	0.00000	0.15800	1.10600
4 S/S (Strobe ONLY)	· · · · · · · · · · · · · · · · · · ·	0.00000	0.00000	0.20200	0.80800
4 S/S (WP Strobe)	SPSWK (75cd)	0.00000	0.00000	0.15800	0.63200
4 Strobe	SCW (15cd)	0.00000	0.00000	0.06600	0.26400
3 Strobe	SW (15cd)	0.00000	0.00000	0.06600	0.19800
1 Strobe	SW (30cd)	0.00000	0.00000	0.09400	0.09400
			Standby Load		Alarm Load
			0.065		3.567
Standby Loads	0.065	Arona	Alarm Load:	7 567	America
Standby Load:				3.567	
Standby Time:		Hours	Alarm Time:		Minutes
Total Standby Load:	1.56	Amp*Hours Tot	al Alarm Load:	0.89	Amp*Hours
Batteries Provided:	(2) BAT-1270		Available Battery	5.60	A.H.
Battery Size:			ad (ALM + STBY)	2.45	
De-Rated Size(80%):			Spare Capacity		A.H.
De-Rated 5146(00%).	5.00	2.161.16	oparo oupdony	0.0	1

Figure 2.21: Battery Sizing for Remote Power Supply from Elec. Room 208 for Notification Appliances

BATTERY SIZING CALCULATION					
CAL POLY SLO - STUDENT F	ECREATION CENT	8			
REMOTE POWER SUPPLY - R	PSH3 • ELEC ROO	M 227			
		Standby	Total Standby	Alarm	Total Alarm
Quantity Device Type	Model Number	Current	Current	Current	Current
1 FCPS-24S8	FCPS-24S8	0.06500	0.06500	0.14500	0.14500
10 S/S (Strobe ONLY)	SPSW (110cd)	0.00000	0.00000	0.20200	2.02000
1 S/S (WP Strobe)	SPSWK (75cd)	0.00000	0.00000	0.15800	0.15800
1 Strobe	SW (15cd)	0.00000	0.00000	0.06600	0.06600
-			Standby Load		Alarm Load
			0.065		2.389
Standby Load:	0.065 Ar	mps	Alarm Load:	2.389	Amps
Standby Time:		ours	Alarm Time:	15	Minutes
Total Standby Load:			al Alarm Load:		Amp*Hours
Batteries Provided:	(2) BAT-1270		Available Battery:	5.60	A.H.
Battery Size:			d (ALM + STBY)		A.H.
De-Rated Size(80%):			Spare Capacity	3.44	

Figure 2.22: Battery Sizing for Remote Power Supply from Elec. Room 227 for Notification Appliances

The following extracts will illustrate voltage drop calculations performed for the Recreation Center:

VOLTAGE DROP CALCULAT	ION									12/06/11
			CAL POL	Y SLO	- RECRE	ATION (XENTER			
SYSTEM SENSOR			RPS #1	C ELEC	ROOM #	136				
	DEVICE	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	
		vi		¥2		V3		¥4		QTY
	(AMPS)	QTY	CURR.	QTY	CURR.	QTY	CURR.	QTY	CURR.	TOTAL
Speaker/Strobe (Strobe ONLY)										
SPSW (15cd)	0.066		0.000	1	0.066	l –	0.000		0.000	1
SPSW (75cd) SPSW (110cd)	0.158	8	0.000	2	0.158		0.000		0.000	1 10
Strobe	0.202		1.010	2	0.404		0.000		0.000	10
SW (15cd)	0.066		0.000	5	0.330		0.000		0.000	5
SW (75cd)	0.158		0.000	1	0.158		0.000		0.000	1
TOTAL CURRENT ON CIRCUIT		1.616	AMPS	1.116	AMPS	0.000	AMPS	0.000	AMPS	
TOTAL WIRE LENGTH		445	FT.	300	FT.	0	FT.	0	FT.	
WIRE SIZE		12	AWG	12	AWG	12	AWG	12	AWG	
CIRCULAR MILS		6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	
VOLTAGE DROP		2.38	VOLTS	1.11	VOLTS	0.00	VOLTS	0.00	VOLTS	
VOLTAGE @ END OF CIRCUIT		18.02	VOLTS	19.29	VOLTS		VOLTS		VOLTS	
CIRCUIT LOCATION		1ST FLOO)R	1ST FLOO)R	SPARE		SPARE		
	VOLTACE	DROP	TOTAL CURF		STANCE v 2	1.6				
CIRC. MILS	VOLINGE	DROP -		CIRCULAR						
18 AWG = 1620										
16 AWG = 2580 V	OLTAGE 👁 E	ND =	STARTING C	IRCUIT VO	LTAGE - VO	DLTAGE DR	OP			
14 AWG - 4110	OF CIRC	υ Γ								
12 AWG = 6530	1.100									
			VOLTAGE -							
			VOLTAGE =	,		VOLIAGE)				
OPERATING VOLTAGE RANGE	- FOR 24V	NOTIFICATION	IN APPLIANC	25 10 B	167-337					1

File Name: McCal Poly SLO Rec. Center_2010035[Col Poly SLO_Rec Ctr_RPS #1_VD.xis]/D FORM

Figure 2.23: Voltage Drop Calculations for NAC supplied from Elec. Room 136

			CAL PO	LY SLO	- RECRE	ATION (CTR			
SYSTEM SENSOR		CE SIGNAL CIRCUIT				- RPS#:	2 🕲 ELEC	ROOM	#172	
	DEVICE CURR.					SIGNAL CIRCUIT		SIGNAL CIRCUIT		
	(AMPS)	V5 0TY	CURR.	W6 QTY	CURR.	VTQ	CURR.	VS QTY	CURR.	QTY TOTA
Speaker/Sirobe (Strobe ONL))		00/110		001211					
SPSW (15cd)	0.066		0.000	1	0.066		0.000		0.000	1
SPSW (30cd)	0.094	1	0.094		0.000		0.000		0.000	1
SPSW (75cd)	0.158	1	0.158		0.000		0.000		0.000	1
SPSW (110cd)	0.202	3	0.606	6	1.212		0.000		0.000	9
Speaker/Strobe (WP Strobe C	1									
SPSWK (75cd)	0.158	1	0.158		0.000		0.000		0.000	1
Strobe	0.000	2	0.470		0.400		0.000		0.000	
SCW (15cd) SW (15cd)	0.066	2	0.132	3	0.198	l	0.000		0.000	5
aw (locu)	0.066		0.000		0.000		0.000	<u> </u>	0.000	
TOTAL CURRENT ON CIRCUIT		1.148	AMPS	1.542	AMPS	0.000	AMPS	0.000	AMPS	
TOTAL WIRE LENGTH		400	400 FT.		FT.	0	FT.	0) FT.	
WIRE SIZE		12	AWG	12 AWG 12 AWG		12 AWG				
CIRCULAR MILS		6530	CIRC MILS	6530	CIRC MILS	6530 CIRC MILS		6530 CIRC MILS		
VOLTAGE DROP		1.52	VOLTS	2.50	VOLTS	0.00	VOLTS	0.00	VOLTS	
VOLTAGE OF END OF CIRCUIT		18,88	VOLTS	17,90	VOLTS		VOLTS		VOLTS	
CIRCUIT LOCATION		1ST FLOO)R	1ST FLOO	R	SPARE		S[ARE		
	VOLTAGE	DROP =	TOTAL CUR	RENT × DI	STANCE x 2	1.6				
CIRC. MILS				CIRCULAR				-		
18 AWG - 1620										
	/OLTAGE @ E		STARTING C	RCUIT VO	LTAGE — VO	DLTAGE DF	ROP			
14 AWG = 4110	OF CIRC	UT								
12 AWG = 6530			101 110 5	0.04						
			VOLTAGE =		NOV LIGTED					
					85% LISTED	VOLINGE)				
OPERATING VOLTAGE RANG	E FOR 24V	NOTIFICATIO	ON APPLIANC	CES TO BE	: 16V-33V					

Figure 2.24: Voltage Drop Calculations for NAC supplied from Elec. Room 172

VOLTAGE DROP CALCULA	TION									12/06/1
			CAL PO	Y SLO	- RECRE	ATION C	×TR			
SYSTEM SENSOR			REMOTE	POWER	SUPPLY-	RPS#4	C ELEC	ROOM #	115	
	DEVICE		CIRCUIT		CIRCUIT		CIRCUIT		CIRCUIT	
	CURR. (AMPS)	VIS OTY	CURR.	VM OTY	CURR.	VIS OTY	CURR.	VIB QTY	CURR.	QTY TOTAL
Speaker/Sirope (Strobe ONL	/	QIT.	CURR.	QIT	CURR.	QIT	CORK.	QIT.	CORK.	TOTAL
SPSW (15cd)	0.066	1	0.066	2	0.132		0.000	3	0.198	6
SPSW (30cd)	0.094		0.000	1	0.094	2	0.188		0.000	3
SPSW (75cd)	0.158	2	0.316	1	0.158		0.000	1	0.158	4
SPSW (110cd)	0.202	2	0.404	1	0.202	1	0.202	1	0.202	5
Strobe										
SCW (15cd)	0.066	2	0.132	1	0.066	3	0.198	5	0.330	11
SCW (30cd)	0.094		0.000		0.000	2	0.188	1	0.094	3
SW (15cd)	0.066	3	0.198	7	0.462	2	0.132	1	0.066	13
Strobe (WP)										
SCRK (15cd)	0.066		0.000		0.000	2	0.132		0.000	2
TOTAL CURRENT ON CIRCUIT		1.116	AMPS	1 1 1 4	AMPS	1.040	AMPS	1.048	AMPS	
TOTAL WIRE LENGTH		300		350		575		880		
WIRE SIZE		12	AWG	12	AWG	12	AWG	12	AWG	
CIRCULAR MILS		6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MLS	
VOLTAGE DROP		1.11	VOLTS	1.29	VOLTS	1.98	VOLTS	3.05	VOLTS	
VOLTAGE O END OF CIRCUIT		19.29	VOLTS	19.11	VOLTS	18.42	VOLTS	17.35	VOLTS	
CIRCUIT LOCATION		1ST FLOO	R	1ST FLOO	R	1ST FLOO	R	1ST FLOO)R	
	VOLTAGE	DROP =	TOTAL CURI	RENT x DI	STANCE x 2	1.6				
CIRC. MILS				CIRCULAR						
18 AWG = 1620 16 AWG = 2580 14 AWG = 4110	VOLTAGE @ E OF CIRC		STARTING C	IRCUIT VO	LTAGE - VO	OLTAGE DR	OP			
12 AWG = 6530										
			VOLTAGE = VOLTAGE =		85% LISTED	VOLTAGE)				
OPERATING VOLTAGE RAN										
	- Mod Rely Sto									,

File Name: McCal Poly SLO Rec. Center_2010035[Cal Poly SLO_Rec Ctr_RPS #4_v0.xis]VD FORM

Figure 2.25: Voltage Drop Calculations for NAC supplied from Elec. Room 115

VOLTAGE DROP CALCULA	TION									12/07/11
			CAL PO	LY SLO	- RECRE	ATION (TR			
SYSTEM SENSOR			REMOTE	POWER	SUPPLY 🛔	∮5 © EL	EC ROOM	#208		
	DEVICE	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	
		V17		V18		VID		V20		QTY
	(AMPS)	QTY	CURR.	QTY	CURR.	QTY	CURR.	QTY	CURR.	TOTAL
Speaker/Strobe (Strobe ONL)	n									
SPSW (15cd)	0.066		0.000		0.000	2	0.132		0.000	2
SPSW (30cd)	0.094	1	0.094	1	0.094		0.000		0.000	2
SPSW (75cd)	0.158	1	0.158	4	0.632	2	0.316		0.000	7
SPSW (110cd)	0.202	3	0.606	1	0.202		0.000		0.000	4
Speaker/Strobe (WP Strobe C	· · · · · · · · · · · · · · · · · · ·									
SPSWK (75cd)	0.158		0.000		0.000		0.000	4	0.632	4
Strobe										
SCW (15cd)	0.066		0.000		0.000	-	0.264		0.000	4
SW (15cd)	0.066	1	0.066	-	0.000	2	0.132		0.000	3
SW (30cd)	0.094	I –	0.000	1	0.094	<u> </u>	0.000		0.000	1
TOTAL CURRENT ON CIRCUIT		0.924	AMPS	1.022	AMPS	0.844	AMPS	0.632	AMPS	
TOTAL WIRE LENGTH		355		625		325		600		
WIRE SIZE		12	AWG	12	AWG	12	AWG	12	AWG	
CIRCULAR MILS		6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MLS	
VOLTAGE DROP		1.09	VOLTS	2.11	VOLTS	0.91	VOLTS	1.25	VOLTS	
VOLTAGE @ END OF CIRCUIT		19.31	VOLTS	18.29	VOLTS	19.49	VOLTS	19.15	VOLTS	
CIRCUIT LOCATION		2ND FLO	OR	2ND FLO	OR	2ND FLO	OR	ROOF		
	VOLTACE		TOTAL CUR		STANCE - 2	1.6				
CIRC. MILS	VOLINGE	DROP -	TOTAL COR	CIRCULAR						
18 AWG = 1620										
16 AWG = 2580	VOLTAGE 🛛 E	SND =	STARTING C	RCUIT VO	LTAGE - VO	OLTAGE DR	OP			
14 AWG - 4110	OF CIRC	UIT								
12 AWG = 6530										
			VOLTAGE -							
	STARTIN	G CIRCUIT	VOLTAGE -	20.4V (85% LISTED	VOLTAGE)				
OPERATING VOLTAGE RANG	E FOR 24V	NOTIFICATIO	ON APP∐ANC	ES TO BE	16V-33V					

File Name: McCal Poly SLO Rec. Center_2010035[Cal Poly SLO_Rec Ctr_RPS #5_VD.xis]VD FORM

Figure 2.26: Voltage drop calculation for NAC supplied from Elec. Room 208

VOLTAGE DROP CALCULAT	ION			X 81.0	- RECRE					12/06/11
SYSTEM SENSOR					SUPPLY -			ROOM	#227	
	DEVICE CURR.	SIGNAL	CIRCUIT		CIRCUIT		CIRCUIT			QTY
	(AMPS)	QTY	CURR.	QTY	CURR.	QTY	CURR.	QTY	CURR.	TOTAL
Speaker/Strobe (Strobe ONLY) SPSW (110cd)	0.202	5	1.010	5	1.010		0.000		0.000	10
Speaker/Strobe (WP Strobe O SPSWK (75cd)	0.158	1	0.158		0.000		0.000		0.000	1
SW (15cd)	0.066	1	0.066		0.000		0.000		0.000	1
TOTAL CURRENT ON CIRCUIT		1.234	AMPS	1.010	AMPS	0.000	AMPS	0.000	AMPS	
TOTAL WIRE LENGTH		500	FT.	340	FT.	0	FT.	0	FT.	
WIRE SIZE		12	AWG	12	AWG	12	AWG	12	AWG	
CIRCULAR MILS		6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MLS	
VOLTAGE DROP		2.04	VOLTS	1.14	VOLTS	0.00	VOLTS	0.00	VOLTS	
VOLTAGE @ END OF CIRCUIT		18,36	VOLTS	19,26	VOLTS		VOLTS		VOLTS	
CIRCUIT LOCATION		2ND FLO	OR	2ND FLO	OR	SPARE		SPARE		
	VOLTAGE	DROP =	TOTAL CURI	RENT x D	STANCE x 2	21.6				
CIRC. MILS				CIRCULAR	MILS					
14 AWG = 4110	OLTAGE @ E OF CIRC		STARTING C	RCUIT VO	LTAGE — VO	OLTAGE DR	OP			
12 AWG = 6530			VOLTAGE - VOLTAGE =		85% LISTED	VOLTAGE)				
OPERATING VOLTAGE RANG	E FOR 24V	NOTIFICATE	ON APPLIANC	CES TO BE	E 16V-33V					

File Name: McCal Poly SLO Rec. Center_2010035[Col Poly SLO_Rec Ctr_RPS #3_VD.xis]VD FORM

Figure 2.27: Voltage Drop Calculation for NAC from Elec. Room 227

The above tables have shown that the system designs meet code requirements and in general all the batteries are oversized as the safety margin used in the calculation is far beyond the 20% recommended by the code; reference to NFPA 72-2010, §10.5.6(1).

The batteries used are BAT series sealed, lead-acid batteries provided by NOTIFIER. These batteries are maintenance-free, sealed, overcharge protected, have long service life and easy handled with leak-proof construction.

SYSTEM COMMISIONING, INSPECTION, TESTING AND MAINTENANCE

NFPA 72-2013, Chapter 7 provides minimum documentation requirements for new and existing systems. The Rec Center was designed and installation completed in accordance with NFPA 72, 2010 edition; therefore the documentation required would have been as prescribed in §**10.18.2.3** of the 2010 edition.

Although we could not locate all the documentation cited in NFPA 72-2010, **10.18.2.3** related to the fire alarm and communication system installed in the Rec Center; we are confident that authority having jurisdiction and the owner would not have approved operation of the Center without all code required documentation.

NFPA 72-2013, chapter 7, prescribes more detailed documentation compared to what was required in previous editions of the code. For the Rec Center, the documentation would have been limited only to the following:

- (1) An owner's manual and manufacturer's published instructions covering all system equipment
- (2) Record drawings
- (3) For software-based systems, record copy of the site-specific software
- (4) A written sequence of operation

The system commissioning is known to be typically an owner-driven process (requirement); we do not have any documentation records of integrated testing methods or procedures performed for the commissioning of the fire alarm and communication system. However it is assumed that the owner and the authority having jurisdiction were satisfied from initial testing of the system as installed and that it met the intended design purpose.

Nowadays designs refer to NFPA 3-2012 requirements, which prescribe recommended procedures, methods, and documentation for commissioning and integrated testing of active and passive fire protection and life safety systems and their interconnections with other building systems. The recommended practice will ensure fire protection and life safety systems perform in conformity with the design intent.

NFPA 72, chapter 14 covers the minimum requirements for inspection, testing, and maintenance of fire alarm systems, supervising station alarm systems, public emergency alarm reporting systems, emergency communications systems (ECSs), single and multiple-station smoke and heat alarms, and household fire alarm systems.

Cal Poly campus Electrical Service department is responsible for inspection, testing, and maintenance of the system and for alterations or additions to the fire alarm and communication system installed in the Recreation Center as well on all the entire campus proprietary supervising alarm systems.

Cal Poly Environmental Health and Safety department monitors and supervisors inspection and testing performs on fire alarms systems installed on the entire campus.

It was confirmed by the Environmental Health and Safety as well as the Electrical Services departments that annual point by point inspection and testing of initiating devices are performed in accordance with California Code of Regulations Title 19, Section 1.09(a); and NFPA 72, Table 14-3.1. All inspection and testing records are kept in accordance with NFPA 72, chapter 7, section 7-2.

The following special inspection and testing instructions were supplied by the Cal Poly Environmental Health and Safety department:

- a) Duct detectors:
 - Magnet test location is lower left
 - Black reset button on device
 - Verify reporting as supervisory at fire alarm control panel
- b) Manual fire alarm boxes (manual pull stations) and Detectors
 - Functionally test smoke, heat detectors as per NFPA 72, Table 14-3.1, and each manual pull station; and verify reporting at the fire alarm control panel
- c) Flow switch
 - Use top handle to test
 - Put bottom handle into test position

- d) Battery
 - Test battery charge with SOCTESTER battery tester
- e) Audio and Visual alarms
 - Activate alarm notification appliances and confirm proper operation of all audible and visual alarms. Verify audible alarms are at least 15 dbA above ambient sound levels
 - Verify reporting at fire alarm control panel
 - Test operation of speakers and verify correct reporting at fire alarm control panel
- f) Automatic sprinkler systems
 - Operate water flow and alarm switches

The Environmental Health and Safety department does not NFPA 72 ITM forms but they have their customized form, which lists device types and serial numbers. A status is noted for each device either as Pass or Fail; and corrective actions taken (if any) are also included in the records.

Cal Poly campus Electrical Services Department confirmed that they maintain initiating devices, notification appliances and any other equipment related to the Rec Center fire alarm system in accordance with manufacturer's published instructions.

The Rec Center fire alarm system sequence of operation table describes automated actions of the system following initiating devices activation.

Refer to figure 2.28 below for more details.

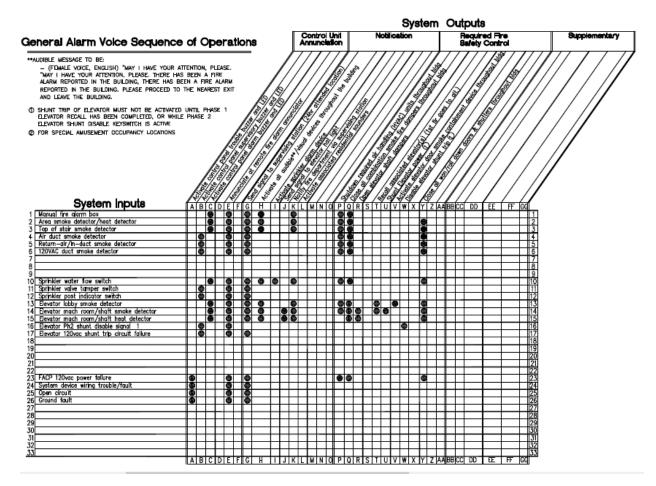


Figure 2.28: Sequence of Operation of fire alarm system in the Recreation Center

TYPES AND DESIGN CRITERIA

NFPA 13 defines a sprinkler system as each system riser serving a portion of a single floor of a facility, or the portion(s) of the piping network in multistory buildings where floor control valve assemblies are used to isolate individual floors. Multiple sprinkler systems can be supplied by a common supply main or riser in multistory buildings.

The Rec Center is protected by three wet-pipe automatic sprinkler systems throughout the building.

The type of occupancy hazard classification will influence the system design and installation considerations, such as sprinkler discharge criteria, sprinkler spacing, and water supply requirements.

The occupancy hazard classification for the sprinkler system installed in REC Center building is determining by evaluating the types of hazards, which includes the quantity and combustibility associated with the contents of the building. Examples presented in the NFPA13, 5.2 to 5.4 are used to help in the classification of the occupancy hazard for the Rec Center.

In accordance with NFPA13, 5.2 requirements and A.5.2 examples of similar use and conditions, we can classify the REC Center building as Light Hazard occupancy, except that the storage rooms, mechanical and electrical rooms can be classified as Ordinary Hazard occupancy (Group 1).

NFPA 13, §5.2 provisions define as Light Hazard occupancy, an occupancy or portions of other occupancies where the quantity and/or combustibility of contents is low and fires with relatively low rates of heat release are expected.

The storage, mechanical and electrical rooms are classified as Ordinary Hazard occupancy (Group 1) in accordance with NFPA13, §5.3.1.1 that defines portions of other occupancies where combustibility is low, quantity of combustibles is moderate, stockpiles of combustibles do not exceed 8ft and fire with moderate rates of heat release are expected.

The water demand design criteria, using the CMDA method approach, will be determined in accordance with NFPA13, 11.2.3.1.1 and figure 11.2.3.1.1:

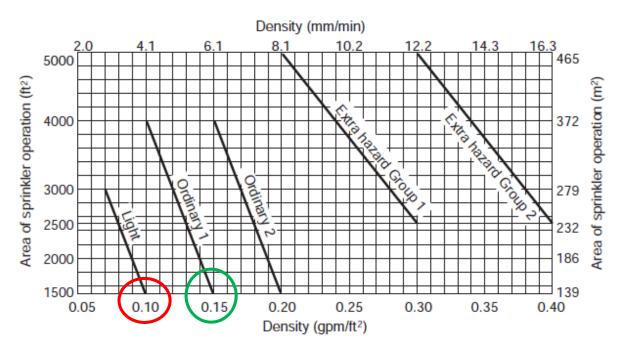
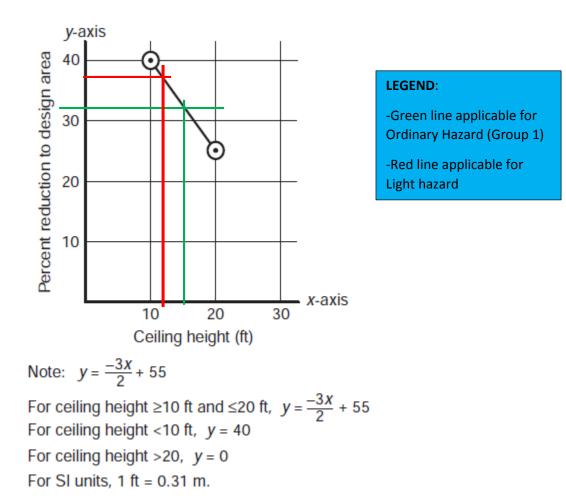
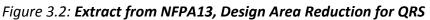


Figure 3.1: Extract from NFPA13-Figure 11.2.3.1.1

Table 3.1:	Extract from	m NFPA13,	Table 11.2.3.2.1.2: Hose Stream Allowance
-		-	

	Insid	e Hose	Total Comb and Outs	Duration	
Occupancy	gpm	L/min	gpm	L/min	(minutes)
Light hazard	0, 50, or 100	0, 189, or 379	100	379	30
Ordinary hazard	0, 50, or 100	0, 189, or 379	250	946	60-90
Extra hazard	0, 50, or 100	0, 189, or 379	500	1893	90-120


NFPA 13, §11.2.3.2.3.1 provisions allow the hydraulic calculations to satisfy any single point on the appropriate density/area curve.


The selection of the low end that is the smaller operating area is deemed the most economical option. It is generally considered superior in terms of fire control; it is expected to confine the fire to a smaller area by reducing the total number of operating sprinklers.

The wet-pipe automatic sprinkler system installed at the Rec Center uses quick response sprinkler heads standard and extended coverage; therefore in accordance with NFPA13, §11.2.3.2.3, the

system area of operation shall be permitted to be reduced, as per Figure 11.2.3.2.3.1, without revising the density as the system installed satisfied the following conditions:

- Wet-pipe system
- Light hazard or ordinary hazard occupancy
- 20 ft maximum ceiling height (except the gymnasiums)
- And there are no unprotected ceiling pockets exceeding 32 ft²

SUMMARY OF DESIGN CRITERIA

Table 3.2: Density and Design Area of Operation

Rooms	Hazard Classifications	Density and Design Area of Operation
 Gymnasiums/MAC Fitness/Weight rooms Racquet ball courts Pre-function areas 	Light Hazard	 0.10 gpm/ft² 900 ft²
 Offices/Corridors/Lobbies Restrooms/Locker rooms 		Reduced area as per NFPA13, Figure 11.2.3.2.3.1 for quick response sprinklers
 Storage rooms Mechanical/Electrical rooms Custodian rooms 	Ordinary Hazard (Group 1)	 0.15 gpm/ft² 1013 ft² Reduced area as per NFPA13, Figure 11.2.3.2.3.1 for quick response sprinklers

Therefore the storage room shall be protected by the requirements for the highest classified commodity and storage arrangement, as per NFPA13 §5.6.1.2.4.

WATER SUPPLY

The Recreation Center water-based suppression system is connected to the San Luis Obispo municipality water supply.

The city water supply is provided at:

- Static pressure: 140 PSI
- Residual pressure: 132 PSI
- Flow: 1186 GPM

Information collected from provided computer calculated hydraulic report; refer to Appendix D for more details.

The Rec Center building wet-pipe automatic sprinkler system is supplied from three control valves (risers) located at two separated positions.

- One riser supplied the storage area, wrestling room and the main gymnasium on first floor and the two basketball courts on the second floor; it is located West-South side of the main gymnasium building - Two risers supplying the remaining automatic sprinkler systems, located East of gymnasium storage room

The following tables give further details about the location and sizes of system components:

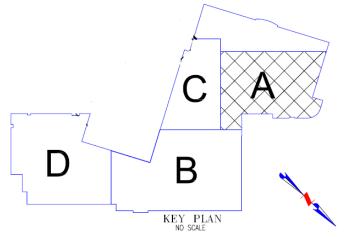


Figure 3.3: REC Center Key Plan: Remote Areas A, B, C and D

Table 3.3: Remote Area A

1st Floor			
Remote Area	A1		
Design	Light Haz	ard 0.10 gp	m
Area of Operation	90	0 SQF	
Riser size	4 i	inches	
Riser location	West Gym st	orage room	า 121
Cross-mains	3 inch	es (varies)	
branch lines	2 inch	es (varies)	
Sprinklers	Make Model K-factor Size Temperature	Viking VK634 VK302 8 5.6 3/4" & 1/2" 155	QREC QRSC QREC QRSC

Table 3.4: Remote area C1

1st Floor			
Remote Area	C1		
Design	Light Haza	ard 0.10 gp	m
Area of			
operation	90	0 SQF	
Riser size	4 i	nches	
Riser location	West Gym	storage ro	om
Cross-mains	3 inch	es (varies)	
branch lines	2 inch	es (varies)	
Sprinklers	Make Model K-factor Size Temperature	Viking VK634 VK302 8 5.6 3/4" & 1/2" 155	QREC QRSC QREC QRSC

Table 3.5: Remote area D2

1st Floor			
Remote Area	D2 high roof		
Design	Light Haza	ard 0.10 gp	m
Area of			
operation	150)0 SQF	
Riser size	4 i	nches	
Riser location	West Gym	storage ro	om
Cross-mains	3 inche	es (varies)	
branch lines	2 inche	es (varies)	
Sprinklers	Make Model K-factor Size Temperature	Viking VK634 VK302 8 5.6 3/4" & 1/2" 155	QREC QRSC QREC QRSC

Table 3.6: Remote area B2

2nd Floor			
Remote Area	B2 h	B2 high roof	
Design	Light Haz	ard 0.10 gp	m
Area of Operation	100	DO SQF	
Riser size	4 i	inches	
Riser location	West Gym st	orage room	า 121
Cross-mains	3 inch	es (varies)	
branch lines	2 inch	es (varies)	
Sprinklers	Make Model K-factor Size Temperature	Viking VK602 VK300 8 5.6 3/4" & 1/2" 155	QREC QRSC QREC QRSC

Table 3.7: Remote Area C2

2nd Floor			
Remote Area		C2	
Design	Light Haz	ard 0.10	gpm
Area of Operation	10	00 SQF	
Riser size	4	inches	
Riser location	West Gym s	torage ro	om 121
Cross-mains	2 1/2 in	ches (var	ies)
branch lines	1 1/2 in	ches (var	ies)
Sprinklers	Make Model K-factor Size Temperature	Viking VK302 VK300 5.6 1/2" 155	QREC QRSC QREC

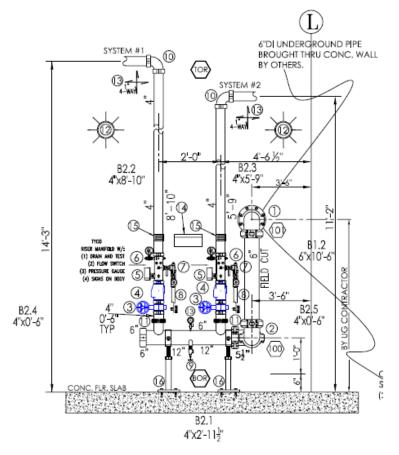


Figure 3.4: Risers Details – East Gymnasium Storage Room

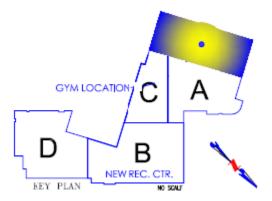


Figure 3.5: Key Plan with highlighted Remote Area E

Table 3.8: Remote Area E

1st Floor			
Remote Area	E St	orage	
Design	Ordinary Ha	zard 0.15	gpm
Area of Operation	150	0 SQF	
Riser size	3 ir	nches	
Riser location	East M	ain Gym	
Cross-mains	2 1/2 incl	nes (varie	s)
branch lines	1 1/4 incl	nes (varie	s)
Sprinklers	Make Model K-factor Size Temperature	Viking VK302 VK300 5.6 5.6 1/2" 155	QREC QRSC QREC QRSC

Table 3.9: Remote Area E1

1st Floor			
Remote Area	E1 W	restling	
Design	Light Haza	rd 0.10 g	pm
Area of Operation	150	0 SQF	
Riser size	3 ir	iches	
Riser location	East M	ain Gym	
Cross-mains	2 1/2 incl	nes (varie	s)
branch lines	1 1/4 incł	nes (varie	s)
Sprinklers	Make Model K-factor Size Temperature	Viking VK302 VK300 5.6 5.6 1/2" 155	QREC QRSC QREC QRSC F

Table 3.10: Remote Area E2

1 st Floor			
Remote Area	E2 Ma	ain Gym	
Design	Light Haza	rd 0.10g	om
Area of Operation	150	0 SQF	
Riser size	3 ir	iches	
Riser location	South N	/lain Gym	
Cross-mains	2 1/2 incl	nes (varie	s)
branch lines	1 1/4 incl	nes (varie	s)
Sprinklers	Make Model K-factor Size Temperature	Viking VK302 VK300 5.6 5.6 1/2" 155	QREC QRSC QREC QRSC

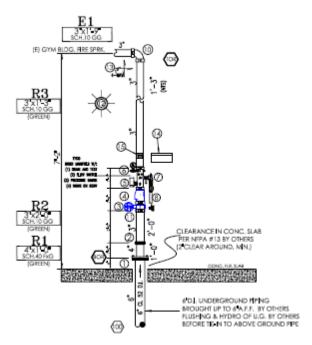
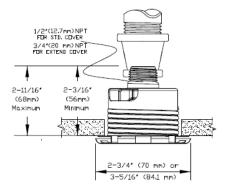


Figure 3.6: Riser Details: South West Main Gymnasium Room


Typical components of the riser:

- 6" underground pipe through concrete slab
- 4" x 3" GRV RC Coupling flexible on Riser
- 3" Tyco GRV butterfly valve BFV-1 with control flow / tamper switch

- 3" Tyco Riser check valve CV with pressure gauges
- 3" water flow indicator
- 3" Tyco test and drain Riser assembly
- Inspector's test valve & system main drain valve
- 3" GRV 90 elbows
- 3" GRV couplings
- 10" electric bell on building wall
- 4-way earthquake brace
- Fire sprinkler head cabinet mounted on wall by Riser
- Fire sprinkler head design placard on Riser

The REC Center building is fully protected by automatic sprinkler systems (three automatic sprinkler systems). The sprinkler heads installed are all VIKING brand with the following head designs:

- Concealed fire sprinkler heads used in suspended metal ceiling
- Upright fire sprinkler heads used in exposed areas with no suspended ceiling like in gymnasium rooms
- Pendant fire sprinkler heads used in suspended ceiling where surface mount ceiling obstruction exists
- Recessed fire sprinkler heads used in suspended ceiling where no surface mount obstruction exists.
- Concealed fire sprinkler concealed head

Upright fire sprinkler ceiling head details

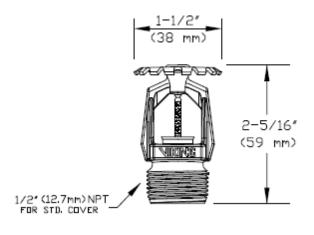


Figure 3.8: Viking Upright Sprinkler Heads

Pendant fire sprinkler pendant heads

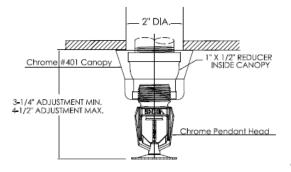
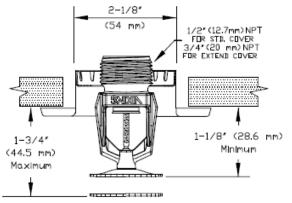



Figure 3.9: Viking Pendant Sprinkler Heads

Recessed fire sprinkler Recessed heads

Installed with a Micromatic Model E-1 Recessed Escutcheon

Figure 3.10: Viking Recessed Sprinkler Heads

MANUAL HYDRAULIC CALCULATIONS

We have opted to perform hand hydraulic calculations for the automatic sprinkler system that covers the main gymnasium due to its complexity. The system is supplied with municipality water through a 3" control value at a riser located south-west of the main gymnasium. Refer to Figure 3.6 for Riser details.

Figure 3.11 below illustrates the general piping arrangement from the riser outside ground floor of the building to the sprinklers on the roof inside the building.

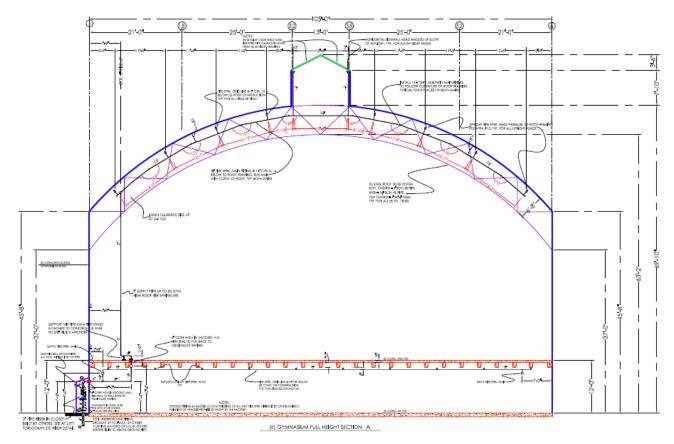


Figure 3.11: Gymnasium Sprinkler Piping Arrangement

The following information were used:

- Piping size 2 and larger are schedule pipe 10
- Piping size small than 2 inches are pipe schedule 40

It is important to note that sprinkler piping for the entire building are configured in loops such that branch lines can be fed through more than one route; in such configuration computer calculations would be more appropriate to execute repetitive calculations and so provide more accurate results as hand calculations for such designs are more complex. For the purpose of this report, to enable ourselves to perform hand hydraulic calculations, we have selected a water flow path through cross main and branch lines assuming that piping is not configured in loops; hence in our scenario sprinkler heads would be fed through one route only as selected; therefore the total pressure method (ignoring velocity pressures) could be used to estimate the maximum flow and pressure at the bottom of the riser.

Refer to Appendix D, FP-E2 for details of the piping arrangement.

Hand calculations were performed using excel spreadsheet; results are tabulated below.

The following data were used as inputs:

- Density: 0.10 gpm/ft²
- Area of operation: 1500 ft² (no area reduction due to high ceiling height)
- Hose allowance: 100 gpm (inside)
- Sprinkler K-factor: 5.6
- Standard orifice: 1/2"
- C-factor: 120
- Remote area of operation, as depicted in the fire protection drawing: 156 ft²
- Area coverage per sprinkler: 156 ft² (12 ft x 13 ft)
- Remote area # of sprinklers: 12

The following results were obtained:

Table 3.11: System Demand Results

Manual hydraulic calculations	Computer hydraulic calculations
System demand @BOR	System demand @ BOR:
 ✓ System flow: 192.4 gpm ✓ Hose demand: 100 gpm ✓ Total system demand: 292.4 gpm ✓ System pressure: 125 psi 	 ✓ System flow: 196 gpm ✓ Hose demand: 100 gpm ✓ Total system demand: 296 gpm ✓ System pressure": 78 psi

Table 3.12: Individual Sprinkler Performance

Manual hydraulic calculations	Computer hydraulic calculations
Individual sprinkler flows and pressures	Individual sprinkler flows and pressures
S1 Q= 15.6 gpm	S1 Q= 15.87 gpm
P= 7.8 psi	P= 8.03 psi
S2 Q= 15.9 gpm	S2 Q= 15.79 gpm

Manual hydraulic calculations	Computer hydraulic calculations
P= 8.1 psi	P= 7.95 psi
S3 Q= 17 gpm	S3 Q= 15.88 gpm
P= 9.2 psi	P= 8.04 psi
64 Q= 15.8 gpm	S4 Q= 14.94 gpm
P= 8.0 psi	P= 8.0 psi
5 Q= 15.6 gpm	S5 Q= 14.82 gpm
P= 7.8 psi	P= 7.8 psi
	S7 Q= 15.75 gpm
57 = S5 (hydraulically the same)	P= 7.91 psi
68 = S4 (hydraulically the same)	S8 Q= 15.67 gpm
9 = S3 (hydraulically the same)	P= 7.83 psi
10 = S2 (hydraulically the same)	S9 Q= 15.77 gpm
11 = S1 (hydraulically the same)	P= 7.93 psi
	S10 Q= 15.23 gpm
	P= 7.4 psi
	S11 Q= 15.11 gpm
	P= 7.28 ps i
12 Q= 15.6 gpm	S12 Q= 20.88 gpm
P= 7.8 psi	P= 13.91 psi
13 Q= 15.9 gpm	S13 Q= 20.7 gpm
P= 8.1 psi	P= 13.66 psi

Our hand calculations have overestimated the system pressure in comparison to computer model prediction. The system demand flow is qualitatively similar in both manual and hand calculations.

The difference between these two approaches is solemnly due to the fact the computer used the actual water flow paths, analyzing different water routes through the looped piping

arrangement; it has treated each branch line connection with multiple supplies as an hydraulic node, hence balancing pressures and flows in and out of a node in order to estimate actual pressure and flow for a that specific branch line. Therefore the overall system pressure will be minimal in looped systems as water pathway is determined through the least resistant route.

In contrast, our assumptions selected a flow path that required high pressures to overcome piping flow resistance.

Refer to Appendix D for details on the computer hydraulic calculations performed for the gymnasium.

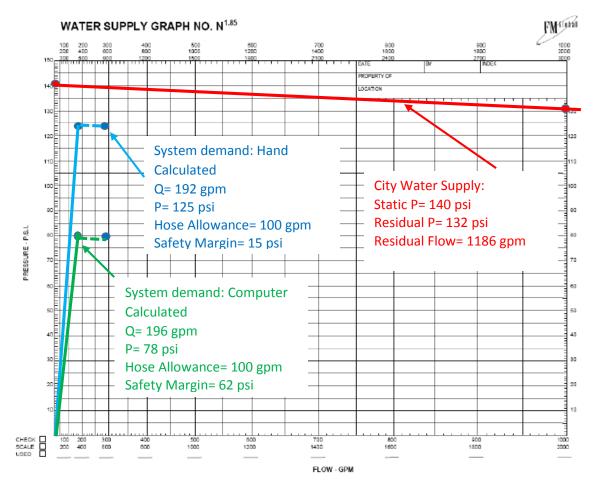


Figure 3.12 illustrates the hydraulic curves for water supply and system water demand.

Figure 3.12: Water Supply Hydraulic Curve

INSPECTION, TESTING AND MAINTENANCE

In order to meet both federal certification requirements and state licensure requirements, automatic fire sprinkler systems are required to be inspected, tested and maintained in accordance with NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems.

In order to follow the requirements of the standard, it's important to have a good understanding of what's meant by "inspection", "testing" and "maintenance". Those terms are defined in NFPA 25, §3.3 as follows:

• Inspection. A visual examination of a system or portion thereof to verify that it appears to be in operating condition and is free of physical damage.

• Testing. A procedure used to determine the status of a system as intended by conducting periodic physical checks such as water flow tests, fire pump tests, alarm tests, and trip tests of dry-pipe valves. These tests follow up on the original acceptance test at intervals specified in the appropriate chapter of NFPA 25.

• Maintenance. Work performed to keep equipment operable or to make repairs.

It is the university's responsibility (or the representative, the REC Center manager's responsibility) to ensure that only properly trained and competent persons perform inspections, testing and maintenance on the fire sprinkler system installed throughout the building. NFPA25 simply states, "These tasks shall be performed by personnel who have developed competence through training and experience." [NFPA 25(11), §4.1.1].

SPECIFIC REQUIREMENTS

The inspection, testing and maintenance requirements that apply to a building's fire sprinkler system start from the date of initial installation and continue on at specific intervals throughout the life of the system.

Monthly inspection:

The following monthly inspections can be performed by facility staff:

Visually inspect control valves to ensure that they are:

- In the normal open position
- Accessible
- Properly sealed
- Locked and/or supervised
- Free from leaks
- Provided with appropriate signage identifying the portion of the system they control

Visually inspect gauges on wet pipe systems to verify that they are in good condition and that normal water pressure is being maintained.

Quarterly Inspection

The following quarterly inspections are in addition to those required monthly and can be performed by facility staff:

a. For hydraulically designed sprinkler systems, inspect the hydraulic nameplate to verify that it's securely attached to the sprinkler riser and is legible.

b. Inspect alarm devices to verify that they are free of physical damage.

c. Inspect fire department connections to verify that:

- They are visible and accessible
- Couplings or swivels are not damaged and rotate smoothly
- Plugs or caps are in place and not damaged
- Gaskets are in place and in good condition
- Identification signs are in place
- The check valve is not leaking
- The automatic drain valve is in place and operating properly

With proper training the following quarterly tests can be performed by facility staff:

a. Test the waterflow alarm on wet pipe sprinkler systems by opening the inspector's test connection. This simulates the opening of a sprinkler head.

Annually Inspection

In addition to the monthly and quarterly inspections and tests, NFPA 25 has very detailed and specific inspection, testing and maintenance services that need to be performed on an annual basis. Because of their complexity, and to comply with federal and California state law, these services must be performed by a licensed sprinkler contractor and would include such things as:

• An inspection of the facility's supply of spare sprinkler heads to ensure that there are a minimum of two sprinklers of each type and temperature rating and that there is a sprinkler wrench for each type of sprinkler.

- A check of all sprinklers, hangers, pipe and fittings
- Testing of the main drain
- Testing of any antifreeze solution used
- Testing and maintenance of valves

Long term Inspection

a. Sprinkler system gauges typically have a life expectancy of 10 to 15 years. As a result, these gauges must be replaced every 5 years or tested every 5 years by comparison to a calibrated gauge.

Gauges not accurate to within 3 percent of the full scale must be recalibrated or replaced [Reference NFPA 25(11), §5.3.2].

- b. System check valves must be inspected internally every 5 years to verify that all components operate properly, move freely and are in good condition [Reference NFPA 25(11), §12.4.2.1].
- c. Where sprinklers are subjected to harsh environments, including corrosive atmospheres and corrosive water supplies, the sprinklers must be replaced or representative samples tested every 5 years.

Note: "Harsh environments" have been interpreted to include areas exposed to outside weather (e.g. sprinklers installed under exterior canopies) and cold storage areas (e.g. coolers and freezers).

DOCUMENTATION REQUIREMENTS

Just as important as conducting required inspections, testing and maintenance is documenting the fact that they occurred. Both NFPA 13 and NFPA 25 require that these services be properly recorded.

It's important that at least two people in the REC Center know where the ITM records are kept to increase the likelihood that they can be readily provided if requested during an inspection, as the records are requires to be maintained on the premises.

NFPA13, Table A.27.1 provides guidance on the kinds of activities that need to be performed and how frequently such activities should be carried out.

Table 3.13: Extract from NFPA13-Maintenance Schedule

TABLE A.27.1 Maintenance Schedule

Parts	Activity	Frequency
Flushing piping	Test	5 years
Fire department connections	Inspection	Monthly
Control valves	Inspection	Weekly — sealed
	Inspection	Monthly — locked
	Inspection	Monthly — tamper switch
	Maintenance	Yearly
Main drain	Flow test	Quarterly — annual
Open sprinklers	Test	Annually
Pressure gauge	Calibration test	-
Sprinklers	Test	50 years
Sprinklers — high-temperature	Test	5 years
Sprinklers — residential	Test	20 years
Waterflow alarms	Test	Quarterly
Preaction/deluge detection system	Test	Semiannually
Preaction/deluge systems	Test	Annually
Antifreeze solution	Test	Annually
Cold weather valves	Open and close valves	Fall, close; spring, open
Dry/preaction/deluge systems	-	
Air pressure and water pressure	Inspection	Weekly
Enclosure	Inspection	Daily — cold weather
Priming water level	Inspection	Quarterly
Low-point drains	Test	Fall
Dry pipe valves	Trip test	Annually — spring
Dry pipe valves	Full flow trip	3 years — spring
Quick-opening devices	Test	Semiannually

CHAPTER 4: EGRESS ANALYSIS

OCCUPANCY CLASSIFICATION

Referring to both LSC and IBC Occupancy classifications, it can be said that rooms/spaces inside of the Rec Center are used for different activities and therefore can be classified according to their intended use.

The Rec Center building was designed according to the non-separated occupancy provisions. In accordance with IBC, section 508.3.1:" Nonseparated occupancies shall be individually classified in accordance with Section 302.1. The requirements of this code shall apply to each portion of the building based on the occupancy classification of that space except that the most restrictive applicable provisions of Section 403 and Chapter 9 shall apply to the building or portion thereof in which the nonseparated occupancies are located".

Use of room / Space	Occupancy Classification
Fitness / Gymnasium	A-3
Cafeteria	A-3
Offices / Administration	В
Yoga / Meditation	E
Storage rooms	S
Mechanical/Electrical Equipment rooms/spaces	Accessory (Incidental use)

Table 4-1: Room / Space Occupancy Use Classification

The following color-code will be used to illustrate different occupancy use of rooms / spaces in the recreation center building.

Space designations	Color codes
Assembly	
Business	
Storage	
Mechanical rooms	
Electrical rooms	
Changing	
/Restrooms	

Figure 4-1a: Color-Coding Of Space Designations: 1st floor

Figure 4-1b: Color-Coding Of Space Designations: 1st floor

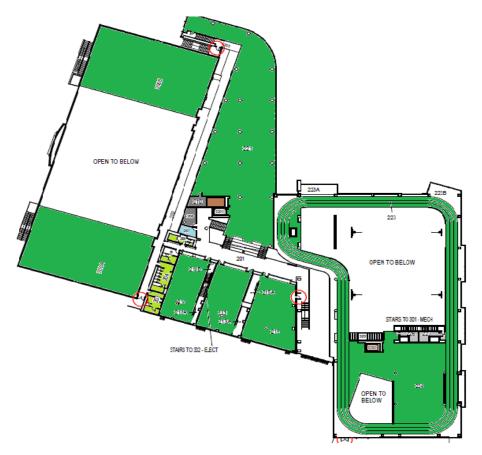


Figure 4-2: Color-Coding Of Space Designations: 2nd floor

As a multiple occupancy building, the Recreation Center shall comply with all requirements that are applicable to each of the purposes for which the room or space will be occupied. The means of egress facilities, construction type, protection, and other safeguards in the building shall comply with the most restrictive fire and life safety requirements of the occupancies involved.

EGRESS CAPACITY CALCULATIONS

Life Safety Code defines the term "means of egress" as a continuous and unobstructed way of travel from any point in a building or structure to a public way consisting of three separate and distinct parts:

• Exit access: is that portion of a means of egress that leads to an exit.

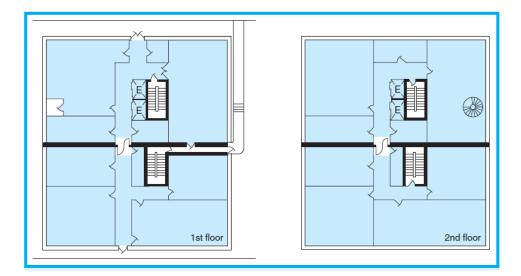


Figure 4-3: *LSC Exhibit of Exit Access*

• Exit: is that portion of a means of egress that is separated from other building spaces by enclosing it within construction; it can include exterior exit doors, stairs, ramps, smoke proof enclosures, exit passageways, and outside balconies.

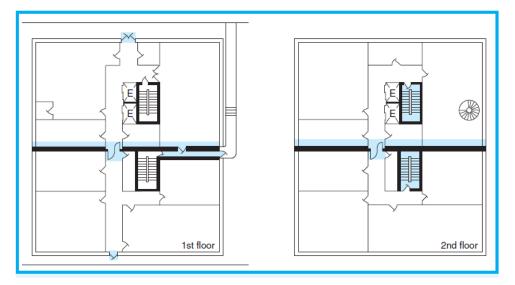


Figure 4-4: LSC Exhibit of Various Forms of Exits

 Exit discharge: that portion of a means of egress between the termination of an exit and a public way. A public way defined as a street, alley, or other similar parcel of land essentially open to the outside air deeded, dedicated, or otherwise permanently appropriated to the public for public use and having a clear width and height of not less than 10 ft (3050 mm).

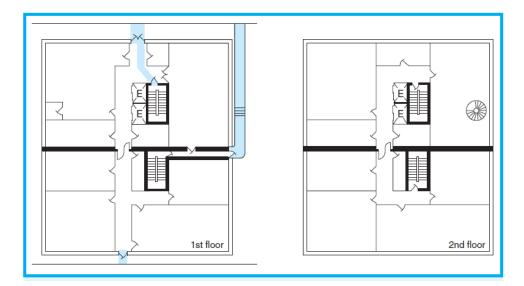


Figure 4-5: LSC Exhibit of Spaces Constituting Exit Discharge

The Life Safety Code §7.3.1.2 stipulates that: "the occupant load in any building or portion thereof shall be not less than the number of persons determined by dividing the floor area assigned to that use by the occupant load factor for that use as specified in Table 7.3.1.2".

A. Occupant Load for Each Space:

Occupant load factor for each space is obtained from Table 7.3.1.2:

Table 4.3a: Extract from LSC – Table 7.3.1.2

Use	(ft²/person)*	(m²/person)*		
Assembly Use				
Concentrated use, without fixed seating	7 net	0.65 net		
Less concentrated use, without fixed seating	15 net	1.4 net		
Bench-type seating	1 person/18 linear in.	1 person/455 linear mm		
Fixed seating	Use number of fixed seats	Use number of fixed seats		
Waiting spaces	See 12.1.7.2 and 13.1.7.2.	See 12.1.7.2 and 13.1.7.2.		
Kitchens	100	9.3		
Library stack areas	100	9.3		
Library reading rooms	50 net	4.6 net		
Swimming pools	50 (water surface)	4.6 (water surface)		
Swimming pool decks	30	2.8		
Exercise rooms with equipment	50	4.6		
Exercise rooms without equipment	15	1.4		
Stages	15 net	1.4 net		
Lighting and access catwalks, galleries, gridirons	100 net	9.3 net		
Casinos and similar gaming areas	11	1		
Skating rinks	50	4.6		
Educational Use	\bigcirc			
Classrooms	20 net	1.9 net		
Shops, laboratories, vocational rooms	50 net	4.6 net		

(continues)

Table 7.3.1.2 Continued

Use	(ft²/person) ⁿ	(m ² /person) ^a	
Day-Care Use	35 net	3.3 net	
Health Care Use			
Inpatient treatment departments	240	22.3	
Sleeping departments	120	11.1	
Ambulatory health care	100	9.3	
Detention and Correctional Use	120	11.1	
Residential Use			
Hotels and dormitories	200	18.6	
Apartment buildings	200	18.6	
Board and care, large	200	18.6	
Industrial Use			
General and high hazard industrial	100	9.3	
Special-purpose industrial	NA	NA	
Business Use (other than below)	100	9.3	
Air traffic control tower observation levels	(40)	3.7	
Storage Use	\bigcirc		
In storage occupancies	MA	NA	
In mercantile occupancies	300	27.9	
In other than storage and mercantile occupancies	500	46.5	
Mercantile Use	\smile		
Sales area on street floor ^{he}	30	2.8	
Sales area on two or more street floors 6	40	3.7	
Sales area on floor below street floor ^c	30	2.8	
Sales area on floors above street floor 6	60	5.6	
Floors or portions of floors used only for offices	See business use.	See business use.	
Floors or portions of floors used only for storage, receiving,			
and shipping, and not open to general public	300	27.9	
Mall buildings ⁴	Per factors applicable to use of space ^e		

NA: Not applicable. The occupant load is the maximum probable number of occupants present at any time.

Figure 4.3b: Extract from LSC-Table 7.3.1.2

The occupant load of each space will be determined on the basis of the occupant load factors of Table 7.3.1.2 based on the use of the space (not occupancy classification), or shall be determined as the maximum probable population of the space under consideration, whichever is greater. The following definitions clarify the use of occupant load factor:

- Gross Floor Area: The floor area within the inside perimeter of the outside walls of the building under consideration (Recreation Center). This area includes hallways, stairs, closets, and thickness of interior walls, columns or other features. Where the tem floor area used, it means the gross floor area unless otherwise specified.
- Net Floor Area: The floor area within the inside perimeter of the outside walls, or the outside walls and fire walls of the building under consideration with deductions for hallways, stairs, closets, thickness of interior walls, columns, or other features. The actual occupied area/space (associated with Assembly use space)

B. Egress Capacity

Egress capacity of exit in the Rec Center will be calculated in accordance with Life Safety Code provision §7.3.3.1: "Egress capacity for approved components of means of egress

shall be based on the capacity factors shown in Table 7.3.3.1, unless otherwise provided in 7.3.3.2".

Table 4.4: LSC Egress Capacity Factor

Table 7.3.3.1 Capacity Factors

	Stairways (width/person)		Level Component and Ramps (width/person)	
Area	in.	mm	in.	mm
Board and care	0.4	10	0.2	5
Health care, sprinklered	0.3	7.6	0.2	5
Health care, nonsprinklered	0.6	15	0.5	13
High hazard contents	0.7	18	0.4	10
All others	0.3	7.6	0.2	5

The minimum required width will be calculated as follows:

- Stairways: 0.3 inches per occupant multiplied by the total number of occupants served
- Other components (e.g. doors): 0.2 inches per occupant multiplied by the total number of occupants served

In egress capacity calculations, the Life Safety Code allows standard rounding.

The required capacity of a corridor shall be the occupant load that utilizes the corridor for exit access divided by the required number of exits to which the corridor connects. The corridor capacity shall be not less than the required capacity of the exit to which the corridor leads.

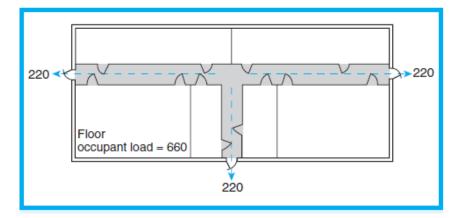


Figure 4-6: LSC: Corridor Capacity

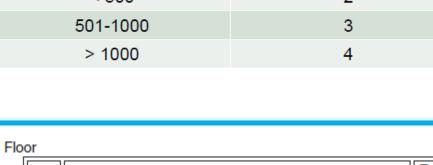

C. Number of Exits

Table 4-5: Number of Exits

The required number of egress is estimated in accordance with the Life Safety Code Section 7.4.1.2:" the number of means of egress, from any story or portion thereof, other than for existing buildings, in chapter 11 through 43, shall be as follows:

- (1) Occupant load more than 500 but not more than 1000 not less than 3
- (2) Occupant load more than 1000 not less than 4''.

Occupant load served	Number of exits required
< 50 (typical but varies)	1
< 500	2
501-1000	3
> 1000	4

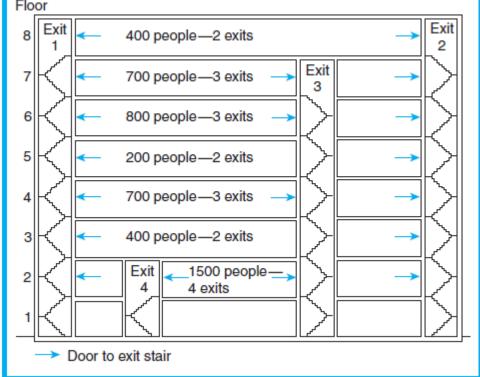


Figure 4-7: Extract from LSC Minimum Number of Means of Egress

D. Multi-Story Egress Capacity

Where an exit serves more than one story, only the occupant load of each story considered individually shall be used in computing the required capacity of the exit at that story, provided that the required egress capacity of the exit is not decreased in the direction of egress travel [Life Safety Code, Section 7.3.1.4].

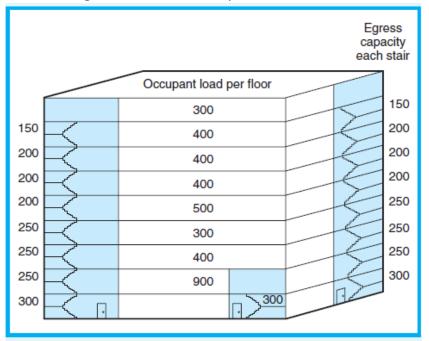


Figure 4-8: LSC Capacity of Exit Stairs serving Multiple Floors

E. Converging Egress Capacity

Where means of egress from the second floor and from the basement converge at the first floor in the Recreation Center, the capacity of the means of egress from the point of convergence shall be not less than the sum of the capacity of the two converging means of egress.

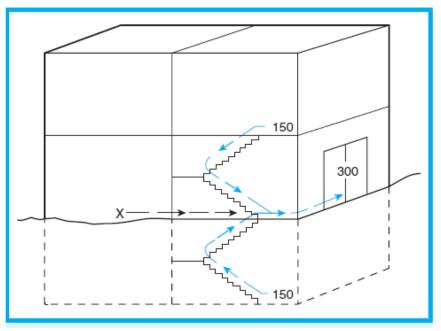


Figure 4-9: Extract from LSC-Exhibit of converging egress capacity

F. Minimum Width

- The width of any means of egress in the Rec Center shall be as follows:
 - Not less than that required for a given egress component
 - Not less than 36 in; however for the LSC 2009 edition, allows the width of exit access to be not less than 28 in for building constructed before 2009; as it is the case for the Rec Center built in accordance with 2006 LSC.
- Where more than one exit access leads to an exit, each shall have a width adequate for the number of persons it accommodates.
- Where the total occupant load of all stories served by the stair is fewer than 50, the minimum with shall be 36 in, except for projections more than 4-1/2 in. at or below handrail height on each side
- Where stairs serve occupant loads exceeding 49, the minimum width shall be in accordance with Life Safety Code Table 7.2.2.2.1.2 (B):

Table 4-6: Life Safety Code Minimum Stair Width

Total Cumulative Occupant Load Assigned to the Stair	Width
<2000 persons	44 in. (1120 mm)
≥2000 persons	56 in. (1420 mm)

Table 7.2.2.2.1.2(B) New Stair Width

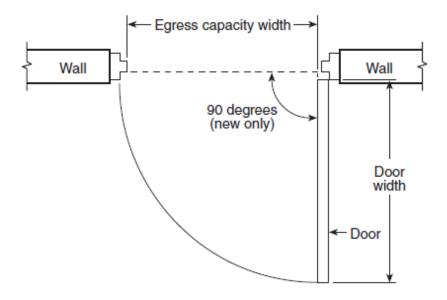


Figure 4-10: Life Safety Code Minimum Egress Door Width

G. Occupant Loads and Egress Capacity Calculation Results

Occupancy load calculations assumed a "non-simultaneous use", which means that occupants will either be in the occupied space or the circulation space, but not both at the same time.

The reason for this assumption is that occupants of circulation areas, restrooms are accounted for in other occupied areas.

The room or space used, as an assembly space, in the Rec Center, in accordance with LSC provisions 7.10 requirements, has an occupancy load sign posted in a very noticeable location near their exit or exit access doorways.

Floor/Space	Occupancy	Area (ft²)	OLF (ft ² / OCC)	Calculated Occupant Load	Number of Exits Required
Office 1	В	162	100	2	1
Office 2	В	109	100	2	1
Office 3	В	113	100	2	1
Office 4	В	110	100	2	1
Office 5	В	114	100	2	1
Office 6	В	114	100	2	1
Open Office	В	1041	100	11	1
Gymnasium	A-3	13,453	Max	300	2
FAC Supervisor	В	191	100	2	1
Racquet Ball court (x6)	В	799	100	8	1
Mac Lobby	A-3	1562	15	100	2
Office 7	В	910	300	3	1
Office 8	В	205	100	3	1
Office 9	В	320	100	4	1
Office 10	В	316	100	4	1
Control Room	В	131	100	2	1
Information desk	В	279	100	3	1
First aid room	В	151	100	2	1
Equipment checkout	В	124	100	2	1
Office: coordinator	В	126	100	2	1
Weight fitness	A-3	6462	50	138	2
Office: Players	В	236	15	16	1
Office: players	В	245	15	23	1

Table 4-7: Occupancy Load calculations for first floor

A. <u>1st Floor Life Safety Plan Area</u>

Floor/Space	Occupancy	Area (ft²)	OLF (ft² / OCC)	Calculated Occupant Load	Number of Exits Required
MAC	A-3	8313	7	1188	4
Storage/Prep Area	В	874	300	3	1
Aquatic office	В	191	100	2	1
Lifeguard office	В	242	100	3	1
Reception	В	249	100	3	1
Maintenance/Storage	В	239	300	1	1
Equipment/Storage	В	124	100	2	1
Laundry room	В	264	100	3	1
Men's Locker	A-3	2608	50	52	2
Women's Locker	A-3	2106	50	43	1
Pre-Function Area	A-3	4191	15	287	2
Training room	В	903	100	10	1
Personal Fitness	В	149	100	2	1
Message Therapy	В	142	100	2	1
Wellness office	В	124	100	2	1
Office	В	125	100	2	1
Wellness reception	В	431	100	5	1
Ticket office	В	288	100	3	1
Wrestling room	A-3	4006	50	81	2
Main Gymnasium	A-3	13083	Seats	300	2
Pantry	В	122	100	2	1
Office	В	280	100	3	1
Office	В	144	100	2	1
Storage	В	2441	300	9	1
Changing room	В	104	100	2	1
Changing room	В	123	100	2	1

Floor/Space	Occupancy	Area (ft²)	OLF (ft² / OCC)	Calculated Occupant Load	Number of Exits Required
Pool Mechanical	В	1005	300	4	1
Maintenance Office	В	286	100	3	1

B. 2nd Floor Life Safety Plan Area

Table 4-8: Occupancy	Calculations for 2 nd Floor
----------------------	--

Floor/Space	Occupancy	Area (ft²)	OLF (ft ² / OCC)	Calculated Occupant Load	Number of Exits Required
Fitness Studio 1	В	1688	50	34	1
Fitness Studio 2	В	1962	50	40	1
Main Gym North	A-3	6396	-	1180	2
Main Gym South	A-3	6414	-	1180	2
Fitness Studio 3	В	2356	50	48	2
Cardio Fitness	A-3	3330	50	67	2
Jogging Track	A-3	2014	-	69	2

H. Exit Stairway Calculations

It is a LSC requirement, when more than one exit is required, the sizing of each exit available is based on the fact that the loss of a single exit will not reduce the available capacity to less than 50 % of the required capacity. [Reference LSC Section 7.3.1.1.2]

Stairway	Occupant Load	Required Width	Provided Width
Stair 1	156	156 x 0.2= 32 in	84 inches
Stair 2	156	156 x 0.2= 32 in	78 inches
Stair 3	52	52 x 0.2= 11 in	87 inches
Stair 6	100	100 x 0.2= 20 in	84 inches
Stair 7	86	86 x 0.2= 18 in	84 inches
Stair 8	236	236 x 0.2= 48 in	84 inches
Stair 9	101	101 x 0.2= 21 in	76 inches
Stair 10	236	236 x 0.2= 48 in	96 inches
Stair 11	236	236 x 0.2= 48 in	96 inches
Stair 12	236	236 x 0.2=48 in	106 inches

Table 4-9: Stairway Capacity Calculations

The stairway width calculations were performed observing IBC/LSC prior edition to 2009 used at the time of the building was designed and built. The LSC 2006 edition gives 0.2 capacity factor for stairway calculations.

Applying current edition of LSC, using capacity factor of 0.3; the following stairway widths would have been required:

· · · · · · · · · · · · · · · · · · ·		
Occupant Load (No of people)	Required Width (inches)	Provided Width (inches)
156	46.8	84
156	46.8	78
52	15.6	87
100	30	84
86	25.8	84
236	70.8	84
101	30.3	76
236	70.8	96
236	70.8	96
236	70.8	106

Table 4-10: Stairway Width Calculations using LSC 2009

It can be seen that stairway widths in the Recreation Center are larger and provide adequate egress capacities. The exit capacities are therefore adequate for the application.

I. Arrangement of Exits

It is required that exits are located and exit access are arranged so that exits are readily accessible at all times in accordance with LSC Section 7.5.1.1. Where exits are not immediately accessible from an open floor area, LSC requires that:

- Continuous passageways, aisles, or corridors leading directly to every exit to be maintained and
- To be arranged to provide access for each occupant to not less than two exits by separate ways of travel.

The following assessment were performed from existing Recreation Center floor plans, in order to attest the adequacy in terms of exit remoteness, common path, travel distance to exits, dead end corridors

1) Remoteness of means of egress

- It is required by LSC that where more than one exit, exit access or exit discharge is required from a building or portion thereof, such exits, exit accesses, or exit discharges shall be:
 - Remotely located from each other and
 - Arranged to minimize the possibility that more than one has the potential to be blocked By any one fire or other emergency condition
- The Rec Center is protected throughout by an approved, supervised automatic sprinkler system; in accordance with the LSC Section 7.5.1.3.2, the minimum separation distance between two exits, exit accesses, or discharges, shall be not less than one-third the length of the maximum overall diagonal dimension of the building or area to be served.

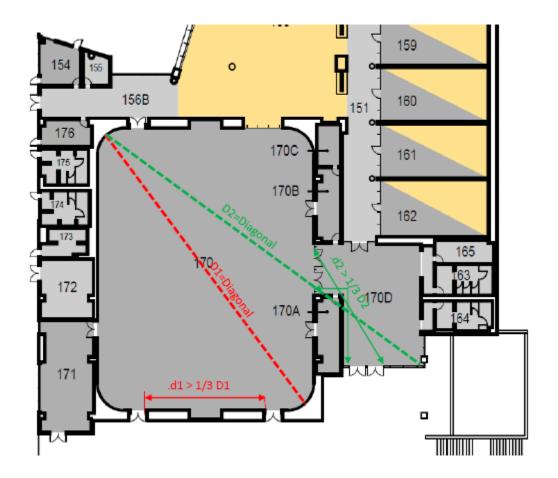


Figure 4-11: Remoteness Assessment of Recreation Center South Exits

As shown in figure 4-11, the MAC room required 4 exits; these exits are required to be separated by a minimum distance equaled to one third of the diagonal distances, as illustrated in the diagram.

The following calculations were performed:

$$D_1 = 200 \text{ ft}$$
, therefore $d_1 \ge \frac{1}{3}x200 = 66 \text{ ft}$; measured distance $d_1 = 70 \text{ ft}$
 $D_2 = 230 \text{ ft}$, therefore $d_1 \ge \frac{1}{3}x230 = 77 \text{ ft}$; measured distance $d_2 = 77 \text{ ft}$

Assessing the North, stairway numbers and widths can be checked if compliant:

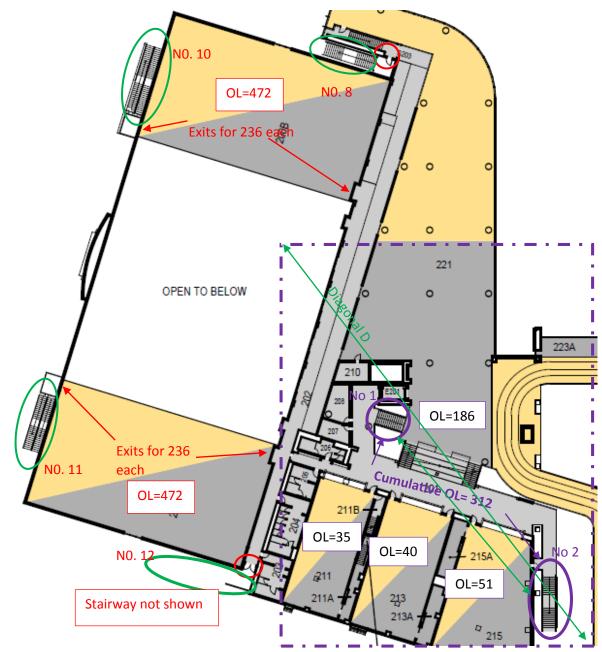


Figure 4-12: Extract from Recreation Center 2nd Floor Plan

Two typical examples were chosen to assess a portion of the Recreation Center.

Example 1, referring to Figure 4-12, above, for the main GYM, the following calculations can be performed:

Room	Occupant Load (people)	No of Exits	Required Stairway width (in)	Required Door Width (in)	Remoteness of Exits
Gym 2 nd floor	472	2	236x0.2=48 (old code)	236x0.15=35 (old code)	Room width= 57 ft Length=113ft Diagonal=SQR(57 ² +113 ²)=127
			236x0.3=71 (2009 LSC)	236x0.2=48 (2009 LSC)	Distance d for exits >= 1/3x127 = 42 ft

Table 4-11: Calculations for Main Gym Exit Capacity

- Referring to Figure 4-12, the following assessment were performed to check compliance to LSC requirement of the area housing cardio fitness machines (demarcated by a square):
 - Cumulative occupant load of that portion of building: 312 people
 - Number of exits required: 2
 - Required stairway width: 156 x 0.3=47 inches
 - Provided stairway width: as shown in Table 4-09, Stairway N⁰1 measured 78 inches and stairway N⁰2 = 84 inches.
 - Minimum required exit:
 - Door width: 156 x 0.2= 32 inches
 - Provided exit door width: 36 inches
 - Remoteness of exits: the distance from stairway N_o2 to N_o1 is greater than the 1/3 diagonal distance of the covered area as indicated by dashed lines.

The typical calculations and observations were performed for the entire building; our assessment ascertained that the Rec Center building meet the minimum of requirements minimum egress width capacity and similarly the remoteness of exit locations meet the minimum 1/3 of diagonal distance of the space served.

2) Common paths and Dead end corridors

Common Path of Travel is defined as the portion of exit access that must be traversed before two separate and distinct paths of travel to two exits are available. In simple words, common path of travel is the portion of the exit access travel to which an occupant is steered in one direction only without the option of traveling in another independent direction toward an exit. [Reference LSC Section A.7.5.1.5]

LSC Section A.3.3.42 stipulates that Common path of travel is measured in the same manner as travel distance but terminates at that point where two separate and distinct routes become available.

The Rec Center architecture has a number of common paths of travel.

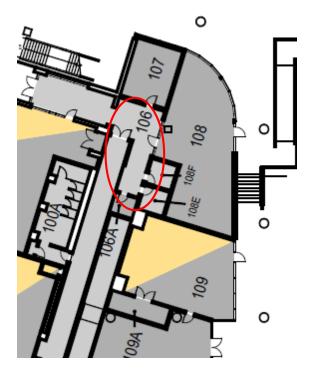


Figure 4-13: Extract from 1st floor plan: North-West: Common Path of Travel

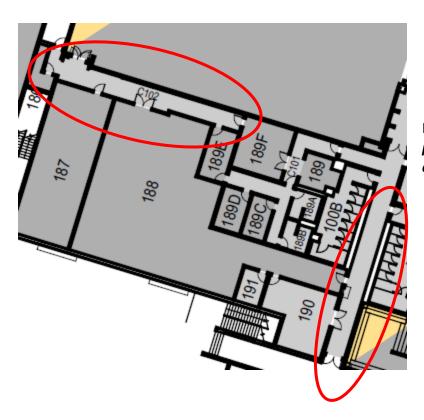


Figure 4-14: Extract: 1st floor plan: South West: Common Path of Travel

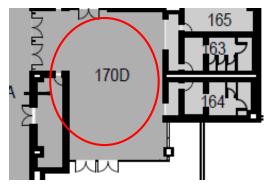


Figure 4-15: Extract: 1st floor plan, South East: Common Path of Travel

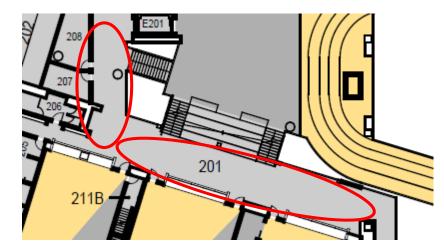
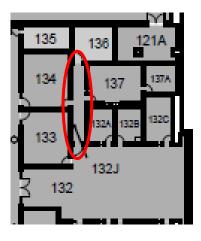
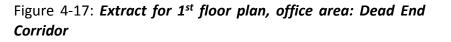




Figure 4-16: Extract 2nd floor plan, North East: Common Paths of Travel

Assessing different common paths of travel found in the Rec Center; the longest was estimated at 57 ft; therefore less than 75 ft maximum allowed by the LSC [reference figure 4-16]. The common paths of travel in the Rec Center are LSC compliant.

LSC requires that exit access to be arranged so that there are no dead ends in corridors. A dead end exists where an occupant enters a corridor thinking there is an exit at the end and, does find none exists.

Our assessment of the entire building has revealed no other dead end corridor, except the corridor shown in figure 4-17.

The corridor was measured to be 35 ft; therefore complaint to the LSC requirements, which establish the maximum allowable at 50 ft. Refer to Table 4-12 for more details.

3) Travel distance to exits

The travel distance to an exit is required, in accordance with LSC Section 7.6.1, to be measured on the floor or other walking surface as follows:

- Along the centerline of the natural path of travel, starting from the most remote point subject to occupancy
- Curving around any corners or obstructions, with a 12 in clearance therefrom
- Terminating at one of the following:
 - Center of the doorway
 - Other point at which the exit begins

Travel distances in the Recreation Center was evaluated in accordance with LSC requirements shown in Table A.7.6

Table 4-12: Extract from LSC: Common Path, Dean-End and Travel Distance

Table A.7.6 Common P	Path, Dead-End, and Travel	Distance Limits (by occupancy)
Anote thirty Common 1	any second sind, and states	Distance Lanna (by beeupuney)

	C	ommon l	Path Li	imit		Dead-En	it	Travel Distance Limit					
	Unspri	inklered	Sprin	Sprinklered		Unsprinklered		Sprinklered		Unsprinklered		Sprinklered	
Type of Occupancy	ft	m	ft	m	ft	m	ft	m	ft	m	ft	m	
Assembly													
New	20/75	6.1/23	20/75	6.1/23 ^a	20	6.1 ^b	20	6.1 ^b	200	61°	250	76°	
Existing	20/75	6.1/23	20/75	6.1/23°	20	6.1 ^b	20	6.1 ^b	200	61°	250	76°	
Educational			\smile										
New	75	23	100	30	20	6.1	50	15	150	45	200	61	
Existing	75	23	100	30	20	6.1	50	15	150	45	200	61	
Day Care													
New	75	23	100	30	20	6.1	50	15	150	45 ^d	200	61 ^d	
Existing	75	23	100	30	20	6.1	50	15	150	45 ^d	200	61 ^d	
Health Care													
New	NR	NR	NR	NR	30	9.1	30	9.1	NA	NA	200	61 ^d	
Existing	NR	NR	NR	NR	NR	NR	NR	NR	150	45 ^d	200	61 ^d	
Ambulatory Health Care													
New	75	23°	100	30°	20	6.1	50	15	150	45 ^d	200	61 ^d	
Existing	75	23°	100	30°	50	15	50	15	150	45 ^d	200	61 ^d	

Table A.7.6 Continued

	Co	mmon P	ath Lin	nit	Dead-End Limit				Travel Distance Limit			
Type of Occupancy	Unsprinklered Sprinklered			Unspri	nklered	Sprinklered		Unsprinklered		Sprinklered		
	ft	m	ft	m	ft	m	ft	m	ft	m	ft	m
Business							_				•	
New	75	23 ¹	100	30 ¹	20	6.1	50	15	200	61	300	91
Existing	75	23 ¹	100	30 ¹	50	15	50	15	200	61	300	91

We have noticed that for the entire building, the longest travel distance of travel was from staff offices to the south east exit as shown by the diagram below:

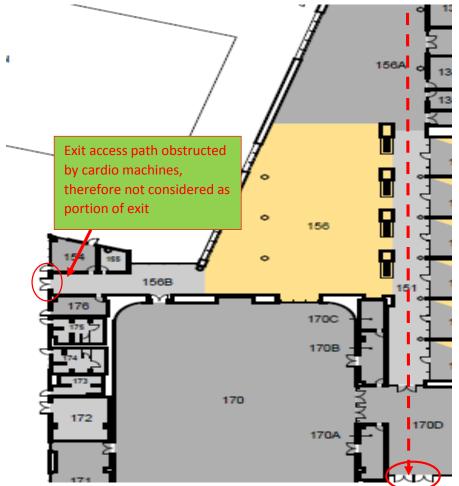


Figure 4-18: Extract from 1st floor plan: Exit access path obstructed

The travel distance was measured and found to be 225 feet, less than 250 ft as per LSC requirements. Therefore the travel distance in the entire building is LSC code complaint.

4) Discharge from exits

The exits from Rec Center terminate at an exterior exit discharge that is continuous to the public way.

All exits in the Rec Center are arranged and marked with exit signs to make clear the direction of egress to a public way.

J. Illumination of Mean of Egress:

In accordance with LSC requirements, the floors and other walking surfaces within an exit and within the portions of the exit access and exit discharge are illuminated as follows:

- The minimum illumination for floors and walking surfaces are required to be values of at least 1 ft-candle (10.8 Lux) measured at the floor
- In assembly occupancies, the illumination of the walking surfaces of exit access shall be at least 0.2 ft candle (2.2 Lux) during periods of performances or projections involving directed light
- The minimum illumination requirements shall not apply where operations or processes required low lighting levels. A desirable form of means of egress lighting is by lights recessed in walls about 12 in (305 mm) above the floor. Such lights are not likely to be obscured by smoke.

All lights, circuits, or auxiliary power must be arranged to ensure continuity of egress lighting, although the performance level is permitted to decline from 1 ft-candle (10.8 Lux) to 0.2 fr-candle (2.2 Lux) if a system element fails. Continuity of egress lighting can be accomplished by means such as use of duplicate light bulbs in fixtures or overlapping light patterns from neighboring fixtures.

All spaces/rooms in the Recreation Center of assembly occupancy use, with an occupant load not exceeding 300 shall not be required to have emergency lighting.

Emergency lighting is required in the Recreation Center for only the designated stairs, corridors, ramps, and passageways leading to an exit and to public way for designated spaces of the exit discharge.

The emergency illumination is required for a minimum of 1 ½ hours (90 min) in the event of failure of normal lighting. Emergency lighting facilities are required to be arranged to provide initial illumination that is not less than an average of 1 ft-canfle (10.8 Lux) and, at any point, not less than 0.1 ft-candle (1,1 Lux), measured along the path of egress at floor level. Illumination levels shall be permitted to decline to not less than an average of 0.6 ft-candle (6.5 Lux) and, at any point, not less than 0.06 ft-candle (0.65 Lux) at the end of 1 ½ hours. A maximum-to-minimum illumination uniformity ratio of 40 to 1 shall not be exceeded.

K. Means Of Egress Components

1) Doors

Door assemblies serve multiple purposes that relate to the comfort and safety of building occupants and provide protection from the following:

- i. Weather, drafts, noise, and disturbance from adjoining areas
- ii. Trespass by unauthorized persons
- iii. Fire and smoke

In accordance with LSC requirements, every door opening and the principal entrance that is required to serve as an exit for the Recreation Center shall be designed and constructed so that the path of egress travel is obvious and direct; easily recognizable as doors. Doors cannot be concealed by curtains, drapes, decorations, mirrors of other similar materials.

Door opening assemblies in a means of egress used in the Recreation Center shall conform to the general requirements of LSC Section 7.1 and special requirements of 7.2.1.

Any door in a required means of egress from an area having an occupant load of 100 or more persons shall be permitted to be provided with a latch or lock only if the latch or lock is panic hardware or fire exit hardware complying with LSC Section 7.2.1.7.

Doors in the means of egress shall be permitted to be equipped with an approved access control system complying with 7.2.1.6.2, and such doors shall not be locked from the egress side when the assembly occupancy is occupied (Reference LSC 7.2.1.1.3.).

The measurement of door width shall be as shown in figure xxx: Clear openings of doorways are measured between the face of the door and the stop with the door opened at 90 degrees. The minimum clear opening door width is 32 inches (including a door opening with two door leafs, with no mullion).

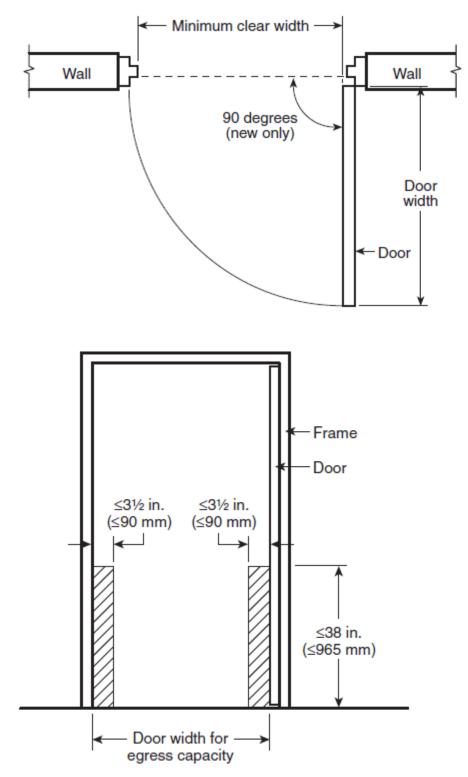


Figure 4-19: *Egress Capacity and Permitted Obstructions*

The LSC Section 7.2.1.2.3.2 requires that door openings in means of egress to not be less than 32 inches in clear width.

The minimum door width for every door installed in the Rec Center is 36 inches; this means the LSC requirements in terms of means of egress.

The measurement for existing door assembly shall be taken with the door leaf in the fully open position.

Projections are not allowed into the clear opening width for a door lower than 34 inches above the floor. Projections between 34-inches and 80-inches above the floor cannot exceed 4-inches into the clear door opening width. This provision allows for the door hardware to be in the clear opening width.

2) Floor Level

The elevation of the floor surfaces on both sides of a door opening shall not vary by more than ½ in (13 mm). The LSC requires that the elevation of the floor surfaces to be maintained on both sides of the door openings for a distance not less than the width of the widest leaf.

Thresholds at door openings shall not exceed ½ in at door openings shall be beveled with a slope not steeper than 1 in 2.

For the Recreation Center, where the door opening discharges to the outside or to an exterior balcony or exit access, the floor level outside the door opening is permitted to be one step lower than that of the inside, but shall not be more than 8 in lower. [Reference LSC Section 7.2.1.3.1]

3) Swing and Force to Open

Any door assembly in a means of egress installed in the Recreation Center shall meet requirements of LSC Section 7.2.1.4. The door in a meand of egress shall be of the side-hinged or pivoted-swinging type, and shall be installed to be capable of swinging from any position to the full required width of the opening in which it is installed; and in the direction of egress travel where serving an occupant load of 50 or more persons.

The recommended forces required to fully open a door leaf manually in a means of egress prescribed in the LSC, shall not exceed (when applied to the latch side):

- The opening force for the interior-side of swing doors without closures cannot exceed 5 pounds
- For other side-swinging, sliding and folding door, the door latch shall release when subject to a 15 lbf (67 N).
- $\circ~$ The door shall be set in motion when subject to a 30 lbf (133 N)
- The door shall open to the minimum required width when subject to a 15 lbf (67 N)
- The opening forces for existing door leaves in existing buildings shall not exceed 50 lbf (222N).

4) Door Leaf Encroachment

To avoid door leaves to protrude into the required corridor width, in general rooms/spaces in the Recreation Center have door leaves that swing within a recessed pocket of the corridor and provide clear passage through an exit access corridor; as it shown in figure 2-23 below. In additional, for those doors that swing into corridor leave at least one-half of the required corridor width unobstructed during the entire swing and project not more than 7 in (180mm) in the required width of a corridor or passageway when fully open; as required in LSC Section 7.2.1.4.3.1.

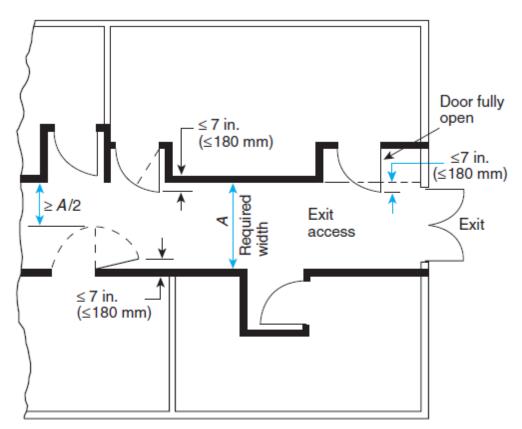


Figure 4-20: Extract from LSC: Door-Leaf Encroachment

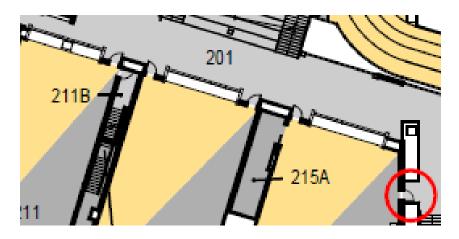


Figure 4-21: Extract from Rec Center 2nd floor plan: Recessed Pocket Corridor

Surface-mounted latch release hardware on the door leaf are not included in the maximum 7 in (180 mm) projection requirement as the hardware is mounted to the side of the door leaf that faces the corridor, passageway when the door leaf is in the open position; and the hardware is mounted not less than 34 in (865 mm) and not more than 48 in (1220 mm) above floor.

Where pairs of door leaves are used, in a means of egress, such as the main GYM exit doors in the Recreation Centre, one of the following criteria shall be met:

- Each leaf of the pair shall be provided with a releasing device that does not depend on the release of one leaf before the other
- Approved automatic flush bolts shall be used and arranged such that:
 - The door leaf equipped with the automatic flush bolts shave no doorknob or surface-mounted hardware
 - Unlatching of any leaf shall not require more than one operation

5) Locks, Latches, and Alarm Devices

It was said that the main entrance and some offices are locked overnight; that is permitted by the LSC provisions 7.2.1.5. Door leaves in the Rec Center shall be then arranged to be opened readily from the egress side whenever the building is occupied; locks when provided, shall not require the use of a key, a tool, or special knowledge or effort for operation from the egress side.

For the exterior door assemblies, main entrance and exit, the following will apply:

- A readily visible, durable sign in letters not less than 1 in (25 mm) high on a contrasting background that read as follows is located on or adjacent to the door leaf: THIS DOOR TO REMIAN UNLOCKED WHEN THE BUILDING IS OCCUPIED.
- The locking devise is of a type readily distinguishable type when the door is locked.
- A key is immediately available to occupant inside the building when it is locked.

6) Access-Controlled Egress Door Assemblies

The Rec Center is equipped with entrance and egress access control system for access to the facility beyond the reception area; where the entrance controlled devices prevent access from the outside of the building and requires approved students (registered students to use the facility) and center's staff members magnetic cards to open. Other exterior doors are not equipped with such devices, but are equipped with panic exit or fire exit hardware. The application of such access-controlled egress are permitted by the LSC as long as the following provisions of LSC 7.2.1.2.6 are met:

- A sensor shall be provided on the egress side, arrange to detect an occupant aproaching door leaves that are arranged to unlock in the direction of egress upon detection of an approaching occupant or loss of power to the sensor.
- Door leaves shall be arranged to unlock in the direction of egress from a manual release device located 40 in to 48 in (1050 mm to 1220 mm) veritcalle above the floor and within 60 in (1525 mm) of the secured door openings. The manual release device shall be readily accessible and clearly identified by a sign that reads as follows: PUSH TO EXIT
- The door leaves shall remain unlocked for not less than 30 seconds
- Door leaves shall automatically unlock in the direction of egress at the activation of the building fire alarm system, and shall remain unlocked until the fire –protective signaling system has been manually reset
- Activation of the building automatic sprinkler or fire detection system, if provided, shall automatically unlock the door leaves in the direction of egress, and they shall remain unlock until the fire-protective signaling system has been manually reset.

7) Panic Hardware or Fire Exit Hardware

The LSC requires that any door in a means of egress from area having an occupant load of 100 or more persons to be provided with a latch or lock only if the latch or lock is panic hardware or fire exit hardware complying with section 7.2.1.7. The rooms/spaces, with occupant load of 100 or greater, have their doors equipped with approved panic hardware or fire exit hardware. The LSC defines the following terms:

- Fire exit hardware is a door-latching assembly incorporating an actuating member or bar that releases the latch bolt upon the application of a force in the direction of egress travel ,and additioanly is tested and listed for use on fire-rated door assemblies
- Panic hardware is a door-latching assembly incorporating an actuating member or bar that releases the latch bolt upon the application of a force in the direction of eress travel, and is not tested or listed

Where the panic hardware or fire exit hardware are installed in the Rec Center, they are not less than 30 in (760 mm), and not more than than 48 in (1220 mm) above the floor. These devices are required to be constructed so that a horizontal force not to exceed 15 lbf (66 N) actuates the cross bar or push pad and latches.

These door assemblies are not equipped with any locking device, set screw, or other arrangement, such as locks, padlocks, bars, chains or any combination of these, that prevents the release of the latch when pressure is applied to the releasing device; and are required not to have devices that hold the latch in the retracted position in compliance with LSC Section 7.2.1.7.4.

8) Self-Closing Or Self-Latching Door Leaf Operation

The exterior main-entrance door assemblies are self-closing and are provided with powerassisted manual operation. The LSC allows the use of such self-closing or self –latching door leaf operation in the means of egress, as per provisions 7.2.1.9.2; when the following criteria are met:

- The door leaves can be opened manually to allow egress travel in the event of power failure
- Door leaves held open for any period of time close, and the power-assist mechanism ceases to function upon operation of approved smoke detectors

9) Inspection of Door Openings

It is required by the LSC that door assemblies for which the door leaf is required to swing in the direction of egress travel to be inspected and tested not less than annually in accordance with Sections 7.2.1.15.2 through 7.2.1.15.8

10) Stairs

Interior and exterior stairs to a building are recognised as very important as they serve multiple functions, such as allowing normal occupant movement among the floors of a building, providing emergencyegress in case of fire, and facilitating rescue and fire control operations conducted by fire fighters.

Unclosed stairs in the Recreation Center serve as exit access and they are not considered as exits. In accordance with the LSC, the stairways in the Recreation Center are required to meet the minimum requirements applicable for existing as shown in figure 2-25:

Table 4-13: Existing Stairs Dimensional Requirements

Table 7.2.2.2.1.1(b) Existing Stairs

	Dimensional	Criteria
Feature	ft/in.	mm
Minimum width clear of all obstructions, except projections not more than $4\frac{1}{2}$ in. (114 mm) at or below handrail height on each side	36 in.	915
Maximum height of risers	8 in.	205
Minimum tread depth	9 in.	230
Minimum headroom	6 ft 8 in.	2030
Maximum height between landings	12 ft	3660
Landing	See 7.2.1.3 and 7	7.2.1.4.3.1.

As shown in the calculations in Table 4-9; provided stairways inside the Rec Center meet the minimum width requirements.

i. Stair Details

a. Construction

All stairs serving as means of egress in the Rec Center are required to be of permanent fixed construction in compliance with LSC Section 7.2.2.3.1.1.

b. Landings

The follwoign LSC provisoins are applicable to existing stairs in the Rec Center:

- Stairs and intememediate landing shall continue with no decrease in width along the direction of egress travel
- Landings shall not be required to exceed 48 in (1220 mm) in the direction of travel, provided that the stair has a straight run
- A door assembly at the top of a stair shall be permitted to open directly to the stair, provided that the door leaf does not swing over the stair and the door opening serves an area with anoccupant load of fewer than 50 persons. The case of the stairs connecing the second to the roof.

 The maximum distance between floors without the use of an intermediate landing is 12-feet. A flight of stairs cannot have a vertical run of stairs greater than 12-feet without reaching a landing a floor level or having intermediate landings.

Sloping treads and landings are intentionally used to avoid water accumulation on stairs. However slope is limited to reduce the dimensional nonuniformity of the effective riser heights and to reduce the chance of occupants slipping

c. Riser Height and Tread Depth

The figure below illustrate thread measurement in accordance with LSC Section 7.2.2.3.5.

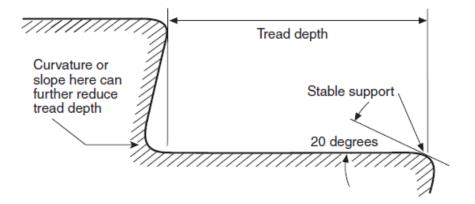


Figure 4-22: Extract from LSC: Tread Measurements

Tabel 4-14: Extract from LSC: Existing Stairs Dimensional Details

Table	7.2.2.2.1	l.1(b)	Existing	Stairs
-------	-----------	--------	----------	--------

	Dimensional	Criteria
Feature	ft/in.	mm
Minimum width clear of all obstructions, except projections not more than $4\frac{1}{2}$ in. (114 mm) at or below handrail height on each side	36 in.	915
Maximum height of risers	8 in.	205
Minimum tread depth	9 in.	230
Minimum headroom	6 ft 8 in.	2030
Maximum height between landings Landing	12 ft See 7.2.1.3 and 7	3660 7.2.1.4.3.1.

The typical stairs in the Rec Center are illustrated in figure 2-28 below:

Typical minimum clear width: 36 inches Typical maximum riser height : 6 inches Typical maximum tread depth: 14 inches Equipped with a slip-resistant nosing width: 3 ¼ inches

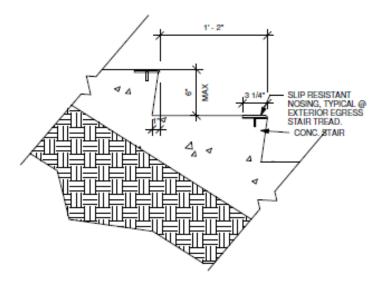


Figure 4-23: Typical Stairway Details in the Recreation Center

d. Dimensionsal Uniformity

Many accidents have resulted from irregularitites in stair geometry from one step to an adjacent step or over an time run of stairs. The LSC permits variation due to construction, provided that the variation between adjacnet treads or adjacent treads or adjacent risers does not exceed 3/16 in (4.8 mm) and that the difference between the largest and smallest riser, as well as the difference between the largest and smallest tread, in any flight of stairs does not exceed 3/8 in (9.5 mm)

ii. Guards and Handrails

All stairs in the Center are equipped with guards (handrails) along the open sides of means of egress pahts where there is a vertical drop of at least 30 in. (760 mm). The handrails provided meet the following requirements:

• They shall be provided within 44 in (1120 mm) of all portions of the required egress width

 Such stairs shall not have their egress capacity adjusted to a higher occupant load than permitted by the cpacity factor in Table 7.3.3.1 if the stair's clear width between handrails exceed 60 in (1525 mm) Stairs and ramps are required by the LSC to be installed with handrails on both sides of stairs. LSC Section 7.2.2.4.1.2 requires, in addition to the handrails required at the sides of stairs, the following provisions to be met by the existing stairs:

 handrails to be provided within 44 in. (1220 mm) of all portions of the required egress width; and such stairs shall not have their egress capacity adjusted to a higher occupant load than permitted by the capacity factor in Table 7.3.3.1.

Handrails installed on stairways in the Recreation Center are typically 34 inches above the surface of the tread, measured vertically to the top of the rail from the leading edge of the tread in accordance with LSC Section 7.2.2.4.4.2; as shown in figure Figure 2-29.

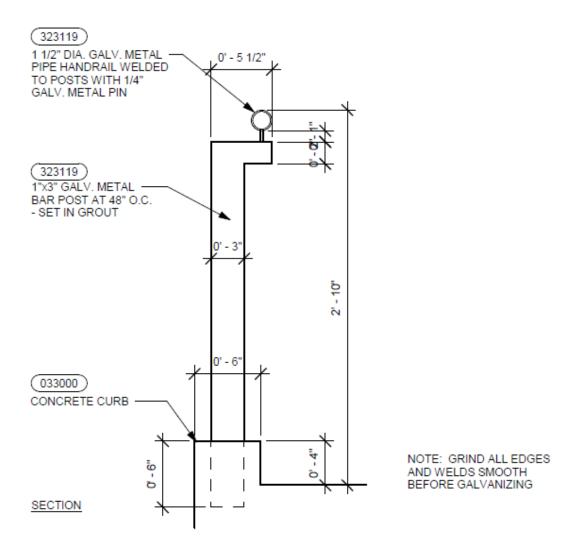


Figure 4-24: Typical Handrail Details for the Recreation Center

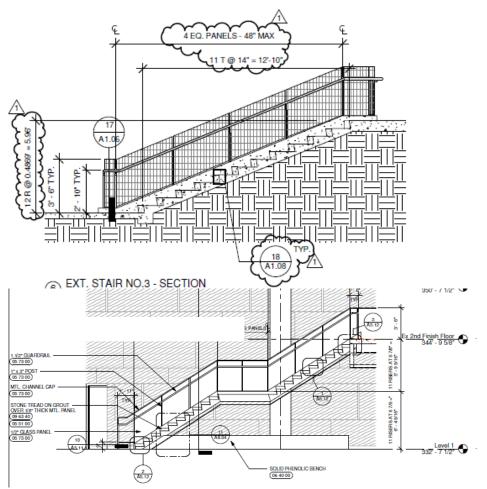


Figure 4-25: Typical Stair Section Details of Installed Stairways in the Center

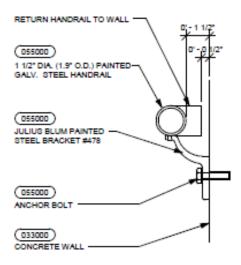


Figure 4-26: Wall Mounted Handrail

Handrails shapes can be:

- Circular cross section with an outside diamter of not less than 1 ¼ in (32 mm) and not more than 2 inches (51 mm).
- Shape that is other than circular with a perimeter diamension of not less than 4 in. (100 mm), but not more than 6 ¼ in. (160 mm), and with the largest cross sectional dimension not more than 2 1/4in (57 mm), provided that graspable edges are rounded so as to provide a radius of not less than 1/8 in (3.2 mm)

As shown in figure 4-26 above; handrails are of circular shape and of 1 ½ in diameter; this design allows a firm grasp with comfortable grip; the fingers of the hand have sufficient space to point downward in a natural grasping position without encountering the handrail bracket. Provided guards on the staris are 42 in. high in accordance with LSC provisions 7.2.2.4.5.2: "

Guards shall not be less than 42in. (1065 mm) high ... "

iii. Headroom

Means of egress shall be designed and maintained to provide headroom in accordance with LSC section 7.1.5.1; such headroom shall be not less than 7 ft 6 in (2285 mm), with projections from the ceiling not less than 6 ft 8 in (2030 mm) with a tolerance of -1/4 in (-19mm) above the finished floor, unless otherwise specified by the following:

• The ceiling height shall be not less than 7 ft (2135 mm) from the floor, with projections from the ceiling not less than 6 ft 8 in (2030 mm) nominal measured vertically above a plane parallel to, and tangent with, the most forward projection of the stair tread.

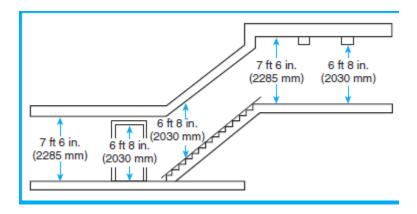


Figure 4-27: Extract LSC: Headroom Measurement

iv. Separation and Protection of Outside Stairs.

The second floor is equipped with four outside exit stairs that are not required to be separated from the interior of the building by fire rated construction in accordance with LSC Section 7.2.2.6.3, which stipulate that:

- In existing buildings, existing outside stairs serving three or fewer adjacent stories, including the story where the exit discharges, shall be permitted to be unprotected where there is a remote located second exit.
- Outside stairs in existing buildings protected throughtout by an approved, surpervised automatic sprinkler system in accordance Section 9.7 shall be permitted to be unprotected.

11) Ramps

Ramps are permitted as a part of a means of egress and are preferred over stairs under some circumstances.

There are three ramps installed in the Recreation Center, they have all to meet LSC requirements for existing ramps as permitted by the LSC Section 7.2.5.2:

- The slopes shall not be steeper than 1 in 6
- Ramps with slopes not steeper than 1 in 10 shall not be required to be provided with landings.
- Minimum width to be 30 in (760 mm)
- Maximum height between landings 12 ft (3600 m)

i. Ramps Constructions

The ramps installed meet the following construction requirements:

- They are part of exit access and are made of permanent fixed construction for Type I.
- The ramp floor and landings are solid and without perforations
- They have landings located at the top, at the bottom, and at door leaves opening onto the ramp
- The change in travel direction are made only at landings, and
- Ramps and intermediate landings shall continue with no decrease in width along the direction of egress travel
- Guards and handrails are provided along both sides of a ramp run with a rise greater than 6 in.(150 mm). The height of handrails and guards are measured vertically to the top of the guard or rail from the walking surface in accordance with LSC provisions 7.2.5.4.3
- The surface of ramps are kept slip-resitant and outdoor ramps are designed such that they minimize water accumulation on walking surfaces.

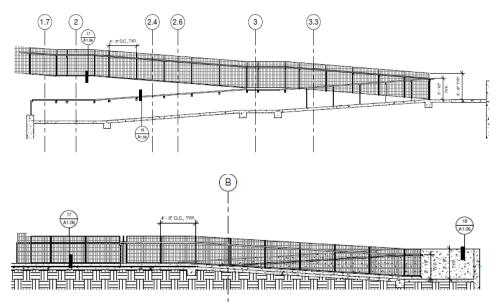


Figure 4-28: Typical Ramp Details

HUMAN BEHAVIOR IN FIRE

A. OCCUPANT CHARACTERISTICS

The selected occupant characteristics include individual physical, cultural, and psychological characteristics and also factors of the occupant's primary group relative to the occupational / cultural setting of the fire. The fire environmental impact includes the evaluation of the susceptibility of the occupants to the heat, flames, smoke, and toxic gases created by the fire incident relative to the locations of the fire effects and the occupants within the Recreation Center.

The following were identified as applicable characteristics of occupants that will influence the egress times of occupants out of the Recreation Center in fire emergency conditions:

- a) Occupant number and density: The occupant load calculation has shown that the facility can house more than 4000 people. However the density of occupation is lower due to the large occupiable area of the facility. Even though the density is lower, it is however not evenly spread out the building, hence some spaces/rooms might have much higher density than others. So these factors will affect egress times.
- b) Distribution and Activities: The center has equipment for different types of physical activities, for groups or individual activities. From 1st floor to 2nd floor; occupants will react differently to evacuation cues depending on the location and activity performed. As an example, 2nd floor has rooms for Yoga / meditation; reaction times of occupants engaged in Yoga activities will be sensibly different from people using cardio machines; in Yoga activities, people might not be as aware of their surroundings as those engaged in cardio activities.

- c) Familiarity and Alertness: Students using the facility are in general alert and many are returning students who have used the facility before and are well familiarized with the egress path; assistance is always available for new students.
- d) Physical and cognitive ability: Even though the majority of students using the facility are assumed to be able bodies; the facility can accommodate students with physical impairments. Egress for student with mobility impairments will require assistance during evacuation in fire emergency conditions.
- e) Social affiliation, role and responsibility: depending on social ties amongst students using the facility, whether they are from same sport teams or simply from same study classes; their social connections will affect their evacuation reaction times. Several studies have shown that people tend to regroup or discuss the occurrence instead of evacuating immediately upon hearing of fire alarms.
- f) Role and Responsibility: How well staff members (fire wardens) are trained for emergency fire evacuations and how well they will be able to get involved in orientating facility users during a fire emergency will impact on the egress time. In general, students will not feel that it is their responsibility to take care of other students; they might delay their egress just waiting to be told what to do next.
- g) Commitment and focus: related to activity someone is involved with at the time of a fire emergency; would he/she be committed to complete the task at hand or immediately he/she will react in order to egress?
- h) Gender, culture and age: Female students might react differently to male students, as shown in different studies; males have fire-fighting tendencies while females tend to reach out for help first; the age might be a factor too, link to role and responsibility, senior students might feel compelled to assist junior students.
- i) Effectiveness of different cues: Alarm devices might sound confusing to occupants if not accompanied by specific actions to be taken as alarm alone do not say what to do when they go off; the emergency voice evacuation system installed in the Rec Center will definitively be effective than just sounding fire alarms.

B. FACTORS AFFECTING PRE-MOVEMENT TIME

There are factors that affect pre-movement times, which are related to the perception of a fire incident by individuals; summarized from Withey's work presented by Dr. Bryan (SFPE Handbook Chapter 3-11):

a) Recognition: A process by which an individual perceives the ambiguous fire cues as indicative of an emergency fire situation, thus becomes aware of the fire.

- b) Validation: A process by which an individual attempts to validate an initial perception of the fire cues, primarily by seeking verbal reassurance of the minor and insignificant character of the fire incident; individual tries to obtain more information when the initial cues are ambiguous.
- c) Definition: a process by which an individual attempts to relate the information concerning the fire to the perceived and contextual variables, including the qualitative nature of the fire to his/her location. How large is the fire, how he/she can survive in those specific conditions.
- d) Evaluation: the individual's process of evaluating the fire incident in terms of how he/she can respond to the threat. This combines psychological and physiological mechanisms that an individual develops to cope with the fire incident, reduce his/her stress and anxiety levels. Obviously the individual needs to accomplish this process in a very short of times.
- e) Commitment: a process by which an individual develops mechanisms to initiate the behavior required to fulfill defense plans conceptualized in the evaluation process. If the response strategy developed is not completed, the individual becomes immediately involved in the cognitive process of reassessment and commitment.
- f) Reassessment: a most stressful process, with high anxiety levels, as an individual reassesses and overcommits because failure previous attempts to achieve the formulated response strategies. He/she will carry on the process over and over as long as he/she feels still not out of danger.

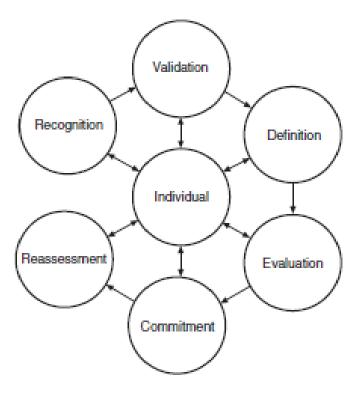


Figure 4-29: Extract from SFPE Handbook: Decision Processes in a Fire

C. PRE-MOVEMENT ACTIVITIES AND TIMES

The egress delay times might be minimized by the following factors observed at the Center:

- An approved fire alarm system is installed in the Center, and equipped with a voice evacuation system,
- o The Center is equipped throughout with well illuminated interior exit signs,
- o The Center construction has no complexity enclosures,
- The occupant load distribution is spread out, hence low density;
- Fire drills are performed on a continuous basis; and
- Occupants are awake and alerted
- Assistance on evacuation procedures is always available from trained staff members.

The assumption made is that users of the facility are students with a considerable level of understanding of the harms that can be caused by a fire condition. The Rec Center management organized fire drills at least one per trimester; that means it is probable that many of the students using the facility have been involved at least once in a fire drill or fire safety awareness, where they have learned to recognize the alarm sounds and to locate the closest exits depending on their location in the Center.

However it is known that fire behavior in reality or real fire emergency is completely different to set up scenarios in a fire drill.

As the characteristics of occupants were discussed in part A of this chapter, the following pre-movement activities may be associated with users of the Rec Center in a fire emergency:

- Some students will try to get dressed in different attires, at least over cover their sport-appropriate clothing
- Some students will attempt to collect their personal belongings left in secured closet
- o Some students will attempt to associate in their respective social circles
- Some students will attempt to notify or discuss with each other.
- Some students might ignore the initial fire cues and continue with their exercise routine
- Some students might completely be lost by their emotions and fail to follow specific instructions from fire wardens
- Staff members might attempt to shutdown computers, collect their belongings

The pre-movement at the Center is estimated to be 0.5 min to 1 min, mostly recorded for people using the swimming pool and women locker rooms; as they tend to dress up before attempting an evacuation. The pre-movement time of people using the swimming pool is not of much concern because the pool is outside, on open air and out of smoke danger.

Calculations of time of evacuation will take into account factors discussed above when estimating delay time.

EMERGENCY MOVEMENT

Prediction of evacuee movement is an essential component of performance-based fire safety analysis. It is said that safe egress from fire is achieved when the required safe egress (RSET) is sufficiently shorter than the available safe egress time (ASET) defined as time when fire-induced conditions within a building become untenable.

Evacuation process is not simply a matter of initiating an evacuation and then controlling the ensuing hysterical crowd response; instead, it is now considered as a more complex event in which people's responses are sensitive to the incident, the information available, and the local conditions. There are many factors that influence human behavior in fire and hence, influence the engineering methods to assess of egress performance.

The factors that can influence behavioral response in fire, and hence influence egress performance are not limited to: active fire protection system, emergency training, distribution and size of population, nature of population, lighting levels, loss of routes, building type, complexity, occupant location, and occupant fatigue, motivation, physical abilities/limitations.

Several approaches have been developed to establish or estimate evacuation time form a building. For our egress assessment, the evacuation time estimation will be established using the first order hydraulic model approach.

The building information required in the time estimation are summarized as follows:

- building number of floors: 2
- o number of occupants of second floor: 1920 people
- floor to floor height: 12 ft
- o number of stairs: 8
- Width of Stairs: varies; see table 2-3
- Number of landings per floor of stairway travel: 3
- Number and width of ramps: 2 of 44 inches

The following assumptions were used in the process:

- Provided stair risers at the Center are 6 inches and tread depths are 14 inches; these values are not included in the published tables used in the egress estimation; for the purpose of this project, tabulated values of stair risers of 6.5 in and treads of 13.5 in would be used in calculations for simplicity.
- o All building occupants start to evacuate same time
- Occupants will use the exits in an optimum balance
- Occupant flow does not involve interruptions caused by evacuee decisions

• The occupants, considered in the estimation, are free of impairments disabilities that impede their movement

Following calculations were performed to estimate the Recreation Center building egress time:

1) Estimate Flow Capacity through exits

Table 4-15: summarizes calculations determining the prime controlling building component:

Exit Component	Clear width	Boundary layer Widths (in)	Effective Widths (inches)	Effective Widths (ft)	Max Specific Flow (P/min/ft)	Flow Capacity (P/min)
Stairs						
1	84	12	72	6	21.2	127
2	76	12	64	5	21.2	113
3	96	12	84	7	21.2	148
4	96	12	84	7	21.2	148
5	106	12	94	8	21.2	166
6	84	12	72	6	21.2	127
7	78	12	66	6	21.2	117
8	87	12	75	6	21.2	133
Ramps						
1	44	16	28	2	24	56
2	44	16	28	2	24	56
Doors						
1	36	12	24	2	24	48
2	36	12	24	2	24	48
3	72	12	60	5	24	120
4	72	12	60	5	24	120
5	72	12	60	5	24	120

Table 4-15: *Flow Capacity Calculations*

The stairway doors are shown to be the prime controlling factors; therefore the flow capacity through stairway doors will be used in the time estimation calculations.

Boundary layer widths and Maximum specific flow values are obtained from NFPA Handbook Table 4.2.4 and 4.2.8 respectively.

Table 4-16: Extract from NFPA Handbook-Boundary Layer Widths

TABLE 4.2.4 Boundary Laye

	Boundary	Layer
Exit Route Element	in.	cm
Stairways-walls or side of tread	6.0	15
Railings, handrails*	3.5	9
Theater chairs, stadium benches	0.0	0
Corridor, ramp walls	8.0	20
Obstacles	4.0	10
Wide concourses, passageways	Up to 18	46
Door, archways	6.0	15

*Where handrails are present, use the value if it results in a lesser effective width.

Table 4-17: Extract from NFPA Handbook-Maximum Specific Flow

TABLE 4.2.8 Maximum Sp		Maximum Sp	ecific Flow		
Exit l	Route Ele	ement		Persons/ min/ft of Effective Width	Persons/ sec/m of Effective Width
	dor, Aisl mp, Doc			24.0	1.30
Stain	ŝ				
R	iser	To	ead		
(in.)	(mm)	(in.)	(mm)		
7.5	(190)	10	(254)	17.1	0.94
7.0	(178)	11	(279)	18.5	1.01
6.5	(165)	12	(305)	20.0	1.09
6.5	(165)	13	(330)	21.2	1.16

Source: Table 3-14.5, SFPE Handbook of Fire Protection Engineering, 3rd edition, 2002. Courtesy Society of Fire Protection Engineers.

2) Estimate speed of movement for estimated stairway flow:

$$S = k - akD$$

Where:

- K = 242 [reference Table 4.2.5] .a = 2.86
- D = maximum density = 0.175 P/m^2

$$S = k - akD = k(1 - aD) = 242x(1 - 2.86x0.175) = 121\frac{ft}{min}$$

Table 4-18: Extract from NFPA Handbook-Constants for Evacuation Speed Equation

TABLE 4.2.5 Constants for Equation 2, Evacuation Speed				
	<i>k</i> ₁	k _s		
Corridor, Aisle, Ramp, Doorway				
Tread (in.)				
10	196	1.00		
11	212	1.08		
12	229	1.16		
13	242	1.23		
	, Doorway Tread (in.) 10 11 12	k ₁ , Doorway 275 Tread (in.) 10 196 11 212 12 229		

Note: 1 in. = 25.4 mm.

3) Estimate travel distance between floors

Floor-to-floor height = 12; conversion factor [Table 4.2.6] = 2.22Landings: $3 \times 4 = 12$ ft Therefore,

Travel Distance = $(12 \times 2.22) + 12 = 38.64 ft$

Travel time for a person moving would be:

$$t = \frac{38.64}{121} = 0.32 min$$

Table 4-19: Extract from NFPA Handbook-Conversion Factors

(
7.5 (190) 10.0 (254) 1.6	nm]) (in. [mm]) Facto
	190) 10.0 (254) 1.66
7.0 (178) 11.0 (279) 1.8	178) 11.0 (279) 1.85

4) Estimate building evacuation time

If all occupants in the Rec Center start evacuation at the same time, each stairway can discharge 48 persons / min; for stairway doors as limiting components; assuming occupant load of a 1920 persons (maximum capacity); the slowest time for people to pass through all exit doors:

$$t = \frac{P}{F_c} = \frac{1920}{(8x48)} = 5 \text{ minutes}$$

Assuming that it takes 0.5 min for the first occupant to move from within the second floor to the stair; it takes 0.32 min to travel from second floor to the exit; therefore the time of evacuation for 1920 occupants would be estimated at:

$$t = 0.5 + 0.32 + 5 = 5.82 \min \cong 6 \min$$

In our discussions with the Center manager, Mr. Hossein Sedghi, he has confirmed that a fire drill conducted on a very busy activity day (a day of a maximum building users plus staffs closer to 600 people), it takes almost 3 minutes to evacuate the entire building.

The manager comments on egress are very much in line with the theoretical approach discussed in SFPE. Assuming Mr. Sedghi's occupant load of 600 people, applying same process as above, the building evacuation time would be:

$$t = \frac{P}{F_c} = \frac{600}{(8x48)} = 1.56 \text{ minutes}$$

Assuming that it takes 0.5 min pre-movement time, 0.5 min for the first occupant to move from within the second floor to the stair; and 0.32 min to travel from second floor to the exit; therefore the building evacuation time can be estimated at:

$$t = 0.5 + 0.5 + 0.32 + 1.56 = 2.88 \min \cong 3 \min$$

This compares with the suggested evacuation time recorded during a fire drill on a busy day at the Recreation Center.

COMPUTER SIMULATION

For my project building, amongst all currently available computer evacuation models, *Pathfinder* would be used for the building egress time estimation. The choice is driven by the availability to public and cost (at no cost under the 30-day-trial version).

Pathfinder is an emergency egress simulation that allows evaluation of evacuation models more quickly and produce visual (3D animated) outputs.

Figure 4-30: Extract from Theater Evacuation Pathfinder Model

Pathfinder is a computer evacuation model with the following features:

- a) Background of Model:
 - i. Developer: RJA Group US
 - ii. Validation: No validation documentation available to public
- b) Model Characteristics:
 - i. Availability: Available to public for free (30 day license) or on a consultancy basis
 - ii. Modeling Method: Movement model
 - iii. Refinement of population: microscopic
 - iv. Refinement of structure: fine network
 - v. Refinement of behavior: does not simulate behavior
 - vi. Output: visual output

The computer evacuation model has predicted 3 min for the evacuation of the Recreation center; assuming a total attendance of 4865 people.

The results of the simulation of the evacuation of the Recreation Center is shown in figure 4-31.

Figure 4-31: Pathfinder Model for Recreation Center Building

GOAL

To demonstrate that occupants in the Rec Center are protected against fire hazards.

OBJECTIVES

To confirm that occupants in the Rec Center are able to evacuate safely and timely i.e. before conditions become untenable during a fire emergency.

PERFORMANCE CRITERIA

Currently, there is not a single set of values for tenability criteria which is universally accepted. The following performance criteria were adopted for the assessment of tenability conditions in the Rec Center under selected scenarios.

a. Visibility:

Different fire researchers present different visibility values for safe fire escape. Experiments have shown that evacuees begin to feel emotional instability in relatively thin smoke. Depending on the degree of familiarity with the internal geometry of the building on fire; Dr. Tadahisa Jin [SFPE Handbook §2-4] has proposed the following limits:

- Unfamiliar with internal geometry: 13m allowable visibility
- Familiar with internal geometry: 4 m allowable visibility

It has been found through experiments that ability of evacuees to think clearly when exposed to fire smoke decreases with increasing smoke density and by hot smoke. It will be reasonable to propose a tenability limit of 5 m for allowable visibility measured at 2m above walking floor.

b. Exposure to toxic gases:

Concentrations of asphyxiants (toxic gases) alone is not generally used by fire engineers in assessing tenability conditions; rather considerations of tenability limits are based on asphyxiant doses, which include concentrations and exposure duration. The time at which the exposure dose of asphyxiant toxic gases reaches a level when occupants are likely to become incapacitated, such that they cannot save themselves and are likely to die unless rescued.

Studies have shown that exposure dose of carbon monoxide predicted to cause incapacitation in most people to be 35000 ppm.min. Therefore for a 30 min exposure, a limit CO concentration of 1167 ppm can be used as a conservative value.

Prof. Purser [SFPE Handbook §2-6] has proposed a CO concentration limit of 1400 ppm for a 30 min exposure to cause incapacitation; therefore we propose a concentration of 1200 ppm {for 30 min exposure].

Table II-1: Tenability Limits for Asphyxiants

Table 2: Tenability Limits for Exposures to Asphyxiants				
	5 MIN EXPOSURE		30 MIN E	XPOSURE
	INCAPACI- TATION	DEATH	INCAPACI- TATION	DEATH
Carbon Monoxide CO	6,000 ppm	12,000 ppm	1,400 ppm	2,500 ppm
Hydrogen Cyanide CHN	150 ppm	250 ppm	90 ppm	170 ppm
Low Oxygen O2 (Hypoxia)	<13%	<5%	<12%	<7%
Carbon Dioxide CO2	>7%	>10%	>6%	>9%

c. Exposure to Heat/Temperature:

Exposure to a hot environment, especially if the humidity is high and the subject is active, might lead to incapacitation and death due to hyperthermia; which implies a prolonged exposure approximately 15 minutes or more to heated environments at ambient temperatures too low to cause burns.

There are three basic ways in which exposure to heat may lead to incapacitation: through heat stroke (hyperthermia), skin pain and burns, or respiratory tract burns.

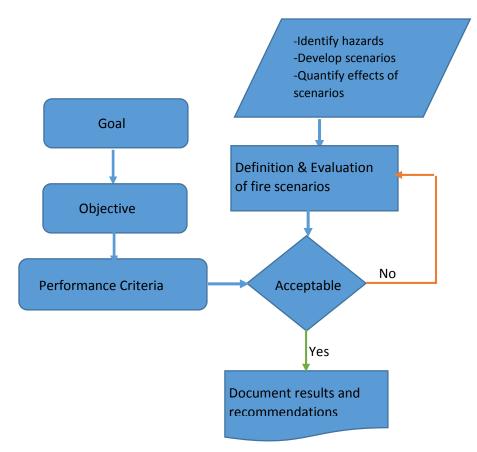

A tenability limit of 60° C might be proposed for maximum temperature as thermal burns to the respiratory tract may occur on inhalation of air above 60°C when saturated with water vapor. A tenability limit for exposure of skin to radiant heat could be estimated at 2.5 kW/m², below which exposure can be tolerated for at least *several minutes*.

Table II-2: Heat Exposure and Tenability Limits

Table 1: Heat Exposure and Tenability Limits				
EVENT	CAUSE	EXPOSURE LEVEL		
Heat stroke (hyperthermia)	Prolonged exposure (more than 15 minutes) to heated environments	60°C-120°C		
Skin pain or burns	Exposure to convected heat (dry air <10% water)	> 120°C		
	Exposure to convected heat (water-saturated air)	>60°C		
	Exposure to radiant heat	> 2.5 kW/m2		
	Exposure to conducted heat (contact with hot metal surface)	>60°C		
Respiratory tract burns	(same as for skin burns)	(same as for skin burns)		

PROCESS SCHEMATIC

The performance-based analysis will the following process:

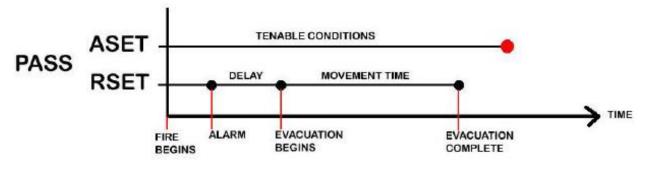


Figure II-1: Performance-Based Analysis Schematic

What is "acceptable" is ultimately defined by the conditions where ASET is greater than the RSET.

The terms ASET and RSET are defined as:

- ✓ ASET: Available Safe Egress Time. This is time from ignition until building become conditions become untenable. This will be demonstrated using FDS modeling.
- ✓ RSET: This is time needed by occupants to evacuate from the building. This is determined by addition of individual times associated with fire detection, alarm activation; pre-movement and travel time obtained either from Pathfinder egress simulation or manual calculations using SFPE proposed process.

 $t_{RSET} = \Delta t_{detection} + \Delta t_{alarm} + \Delta t_{pre-movement} + \Delta t_{travel}$

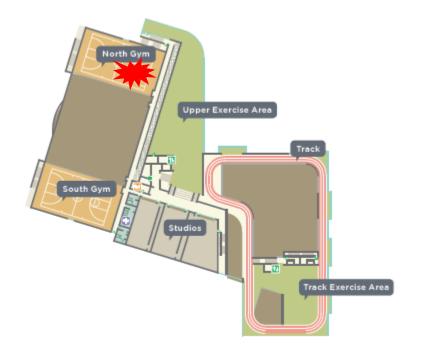
Figure II-2: Tenability Acceptance Criteria

EGRESS TIME ANALYSIS ASSUMPTIONS

The following assumptions will apply to the determination time of travel:

- ✓ All building occupants start evacuation at same time
- ✓ Occupants use the exits in an optimum balance
- ✓ Occupant flow does not involve interruptions caused by evacuee decisions
- ✓ Occupants considered are free of physical and mobility impairments

DESIGN SCENARIOS


Several fire scenarios were envisaged for assessment, the figure II-3 depicts locations of the fire scenarios postulated:

- □ A concert fire in the main Gym
- □ Floor mat fire in the martial arts studio
- □ Storage area fire
- Laundry room fire
- Administrative office fire
- □ Fire under fully extended bleachers

FLOOR 1

Figure II-3: *Fire Scenarios on 1st Floor*

FLOOR 2

Figure II-4: Fire Scenario on 2nd Floor

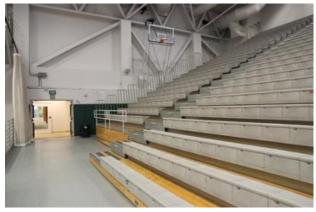


Figure II-5: Bleachers fully extended

Two scenarios were selected for assessment as most challenging with regard to the high potential number of people who might be affected by a fire.

The following fire scenarios were selected:

- Scenario 1: Fire on a stage during a concert held in the main gymnasium
- Scenario 2: Fire under bleachers on second floor in the gymnasium

DESIGN FIRE SCENARIO 1: CONCERT FIRE

The following assumptions were made:

- 3900 people are in attendance
- An electric fault ignited:

- Sound system equipment
- Three computers on the stage
- Fire blocks South-West exit doors
- No automatic fire suppression is available.
- \circ A ultra-fast growing t²-fire
- Fuel properties: Mixed components

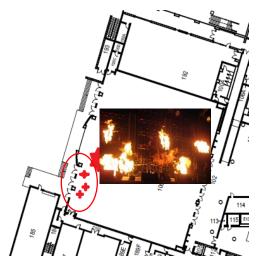


Figure II-6: Concert Fire Diagram

FUEL PROPERTY CALCULATION

Table II-3: Fuel Property Calculation

Equipment Type (Fuel) and Numbers	Heat Release Rate (kW)
Musical keyboards: 2	2 x 480 = 960
Computers (CPU+keyboards+mouse): 3	3 x 400 = 1200
Sound mixers: 2	2 x 400 = 800
Accessories: speakers, microphones, cables	140
Total Heat Release Rate	3000
Soot Yield estimated for plastic materials (PU)	0.2

Due to a lack of published heat release rates of components included in scenario 1: sound mixers, musical keyboard, speakers and other accessories mentioned above; computer test results were used as benchmarks. For example, a musical keyboard was compared to two computer boards of 240 kW HRR based. SFPE Handbook, Chap 3 and Table 3-4.16 for HRR and Soot yield values.

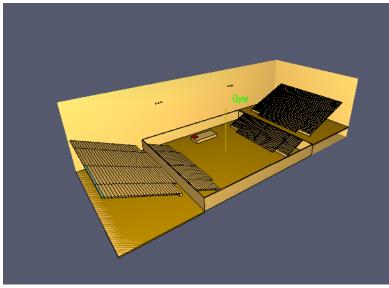
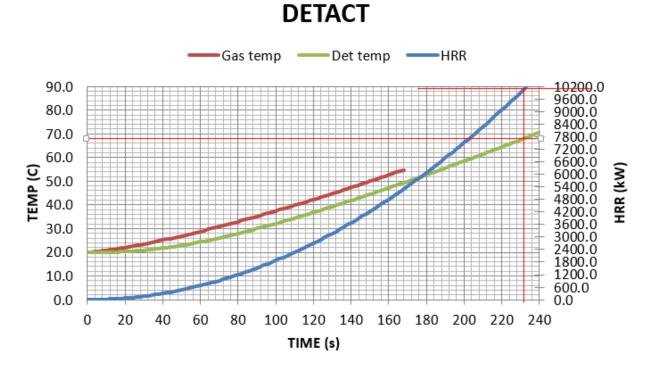



Figure II-7: Pyrosim Model-Gymnasium Concert Fire

EGRESS TIME CALCULATIONS

- RSET Time Analysis
 - Detection: Sprinkler activation time
 - DETACT prediction:
 - Inputs: QRS; RTI= 50 (m.s)^(0.5); Actuation Temperature=155°F
 - Time of activation: 232 s (4 min)

Figure II-8: DETACT-Model: Concert Fire Scenario

- Sprinkler activation time excessive due to high roof; the fire would be 10 MW at the time of sprinkler activation
- Fire detection by occupants (Manual fire box activation): Estimated activation happened 30 sec after fire ignition
- Alarm: Time of activation of Notification Appliances = 10 s [NFPA72,§10.12.1]
- Pre-movement: [<3 min; SFPE-3rd edition, Table 3-13.1]: Estimated 30 sec
- Travel: Determined using Pathfinder simulator: 5 min [Steering Mode]

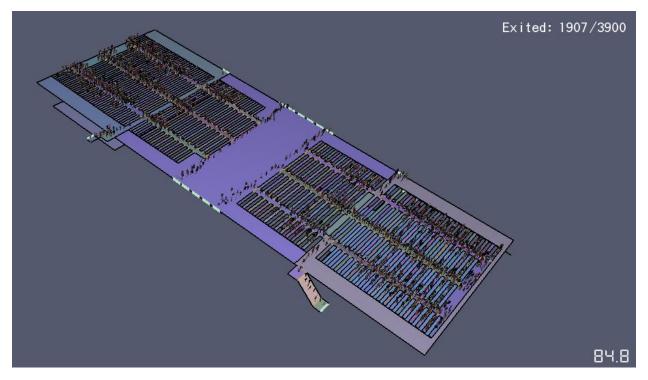


Figure II-9: Pathfinder Model – Gymnasium Concert Fire

- $t_{RSET} = \Delta t_{detection} + \Delta t_{alarm} + \Delta t_{pre-movement} + \Delta t_{travel}$
 - $RSET = \frac{30}{60} + \frac{10}{60} + \frac{30}{60} + 5 \approx 7 \min$
- ASET Time Analysis: Using FDS, tenability conditions need to be assessed

Visibility Assessment:

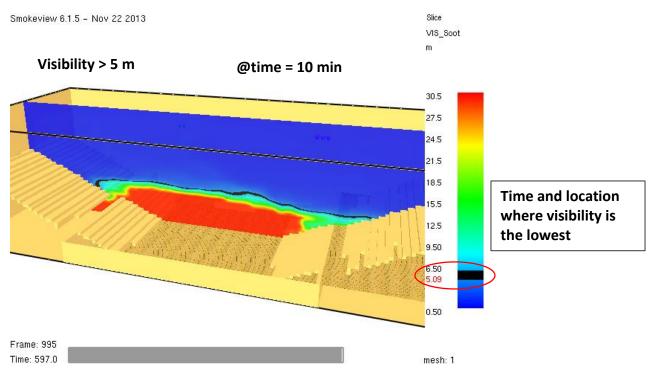


Figure II-10: Visibility – above ground floor bleacher top seats

As shown in figure II-9, visibility measured at 2 m above ground floor is higher than the set minimum criteria, measured 10 min after fire has started.

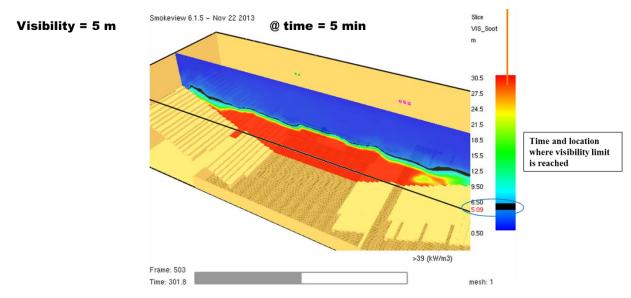


Figure II-11: Visibility – 2 m above top seats on second floor

Carbon monoxide concentration

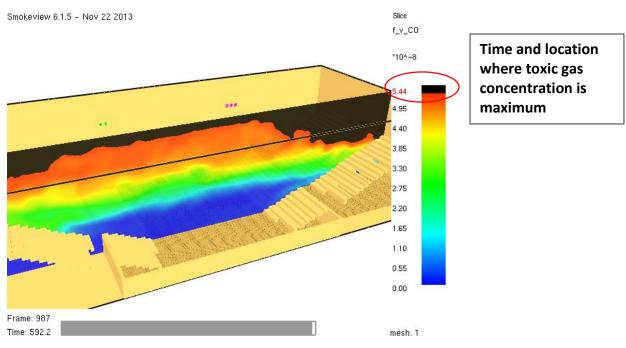
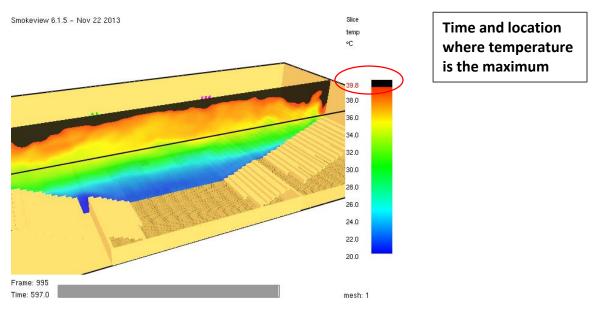



Figure II-12: Carbon Monoxide Concentration-Concert Fire

Highlighted black zone indicates the highest carbon monoxide concentration in the gymnasium measured 10 min after fire occurred; this is much lower than the selected carbon monoxide concentration criteria.

Temperature

Figure II-12: General Area Temperature

The average hot gas layer temperature is under the selected maximum temperature limit.

FDS Summary: Measured at 5 min

Table II-4: FDS Summary

Visibility		Carbon Monoxide		Temperature	
Limit	Minimum Value	Limit	Maximum Value	Limit	Maximum Value
5 m	5 m	1200 ppm	0.06 ppm	60 Deg C	40 Deg C

• $t_{ASET} = \Delta t_{FDS-visibility} = 5 \min \langle t_{RSET} [7 \min]$

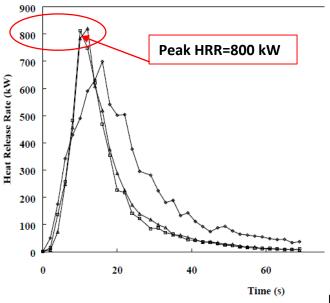
$$t_{RSET} > t_{ASET}$$

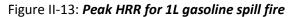
Concert attendees are unable to evacuate safely and before conditions become untenable.

Two solutions could be recommended:

- Installation of mechanical exhaust system or,
- Improvement of egress time on the second floor

We select to recommend improvement of egress time on the second floor as most effective rather than installation of mechanical exhaust system.


DESIGN FIRE SCENARIO 2: FIRE under BLEACHERS


The following assumptions were made:

- 926 people occupying second floor bleachers while those on first floor are still in retracted position
- Fire intentionally set under bleachers:
 - Gasoline used as fuel
 - Gasoline quantity 1000 mL
- Fire blocks one of the two exit double doors
- No automatic fire suppression considered available.
- A ultra-fast growing t²-fire

FUEL PROPERTY CALCULATION

Referring to NIST spill fire testing conducted for the National Institute of Justice (reference NIJ report 604: Flammability and Combustible Liquid spill). Gasoline spill of 1 L produced a peak heat release rate of approximately 770 kW as shown in figure II-13:

The following fuel properties were used in the simulation:

- Chemical formula: C₈H₁₈
- Soot yield: 0.1 [combined soot yield of gasoline and hardwood flooring]
- C0 yield: 0.1 [Reference SFPE 3-4.16]
- Heat of Combustion: 42.4 MJ/kg [Reference SFPE

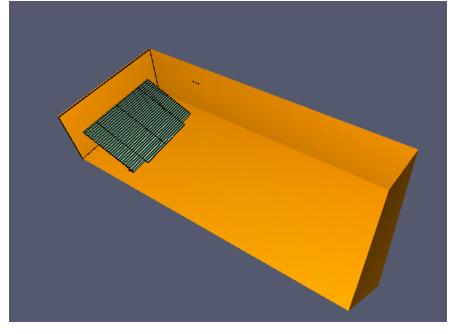
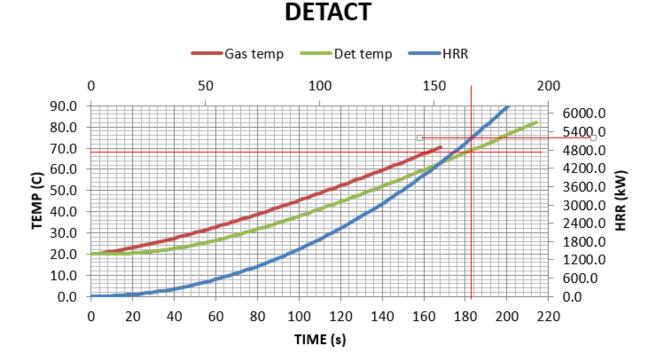



Figure II-14: Pyrosim Model-Fire under Bleachers

EGRESS TIME CALCULATIONS

- RSET Time Analysis
 - Detection: Sprinkler activation time
 - DETACT prediction:
 - Inputs: QRS; RTI= 50 (m.s)^(0.5); Actuation Temperature=155⁰F
 - Time of activation: 184 s (3 min)

Figure II-15: DETACT-Model: Fire under Bleachers

- Sprinkler activation time excessive due to high roof; the fire would be 5.2 MW at the time of sprinkler activation
- Fire detection by occupants (Manual fire box activation): Estimated activation happened 30 sec after fire ignition
- Alarm: Time of activation of Notification Appliances = 10 s [NFPA72,§10.12.1]
- Pre-movement: [<3 min; SFPE-3rd edition, Table 3-13.1]: Estimated 30 seconds due to the presence of trained fire warders
- Travel: Determined using Pathfinder simulator: 8 min

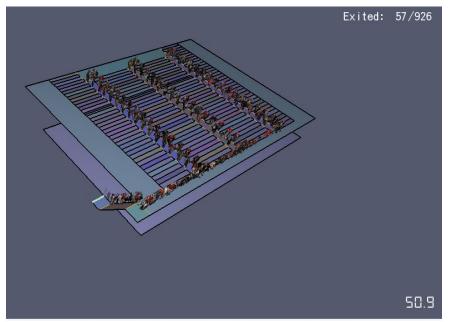
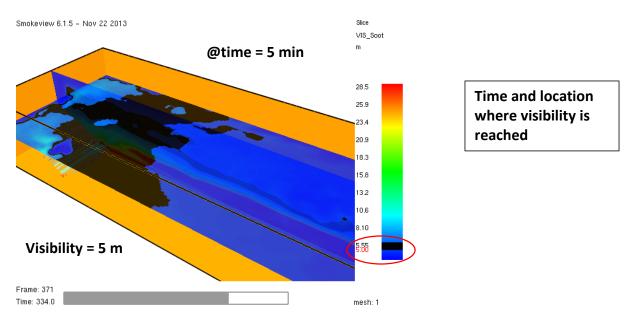



Figure II-16: Pathfinder Model – Fire under Bleachers

• $t_{RSET} = \Delta t_{detection} + \Delta t_{alarm} + \Delta t_{pre-movement} + \Delta t_{travel}$

•
$$RSET = \frac{30}{60} + \frac{10}{60} + \frac{30}{60} + 8 \approx 10 \text{ min}$$

ASET Time Analysis: Using FDS, tenability conditions need to be assessed

Visibility Assessment:

Figure II-17: Visibility – 2 m above bleacher top seats

The highlighted area in black indicates location where minimum visibility limit is reached.

Carbon monoxide concentration

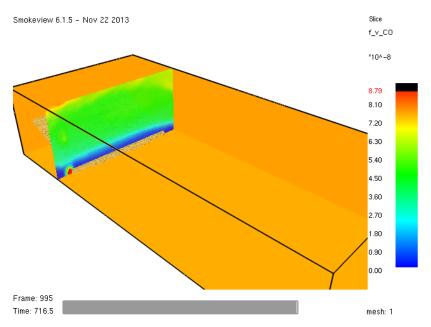
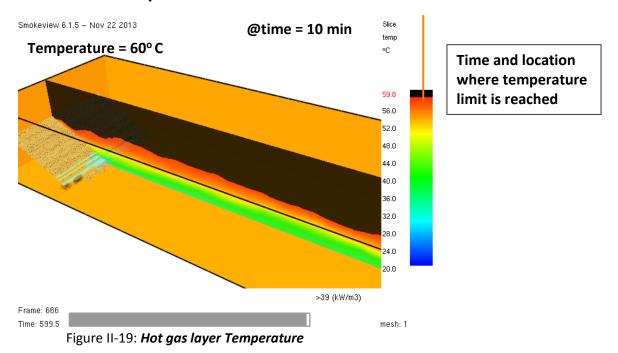



Figure II-18: Carbon Monoxide Concentration – Fire under Bleachers

Highest carbon monoxide concentration in the gymnasium measured 12 min after fire ignition; this is much lower than the maximum carbon monoxide concentration criteria.

Temperature

Ten minutes after fire ignition, the highlighted area indicates location where maximum hot gas layer temperature is reached.

FDS Summary: Measured at 5 min

Table II-4: FDS Summary-Fire under Bleachers

Visibility		Carbon Monoxide		Temperature	
Limit	Minimum Value	Limit	Maximum Value	Limit	Maximum Value
5 m	5 m	1200 ppm	0.07 ppm	60 Deg C	45 Deg C

• $t_{ASET} = \Delta t_{FDS-visibility} = 334 \text{ s} (\sim 5 \text{ min}) < t_{RSET} [10 \text{ min}]$

$t_{RSET} > t_{ASET}$

Event attendees are not able to evacuate safely before conditions become untenable

We recommend enforcement of administrative control for occupancy loading of the gymnasium on the second floor.

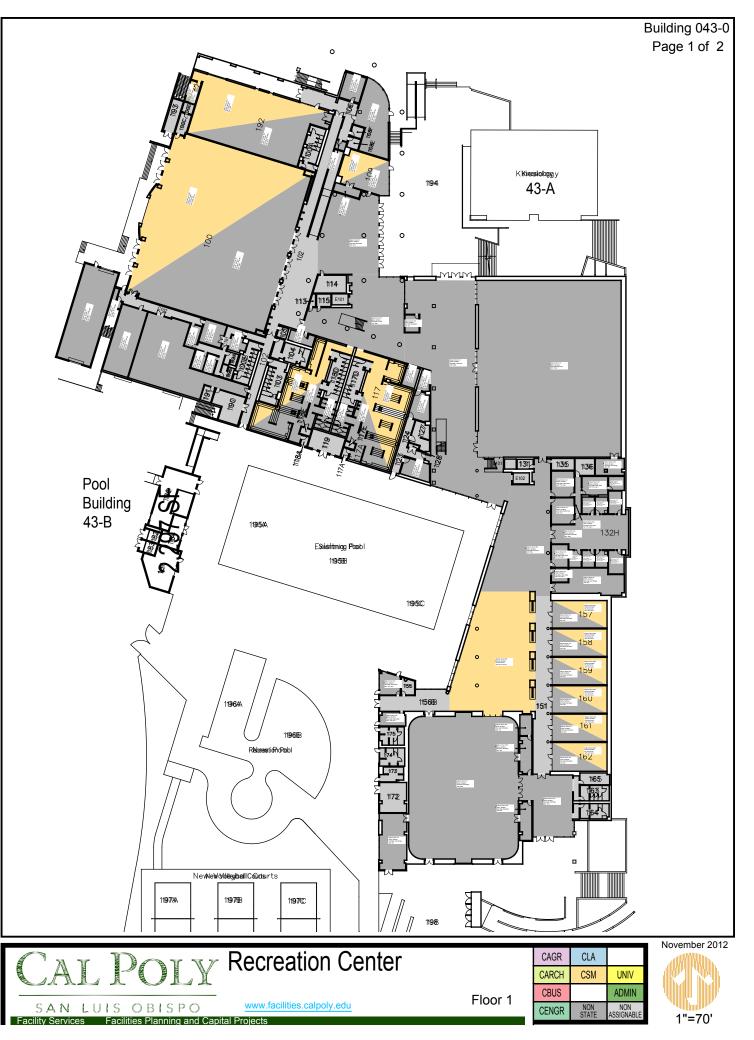
CONCLUSION AND RECOMMENDATIONS

The culminating project report encompassed the study of the different aspects related to the fire protection systems and life safety measures put in place at the Cal Poly student Recreation Center building. This endeavor was a very beneficial experience that highlighted different features of fire protection systems and the application of different code criteria.

The assessment was performed from information collected from as-built drawings and personal interviews conducted with the Recreation Center personnel and the heads of the Environmental Health and Safety, and the Electrical Services department on Cal Poly campus.

It is very important that all features of the fire protection systems associated with the Recreation Center be properly maintained, inspected and tested in accordance with required approved codes and standards in order for them to serve their vital, indispensable fire and life safety functions at all times.

The following recommendations are put forward to enhance safety of personnel and users of the Rec Center:


- ✓ Safety factor improvement: ASET vs RSET:
 - Reduction of egress time from second floor gymnasium:
 - Training of personnel in life safety management
 - Regular fire safety awareness campaigns for the entire campus
- ✓ Performance re-assessment of installed sprinkler system in the gymnasium
- ✓ Review enforcement of all administrative controls
- ✓ Update document to reflect as-built conditions
- ✓ Encourage further performance-based analysis of fire scenarios not analyzed in this report

APPENDIX

- Appendix A: Recreation Center Floor Plans
- Appendix B: Partitions and Penetration Enclosure
- Appendix C: Fire Alarm and Detection As-built Drawings
- Appendix D: Water-Based Fire Suppression Hydraulic Calculations
- Appendix E: Recreation Center Sprinkler Piping Arrangement
- Appendix F: Recreation Center Life Safety Drawings
- Appendix G: Recreation Center Fire Safety Management Plan

APPENDIX A

RECREATION CENTER FLOOR PLANS

APPENDIX B

PARTITIONS & PENETRATION ENCLOSURE DRAWINGS

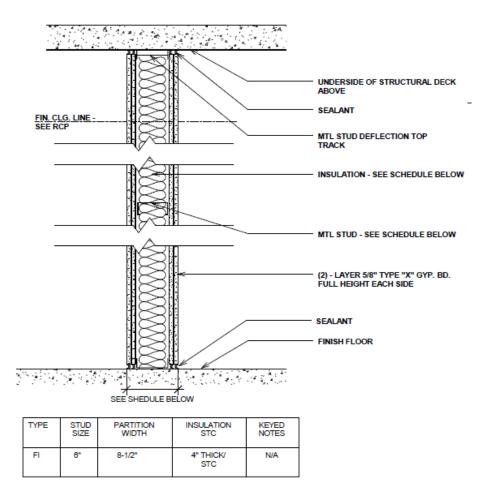


Figure B-1: Non-rated Partition Typical details

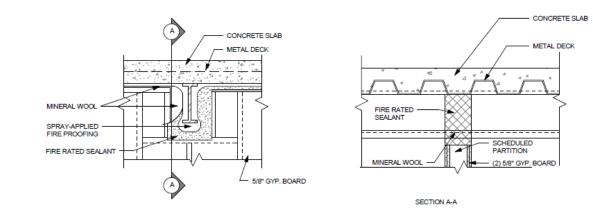
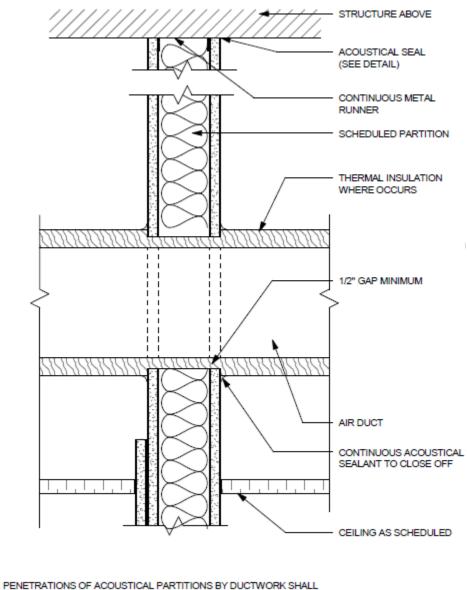



Figure B-2: Penetration UL System No HW-D-0299

BE ACOUSTICALLY SEALED AS SHOWN. ANY GAP LARGER THAN 1/2" SHALL BE COVERED WITH GYPSUM BOARD, LAPPED A MINIMUM OF 2" AND SCREWED BEFORE USING ACOUSTICAL SEALANT.

Figure B-3: Penetrations Enclosure

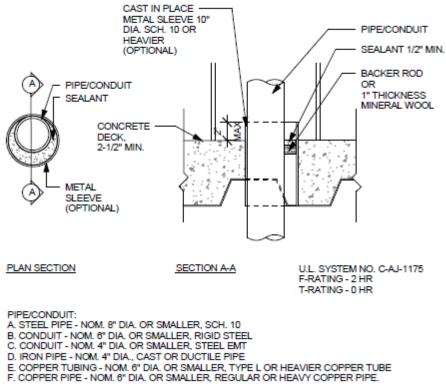


Figure B-4: Single Vertical Fire-Rated Penetration

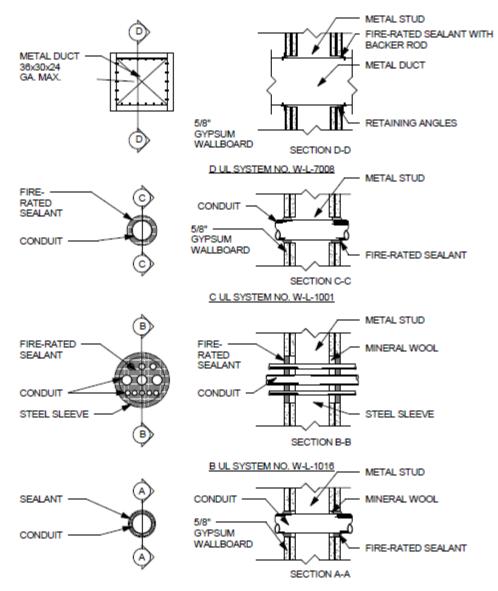


Figure B-5: Typical Fire-Rated Partition Penetrations- UL No W-L.1009

APPENDIX C

FIRE ALARM & DETECTION AS-BUILT DRAWINGS

			1					
	1.	ALL WALL-MOUNTED VISUAL SIGNALING APPLIANCES SHALL BE MOUNTED SUCH THAT THE ENTIRE LENS IS NOT LESS THAN 80 IN. (2.03m) AND NOT GREATER THAN 96 IN. ABOVE THE FINISHED FLOOR (A.F.F.) PER NFPA 72 2007 CH. 7.5.4. ALL WALL MOUNTED AUDIBLE DEVICES SHALL BE A MINIMUM OF 90" A.F.F. TO TOP OF DEVICE PER NFPA 72 2007 (SECTION 7.4.7.1). AREAS HAVING MORE THAN 2 STROBES IN THE FIELD OF VIEW				**AUD 	eral Alari BLE MESSAGE T (FEMALE VOICE WAY I HAVE YOU LARM REPORTED	o be: , english r attent in the i
	2.	SHALL BE SYNCHRONIZED PER NFPA 72, SECTION 7.5.4.3.2. SMOKE DETECTORS AND HEAT DETECTOR LOCATIONS ARE BASED ON SMOOTH CEILING WITH MAXIMUM HEIGHT OF 10 FEET UNLESS OTHERWISE NOTED.				A D SH EL	EPORTED IN THE ND LEAVE THE E HUNT TRIP OF EI EVATOR RECALL EVATOR SHUNT	Building. Levator i Has beei
	3.	STROBE LOCATION IS BASED ON 10 FOOT CEILING HEIGHT AND ARE INSTALLED ACCORDING TO NFPA 72 REQUIREMENTS UNLESS OTHERWISE NOTED. ANY DEVICES					R SPECIAL AMU	
	4.	ON CEILINGS OVER 10 FEET WILL BE DERATED PER NFPA-72. STROBES IN SLEEPING AREAS SHALL BE LOCATED WITHIN 16 FEET OF PILLOW AND HAVE MINIMUM INTENSITY OF 110cd. FOR STROBES LOCATED LESS THAN 24 INCHES						
	5.	FROM CEILING, MINIMUM INTENSITY SHALL BE 177cd. CENTER OF MANUAL PULL STATIONS SHALL BE MOUNTED AT 48" ABOVE FLOOR LEVEL.				2 A	anual fire alarm rea smoke detec op of stair smok	tor/heat
		ALL EQUIPMENT SHALL BE U.L. AND C.S.F.M. LISTED.				5 R	r duct smoke de sturn—air/in—duc 20VAC duct smol	t smoke ·
		ALL WIRING SHALL BE IN ACCORDANCE WITH THE N.E.C. AND AUTHORITIES HAVING JURISDICTION. ALL JUNCTION BOXES SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C.				11 S 12 S	prinkler water flo prinkler valve tan prinkler post indi	nper switc cator swit
		AND SHALL HAVE THEIR COVERS PAINTED RED WHERE APPLICABLE. ELECTRICAL CONTRACTOR SHALL FURNISH ACCESS PANELS TO AREAS THAT				14 E 15 E 16 E	evator lobby sm evator mach roo evator mach roo evator Ph2 shun evator 120vac si	om/shaft om/shaft it disable
	10.	REQUIRE SERVICING, TROUBLE SHOOTING, ETC. DO NOT DEVIATE FROM CONDUIT RUNS AS SHOWN ON FLOOR PLANS WITHOUT				18 19 20 21		
Systems, Inc.		PRIOR APPROVAL FROM SYSTEM SUPPLIER (PYRO-COMM SYSTEMS, INC., TEL (714) 902-8000). FACTORS SUCH AS EXCESSIVE VOLTAGE DROP, ADDITIONAL PARTS, ENGINEERING, ETC., THAT ARE A RESULT OF CONDUIT RUN DEVIATIONS SHALL BE THE SOLE RESPONSIBILITY OF THE ELECTRICAL CONTRACTOR.				24 S 25 O 26 G 27 28	ACP 120vac powe Istem device wiri ben circuit round fault	
		DETECTORS SHALL NOT BE LOCATED IN A DIRECT AIR-FLOW, NOR CLOSER THAN 3 FEET (900mm) FROM AN AIR SUPPLY DIFFUSER.				29 30 31 32 33		
of Pyro-	12.	ALL FAN SHUTDOWN FUNCTIONS, DAMPER CLOSURES AND ASSOCIATED MECHANICAL SYSTEM FIRE ALARM INTERFACE SHALL BE BY MECHANICAL CONTRACTOR.				<u> </u>		
may not be duplicated, used or disclosed without the express written consent of Pyro-Comm	13.	ALL DUCT SMOKE DETECTORS SHALL BE MOUNTED BY THE MECHANICAL OR ELECTRICAL CONTRACTOR. DUCT SMOKE DETECTORS EXPOSED TO THE WEATHER SHALL BE WEATHER PROTECTED BY THE MECHANICAL CONTRACTOR. ALL AIR VELOCITY TESTING SHALL BE PERFORMED BY THE MECHANICAL CONTRACTOR.						
ss writt	14.	ALL 120VAC POWER REQUIREMENTS FOR THE FIRE ALARM SYSTEM SHALL BE FURNISHED BY THE ELECTRICAL CONTRACTOR AND SHALL MEET ALL REQUIREMENTS						
e expre	15.	OF THE AUTHORITIES HAVING JURISDICTION. ALL FIRE ALARM DEVICE BACKBOXES, FIRE ALARM TERMINAL CABINETS,						1
thout th		GUTTERS, JUNCTION BOXES AND ASSOCIATED CONDUITS SHALL BE FURNISHED AND INSTALLED BY ELECTRICAL CONTRACTOR UNLESS OTHERWISE NOTED. REFER TO FIRE ALARM SYMBOL LIST AND/OR MOUNTING DETAILS FOR ADDITIONAL INFORMATION. SYSTEM SUPPLIER PROVIDED BACKBOXES SHALL BE INSTALLED						
osed wi	16.	BY ELECTRICAL CONTRACTOR UNLESS OTHERWISE NOTED. SMOKE DETECTOR TESTING SHALL BE ACCOMPLISHED WITH SMOKE OR LISTED						
or discl	17	AEROSOL APPROVED BY THE MANUFACTURER PER NFPA 72, AS ACCEPTABLE BY THE A.H.J.						
ated, used		ALL WIRING, INITIATING DEVICES AND ANNUNCIATOR PANEL SHALL BE SUPERVISED TO THE PRINCIPAL POINT OF ANNUNCIATION. THE FIRE ALARM CONTROL PANEL TO SUPERVISE THE ANNUNCIATOR PANEL, ALL INITIATING AND INDICATING DEVICE CIRCUITS.						_
e duplic		ALL WIRING SHALL BE CUT FOR IN AND OUT. WIRING SHALL NOT BE LOOPED THROUGH DEVICES. POINT AND COMMON ANNUNCIATION AND T-TAPPING ARE PROHIBITED.						
ıy not b		(T-TAPPING IS ALLOWABLE ON ADDRESSABLE STYLE 4 SLC LOOPS). PROVIDE 3/4" CONDUIT WITH (2) DEDICATED TELEPHONE LINES WITH RJ-31X						
Ø	0.1	PHONE JACKS FROM TELEPHONE BACKBOARD FOR OWNER PROVIDED CENTRAL STATION MONITORING LOCATED ADJACENT TO FIRE ALARM CONTROL PANEL.						
in constitute the original and unpublished work of Pyro-Comm Systems, Inc. and the sam		THE ALARM SYSTEM SHALL HAVE AN AUDIBILITY OF NOT LESS THAN 15dB ABOVE AMBIENT NOISE LEVELS, BUT NOT LESS THAN 75dBA THROUGHOUT AREA OF ALARM. TESTING SHALL BE ACCOMPLISHED WITH A dB METER. WHERE APPLICABLE, AUDIBLE TONE SHALL BE TEMPORAL PATTERN.						
ms, Inc.		FIRE ALARM CONTRACTOR SHALL PROVIDE AN IMPEDANCE METER AT THE TIME OF FINAL INSPECTION WHEN REQUIRED BY THE AUTHORITY HAVING JURISDICTION. FIRE ALARM SIGNAL SHALL MEET ANSI S3.41, AUDIBILITY EMERGENCY EVACUATION				1.		
m Syste		ALL CONDUITS ARE 3/4" UNLESS OTHERWISE NOTED.			(18			Ē
.o-Com		ALL DEVICES IN THE ALARM SYSTEM SHALL BE COMPATIBLE AND INSTALLED PER MANUFACTURER'S SPECIFICATIONS.			{)		
k of Pyr	26.	SYSTEM SHALL BE FURNISHED AND INSTALLED BY A NESCO AFFILIATE AND AUTHORIZED NOTIFIER DISTRIBUTOR.			(2)			
ed worl		FIRE ALARM SYSTEM INSTALLATION COMPANY SHALL BE UL LISTED (UUJS/UUFX).	1. Wall Ase	sembly The 1, 1	2, 3 or 4 hr fire-r	SECTION A		ill assem
publish	28.	TAMPER PROOF SCREWS OR OTHER APPROVED MECHANICAL MEANS SHALL BE USED ON ALL COVERS OF EXTERIOR ELECTRICAL JUNCTION BOXES IN LIEU OF ELECTRICAL SUPERVISION OF THE COVERS, PER THE 2007 NFPA72 6.8.5.11.1.	features: installed, a A. Stud 2 by 4	as tabulated below: ds —— Wall framing 4 in. (51 by 102 m	may consist of ei m lumber spaced	her wood studs I6 in. (406 mm)	(max 2 h fire OC with nom	rated as 2 by 4
and un	29.	ELECTRICAL POWER SERVICE SHALL BE ON A DEDICATED BRANCH CIRCUIT(S). THE CIRCUIT(S) AND CONNECTIONS SHALL BE MECHANICALLY PROTECTED (CIRCUIT BREAKERS SHALL BE LOCKED IN THE ON POSITION WITH AN APPROVED MECHANICAL	B. Gyp: thickne	to be min 3—5/8 i sum Board* —— No ess, number of layer ance Directory. Max	om 1/2 or 5/8 in. rs, fastener type ar	(13 or 16 mm) Id sheet orientati	thick, 4 ft. (1 on shall be as	122 cm)
riginal		CLIP). CIRCUIT DISCONNECTING MEANS SHALL HAVE A RED MARKING, SHALL BE ACCESSIBLE ONLY TO AUTHORIZED PERSONNEL, AND SHALL BE IDENTIFIED AS "FIRE ALARM CIRCUIT." THE LOCATION OF THE CIRCUIT DISCONNECTING MEANS SHALL BE	space betw or tubing	-Penetrant — One ween pipe, conduit o to be rigidly suppor el Pipe — Nom 24	or tubing and perip ted on both sides	hery of opening of wall assembly.	shall be min o The following	f 0 in / types ar
tute the d	30.	PERMANENTLY IDENTIFIED AT THE FIRE ALARM CONTROL UNIT.[NFPA 72,4.4.1.4.2] UPON COMPLETION OF ALL INSTALLATION AND TESTING, THE CONTRACTOR SHALL PROVIDE TO THE AUTHORITY HAVING JURISDICTION AND THE BUILDING OWNER A	or Clas C. Con	Pipe Nom 24 ss 50 (or heavier) duit Nom 6 in.	ductile iron pressur (152 mm) diam (e pipe. or smaller) steel	conduit or no	m 4 in
n constit	31.	COMPLETED AND SIGNED NFPA 72 CERTIFICATE OF COMPLETION. SECTION 5.7.1.11 OF THE 2007 EDITION OF NFPA 72 STATES THAT "DETECTORS SHALL NOT BE INSTALLED UNTIL AFTER THE CONSTRUCTION CLEANUP	E. Cop	per Tubing —— Nor per Pipe —— Nom pugh Penetrating Pro	6 in. (152 mm) di	am (or smaller)	Regular (or he	avier) co
		OF ALL TRADES IS COMPLETE AND FINAL. CLEANING OR REPLACEMENT OF DEVICES THAT WERE MOUNTED AT THE REQUEST OF THE CONTRACTOR WILL NOT BE PERFORMED WITHOUT WRITTEN AUTHORIZATION THAT ASSUMES FINANCIAL RESPONSIBILITY FOR	floor o	n 2 in. (51 mm) di or wall assembly. • FLEX INC	am (or smaller) sta	eel flexible metal	gas piping. Pl	astic cov
pearin		COSTS INCURRED.	floor o	n 1 in. (25 mm) d or wall assembly. E, DIV OF TITEFLEX	am (or smaller) st	sel flexible metal	gas piping. Pl	lastic cov
erial a _l		GENERAL NOTES	floor o WARD	n 1 in. (25 mm) d or wall assembly. MFG INC d or Cavity Material [;]				
Copyright Notice:All drawings and written material appearing here		APPLICABLE CODES AS OF AUGUST 1, 2009	to gypsum hourly fire	4 hr rated assemble board/penetrant in rating of the wall type or size of the	terface at point co assembly in which	ntact location or it is installed, as	both sides of shown in the	[:] wall. Th following
nd writ		2007 California Administrative Code, Part 1, Title 24 2007 California Building Code (CBC), Part 2, Title 24 (2006 International Building Code with 2007 California Amendments)			Max Pipe or Conc Diam In (mm) 1 (25) 1 (25)	luit F Rat Hr <u>1 or 2</u> 3 or 4	•	T Rati Hr <u>1 or 2</u> 4
wings a		2007 California Electrical Code (CEC), Part 3, Title 24 (2005 National Electrical Code with 2007 California Amendments)			4 (102) 6 (152) 12 (305) en copper pipe is 1	1 or 2 3 or 4 1 or 2	0 0 0	
All drav		2007 California Mechanical Code (CMC), Part 4, Title 24 (2006 Uniform Mechanical Code with 2007 California Amendments)		TWN NY — CP 25WB+or I ne UL Classification	B-3000 WT	used, i Koting is	U II.	
Notice:		2007 California Fire Code (CFC), Part 9, Title 24 (2006 International Fire Code with 2007 California Amendments)						IR
əyright		2007 California Referenced Standards Code, Part 12, Title 24 PARTIAL LIST OF APPLICABLE NFPA STANDARDS:						
S		NFPA 13-Automatic Sprinkler Systems (2002 Edition) NFPA 14-Standpipes Systems (2002 Edition) NFPA 72-National Fire Alarm Codes (2007 Edition)			(Bo CONDUCTOR	ns of Insulo used on Tab 12 GA.	le 5, Chap 14 GA.	oter 9,
			-		SIZE AWG AREA (in ²)	THHN/THWN 0.0133	THHN/THW 0.0097	
	4	PPLICABLE CODES & STANDARDS			(Bo	otal Areas c used on Tab 3/4"		
		ALARM SERVICE COMPANY AND SERVICE CENTER : (257057–001)		TOTAL AREA	1/2" CONDUIT 0.304 in ²	3/4" CONDUIT 0.533 in ²	1" CONDUI 0.864 in ²	
		ADVANCED PROTECTION INDUSTRIES INC, DBA NATIONAL MONITORING CENTER SUITE 250 26800 ALISO VIEJO PKWY		40% FILL		0.213 in ²	0.346 in ²	
		ALISO VIEJO CA, 92656 PHONE NUMBER: (800) 662–1711		Ma	ximum Numbe (Bc	er of Condu ised on 40%		
		<u>FILE–VOL. NO.</u> <u>CCN</u> S8126–1 UUFX		CONDUCTOR SIZE AWG	1/2" CONDUIT	3/4" CONDUIT	1" CONDUI	· ·
		LISTING CATEGORY [SIGNAL AND FIRE ALARM EQUIPMENT AND SERVICES]		18 16 14	22 16 12	38 29 21	62 48 35	
		(PROTECTIVE SIGNALING SERVICES) CENTRAL STATION		12	9	16	26	
		MONITORING INFORMATION			CON	DUI	T FI	LĹ

 **AUDIBLE MESSAGE TO BE (FEMALE VOICE, ENG "MAY I HAVE YOUR AT ALARM REPORTED IN T REPORTED IN THE BUILD AND LEAVE THE BUILD (D) SHUNT TRIP OF ELEVAT ELEVATOR RECALL HAS 	GLISH) "WAY I HAVE YOUR ATTENTION, PLEAS TENTION, PLEASE. THERE HAS BEEN A FIRE I'HE BUILDING, THERE HAS BEEN A FIRE ALAI LIDING. PLEASE PROCEED TO THE NEAREST E I'NG. 'OR MUST NOT BE ACTIVATED UNTIL PHASE 2 BEEN COMPLETED, OR WHILE PHASE 2 BLE KEYSWITCH IS ACTIVE		System Outputs at n Notification Required Fire Supplementary Statety Control Statety Control	
Syste 1 Manual fire alarm box 2 Area smoke detector/h 3 Top of stair smoke det 4 Air duct smoke detector/h 3 Top of stair smoke det 4 Air duct smoke detector 5 Return-air/in-duct sm 6 120VAC duct smoke detector 7 12 9 9 10 Sprinkler water flow swi 11 Sprinkler valve tamper 12 Sprinkler post indicator 13 Elevator lobby smoke detector 14 Elevator mach room/st 15 Elevator mach room/st 16 Elevator 120vac shunt dis 17 Elevator 120vac power fail 20 21 21 22 23 FACP 120vac power fail 24 System device wiring tr 25 Open circuit 26 Ground fault 27 28 29 30 31 32 33 33	itch itch switch <		P Q P P P	
	SEQU	ENCE OF	OPERATION	
	WIRE DESIGNATION CONDUCTOR COLORS ADDRESS. LOOP RED JACKET RED/BLACK	WIRE IN CONDUIT 2 CONDUCTOR #16 FPL SOLID	UNDERGROUND/WET WIRE IN CONDUIT WIRE DESIGNATION UNDERGROUND/WET LOC. ADDRESS. LOOP 2 CONDUCTOR #16 FPL STRANDED	
	Z	TWISTED/UNSHIELDED WEST PENN (.039 sq.in.) #D990 E (2) #14 STRANDED	ZU TWISTED/UNSHIIELDED WEST PENN (.068 sq.in.) #AQ225	
	F	TYPE THHN	FU TYPE THWN	
	<u>ANNUN. DATA</u> RED JACKET RED/BLACK D	2 CONDUCTOR #18 FPL SOLID TWISTED/SHIELDED WEST PENN (.035 sq.in.) #D975	ANNUN. DATA 2 CONDUCTOR #16 FPL STRANDED DU TWISTED/SHIELDED WEST PENN (.084 sq.in.) #AQ294	
	<u>ANNUN. PWR</u> YELLOW/BLUE B	(2) #14 STRANDED TYPE THHN	ANNUN. PWR (2) #14 STRANDED TYPE THWN BU	
	24V POWER PINK/PURPLE P	(2) #14 STRANDED TYPE THHN	POWER_CKT. (2) #14_STRANDED TYPE_THWN PU	
	AUD/VIS CKT. YELLOW/BLUE ORANGE/BROWN V RED/BLACK PINK/PURPLE	(2) #12 STRANDED N TYPE THHN	VISUAL (2) #12 STRANDED TYPE THWN VU	
	<u>SPEAKER CKT.</u> RED/BLACK	(2) #14 STRANDED TYPE THHN TWISTED	SPEAKER CKT. (2) #14 STRANDED TYPE THWN TWISTED SU	
			/ALENT BY OTHER MANUFACTURER IS ACCEPTABLE.	
		VIRE LE		_
)				-
	PENETRATION THRU GYF NO SCALE UL #W-L-1 F Ratings - 1, 2, 3 and 4 Hr (T Ratings - 0, 1, 2, 3, and 4 L Rating At Ambient - less t L Rating At 400 F - less th	(See Items 2 and 3) 4 Hr (See Item 3) than 1 CFM/sq ft	PENETRATION THRU CONCRETE NO SCALE UL #C-AJ-1044 F Ratings - 2, 3, and 4 Hr (See Items 2A and 4) T Rating - 0 Hr L Rating At Ambient - 2 CFM/sq ft L Rating At 400 F - less than 1 CFM/sq ft W Rating - Class 1 (See Item 4)	
r Partition Designs in the UL bood studs (max 2 h fire rate (406 mm) OC with nom 2 b /8 in. (35 mm) deep channe r 16 mm) thick, 4 ft. (122 d at orientation shall be as spe . (660 mm). r tubing installed either conce f opening shall be min of 0 i assembly. The following type smaller) Schedule 10 (or hed smaller) service weight (or he aller) steel conduit or nom 4	avier) cast iron soil pipe, nom 12 in (3 in (102 mm) diam (or smaller) steel e	ude the following construction food studs to consist of nom lates and cross braces. Steel The gypsum wallboard type, eries Design in the UL Fire top system. The annular to system. The annular to tubing may be used:	 Floor or Wall Assembly - Lightweight or normal weight (100-150 pcf or 1600-2400 kg/m3) concrete. Except as noted in table under Item 4, min thickness of solid concrete floor or wall assembly is 4-1/2 in. (114 mm). Floor may also be constructed of any min 6 in.(152 mm) thick UL Classified onlow core precast Concrete Links, ackning material (Item 3) and caulk fill material (Item 4) to be installed symmetrically on both sides of floor, flush with floor surface. Wall assembly may also be constructed of any UL Classified Concrete Blocks*. Max diam of opening is in solid lightweight or normal weight concrete. Floor is 32 in. (813 mm). Max diam of opening in floor constructed of hollow-core precast concrete units is 7 in. (178 mm) See Concrete Blocks (CAZT) and Precast Concrete Units (CFTV) categories in the Fire Resistance Directory for names of manufacturers. IA. Steel Sleeve - Max 15 in. (381 mm) ID (or smaller) Schedule 10 (or heavier) steel sleeve cast or grouted into floor or wall assembly. Sleeve may extend a max of 2 in. (51 mm) above top of floor or beyond either surface of wall. Max 16 in. (406 mm) ID (or smaller) min 0.028 (0.71 mm) wall thickness (or heavier) galvanized steel sleeve cast or grouted into floor or wall assembly. Sleeve may extend a floor or wall. Through Penetrants - One metallic pipe, conduit or tubing to be installed either concentrically or eccentrically within the firestop system. Max annular space between pipe, conduit or tubing and edge of through opening or sleeve is dependent on the parameters shown in tem 4. Min annular space between pipe or conduit and edge of through opening or sleeve is dependent on the parameters shown in tem 4. Min annular space between pipe or conduit and edge of through opening or sleeve is dependent on the parameters shown in tem 4. Min annular space between pipe or conduit and edge of through opening is 0 in. (0 mm point contact). Pipe conduit or tubing to be rigidly supported on both sides of floor or wal	
(or smaller) Type L (or heavier smaller) Regular (or heavier Piping The following types of		used:	C. Conduit – Nom 6 in. (152 mm) diam (or smaller) rigid steel conduit. D. Conduit – Nom 4 in. (102 mm) diam (or smaller) steel electrical metallic tubing. E. Copper Tubing – Nom 6 in. (152 mm) diam (or smaller) Type L (or heavier) copper tube.	
	covering on piping may or may not be covering on piping may or may not be		F. Copper Pipe — Nom 6 in. (152 mm) diam (or smaller) Regular (or heavier) copper pipe. 3. Packing Material — Polyethylene backer rod or nom 1 in. (25 mm) thickness of tightly—packed mineral wool batt or glass fiber insulation firmly packed nto opening as a permanent form. Packing material to be recessed from top surface of floor or from both surfaces of wall as required to accommodate the required thickness of caulk fill material (Item 4).	
kible metal gas piping. Plastic - Min 5/8. , 1–1/4,1–7/8 rithin annulus, flush with both location on both sides of wall stalled, as shown in the follo hourly fire rating of the wall	and 2–1/2 in. (16, 32, 48 and 64 mi surfaces of wall. Min 1/4 in. (6 mm) I. The hourly F Rating of the firestop sy wing table. The hourly T Rating of the f assembly in which it is installed, as tal Rating Hr	e removed on both sides of m) thickness of caulk for 1, diam bead of caulk applied ystem is dependent upon the firestop system is dependent	4. Fill, Void or Cavity Material* - Caulk, Sealant - Applied to fill the annular space flush with top surface of floor. In wall assemblies, required caulk thickness to be installed symmetrically on both sides of wall, flush with wall surface. At point contact location between penetrant and sleeve or between penetrant and concrete, a min 1/4 in. (6 mm) diam bead of caulk shall be applied at top surface of floor and at both surfaces of wall. The hourly F Ratings and the min required caulk thicknesses are dependent upon a number of parameters, as shown in the following table: $\frac{\text{Min Floor}}{\text{or Wall}} \frac{\text{Nom Pipe}}{\text{Tube or Conduit}} \frac{\text{Max Annular}}{\text{Space In.}} \frac{\text{Min Rating Hr}}{\text{Takns In.}} \frac{\text{Rating Hr}}{\text{Rating Hr}}$ $\frac{2-1/2 (64) 1/2-12 (13-305) 1-3/8 (35) 1/2 (13) 2}{2-1/2 (64) 1/2-12 (13-305) 3-1/4 (63) 1 (25) 2}$ $\frac{4-1/2 (114) 1/2-6 (13-152) 1-3/8 (35) 1/4 (6) (a) 2}{4-1/2 (114) 1/2-20 (13-508) 2 (51) 1 (25) 3}$ $\frac{4-1/2 (114) 1/2-12 (13-305) 3-1/4 (63) 1 (25) 3}{4-1/2 (114) 1/2-20 (13-508) 2 (51) 1 (25) 3}$	
3 or 4 3 or 4 1 or 2 0 3 or 4 0 1 or 2 0 1 or 2 0 7 Rating is 0 h.		((a)Min 2 in (51 mm) thickness of mineral wool batt insulation required in annular space. (b)Min 1 in. (25 mm) thickness of mineral wool batt insulation required in annular space on both sides of floor or wall assembly. Min 1 in.(25 mm) thickness of mineral wool batt insulation required in annular space on both sides of floor or wall assembly. Min 1 in.(25 mm) thickness of mineral wool batt insulation required in annular space on both sides of floor or wall assembly. Min 1 in.(25 mm)	
		Reprinted from the Online Certifications Direct	3M COMPANY —— CP 25WB+ or FB-3000 WT. (Note — W Rating applies only when FB-3000 WT is used.) ctory with permission from Underwriters Laboratories Inc.	
FI	RE STOP/1	Copyright © 2006 Underwriters Laboratories	NETRATION DETAIL	
of Insulated Conducto on Table 5, Chapter				PYRO-COMM SYSTEMS, I -FIRE ALARM CONTROL
2 GA. 14 GA. N/THWN THHN/THWN 133 0.0097	16 GA. 18 GA. TFN/TFFN TFN/TFFN 0.0072 0.0055		BUILDING CONSTRUCTION: TYPE 1B (NEW REMODEL)	-REMOTE TRANSPONDERS -REMOTE POWER SUPPLI -AREA SMOKE/HEAT DE -SMOKE DETECTOR ABOV
Areas of Electrical M on Table 4, Chapter	9, 2007 CĔC)	~~~	TYPE 11-F.R. (EXISTING GYMNASIUM) BUILDING OCCUPANCY: A3- GYMNASIUM WITHOUT SPECTATOR SEATS (NEW	-SMOKE DETECTION FOR -DUCT SMOKE DETECTIO -ELEVATOR RECALL -ELEVATOR SHUNT TRIP
3/4" 1" NDUIT CONDUIT 33 in ² 0.864 in ²		2" ONDUIT 356 in ²	REMODEL) B- LOCKER ROOM/SHOWERS (NEW REMODEL) A2.1/B2 (EXISTING GYMNASIUM)	-ELEVATOR HOISTWAY/M -AUDIBLE & VISUAL NO -MANUAL PULL STATION: -REMOTE ANNUNCIATION
13 in ² 0.346 in ²	0.598 in ² 0.814 in ² 1.	342 in ²	OCCUPANT LOAD: A2.1 (300 OCUPANTS WITHOUT STAGE) SPRINKLERED: YES	-SPRINKLER SYSTEM MO -DIALER FOR REMOTE M *THIS IS A NEW FIRE AI
on 40% Conduit Fill 3/4" 1"	1 1/4" 1 1/2"	2"	NO. OF STORIES: 2 AREA OF BUILDING: 165,717 S.F.	ALL NEW ADDRESSABLE VISUAL & AUDIBLE/VISU ALARM CONTROL PANEL
NDUIT CONDUIT 38 62 29 48	CONDUIT CONDUIT C 108 148 148 83 113 113	ONDUIT 244 186	AREA OF WORK: 165,717 S.F. PROJECT ADDRESS: CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407	STANDARDS. ALL DEVIC DEVICES WILL HAVE A T
21 35 16 26		138 100	OWNER: CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407	PROJECT ESTIMATOR: GE PROJECT SUPERINTENDEN ENGINEERING MANAGER: PROJECT ENGINEER: JOS
UIT FIL	L CHART		BUILDING INFORMATION	

QUANTITY	SYMBOL	DESCRIPTION	MODEL	MANUFACTURER	BACKBOX	MOUNTING HEIGHT	C.S.F.M. NUMBER
1	FACP	FIRE ALARM CONTROL PANEL	NFS2-640	NOTIFIER	SBB-D4 PROVIDED	66"A.F.F. TO TOP	7165–0028:243
1	XP-1B	DIGITAL AUDIO AMPLIFIER (70 VOLT)	(1)DAA-5070	NOTIFIER	SBB-A4 PROVIDED	66"A.F.F. TO TOP	7165–0028:243
1	XP-1C	DIGITAL AUDIO AMPLIFIER (70 VOLT)	(1)DAA-5070	NOTIFIER	SBB-A4 PROVIDED	66"A.F.F. TO TOP	7165–0028:243
1	DACT	UNIVERSAL ALARM COMMUNICATOR PANEL	UDACT	NOTIFIER	INSIDE FACP	VERIFY IN FIELD	7300-0028:174
5	RPS	AUDIO/VISUAL POWER SUPPLY	FCPS-24S8	NOTIFIER	FCPS PROVIDED	66"A.F.F. TO TOP	7315-0028:225
1	ANN	FIRE ALARM ANNUNCIATOR PANEL	FDU-80	NOTIFIER	BACKBOX PROVIDED	66"A.F.F. TO TOP	7120-0028:209
1	OSY	BACKFLOW PREVENTOR TAMPER – F.B.O.	F.B.O.	F.B.O.	F.B.O.	VERIFY IN FIELD	F.B.O.
32	CR	FIRE ALARM RELAY MODULE	FRM-1	NOTIFIER	4S DEEP BOX W 4S EXTENSION	/ VERIFY IN FIELD	7300-0028:202
11	Μ	FIRE ALARM MONITOR MODULE	FMM-1	NOTIFIER	4S DEEP BOX W 4S EXTENSION	/ VERIFY IN FIELD	7300-0028:202
6	MD	FIRE ALARM DUAL MONITOR MODULE	FDM-1	NOTIFIER	4S DEEP BOX W 4S EXTENSION	/ VERIFY IN FIELD	7300-0028:202
7	R	24VDC RELAY	PR-1	SYSTEM SENSOR	5S DEEP BOX W 5S EXTENSION	/ VERIFY IN FIELD	7300-1653:172
4	FWP	WEATHERPROOF MANUAL PULL STATION	NBG-12LOB w/ FMM-101	NOTIFIER	SB-1/0 PROVIDED	48" A.F.F. TO TOP OF BOX	7150-0028:199 7300-0028:202
19	Р	AREA SMOKE DETECTOR (ADDRESSABLE – PHOTO)	FSP-851) B710LP	NOTIFIER	4S DEEP BOX W 3-0 RING	/ CEILING MOUNTED	7272–0028:206 7300–0028:173
3	P _{DC}	AREA SMOKE DETECTOR (FOR DAMPER CONTROL)		NOTIFIER	4S DEEP BOX W 3-0 RING	/ CEILING MOUNTED	7272-0028:206 7300-0028:173
24	ID	AREA SMOKE DETECTOR (INSIDE DUCT)	FSP-851 B501	NOTIFIER	4–0 PANCAKE B w/ 3–0 ADAPTEI	OX INSIDE DUCT R (AT TOP)	7272-0028:206 7300-1653:109
3	Η	AREA HEAT DETECTOR (ADDRESSABLE)	FST-851 B710LP	NOTIFIER	4S DEEP BOX W 3-0 RING	/ CEILING MOUNTED	7270–0028:196 7300–0028:173
12	DD	DUCT DET. HOUSING w/ SMOKE DETECTOR HEAD	DNR w/ FSP-851	SYSTEM SENSOR NOTIFIER	DNR PROVIDED	VERIFY IN FIELD	3242-1653:209 7272-0028:206
18	F	MANUAL PULL STATION	NBG-12LX	NOTIFIER	4S DEEP BOX W SINGLE GANG RIN	/ 48" A.F.F.	7150-0028:199
23		REMOTE INDICATOR L.E.D.	RA100Z	SYSTEM SENSOR	4S DEEP BOX w 1-GANG RING		7300-1653:212
6	s	WEATHERPROOF SPEAKER	SPWK (WHITE)	SYSTEM SENSOR	BACKBOX PROVIDED	90" A.F.F. TO BOTTOM	7320-1653:201
17	 (15)	FIRE ALARM SPEAKER/STROBE	SPSW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION		7320-1653:201
6	30	FIRE ALARM SPEAKER/STROBE	SPSW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION		7320-1653:201
15	 (75)	FIRE ALARM SPEAKER/STROBE	SPSW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION		7320–1653:201
50	(110)	FIRE ALARM SPEAKER/STROBE	SPSW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION		7320-1653:201
11	(110) WG	FIRE ALARM SPEAKER/ STROBE W/WIREGUARD	. ,	SYSTEM SENSOR STI	4S DEEP BOX W 4S EXTENSION		7320-1653:201
6		WEATHERPROOF SPEAKER/STROBE	SPSWK (WHITE)	SYSTEM SENSOR	BACKBOX PROVIDED	90" A.F.F. TO BOTTOM	7320-1653:201
20		FIRE ALARM CEILING STROBE	SCW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION		7125–1653:186
3	30	FIRE ALARM CEILING STROBE	SCW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION	/ CEILING	7125–1653:186
2	15 WP	FIRE ALARM CEILING STROBE	SCRK (RED)	SYSTEM SENSOR	SA-WBBC PROVIDED	CEILING MOUNTED	7300–1653:187
28	15 X [15]	FIRE ALARM WALL STROBE	SW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION	/ 90" A.F.F. TO BOTTOM	7125-1653:186
3	30 ¤ 30)	FIRE ALARM WALL STROBE	SW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION	/ 90" A.F.F. TO BOTTOM	7125-1653:186
1	75	FIRE ALARM WALL STROBE	SW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION	/ 90" A.F.F. TO BOTTOM	7125-1653:186
	110	FIRE ALARM WALL STROBE	SW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION	/ 90" A.F.F. TO BOTTOM	7125-1653:186
7	S	FIRE ALARM SPEAKER	SPCW (WHITE)	SYSTEM SENSOR	4S DEEP BOX W 4S EXTENSION	/ CEILING	7320-1653:201
3 (F.B.O.)	 W	SPRINKLER WATER FLOW – F.B.O.	F.B.O.	F.B.O.	F.B.O.	VERIFY IN FIELD	F.B.O.
3 (F.B.O.)	T	SPRINKLER VALVE TAMPER – F.B.O.	F.B.O.	F.B.O.	F.B.O.	VERIFY IN FIELD	F.B.O.
	J	FIRE ALARM JUNCTION BOX	N/A	BY ELECTRICIAN	4S BOX U.O.N.	VERIFY IN FIELD	N/A
	FATC	FIRE ALARM TERMINAL CABINET	N/A	BY ELECTRICIAN	24 x 24 x 6 U.O.N.	VERIFY IN FIELD	N/A
	A.F.F.	ABOVE FINISHED FLOOR	N/A	N/A	N/A	N/A	N/A
	EOL	END OF LINE RESISTOR	N/A	N/A	N/A	N/A	N/A
	EX	EXISTING DEVICE	N/A	N/A	N/A	N/A	N/A
	F.B.O.	FURNISHED BY OTHERS	N/A	N/A	N/A	N/A	N/A
	N/A	NOT APPLICABLE	N/A	N/A	N/A	N/A	N/A
	U.O.N.	UNLESS OTHERWISE	N/A	N/A	N/A	N/A	N/A
	VL	VERIFY LOCATION	N/A	N/A	N/A	N/A	N/A
	WP	WEATHERPROOF DEVICE	N/A	N/A	N/A	N/A	N/A
	N	NEW	N/A	N/A	N/A	N/A	N/A
	•	DEVICE CONDUIT DOWN	N/A	N/A	N/A	N/A	N/A
	• •	CONDUIT UP	F.B.O.	BY MECHANICAL	F.B.O.	F.B.O.	F.B.O.
	 	FIRE DAMPER (F.B.O.) DEDICATED PHONE	F.B.O.	F.B.O.	F.B.O.	F.B.O.	N/A
		LINE – F.B.O.					
				S LEGE			

STEMS, INC. WILL PROVIDE:		DESCRIPTION
ONTROL PANEL PONDERS	FA0.01	SYMBOL LEGEND, SHEET INDEX, SEQUENCE OF OPERATIONS, GENERAL NOTES, WIRE DESIGNATIONS, BUILDING INFORMATION
R SUPPLIES IEAT DETECTION	FA0.02	FIRE ALARM SYSTEM CALCULATIONS
OR ABOVE FACP & POWER SUPPLIES ION FOR DAMPER CLOSURE	FA0.03	FIRE ALARM SYSTEM RISER DIAGRAM
DETECTION FOR HVAC SHUTDOWN ALL NT TRIP	FA1.10	FIRE ALARM FLOOR PLAN – LEVEL 1 – AREA 'A'
TRIF TWAY/MACHINE ROOM VISUAL SIGNAL? UAL NOTIFICATION	FA1.11	FIRE ALARM FLOOR PLAN – LEVEL 1 – AREA 'C'
STATIONS ICIATION	FA1.12	FIRE ALARM FLOOR PLAN – LEVEL 1 – AREA 'B'
ITEM MONITORING MOTE MONITORING (24HR ATTENDED LOCATION)	FA1.13	FIRE ALARM FLOOR PLAN – LEVEL 1 – AREA 'D'
FIRE ALARM SYSTEM SUBMITTAL. ALL FUTURE TENANT IMPROVEMENTS TO BE SUBMITTED AND SEPARATE CONTRACT PLANS AND PERMITS.	FA1.20	FIRE ALARM FLOOR PLAN – LEVEL 2 – AREA 'A'
SSABLE DEVICES WILL BE CONNECTED TO THE FIRE ALARM CONTROL PANEL INTELLIGENT LOOP. ALL	FA1.21	FIRE ALARM FLOOR PLAN – LEVEL 2 – AREA 'C'
LE/VISUAL DEVICES WILL BE CONNECTED TO NOTIFICATION APPLIANCE CIRCUITS FROM THE FIRE PANEL OR REMOTE POWER SUPPLIES, AND WILL BE SYNCHRONIZED IN ACCORDANCE WITH NFPA L DEVICES ARE TO BE COMPATIBLE WITH THE HEAD-END EQUIPMENT AND OTHER DEVICES. ALL	FA1.22	FIRE ALARM FLOOR PLAN – LEVEL 2 – AREA 'B'
AVE A TEXTUAL DISPLAY ON THE FIRE CONTROL PANEL DESCRIBING TYPE OF DEVICE AND LOCATION.	FA1.30	FIRE ALARM FLOOR PLAN - ROOF PLAN
NY QUESTIONS REGARDING THIS SUBMITTAL, PLEASE CONTACT THE FOLLOWING @ (714) 902-8000: TOR: GENE KNUST-GRAICHEN	FA2.01	FIRE ALARM TYPICAL ELEVATIONS AND MOUNTING DETAILS
NTENDENT: GREG SHEWMAN NAGER: MARC LOPEZ ER: JOSE M. AREVALO	FA2.02	FIRE ALARM TYPICAL WIRING DETAILS & PANEL CABINET LAYOUT

SCOPE OF WORK

SHEET INDEX

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3231 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED 👋 NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale 3/7/12 J X AS BUILTS PER PCO#551 12/06/11 BKR FIRE DEPT. COMMENTS 12/06/11 BKR COMMENTS 05/10/10 MAL ISSUED FOR 02/29/10 JA Rev Issued For Date Project CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : 2010035 Sheet Title : FIRE ALARM SYSTEM INFORMATION Drawn By : J.AREVALO 02/23/10 Cad File : 11 Cad File : M:\CAL POLY SLO\ RECREATION CENTER\ FA0.01-REC CTR-SYS Sheet Number : FA0.01 ASBUILT SET

	IT RECREATION CENTER					BATTERY SIZIN
MAIN FIRE ALARM CONTR	<u>OL FANEL</u> Model Number	Standby Current	Total Standby Current	Alarm	Total Alarm	CAL POLY SL REMOTE POW
Quantity Device Type 1 NFS2-640 1 NFS2-640	CPU2-640 w/CPS-24 KDM-R2		0.32500 0.10000	Current 0.28500 0.10000	Current 0.28500 0.10000	Quantity Devic
1 Voice	DVC&DVC-KD FRM-1	0.50000	0.50000	0.50000 0.00650	0.50000 0.20800	1 FCPS 2 S/S
32 Control Relay 11 Duct Det	DNR w/ FSP-851	0.00026 0.00036	0.00816 0.00396	0.00686	0.07546	2 S/S 7 S/S
2 Heat Det 3 Monitor	FST-851 DIMM	0.00030 0.00060	0.00060 0.00180	0.00650 0.03000	0.01300 0.09000	4 S/S 4 S/S
4 Monitor 9 Monitor	FDM—1 FMM—1	0.00075 0.00035	0.00300 0.00315	0.00640 0.00500	0.02560 0.04500	4 Strob 3 Strob
4 Pull Station 19 Pull Station	FMM—101 w/Pull Sta. NBG—12LX	0.00038 0.00038	0.00150 0.00713	0.00038 0.00688	0.00150 0.13063	1 Strot
46 Smoke Det 4 Pull Station	FSP-851 NBG-12LOB	0.00030 0.00000	0.01380 0.00000	0.00680 0.00000	0.31280 0.00000	
37 Speaker 25V 1 Digler	Speaker – 1/2 Watt UDACT		0.00000 0.04000	0.02000 0.10000	0.74000	
7 Relay	PR-1 (Shutdown)	0.00000	0.00000	0.01500	0.10500	Total
23 Remote LED	RA100Z	0.00000	0.00000 Standby Load	0.01000	0.23000 Alarm Load	
			1.008		2.962	Bat
Standby Lo Standby Tir			Alarm Load: Alarm Time:	2.962 A	mps inutes	De-R
Total Standby Lo			Il Alarm Load:		mp*Hours	File Name: M:Cal Pa
Batteries Provid	ed: (2) BAT-12380	4	vailable Battery :	30.40 A.		BATTERY SIZIN
Battery Si	ze: 38.00 A.H.	Loa	d (ALM + STBY)	24.93 A.	н.	CAL POLY SL XP-1 DAA2-5
De-Rated Size(80 File Name: M:Cal Poly SLO Rec. Center_	%): <u>30.40</u> A.H. _2010035[Cal Poly SLO_Rec Ctr_Main FACP-		Spare Capacity	5.47 A.	н.	
						Quantity Devic 1 Voice
BATTERY SIZING CALCULATI	ON				<u>12/06/11</u>	37 Spea 3 Spea
CAL POLY SLO - STUDEN						
	<u>- RPS#1 • ELEC ROOM #13</u>	Standby	Total Standby	Alarm	Total Alarm	
Quantity Device Type 1 FCPS-24S8	Model Number FCPS-24S8	Current 0.06500	Current 0.06500	Current 0.14500	Current 0.14500	
1 S/S (Strobe ONL 1 S/S (Strobe ONL	Y) SPSW (15cd)	0.00000 0.00000	0.00000 0.00000	0.06600 0.15800	0.06600 0.15800	Total
10 S/S (Strobe ONL 5 Strobe		0.00000 0.00000	0.00000 0.00000	0.20200 0.06600	2.02000	Bat
5 Strobe 1 Strobe	SW (15cd) SW (75cd)	0.00000	0.00000	0.06600 0.15800	0.15800	
			Standby Load 0.065		Alarm Load 2.877	File Name: M:Cal Po
Standby Lo	ad: 0.065 Amps		Alarm Load:	2.877 Ai		
Standby Lo Standby Tir Total Standby Lo	ne: 24 Hours	lours Tota	Alarm Time:	15 M	inutes mp*Hours	BATTERY SIZIN
				0.72 A		CAL POLY SL
Batteries Provid			vailable Battery:	5.60 A.		<u>XP-2 + XP-3</u>
Battery Si De-Rated Size(80			d (ALM + STBY) _ Spare Capacity	2.28 A. 3.32 A.		Quantity Devic 2 Voice
•	2010035[Cal Poly SLO_Rec Ctr_RPS #1_BA	(TT.xls]BattCalc				30 Spea
BATTERY SIZING CALCULATIO					<u>12/06/11</u>	9 Spea
<u>CAL POLY SLO - STUDEN</u> REMOTE POWER SUPPLY	IT RECREATION CENTER - RPS #2 • ELEC. ROOM #	172				
			Total Standby Current	Alarm Current	Total Alarm	
Quantity Device Type 1 FCPS-24S8	Model Number FCPS-24S8	0.06500	0.06500	0.14500	Current 0.14500	Total
1 S/S(Strobe ONL 1 S/S(Strobe ONL	Y) SPSW (30cd)	0.00000 0.00000	0.00000 0.00000	0.06600 0.09400	0.06600 0.09400	
1 S/S (Strobe ONL 9 S/S (Strobe ONL		0.00000 0.00000	0.00000 0.00000	0.15800 0.20200	0.15800 1.81800	Bat
1 S/S (WP Strobe) 5 Strobe		0.00000 0.00000	0.00000 0.00000	0.15800 0.06600	0.15800 0.33000	De-R File Name: M:Cal Pa
1 Strobe	SW (15cd)	0.00000	0.00000 Standby Load	0.06600	0.06600 Alarm Load	
			0.065		2.835	
Standby Lo			Alarm Load:	2.835 A	•	VOLTAGE DROF
Standby Tir Total Standby Lo			Alarm Time: Il Alarm Load:		inutes mp*Hours	SYSTEM SENSOF
Batteries Provid Battery Si			vailable Battery: d (ALM + STBY)	5.60 A. 2.27 A.		
De-Rated Size(80	%): 5.60 A.H.		Spare Capacity	3.33 A.	Н.	Speaker/Strob
•	2010035[Cal Poly SLO Rec Ctr PDS 42 DA					SPSW (15cd) SPSW (75cd)
•	_2010035[Cal Poly SLO_Rec Ctr_RPS #2_BA					SPSW (110cd) Strobe
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATIO	<u>ON</u>				<u>12/06/11</u>	SW (15cd) SW (75cd)
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATIO	ON IT RECREATION CENTER				<u>12/06/11</u>	,
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATIO CAL POLY SLO - STUDEN REMOTE POWER SUPPLY	<u>ON</u> IT RECREATION CENTER - RPS#3 • ELEC ROOM #2	 Standby	Total Standby	Alarm	Total Alarm	
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATIO CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8	<u>ON</u> T RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8	Standby Current 0.06500	Current 0.06500	Current 0.14500	Total Alarm Current 0.14500	TOTAL WIRE LENG
File Name: M:Cal Poly SLO Rec. Center_ <u>BATTERY SIZING CALCULATIO</u> <u>CAL POLY SLO - STUDEN</u> <u>REMOTE POWER SUPPLY</u> <u>Quantity Device Type</u> 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe)	ON T RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd)	Standby Current 0.06500 0.00000 0.00000	Current 0.06500 0.00000 0.00000	Current 0.14500 0.20200 0.15800	Total Alarm Current 0.14500 2.02000 0.15800	
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL	<u>ON</u> T RECREATION CENTER - RPS#3 ● ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd)	Standby Current 0.06500 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 0.00000	Current 0.14500 0.20200	Total Alarm Current 0.14500 2.02000 0.15800 0.06600	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP
File Name: M:Cal Poly SLO Rec. Center_ <u>BATTERY SIZING CALCULATIO</u> <u>CAL POLY SLO - STUDEN</u> <u>REMOTE POWER SUPPLY</u> <u>Quantity Device Type</u> 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe)	ON T RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd)	Standby Current 0.06500 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000	Current 0.14500 0.20200 0.15800	Total Alarm Current 0.14500 2.02000 0.15800	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE @ END (
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo	ON TRECREATION CENTER - RPS#3 ● ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) SW (15cd) ad:0.065 Amps	Standby Current 0.06500 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 0.00000 Standby Load 0.065 Alarm Load:	Current 0.14500 0.20200 0.15800 0.06600 2.389 At	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE @ END (CIRCUIT LOCATION
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe	ON TRECREATION CENTER - RPS#3 ● ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours	Standby Current 0.06500 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 0.00000 Standby Load 0.065	Current 0.14500 0.20200 0.15800 0.06600 2.389 At 15 M	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Lo	ON TRECREATION CENTER - RPS#3 ● ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours	Standby Current 0.06500 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time:	Current 0.14500 0.20200 0.15800 0.06600 2.389 At 15 M	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes	CIRCULAR MILS VOLTAGE DROP VOLTAGE @ END (CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110
File Name: M:Cal Poly SLO Rec. Center_ <u>BATTERY SIZING CALCULATIO</u> <u>CAL POLY SLO - STUDEN</u> <u>REMOTE POWER SUPPLY</u> <u>Quantity Device Type</u> 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid	ON TRECREATION CENTER - RPS#3 ● ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270	Standby Current 0.06500 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: I Alarm Load: Alarm Load:	Current 0.14500 0.20200 0.15800 0.06600 2.389 At 15 M 0.60 At	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H.	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Lo Standby Lo Standby Lo Batteries Provid Battery Si De-Rated Size(80	<u>ON</u> T RECREATION CENTER - RPS#3 ● ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H.	Standby Current 0.06500 0.00000 0.00000 0.00000 40urs Tota	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: I Alarm Load:	Current 0.14500 0.20200 0.15800 0.06600 2.389 Au 15 M 0.60 Au	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H.	TOTAL WIRE LENG WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE © END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Lo	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H.	Standby Current 0.06500 0.00000 0.00000 0.00000 40urs Tota	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: I Alarm Load: Alarm Load: Alarm Stery: (ALM + STBY)	Current 0.14500 0.20200 0.15800 0.06600 2.389 At 15 M 0.60 At 5.60 A 2.16 A	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H.	TOTAL WIRE LENG WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE © END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Lo	<u>ON</u> T RECREATION CENTER - RPS#3 ● ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H.	Standby Current 0.06500 0.00000 0.00000 0.00000 40urs Tota	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: I Alarm Load: Alarm Load: Alarm Stery: (ALM + STBY)	Current 0.14500 0.20200 0.15800 0.06600 2.389 At 15 M 0.60 At 5.60 A 2.16 A	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H.	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center_	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. _2010035[Cal Poly SLO_Rec Ctr_RPS #3_BA	Standby Current 0.06500 0.00000 0.00000 0.00000 40urs Tota	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: I Alarm Load: Alarm Load: Alarm Stery: (ALM + STBY)	Current 0.14500 0.20200 0.15800 0.06600 2.389 At 15 M 0.60 At 5.60 A 2.16 A	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H.	TOTAL WIRE LENG WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Lo	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. _2010035[Cal Poly SLO_Rec Ctr_RPS #3_BA	Standby Current 0.06500 0.00000 0.00000 0.00000 Allours Tota	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: I Alarm Load: Alarm Load: Alarm Stery: (ALM + STBY)	Current 0.14500 0.20200 0.15800 0.06600 2.389 At 15 M 0.60 At 5.60 A 2.16 A	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H.	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Col Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #1	Standby Current 0.06500 0.00000 0.00000 0.00000 Attack Att	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: I Alarm Load: Alarm Load: Alarm Load: Alarm Standby Spare Capacity Total Standby	Current 0.14500 0.20200 0.15800 0.06600 2.389 Ar 15 M 0.60 Ar 5.60 A 2.16 A 3.44 A	Total Alarm <u>Current</u> 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. Total Alarm	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Lo St	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. _2010035[Coll Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #1 Model Number FCPS-24S8	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 АП. Maile International Content International Content	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm Load: Alarm Standby Spare Capacity Total Standby Current 0.06500	Current 0.14500 0.20200 0.15800 0.06600 2.389 Ar 15 M 0.60 Ar 5.60 A 216 A 3.44 A 3.44 A	Total Alarm <u>Current</u> 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. H. H.	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Coll Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #f Model Number FCPS-24S8 Y) SPSW (15cd) Y) SPSW (30cd)	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm Load: Alarm Standby Spare Capacity Total Standby Current 0.06500 0.00000 0.00000	Current 0.14500 0.20200 0.15800 0.06600 2.389 Ar 2.389 Ar 15 M 0.60 Ar 5.60 A 216 A 3.44 A 3.44 A 3.44 A	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. D. Total Alarm Current 0.14500 0.39600 0.28200	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Lo St	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 Ze: 7.00 A.H. %): 5.60 A.H. 2010035[Cal Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #1 Model Number FCPS-24S8 Y) SPSW (15cd) Y) SPSW (30cd) Y) SPSW (30cd) Y) SPSW (75cd) Y) SPSW (110cd)	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm Load: Alarm STBY) Spare Capacity Total Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000	Current 0.14500 0.20200 0.15800 0.06600 2.389 Au 15 M 0.60 Au 5.60 Au 5.60 Au 3.44 Au 3.44 Au 0.14500 0.06600 0.09400 0.15800 0.20200	Total Alarm <u>Current</u> 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. M. <u>12/06/11</u> Total Alarm <u>Current</u> 0.14500 0.39600 0.28200 0.63200 1.01000	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL 4 S/S (Strobe ONL 4 S/S (Strobe ONL	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Coll Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #f Model Number FCPS-24S8 Y) SPSW (15cd) Y) SPSW (30cd) Y) SPSW (75cd)	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm Load: Alarm Eoad: Alarm Load: Total Standby Current 0.06500 0.00000 0.00000 0.00000	Current 0.14500 0.20200 0.15800 0.06600 2.389 Au 15 M 0.60 Au 5.60 Au 5.60 Au 2.16 Au 3.44 Au 3.44 Au 0.14500 0.06600 0.09400 0.15800	Total Alarm <u>Current</u> 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. H. H.	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF SYSTEM SENSOF
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL 4 S/S (Strobe ONL 5 S/S (Strobe ONL 11 Strobe 3 Strobe 13 Strobe 13 Strobe 13 Strobe	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Coll Poly SLO_Rec Ctr_RPS #3_BA ON TRECREATION CENTER - RPS#4 • ELEC. ROOM #1 Model Number FCPS-24S8 Y) SPSW (15cd) SCW (30cd) SW (15cd)	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 Loa 15 Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm Load: Alarm STBY) Spare Capacity Total Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Current 0.14500 0.20200 0.15800 0.06600 2.389 Au 15 M 0.60 Au 5.60 Au 5.60 Au 2.16 Au 3.44 Au 3.44 Au 0.14500 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.06600	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. M. D. Total Alarm Current 0.14500 0.39600 0.28200 0.63200 1.01000 0.72600 0.28200 0.85800	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF SYSTEM SENSOF SYSTEM SENSOF SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (75cd) SPSW (110cd) SPSW (110cd)
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL 4 S/S (Strobe ONL 11 Strobe 3 Strobe	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Coll Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #ff Model Number FCPS-24S8 Y) SPSW (15cd) Y) SPSW (15cd) Y) SPSW (15cd) Y) SPSW (15cd) Y) SPSW (10cd) SCW (15cd) SCW (15cd) SCW (15cd)	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 15 Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm STBY Spare Capacity Total Standby Current 0.06500 0.0000000 0.000000 0.000000	Current 0.14500 0.20200 0.15800 0.06600 2.389 Ar 15 M 0.60 Ar 5.60 A 216 A 3.44 A 3.44 A 3.44 A 0.14500 0.06600 0.09400 0.15800 0.20200 0.06600 0.20200 0.06600 0.09400	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. D 12/06/11 Total Alarm Current 0.14500 0.39600 0.28200 0.63200 1.01000 0.28200 0.63200 0.28200 0.28200 0.28200 0.28200 0.28200 0.28200 0.28200 0.28200 0.13200	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE O END (CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF SYSTEM SENSOF SYSTEM SENSOF SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (75cd) SPSW (75cd) SPSW (75cd) SPSWK (75c
File Name: M:Cal Poly SLO Rec. Center- BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-2458 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Batteries Provid Battery Si De-Rated Size(80 File Name: M:Cal Poly SLO Rec. Center- BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-2458 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL 4 S/S (Strobe ONL 5 S/S (Strobe ONL 1 Strobe 3 Strobe 13 Strobe 2 Strobe (WP)	ON IT RECREATION CENTER - RPS#3 ● ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Col Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 ● ELEC. ROOM #1 Model Number FCPS-2458 Y) SPSW (15cd) SCW (30cd) SW (15cd) SCW (30cd) SW (15cd) SCW (15cd) SCW (15cd) SCW (15cd) SCRK (15cd)	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 15 Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm Load: Alarm Standby Spare Capacity Spare Capacity Total Standby Current 0.06500 0.000000 0.00000 0.00000 0.00000 0.00000000	Current 0.14500 0.20200 0.15800 0.06600 2.389 At 15 M 0.60 At 5.60 At 2.16 At 3.44 At 3.44 At 0.14500 0.06600 0.09400 0.06600 0.09400 0.06600 0.09400 0.06600 0.06600 0.06600 0.06600 0.06600 0.06600 0.06600	Total Alarm <u>Current</u> 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. H. H.	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END (CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF SYSTEM SENSOF SYSTEM SENSOF SYSTEM SENSOF SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (75cd) SPSW (75cd)
File Name: M:Cal Poly SLO Rec. Center- BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Batteries Provid Battery Si De-Rated Size(80 File Name: M:Cal Poly SLO Rec. Center- BATTERY SIZING CALCULATION CAL POLY SLO Rec. Center- BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL 4 S/S (Strobe ONL 5 S/S (Strobe ONL 11 Strobe 3 Strobe 13 Strobe 2 Strobe (WP)	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Col Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #1 Model Number FCPS-24S8 Y) SPSW (15cd) SCW (30cd) SW (15cd) SCW (30cd) SW (15cd) SCRK (15cd) SCRK (15cd) SCRK (15cd)	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 15 Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm STBY Spare Capacity Total Standby Current 0.06500 0.0000000 0.000000 0.000000	Current 0.14500 0.20200 0.15800 0.06600 2.389 Au 15 M 0.60 Au 5.60 Au 5.60 Au 5.60 Au 3.44 Au 0.14500 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.06600 0.09400 0.06600 0.09400 0.06600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.06000 0.06000 0.06000 0.06000 0.06000 0.06000 0.06000	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. Outlook Alarm Load 2.389 mps inutes mp*Hours H. H. Outlook 12/06/11 Total Alarm Current 0.14500 0.39600 0.28200 0.63200 1.01000 0.72600 0.13200 Alarm Load 4.463 mps	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF SYSTEM SENSOF SYSTEM SENSOF SYSTEM SENSOF SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SW (15cd) SW (15cd) SW (15cd) SW (15cd)
File Name: M:Cal Poly SLO Rec. Center- BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-2458 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center- BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-2458 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL 4 S/S (Strobe ONL 5 S/S (Strobe ONL 11 Strobe 3 Strobe 13 Strobe 2 Strobe (WP)	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. 2010035[Cal Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #1 Model Number FCPS-2458 Y) SPSW (15cd) SCW (30cd) SW (15cd) SCW (30cd) SW (15cd) SCW (15cd) SCRK (15cd) SCRK (15cd) SCRK (15cd) SCRK (15cd)	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 MTT.xls]BottCalc	Current 0.06500 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Time: Alarm Load: Alarm Load: Alarm Load: Alarm Load: Spare Capacity Spare Capacity Total Standby Current 0.06500 0.000000 0.000000 0.00000 0.00000 0.00000 0.000000 0.0000	Current 0.14500 0.20200 0.15800 0.06600 2.389 Ar 15 M 0.60 Ar 5.60 A 216 A 3.44 A 3.44 A 3.44 A 0.14500 0.06600 0.09400 0.15800 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.06600 0.09400 0.06600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.06000 0.06000 0.06000 0.0600 0	Total Alarm <u>Current</u> 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. H. H.	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE OP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF SYSTEM SENSOF SYSTEM SENSOF SPSW (15cd) SPSW (15cd) SPSW (75cd) SPSW (75cd) SPSW (75cd) SPSW (75cd) SPSW (15cd) SPSW (15cd) SPSW (15cd) SYSTEM SENSOF SCW (15cd) SW (15cd)
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATIN CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center- BATTERY SIZING CALCULATIN CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL 4 S/S (Strobe ONL 1 Strobe 3 Strobe 13 Strobe 13 Strobe 2 Strobe (WP) Standby Lo Standby Lo Standby Lo	ON Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 Hours ad: ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Col Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #1 Model Number FCPS-24S8 Y) SPSW (15cd) SCW (30cd) SW (15cd) SCW (15cd) SCRK (15cd) SCRK (15cd) SCRK (15cd) ad: 0.065 Amps ne: 24 Hours ad:	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 MT.xls]BottColc	Current 0.06500 0.00000 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Load: Alarm Load: Alarm Load: Alarm Load: Alarm Capacity Spare Capacity Spare Capacity 0.06500 0.00000 0.0055 Alarm Load: Alarm Load: Alarm Load: Alarm Load:	Current 0.14500 0.20200 0.15800 0.06600 2.389 Alarm 5.60 Alarm Current 0.14500 0.06600 Alarm Current 0.14500 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.15800 0.20200 0.66600 0.09400 0.15800 0.20200 0.46600 0.06600 1.12	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. O.14500 O.06600 Alarm Load 2.389 Mps inutes D*Hours H. M. O.14500 0.39600 0.28200 0.85800 0.13200 Alarm Load 4.463 mps inutes mp*Hours	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE O END O VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF SYSTEM SENSOF SYSTEM SENSOF SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (75cd) SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (15cd) SV (15
File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 10 S/S (Strobe ONL 1 S/S (WP Strobe) 1 Strobe Standby Lo Standby Tir Total Standby Lo Batteries Provid Battery Si De-Rated Size(80) File Name: M:Cal Poly SLO Rec. Center_ BATTERY SIZING CALCULATION CAL POLY SLO - STUDEN REMOTE POWER SUPPLY Quantity Device Type 1 FCPS-24S8 6 S/S (Strobe ONL 3 S/S (Strobe ONL 3 S/S (Strobe ONL 4 S/S (Strobe ONL 1 Strobe 3 Strobe 13 Strobe 2 Strobe (WP)	ON IT RECREATION CENTER - RPS#3 • ELEC ROOM #2 Model Number FCPS-24S8 Y) SPSW (110cd) SPSWK (75cd) SW (15cd) ad: 0.065 Amps ne: 24 ad: 1.56 Amp*H ed: (2) BAT-1270 ze: 7.00 A.H. %): 5.60 A.H. .2010035[Col Poly SLO_Rec Ctr_RPS #3_BA ON IT RECREATION CENTER - RPS#4 • ELEC. ROOM #1 Model Number FCPS-24S8 Y) SPSW (15cd) SCW (15cd) SCW (15cd) SCW (15cd) SCRK (15cd) SCRK (15cd) SCRK (15cd) ad: 1.56 Amps ne: 24 Hours ad: 1.56 Amp*H	Standby Current 0.06500 0.00000 0.00000 0.00000 0.00000 MT.xls]BattCalc	Current 0.06500 0.00000 0.00000 0.00000 Standby Load 0.065 Alarm Load: Alarm Load: Alarm Load: Alarm Load: Alarm Capacity Alarm Capacity Spare Capacity Spare Capacity 0.06500 0.00000 0.0055 Alarm Load: Alarm Load:	Current 0.14500 0.20200 0.15800 0.06600 2.389 Ar 15 M 0.60 Ar 5.60 A 216 A 3.44 A 3.44 A 3.44 A 0.14500 0.06600 0.09400 0.15800 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.15800 0.20200 0.06600 0.09400 0.06600 0.09400 0.06600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.06000 0.06000 0.06000 0.06000 0	Total Alarm Current 0.14500 2.02000 0.15800 0.06600 Alarm Load 2.389 mps inutes mp*Hours H. H. H. H. H. H. H. H. H. H. H. H. H.	TOTAL WIRE LENGT WIRE SIZE CIRCULAR MILS VOLTAGE DROP VOLTAGE O END O CIRCUIT LOCATION CIRC. MILS 18 AWG = 1620 16 AWG = 2580 14 AWG = 4110 12 AWG = 6530 OPERATING V VOLTAGE DROF SYSTEM SENSOF SYSTEM SENSOF SYSTEM SENSOF SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (75cd) SPSW (75cd) SPSW (75cd) SPSW (75cd) SPSW (75cd) SPSW (15cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SPSWK (75cd) SW (15cd) SW (15cd) SW (15cd) SW (15cd) SW (15cd) SW (15cd) SW (15cd)

ING CALCULATION					<u>12/07/11</u>
	RECREATION CTR				
	PS#5 • ELEC ROOM #20	08			
		Standby	Total Standby	Alarm	Total Alarm
vice Type	Model Number	Current	Current	Current	Current
PS-24S8	FCPS-24S8	0.06500	0.06500	0.14500	0.14500
S (Strobe ONLY)	SPSW (15cd)	0.00000	0.00000	0.06600	0.13200
S (Strobe ONLY)	SPSW (30cd)	0.00000	0.00000	0.09400	0.18800
S (Strobe ONLY)	SPSW (75cd)	0.00000	0.00000	0.15800	1.10600
S (Strobe ONLT)	SPSW (110cd)	0.00000	0.00000	0.13800	0.80800
S (WP Strobe)	SPSWK (75cd)	0.00000	0.00000	0.20200	0.63200
• •					0.83200
obe	SCW (15cd)	0.00000	0.00000	0.06600	
obe	SW (15cd)	0.00000	0.00000	0.06600	0.19800
obe	SW (30cd)	0.00000	0.00000	0.09400	0.09400
			Standby Load		Alarm Load
			0.065		3.567
Standby Load:	0.065 Amps		Alarm Load:	3.567	Amps
Standby Time:			Alarm Time:	15	Minutes
al Standby Load:		ours Tot	al Alarm Load:		Amp*Hours
	1.00 / 1.1.6			0.00	Amp noure
- Hantan Drawidad.	(A) DAT-1070		Analaha Dakena	5 80	A 11
atteries Provided:			Available Battery:	5.60	
Battery Size:		Lo	ad (ALM + STBY)	2.45	
Rated Size(80%):	5.60 A.H.		Spare Capacity	3.15	A.H.
Poly SLO Rec. Center_2010	035[Cal Poly SLO_Rec Ctr_RPS #5_BAT	(T.xls]BattCalc			
ING CALCULATION					<u>12/07/11</u>
SLO - STUDENT F	RECREATION CENTER				
		Standby	Total Standby	Alarm	Total Alarm
<u>-5025 • ELECTRK</u>	CAL ROOM #136	Standby	Total Standby	Alarm	
- 5025 • ELECTRK vice Type	CAL ROOM #136 Model Number	Current	Current	Current	Current
- 5025 • ELECTRK vice Type ce	CAL ROOM #136 Model Number DAA2-5025	Current 0.40000	Current 0.40000	Current 0.50000	Current 0.50000
-5025 • ELECTRk vice Type ce eaker 25V	CAL ROOM ¥136 Model Number DAA2−5025 Speaker – 1/2 Watt	Current 0.40000 Tap0.00000	Current 0.40000 0.00000	Current 0.50000 0.02000	Current 0.50000 0.74000
-5025 • ELECTRk vice Type ce eaker 25V	CAL ROOM #136 Model Number DAA2-5025	Current 0.40000 Tap0.00000	Current 0.40000	Current 0.50000	Current 0.50000 0.74000
- 5025 • ELECTRK vice Type ce	CAL ROOM ¥136 Model Number DAA2−5025 Speaker – 1/2 Watt	Current 0.40000 Tap0.00000	Current 0.40000 0.00000	Current 0.50000 0.02000	Total Alarm Current 0.50000 0.74000 0.12000 Alarm Load
-5025 • ELECTRk vice Type ce eaker 25V	CAL ROOM ¥136 Model Number DAA2−5025 Speaker – 1/2 Watt	Current 0.40000 Tap0.00000	Current 0.40000 0.00000 0.00000	Current 0.50000 0.02000	Current 0.50000 0.74000 0.12000 Alarm Load
-5025 • ELECTRk vice Type ce eaker 25V	CAL ROOM ¥136 Model Number DAA2−5025 Speaker – 1/2 Watt	Current 0.40000 Tap0.00000	Current 0.40000 0.00000 0.00000 Standby Load	Current 0.50000 0.02000	Current 0.50000 0.74000 0.12000 Alarm Load
- 5025 • ELECTRK vice Type ce eaker 25V eaker 25V	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap	Current 0.40000 Tap0.00000	Current 0.40000 0.00000 0.00000 Standby Load 0.400	Current 0.50000 0.02000 0.04000	Current 0.50000 0.74000 0.12000 Alarm Load 1.360
- 5025 • ELECTRK vice Type ce eaker 25V eaker 25V Standby Load:	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps	Current 0.40000 Tap0.00000	Current 0.40000 0.00000 0.00000 Standby Load 0.400 Alarm Load:	Current 0.50000 0.02000 0.04000 1.360	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps
- 5025 • ELECTRik vice Type ce eaker 25V eaker 25V Standby Load: Standby Time:	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours	Current 0.40000 Tap0.00000 0.00000	Current 0.40000 0.00000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time:	Current 0.50000 0.02000 0.04000 1.360	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes
- 5025 • ELECTRK vice Type ce eaker 25V eaker 25V Standby Load:	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours	Current 0.40000 Tap0.00000 0.00000	Current 0.40000 0.00000 0.00000 Standby Load 0.400 Alarm Load:	Current 0.50000 0.02000 0.04000 1.360	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps
- 5025 • ELECTRik vice Type ce eaker 25V eaker 25V Standby Load: Standby Time:	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours	Current 0.40000 Tap0.00000 0.00000	Current 0.40000 0.00000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time:	Current 0.50000 0.02000 0.04000 1.360	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes
vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load:	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He	<u>Current</u> 0.40000 Tap0.00000 0.000000	Current 0.40000 0.00000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load:	Current 0.50000 0.02000 0.04000 1.360 15 0.34	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours
vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load:	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*Ho (2) BAT-12180	<u>Current</u> 0.40000 Tap0.00000 0.00000	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery:	Current 0.50000 0.02000 0.04000 1.360 15 0.34	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours
vice Type ce eaker 25V eaker 25V standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size:	CAL ROOM 136 Model Number DAA2-5025 Speaker − 1/2 Watt Speaker − 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery: ad (ALM + STBY)	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H.
vice Type ce eaker 25V eaker 25V standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size:	CAL ROOM 136 Model Number DAA2-5025 Speaker − 1/2 Watt Speaker − 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery:	Current 0.50000 0.02000 0.04000 1.360 15 0.34	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H.
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%):	CAL ROOM 136 Model Number DAA2-5025 Speaker − 1/2 Watt Speaker − 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000 ours Tot	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery: ad (ALM + STBY)	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H.
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%):	CAL ROOM 136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H. 14.40 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000 ours Tot	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Alarm Load: Alarm Sime: al Alarm Load:	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H.
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%):	CAL ROOM 136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H. 14.40 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000 ours Tot	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Alarm Load: Alarm Sime: al Alarm Load:	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H.
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%):	CAL ROOM 136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H. 14.40 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000 ours Tot	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Alarm Load: Alarm Sime: al Alarm Load:	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H.
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010	CAL ROOM 136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H. 14.40 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000 ours Tot	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Alarm Load: Alarm Sime: al Alarm Load:	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H.
<u>-5025 • ELECTRik</u> vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010	CAL ROOM 136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H. 14.40 A.H. 14.40 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000 ours Tot	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Alarm Load: Alarm Sime: al Alarm Load:	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H.
<u>-5025 • ELECTRik</u> vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010	CAL ROOM 136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H. 14.40 A.H.	<u>Current</u> 0.40000 Tap0.00000 0.00000 ours Tot	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Alarm Load: Alarm Sime: al Alarm Load:	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H.
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*Ha (2) BAT-12180 18.00 A.H. 14.40 A.H. N035[Cal Poly SLO_Rec Ctr_XP-1_BATT.3	<u>Current</u> 0.40000 Tap0.00000 0.00000 ours Tot Lo	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Alarm Load: Alarm Sime: al Alarm Load:	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H.
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010	CAL ROOM 136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*He (2) BAT-12180 18.00 A.H. 14.40 A.H. 14.40 A.H.	Current 0.40000 Tap0.00000 0.00000 ours Tot Lo	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery: ad (ALM + STBY) Spare Capacity	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94 4.46	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H. <u>12/07/11</u>
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V standby Load: Standby Time: al Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010 ING CALCULATION SLO - STUDENT F 3 DAA2-5025 • I	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*Ho (2) BAT-12180 18.00 A.H. 14.40 A.H. >0035[Col Poly SLO_Rec Ctr_XP-1_BATL3	Current 0.40000 Tap0.00000 0.00000 ours Tot Lo	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery: ad (ALM + STBY) _ Spare Capacity Total Standby	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94 4.46	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H. <u>12/07/11</u> Total Alarm
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010 ING CALCULATION SLO - STUDENT F 3 DAA2-5025 • I	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*Ha (2) BAT-12180 18.00 A.H. 14.40 A.H. 14.40 A.H. 14.40 A.H. 14.40 A.H. Model Number	Current 0.40000 Tap0.00000 0.00000 ours Tot Lo xls]BattCalc	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery: ad (ALM + STBY) Spare Capacity Total Standby Current	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94 4.46 Alarm Current	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H. <u>12/07/111</u> Total Alarm Current
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010 ING CALCULATION BLO - STUDENT F 3 DAA2-5025 • I	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*Ha (2) BAT-12180 18.00 A.H. 14.40 A.H. 14.40 A.H. 2035[Col Poly SLO_Rec Ctr_XP-1_BATT.) RECREATION CENTER ELECTRICAL ROOM #115 Model Number DAA2-5025	Current 0.40000 Tap0.00000 0.00000 ours Tot Lo xls]BattCalc Standby Current 0.40000	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery: ad (ALM + STBY) Spare Capacity Total Standby Current 0.80000	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94 4.46 4.46	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H. <u>12/07/11</u> Total Alarm Current 1.00000
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010 ING CALCULATION SLO - STUDENT F 3 DAA2-5025 • I vice Type ce eaker 25V	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*Ho 18.00 A.H. 14.40 A.H. 1035[Col Poly SLO_Rec Ctr_XP-1_BATL. PECREATION CENTER ELECTRICAL ROOM #115 Model Number DAA2-5025 Speaker - 1/2 Watt	Current 0.40000 Tap0.00000 0.00000 ours Tot Lo xls]BattCalc Standby Current 0.40000	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery: ad (ALM + STBY) Spare Capacity Total Standby Current 0.80000 0.00000	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94 4.46 4.46	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H. <u>12/07/11</u> Total Alarm Current 1.00000 0.60000
-5025 • ELECTRIK vice Type ce eaker 25V eaker 25V Standby Load: Standby Time: cal Standby Load: atteries Provided: Battery Size: Rated Size(80%): Poly SLO Rec. Center_2010 ING CALCULATION SLO - STUDENT F 3 DAA2-5025 • I	CAL ROOM #136 Model Number DAA2-5025 Speaker - 1/2 Watt Speaker - 1 Watt Tap 0.400 Amps 24 Hours 9.60 Amp*Ha (2) BAT-12180 18.00 A.H. 14.40 A.H. 14.40 A.H. 2035[Col Poly SLO_Rec Ctr_XP-1_BATT.) RECREATION CENTER ELECTRICAL ROOM #115 Model Number DAA2-5025	Current 0.40000 Tap0.00000 0.00000 ours Tot Lo xls]BattCalc Standby Current 0.40000	Current 0.40000 0.00000 Standby Load 0.400 Alarm Load: Alarm Time: al Alarm Load: Available Battery: ad (ALM + STBY) Spare Capacity Total Standby Current 0.80000	Current 0.50000 0.02000 0.04000 1.360 15 0.34 14.40 9.94 4.46 4.46	Current 0.50000 0.74000 0.12000 Alarm Load 1.360 Amps Minutes Amp*Hours A.H. A.H. A.H. A.H.

	$3 \mu c u \kappa c = 1/2 m u c c$	up0.00000 0.00000	0.02000	0.00000
aker 25V	Speaker — 1 Watt Tap	0.00000 0.00000	0.04000	0.3600
		Standby Load		Alarm Loa
		0.800		1.960
Standby Load:	0.800 Amps	Alarm Load:	1.960	Amps
Standby Time:	24 Hours	Alarm Time:	15	Minutes
al Standby Load:	19.20 Amp*Ho	urs Total Alarm Load:	0.49	Amp*Hours
atteries Provided:	(2) BAT-12260	Available Battery:	20.80	A.H.
Battery Size:	26.00 A.H.	Load (ALM + STBY)	19.69	A.H.
Rated Size(80%):	20.80 A.H.	Spare Capacity	1.11	A.H.
Poly SLO Rec. Center_2010	1035[Cal Poly SLO_Rec Ctr_XP-2_BATT.xl:	s]BattCalc		

	N				DEODE					12/06/1 I
- F		1			- RECRE ROOM #					
			KPS #I		ROOM #	136				
	DEVICE CURR.	SIGNAL VI	CIRCUIT	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	QTY
	(AMPS)	QTY	CURR.	QTY	CURR.	QTY	CURR.	QTY	CURR.	TOTAL
robe ONLY)	<u> </u>									
	0.066		0.000	1	0.066		0.000		0.000	1
	0.158		0.000		0.158		0.000		0.000	1
	0.202	8	1.616	2	0.404		0.000		0.000	10
	0.066		0.000	5	0.330		0.000		0.000	5
	0.158		0.000	1	0.158		0.000		0.000	1
CIRCUIT		1.616	AMPS	1.116	AMPS	0.000	AMPS	0.000	AMPS	
		445	FT.	300	FT.	0	FT.	0	FT.	
		12	AWG	12	AWG	12	AWG	12	AWG	
		6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	
		2.38	VOLTS	1.11	VOLTS	0.00	VOLTS	0.00	VOLTS	
CIRCUIT		18.02	VOLTS	19.29	VOLTS		VOLTS		VOLTS	
		1ST FLOO	DR	1ST FLOO)R	SPARE		SPARE		
			TOTAL CUR							
	VOLINOL			CIRCULAR						
VOL	TAGE 🕲 E		STARTING C	RCUIT VO	LTAGE – VO	DLTAGE DR	ROP			
	OF CIRC	CUIT								
	LISTE		VOLTAGE =	2 4 √						
					85% LISTED	VOLTAGE)				
AGE RANGE I				•		- ,				
							v			I
AGE RANGE File Name: M:	STARTIN FOR 24V	G CIRCUIT	VOLTAGE = VOLTAGE = DN APPLIANC _2010035[Cal F	20.4V (205 TO BE	E 16V-33V	•				

			CAL PO	LY SLO	- RECRE	ATION C	XTR			
OR			REMOTE POWER SUPPLY - RPS#2 @ ELEC ROOM #172							
	DEVICE	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	
	CURR.	V5		V6		V7		V8		QTY
	(AMPS)	QTY	CURR.	QTY	CURR.	QTY	CURR.	QTY	CURR.	TOTAL
robe (Strobe (ONLY							-		
	0.066		0.000	1	0.066		0.000		0.000	1
	0.094	1	0.094		0.000		0.000		0.000	1
	0.158	1	0.158		0.000		0.000		0.000	1
	0.202	3	0.606	6	1.212		0.000		0.000	9
robe (WP Stro		1	0 159		0.000		0.000		0.000	
)	0.158		0.158		0.000		0.000		0.000	1
	0.066	2	0.132	3	0.198		0.000		0.000	. 5
	0.066	_	0.000	1	0.066		0.000		0.000	1
ON CIRCUI	IT	1.148	AMPS	1.542	AMPS	0.000	AMPS	0.000	AMPS	
NGTH		400	FT.	490	FT.	0	FT.	0	FT.	
			AWG		AWG		AWG		AWG	
			CIRC MILS		CIRC MILS		CIRC MILS		CIRC MILS	
			VOLTS		VOLTS		VOLTS		VOLTS	
D OF CIRCU	ПТ		VOLTS		VOLTS	0.00	VOLTS	0.00	VOLTS	
<u>D 01 01100</u> 0N		1ST FLOO		1ST FLOO		SPARE	VULIS	S[ARE	VULIS	
	VOLTAGE	E DROP =	TOTAL CUR		STANCE x 2	1.6		-		
200				CIRCULAR	MILS					
520 580	VOLTAGE @ 1		STARTING C		LTAGE – VO					
110			STARTING C		LIAGE - VC	LIAGE DR				
530										

LISTED CIRCUIT VOLTAGE = 24V STARTING CIRCUIT VOLTAGE = 20.4V (85% LISTED VOLTAGE) OPERATING VOLTAGE RANGE FOR 24V NOTIFICATION APPLIANCES TO BE 16V-33V

File Name: M:Cal Poly SLO Rec. Center_2010035[Cal Poly SLO_Rec Ctr_RPS #2_VD.xls]VD FORM

OLTAGE DROP CALCULAT			+ / ·			:				12/06/1
		-			- RECRE					
YSTEM SENSOR			REMOTE	POWER	SUPPLY -	- RPS#3	3 @ ELEC	ROOM	#227	
	DEVICE CURR.	SIGNAL V9	CIRCUIT	SIGNAL VIO	CIRCUIT	SIGNAL VII	CIRCUIT	SIGNAL V12	CIRCUIT	QTY
	(AMPS)	QTY	CURR.	QTY	CURR.	QTY	CURR.	QTY	CURR.	TOTAL
Speaker/Strobe (Strobe ONLY				_						
PSW (110cd) Speaker/Strobe (WP Strobe C	0.202	5	1.010	5	1.010		0.000		0.000	10
PSWK (75cd)	0.158	1	0.158		0.000		0.000		0.000	. 1
Strobe										
W (15cd)	0.066	1	0.066		0.000		0.000		0.000	1
OTAL CURRENT ON CIRCUIT		1.234	AMPS	1.010	AMPS	0.000	AMPS	0.000	AMPS	
OTAL WIRE LENGTH		500		340			FT.		FT.	
/IRE SIZE		12	AWG	12	AWG	12	AWG	12	AWG	
IRCULAR MILS		6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	
OLTAGE DROP		2.04	VOLTS	1.14	VOLTS	0.00	VOLTS	0.00	VOLTS	
OLTAGE @ END OF CIRCUIT		18.36	VOLTS	19.26	VOLTS		VOLTS		VOLTS	
IRCUIT LOCATION		2ND FLOO	DR	2ND FLO	OR	SPARE		SPARE		
	VOLTAGE	DROP =	TOTAL CUR	RENT X D	ISTANCE x 2	1.6				
	OF CIRC		VOLTAGE =	24∨						
	LISTEI STARTING <u>E FOR 24V</u> : M:Col Poly SLO	D CIRCUIT G CIRCUIT NOTIFICATIO	VOLTAGE =	20.4V (CES TO BI			4			
12 AWG = 6530 OPERATING VOLTAGE RANG File Name	LISTEI STARTING <u>E FOR 24V</u> : M:Col Poly SLO	D CIRCUIT G CIRCUIT NOTIFICATIO	VOLTAGE = <u>DN APPLIANC</u> 2010035[Cal P	20.4V (CES TO BI	E 16V-33V Ctr_RPS #3_V	, D.xIs]VD FOR				12/06/
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT	LISTEI STARTING <u>E FOR 24V</u> : M:Col Poly SLO	D CIRCUIT G CIRCUIT NOTIFICATIO	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL	20.4V (<u>CES TO BI</u> voly SLO_Rec LY SLO	E 16V-33V	D.xIs]VD FORM	TR	ROOM #	±115	12/06/
12 AWG = 6530 OPERATING VOLTAGE RANG	LISTEI STARTING E FOR 24V : M:Col Poly SLO FION DEVICE	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL	20.4V (<u>CES TO B</u> roly SLO_Rec <u>V SLO</u> POWER	E 16V-33V Ctr_RPS #3_VI	D.xIs]VD FORM	© ELEC	ROOM #		12/06/ ⁻ QTY
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT	LISTEI STARTING E FOR 24V : M:Col Poly SLO TION DEVICE CURR. (AMPS)	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE	20.4V (<u>CES TO BI</u> holy SLO_Rec <u>Y SLO</u> POWER SIGNAL	E 16V-33V Ctr_RPS #3_V - RECRE SUPPLY-	D.x19]VD FORM	© ELEC	SIGNAL		
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT FYSTEM SENSOR	LISTEI STARTING E FOR 24V : M:Col Poly SLO FION DEVICE CURR. (AMPS)	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_ SIGNAL	VOLTAGE = <u>N APPLIANC</u> 2010035[Col P CAL POL REMOTE CIRCUIT CURR.	20.4V (<u>CES TO BI</u> boly SLO_Rec <u>POWER</u> SIGNAL VI4 QTY	E 16V-33V Ctr_RPS #3_V - RECRE SUPPLY- CIRCUIT CURR.	ATION C RPS#4 SIGNAL VI5	© ELEC CIRCUIT CURR.	SIGNAL VIG QTY	CIRCUIT CURR.	QTY TOTAL
12 AWG = 6530 OPERATING VOLTAGE RANG File Name OLTAGE DROP CALCULAT YSTEM SENSOR Byeaker/Strobe (Strobe ONLY PSW (15cd)	LISTEI STARTING E FOR 24V : M:Col Poly SLO TION DEVICE CURR. (AMPS)	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_ SIGNAL	VOLTAGE = <u>N APPLIANC</u> 2010035[Col P CAL POL REMOTE CIRCUIT	20.4V (<u>CES TO BI</u> roly SLO_Rec <u>POWER</u> SIGNAL VI4 QTY 2	E 16V-33V Ctr_RPS #3_V - RECRE SUPPLY- CIRCUIT CURR.	ATION C RPS#4 SIGNAL VI5	CIRCUIT	SIGNAL V16	CIRCUIT CURR.	QTY
12 AWG = 6530 OPERATING VOLTAGE RANG File Name OLTAGE DROP CALCULAT SYSTEM SENSOR Byeeker/Strobe (Strobe ONLY PSW (15cd) PSW (30cd)	LISTEI STARTING E FOR 24V MCCal Poly SLO TION DEVICE CURR. (AMPS) 0.066	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_ SIGNAL	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066	20.4V (<u>CES TO B</u> roly SLO_Rec POWER SIGNAL V14 QTY 2 1	E 16V-33V Ctr_RPS #3_V - RECRE SUPPLY- CIRCUIT CURR. 0.132	ATION C RPS#4 SIGNAL VIS QTY	CIRCUIT CURR.	SIGNAL VIG QTY	CIRCUIT CURR. 0.198 0.000	QTY TOTAL 6
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT YSTEM SENSOR Beeker/Strobe (Strobe ONLY PSW (15cd) PSW (30cd) PSW (75cd) PSW (110cd)	LISTEI STARTING E FOR 24V : M:Col Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_ SIGNAL VI3 QTY 1	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000	20.4V (<u>CES TO B</u> roly SLO_Rec POWER SIGNAL V14 QTY 2 1	E 16V-33V Ctr_RPS #3_V - RECRE SUPPLY- CIRCUIT CURR. 0.132 0.094	ATION C RPS#4 SIGNAL VIS QTY	© ELEC CIRCUIT CURR. 0.000 0.188	SIGNAL VIS QTY 3	CIRCUIT CURR. 0.198 0.000 0.158	QTY TOTAL 6 3
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT SYSTEM SENSOR Speaker/Strobe (Strobe ONLY SPSW (15cd) SPSW (15cd) SPSW (15cd) SPSW (110cd) Strobe	LISTEI STARTING E FOR 24V : M:Cal Poly SLO TION DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_ SIGNAL VI3 QTY 1 2 2 2	VOLTAGE = <u>N APPLIANC</u> 2010035[Col P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404	20.4V (<u>CES TO BI</u> boly SLO_Rec LY SLO POWER SIGNAL VI4 QTY 2 1 1 1	E 16V−33V Ctr_RPS #3_V - RECRE SUPPLY− CIRCUIT CURR. 0.132 0.094 0.158 0.202	D.xis]VD FORM ATION C RPS#4 SIGNAL VI5 QTY 2 1	© ELEC CIRCUIT CURR. 0.000 0.188 0.000 0.202	SIGNAL VI6 QTY 3 1 1	CIRCUIT CURR. 0.198 0.000 0.158 0.202	QTY TOTAL 6 3 4 5
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT SYSTEM SENSOR Speaker/Strobe (Strobe ONLY PSW (15cd) PSW (15cd) PSW (110cd) Strobe CCW (15cd)	LISTEI STARTING E FOR 24V MCCal Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_ SIGNAL VI3 QTY 1 1 2	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316	20.4V (<u>CES TO BI</u> voly SLO_Rec POWER SIGNAL VI4 QTY 2 1 1 1 1	 <u>16V-33V</u> Ctr_RPS #3_VI <u>RECRE</u> <u>SUPPLY-</u> <u>CIRCUIT</u> <u>CURR.</u> <u>0.132</u> <u>0.094</u> <u>0.158</u> 	D.xis]VD FORM ATION C RPS#4 SIGNAL VI5 QTY 2 1	© ELEC CIRCUIT CURR. 0.000 0.188 0.000	SIGNAL V16 QTY 3 1 1	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330	QTY TOTAL 6 3 4
12 AWG = 6530 OPERATING VOLTAGE RANG File Name OLTAGE DROP CALCULAT YSTEM SENSOR Speaker/Strobe (Strobe ONLY PSW (15cd) PSW (15cd) PSW (15cd) CW (15cd) W (15cd) W (15cd)	LISTEI STARTING E FOR 24V : M:Col Poly SLO TION DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_ SIGNAL VI3 QTY 1 2 2 2	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132	20.4V (<u>CES TO BI</u> roly SLO_Rec POWER SIGNAL VI4 QTY 2 1 1 1 1	E 16V-33V Ctr_RPS #3_V - RECRE SUPPLY- CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066	ATION C RPS#4 SIGNAL VI5 QTY 2 1 3	© ELEC CIRCUIT CURR. 0.000 0.188 0.000 0.202	SIGNAL V16 QTY 3 1 1 5	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330	QTY TOTAL 6 3 4 5
12 AWG = 6530 OPERATING VOLTAGE RANG File Name OLTAGE DROP CALCULAT SYSTEM SENSOR SYSTEM SENSOR SYSTEM SENSOR STODE (Strobe ONLY PSW (15cd) PSW (15cd) CW (15cd) CW (15cd) CW (15cd) Strobe (WP)	LISTEI STARTING E FOR 24V : M:Col Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202 0.066 0.094 0.066	CIRCUIT G CIRCUIT NOTIFICATIC Rec. Center_ SIGNAL VIS QTY 1 2 2 2 2	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132 0.000 0.198	20.4V (<u>CES TO B</u> roly SLO_Rec POWER SIGNAL VI4 QTY 2 1 1 1 1 7	E 16V−33V Ctr_RPS #3_V Ctr_RPS #3_V CIRCUIT CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066 0.000 0.462	D.xis]VD FORM	CIRCUIT CURR. CURR. 0.000 0.188 0.000 0.202 0.198 0.188 0.132	SIGNAL V16 QTY 3 1 1 5	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330 0.094 0.066	QTY TOTAL 6 3 4 5
12 AWG = 6530 OPERATING VOLTAGE RANG File Name OLTAGE DROP CALCULAT SYSTEM SENSOR SYSTEM SENSOR SYSTEM SENSOR STODE (Strobe ONLY PSW (15cd) PSW (15cd) CW (15cd) CW (15cd) CW (15cd) Strobe (WP)	LISTEI STARTING E FOR 24V MCCal Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202	CIRCUIT G CIRCUIT NOTIFICATIC Rec. Center_ SIGNAL VIS QTY 1 2 2 2 2	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132 0.000	20.4V (<u>CES TO B</u> roly SLO_Rec POWER SIGNAL VI4 QTY 2 1 1 1 1 7	E 16V-33V Ctr_RPS #3_V - RECRE SUPPLY- CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066 0.000	ATION C RPS#4 SIGNAL VI5 QTY 2 1 3 2	CIRCUIT CURR. CURR. 0.000 0.188 0.000 0.202	SIGNAL V16 QTY 3 1 1 5	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330 0.094	QTY TOTAL 6 3 4 5 11 3
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT SYSTEM SENSOR Speaker/Strobe (Strobe ONLY PSW (15cd) PSW (15cd) PSW (15cd) CW (15cd) CW (15cd) CW (15cd) Strobe (WP) CRK (15cd)	LISTEI STARTING E FOR 24V : M:Col Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202 0.066 0.094 0.066	CIRCUIT G CIRCUIT NOTIFICATIC Rec. Center_ SIGNAL VIS QTY 1 2 2 2 2	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132 0.000 0.198 0.000	20.4V (<u>CES TO BI</u> voly SLO_Rec POWER SIGNAL VI4 QTY 2 1 1 1 7	E 16V−33V Ctr_RPS #3_V Ctr_RPS #3_V CIRCUIT CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066 0.000 0.462	D.xis]VD FORM	CIRCUIT CURR. CURR. CURR. 0.000 0.188 0.000 0.202 0.198 0.132 0.132	SIGNAL VI6 QTY 3 1 1 5 1 1 1	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330 0.094 0.066	QTY TOTAL 6 3 4 5
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT YSTEM SENSOR SYSTEM SENSOR By (15cd) PSW (15cd) PSW (15cd) PSW (15cd) CW (15cd) CRK (15cd) CRK (15cd) OTAL CURRENT ON CIRCUIT	LISTEI STARTING E FOR 24V : M:Col Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202 0.066 0.094 0.066	CIRCUIT G CIRCUIT NOTIFICATIO Rec. Center_ SIGNAL VI3 QTY 1 2 2 2 2 3 3	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132 0.000 0.198 0.000 AMPS	20.4V (<u>CES TO BI</u> voly SLO_Rec POWER SIGNAL VI4 QTY 2 1 1 1 7	E 16V−33V Ctr_RPS #3_V Ctr_RPS #3_V CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066 0.000 0.462 0.000 AMPS	ATION C RPS#4 SIGNAL VI5 QTY 2 1 3 2 2 2	CIRCUIT CURR. CURR. CURR. 0.000 0.188 0.000 0.202 0.198 0.132 0.132	SIGNAL VI6 QTY 3 1 1 5 1 1 1	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330 0.094 0.066 0.000 AMPS	QTY TOTAL 6 3 4 5
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT /YSTEM SENSOR /YSTEM S	LISTEI STARTING E FOR 24V : M:Col Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202 0.066 0.094 0.066	CIRCUIT G CIRCUIT NOTIFICATIC Rec. Center_ SIGNAL VI3 QTY 1 2 2 2 2 2 3 3 1.116 300	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132 0.000 0.198 0.000 AMPS	20.4V (<u>CES TO BI</u> boly SLO_Rec LY SLO POWER SIGNAL V14 QTY 2 1 1 1 1 1 1 1 1 1 1 1 1 1	E 16V−33V Ctr_RPS #3_V Ctr_RPS #3_V CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066 0.000 0.462 0.000 AMPS	D.xis]VD FORM	CIRCUIT CURR. CURR. CURR. 0.000 0.188 0.000 0.202 0.198 0.132 0.132	SIGNAL V18 QTY 3 1 1 5 1 1 1 1 1 0 48 880	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330 0.094 0.066 0.000 AMPS	QTY TOTAL 6 3 4 5
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT /YSTEM SENSOR System Sensor	LISTEI STARTING E FOR 24V : M:Col Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202 0.066 0.094 0.066	CIRCUIT GCIRCUIT NOTIFICATIC Rec. Center_ SIGNAL VIS QTY 1 1 2 2 2 2 2 3 3 1.116 300 12	VOLTAGE = <u>N APPLIANC</u> 2010035[Col P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132 0.000 0.198 0.000 AMPS FT.	20.4V (<u>CES TO BI</u> roly SLO_Rec LY SLO POWER SIGNAL V14 QTY 2 1 1 1 1 1 1 1 1 1 1 1 1 1	E 16V-33V Ctr_RPS #3_V Ctr_RPS #3_V CIRCUIT CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066 0.000 0.462 0.000 0.462 CURR. 0.000 0.462 0.000 0.462 0.000 0.462	ATION C RPS#4 SIGNAL VI5 QTY 2 1 3 2 1 0 4 1 0 4 2 2 1 1 0 4 1 2 1 1 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1	CIRCUIT CURR. CURR. CURR. CURR. 0.000 0.188 0.000 0.202 0.188 0.132 0.132 0.132 CURR.	SIGNAL VI8 QTY 3 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330 0.094 0.066 0.000 AMPS FT.	QTY TOTAL 6 3 4 5
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT SYSTEM SENSOR SYSTEM S	LISTEI STARTING E FOR 24V : M:Col Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202 0.066 0.094 0.066	CIRCUIT GCIRCUIT NOTIFICATIC Rec. Center_ SIGNAL VI3 QTY 1 1 2 2 2 2 2 2 3 3 3 1.116 300 12 6530	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132 0.000 0.132 0.000 0.198 	20.4V (<u>CES TO B</u> roly SLO_Rec POWER <u>VI4</u> QTY 2 1 1 1 1 1 1 1 1 1 1 1 1 1	E 16V−33V Ctr_RPS #3_V Ctr_RPS #3_V CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066 0.000 0.462 0.000 0.462 0.000 AMPS FT. AWG	ATION C RPS#4 SIGNAL VI5 QTY 2 2 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	CURR. CURR. CURR. CURR. 0.000 0.188 0.000 0.202 0.198 0.198 0.132 0.132 CURR. 0.132 0.132 CURR. 0.132 CURR. CUR. CU	SIGNAL VI8 QTY 3 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330 0.094 0.066 0.000 AMPS FT. AWG	QTY TOTAL 6 3 4 5
12 AWG = 6530 OPERATING VOLTAGE RANG File Name /OLTAGE DROP CALCULAT SYSTEM SENSOR SYSTEM SENSOR SPSW (15cd) PSW (15cd) Strobe Strobe SCW (15cd) W (15cd) W (15cd)	LISTEI STARTING E FOR 24V : M:Col Poly SLO TON DEVICE CURR. (AMPS) 0.066 0.094 0.158 0.202 0.066 0.094 0.066	CIRCUIT GCIRCUIT NOTIFICATIC Rec. Center_ SIGNAL VI3 QTY 1 1 2 2 2 2 2 2 3 3 3 1.116 300 12 6530	VOLTAGE = <u>N APPLIANC</u> 2010035[Cal P CAL POL REMOTE CIRCUIT CURR. 0.066 0.000 0.316 0.404 0.132 0.000 0.132 0.000 0.198 0.000 AMPS FT. AWG CIRC MILS VOLTS	20.4V (<u>CES TO BI</u> roly SLO_Rec LY SLO POWER SIGNAL VI4 QTY 2 1 1 1 1 1 1 1 1 1 1 1 1 1	 ■ 16V-33V Ctr_RPS #3_V ■ RECRE SUPPLY- CIRCUIT CURR. 0.132 0.094 0.158 0.202 0.066 0.000 0.462 0.000 AMPS FT. AWG CIRC MILS 	ATION C RPS#4 SIGNAL VI5 QTY 2 1 3 2 1 1 040 575 12 6530 1.98	CIRCUIT CURR. CURR. CURR. CURR. CURR. CURR. CURR. CURR. CURR. CURC. CIRC MILS	SIGNAL VI8 QTY 3 1 1 1 5 1 1 1 1 1 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1	CIRCUIT CURR. 0.198 0.000 0.158 0.202 0.330 0.094 0.066 0.000 AMPS FT. AWG CIRC MILS	QTY TOTAL 6 3 4 5

SYSTEM SENSOR			REMOTE	POWER	SUPPLY-	R
	DEVICE	SIGNAL	CIRCUIT	SIGNAL	CIRCUIT	
	CURR.	VI3	CIRCUIT	VI4	CIRCUIT	VIE
	(AMPS)	QTY	CURR.	QTY	CURR.	VK
Speaker/Strobe (Strobe ONLY	· /					
SPSW (15cd)	0.066	1	0.066	2	0.132	Г
SPSW (30cd)	0.094		0.000			-
SPSW (75cd)	0.158	2	0.316		0.158	
SPSW (110cd)	0.202	2				-
Strobe	•					
SCW (15cd)	0.066	2	0.132	1	0.066	
SCW (30cd)	0.094		0.000		0.000	
SW (15cd)	0.066	3	0.198	7	0.462	
Strobe (WP)						
SCRK (15cd)	0.066		0.000		0.000	
TOTAL CURRENT ON CIRCUIT		1.116	AMPS	1.114	AMPS	L
TOTAL WIRE LENGTH		300	FT.	350	FT.	
WIRE SIZE		12	AWG	12	AWG	
CIRCULAR MILS		6530	CIRC MILS	6530	CIRC MILS	
VOLTAGE DROP		1.11	VOLTS	1.29	VOLTS	
VOLTAGE @ END OF CIRCUIT		19.29	VOLTS	19.11	VOLTS	
CIRCUIT LOCATION		1ST FLOO	DR	1ST FLOO	DR	15
	VOLTAGE	DROP =	TOTAL CUR	RENT x D	STANCE x 2	
CIRC. MILS				CIRCULAR		
18 AWG = 1620						
16 AWG = 2580	/OLTAGE @ E	ND =	STARTING C	IRCUIT VC	LTAGE - VC)LT,
14 AWG = 4110	OF CIRC	UIT				
12 AWG = 6530						
			VOLTAGE =	- · ·		
	STARTING	G CIRCUIT	VOLTAGE =	20.4V (85% LISTED	VC

OPERATING VOLTAGE RANGE FOR 24V NOTIFICATION APPLIANCES TO BE 16V-33V File Name: M:Cal Poly SLO Rec. Center_2010035[Cal Poly SLO_Rec Ctr_RPS #4_VD.:

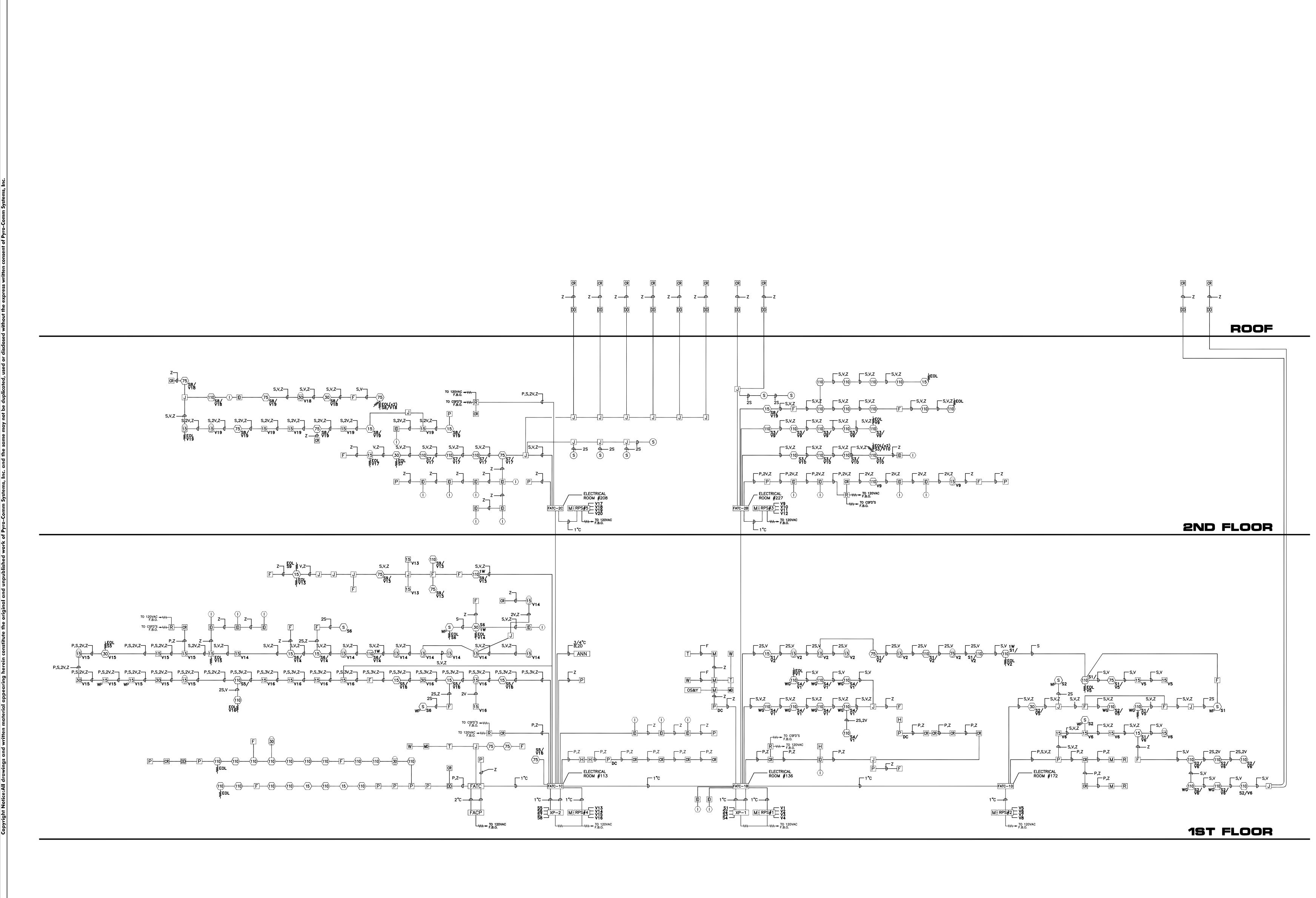
			CAL PO	LY SLO	- RECRE	ATION C	CTR			
SYSTEM SENSOR			REMOTE	POWER	SUPPLY #	∮ 5 @ El	EC ROOM	# 208		
	DEVICE CURR.		CIRCUIT		CIRCUIT		CIRCUIT		CIRCUIT	077/
	(AMPS)	V17 QTY	CURR.	VIB QTY	CURR.	V19 QTY	CURR.	V20 QTY	CURR.	QTY TOTAL
Speaker/Strobe (Strobe ON	· /		CORR.		CORR.		CORR.		CORR.	TUTAL
SPSW (15cd)	0.066		0.000		0.000	2	0.132		0.000	2
SPSW (30cd)	0.094	1	0.094		0.094		0.000		0.000	2
SPSW (75cd)	0.158	1	0.158	4	0.632	2	0.316		0.000	7
SPSW (110cd)	0.202	3	0.606	1	0.202		0.000		0.000	4
Speaker/Strobe (WP Strobe	ONLY)					-				
SPSWK (75cd)	0.158		0.000		0.000		0.000	4	0.632	4
Strobe										•
SCW (15cd)	0.066		0.000		0.000		0.264		0.000	4
SW (15cd)	0.066	1	0.066		0.000	2	0.132		0.000	3
SW (30cd)	0.094		0.000	1	0.094		0.000		0.000	1
TOTAL CURRENT ON CIRCUIT		0.924	AMPS	1.022	AMPS	0.844	AMPS	0.632	AMPS	
TOTAL WIRE LENGTH		355	FT.	625	FT.	325	FT.	600	FT.	
WIRE SIZE		12	AWG	12	AWG	12	AWG	12	AWG	
CIRCULAR MILS		6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	6530	CIRC MILS	
VOLTAGE DROP		1.09	VOLTS	2.11	VOLTS	0.91	VOLTS	1.25	VOLTS	
VOLTAGE OD END OF CIRCUIT		19.31	VOLTS	18.29	VOLTS	19.49	VOLTS	19.15	VOLTS	
CIRCUIT LOCATION		2ND FLO	OR	2ND FLO	OR	2ND FLO	OR	ROOF		
		. DBUD -	TOTAL CUR		STANCE v 2	21.6				
CIRC. MILS 18 AWG = 1620	VOLINOL			CIRCULAR						
16 AWG = 2580 14 AWG = 4110 12 AWG = 6530	VOLTAGE @ E OF CIRC		STARTING C	NRCUIT VO	LTAGE — VO	DLTAGE DR	OP			
12 ANG - 0000			VOLTAGE = VOLTAGE =		85% LISTED	VOLTAGE)				

File Name: M:Cal Poly SLO Rec. Center_2010035[Cal Poly SLO_Rec Ctr_RPS #5_VD.xls]VD FORM

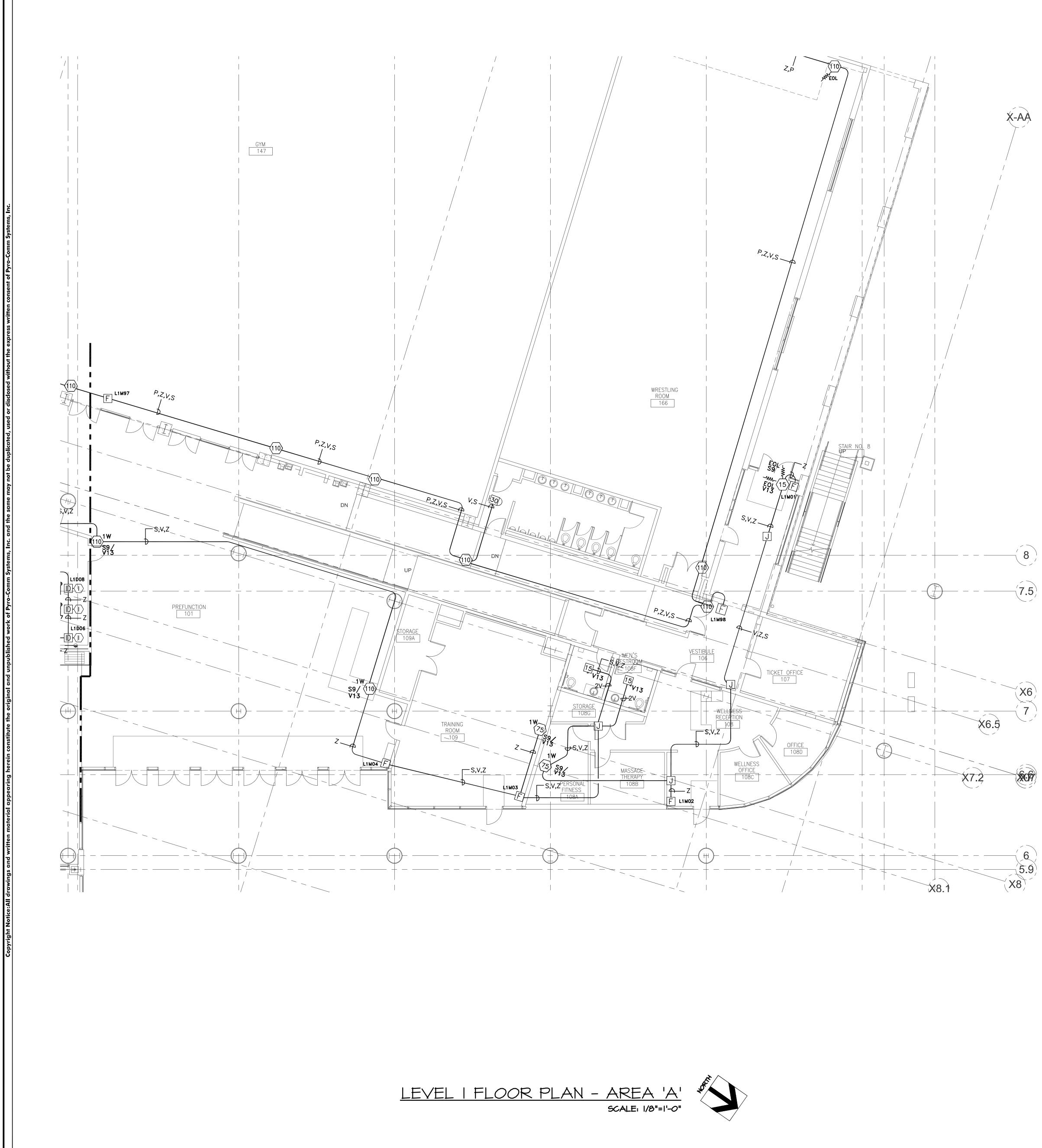
dB LINE LOSS CALCULAT																		02/23/1: 1
						CREATI												4
SPEAKERS			XP-1	© ELEC	ROOM	#136					XP-2	@ ELEC	ROOM	#115				
	DEVICE	SIGNAL	СКТ	SIGNAL	СКТ	SIGNAL	СКТ	SIGNAL	СКТ	SIGNAL	СКТ	SIGNAL	. СКТ	SIGNAL	СКТ	SIGNAL	СКТ	
	POWER	ମ		82	l	83	I	S4		85		86	1	87	1	S 8	1	QTY
	(WATTS)	QTY	WATTS	QTY	WATTS	QTY	WATTS	QTY	WATTS	QTY	WATTS	QTY	WATTS	QTY	WATTS	QTY	WATTS	TOTAL
Speaker 25V	0.50	6	7.00	10	5.00	6	7.00		2 00	5	2.50	3	1.50	11	5.50	7	7.50	50
<u>Speaker — 1/2 Watt Tap</u> Speaker — 1 Watt Tap	1.00	6	<u>3.00</u> 4.00	10	5.00 1.00				2.00 4.00		2.50 1.00		1.50 4.00		5.50			
	1.00		1.00		1.00		0.00		1.00		1.00		1.00		0.00		2.00	/ 21
TOTAL POWER ON CIRCUIT		7.00	WATTS	6.00	WATTS	8.00	WATTS	6.00	WATTS	3.50	WATTS	5.50	WATTS	8.50	WATTS	5.50	WATTS	
LOAD RESISTANCE		89	OHMS	104	OHMS	78	OHMS	104	OHMS	179	OHMS	114	OHMS	74	OHMS	114	OHMS	
TOTAL WIRE LENGTH		650	FT.	925	FT.	700	FT.	475	FT.	900	FT.	960) FT.	800	FT.	800	FT.	
WIRE SIZE		14	AWG	14	AWG	14	AWG	14	AWG	14	AWG	14	AWG	14	AWG	14	AWG	
TOTAL WIRE RESISTANCE		4.238	OHMS	6.031	OHMS	4.564	OHMS	3.097	OHMS	5.868	OHMS	6.2592	OHMS	5.216	OHMS	5.216	OHMS	
POWER LINE LOSS (dB)		-0.40	dB	-0.49	dB	-0.49	dB	-0.25	dB	-0.28	dB	-0.47	dB	-0.60	dB	-0.39	dB	
CIRCUIT LOCATION		1ST FLOO	R	1ST FLOO)R	2ND FLO	OR	SPARE		1ST FLOO	R	1ST FLO	OR	2ND FLO	OR	2ND FLO	OR	
					ог)	•								- 1				
WIRE RESISTANCE (OHM / 1000 FT)	LOAD RESI		POWER	. X VULIA	GE)	-												
18 AWG = 8.08																		
16 AWG = 5.08 POW	ER LINE LOS	S (dB) =	20xLog	LOAD RES	SISTANCE					_								
14 AWG = 3.26				LOAD RES	SISTANCE	+ TOTAL	WIRE RES	SISTANCE										
12 AWG = 2.05																		

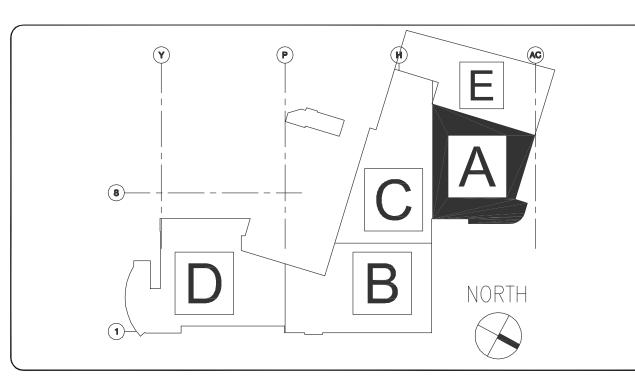
File Name: M:Cal Poly SLO Rec. Center_2010035[Cal Poly SLO_Rec Ctr_XPs_Lineloss.xls]dB LINE LOSS

SYSTEM BATTERY AND VOLTAGE DROP CALCULATIONS


D.xls]VD FORM	
VOLTAGE)	
DLTAGE DROP	
1.6	_

					12/07/11			
BATTERY SIZING CALCULATION CAL POLY SLO - STUDENT RE		ITER			<u>12/07/11</u>			
EXISTING REMOTE POWER SUPPLY								
		Standby	Total Standby	Alarm	Total Alarm			
Quantity Device Type M	Model Number	Current	Current	Current	Current			
1 FCPS-24S8 F	-CPS-24S8	0.06500	0.06500	0.14500	0.14500			
7 S/S (Strobe ONLY) S	SPSW (15cd)	0.00000	0.00000	0.06600	0.46200			
2 S/S (Strobe ONLY) S	SPSW (75cd)	0.00000	0.00000	0.15800	0.31600			
23 S/S (Strobe ONLY) S	SPSW (110cd)	0.00000	0.00000	0.20200	4.64600			
8 Strobe S	SW (15cd)	0.00000	0.00000	0.06600	0.52800			
2 Strobe S	SW (30cd)	0.00000	0.00000	0.09400	0.18800			
			Standby Load		Alarm Load			
			0.065		6.285			
Standby Load:	0.065	Amps	Alarm Load:	6.285	Amps			
Standby Time:	24	Hours	Alarm Time:	15	Minutes			
Total Standby Load:	1.56	Amp*Hours Tot	al Alarm Load:		Amp*Hours			
Batteries Provided:	(2) BAT-1270		Available Battery:	5.60	АН			
Battery Size:	7.00		ad (ALM + STBY)	3.13				
De-Rated Size(80%):	5.60		Spare Capacity	2.47				
File Name: M:Cal Poly SLO Rec. Center_201003			``					


dB LINE LOSS CALCULATION 02/								02/23/12		
CAL POLY SLO - RECREATION CENTER										
SPEAKERS	XP-3 @ ELEC ROOM #115									
	DEVICE POWER	SIGNAL 89	СКТ	SIGNAL Sparie	скт	SIGNAL Spare	СКТ	SIGNAL Spare	СКТ	QTY
	(WATTS)	QTY	WATTS	QTY	WATTS	QTY	WATTS	QTY	WATTS	TOTAL
Speaker 25V	0.50		3.50		0.00	0	0.00		0.00	7
Speaker — 1/2 Watt Tap Speaker — 1 Watt Tap	1.00	/	4.00		0.00	0	0.00		0.00	4
	1.00		4.00		0.00		0.00		0.00	Ţ
TOTAL POWER ON CIRCUIT		7.50	WATTS	0.00	WATTS	0.00	WATTS	0.00	WATTS	
LOAD RESISTANCE		83	OHMS	0	OHMS	0	OHMS	0	OHMS	
TOTAL WIRE LENGTH		450	FT.	0	FT.	0	FT.	0	FT.	
WIRE SIZE		14	AWG	14	AWG	14	AWG	14	AWG	
TOTAL WIRE RESISTANCE		2.934	OHMS	0	OHMS	0	OHMS	0	OHMS	
POWER LINE LOSS (dB)		-0.30	dB		dB		dB		dB	
CIRCUIT LOCATION		1ST FLOC	R	1ST FLOO	R	2ND FLO	OR	SPARE		
WIRE RESISTANCE LOAD RESISTANCE = (VOLTAGE × VOLTAGE)										
(OHM / 1000 FT)POWER18 AWG = 8.0816 AWG = 5.08POWER LINE LOSS (dB) = 20xLogLOAD RESISTANCE14 AWG = 3.26LOAD RESISTANCE + TOTAL WIRE RESISTANCE12 AWG = 2.05LOAD RESISTANCE + TOTAL WIRE RESISTANCE										


File Name: M:Cal Poly SLO Rec. Center_2010035[Cal Poly SLO_Rec Ctr_XP3_Lineloss.xls]dB LINE LOSS

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3231 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED DISTIBUTOR NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 J A PER PC0#551 12/06/11 BKR 12/06/11 BKR COMMENTS 05/10/10 MAL X ISSUED FOR 02/29/10 JA Rev Issued For Date Project ALTULI CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : 2010035 Sheet Title : FIRE ALARM SYSTEM CALCULATIONS Drawn By : J.AREVALO 02/23/10 Cad File : M:\CAL POLY SLO\ RECREATION CENTER\ FA0.02-REC CTR-CALCS Sheet Number : FA0.02 ASBUILT SET

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3231 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED 👋 NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale 3/7/12 JC X AS BUILTS PER PC0#551 12/06/11 BKR FIRE DEPT. COMMENTS 12/06/11 BKR 05/10/10 MAL $\stackrel{}{\underbrace{\times}}$ issued for plan check 02/29/10 JA Rev Issued For Date Project CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : 2010035 Sheet Title : FIRE ALARM RISER DIAGRAM Drawn By : J.AREVALO 02/23/10 M:\CAL POLY SL RECREATION CENTE FA0.03-REC CTR-RISI Sheet Number FA0.03 ASBUILT SET

KEY PLAN SCALE: NONE

SHEET NOTES:

1 ALL NEW CONDUITS TO BE 3/4"C U.O.N ALL SPEAKERS TO BE TAPPED AT 1/2W 70V UNLESS OTHERWISE NOTED.

2 N/A

- (3) FOR POST INDICATOR VALVE (PIV) VERIFY LOCATION.
- (4) FOR BACKFLOW PREVENTER (DDCV) VERIFY LOCATION.

 7	.5	

	CONTROL MODULE
CR	FIRE ALARM RELAY MODULE
R	24VDC RELAY
F	MANUAL PULL STATION
H	AREA HEAT DETECTOR
Ρ	AREA SMOKE DETECTOR (PHOTOELECTRIC)
PDC	AREA SMOKE DETECTOR (FOR DAMPER CONTROL)
ID	IN-DUCT SMOKE DETECTOR (PHOTO)
DD	AIR HANDLING DUCT SMOKE DET. (PHOTO)
$\langle \mathbf{I} \rangle$	REMOTE INDICATOR L.E.D.
XX XX DENOTES CANDELA RATING	FIRE ALARM CEILING STROBE
XX DENOTES CANDELA RATING	FIRE ALARM WALL STROBE
XX XX CANDELA RATING	FIRE ALARM CEILING
	FIRE ALARM WALL AUDIBLE/STROBE
SB	SPRINKLER BELL
W	SPRINKLER WATER FLOW – F.B.O.
Τ	SPRINKLER VALVE TAMPER – F.B.O.
PIV	SPRINKLER POST INDICATOR – F.B.O.
J	FIRE ALARM JUNCTION BOX
FATC	FIRE ALARM TERMINAL CABINET
A.F.F.	ABOVE FINISHED FLOOR
EOL	END OF LINE RESISTOR
F.B.O.	FURNISHED BY OTHERS
	NOT APPLICABLE
	UNLESS OTHERWISE NOTED
	VERIFY LOCATION IN FIELD
	WEATHERPROOF DEVICE
	NEW DEVICE
	COMBINATION FIRE SMOKE DAMPER
	CONDUIT DOWN CONDUIT UP
SYMB	OLS LEGEND
B ANNUN D ANNUN F INITIATI	E CIRCUIT ICIATOR POWER ICIATOR DATA ION CIRCUIT HOLDER POWER

P 24V POWER

R 24V RESET. POWER

V AUD/VISUAL CIRCUIT

Z ADDRESSABLE LOOP

FN FIBER NETWORK

W FAN SHUTDOWN CIRCUIT

PREFIX "M" – MC CABLE

PREFIX "C" – CI CABLE

SUFFIX "U" – UNDERGROUND/ WET LOCATION

WIRE LEGEND

S SPEAKER CIRCUIT

FIRE ALARM CONTROL PANEL

FIRE ALARM TRANSPONDER

FIRE ALARM

FIRE ALARM

CABINET

AUDIO/VISUAL REMOTE POWER SUPPLY

ANNUNCIATOR PANEL

BATTERY BACKBOX

MONITOR MODULE

FIRE ALARM DUAL MONITOR MODULE

FIRE ALARM CONTROL MODULE

FACP

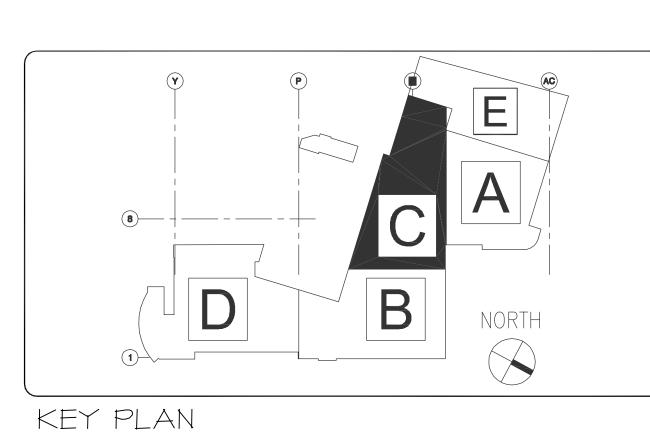
RPS

XP

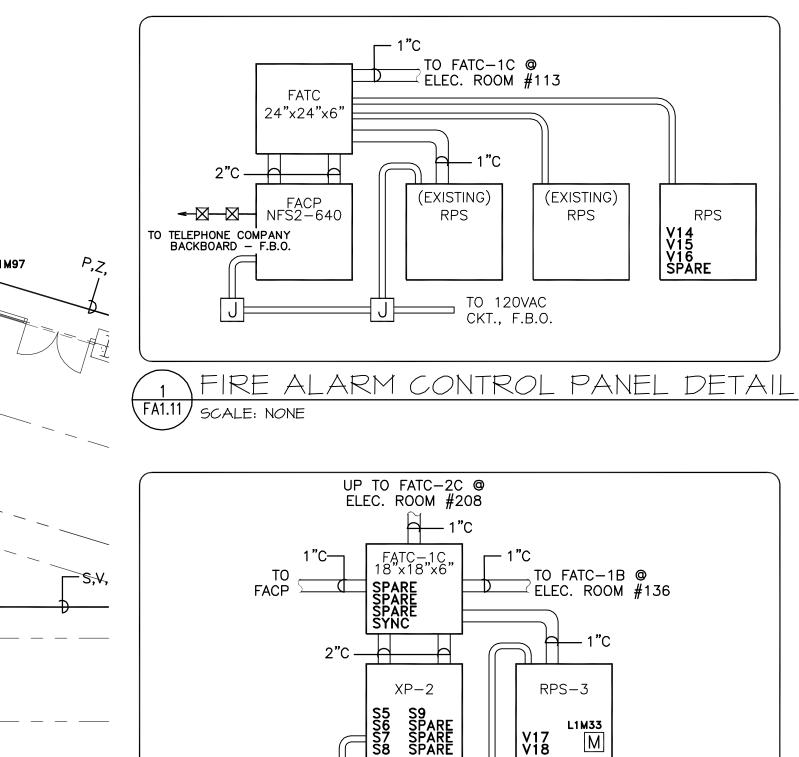
ANN

BATT

Μ


MD

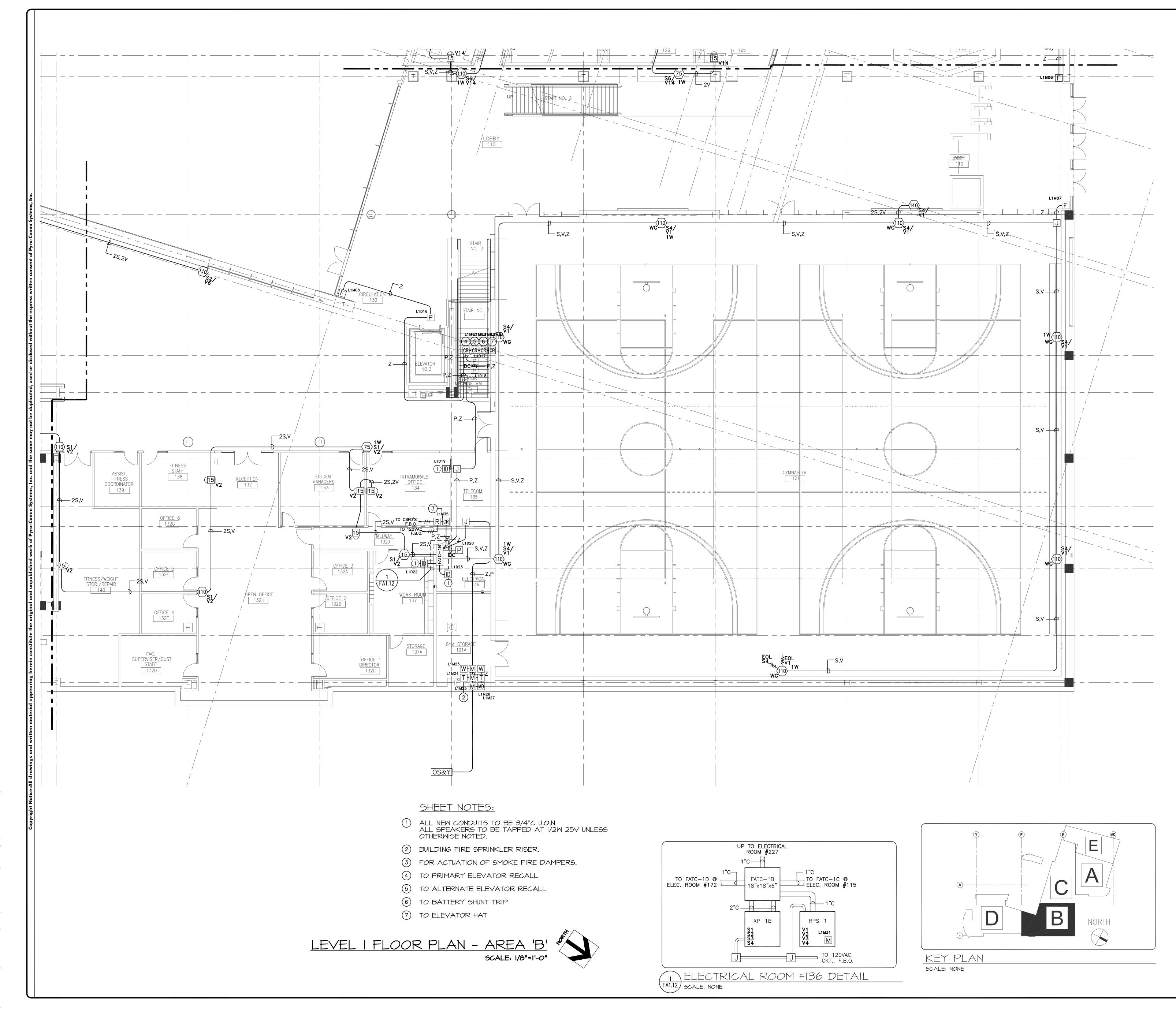
С


Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3232 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED 👋 NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 J PER PC0#551 12/06/11 BKF FIRE DEPT. 12/06/11 BKF COMMENTS Δ ENGINEER REVIEW 05/10/10 MAL ISSUED FOR 02/29/10 JA Rev Issued For Date roiect CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 1 - A Drawn By : J.AREVALO 02/23/10 Cad File : M:CAL POLY SLO RECREATION CENTER FA110-REC CTR-1ST-A **I** 0 Sheet Number : FA1.10 ASBUILT SET

M:\Cal Poly SLO Rec. Center_2010035\FA1.11_Cal Poly SLO Recreation Ctr_Lvl 1C.dwg ISSUE WITH THIS PAGE FOR ASBUILTS. SEE PCMIS.DWG, 3/28/2012 9.2

SCALE: NONE

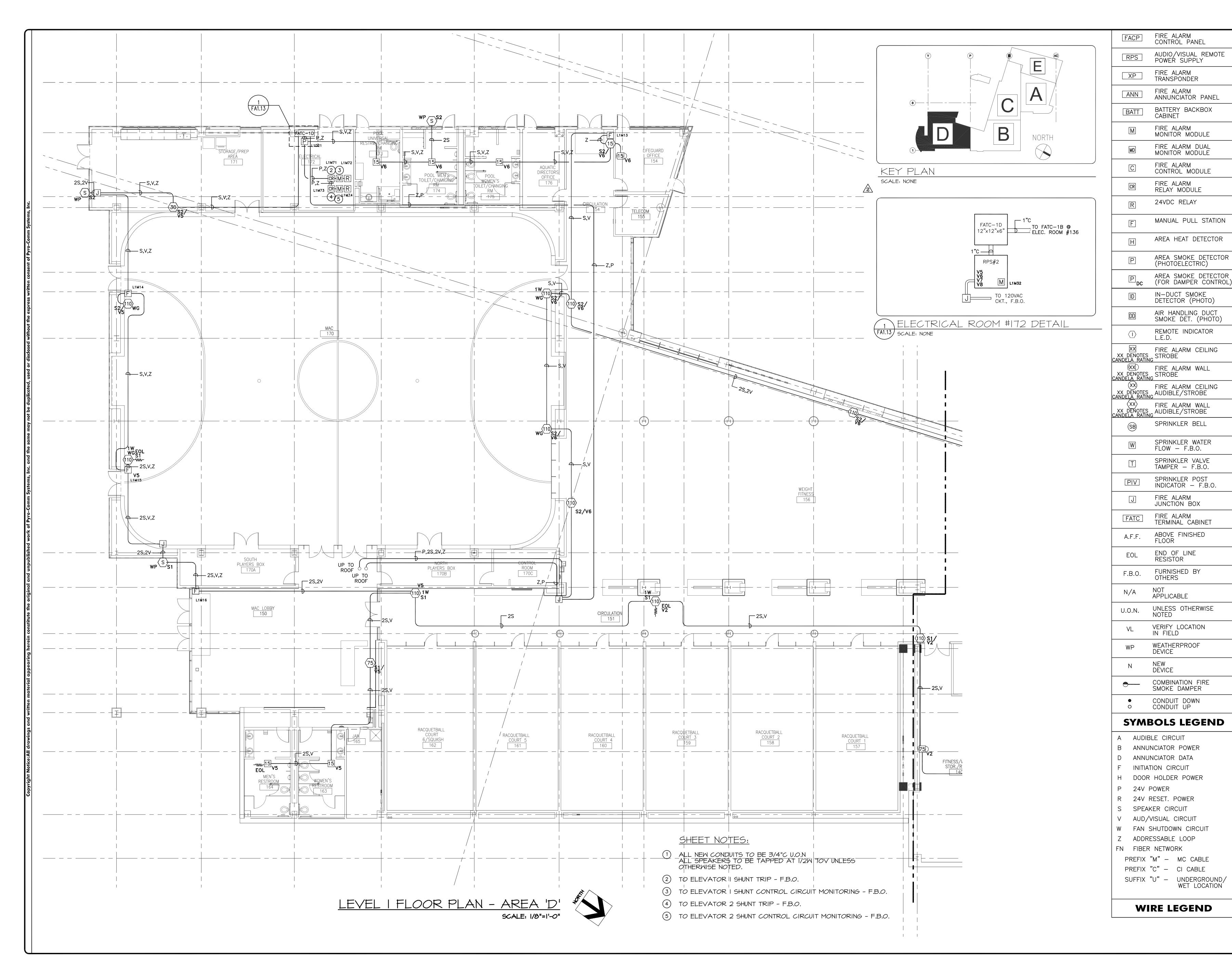
SHEET NOTES:


 ALL NEW CONDUITS TO BE 3/4"C U.O.N ALL SPEAKERS TO BE TAPPED AT 1/2W TOV UNLESS OTHERWISE NOTED.
 FOR ACTUATION OF COMBINATION SMOKE/FIRE DAMPERS.
 FOR ACTUATION OF GATE CONTROLLER DOOR SWING.
 FOR PIV AND BACKFLOW PREVENTER TAMPER SWITCHES.
 MOUNT IN SUPPLY AIR DUCT.
 TO FAN SHUTDOWN - F.B.O.
 TO PRIMARY ELEVATOR RECALL
 TO ALTERNATE ELEVATOR RECALL
 TO BATTERY SHUNT TRIP
 TO THE ELEVATOR HAT

	FACP	FIRE ALARM CONTROL PANEL
	RPS	AUDIO/VISUAL REMOTE POWER SUPPLY
	XP	FIRE ALARM TRANSPONDER
	ANN	FIRE ALARM ANNUNCIATOR PANEL
	BATT	BATTERY BACKBOX CABINET
	M	FIRE ALARM
	MD	MONITOR MODULE
		MONITOR MODULE
		CONTROL MODULE
	R	RELAY MODULE 24VDC RELAY
	 	MANUAL PULL STATION
	 [H]	AREA HEAT DETECTOR
		AREA SMOKE DETECTOR
		(PHOTOELECTRIC)
	DC	(FOR DAMPER CONTROL
		IN-DUCT SMOKE DETECTOR (PHOTO)
	DD	AIR HANDLING DUCT SMOKE DET. (PHOTO)
		REMOTE INDICATOR L.E.D.
	XX XX DENOTES CANDELA RATING	FIRE ALARM CEILING
	XX DENOTES	FIRE ALARM WALL
-	CANDELA RATINO (XX) XX DENOTES	FIRE ALARM CEILING AUDIBLE/STROBE
	CANDELA RATING	AUDIBLE/STROBE
	 W	SPRINKLER WATER
	 [T]	FLOW – F.B.O. SPRINKLER VALVE
	 	TAMPER – F.B.O. SPRINKLER POST
	J	INDICATOR – F.B.O. FIRE ALARM
	FATC	JUNCTION BOX
-	A.F.F.	ABOVE FINISHED
		FLOOR END OF LINE
	EOL	RESISTOR
	F.B.O.	FURNISHED BY OTHERS
	N/A	NOT APPLICABLE
	U.O.N.	UNLESS OTHERWISE NOTED
	VL	VERIFY LOCATION IN FIELD
	WP	WEATHERPROOF DEVICE
	N	NEW DEVICE
	•	COMBINATION FIRE SMOKE DAMPER
	•	CONDUIT DOWN CONDUIT UP
	SYME	BOLS LEGEND
	A AUDIB	LE CIRCUIT
		NCIATOR POWER NCIATOR DATA
		ION CIRCUIT HOLDER POWER
		POWER
		RESET. POWER
		/ISUAL CIRCUIT
		HUTDOWN CIRCUIT
	Z ADDRE FN FIBER	ESSABLE LOOP NETWORK
		'M" – MC CABLE
	PREFIX '	

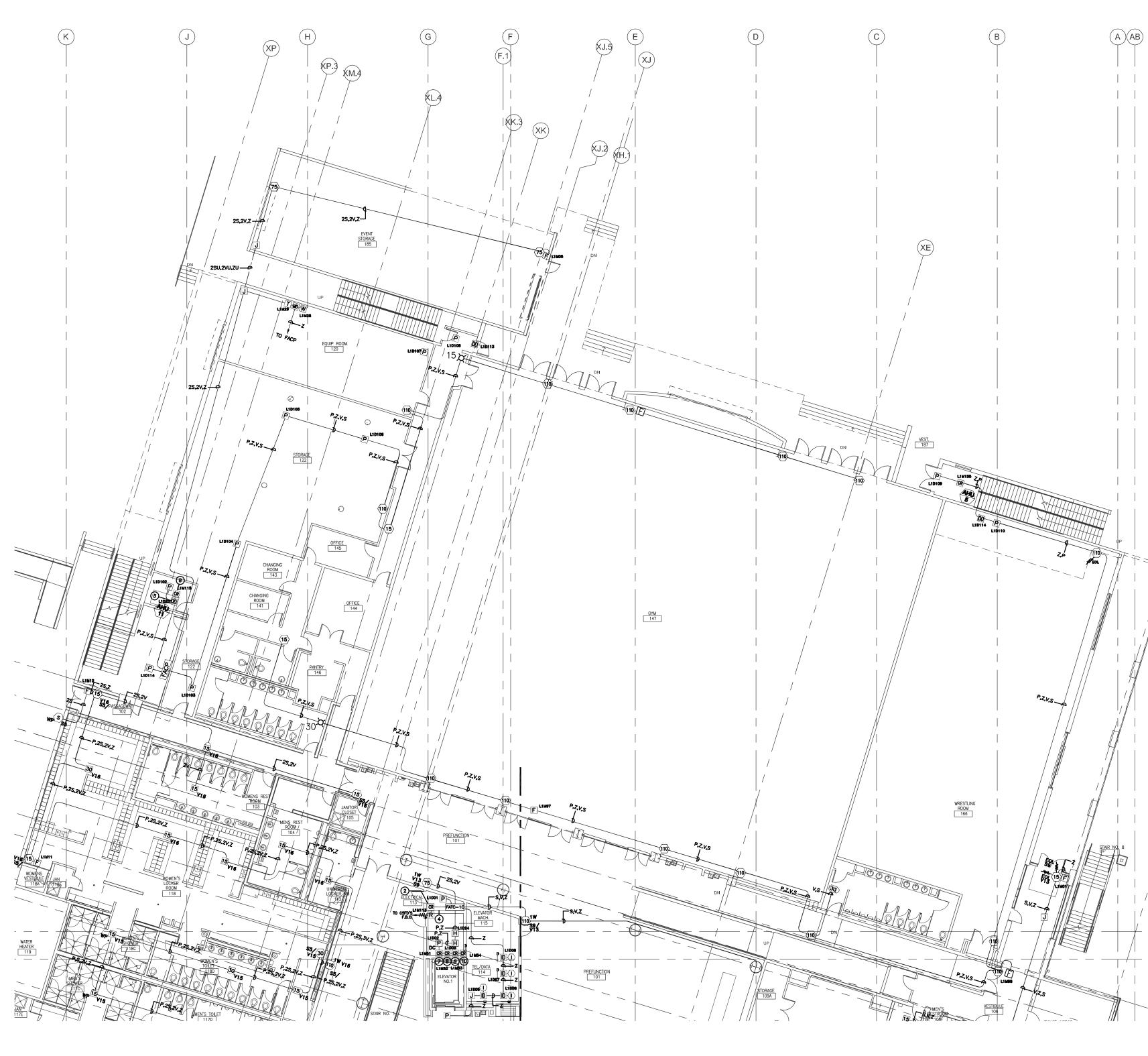
WI	RE	LEG	END

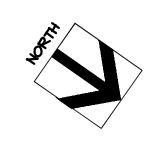
SUFFIX "U" – UNDERGROUND/ WET LOCATION


Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3231 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 F(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED DISTIBUTOR 👋 NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 J PER PC0#551 12/06/11 BK FIRE DEPT. COMMENTS 12/06/11 BKF ENGINEER REVIEW 05/10/10 MA COMMENTS ISSUED FOR 02/29/10 JA X PLAN CHECK ev Issued For Date roiect CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : 2010035 Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 1 - 'C' Drawn By : J.AREVALO 02/23/10 Cad File : File : M:\CAL POLY SLO\ RECREATION CENTER\ FA111-REC CTR-1ST-C Sheet Number FA1.11 **V** ASBUILT SET

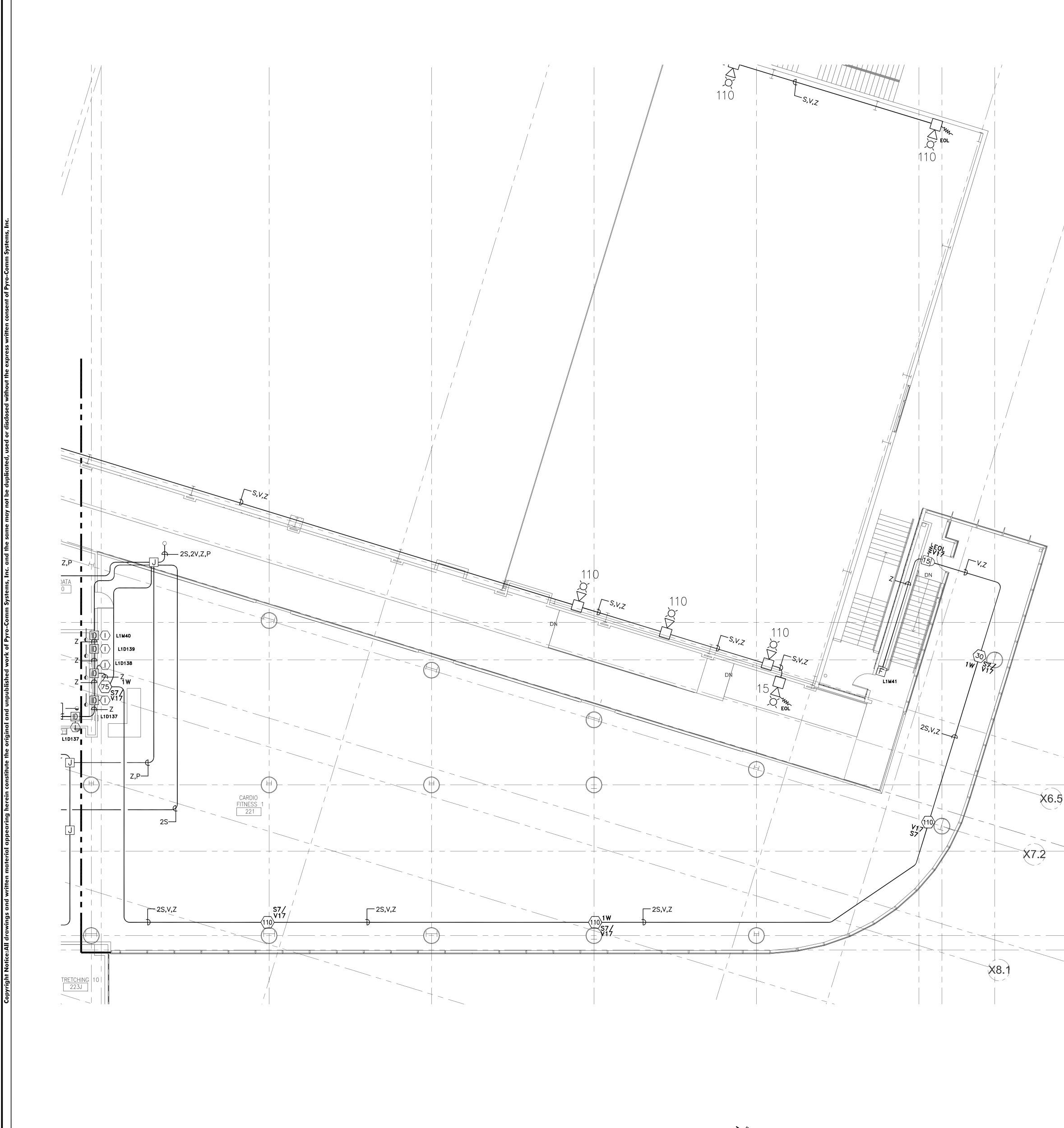
(PHOTOELECTRIC)		
Image: Supply	FACP	
XP TRANSPONDER ANN FIRE ALARM ANNUNCATOR PANEL BATT BATTERY BACKBOX CABINET M FIRE ALARM MONITOR MODULE M FIRE ALARM MONITOR MODULE C FIRE ALARM RELAY MODULE R Z4VDC RELAY F MANUAL PULL STATION H AREA SMOKE DETECTOR (PHOTOELECTRIC) P AREA SMOKE DETECTOR (PHOTOELECTRIC) M FIRE ALARM WALL XX DENOTES STROBE XX DENOTES FIRE ALARM WALL XX DENOTES AUDIBLE/STROBE XX DENOTES AUDIBLE/STROBE MONELA HAINS STROBE XX DENOTES STROBE XX DENOTES AUDIBLE/STROBE XX DENOTES AUDIBLE/STROBE XX DENOTES AUD	RPS	
ANN FIRE ALARM ANNUNCIATOR PANEL BATT BATTERY BACKBOX CABINET M FIRE ALARM MONITOR MODULE M FIRE ALARM CONTROL MODULE M FIRE ALARM CONTROL MODULE M FIRE ALARM CONTROL MODULE M FIRE ALARM CONTROL MODULE M RELAY MODULE M AREA ASMOKE DETECTOR (PHOTOELECTRIC) M AREA SMOKE DETECTOR (PHOTOELECTRIC) M N=DUCT SMOKE DETECTOR (PHOTO) ID N-DUCT SMOKE DETECTOR (PHOTOELECTRIC) M FIRE ALARM WALL XX PENDING STROBE MANDILEAS STROBE STROBE MANDAL SUBLE/STROBE STROBE MANDAL STROBE FIRE ALARM WALL XX PENDING AUDIBLE/STROBE MANDAL DALES STROBE	XP	
BATT BATTERY BACKBOX CABINET M FIRE ALARM MONITOR MODULE M FIRE ALARM MONITOR MODULE C FIRE ALARM CONTROL MODULE R FIRE ALARM RELAY MODULE R Z4VDC RELAY F MANUAL PULL STATION H AREA SMOKE DETECTOR (PHOTOELECTRC) D IN-DUCT SMOKE DETECTOR (PHOTO) D IN-DUCT SMOKE DETECTOR (PHOTO) M AREA SMOKE DETECTOR (PHOTOELECTRC) D IN-DUCT SMOKE DETECTOR (PHOTO) ID IN-DUCT SMOKE DETECTOR (PHOTO) ID AREA ARMORE DUCT SMOKE DET. (PHOTO) ID IN-DUCT SMOKE DETECTOR (PHOTO) ID REMOTE INDICATOR LE.D. XX PRINKIER ALARM CELLING XX DENOTES STROBE GANDELA RATING CANDELA RATING STROBE FIRE ALARM WALL XX DENOTES AUDIBLE/STROBE XX DENOTES AUDIBLE/STROBE GM FIRE ALARM WALL XX DENOTES AUDIBLE/STROBE GANDELA RATING VIDICATOR POST INDICATOR POST INDICATOR BOX IT SPRINKLER VALVE TAMPER - F.B.O. IT SPRINKLER VALVE TAMPER - F.B.O. INTER ALARM TERMINAL CABINET A.F.F. ABOVE FINISHED	ANN	FIRE ALARM
Image: Straight of the state of the sta	BATT	BATTERY BACKBOX
Image: Section of the section of th		FIRE ALARM
□ MONIFOR MODULE □ FIRE ALARM CONTROL MODULE □ FIRE ALARM RELAY MODULE □ IF ■ AREA Y MODULE □ IF ■ AREA HEAT DETECTOR (PHOTOELECTRC) □ AREA SMOKE DETECTOR (PHOTOELECTRC) □ IN-DUCT SMOKE DETECTOR (PHOTO) □ IN-DUCT SMOKE DETECTOR (PHOTO) □ REMOTE INDICATOR L.E.D. □ REMOTE INDICATOR L.E.D. □ REMOTE INDICATOR L.E.D. □ REMOTE INDICATOR L.E.D. □ REMOTE ALARM CELLING XMORE DETS. ○ FIRE ALARM CELLING XMORE ARTING AUDIBLE/STROBE ○ FIRE ALARM WALL XM DENOTES AUDIBLE/STROBE ○ SPRINKLER WATER FLOW - F.B.O. □ SPRINKLER WATER FLOW - F.B.O. □ SPRINKLER VALVE TAMPER - F.B.O.		
L CONTROL MODULE Image: Control Module Fire ALARM R 24VDC RELAY Image: Control Module R Image: Control Module R Image: Control Module R Image: Control Model M		
Image: Second State Sta		CONTROL MODULE
Image:	CR	RELAY MODULE
□ AREA HEAT DETECTOR □ AREA SMOKE DETECTOR □ IN-DUCT SMOKE DETECTOR (PHOTO) □ IN-DUCT SMOKE DETECTOR (PHOTO) □ IN-DUCT SMOKE DETECTOR DETECTOR (PHOTO) □ REMOTE INDICATOR L.E.D. XX DENOTES STROBE (ANDELA ARTING STROBE STROBE (ANDELA RATING STROBE STROBE <	R	24VDC RELAY
Image: Construct of the second se	F	MANUAL PULL STATION
LEJ (PHOTOELECTRIC) ID AREA SMOKE DETECTOR (FOR DAMPER CONTROL ID IN-DUCT SMOKE DETECTOR (PHOTO) ID AIR HANDLING DUCT SMOKE DET. (PHOTO) ID REMOTE INDICATOR L.E.D. IN FIRE ALARM CEILING XX DENOTES CANDELA RATING STROBE IN FIRE ALARM WALL XX DENOTES CANDELA RATING IN SPRINKLER WATER FLOW - F.B.O. ID SPRINKLER VALVE TAMPER - F.B.O. ID SPRINKLER POST INDICATOR - F.B.O. ID FIRE ALARM JUNCTION BOX IFATC FIRE ALARM TERMINAL CABINET A.F.F. ABOVE FINISHED FLOOR EOL END OF LINE RESISTOR F.B.O. FURNISHED BY OTHERS N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE OOND	Η	AREA HEAT DETECTOR
Image: Line definition Image: Line definition Image: Line definition Image: Line definition Image: Line definition AIR HANDLING DUCT Image: Line definition AIR HANDLING DUCT Image: Line definition Remotes Image: Line definition SMOKE DET. (PHOTO) Image: Line definition Remotes Image: Line definition STROBE	P	AREA SMOKE DETECTOR (PHOTOELECTRIC)
Image: Straight of the straigh	P	AREA SMOKE DETECTOR
Image: Construct of the second se		IN-DUCT SMOKE
□ REMORE DEL. (FROID) □ REMOTE INDICATOR L.E.D. XX DENOTES STROBE XXDENOTES CANDELA RATING XX DENOTES AUDIBLE/STROBE XXDENOTES CANDELA RATING XX DENOTES AUDIBLE/STROBE XX DENOTES AUDIA RATING XX DENOTES AUDIBLE/STROBE XX DENOTES AUDIA RATING XX DENOTES AUDIBLE/STROBE XXDENOTES CANDELA RATING XX DENOTES AUDIA RATING XX DENOTES AUDIAL RATING XX DENOTES AUDIALE/STROBE XXDENOTES CANDELA RATING XX DENOTES AUDIALE/STROBE XXDENOTES CANDELA RATING XX DENOTES AUDIALE/STROBE XXDENOTES CANDELA RATING XXDENOTES AUDIALE/STROBE XXDENOTES CANDELA RATING XXDENOTES AUDIALE/STROBE XXDENOTES CANDELA RATING XXDENOTES XXDENO		AIR HANDLING DUCT
Image: Construct of the second structure of the		
XX DENOTES STROBE IXX DENOTES STROBE IXX DENOTES STROBE XX DENOTES STROBE XX DENOTES AUDIBLE/STROBE CANDELA RATING XX DENOTES SPRINKLER WATER FLOW - F.B.O. IT TAMPER - F.B.O. INDICATOR - F.B.O. INTER ALARM JUNCTION BOX EATC FIRE ALARM FLOW - F.B.O. INDICATOR - F.B.O. INTER A.F.F. ABOVE FINISHED FLOOR FIRE ALARM TERENTON FIRE ALARM TERESTOR F.B.O. VL <th></th> <th></th>		
XX DENOTES STROBE (XX DENOTES STROBE) (XX DENOTES AUDIBLE/STROBE (XX DENOTES AUDIGLE/STROBE (X) SPRINKLER WATER FIE ALARM (X) SPRINKLER POST (X) SPRINKLER (X) SPRINKLER POST (X) SPRINKLER (X) SPRINKLER POST (X) SPRINKLER (X) S	XX DENOTES	STROBE
XX DENOTES AUDIBLE/STROBE XX DENOTES AUDIBLE/STROBE XX DENOTES AUDIBLE/STROBE SB SPRINKLER BELL W SPRINKLER WATER FLOW - F.B.O. I SPRINKLER VALVE TAMPER - F.B.O. I SPRINKLER POST INDICATOR - F.B.O. FIRE ALARM JUNCTION BOX FATC FIRE ALARM JUNCTION BOX FATC FIRE ALARM TERMINAL CABINET A.F.F. ABOVE FINISHED FLOOR EOL END OF LINE RESISTOR F.B.O. F.B.O. FURNISHED BY OTHERS OTHERS N/A NOT APPLICABLE U.O.N. U.O.N. UNLESS OTHERWISE VL VERIFY LOCATION IN FIELD WP WP WEATHERPROOF DEVICE COMBINATION FIRE SMOKE DAMPER • CONDUIT DOWN • OCONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANN	XX DENOTES CANDELA RATING	STROBE
XX DENOTES AUDIBLE/STROBE CANDELA RATING AUDIBLE/STROBE SPRINKLER BELL SPRINKLER BELL Image: Sprinkler valve FLOW - F.B.O. Image: Sprinkler valve TAMPER - F.B.O. Image: Sprinkler valve Sprinkler valve Image: Sprinkler valve TAMPER - F.B.O. Image: Sprinkler valve Sprinkler valve Image: Sprinkler valve </th <th></th> <th>FIRE ALARM CEILING AUDIBLE/STROBE</th>		FIRE ALARM CEILING AUDIBLE/STROBE
SP SPRINKLER BELL Image: SPRINKLER WATER FLOW - F.B.O. Image: SPRINKLER VALVE TAMPER - F.B.O. Image: SPRINKLER POST INDICATOR BOX Image: SPRINKLER POST INDICATOR BOX Image: SPRINKLER POST INDICATOR POTON BOX Image: SPRINKLER POST INDICATOR INTICATOR Image: SPRINKLER POST INDICATION FURES Image: SPRINKLER POST INDICATION IN FIELD Image: SPRINK PRESE Image: SMOKE DAMPER		FIRE ALARM WALL AUDIBLE/STROBE
Image: Weight of the system of the syste	\square	
□ TAMPER - F.B.O. □ FIRE ALARM JUNCTION BOX □ FIRE ALARM JUNCTION BOX □ FIRE ALARM TERMINAL CABINET A.F.F. ABOVE FINISHED FLOOR EOL END OF LINE RESISTOR F.B.O. FURNISHED BY OTHERS N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE • CONDUIT DOWN OCNDUIT DOWN O CONDUIT DOWN • CONDUIT DOWN O CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT W FIBER NETWORK PREFIX "M" - MC CABLE PREFIX "C" - CI CABLE SUFFIX "U" - UNDERGROUND/	W	
PIV SPRINKLER POST INDICATOR - F.B.O. J FIRE ALARM JUNCTION BOX FATC FIRE ALARM TERMINAL CABINET A.F.F. ABOVE FINISHED FLOOR EOL END OF LINE RESISTOR F.B.O. FURNISHED BY OTHERS N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE N NEW DEVICE OCNDUIT DOWN O CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER A AUDIBLE CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER P 24V RESET. POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT V AUD/VISUAL CIRCUIT V AUDESSABLE LOOP FN< FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "U" – UNDERGROUND/	 	SPRINKLER VALVE
Imbication = F.B.O. Imbication = F.B.O. Imbication = F.B.O. FATC FIRE ALARM TERMINAL CABINET A.F.F. ABOVE FINISHED FLOOR EOL END OF LINE RESISTOR F.B.O. FURNISHED BY OTHERS N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE M NEW DEVICE CONDUIT DOWN o CONDUIT DOWN cONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT V AUD/VISUAL CIRCUIT V AUD/VISUAL CIRCUIT K PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/	PIV	SPRINKLER POST
FATC FIRE ALARM TERMINAL CABINET A.F.F. ABOVE FINISHED EOL END OF LINE RESISTOR F.B.O. FURNISHED BY OTHERS N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE N NEW DEVICE OCONDUIT DOWN O CONDUIT DOWN O CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR DATA F INITIATION CIRCUIT H DOR HOLDER POWER P 24V POWER R 24V RESET. POWER P 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT V AUD/VISUAL CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "M" – MC CABLE PREFIX "U" – UNDERGROUND/		FIRE ALARM
A.F.F. ABOVE FINISHED EOL END OF LINE RESISTOR F.B.O. F.B.O. FURNISHED BY N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE OCMBINATION FIRE SMOKE DAMPER OCONDUIT DOWN OCONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANUNCIATOR POWER D ANUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "M" – CI CABLE SUFFIX "U" – UNDERGROUND/		
FLOOR EOL END OF LINE RESISTOR F.B.O. FURNISHED BY OTHERS N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE N NEW DEVICE O COMBINATION FIRE SMOKE DAMPER • CONDUIT DOWN ONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B A AUDIBLE CIRCUIT CONDUCIATOR DATA F F INITIATION CIRCUIT H DOOR HOLDER POWER R 24V POWER S R 24V RESET. POWER S S SPEAKER CIRCUIT V V AUD/VISUAL CIRCUIT V V AUD/VISUAL CIRCUIT V V FIBER NETWORK <		
LOL RESISTOR F.B.O. FURNISHED BY OTHERS N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE N NEW DEVICE O COMBINATION FIRE SMOKE DAMPER • CONDUIT DOWN o CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F F INITIATION CIRCUIT H H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "U" – UNDERGROUND/	A.F.F.	FLOOR
N/A NOT APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE N NEW DEVICE O COMBINATION FIRE SMOKE DAMPER O CONDUIT DOWN OCONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B A AUDIBLE CIRCUIT B A AUDIBLE CIRCUIT H D ANNUNCIATOR POWER D P 24V POWER R P 24V RESET. POWER R P 24V RESET. POWER S S SPEAKER CIRCUIT V W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/	EOL	
INTA APPLICABLE U.O.N. UNLESS OTHERWISE NOTED VL VL VERIFY LOCATION IN FIELD WP WP WEATHERPROOF DEVICE OCOMBINATION FIRE SMOKE DAMPER CONDUIT DOWN OCONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "U" – UNDERGROUND/	F.B.O.	
VL VERIFY LOCATION IN FIELD WP WEATHERPROOF DEVICE N NEW DEVICE • COMBINATION FIRE SMOKE DAMPER • CONDUIT DOWN ONDUIT UP • CONDUIT DOWN ONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/		
IN FIELD WP WEATHERPROOF DEVICE N NEW DEVICE COMBINATION FIRE SMOKE DAMPER CONDUIT DOWN O CONDUIT DOWN O CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/		
WF DEVICE N NEW DEVICE COMBINATION FIRE SMOKE DAMPER CONDUIT DOWN O CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/		
N NEW DEVICE COMBINATION FIRE SMOKE DAMPER CONDUIT DOWN CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/		
 COMBINATION FIRE SMOKE DAMPER CONDUIT DOWN CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER P 24V POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT V AUD/VISUAL CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/ 	N	NEW
 CONDUIT DOWN O CONDUIT UP SYMBOLS LEGEND A AUDIBLE CIRCUIT ANNUNCIATOR POWER ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/ 		COMBINATION FIRE
SYMBOLS LEGEND A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/	•	
A AUDIBLE CIRCUIT B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT V AUD/VISUAL CIRCUIT W FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/		
 B ANNUNCIATOR POWER D ANNUNCIATOR DATA F INITIATION CIRCUIT H DOOR HOLDER POWER P 24V POWER R 24V RESET. POWER S SPEAKER CIRCUIT V AUD/VISUAL CIRCUIT V FAN SHUTDOWN CIRCUIT Z ADDRESSABLE LOOP FN FIBER NETWORK PREFIX "M" – MC CABLE PREFIX "C" – CI CABLE SUFFIX "U" – UNDERGROUND/ 		
	B ANNUN D ANNUN F INITIATI H DOOR P 24V P R 24V R S SPEAK V AUD/V W FAN S Z ADDRE FN FIBER PREFIX "	ICIATOR POWER ICIATOR DATA ON CIRCUIT HOLDER POWER OWER ESET. POWER ESET. POWER ER CIRCUIT ISUAL CIRCUIT HUTDOWN CIRCUIT SSABLE LOOP NETWORK M" - MC CABLE
		U" – UNDERGROUND/

WIRE LEGEND

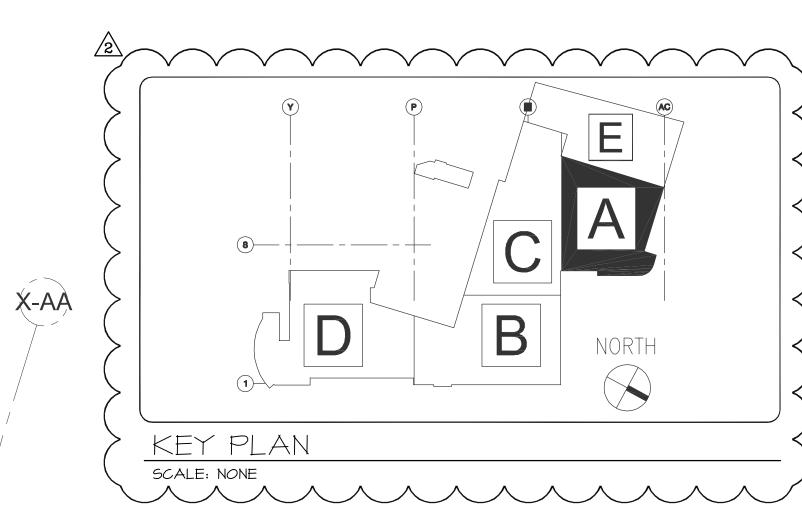

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3232 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED DISTIBUTOR NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale 3/7/12 X AS BUILTS PER PC0#551 12/06/11 BK FIRE DEPT. 12/06/11 BKF COMMENTS ENGINEER REVIEW 05/10/10 MA COMMENTS ISSUED FOR 02/29/10 JA X PLAN CHECK Rev Issued For Date roiect CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 1 - 'B' Drawn By : **J.AREVALO 02/23/10** Cad File : <u>M:\CAL POLY SLO\</u> RECREATION CENTER\ FA1.12-REC CTR-1ST-B 0 Sheet Number : FA1.12 ASBUILT SET


Cal Poly SLO Rec. Center_2010035\FA1.13_Cal Poly SLO Recreation Ctr_Lvl 1D.dwg, 3/28/2012 9.28:05 AM

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3232 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 F(714)902-8000 F(714)902-800² SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste G Carlsbad, CA 92008 T(760)930-6014 F(760)930-601 NOTIFIER by Honeywell FACTORY AUTHORIZED NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale 3/7/12 X AS BUILTS A PER PC0#551 12/06/11 BKF FIRE DEPT. COMMENTS 12/06/11 BKR " 05/10/10 MA ISSUED FOR 02/29/10 JA X PLAN CHECK Rev Issued For Date Project CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 1 - D Drawn By : JAREVALO 02/23/10 Cad File : M:\CAL POLY SLO\ RECREATION CENTER\ FA1.13-REC CTR-1ST-D Sheet Number : FA1.13 ASBUILT SET



<u>LEVEL I FLOOR PLAN – AREA 'E'</u> scale: 1/16"=1'-0"



	FACP	FIRE ALARM CONTROL PANEL
	RPS	AUDIO/VISUAL REMOTE POWER SUPPLY
	XP	FIRE ALARM TRANSPONDER
	ANN	FIRE ALARM ANNUNCIATOR PANEL
B) (AC)	BATT	BATTERY BACKBOX CABINET
	Μ	FIRE ALARM MONITOR MODULE
	MD	FIRE ALARM DUAL MONITOR MODULE
	С	FIRE ALARM CONTROL MODULE
	CR	FIRE ALARM RELAY MODULE
	R	24VDC RELAY
	F	MANUAL PULL STATION
	Η	AREA HEAT DETECTOR
	Ρ	AREA SMOKE DETECTOR (PHOTOELECTRIC)
	PDC	AREA SMOKE DETECTOR (FOR DAMPER CONTROL)
	ID	IN-DUCT SMOKE DETECTOR (PHOTO)
	DD	AIR HANDLING DUCT SMOKE DET. (PHOTO)
	$\langle 1 \rangle$	REMOTE INDICATOR L.E.D.
	XX XX DENOTES CANDELA RATING	FIRE ALARM CEILING STROBE
	XX DENOTES CANDELA RATING	FIRE ALARM WALL
	(XX)	FIRE ALARM CEILING AUDIBLE/STROBE
	XX XX XX DENOTES CANDELA RATING	FIRE ALARM WALL
	SB	SPRINKLER BELL
	W	SPRINKLER WATER FLOW – F.B.O.
	T	SPRINKLER VALVE TAMPER – F.B.O.
	PIV	SPRINKLER POST INDICATOR – F.B.O.
	J	FIRE ALARM JUNCTION BOX
/1 /	FATC	FIRE ALARM TERMINAL CABINET
	A.F.F.	ABOVE FINISHED FLOOR
	EOL	END OF LINE RESISTOR
	F.B.O.	FURNISHED BY OTHERS
$ (7.5)$		NOT APPLICABLE
		UNLESS OTHERWISE NOTED
		VERIFY LOCATION IN FIELD
		WEATHERPROOF DEVICE
		NEW DEVICE
		COMBINATION FIRE SMOKE DAMPER
		CONDUIT DOWN CONDUIT UP
	SYMB	OLS LEGEND
	B ANNUN D ANNUN F INITIATI H DOOR P 24V P R 24V R S SPEAK V AUD/V	ESET. POWER ER CIRCUIT ISUAL CIRCUIT
B NORTH	Z ADDRE FN FIBER PREFIX " PREFIX " SUFFIX "	M" – MC CABLE C" – CI CABLE U" – UNDERGROUND/ WET LOCATION
KEY PLAN	WI	RE LEGEND
SCALE: NONE		

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3231 C-10 #612153 <u>CORPORATE OFFICE</u> 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 JC A PER PC0#551 12/06/11 BKR 12/06/11 BKF ENGINEER REVIEW 05/10/10 MAL \bigwedge issued for plan check 02/29/10 JA lev Issued For Date CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 1 - E Drawn By : J.AREVALO 02/23/10 Cad File : C) M:\CAL POLY SLO RECREATION CENTER FA114-REC CTR-1ST-E Sheet Number FA1.14 | N V I ASBUILT SET

<u>SHEET NOTES:</u>

 \sim 8

~ ~

 \sim

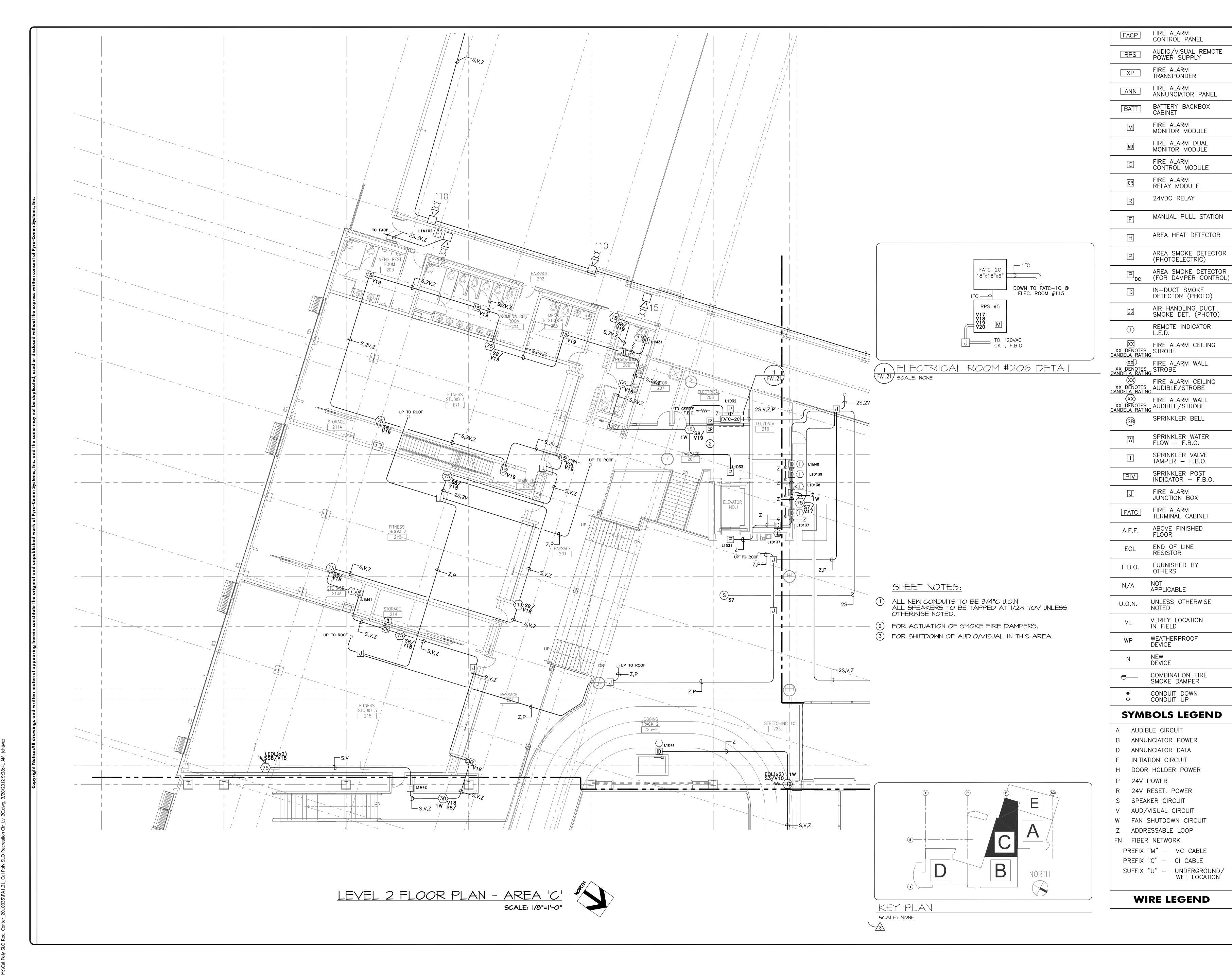
(7.5)

 \sim \sim

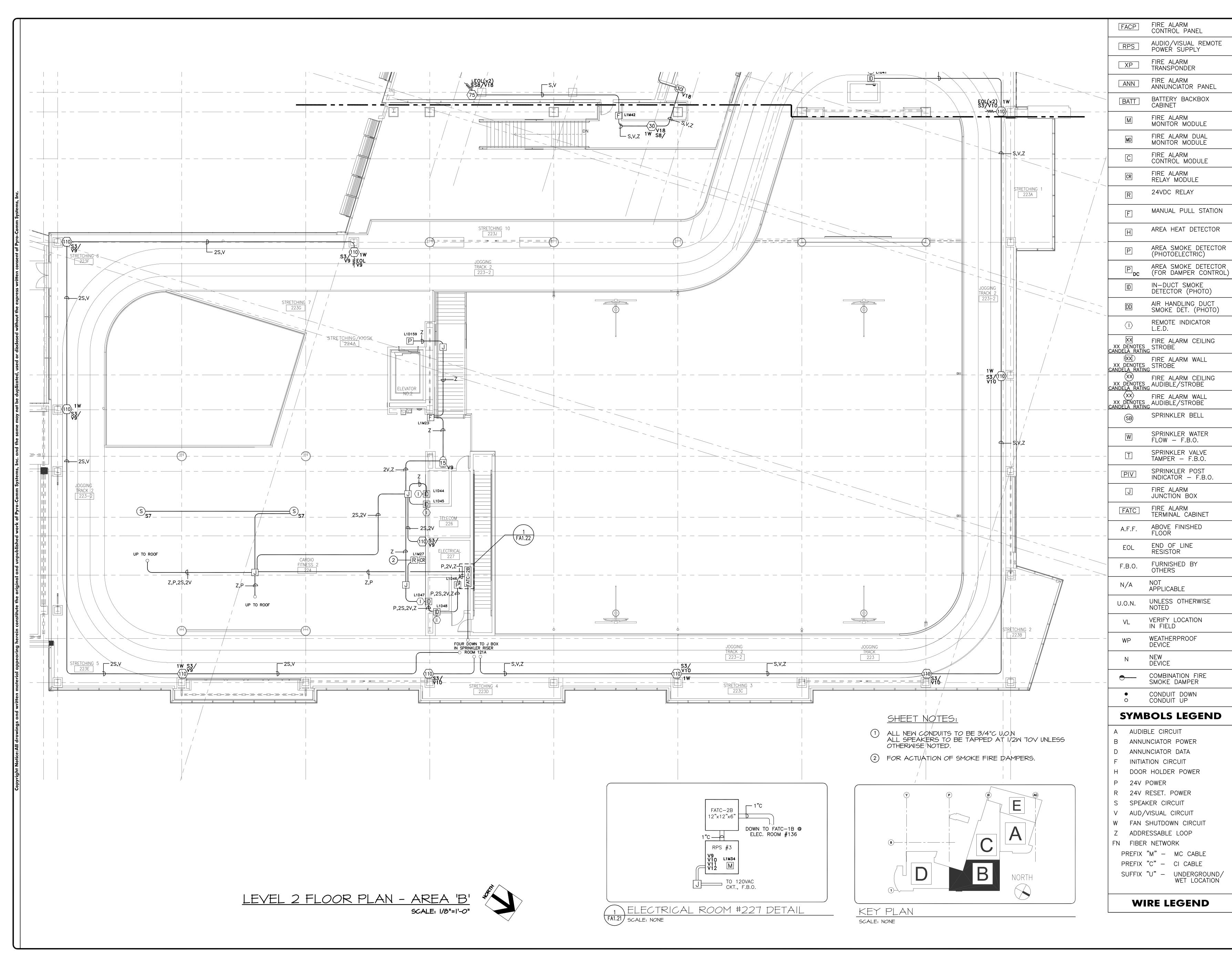
XOP

 \leq

(5.9)

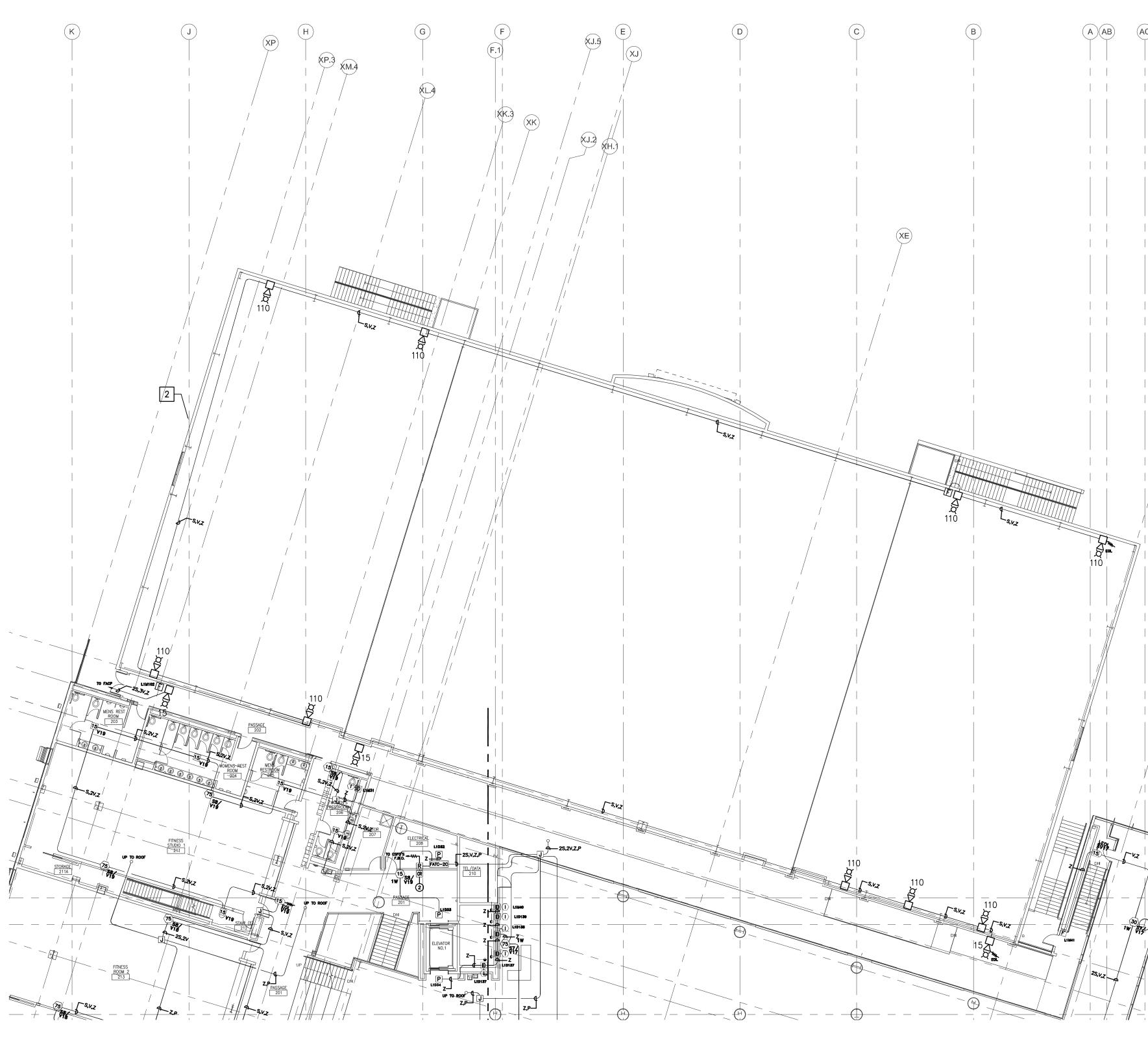

(X8)

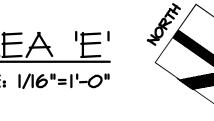
1 ALL NEW CONDUITS TO BE 3/4"C U.O.N ALL SPEAKERS TO BE TAPPED AT 1/2W 70V UNLESS OTHERWISE NOTED.


	FACP	FIRE ALARM CONTROL PANEL
	RPS	AUDIO/VISUAL REMOTE POWER SUPPLY
	XP	FIRE ALARM TRANSPONDER
\langle	ANN	FIRE ALARM ANNUNCIATOR PANEL
\langle	BATT	BATTERY BACKBOX CABINET
\langle	M	FIRE ALARM MONITOR MODULE
\langle	MD	FIRE ALARM DUAL MONITOR MODULE
\langle	 [C]	FIRE ALARM
\leq		FIRE ALARM
\leq	R	24VDC RELAY
\mathbf{i}		MANUAL PULL STATION
<i>r</i>		AREA HEAT DETECTOR
		AREA SMOKE DETECTOR
	P	(PHOTOELECTRIC)
	PDC	AREA SMOKE DETECTOR (FOR DAMPER CONTROL)
		IN-DUCT SMOKE DETECTOR (PHOTO)
	DD	AIR HANDLING DUCT SMOKE DET. (PHOTO)
		REMOTE INDICATOR L.E.D.
	XX XX DENOTES CANDELA RATING	FIRE ALARM CEILING STROBE
	XX XX DENOTES CANDELA RATING	FIRE ALARM WALL STROBE
	XX XX XX DENOTES CANDELA RATING	FIRE ALARM CEILING AUDIBLE/STROBE
		FIRE ALARM WALL
	CANDELA RATING	SPRINKLER BELL
	W	SPRINKLER WATER
	 	SPRINKLER VALVE TAMPER – F.B.O.
	PIV	SPRINKLER POST INDICATOR – F.B.O.
	J	FIRE ALARM
	FATC	FIRE ALARM
	A.F.F.	ABOVE FINISHED
	EOL	FLOOR END OF LINE
	F.B.O.	RESISTOR FURNISHED BY
		OTHERS NOT
	,	APPLICABLE UNLESS OTHERWISE
	0.0.11.	VERIFY LOCATION
		N FIELD
	VV F	
		NEW DEVICE
		COMBINATION FIRE SMOKE DAMPER
		CONDUIT DOWN CONDUIT UP
	SYMB	OLS LEGEND
	B ANNUN D ANNUN F INITIATI H DOOR P 24V P R 24V R S SPEAK V AUD/V W FAN S Z ADDRE	ESET. POWER ER CIRCUIT ISUAL CIRCUIT HUTDOWN CIRCUIT SSABLE LOOP NETWORK M" – MC CABLE
		J" – UNDERGROUND/ WET LOCATION

WIRE LEGEND

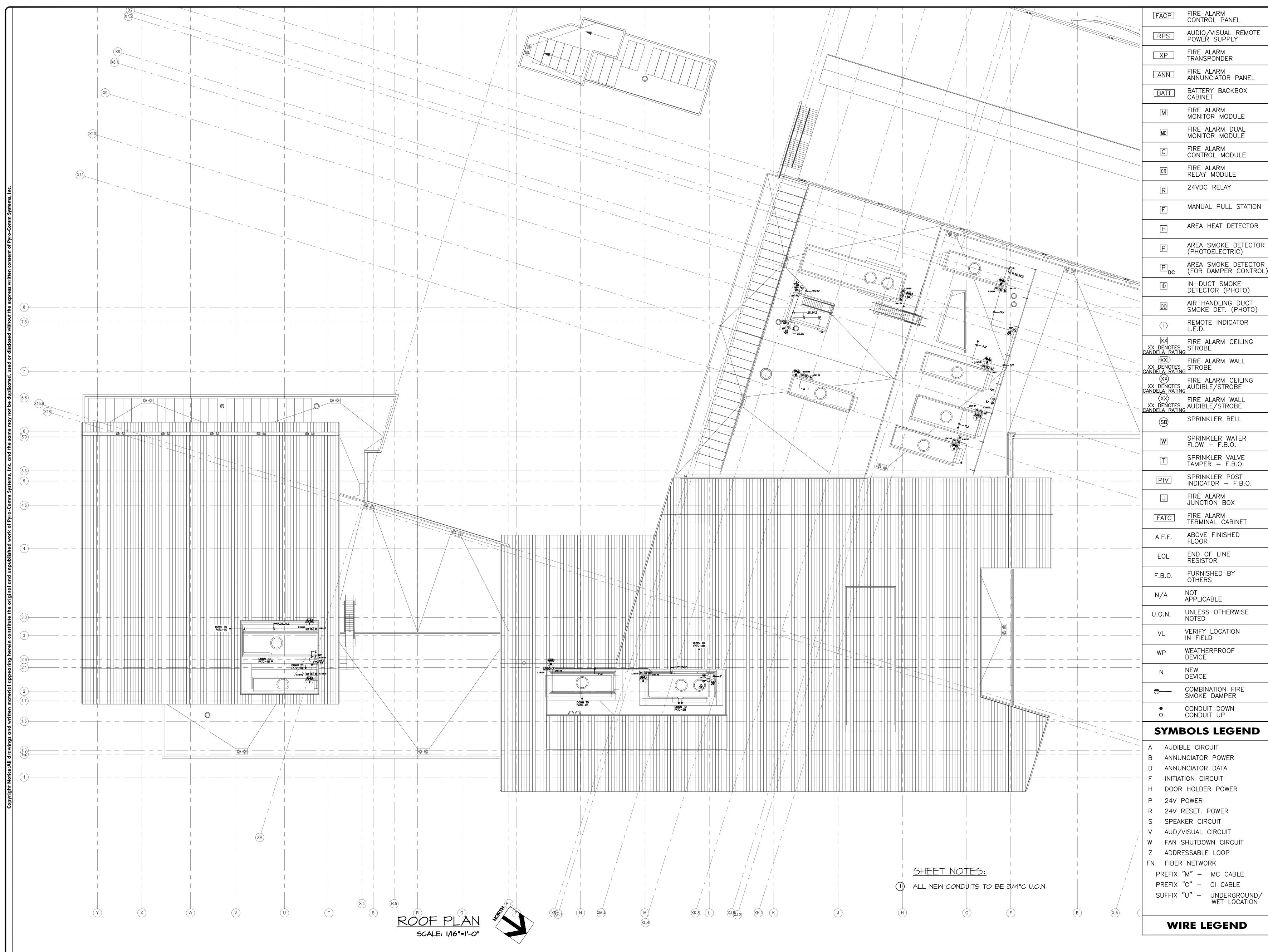
Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3231 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED DISTIBUTOR 👋 NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 J 12/06/11 BKF 12/06/11 BKF COMMENTS C5/10/10 MAL ISSUED FOR 02/29/10 JA Rev Issued For Date oiect CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : 2010035 Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 2 - A Drawn By : J.AREVALO 02/23/10 Cad File : M:\CAL POLY SLO\ RECREATION CENTER\ FA120-REC CTR-2ND-A Sheet Number : FA1.20 ASBUILT SET

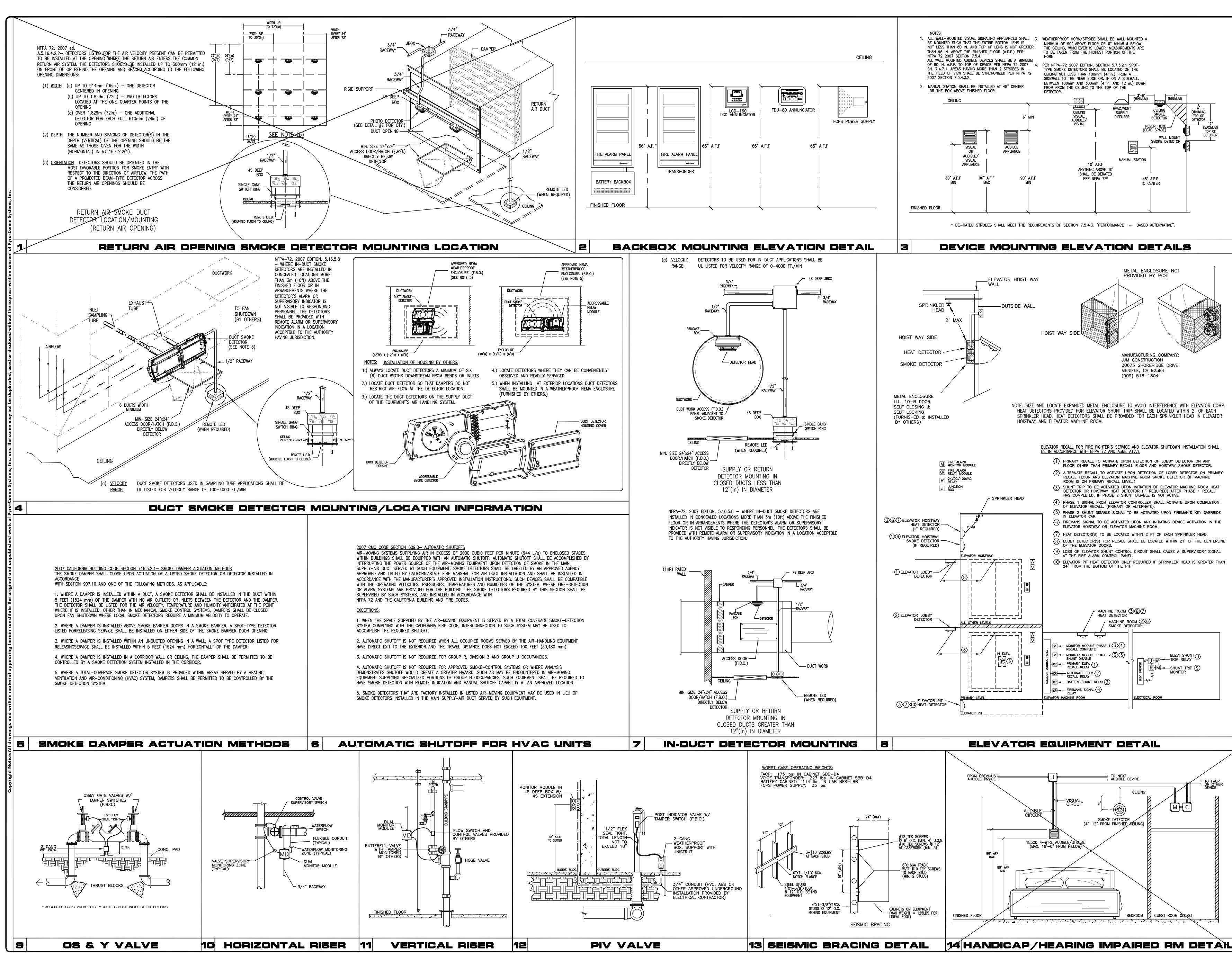



Pyro-Comm ||Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 323 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 F(714)902-8000 F(714)902-800² SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 J A PER PC0#551 12/06/11 BKR S FIRE DEPT. 12/06/11 BKR COMMENTS COMMENTS C5/10/10 MAL ISSUED FOR 02/29/10 JA X PLAN CHECK Rev Issued For Date Project CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 2 - 'C' Drawn By : **J.AREVALO 02/23/10** Cad File : <u>M:\CAL POLY SLO\</u> RECREATION CENTER\ FA1.21-REC CTR-2ND-C 0 Sheet Number : FA1.21 AS| ASBUILT SET

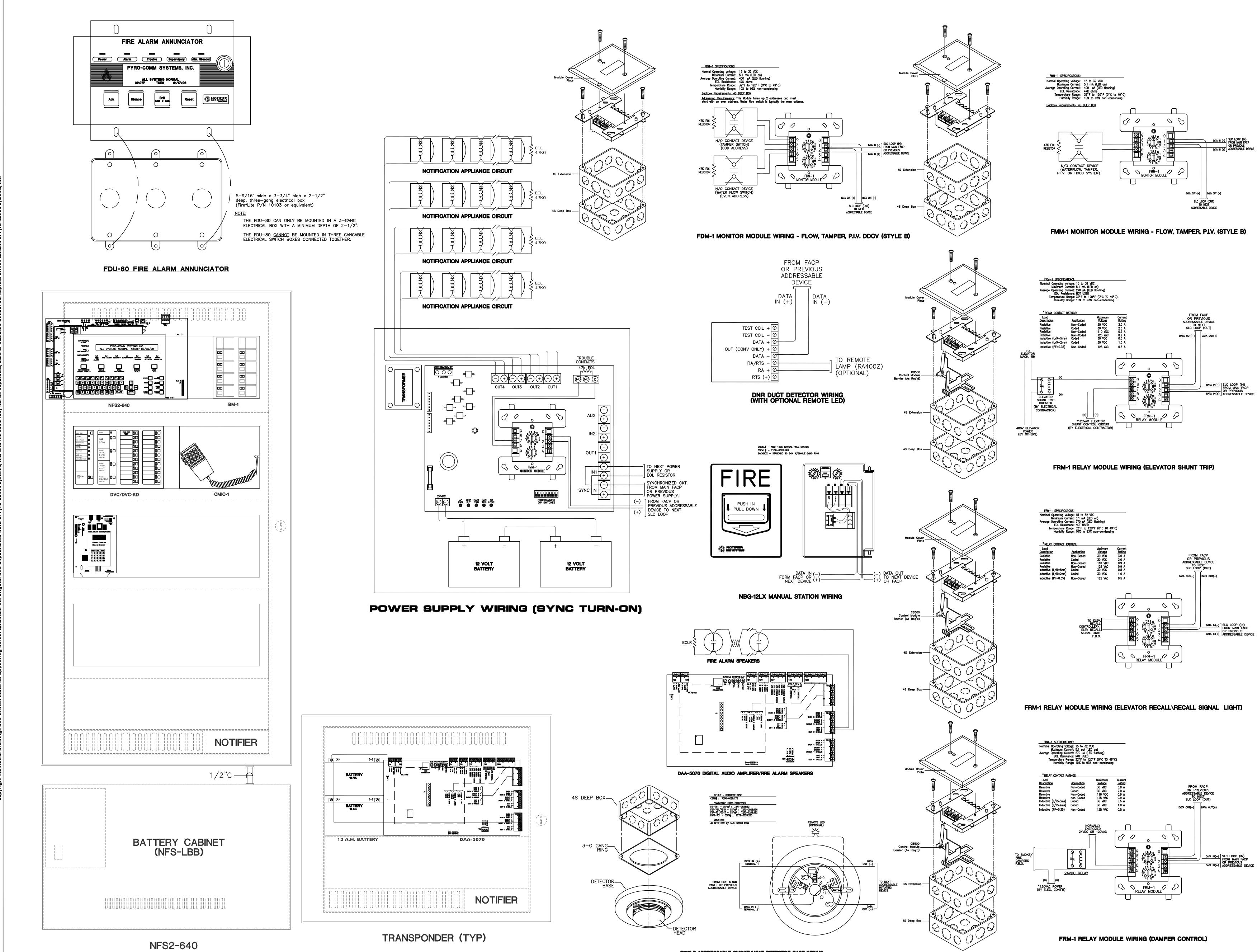
M:\Cal Poly SLO Rec. Center_2010035\FA1.22_Cal Poly SLO Recreation Ctr_Lvl 2B.dwg, 3/28/2012 9:28.

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3232 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 J A PER PC0#551 12/06/11 BKF FIRE DEPT. COMMENTS 12/06/11 BKR " 05/10/10 MAL ISSUED FOR 02/29/10 JA X PLAN CHECK Rev Issued For Date Project CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 2 - 'B' Drawn By : JAREVALO O2/23/10 Cad File : M:CAL POLY SLO RECREATION CENTER FA122-REC CTR-2ND-B Sheet Number : FA1.22 ASBUILT SET




LEVEL 2 FLOOR PLAN - AREA 'E' scale: 1/16"=1'-0"

	FACP	FIRE ALARM CONTROL PANEL
	RPS	AUDIO/VISUAL REMOTE POWER SUPPLY
	XP	FIRE ALARM TRANSPONDER
	ANN	FIRE ALARM ANNUNCIATOR PANEL
AC	BATT	BATTERY BACKBOX CABINET
	M	FIRE ALARM MONITOR MODULE
	MD	FIRE ALARM DUAL MONITOR MODULE
	C	FIRE ALARM CONTROL MODULE
	CR	FIRE ALARM RELAY MODULE
	R	24VDC RELAY
	F	MANUAL PULL STATION
		AREA HEAT DETECTOR
X-A	P	AREA SMOKE DETECTOR (PHOTOELECTRIC)
	P _{DC}	AREA SMOKE DETECTOR (FOR DAMPER CONTROL)
		IN-DUCT SMOKE DETECTOR (PHOTO)
	DD	AIR HANDLING DUCT SMOKE DET. (PHOTO)
		REMOTE INDICATOR L.E.D.
	XX XX DENOTES	FIRE ALARM CEILING
	XX DENOTES CANDELA RATINO HXX XX DENOTES	FIRE ALARM WALL
	XX DENOTES CANDELA RATING XX XX DENOTES	FIRE ALARM CEILING
	$\langle xx \rangle$	FIRE ALARM WALL
	XX DENOTES CANDELA RATINO	SPRINKLER BELL
	W	SPRINKLER WATER FLOW – F.B.O.
		SPRINKLER VALVE TAMPER – F.B.O.
	PIV	SPRINKLER POST INDICATOR – F.B.O.
/ /1	J	FIRE ALARM JUNCTION BOX
	FATC	FIRE ALARM TERMINAL CABINET
z	A.F.F.	ABOVE FINISHED FLOOR
	EOL	END OF LINE RESISTOR
7.5	F.B.O.	FURNISHED BY OTHERS
		NOT APPLICABLE
X6		UNLESS OTHERWISE NOTED
		VERIFY LOCATION IN FIELD
		WEATHERPROOF DEVICE
	N	NEW DEVICE
		COMBINATION FIRE SMOKE DAMPER
		CONDUIT DOWN CONDUIT UP
	SYME	BOLS LEGEND
		LE CIRCUIT NCIATOR POWER
		NCIATOR DATA ION CIRCUIT
		HOLDER POWER
	R 24V R	RESET. POWER
	V AUD/V	ER CIRCUIT /ISUAL CIRCUIT
		SHUTDOWN CIRCUIT SSABLE LOOP
	FN FIBER	NETWORK 'M" – MC CABLE
		'C" – CI CABLE 'U" – UNDERGROUND/ WET LOCATION
		WET LOCATION
KEY PLAN	WI	RE LEGEND
SCALE: NONE		


Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation C-10 #612153 ACO 3231 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED 👋 NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 JC PER PCO#551 12/06/11 BKR FIRE DEPT. COMMENTS 12/06/11 BKR COMMENTS 05/10/10 MAL X ISSUED FOR 02/29/10 JA Rev Issued For Date CAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM FLOOR PLAN LEVEL 2 - E Drawn By : J.AREVALO 02/23/10 **|** Ц Cad File : l 0 M:\CAL POLY SLO\ RECREATION CENTER\ FA120-REC CTR-2ND-E Sheet Number FA1.23 l () ASBUILT SET

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3232 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 T(714)902-8000 F(714)902-8001 SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 JC PER PC0#551 12/06/11 BKR 12/06/11 BKR ENGINEER REVIEW 05/10/10 MAL ISSUED FOR X PLAN CHECK 02/29/10 JA Rev Issued For Date Project <u>CAL POLY</u> CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM FLOOR PLAN ROOF LEVEL Drawn By : J.AREVALO 02/23/10 Cad File : M:\CAL POLY SLO\ RECREATION CENTER\ FA130-REC CTR-ROOF Sheet Number : FA1.30 AS S ASBUILT SET

Pyro-Comn Systems, Inc Fire, Life Safety and Security System Design and Installation ACO 323 -10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 F(714)902-8000 F(714)902-800 SAN DIEGO REGIONAL OFFICI 5115 Avenida Encinas Ste G Carlsbad, CA 92008 F(760)930-6014 F(760)930-601 **ANOTIFIER** by Honeywell FACTORY AUTHORIZED NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 • Approvals NOTE: lf this scale is not 1", this sheet is Not To Scale 3/7/12 X AS BUILTS PER 12/06/11 BK **)** PC0#551 FIRE DEPT 12/06/11 BKF ENGINEER REVIEW 05/10/10 MA COMMENTS ISSUED FOR 02/29/10 JA A PLAN CHECK lev Issued For Date Project JAL POLY CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : **2010035** Sheet Title : FIRE ALARM MOUNTING DETAILS Drawn By J.AREVALO 02/23/10 ad File M:\CAL POLY SLO\ RECREATION CENTER\ FA2.01-REC CTR-MTG Sheet Number **FA2.01 ASBUILT SET**

Pyro-Comm Systems, Inc. Fire, Life Safety and Security System Design and Installation ACO 3232 C-10 #612153 CORPORATE OFFICE 15531 Container Lane Huntington Beach, CA 92649 F(714)902-8000 F(714)902-800² SAN DIEGO REGIONAL OFFICE 5115 Avenida Encinas Ste.G Carlsbad, CA 92008 T(760)930-6014 F(760)930-6015 **NOTIFIER** by Honeywell FACTORY AUTHORIZED NESCO Affiliate Signatures STATE OF CALIFORNIA LICENSED ELECTRICAL CONTRACTOR C10-612153 EXP. 02-28-11 Approvals NOTE: If this scale is not 1", this sheet is Not To Scale X AS BUILTS 3/7/12 J BER PCO#551 12/06/11 BKF FIRE DEPT. COMMENTS 12/06/11 BKF ENGINEER REVIEW 05/10/10 MA \bigwedge issued for Plan check 02/29/10 JA lev Issued For Date <u>Cal Poly</u> CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CA 93407 STUDENT RECREATION CENTER EXPANSION AND REMODEL W.O. # : 2010035 Sheet Title : FIRE ALARM WIRING DETAILS Drawn By J.AREVALO 02/23/10 M:\CAL POLY SLO RECREATION CENTER FA2.02-REC CTR-W Sheet Number : FA2.02 ASBUILT SET

APPENDIX D

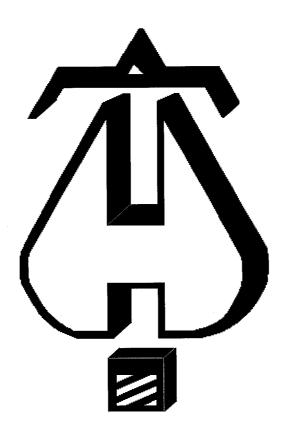
WATER-BASED SUPPRESSION SYSTEM – HYDRAULIC CALCULATIONS

SUBMITTAL REVIEW

Date: November 17, 2010

Project: California Polytechnic State University SLO Recreation Center Expansion & Remodel CPSUSLO Project No MAJ08-MJ0043

Contractor: Sundt Construction Inc.


Section: 21 12 00 Submittal: #211200-01-1

Reviewed by: Mirno Del Rosario

The submittals have been reviewed for conformance to the Contract Documents. Our review is contingent on the fact that the Contractor has reviewed and <u>certified</u> submittals as conforming to the Drawings and Specifications and shall be responsible for verifying conformance of equipment as delivered with final shop submittals and Contract Documents per Section 01300.

This document has been reviewed for general conformance and compliance with the design concept of the project and information given in the Contract Documents. Any action shown is subject to the requirements of the Contract Documents. Approval of a specific item does not include approval of the assembly of which the item is a component. Contractor is responsible for: Confirming and correlating all quantities and dimensions; selecting fabrication processes and techniques of construction; coordinating and performing the Work with that of all other trades and performing all Work in a safe and satisfactory manner. Any discrepancies between the Contract Documents and Contractor's submittal shall be the responsibility of the Contractor.

Paragr Descrip	Calculation.	sium Fire Sprink		tion: REV, RNR Product Data and Hydraulic itted
LEGEN	ID:			CANNON DESIGN
REV:	Reviewed	RES:	Resubmit	
NC:	Note Corrections	RNR:	Resubmittal Not Required	A. NO EXCEPTIONS TAKEN No further review of Submittal is required.
REJ:	Rejected			B. MAKE CORRECTIONS NOTED Incorporate corrections in work; resubmission is not required, unless otherwise noted.
				C. REVISE AND RESUBMIT Revise as noted and resubmit for further review.
21 12 (00-0-01-1			D. □ REJECTED Submittal is not in compliance with Contract Documents.
				E. FOR RECORD ONLY Received for record purposes only.
				Review is for conformance with the design concept of this project. This Submittal has been reviewed for general compliance with Contract Documents. Contractor is responsible for quantities, dimensions and compliance with Contract Documents and for information that pertains to fabrication processes, construction techniques and coordination of this work with all trades which will be affected thereby. This review is null and void if Submittal deviates from Contract Documents and does not indicate of note deviations.
5000 Ea	ineering, Inc. at Spring Street, 8th Floor ach, CA USA 90815-5218	T 562.497.2999 F 562.497.2990 www.p2seng.com		LTaniguchi 11/18/10

.... Fire Protection by Computer Design

COSCO FIRE PROTECTION INC. 4233 W. SIERRA MADRE AVE. **SUITE #108** FRESNO, CA. 93722 (559) 275-3795

System

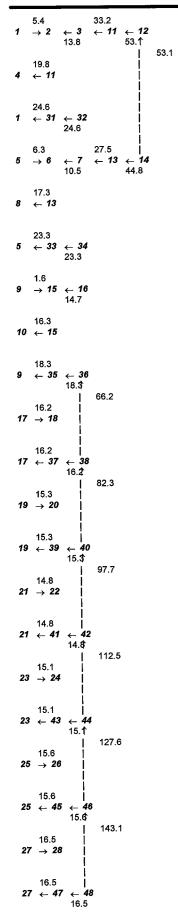
Job Name : CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407 Building : EXIST GYM, HIGH ROOF, REMOTE AREA E1 Location : RECREATION CENTER EXPANSION

- : E-HIGH
- Contract : FD-1075
- Data File : CALPOLY-E1HIGHROOF.WXF

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Hydraulic Design Information Sheet Name - CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407 Date - 11-04-2010 Location - RECREATION CENTER EXPANSION System No. - E-HIGH Building - EXIST GYM, HIGH ROOF, REMOTE AREA E1 Contract No. - FD-1075 Contractor - COSCO FIRE PROTECTION INC. Drawing No. - FP-E2 PIPE Calculated By - KO Ceiling Height - 65'-6" Construction: () Combustible (X) Non-Combustible Occupancy - LIGHT HAZARD (X) NFPA 13 (X) Lt. Haz. Ord.Haz.Gp. () 1 () 2 () 3 () Ex.Haz. S () NFPA 231 () NFPA 231C () Figure Curve Υ S Other Made By Date т Specific Ruling Е System Type Sprinkler/Nozzle Area of Sprinkler Operation - 1500 Μ (X) Wet Make VIKING - .10 Density Model UPRIGHT - 163 () Dry Area Per Sprinkler D () Deluge Size 1/2" Elevation at Highest Outlet - 65'-6" Ε () Preaction K-Factor 5.6 Hose Allowance - Inside - 100 S () Other Temp.Rat.155 - NA Rack Sprinkler Allowance Ι - 0 Hose Allowance - Outside G Ν Note NFPA #13 2002, 11.2.3.2 Calculation Flow Required - 278.75 Press Required - 60.20 BOR C-Factor Used: 120 Overhead 140 Underground Summary Tank or Reservoir: Water Flow Test: Pump Data: W Cap. -Date of Test - 3-8-2010 Α Time of Test - 3 PM Rated Cap.-Elev.-Т Static Press - 140 @ Press -Е Well R Residual Press - 132 Elev. Proof Flow - 1186 Flow Elevation - 0 S U Ρ Location - FIRE HYDRANT #47 & #51 ON SITE Ρ Source of Information - FLOW TEST PERFORMED ON SITE 3-8-2010 L BY CANNON ENGINEERING , RESULTS ATTACHED TO CALCS. Υ Location Class С Commodity Aisle W. Area Storage Ht. 0 욹 Rack Storage Method: Solid Piled 8 Palletized М М () Auto. Storage () Encap. () Single Row () Conven. Pallet () Non () Solid Shelf () Double Row () Slave Pallet S R () Open Shelf () Mult. Row Т А 0 С Clearance:Storage to Ceiling R K Flue Spacing Transverse Longitudinal Α G Horizontal Barriers Provided: Ε

Page 1 Date 11-04-2010


CV Wells Supply. Definition CV Wells Supply. Total Flowsure: 140 CV Wells Supply. Definition C.1 - Static Pressure: 143 Scalably Pressure: 143 C.2 - Featulatin Flowsure: 132 C.3 - Featulatin Pressure: 143 C.2 - Featulatin Pressure: 132 Definition C.2 - Featulatin Pressure: 143 Scalably Pressure: 143 C.3 - Featulatin Prov. :: 1168 Definition C.3 - Featulatin Prov. :: 1168 E.302 C.3 - Featulatin Pressure: 102 E.302 C.3 - Featulatin Prov. :: 1168 E.302 Fib Fib Fib Fib Fib	CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407	SAN LUIS O	BISPO, CA.	93407				Date 11-01-2010
C1 C2 C2 C1 0 C2 D2 0 D2 0 D2 0 D1 0 D1 0 D2 140 100 100 100 100 100 100	ty Water Supply: C1 - Static Press C2 - Residual Pre C2 - Residual Flo						Demand: D1 - F D2 - 9 D2 - 5 D3 - 5 Safet	
C1 C2 C2 C1 C2 C2 C1 C2 C2 C1 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C3 C2 C2 C4 C2 C2 C3 C2 C2 C4 C2 C2 C3 C2 C3 C4 C3 C3 C5 C3 C3 C4 C3 C3 C5 C3 C3 C3 C3 C3								
1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
D2 D3 D4 D4 D4 D4 D3 D3 D4 D4 D4 D4 D3 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D40 EDW (NA155) 1400 1600 1600	30							
D2 D2<	10							
D2 D2 D1 D2 0 0 03 0 0 04 0 05 0 06 100 1200 100 1200 100 1200 100 1200 1400	8							
D2 D2 D1 D1 03 0 0 0 0 0 0 03 0 0 0 0 0 0 0 0 040 600 800 1000 1200 1400 1600 1600								
D3 D1 D1<	9 							
D1 D1<								
D1 D1 100 1200 1400 1600 200 400 600 800 1000 1200 1400 1600								
D1 D1 D2 200 400 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600								
200 400 600 800 1000 1200 1400 1600 1500 1600	,							
400 600 800 1000 1200 1400 1600 FLOW (N ^ 1.85)								
	400			ł	1200 N ^ 1.85)	1400	1600	1800

1

Water Supply Curve (C)

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Page 3 Date 11-04-2010

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

29	19.1 → 30		-											
29	19.1 ← 49	← 50 19.1												
12		← 16	← 18	← 20 96.4	← 22	← 24	← 26	← 28						
32		← 36	← 38	← 40 82.3	← 42	← 44	← 46	← 48						
50	19.1 ← 51	← 52 178.7	178.7 ← 53	← 54	178.7 ← 55	← 56	<i>← T0</i>	R _← BO	278.7 R← 100	• ← 101 278.7	278.7 ← 102	← 103 278.7	278.7 ≹ ← 104	4 ← 105 278.7

Page 4 Date 11-04-2010

Fittinç	Fittings Used Summary																				
COSC CAL-P	COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407	OBISF	, S	A. 934(7C						·			,				Page Date		5 11-04-2010	010
Fitting Legend Abbrev. Nam	Fitting Legend Abbrev. Name	2	3,4	←	1/2 3/4 1 1/4 1/2	11%	2	2%	ę	3½	4	2	9	œ	10	12	4	16	18	20	24
А¥	Alarm Viking J1 NFPA 13 90' Standard Elbow		2	2	ы	4	ۍ ۲	9	10	ω	13	12	20 14	23 18	52	27	35	40	45	50	61
ЧГG Fsp		Fitting 0 3.5 3	l gener 0 4	ates a F 0 5 5	Fitting generates a Fixed Loss Based on Flow 0 0 0 1 1 0 0 0 0 1 1 1 0.5 1 2 2 2 3 4 3 4 5 6 8 10 12	is Based 0 8 8	on Flow 1 10 10	- 4 6	1 15	1 5 17	5 0 0 0	2 8 25	ю ө ө	4 13 35	5 50	6 60 60	7 74	8 81 81	01 00 91 00 91	11 34 101	13 121 121

Units Summary

Diameter Units Length Units Flow Units Pressure Units

Inches Feet US Gallons per Minute Pounds per Square Inch

Pressure / Flow Summary - STANDARD

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Page 6 Date 11-04-2010

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
	51.0	5.6	11.81	na	19.25	0.1	163	7.0
	51.0	5.6	11.77	na	19.21	0.1	163	7.0
	51.0	5.6	12.02	na	19.41	0.1	163	7.0
	51.0		13.07	na				
•	51.0	5.6	12.56	na	19.85	0.1	163	7.0
1	51.0	0.0	20.98	na				
1	59.5	5.6	9.12	na	16.91	0.1	163	7.0
	59.5	5.6	9.06	na	16.86	0.1	163	7.0
		5.6	9.21	na	17.0	0.1	163	7.0
	59.5	5.0	9.95		17.0	0.1	100	
3	59.5	F 0		na	17.32	0.1	163	7.0
_	59.5	5.6	9.56	na	17.52	0.1	100	1.0
3	59.5		17.36	na	40.04	0.4	163	7.0
	65.5	5.6	8.83	na	16.64	0.1	105	7.0
5	65.5		8.82	na		. .	400	
)	65.5	5.6	8.47	na	16.3	0.1	163	7.0
5	65.5		14.92	na				
7	69.0		8.58	na				
7	69.0		13.58	na				
9	78.0		5.19	na				
9	78.0		9.72	na				
1	78.0		5.85	na				
1	78.0		10.09	na				
1 2	69.0		9.88	na				
3			14.29	na				
3	69.0		11.66					
5 5	65.5		11.00	na				
5	65.5		16.32	na				
7	59.5		14.41	na				
7	59.5		19.59	na				
9	51.0		18.17	na				
9	51.0		24.99	na				
2	50.0		14.38	na				
4	58.5		11.03	na				
6	64.5		9.34	na				
8	68.0		8.92	na				
ñ	70.0		8.48	na				
20 22	70.0		9.15	na				
<u> </u>	68.0		10.23	na				
4 6			12.0	na				
6	64.5		14.74					
8 2	58.5		14.74	na				
2	58.5		17.95	na				
4	64.5		15.38	na				
6	68.0		13.96	na				
8	70.0		13.25	na				
0	70.0		13.37	na				
2	68.0		14.59	na				
4	64.5		16.32	na				
6	58.5		19.44	na				
8	58.5		20.13	na				
50	53.0		24.26	na				
51	53.0		24.29	na				
20 20	53.0		26.77	na				
52 53	55.0		29.97	na				
10 14	50.0		49.85					
54 55	8.3		49.00	na				
5	8.3 7.2		50.86	na				
56	7.2		52.12	na				
FOR	11.2		51.42	na				
BOR	0.0		60.2	na	100.0			
100	0.0		60.46	na				
101	0.0		60.6	na				
102	0.0		60.85	na				
			67.95	na				
103	0.0		07.90	, ia				

Flow Summary - Standard

COSCO FIRE PROTECTION INC.
CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Page	7
Date	11-04-2010

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
105	0.0		68.39	na				

The maximum velocity is 10.52 and it occurs in the pipe between nodes 51 and 52 $\,$

Final Calculations - Hazen-Williams

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Page 8 Date 11-04-2010

Hyd.	Qa Dia.	Fitting	u l	Pipe	Pt	Pt	
Ref.	"C"	or	-	Ftng's	Pe	Pv	****** Notes *****
Point	Qt Pf/Ft		Ln.	Total	Pf	Pn	
	-5.40 1.38		0.0	14.200	11.815		K Factor = 5.60
)	120.0		0.0	0.0	0.0		
2	-5.4 -0.003	0	0.0	14.200	-0.043		Vel = 1.16
2	19.21 1.38		0.0	14.200	11.772		K Factor = 5.60
) 3	120.0 13.81 0.017	2	0.0 0.0	0.0 14.200	0.0 0.245		Vel = 2.96
3	19.42 1.38	1T	6.0	6.000	12.017		K Factor = 5.60
)	120.0		0.0	6.000	0.0		
11	33.23 0.087	<i>"</i> 5	0.0	12.000	1.050		Vel = 7.13
11	19.84 1.61	1T	8.0	1.000	13.067		
	120.0	2	0.0	8.000	0.433		Vel = 8.36
12	53.07 0.098	00	0.0	9.000	0.885		VEI - 0.30
	0.0 53.07				14.385		K Factor = 13.99
4	19.85 1.38	1T	6.0	9.000	12.561	<u></u> .	K Factor = 5.60
o	120.0		0.0	6.000	0.0		
11	19.85 0.033	37	0.0	15.000	0.506		Vel = 4.26
	0.0				40.007		
	19.85				13.067		K Factor = 5.49
1	24.65 1.38	1T	6.0 0.0	176.000 6.000	11.815 0.0		
o 31	120.0 24.65 0.050)4	0.0	182.000	9.170		Vel = 5.29
31	0.0 1.61	1T	8.0	1.000	20.985		
0	120.0		0.0	8.000	-3.248		
32	24.65 0.023	38	0.0	9.000	0.214		Vel = 3.88
	0.0 24.65				17.951		K Factor = 5.82
5	-6.34 1.38		0.0	14.200	9.123		K Factor = 5.60
õ	120.0		0.0	0.0	0.0		
6	-6.34 -0.004	41	0.0	14.200	-0.058		Vel = 1.36
6	16.86 1.38		0.0	14.200	9.065		K Factor = 5.60
0	120.0	14	0.0 0.0	0.0 14.200	0.0 0.148		Vel = 2.26
<u>7</u> 7	<u>10.52</u> 0.010 17.00 1.38	1T	6.0	6.000	9.213		K Factor = 5.60
0	17.00 1.38	11	0.0	6.000	0.0		
13	27.52 0.06	18	0.0	12.000	0.741		Vel = 5.90
13	17.31 1.61	1T	8.0	1.000	9.954		
0	120.0	10	0.0	8.000	0.433		Vel = 7.06
14	44.83 0.07	19	0.0	9.000	0.647		
	0.0 44.83				11.034		K Factor = 13.50
8	17.32 1.38	1T	6.0	9.000	9.561		K Factor = 5.60
	120.0		0.0	6.000	0.0		
13	17.32 0.02	62	0.0	15.000	0.393		Vel = 3.72
	0.0 17.32				9.954		K Factor = 5.49
5	23.25 1.38	1T	6.0	176.000	9.123	····	
5 to	23.25 1.30	11	0.0	6.000	9.123 0.0		
33	23.25 0.04	52	0.0	182.000	8.233		Vel = 4.99

Final Calculations - Hazen-Williams

COSCO FIRE PROTECTION INC. ----

Hyd.	Qa	Dia.	Fitting	3	Pipe	Pt	Pt	
Ref.		"C"	or		Ftng's	Ре	Pv	******* Notes ******
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
33	0.0	1.61	1T	8.0	1.000	17.356	<u>.</u>	
o 34	23.25	120.0 0.0213		0.0 0.0	8.000 9.000	-2.166 0.192		Vel = 3.66
	0.0 23.25					15.382		K Factor = 5.93
9 0	-1.63	1.38 120.0	1T	6.0 0.0	6.000 6.000	8.828 0.0		K Factor = 5.60
15	-1.63	-0.0003		0.0	12.000	-0.004		Vel = 0.35
15	16.30	1.61	1T	8.0	1.000	8.824		
o 16	14.67	120.0 0.0091		0.0 0.0	8.000 9.000	0.433 0.082		Vel = 2.31
10	0.0	0.0001			0.000	0.001		
	14.67					9.339		K Factor = 4.80
10	16.30	1.38	1T	6.0	9.000	8.472		K Factor = 5.60
0 15	16.3	120.0 0.0235		0.0 0.0	6.000 15.000	0.0 0.352		Vel = 3.50
15	0.0	0.0235		0.0	15.000	0.352		<u>vei - 0.50</u>
	16.30					8.824		K Factor = 5.49
9	18.27	1.38	1T	6.0	204.400	8.828		<u></u>
0		120.0		0.0	6.000	0.0		
35	18.27	0.0289		0.0	210.400	6.089		Vel = 3.92
35	0.0	1.61 120.0	1T	8.0 0.0	1.000 8.000	14.917 -1.083		
o 36	18.27	0.0137		0.0	9.000	0.123		Vel = 2.88
	0.0							
	18.27					13.957		K Factor = 4.89
17	-16.17	1.61	1T	8.0	1.000	8.581		
o 18	-16.17	120.0 -0.0109		0.0 0.0	8.000 9.000	0.433 -0.098		Vel = 2.55
10	0.0	-0.0109		0.0	0.000	-0.000		101 2.00
	-16.17					8.916		K Factor = -5.42
17	16.17	1.38	1T	6.0	210.400	8.581		
0		120.0		0.0	6.000	0.0		
37	16.17	0.0231	4	0.0	216.400	4.999		Vel = 3.47
37 to	0.0	1.61 120.0	1T	8.0 0.0	1.000 8.000	13.580 -0.433		
38	16.17	0.0109		0.0	9.000	0.098		Vel = 2.55
	0.0 16.17					13.245		K Factor = 4.44
19	-15.34	1.61	1T	8.0	10.000	5.191		
to		120.0		0.0	8.000	3.465		
20	-15.34	-0.0099		0.0	18.000	-0.178		Vel = 2.42
	0.0 -15.34					8.478		K Factor = -5.27
19	15.34	1.38	1T	6.0	210.400	<u> </u>		
to	10.04	120.0		0.0	6.000	0.0		
39	15.34			0.0	216.400	4.532		Vel = 3.29

.

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 9340

Hyd.	Qa	Dia.	Fitting	I	Pipe	Pt	Pt	
Ref.		"C"	or	1	Ftng's	Pe	Pv Pn	******* Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	F11	
39	0.0	1.61	1T	8.0	10.000	9.723		
C		120.0		0.0	8.000	3.465		$\lambda a = 2.42$
40	15.34	0.0099		0.0	18.000	0.178		Vel = 2.42
	0.0 15.34					13.366		K Factor = 4.20
21	-14.79	1.61	1T	8.0	10.000	5.853		<u></u>
)		120.0		0.0	8.000	3.465		
22	-14.79	-0.0093		0.0	18.000	-0.167		Vel = 2.33
	0.0 -14.79					9.151		K Factor = -4.89
21	14.79	1.38	1T	6.0	210.400	5.853		
c		120.0		0.0	6.000	0.0		
41	14.79	0.0196		0.0	216.400	4.240		Vel = 3.17
41	0.0	1.61 120.0	1T	8.0 0.0	10.000 8.000	10.093 4.331		
o 42	14.79	0.0093		0.0	18.000	0.167		Vel = 2.33
	0.0							
	14.79					14.591		K Factor = 3.87
23	-15.10	1.61 120.0	1T	8.0 0.0	1.000 8.000	9.885 0.433		
o 24	-15.1	-0.0096		0.0	9.000	-0.086		Vel = 2.38
	0.0							
	-15.10					10.232		K Factor = -4.72
23	15.10	1.38	1T	6.0 0.0	210.400 6.000	9.885 0.0		
o 43	15.1	120.0 0.0203		0.0	216.400	4.401		Vel = 3.24
43	0.0	1.61	1T	8.0	1.000	14.286		
0		120.0		0.0	8.000	1.949		
44	15.1	0.0096		0.0	9.000	0.086		Vel = 2.38
	0.0 15.10					16.321		K Factor = 3.74
25	-15.56	1.61	1T	8.0	1.000	11.660		
o		120.0		0.0	8.000	0.433		
26	-15.56	-0.0101		0.0	9.000	-0.091		Vel = 2.45
	0.0 -15.56					12.002		K Factor = -4.49
25	15.56	1.38	1T	6.0	210.400	11.660		
20		120.0		0.0	6.000	0.0		
45	15.56	0.0215		0.0	216.400	4.657		Vel = 3.34
45	0.0	1.61	1T	8.0 0.0	1.000 8.000	16.317 3.032		
to 46	15.56	120.0 0.0101		0.0 0.0	9.000	3.032 0.091		Vel = 2.45
	0.0							
	15.56					19.440		K Factor = 3.53
27	-16.49	1.61	1T	8.0	1.000	14.408		
to 28	-16.49	120.0 -0.0112		0.0 0.0	8.000 9.000	0.433 -0.101		Vel = 2.60

Page 10

Final Calculations - Hazen-Williams

Hyd.	Qa	Dia.	Fitting	J	Pipe Eta ale	Pt De	Pt	****** Notes *****
Ref. Point	Qt	"C" Pf/Ft	or Eqv.	Ln.	Ftng's Total	Pe Pf	Pv Pn	NOLES
	0.0 -16.49					14.740		K Factor = -4.30
27	16.49	1.38	1T	6.0	210.400	14.408	4	
0		120.0		0.0	6.000	0.0		
47	16.49	0.0240		0.0	216.400	5.184		Vel = 3.54
47	0.0	1.61	1T	8.0	1.000	19.592		
0		120.0		0.0	8.000	0.433		
48	16.49	0.0113		0.0	9.000	0.102		Vel = 2.60
	0.0 16.49				. <u></u>	20.127	_	K Factor = 3.68
29	-19.13	1.61	1T	8.0	1.000	18.172		
o		120.0		0.0	8.000	13.426		
30	-19.13	-0.0149	· ·	0.0	9.000	-0.134		Vel = 3.01
	0.0 -19.13					31.464		K Factor = -3.41
29	19.13	1.38	1T	6.0	210.400	18.172		
o		120.0		0.0	6.000	0.0		
49	19.13	0.0315		0.0	216.400	6.819		Vel = 4.10
49	0.0	1.61	1T	8.0	1.000	24.991		
to	10.10	120.0		0.0 0.0	8.000 9.000	-0.866 0.133		Vel = 3.01
50	19.13	0.0148		0.0	9.000	0.133		Ver = 3.01
	0.0 19.13				·····	24.258		K Factor = 3.88
12	53.07	2.157		0.0	14.000	14.385		
to		120.0		0.0	0.0	-3.681		$\lambda = 4.66$
14	53.07	0.0236		0.0	14.000	0.330		Vel = 4.66
14	44.84	2.157		0.0	12.300	11.034		
to	07.01	120.0		0.0 0.0	0.0 12.300	-2.599 0.904		Vel = 8.60
16	97.91	0.0735			11.500	9.339		
16 to	14.67	2.157 120.0		0.0 0.0	0.0	9.339 -1.516		
to 18	112.58	0.0950		0.0	11.500	1.093		Vel = 9.88
18	-16.17	2.157		0.0	6.000	8.916	<u>_</u>	
to	-10.17	120.0		0.0	0.0	-0.866		
20	96.41	0.0713		0.0	6.000	0.428		Vel = 8.46
20	-15.34	2.157		0.0	13.000	8.478		
to		120.0		0.0	0.0	0.0		
22	81.07	0.0518		0.0	13.000	0.673	6.7%	Vel = 7.12
22	-14.79	2.157		0.0	6.000	9.151		
to		120.0		0.0	0.0	0.866		
24	66.28	0.0358		0.0	6.000	0.215		Vel = 5.82
24	-15.10	2.157		0.0	11.500	10.232		
to	F 4 4 F	120.0		0.0	0.0	1.516		1/21 = -4.42
26	51.18	0.0221		0.0	11.500	0.254		Vel = 4.49
26	-15.56	2.157		0.0	12.300	12.002 2.599		
to 28	35.62	120.0 0.0113		0.0 0.0	0.0 12.300	2.599 0.139		Vel = 3.13

Final Calculations - Hazen-Williams

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Hyd. Ref. Point 28 30 32	Qa Qt -16.49 <u>19.13</u> 0.0 19.13 24.65	Dia. "C" Pf/Ft 2.157 120.0 0.0036	Fitting or Eqv.	Ln. 0.0	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
Point 28 5 30	-16.49 19.13 0.0 19.13	Pf/Ft 2.157 120.0		0.0	Total			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
30	19.13 0.0 19.13	120.0						
30	19.13 0.0 19.13	120.0						
30	0.0 19.13				14.000	14.740		
	0.0 19.13	0.0036		0.0	0.0	16.674		Vel = 1.68
32	19.13			0.0	14.000	0.050		Vei - 1.00
32	24.65					31.464		K Factor = 3.41
		2.635		0.0	14.000	17.951		
)		120.0		0.0	0.0	-2.599		Vel = 1.45
34	24.65	0.0021		0.0	14.000	0.030		ver – 1.45
34	23.25	2.635 120.0		0.0 0.0	12.300 0.0	15.382 -1.516		
5 36	47.9	0.0074		0.0	12.300	0.091		Vel = 2.82
<u>36</u>	18.27	2.635		0.0	11.500	13.957		
5		120.0		0.0	0.0	-0.866		
38	66.17	0.0134		0.0	11.500	0.154		Vel = 3.89
38	16.17	2.635		0.0	6.000	13.245		
	00.04	120.0		0.0	0.0	0.0 0.121		Vel = 4.84
40	82.34	0.0202		0.0	<u>6.000</u> 13.000	13.366		
40 ว	15.34	2.635 120.0		0.0 0.0	0.0	0.866		
42	97.68	0.0276		0.0	13.000	0.359		Vel = 5.75
42	14.79	2.635		0.0	6.000	14.591		
0		120.0		0.0	0.0	1.516		
44	112.47	0.0357		0.0	6.000	0.214	. .	Vel = 6.62
44	15.10	2.635		0.0	11.500	16.321		
o 46	127.57	120.0 0.0452		0.0 0.0	0.0 11.500	2.599 0.520		Vel = 7.51
	15.56	2.635	.	0.0	12.300	19.440		
46 o	15.50	120.0		0.0	0.0	0.0		
48	143.13			0.0	12.300	0.687		Vel = 8.42
48	16.49	2.635	1T	16.474	9.500	20.127		
0		120.0		0.0	16.474	2.382		
51	159.62	0.0684		0.0	25.974	1.777		Vel = 9.39
	0.0 159.62					24.286		K Factor = 32.39
50	19.13	2.635	1T	16.474	4.500	24.258		
0		120.0		0.0	16.474	0.0		
51	19.13	0.0013		0.0	20.974	0.028		Vel = 1.13
51	159.62	2.635	2E	16.474	13.000	24.286		
10 50	170 75	120.0		0.0 0.0	16.474 29.474	0.0 2.487		Vel = 10.52
52	178.75	0.0844	2E	16.474	6.000	2.487		
52 to	0.0	2.635 120.0	20	0.0	16.474	1.299		
53	178.75	0.0844		0.0	22.474	1.896		Vel = 10.52
53	0.0	3.26	2E	18.815	42.000	29.968		
to		120.0		0.0	18.815	18.060		
54	178.75	0.0299		0.0	60.815	1.820	<u></u>	Vel = 6.87
54	0.0	3.26	2E	18.815	15.000	49.848		
to 55	178.75	120.0 0.0299		0.0 0.0	18.815 33.815	0.0 1.011		Vel = 6.87

Page

12

COSCO FIRE PROTECTION INC.
CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

	IRE PROTE Y UNIVERS	Page 13 Date 11-04-2010						
Hyd. Ref.	Qa	Dia. "C" Pf/Ft	Fittin or	•	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
Point	Qt	PI/FL	Eqv.	LII.			F II	
55	0.0	3.26	1T	20.159	6.000	50.859		
to 56	178.75	120.0 0.0299		0.0 0.0	20.159 26.159	0.476 0.783		Vel = 6.87
56	0.0	3.26	1T	20.159	5.000	52.118		
to		120.0	1E	9.408	29.567	-1.732		
TOR	178.75	0.0299		0.0	34.567	1.034		Vel = 6.87
TOR	0.0	3.26	1E	9.408	7.000	51.420		
to		120.0	1Fsp	0.0	24.192	7.851		* Fixed loss = 3 Vel = 6.87
BOR	178.75	0.0299	1G 1Avk	1.344 13.44	31.192	0.933		vei - 0.07
BOR	100.00	6.357	3E	52.808	6.000	60.204		Qa = 100
to		120.0	1T	37.72	90.528	0.0		
100	278.75	0.0026		0.0	96.528	0.254		Vel = 2.82
100	0.0	6.16	4L	51.645	10.000	60.458		
to	278.75	140.0 0.0023		0.0 0.0	51.645 61.645	0.0 0.142		Vel = 3.00
101				77.467	30.000	60.600		
101 to	0.0	6.16 140.0	6L	0.0	30.000 77.467	0.0		
102	278.75	0.0023		0.0	107.467	0.248		Vel = 3.00
102	0.0	6.16	2E	40.168	6.000	60.848		
to	0.0	140.0	26	0.0	40.168	7.000		* Fixed loss = 7
103	278.75	0.0023		0.0	46.168	0.107		Vel = 3.00
103	0.0	6.16	1G	4.304	30.000	67.955		
to	-	140.0	2L	25.822	73.163	0.0		
104	278.75	0.0023	1T	43.037	103.163	0.238		Vel = 3.00
104	0.0	8.27	2L	41.12	260.000	68.193		
to		140.0	1G	6.326	102.800	0.0		
105	278.75	0.0005	<u>1</u> T	55.354	362.800	0.199		Vel = 1.66
	0.0 278.75					68.392		K Factor = 33.71

Fire Hydrant Flow & Pressure Test

Date of test: 3/8/2010Time of test: 4:40 PMHydrant Site ID#: 47Class_____Street Address Adjacent to Hydrant: Campus WayElev. @ Hydrant: 330.57Number of ports flowed: 11

.	150	psi before flowing
Static:	100	
Residual:		psi while flowing
Pitot:	50	pitot gauge reading
Nozzle Coefficient:	0.9	(Note 3)
Diameter:	2.5	size of opening tested
This hydrant is flowing:	1186.48	GPM from the test outlet
Projected available hydrant flow @ 20psi:		GPM (Note 1)
2nd Static: (with handheld pitot gauge)		secondary psi before flowing
		secondary psi while flowing
2nd Residual:		GPM
The main can be expected to flow about:		

Number of Tanks in System: <u>2</u> Tank No. 1: <u>N/A</u> Tank No. 2: <u>N/A</u> Water Main Size:___12''_____ Pumps:

Notes:

1. Projected available flows calculated at 20 psi residual, or ½ the static pressure for low pressure hydrants having static pressures of less than 40 psi.

2. This calculator is based on established Hazen-Williams formulas and is provided for convenience and estimation purposes only. The author and Cannon express no warranty for its suitability for any particular purpose.

3. Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is opened.

Field Notes:

Fire Hydrant Flow & Pressure Test

Date of test: 3/8/2010 Class Hydrant Site ID#: 51 Street Address Adjacent to Hydrant: Adjacent to new pool Number of ports flowed: 1

Time of test: 5:00 PM Elev. @ Hydrant: 346.00

Static:	140	psi before flowing
Residual:	132	psi while flowing
Pitot:		pitot gauge reading
Nozzle Coefficient:	0.9	(Note 3)
Diameter:	2.5	size of opening tested
This hydrant is flowing:	0.00	GPM from the test outlet
Projected available hydrant flow @ 20psi:		GPM (Note 1)
2nd Static: (with handheld pitot gauge)		secondary psi before flowing
2nd Residual:		secondary psi while flowing
The main can be expected to flow about:		<u>GPM</u>

of Tanks in System: 2 Tank No. 1: N/A Tank No. 2: N/A Water Main Size:___12"_

Pumps:

Notes:

1. Projected available flows calculated at 20 psi residual, or 1/2 the static pressure for low pressure hydrants having static pressures of less than 40 psi.

2. This calculator is based on established Hazen-Williams formulas and is provided for convenience and estimation purposes only. The author and Cannon express no warranty for its suitability for any particular purpose.

3. Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is

Field Notes:

MICROFAST® AND MicrofastHP® QUICK RESPONSE UPRIGHT AND CONVENTIONAL SPRINKLERS

Sprinkler 51a

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

TECHNICAL DATA

1. DESCRIPTION

Viking Microfast[®] and MicrofastHP[®] Quick Response Upright and Conventional (Old Style) Sprinklers are small, thermosensitive, glass-bulb spray sprinklers available in several different finishes, temperature ratings, and K-Factors to meet design requirements. The special Polyester and Teflon[®] coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive atmospheres and are cULus listed as corrosion resistant as indicated in the Approval Chart. (Note: FM Global has no approval classification for Teflon[®] and Polyester coatings as corrosion resistant.)

2. LISTINGS AND APPROVALS

cULus Listed: Category VNIV

FM Approved: Class 2020

NYC Approved: Calendar Number 219-76-SA and MEA 89-92-E, Volume 16

ABS Certified: Certificate 04-HS407984B-PDA

VdS Approved: Certificate G4060054, G4060056, G4880046, G4930039, and G4980020

LPC Approved: Ref. No. 096e/03, TE30401, and TE30872

CE Certified: Standard EN 12259-1, EC-certificate of conformity 0832-CPD-2001, 0832-CPD-2003, 0786-CPD-40131, and 0786-CPD-40171

MED Certified: Standard EN 12259-1, EC-certificate of conformity 0832-MED-1003 and 0832-MED-1008 **NOTE:** Other International approval certificates are available upon request.

Refer to the Approval Chart on page 51d and Design Criteria on page 51e for cULus and FM approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Available since 1987.

Minimum Operating Pressure: 7 psi (0.5 bar)*

Maximum Working Pressure: Sprinklers VK315 and VK340 are rated for use with water working pressures ranging from the minimum 7 psi (0.5 bar) up to 250 psi (17 bar) for high-pressure systems. High-pressure (HP) sprinklers can be identified by locating "250" stamped on the deflector. All other Part Nos. not mentioned above are rated to a maximum 175 psi (12 bar) wwp.

Factory tested hydrostatically to 500 psi (34.5 bar)

Testing: U.S.A. Patent No. 4,831,870

Thread size: Refer to the Approval Chart

Nominal K-Factor: Refer to the Approval Chart

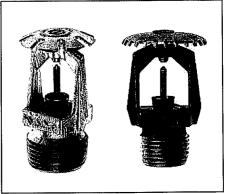
Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: Refer to the Approval Chart

*cULus Listing, FM Approval, and NFPA 13 installs require a minimum of 7 psi (0.5 bar). The minimum operating pressure for LPCB and CE Approvals ONLY is 5 psi (0.35 bar).

Material Standards:

Frame Casting: Brass UNS-C84400 or QM Brass for Sprinklers 06661B, 06766B, 07060, and 12281. Brass UNS-C84400 for all other sprinklers.


Deflector: Brass UNS-C23000 or Copper UNS-C19500 for Sprinklers 06661B and 12281. Copper UNS-C19500 for Sprinklers 06665B, 06764B, and 07060. Brass UNS-C26000 for all other Sprinklers.

Bushing (for Sprinklers 06719B, 06717B, and 12286): Brass UNS-C36000

Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with Teflon Tape Screw: Brass UNS-C36000

Form No. F_080488 Replaces page 51a-e, dated April 25, 2008. (Updated sprinkler materials. Min. operating pressure for LPCB and CE approval ONLY is 5 psi (0.35 bar). Added alternate frame material for Sprinklers 06661B, 06766B, 07060, and 12281. Removed VdS Approval from Sprinklers 06665B, 06764B, and 14817.)

Viking Technical Data may be found on

The Viking Corporation's Web site at

http://www.vikinggroupinc.com. The Web site may include a more recent

edition of this Technical Data Page.

MICROFAST® AND MicrofastHP® QUICK RESPONSE UPRIGHT AND CONVENTIONAL SPRINKLERS

TECHNICAL DATA

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

Pip Cap Attachment (for Sprinklers VK300 and VK325): Brass UNS-C36000

For Teflon® Coated Sprinklers; Belleville Spring-Exposed, Screw-Nickel Plated, Pip Cap-Teflon® Coated

For Polyester Coated Sprinklers: Belleville Spring-Exposed

Ordering Information: (Also refer to the current Viking price list.)

Order Microfast[®] and MicrofastHP[®] Quick Response Upright and Conventional Sprinklers by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome-Enloy[®] = F, White Polyester = M-/W, Black Polyester = M-/B, and Black Teflon[®] = N Temperature Suffix (°F/°C): 135°/57° = A, 155°/68° = B, 175°/79° = D, 200°/93° = E, and 286°/141° = G

For example, sprinkler VK300 with a 1/2" thread, Brass finish and a 155 °F/68 °C temperature rating = Part No. 06661BAB

Available Finishes And Temperature Ratings:

Refer to Table 1

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking data book.)

Sprinkler Wrenches:

Standard Wrench: Part No. 10896W/B (available since 2000)

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A (available since 1971)

B. Twelve-head capacity: Part No. 01725A (available since 1971)

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking Microfast[®] and MicrofastHP[®] Quick Response Upright and Conventional Sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

Sprinkler 51c

NIKING

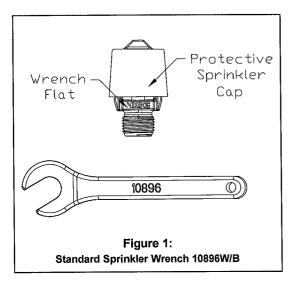
TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE UPRIGHT AND CONVENTIONAL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES									
Spanddar Monainell Samparatencouxtillagi	alexanana Ambiant Cialling Ramparatura ^a	i#Juilo (Xallar							
135 °F (57 °C)	100 °F (38 °C)	Orange							
155 °F (68 °C)	100 °F (38 °C)	Red							
175 °F (79 °C)	150 °F (65 °C)	Yellow							
200 °F (93 °C)	150 °F (65 °C)	Green							
286 °F (141 °C)	225 °F (107 °C)	Blue							
	المالية: ألفان المالية: 135 °F (57 °C) 155 °F (68 °C) 175 °F (79 °C) 200 °F (93 °C)	Spandide Merimum Ambient Temperature Calling Temperature 135 °F (57 °C) 100 °F (38 °C) 155 °F (68 °C) 100 °F (38 °C) 175 °F (79 °C) 150 °F (65 °C) 200 °F (93 °C) 150 °F (65 °C)							


Sprinkler Finishes: Brass, Chrome-Enloy[®], White Polyester, Black Polyester, and Black Teflon[®] Corrosion-Resistant Coatings⁴: White Polyester, Black Polyester, and Black Teflon[®]

Footnotes

¹ The sprinkler temperature rating is stamped on the deflector.

² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

³ The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated on pages 51d. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester and Teflon[®] coatings.

NIKING

TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE UPRIGHT AND CONVENTIONAL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

						ologie etymet	(Chan									
				i Diber				d? Reigene	nt:	l.		mpoetuo Nist	KEY			
						tel Cionveni				/		encinen (lite	-ppilicatile))			
						m (#123)										
		Nominal					Listings					and Approvals ³				
Base Part	SIN	Throad Sizo			Factor Overall Le		_ength	ength (Refer also to I					ge 51e.)		
Number ¹		NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM ⁷	NYC ⁸	VdS	LPCB	Œ	Ø		
						ight-Stand										
06661B	VK300	1/2"	15 mm	5.6	80.6	2-3/16	56	A2	A3	A2	 A3	 A3	 B3 ¹²	B3 ¹⁴		
07060	VK345		15 mm	5.6	80.6	2-3/16 ntional-Sta	56	rifice	A3		AS	AS	0.5	<u> </u>		
06766B	VK310	1/2"	15 mm	5.6	80.6	2-3/16	56	A3		A3		A3	B3 ¹²	B3 ¹⁴		
007000	1 11310	1/2	10 1111	0.0		pright-Larg			L	<u>i</u>						
06665B	VK350	3/4"		8.0	115.2	2-5/16	59	A2	A3	A2		A3	B3 ¹²			
14817	VK350		20 mm	8.0	115.2	2-5/16	59	A2	A3	A2		A3	B3 ¹²			
06764B	VK350	1/2"	15 mm	8.0	115.2	2-5/16	59	A2		A2				L		
007000	VICOEA	0/A"	20	0 0	Conv 115.2	ventional-L 2-5/16	arge Ori 59	A2		A3		A3	B3 ¹²			
06768B	VK354	3/4"	20 mm	8.0		right-Sma								L		
06717B ¹¹	VK325	1/2"	15 mm	2.8	40.3	2-3/16	56	A2	A1	A2						
06719B ¹¹	VK327	1/2"	15 mm	4.2	60.0	2-3/16	56	A2		A2						
06931B ¹¹	VK327		10 mm	4.2	60.0	2-3/16	56				A3		E1 ¹³			
Maximum 250 PSI (17 bar) WWP																
Upright-Standard Orifice Listings and Approvals ³																
Base Part	SIN	Threa	ad Size	•	Factor	Overall	Length	(Ref		o Design			ae 51e	.)		
Number ¹		NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM	NYC ⁹	VdS	LPCB	CE	Ø		
12281	VK315	1/2"	15 mm	5.6	80.6	2-3/16	56	A2		A2	<u> </u>					
						oright-Sma		¹⁰	1	A 2	1		1			
1228611	VK340	1/2"	15 mm	2.8	40.3	2-3/16	56	A2		A2			i			
			Temperatu						٨٥٣	oroved Fi	iniehoe					
A - 135 °F (• •		58 °C), 17	5 °F (79	9°C), 200	°F (93 °C),		an and Chro			11131163					
	°F (141°C					0 - /4 44 90)		ss and Chro ass, Chrom			Jolyoct		-k Doly	actor ^{5,6}		
B - 155 °F (6	58 °C), 17	5°F(/9	°C), 200 °	F (93 °C), and 280	F (141°C)		I Black Teflo		, vvinte r	olyesi	si , Diat	SKIOIY	ester ,		
C - 135 °F (F (141 C)	2 Pro	ss, Chrome-		Mhite Dol	vector ^{5,0}	and Ris	ack Poly	ester ^{5,6}		
D - 135 °F (5 - F (68	C), and i	/5 F (/	90)		3 - Dia	ss, chiome-	·шпоў, ч		yeater	, and bie		00101		
E - 155 °F (6	50°C)					Faata							······································			
			• ·			Footne		- aabadula								
¹ Base part n														0.0		
² Metric K-fac	tor measure	ement she	own is wher	pressure	e is measured	d in Bar. Whe	en pressui	re is measure	d in kPa,	divide the	metric K	-tactor she	own by 1	0.0.		
³ This table s	hows the li	istings ar	nd approval	s availab	le at the time	e of printing	. Check w	vith the manu	ifacturer f	for any ad	ditional	approvals	S.			
⁴ Listed by U	nderwriters	s Laborat	ories Inc. fo	or use in t	the U.S. and	l Canada.										
⁵ cULus Liste	ed as corro	sion resis	stant.													
⁶ Other color	s are avail	able on r	equest with	the sam	e Listings ar	nd Approval	s as the s	tandard colo	rs.							
7 For installa	tion in acc	ordance	with the late	est applic	able FM Los	ss Preventio	n Data Sl	heets and Te	chnical A	dvisory Bi	ulletins.					
								nber 219-76-								
P Accepted f																
10 Liotings -	of use, Oil		to Light U	azard Oo	cunancies 4		d by the	installation s	tandarde	being apr	blied wit	h hydrau	lically ca	liculated		
wet system internally g	ns only. Ex	ception:	4.2K sprin	klers ma	y be installe	ed on hydrau	ulically ca	liculated dry	pipe syst	ems whe	re pipin	g is corro	sion res	istant or		
¹¹ The sprink	ler orifice is	s bushed														
	The applicate of the souther 1, 2250, 1, EC portificate of conformity 0832-CPD-2001 and 0832-CPD-2003															

¹² Certified, Standard EN 12259-1, EC-certificate of conformity 0832-CPD-2001 and 0832-CPD-2003.

¹³ **(** € Certified, Standard EN 12259-1, EC-certificate of conformity 0786-CPD-40131.

14 @ MED Certified, Standard EN 12259-1, EC-certificate of conformity 0832-MED-1003 and 0832-MED-1008.

Sprinkler 51e

NIKING

TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE UPRIGHT AND CONVENTIONAL SPRINKLERS

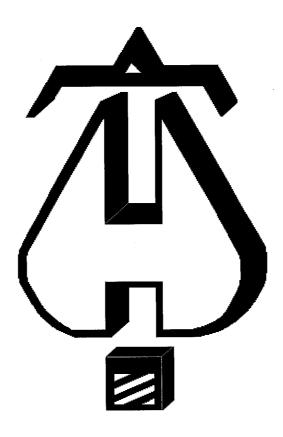
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

DESIGN CRUTTAA (Memoralgence the Approved Clarid on prage Sold)

cULus Listing Requirements:

Microfast[®] and MicrofastHP[®] Quick Response Upright and Conventional Sprinklers are cULus Listed as indicated in the Approval Chart for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers, or old style (conventional) sprinklers.


- Designed for use in Light and Ordinary Hazard occupancies (exception: small orifice sprinklers are limited to Light Hazard where allowed by the installation standards being applied, with hydraulically calculated wet systems only).
- The sprinkler installation rules contained in NFPA 13 for standard spray upright sprinklers must be followed. For conventional sprinklers, refer to the installation guidelines for old style (conventional) sprinklers.

FM Approval Requirements:

For installation in accordance with the latest applicable FM Loss Prevention Data Sheets (including 2-8N) and Technical Advisory Bulletins. FM Global Loss Prevention Data Sheets and Technical Advisory Bulletins contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page QR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

... Fire Protection by Computer Design

COSCO FIRE PROTECTION INC. 4233 W. SIERRA MADRE AVE. **SUITE #108** FRESNO, CA. 93722 (559) 275-3795

THE PROTECTION ICENSE NO 577621 FRESNO STATE OF CALIFORD

Job Name : CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407 System

Building : EXIST GYM, HIGH ROOF, REMOTE AREA E2 Location : RECREATION CENTER EXPANSION : E-HIGH Contract : FD-1075

Data File : CALPOLY-E2HIGHROOF.WXF

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Hydraulic Design Information Sheet	
Name - CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407 Date - 11-04-2010 Location - RECREATION CENTER EXPANSION Building - EXIST GYM, HIGH ROOF, REMOTE AREA E2 System No E-HIGH Contractor - COSCO FIRE PROTECTION INC. Contract No FD-1075 Calculated By - KO Drawing No FP-E2 PIPE Construction: () Combustible (X) Non-Combustible Ceiling Height - 78'	
<pre>S (X) NFPA 13 (X) Lt. Haz. Ord.Haz.Gp. () 1 () 2 () 3 () Ex.Haz. Y () NFPA 231 () NFPA 231C () Figure Curve Other T Specific Ruling Made By Date M Area of Sprinkler Operation - 1500 System Type Sprinkler/Nozzle Density10 (X) Wet Make VIKING D Area Per Sprinkler - 163 () Dry Model UPRIGHT E Elevation at Highest Outlet - 78' () Deluge Size 1/2" S Hose Allowance - Inside - 100 () Preaction K-Factor 5.6 I Rack Sprinkler Allowance - NA () Other Temp.Rat.155 G Hose Allowance - Outside - 0 Note NFPA #13 2002, 11.2.3.2</pre>	
Calculation Flow Required - 296.40 Press Required - 69.33 BOR Summary C-Factor Used: 120 Overhead 140 Underground W Water Flow Test: Pump Data: Tank or Reservoir: A Date of Test - 3-8-2010 Cap T Time of Test - 3 PM Rated Cap E Static Press - 140 @ Press - R Residual Press - 132 Elev Flow - 1186 Vell Flow - 1186 Proof Flow S Elevation - 0 U P Location - FIRE HYDRANT #47 & #51 ON SITE P L Source of Information - FLOW TEST PERFORMED ON SITE 3-8-2010 Y BY CANNON ENGINEERING , RESULTS ATTACHED TO CALCS.	
C Commodity Class Location O Storage Ht. Area Aisle W. M Storage Method: Solid Piled % Palletized % Rack () Single Row () Conven. Pallet () Auto. Storage () Encap. S R () Double Row () Slave Pallet () Solid Shelf () Non T A () Mult. Row () Slave Pallet () Open Shelf O C R K Flue Spacing Clearance:Storage to Ceiling A Longitudinal Transverse G Horizontal Barriers Provided:	

Page 1 Date 11-04-2010

Water Supply Curve (C)

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

33.782 196.403 77.663 100 296.403 61.722 Demand: D1 - Elevation D2 - System Flow D2 - System Pressure Hose (Adj City) Hose (Demand) D3 - System Demand Safety Margin 1800 1600 1400 1200 FLOW (N ^ 1.85) ខ 1000 800 e: 140 e: 132 : 1186 City Water Supply: C1 - Static Pressure C2 - Residual Pressure: C2 - Residual Flow : 600 200 400 2 4 δ φ B R 110 E 100 130 150 140 120 S 80 R 60 U 70 E 50 10 6 40 30 20 ٩ S

Page 2 Date 11-04-2010

Flow Diagram

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

25.8

Page 3 Date 11-04-2010

24 7.6 14.8 **S5** ← **S4** ← **21** 29.8 23.5 **S1** ← **41** ← **42** 23.5 | 24 15.1 $\texttt{S11} \leftarrow \texttt{S10} \leftarrow \texttt{19}$ 30.3 23.2 S7 ← 39 ← 40 23.2 2 \$12 ← 17 ← 18 22.7 20.7 **\$13 ← 17** 18.8 512 ← 37 ← 38 18.8 16.9 **1** → **11** → **12** 16.9 16.9 1 ← 31 ← 32 16.9 $\begin{array}{cccc} 17 \\ \mathbf{5} & \rightarrow \mathbf{13} & \rightarrow \mathbf{14} \\ & & 17 \end{array}$ 17 5 ← 33 ← 34 17 $\begin{array}{ccc} 17.3 \\ \mathbf{9} & \rightarrow \mathbf{15} & \rightarrow \mathbf{16} \\ & & 17.3 \end{array}$ 17.3 9 ← **35** ← **36** 17.3 18.6 **23 → 24** 18.6 **23** ← **43** ← **44** 18.€ 135.3 1 18.9 $25 \rightarrow 26$ 18.9 **25 ← 45 ← 46** 18.\$ 154.2 19.8 **27** → **28** 19.8 **27 ← 47 ← 48** 19.8

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

29	22.4 → 30											
29	22.4 ← 49	← 50 22.4										
12			→ 1 8	→ 20	25.8 ← 22	← 24	← 26					
32		← 36	← 38	← 40	93.3 ← 42	← 44	← 46	← 48				
50		← 52		← 54		← 56	<i>← T0</i>	R, BO	296.4 R 100	← 102	3 ← 104 ←	- 105 96.4

Page 4 Date 11-04-2010

Fittin	Fittings Used Summary																				
COSC CAL-P	COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407	OBISF	20, C/	a. 9340	7(Page Date	5 11-0	5 11-04-2010	_
Fitting Legend Abbrev. Nam	Φ	7	3/4	-	1 11/4 11/2	1½	5	21/2	e	3½	4	ۍ	Q		10	12 1	14 16	5 18		20 2	24
H L G F Ak	Alarm Viking J1 NFPA 13 90' Standard Elbow Flow Switch Potter VSR NFPA 13 Gate Valve NFPA 13 Long Turn Elbow NFPA 13 90' Flow thru Tee	1 Fitting 0 3.3	2 J geners 1 4	2 ates a Fi 5	1 2 2 3 4 5 6 Fitting generates a Fixed Loss Based on Flow 0 0 0 0 1 1 0.5 1 2 2 3 4 3 4 5 6 8 10 12	s Based 0 8	5 on Flow 1 10	0 + 4 5	10 5 15	8 17 17	20 7 10 73 20 7 10 73	12 25 25	30 3 47 30 3 47	35 4 48 35 34 48	20 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 3 60 7 3 60 7	35 40 7 8 71 81 71 81			50 11 101 101 101 101 101 101 101 101 10	61 12 12

Units Summary

Diameter Units Length Units Flow Units Pressure Units

Inches Feet US Gallons per Minute Pounds per Square Inch

Pressure / Flow Summary - STANDARD

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Page 6 Date 11-04-2010

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
<u>.</u> .		<i>.</i>						
51	78.0	5.6	8.03	na	15.87	0.1	91	7.0
52	78.0	5.6	7.95	na	15.79	0.1	91	7.0
3	78.0	5.6	8.04	na	15.88	0.1	91	7.0
1	78.0	0.0	8.42	na	10.00	0.1	01	1.0
5	78.0	5.6	7.0	na	14.82	0.1	91	7.0
i 54	78.0	5.6	7.12	na	14.94	0.1	91	7.0
1	78.0	5.0	16.61	na	14.04	0.1	01	7.0
7	78.0	5.6	7.91	na	15.75	0.1	91	7.0
8	78.0	5.6	7.83	na	15.67	0.1	91	7.0
9	78.0	5.6	7.93	na	15.77	0.1	91	7.0
9	78.0	0.0	8.31	na			• ·	
11	78.0	5.6	7.28	na	15.11	0.1	91	7.0
10	78.0	5.6	7.4	na	15.23	0.1	91	7.0
9	78.0	0.0	16.29	na		•••		
12	69.0	5.6	13.91	na	20.88	0.1	163	7.0
7	69.0	0.0	13.91	na		•••		
, 13	69.0	5.6	13.66	na	20.7	0.1	163	7.0
7	69.0		20.35	na				
•	51.0		23.44	na				
1	51.0		22.42	na				
1	51.0		28.01	na				
	59.5		19.73	na				
3	59.5		18.7	na				
3	59.5		24.35	na				
0	65.5		16.29	na				
5	65.5		15.98	na				
5	65.5		21.79	na				
3	69.0		14.56	na				
13	69.0		21.01	na				
25	65.5		16.43	na				
15	65.5		23.1	na				
27	59.5		19.23	na				
 17	59.5		26.48	na				
.9	51.0		23.02	na				
19	51.0		32.17	na				
2	50.0		22.75	na				
4	58.5		19.03	na				
6	64.5		16.3	na				
8	68.0		14.53	na				
ñ	70.0		13.62	na				
20 22	70.0		13.7	na				
24	68.0		14.87	na				
26	64.5		16.74	na				
28	58.5		19.53	na				
8 2	58.5		24.87	na				
4	64.5		22.29	na				
6 88	68.0		20.82	na			•	
8	70.0		20.05	na				
10	70.0		20.14	na				
2	68.0		21.34	na				
4	64.5		23.08	na				
6	58.5		26.26	na				
8	58.5		27.05	na				
50	53.0		31.48	na				
5 1	53.0		31.52	na				
52	53.0		34.48	na				
53	50.0		38.03	na				
54 54	8.3		58.26	na				
5	8.3		59.46	na				
55 56	7.2		60.87	na				
~	1.5		60.37	na				
OR	11.2		00.37	lia l				

Flow Summary - Standard

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
100	0.0		69.62	na				
101	0.0		69.78	na				
102	0.0		70.05	na				
103	0.0		77.17	na				
104	0.0		77.44	na				
105	0.0		77.66	na				

Page 7 Date 11

11-04-2010

The maximum velocity is 11.55 and it occurs in the pipe between nodes 51 and 52

Final Calculations - Hazen-Williams

COSCO FIRE PROTECTION INC.

⊣yd. Ref.	Qa	Dia.	Fitting	J	Pipe	Pt	Pt	
		"C"	or		Ftng's	Pe	Pv	******* Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
51	-7.64	1.38		0.0	14.000	8.029		K Factor = 5.60
) 52	-7.64	120.0 -0.0057		0.0 0.0	0.0 14.000	0.0 -0.080		Vel = 1.64
52 52	15.79	1.38		0.0	14.000	7.949		K Factor = 5.60
)	10.70	120.0		0.0	0.0	0.0		
53	8.15	0.0065		0.0	14.000	0.091		Vel = 1.75
53	15.88	1.38	1T	6.0	2.000	8.040 0.0		K Factor = 5.60
21	24.03	120.0 0.0480		0.0 0.0	6.000 8.000	0.384		Vel = 5.15
21	29.75	1.61	1T	8.0	10.000	8.424		
		120.0		0.0	8.000	3.465		
.2	53.78	0.1007		0.0	18.000	1.813		Vel = 8.48
	0.0 53.78					13.702		K Factor = 14.53
S5	14.82	1.38		0.0	6.000	7.000	_	K Factor = 5.60
)		120.0		0.0	0.0	0.0		
54	14.82	0.0197		0.0	6.000	0.118		Vel = 3.18
54 >	14.94	1.38 120.0	1T	6.0 0.0	12.300 6.000	7.118 0.0		K Factor = 5.60
, 21	29.76	0.0714		0.0	18.300	1.306		Vel = 6.38
	0.0 29.76					8.424		K Factor = 10.25
S1	23.51	1.38	1T	6.0	180.000	8.029		
5	20.01	120.0	•••	0.0	6.000	0.0		
41	23.51	0.0462		0.0	186.000	8.585		Vel = 5.04
41	0.0	1.61 120.0	1T	8.0 0.0	10.000 8.000	16.614 4.331		
o 42	23.51			0.0	18.000	0.392		Vel = 3.71
	0.0					04 007		
	23.51				14.000	21.337		K Factor = 5.09
S7 D	-7.46	1.38 120.0		0.0 0.0	14.000 0.0	7.911 0.0		K Factor = 5.60
58 S8	-7.46	-0.0055		0.0	14.000	-0.077		Vel = 1.60
S8	15.68	1.38		0.0	14.000	7.834		K Factor = 5.60
o S9	8.22	120.0 0.0066		0.0 0.0	0.0 14.000	0.0 0.092		Vel = 1.76
59 S9	15.76	1.38	1T	6.0	2.000	7.926		K Factor = 5.60
39 D	10.70	120.0	. 1	0.0	6.000	0.0		
19	23.98	0.0479		0.0	8.000	0.383		Vel = 5.14
19	30.34	1.61	1T	8.0	10.000 8.000	8.309 3.465		
o 20	54.32	120.0 0.1026		0.0 0.0	8.000 18.000	3.465 1.847		Vel = 8.56
	0.0		. <u> </u>					
	54.32				<u></u>	13.621		K Factor = 14.72
S11	15.11	1.38		0.0	6.000	7.277		K Factor = 5.60
o S10	15.11	120.0 0.0203		0.0 0.0	0.0 6.000	0.0 0.122		Vel = 3.24
S10	15.23	1.38		0.0	12.300	7.399	· · · · · · · · · · · · · · · · · · ·	K Factor = 5.60
0		120.0		0.0	0.0	0.0		Vel = 6.51

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

COSCO FIRE PROTECTION INC.

	Qa	Dia. "C"	Fitting or		Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Ref. Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
	0.0 30.34					8.309		K Factor = 10.53
57	23.21	1.38	1 T	6.0	180.000	7.911		
)		120.0		0.0	6.000	0.0		
39	23.21	0.0451		0.0	186.000	8.383		Vel = 4.98
39	0.0	1.61	1T	8.0	10.000 8.000	16.294 3.465		
) 40	23.21	120.0 0.0212		0.0 0.0	18.000	0.382		Vel = 3.66
+0	0.0	0.0212		0.0	10.000	0.002		
	23.21					20.141		K Factor = 5.17
512	2.05	1.38	1T	6.0	6.000	13.908		K Factor = 5.60
)		120.0		0.0	6.000	0.0		
17	2.05	0.0005		0.0	12.000	0.006		Vel = 0.44
17	20.69	1.61	1T	8.0	1.000	13.914		
	00 74	120.0		0.0	8.000	0.433		Vel = 3.58
18	22.74	0.0206		0.0	9.000	0.185		Vei - 3.36
	0.0 22.74					14.532		K Factor = 5.97
S13	20.70	1.38	1T	6.0	1.000	13.659		K Factor = 5.60
5	20170	120.0		0.0	6.000	0.0		
17	20.7	0.0364		0.0	7.000	0.255	<u> </u>	Vel = 4.44
	0.0 20.70					13.914		K Factor = 5.55
S12	18.84	1.38	1T	6.0	204.400	13.908		
512	10.04	120.0	11	0.0	6.000	0.0		
37	18.84	0.0306		0.0	210.400	6.447		Vel = 4.04
37	0.0	1.61	1T	8.0	1.000	20.355		
C		120.0		0.0	8.000	-0.433		
38	18.84	0.0144		0.0	9.000	0.130		Vel = 2.97
	0.0 18.84					20.052		K Factor = 4.21
1	-16.93	1.38	1T	6.0	34.400	23.439		
0	-10.85	120.0		0.0	6.000	0.0		
11	-16.93	-0.0251		0.0	40.400	-1.016	. <u></u>	Vel = 3.63
11	0.0	1.61	1T	8.0	1.000	22.423		
0		120.0		0.0	8.000	0.433		
12	-16.93	-0.0118		0.0	9.000	-0.106		Vel = 2.67
	0.0 -16.93					22.750		K Factor = -3.55
1	16.93	1.38	1T	6.0	176.000	23.439		
0	10.00	120.0		0.0	6.000	0.0		
31	16.93	0.0251		0.0	182.000	4.576		Vel = 3.63
31	0.0	1.61	1T	8.0	1.000	28.015		
0		120.0		0.0	8.000	-3.248		Vel = 2.67
32	16.93	0.0118		0.0	9.000	0.106		VGI - 2.07
	0.0 16.93					24.873		K Factor = 3.39

Final Calculations - Hazen-Williams

COSCO FIRE PROTECTION INC.

Hyd.	Qa	Dia.	Fitting	1	Pipe	Pt	Pt	
Ref.	Qa	"C"	or		Ftng's	Pe	Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
	····							
5	-17.02	1.38	1T	6.0	34.400	19.728		
o 13	-17.02	120.0 -0.0254		0.0 0.0	6.000 40.400	0.0 -1.025		Vel = 3.65
13	0.0	1.61	1T	8.0	1.000	18.703	*****	
c		120.0		0.0	8.000	0.433		
14	-17.02	-0.0120		0.0	9.000	-0.108		Vel = 2.68
	0.0 -17.02					19.028		K Factor = -3.90
5	17.02	1.38	1T	6.0	176.000	19.728		
D		120.0		0.0	6.000	0.0		
33	17.02	0.0254	4 -	0.0	182.000	4.620		Vel = 3.65
33 5	0.0	1.61 120.0	1T	8.0 0.0	1.000 8.000	24.348 -2.166		
34	17.02	0.0120		0.0	9.000	0.108		Vel = 2.68
	0.0					00.000		K Faster = 2.60
	17.02		4 T	0.0		22.290	ruin.	K Factor = 3.60
9 0	-17.29	1.38 120.0	1T	6.0 0.0	6.000 6.000	16.294 0.0		
, 15	-17.29	-0.0262		0.0	12.000	-0.314		Vel = 3.71
15	0.0	1.61	1T	8.0	1.000	15.980		
0		120.0		0.0	8.000	0.433		Vel = 2.72
16	-17.29	-0.0123		0.0	9.000	-0.111		Vei - 2.72
	0.0 -17.29					16.302		K Factor = -4.28
9	17.29	1.38	1T	6.0	204.400	16.294		
0		120.0		0.0	6.000	0.0		
35	17.29	0.0261		0.0	210.400	5.500		Vel = 3.71
35	0.0	1.61 120.0	1T	8.0 0.0	1.000 8.000	21.794 -1.083		
o 36	17.29	0.0123		0.0	9.000	0. <u>111</u>		Vel = 2.72
	0.0							
	17.29					20.822		K Factor = 3.79
23	-18.55	1.61 120.0	1T	8.0 0.0	1.000 8.000	14.562 0.433		
o 24	-18.55	-0.0140		0.0	9.000	-0.126		Vel = 2.92
	0.0							
	-18.55	_				14.869	<u> </u>	K Factor = -4.81
23	18.55	1.38	1T	6.0 0.0	210.400 6.000	14.562 0.0		
o 43	18.55	120.0 0.0298		0.0	216.400	0.0 6.446		Vel = 3.98
43	0.0	1.61	1T	8.0	1.000	21.008		
0		120.0		0.0	8.000	1.949		
44	18.55	0.0140		0.0	9.000	0.126		Vel = 2.92
	0.0 18.55					23.083		K Factor = 3.86
25	-18.89	1.61	1T	8.0	1.000	16.435		
to	-10.00	120.0		0.0	8.000	0.433		
26	-18.89	-0.0146		0.0	9.000	-0.131		Vel = 2.98

	CTION INC.						Page 11
UNIVERS	ITY, SAN LUIS	OBISPO	, CA. 93	407			Date 11-04-2010
Qa	Dia.		-	Pipe	Pt	Pt	****** Notoo ******
Ot	-						****** Notes *****
	1 // C	Eqv.	L11.	- Otar			<u></u>
							<u></u>
0.0 -18.89					16.737		K Factor = -4.62
	1.38	1T	6.0	210.400	16.435		
	120.0		0.0	6.000	0.0		
18.89	0.0308		0.0	216.400			Vel = 4.05
0.0	1.61	1T	8.0	1.000			
40.00							Vel = 2.98
	0.0144		0.0	9.000	0.130		Vei - 2.90
0.0 18.89					26.261		K Factor = 3.69
-19.76	1.61	1T	8.0	1.000	19.235		
	120.0		0.0	8.000	0.433		
	-0.0158		0.0	9.000	-0.142		Vel = 3.11
					19.526		K Factor = -4.47
	1.38	1T	6.0	210.400		·	
10.10	120.0		0.0	6.000	0.0		
19.76	0.0335		0.0	216.400	7.241		Vel = 4.24
0.0	1.61	1T	8.0	1.000	26.476		
							$\lambda = 0.44$
	0.0158		0.0	9.000	0.142		Vel = 3.11
					27.051		K Factor = 3.80
	1.61	1T	8.0	1.000			
<i>LL</i> . 1 <i>L</i>	120.0	••	0.0	8.000	13.426		
-22.42	-0.0200		0.0	9.000	-0.180		Vel = 3.53
0.0					00.007		K Faster - 2.72
							K Factor = -3.72
22.42		11					
22 42							Vel = 4.81
		1T					and the second
0.0				8.000	-0.866		
22.42	0.0199		0.0	9.000	0.179		Vel = 3.53
0.0					31 479		K Factor = 4.00
	0 157	=	0.0	14 000			
-10.93							
-16.93			0.0	14.000	-0.041		Vel = 1.49
			0.0	12.300	19.028		
	120.0		0.0	0.0	-2.599		
-33.94	-0.0103		0.0	12.300		<u> </u>	Vel = 2.98
-17.29			0.0	11.500	16.302		
	120.0		0.0	0.0	-1.516		
	Qa Qt 0.0 -18.89 18.89 18.89 0.0 18.89 0.0 18.89 0.0 18.89 -19.76 0.0 -19.76 19.76 19.76 19.76 19.76 0.0 19.76 0.0 19.76 0.0 19.76 0.0 19.76 0.0 19.76 0.0 19.76 22.42 22.42 22.42 0.0 -22.42 22.42 0.0 -22.42 -22.42 0.0 -22.42 -23.94	Qa Dia. "C" Qt Pf/Ft 0.0 - 18.89 1.38 18.89 1.38 18.89 0.0308 0.0 1.61 120.0 18.89 0.0 1.61 120.0 18.89 0.0 1.61 120.0 18.89 -19.76 1.61 120.0 -19.76 -19.76 1.38 0.0 -19.76 0.0 1.61 120.0 1.9.76 0.0 1.61 120.0 19.76 0.0 1.61 120.0 19.76 -22.42 1.61 120.0 -22.42 22.42 0.0200 0.0 1.61 120.0 -22.42 22.42 0.0423 0.0 1.61 120.0 -22.42 -16.93 -0.0029 0.0 2.157	QaDia. "C" or QtFitting or Eqv.0.0 -18.89	QaDia. "C" OfFitting or Eqv.QtPf/FtEqv.0.0 -18.891.381T18.891.381T18.891.381T18.890.03080.00.01.611T120.00.018.890.01440.00.01.611T19.761.611T19.761.611T19.760.01580.00.0120.00.0-19.760.03350.00.01.611T19.760.03350.00.01.611T19.760.01580.00.01.611T19.760.01580.00.01.611T19.760.01580.00.01.611T19.760.01580.00.01.611T19.760.01580.00.01.611T120.00.022.421.611T22.420.02000.00.00.00.022.420.04230.00.0120.00.00.022.420.01990.00.00.022.420.01990.00.0120.00.0-17.012.1570.0-120.00.00.0-17.012.1570.0-17.022.1570.0 <td>"C" or Ftng's Total Qt Pf/Ft Eqv. Ln. Total 0.0 -18.89 1.38 1T 6.0 210.400 18.89 0.308 0.0 26.00 6.000 18.89 0.3038 0.0 216.400 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 9.000 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 9.000 0.0 1.889 - - 9.000 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 - 9.000 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 9.000 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 9.000 0.0 2.02.0 0.0 9.000</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	"C" or Ftng's Total Qt Pf/Ft Eqv. Ln. Total 0.0 -18.89 1.38 1T 6.0 210.400 18.89 0.308 0.0 26.00 6.000 18.89 0.3038 0.0 216.400 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 9.000 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 9.000 0.0 1.889 - - 9.000 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 - 9.000 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 9.000 0.0 1.61 1T 8.0 1.000 120.0 0.0 8.000 9.000 0.0 2.02.0 0.0 9.000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

11.500

6.000

6.000

0.0

-0.254

14.532

-0.866

-0.045

Vel = 4.50

Vel = 2.50

0.0

0.0

0.0 0.0

18

18

20

to

-51.23

22.74

-28.49

-0.0221

2.157

-0.0075

120.0

Final Calculations - Hazen-Williams

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

-lyd. Ref.	Qa	Dia. "C"	Fitting or	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv. Ln.	Total	Pf	Pn	Notes
20	54.32	2.157	0.0	13.000	13.621		
)	75.02	120.0 0.0062	0.0 0.0	0.0 13.000	0.0 0.081		Vel = 2.27
22	25.83	2.157	0.0	6.000	13.702		V61 - 2.21
22	53.79	120.0	0.0	0.0	0.866		
, 24	79.62	0.0502	0.0	6.000	0.301		Vel = 6.99
24	-18.56	2.157	0.0	11.500	14.869		
)		120.0	0.0	0.0	1.516		
26	61.06	0.0306	0.0	11.500	0.352		Vel = 5.36
26	-18.89	2.157	0.0	12.300	16.737		
	40.47	120.0	0.0	0.0	2.599 0.190		Vel = 3.70
28	42.17	0.0154	0.0	<u>12.300</u> 14.000	19.526		Vei - 3.70
28	-19.75	2.157 120.0	0.0 0.0	0.0	16.674		
30	22.42	0.0048	0.0	14.000	0.067		Vel = 1.97
	0.0						
	22.42				36.267		K Factor = 3.72
32	16.93	2.635	0.0	14.000	24.873		
)	40.00	120.0	0.0	0.0	-2.599		Vel = 1.00
34	16.93	0.0011	0.0	14.000	0.016		ver - 1.00
34	17.01	2.635 120.0	0.0 0.0	12.300 0.0	22.290 -1.516		
5 36	33.94	0.0039	0.0	12.300	0.048		Vel = 2.00
36	17.29	2.635	0.0	11.500	20.822		
5		120.0	0.0	0.0	-0.866		
38	51.23	0.0083	0.0	11.500	0.096		Vel = 3.01
38	18.84	2.635	0.0	6.000	20.052		
D	70.07	120.0	0.0	0.0	0.0		Vel = 4.12
40	70.07	0.0148	0.0	6.000	0.089		Ver = 4.12
40	23.21	2.635 120.0	0.0 0.0	13.000 0.0	20.141 0.866		
o 42	93.28	0.0254	0.0	13.000	0.330		Vel = 5.49
42	23.51	2.635	0.0	6.000	21.337		
0		120.0	0.0	0.0	1.516		
44	116.79	0.0383	0.0	6.000	0.230		Vel = 6.87
44	18.55	2.635	0.0	11.500	23.083		
0	105.04	120.0	0.0	0.0	2.599		$V_{0} = 7.06$
46	135.34	0.0503	0.0	11.500	0.579	. <u></u>	Vel = 7.96
46	18.89	2.635 120.0	0.0 0.0	12.300 0.0	26.261 0.0		
o 48	154.23	0.0642	0.0	12.300	0.790		Vel = 9.07
48	19.76	2.635	1T 16.47		27.051		
0	10.70	120.0	0.0	16.474	2.382		
51	173.99	0.0802	0.0	25.974	2.084		Vel = 10.24
	0.0						
	173.99				31.517		K Factor = 30.99
50	22.42	2.635	1T 16.47		31.479		
0		120.0	0.0	16.474	0.0		

Page

12

Final Calculations - Hazen-Williams

COSCO FIRE PROTECTION INC. .

Hyd.	Qa	Dia.	Fitting	g	Pipe	Pt	Pt	
Ref.		"C"	or		Ftng's	Pe	Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
E1	472.09	2.625	2E	16.474	13.000	31.517		
51 o	173.98	2.635 120.0	20	0.0	16.474	0.0		
52	196.4	0.1004		0.0	29.474	2.960		Vel = 11.55
52	0.0	2.635	2E	16.474	6.000	34.477		_
to		120.0		0.0	16.474	1.299		
53	196.4	0.1004		0.0	22.474	2.257		Vel = 11.55
53	0.0	3.26	2E	18.815	42.000	38.033		
to		120.0		0.0	18.815	18.060		
54	196.4	0.0356		0.0	60.815	2.166		Vel = 7.55
54	0.0	3.26	2E	18.815	15.000	58.259 0.0		
to 55	196.4	120.0 0.0356		0.0 0.0	18.815 33.815	1.204		Vel = 7.55
55	0.0	3.26		20.159	6.000	59.463		
to	0.0	120.0	11	0.0	20.159	0.476		
56	196.4	0.0356		0.0	26.159	0.932		Vel = 7.55
56	0.0	3.26	1T	20.159	5.000	60.871		
to	••••	120.0	1E	9.408	29.567	-1.732		
TOR	196.4	0.0356		0.0	34.567	1.231		Vel = 7.55
TOR	0.0	3.26	1E	9.408	7.000	60.370		
to		120.0	1Fsp	0.0	24.192	7.851		* Fixed loss = 3
BOR	196.4	0.0356	1G 1Avk	1.344 13.44	31.192	1.110		Vel = 7.55
BOR	100.00	6.357	3E	52.808	6.000	69.331		Qa = 100
to		120.0	1T	37.72	90.528	0.0		Vel = 3.00
100	296.4	0.0030		0.0	96.528	0.285		Ver - 3.00
100	0.0	6.16 140.0	4L	51.645 0.0	10.000 51.645	69.616 0.0		
to 101	296.4	0.0026		0.0	61.645	0.159		Vel = 3.19
101	0.0	6.16	6L	77.467	30.000	69.775		
to	0.0	140.0	θĽ	0.0	77.467	0.0		
102	296.4	0.0026		0.0	107.467	0.278		Vel = 3.19
102	0.0	6.16	2E	40.168	6.000	70.053		
to		140.0		0.0	40.168	7.000		* Fixed loss = 7
103	296.4	0.0026		0.0	46.168	0.120		Vel = 3.19
103	0.0	6.16	1G	4.304	30.000	77.173		
to	000.4	140.0	2L	25.822	73.163	0.0		Vel = 3.19
104	296.4	0.0026	<u>1T</u>	43.037	103.163	0.266		ver - 3.18
104	0.0	8.27	2L	41.12	260.000	77.439		
to 105	296.4	140.0 0.0006	1G 1T	6.326 55.354	102.800 362.800	0.0 0.224		Vel = 1.77
100	·····	0.0000		00.004		0.667		
	0.0 296.40					77.663		K Factor = 33.63

Fire Hydrant Flow & Pressure Test

Time of test: 4:40 PM Date of test: 3/8/2010 Elev. @ Hydrant: 330.57 Class Hydrant Site ID#: 47 Street Address Adjacent to Hydrant: Campus Way Number of ports flowed: 1

Static:	150	psi before flowing
Residual:		psi while flowing
Pitot:	50	pitot gauge reading
Nozzle Coefficient:	0.9	(Note 3)
Diameter:	2.5	size of opening tested
This hydrant is flowing:	1186.48	GPM from the test outlet
Projected available hydrant flow @ 20psi:		GPM (Note 1)
2nd Static: (with handheld pitot gauge)		secondary psi before flowing
2nd Residual:		secondary psi while flowing
The main can be expected to flow about:		<u>GPM</u>

Number of Tanks in System: 2 Tank No. 1: N/A Tank No. 2: N/A Water Main Size:___12"

Pumps:

Notes:

1. Projected available flows calculated at 20 psi residual, or 1/2 the static pressure for low pressure hydrants having static pressures of less than 40 psi.

2. This calculator is based on established Hazen-Williams formulas and is provided for convenience and estimation purposes only. The author and Cannon express no warranty for its suitability for any particular purpose.

3. Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is opened.

3/18/2010

140

132

0.9

2.5

0.00

Fire Hydrant Flow & Pressure Test

 Date of test: 3/8/2010

 Hydrant Site ID#: 51
 Class______

 Street Address Adjacent to Hydrant: Adjacent to new pool

 Number of ports flowed: 1

Time of test: <u>5:00 PM</u> Elev. @ Hydrant: <u>346.00</u>

psi before flowing

psi while flowing pitot gauge reading

GPM (Note 1)

size of opening tested

GPM from the test outlet

secondary psi before flowing secondary psi while flowing

Static:
Residual:
Pitot:
Nozzle Coefficient:
Diameter:
This hydrant is flowing:
Projected available hydrant flow @ 20psi:
2nd Static: (with handheld pitot gauge)
2nd Residual:
The main can be expected to flow about:

of Tanks in System: <u>2</u> Tank No. 1: N/A Tank No. 2: N/A Water Main Size:____12''_____ Pumps:

<u>GPM</u>

(Note 3)

Notes:

1. Projected available flows calculated at 20 psi residual, or ½ the static pressure for low pressure hydrants having static pressures of less than 40 psi.

2. This calculator is based on established Hazen-Williams formulas and is provided for convenience and estimation purposes only. The author and Cannon express no warranty for its suitability for any particular purpose.

3. Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is

Field Notes:

Sprinkler 52a

TECHNICAL DATA

MICROFAST® AND MICROFASTHP® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

1. DESCRIPTION

Viking Microfast[®] and MicrofastHP[®] Quick Response Horizontal Sidewall Sprinklers are small thermosensitive glass bulb spray sprinklers available with various finishes and temperature ratings to meet design requirements. The special Polyester and Teflon[®] coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive atmospheres and are cULus listed as corrosion resistant as indicated in the Approval Chart. (Note: FM Global has no approval classification for Teflon[®] and Polyester coatings as corrosion resistant.)

2. LISTINGS AND APPROVALS

cULus Listed: Category VNIV FM Approved: Class 2020

Refer to the Approval Chart on page 52d and Design Criteria on page 52e for cULus and FM approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Available since 1987.

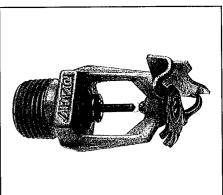
Minimum Operating Pressure: 7 psi (0.5 bar) Maximum Working Pressure: Sprinkler VK344 is rated for use with water working pressures ranging from the minimum 7 psi (0.5 bar) up to

250 psi (17 bar) for high-pressure systems. High-pressure (HP) sprinklers can be identified by locating "250" stamped on the deflector. Sprinklers VK304, VK333, and VK335 are rated to a maximum 175 psi (12 bar) wwp.

Factory tested hydrostatically to 500 psi (34.5 bar) Testing: U.S.A. Patent No. 4,831,870 Nominal K-Factor: Refer to the Approval Chart Glass-bulb fluid temperature rated to -65 °F (-55 °C) Overall Length: Refer to the Approval Chart

Material Standards:

Frame Casting: Brass UNS-C84400 Deflector: Copper UNS-C19500 Bushing (for sprinklers VK333 and VK344): Brass UNS-C36000 Bulb: Glass, nominal 3 mm diameter Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with Teflon Tape Screw: Brass UNS-C36000 Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400 Pip Cap Attachment (for sprinklers VK333 and VK344): Brass UNS-C36000 For Teflon® Coated Sprinklers: Belleville Spring-Exposed, Screw-Nickel Plated, Pip Cap-Teflon® Coated For Polyester Coated Sprinklers: Belleville Spring-Exposed


Ordering Information: (Also refer to the current Viking price list.)

Order Quick Response Horizontal Sidewall Sprinklers by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome-Enloy[®] = F, White Polyester = M-/W, Black Polyester = M-/B, and Black Teflon[®] = N Temperature Suffix (°F/°C): 135°/68° = A, 155°/68° = B, 175°/79° = D, 200°/93° = E, and 286°/141° = G For example, sprinkler VK304 with a Brass finish and a 155 °F/68 °C temperature rating = Part No. 06725BAB

Form No. F_080688

Replaces page 52a-f, dated March 7, 2008. (Revised FM Design Criteria and added the Model G-1 Escutcheon.)

Viking Technical Data may be found on

The Viking Corporation's Web site at

http://www.vikinggroupinc.com.

The Web site may include a more recent

edition of this Technical Data Page.

TECHNICAL DATA

MICROFAST® AND MICROFASTHP® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

Available Finishes And Temperature Ratings:

Refer to Table 1

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking data book.)

Sprinkler Wrenches:

- A. Standard Wrench: Part No. 10896W/B (available since 2000).
- B. Wrench for recessed sprinklers with protective shields: Part No. 13655W/B** (available since 2003)

**A 1/2" ratchet is required (not available from Viking).

Sprinkler Cabinets:

- A. Six-head capacity: Part No. 01724A (available since 1971)
- B. Twelve-head capacity: Part No. 01725A (available since 1971)

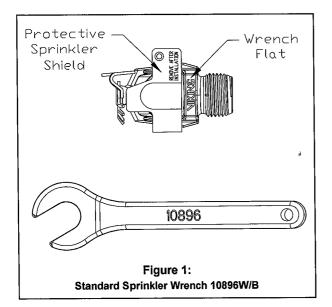
4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE


Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

Viking Quick Response Horizontal Sidewall Sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

February 13, 2009

Sprinkler 52c

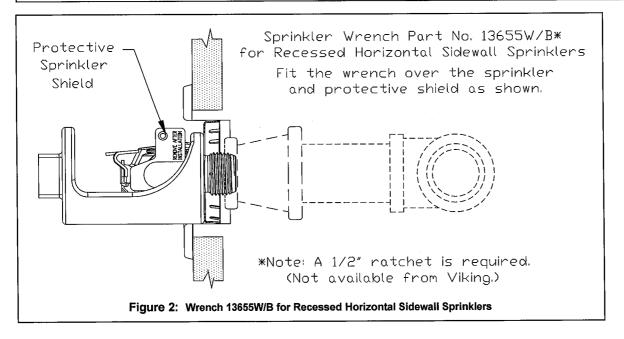
NIKING

TECHNICAL DATA

MICROFAST® AND MICROFASTHP® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

TABLE 1:	AVAILABLE SPRINKLER TEMPERATU	RE RATINGS AND FINISHES	
Sjamislar ramaasiigre Cinesiinanaa	รับสองเอกของการส ใจอยู่ออสเตร รสมัยร	สมมายมาก การการการการการการการการการการการการการก	lossifo Ciorier,
Ordinary	135 °F (57 °C)	100 °F (38 °C)	Orange
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green
High	286 °F (141 °C)	225 °F (107 °C)	Blue


Sprinkler Finishes: Brass, Chrome-Enloy[®], White Polyester, Black Polyester, and Black Teflon[®] **Corrosion-Resistant Coatings³:** White Polyester, Black Polyester, and Black Teflon[®]

Footnotes

¹ The sprinkler temperature rating is stamped on the deflector.

² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

³ The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated in the Approval Chart. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester and Teflon[®] coatings. For Teflon[®] coated open sprinklers only, the waterway is coated.

Sprinkler 52d

February 13, 2009

NIKING

TECHNICAL DATA

MICROFAST® AND MICROFASTHP® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

							novall .					Tempo Filitos	eine	(<u>1557</u>
			a)]teizer;	ાસ્ટ્રસ્ટ્રાહી	(dictate) 24	કામાં? ભેશ	विंग्रिकेन्द्रविके भूत्रविकित्वन	(a)3; (=)34)	લંભવાની જેલે:	છતી જેવને છે.	la A	Finish C3<= Eccute	icen((fep	(ic:iic)
<u></u>			<u>. /</u>						and the strength of the strength os strength of the strength os strength of the strength os strength o				C. C. L. L.	
		Standa	rd Orifi	ce, Defle	ہ ctor mu	st be loca	175 PSI (1 ated 4" to (2 Dar) 6" (102	mm to 152	mm) below	the ceiling.			
Base Part	SIN	Maximum		ad Size	No	minal actor	Overall L			Listin	gs and Appr Design Crite		52e.)	
Number ¹	OIN	Pressure	NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM⁵	NYC ⁶	LPCB	Œ	۲
06725B	VK304	175 psi	1/2"	15 mm	5.6	80.6	2-1/2	64			A1X, B1Y			
			d Orifi	ce, Defle	ctor mu				2 mm to 304	mm) below				
06725B	VK304	175 psi	1/2"	15 mm	5.6	80.6	2-1/2	64	A1X		A1X	-		
		Small	Orifice	e ⁸ , Deflec	tor mus	t be locat	ed 4" to 6	" (102 r	nm to 152 m					
Base Part	SIN	Maximum	Thre	ad Size		minal Factor	Overall L	ength	(R		igs and App Design Crite		52e.)	
Number ¹		Pressure	NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM	NYC ⁷	LPCB	<u>(</u>	
10035 ⁹	VK333	175 psi	1/2"	15 mm	2.8	40.3	2-1/2	64	A1X, B1W		A1X			
08983	VK335	175 psi	3/8"	10 mm	4.2	60.5	2-1/2	64						
		Smal	Orifice	e ^s . Deflec	tor mus		num 250 P ted 4" to 6		P mm to 152 n	nm) below t	he ceiling.			
12287º	VK344	250 psi	1/2"	15 mm	2.8	40.3	2-1/2	64	A1X, B1W		A1X			
						1		L		Anor	oved Escuto	heons		
A - 135 °F (79 °C), B - 135 °F	(57 °C), 200 °F (93 (57 °C),	nperature Ra 155 °F (68 3 °C), and 286 155 °F (68 °F (93 °C)	°C), 17 5 °F (141	°C) 5.°⊑	Brass, (ester ¹⁰ , Teflon ^{®10}	Black Poly	nloy®, White rester¹º, and	e Poly- d Black	the Viki or reces G-1 Rec X - Installed Viking N Y - Installe the Viki or reces Recess	ng Microfast seed with the cessed Escu with standa Aicrofast® Mo d with stand ng Microfast ssed with the ed Escutche	rd surface-mo odel F-1 Adju dard surface- t [®] Model F-1 e Viking Micr	Adjustabl omatic® Me ounted ese stable Ese mounted Adjustabl omatic® M	e Escut odel E-1 cutcheor cutcheor escutch e Escut lodel E-	cheon ¹¹ , , E-2, or ns or the n ¹¹ leons or cheon ¹¹ , 1 or E-2
							Footnote	S						
² Metric K-1 10.0.	factor me		hown is	when pr	essure i	s measure	ng's current ed in Bar. V	price s Vhen pr	essure is me		^o a, divide the	e metric K	factor s	hown by
								other ap	provals may	be in proce	SS.			
		iters Laborat						Provo	ntion Data Si	neete and Te	chnical Advis	on Rullet	ins	
1									ber 219-76-S			bory Dunci		
	-	City of New `								<i>и</i> ч.				
⁸ Listings a	re limited		rd Occu	ipancies, v	with hyd	raulically c	alculated w	et syste	ems. Exception	on: 4.2K spr	inklers may b	e installeo	l on hyd	raulically
1		e is bushed.						, un ne						
		orrosion-resi												
¹¹ The Vikin	g Microfa		-1 Adjus	stable Esc the face	utcheor of the w	n is consid all or ceilir	ered a surf ng.	ace-mo	ounted escuto	cheon becau	se it does no	t allow the	e fusible	element

TECHNICAL DATA

MICROFAST® AND MICROFASTHP® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLERS

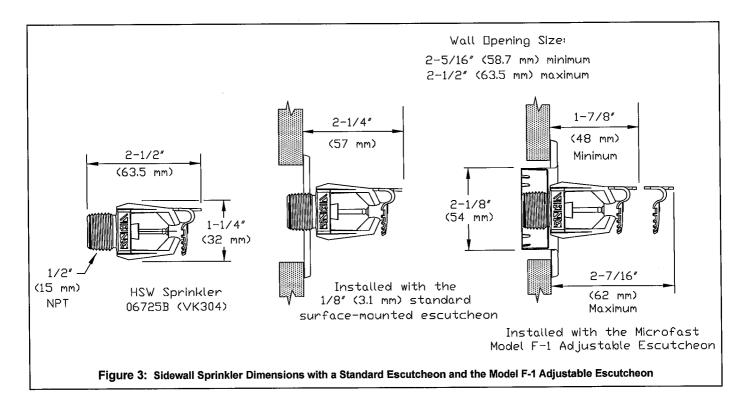
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

DECEMENT OR MARKED (CERC) (CER

cULus Listing Requirements:

Microfast[®] and MicrofastHP[®] Quick Response Horizontal Sidewall Sprinklers are cULus Listed as indicated in the Approval Chart for installation in accordance with the latest edition of NFPA 13 for sidewall standard spray sprinklers.

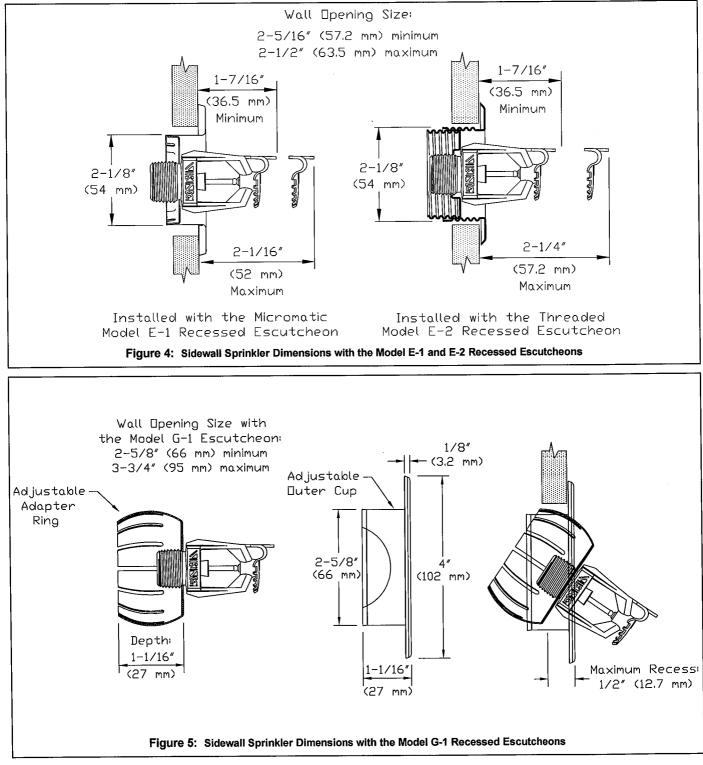

- Limited to Light Hazard occupancies only (Small orifice sprinklers are limited to Light Hazard where allowed by the installation standards being applied, with hydraulically calculated wet systems only. Exception: 4.2K sprinklers may be installed on hydraulically calculated dry pipe systems where piping is corrosion resistant or internally galvanized.)
- Protection areas and maximum spacing shall be in accordance with the tables provided in NFPA 13. Minimum spacing allowed is 6 ft. (1.8 m).
- Refer to the Approval Chart for allowable deflector distance below the ceiling. Align with the leading edge of the deflector parallel to the ceiling.
- Maximum distance from end walls shall be no more than one-half of the allowable distance between sprinklers. The distance shall be measured perpendicular to the wall. Minimum distance from end walls is 4 in. (102 mm).
- The sprinkler installation and obstruction rules contained in NFPA 13 for sidewall standard spray sprinklers must be followed.

FM Approval Requirements:

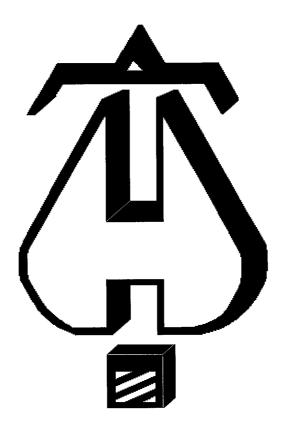
For installation in accordance with the latest applicable FM Loss Prevention Data Sheets and Technical Advisory Bulletins. FM Global Loss Prevention Data Sheets (including 2-8N) and Technical Advisory Bulletins contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page QR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.


Sprinkler 52f

NIKING


TECHNICAL DATA

MICROFAST® AND MICROFASTHP® QUICK RESPONSE HORIZONTAL SIDEWALL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

Replaces page 52a-f, dated March 7, 2008. (Revised FM Design Criteria and added the Model G-1 Escutcheon.)

.... Fire Protection by Computer Design

COSCO FIRE PROTECTION INC. 4233 W. SIERRA MADRE AVE. **SUITE #108** FRESNO, CA. 93722 (559) 275-3795

Job Name : CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407 System Contract

Building : EXIST GYM, WRESTLING RM, REMOTE AREA E3 Location : RECREATION CENTER EXPANSION : E-WRESTLE : FD-1075

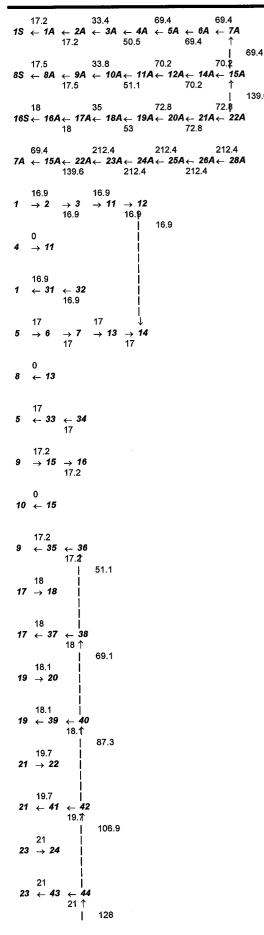
Data File : CALPOLY-E3WRESTLING.WXF

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Hydraulic Design Information Sheet Name - CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407 Date - 11-04-2010 Location - RECREATION CENTER EXPANSION System No. - E-WRESTLE Building - EXIST GYM, WRESTLING RM, REMOTE AREA E3 Contractor - COSCO FIRE PROTECTION INC. Contract No. - FD-1075 Drawing No. - FP-E1 PIPE Calculated By - KO Ceiling Height - 13'-4" Construction: () Combustible (X) Non-Combustible Occupancy - LIGHT HAZARD Ord.Haz.Gp. () 1 () 2 () 3 () Ex.Haz. S (X) NFPA 13 (X) Lt. Haz. () NFPA 231 () NFPA 231C () Figure Curve Y S Other Made By Date Т Specific Ruling Е Sprinkler/Nozzle Area of Sprinkler Operation - 1500 System Type М - .10 (X) Wet Make VIKING Density - 120 Model UPRIGHT () Dry D Area Per Sprinkler Elevation at Highest Outlet - 13'-4" () Deluge Size 1/2" Ε Hose Allowance - Inside - 100 () Preaction K-Factor 5.6 S - NA Rack Sprinkler Allowance () Other Temp.Rat.155 Т Hose Allowance - Outside - 0 G Ν Note NFPA #13 2002, 11.2.3.2 Calculation Flow Required - 312.40 Press Required - 94.10 BOR 140 Underground C-Factor Used: 120 Overhead Summary Tank or Reservoir: Pump Data: Water Flow Test: W Date of Test - 3-8-2010 Cap. -Α Time of Test - 3 PM Rated Cap.-Elev.-Т Static Press - 140 @ Press Ε Residual Press - 132 Elev. Well R Proof Flow Flow - 1186 - 0 S Elevation U Location - FIRE HYDRANT #47 & #51 ON SITE Ρ Ρ Source of Information - FLOW TEST PERFORMED ON SITE 3-8-2010 L BY CANNON ENGINEERING , RESULTS ATTACHED TO CALCS. Υ Class Location С Commodity Area Aisle W. 0 Storage Ht. Storage Method: Solid Piled Palletized 8 Rack 8 М Μ () Conven. Pallet () Encap. () Auto. Storage) Single Row () Slave Pallet () Non () Solid Shelf () Double Row S R () Mult. Row () Open Shelf Т Α 0 С Clearance:Storage to Ceiling Κ Flue Spacing R Transverse Longitudinal А G Е Horizontal Barriers Provided:

Page 1 Date 11-04-2010

Offware Statute 140 Ommand C2. Testatual Pressure: 140 D1-Execution 2465 C2. Testatual Pressure: 120 D1-Execution 2465 C2. Testatual Pressure: 120 D2-Execution D1-Execution C2. Testatual Pressure: 120 D2-Execution D2-Execution D2-Execution C2. Testatual Pressure: 120 D2-Execution D2-Execut	COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407	ECTION INC. ITY, SAN LUIS	OBISPO, CA.	93407			Page 2 Date 11-04-2010
C1 C2 C2 D2 C2 C2 D3 C3 C2 D4 C4 C4 D3 C4 C4 D4 C4 C4 D5 C4 C4 C4 C4 C4 C50 200 100 FLOW(N 1.185) 160	City Water Supply: C1 - Static Pr C2 - Residual C2 - Residual	essure : 14(Pressure: 132 Flow : 118				Demand: D1 - Eleva D2 - Syste D2 - Syste Hose (D4 Hose (D6 D3 - Syste Safety Ma	
Eular 1000 1200 1400 1600 200 400 600 800 1000 1200							
		600	800	FLOW	1200 N ^ 1.85)		1800


Water Supply Curve (C)

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Flow Diagram

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

139.6

Page	3
Date	11-04-2010

Flow Diagram

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

	23.5 → 26													
25	23.5 ← 45	 ← 46 23.\$	151.5											
27	26.7 → 28		191.9										·	
27	26.7 ← 47	48 ∠ 48 26.7												
29	34.2 → 30													
29	34.2 ← 49	← 50 34.2												
12		→ 16 33.9		→ 20 69.1		→ 24 106.9		→ 28 151.5	178.2 → 28 A	← 30 34.2				
32		← 36 33.9		← 40 69.1	← 42				178.2 ← 51					
50	34.2 ← 51	← 52 212.4	212.4 ← 53			← 56 212.4	212.4 ← TO I		312.4 R 100	• ← 101 312.4	312.4 ' ← 102	← 10 3 312.4	312.4 8 ← 104	4 ← 105 312.4

Page 4 Date 11-04-2010

Fittin	Fittings Used Summary																				
COSC CAL-P	COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407	OBISI	PO, C	A. 934(7(1											Page Date	ω <i>τ</i>	1-04-2010	10
Fitting Legend Abbrev. Nam	Fitting Legend Abbrev. Name	%	3,4	12 34 1 114 112	11/4	11/2	2	2%	3	3½	4	5	9	æ	10	12	14	16	18	20	24
Avk	Alarm Viking J1 NFPA 13 90' Standard Elbow	~~	2	0	ო	4	ک	დ	10	œ	13 10	12	20 14	23 18	52	27	35	40	45	50	61
щ С С	Flow Switch Potter VSR NFPA 13 Gate Valve NFPA 13 Long Turn Elbow	Fitting 0.5	g gener 0 1	Fitting generates a Fixed Loss Based on 1 0 0 0 1 0.5 1 2 2 3 0.5 1 2 2 3	ixed Los 0 8	s Based 0 2	on Flow 3 10	- 4 - - 4 -	ר טר א	5 7 7	0 0 0 0 0	2 8 25	ი თ ი ი	4 35	5 50	6 18 60	7 24 71	81 81	10 30 91	15 ¥ 15	13 121 121
		o	ŧ	0	þ	b	2	<u>1</u>	2	:	ł	ł	3					i			

Units Summary

Diameter Units Length Units Flow Units Pressure Units

Inches Feet US Gallons per Minute Pounds per Square Inch

Pressure / Flow Summary - STANDARD

A CONTRACTOR OF A CONTRACTOR O

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Page 6 Date 11-04-2010

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
1S	8.0	5.6	9.45	na	17.21	0.1	100	7.0
1A	13.4		7.8	na	10.45	0.1	120	7.0
2A	13.4	5.6	8.32	na	16.15 17.11	0.1 0.1	120	7.0
3A	13.4	5.6	9.33 11.42	na	18.92	0.1	120	7.0
4A	13.4 13.4	5.6	13.35	na na	10.92	0.1	120	7.0
5A 6A	13.4		16.82	na				
8S	8.0	5.6	9.74	na	17.48	0.1	168	7.0
BA 、	13.4	0.0	8.11	na				
9A	13.4	5.6	8.49	na	16.31	0.1	120	7.0
10A	13.4	5.6	9.52	na	17.28	0.1	120	7.0
11 A	13.4	5.6	11.66	na	19.12	0.1	120	7.0
12A	13.4		13.64	na				
14A	13.4		17.18	na			(
16S	8.0	5.6	10.33	na	18.0	0.1	180	7.0
16 A	13.4		8.74	na	40.00		400	7.0
17A	13.4	5.6	9.19	na	16.98	0.1	120	7.0 7.0
18A	13.4	5.6	10.3	na	17.97	0.1 0.1	120 120	7.0
19A	13.4	5.6	12.58	na	19.86	0.1	120	7.0
20A	13.4		14.7 18.49	na na				
21A 7A	13.4 12.8		18.53	na				
15A	12.8		18.92	na				
22A	12.8		20.34	na				
23A	12.8		33.35	na				
24A	12.8		39.21	na				
25A	12.8		41.7	na				
26A	51.0		30.99	na				
1	51.0		46.46	na				
2	51.0		46.1	na				
3	51.0		45.75	na				
11	51.0		45.45	na				
4	51.0		45.45	na				
31	51.0		51.01 42.75	na				
5	59.5 59.5		42.75	na na				
6 7	59.5 59.5		42.03	na				
, 13	59.5		41.73	na				
8	59.5		41.73	na				
33	59.5		47.34	na				
9	65.5		39.32	na				
15	65.5		39.0	na				
10	65.5		39.0	na				
35	65.5		44.79	na				
17	69.0		37.24	na				
37	69.0		43.36	na				
19	78.0		33.24	na				
39	78.0		39.43	na				
21	78.0		32.51 39.68	na				
41	78.0 69.0		35.76	na na				
23 43	69.0		43.89	na				
43 25	65.5		35.93	na				
25 45	65.5		45.9	na				
27	59.5		36.56	na				
47	59.5		49.21	na				
29	51.0		34.82	na				
49	51.0		54.84	na				
12	50.0		45.77	na				
14	58.5		42.05	na				
16	64.5		39.33	na				
18	68.0		37.56	na				

Flow Summary - Standard

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

CAL-PO	LY UNIVERSIT	Y, SAN LUIS OBI	SPO, CA. 93407				Date	11-04-2010
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
20	70.0		36.46	na				
22	70.0		35.69	na				
24	68.0		36.04	na				
26	64.5		36.17	na				
28	58.5		36.74	na				
28A	53.0		33.54	na				
32	58.5		47.87	na				
34	64.5		45.28	na				
36	68.0		43.82	na				
38	70.0		43.05	na				
40	70.0		43.13	na				
42	68.0		44.29	na				
44	64.5		46.0	na				
46	58.5		49.12	na				
48	58.5		49.89	na				
50	53.0		54.36	na				
51	53.0		54.45	na				
52	53.0		57.87	na				
53	50.0		61.78	na				
54	8.3		82.34	na				
55	8.3		83.73	na				
56	7.2		85.28	na				
TOR	11.2		84.97	na				
BOR	0.0		94.11	na	100.0			
100	0.0		94.42	na				
101	0.0		94.6	na				
102	0.0		94.9	na				
103	0.0		102.04	na				
104	0.0		102.33	na				
105	0.0		102.58	na				

The maximum velocity is 18.65 and it occurs in the pipe between nodes 22A and 23A

Page 7 Date 11-04-2010

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Hyd. Ref.	Qa Dia. "C"	Fitting or	Pipe Ftng's		Pt Pv ****** Notes *****
Point	Qt Pf/Ft	Eqv.	Ln. Total	Pf	Pn
IS	17.21 1.049	1E 2	2.0 5.000	9.447	K Factor = 5.60
)	120.0		0.0 2.000	-2.339	
1A	17.21 0.0986	(0.0 7.000	0.690	Vel = 6.39
1A	0.0 1.38		3.0 11.000	7.798	
	120.0		5.09.0000.020.000	0.0 0.518	Vel = 3.69
2A	<u> 17.21 0.0259 </u> 16.15 1.38		0.0 <u>20.000</u> 0.0 11.500	8.316	K Factor = 5.60
2A	16.15 1.38 120.0		0.0 11.500 0.0 0.0	0.0	RT actor = 5.00
3A	33.36 0.0883		0.0 11.500	1.015	Vel = 7.16
3A	17.11 1.38		0.0 11.000	9.331	K Factor = 5.60
C	120.0		0.0 0.0	0.0	
4A	50.47 0.1896		0.0 11.000	2.086	Vel = 10.83
4A	18.92 1.61		0.0 12.000	11.417	K Factor = 5.60
o 5A	120.0 69.39 0.1613		0.00.00.012.000	0.0 1.936	Vel = 10.94
5A	0.0 1.61		B.0 13.500	13.353	VCI - 10.04
5A D	120.0		0.0 8.000	0.0	
6A	69.39 0.1613		0.0 21.500	3.469	Vel = 10.94
6A	0.0 1.61	1T	8.0 1.000	16.822	
b	120.0		0.0 8.000	0.260	
7A	69.39 0.1614		0.0 9.000	1.453	Vel = 10.94
	0.0			40 695	K Factor = 16.12
	69.39	45	0 0 E 000	<u>18.535</u> 9.741	K Factor = 5.60
8S o	17.48 1.049 120.0		2.05.0000.02.000	-2.339	R Factor = 5.00
8A	17.48 0.1014		0.0 7.000	0.710	Vel = 6.49
8A	0.0 1.38		3.0 11.000	8.112	······································
0	120.0		0.0 3.000	0.0	
9A	17.48 0.0267		0.0 14.000	0.374	Vel = 3.75
9A	16.31 1.38		0.0 11.500	8.486	K Factor = 5.60
0	120.0		0.0 0.0 0.0 11.500	0.0 1.038	Vel = 7.25
10A	33.79 0.0903		0.0 11.000	9.524	K Factor = 5.60
10A :o	17.28 1.38 120.0		0.0 0.0	0.0	RT actor = 5.00
.0 11A	51.07 0.1939		0.0 11.000	2.133	Vel = 10.95
11A	19.12 1.61		0.0 12.000	11.657	K Factor = 5.60
to	120.0		0.0 0.0	0.0	
12A	70.19 0.1648		0.0 12.000	1.978	Vel = 11.06
12A	0.0 1.61		8.0 13.500		
to 14A	120.0 70.19 0.1649		0.0 8.000 0.0 21.500	0.0 3.545	Vel = 11.06
14A 14A	0.0 1.61		8.0 1.000	·	
14A to	120.0		0.0 8.000		
15A	70.19 0.1648		0.0 9.000		Vel = 11.06
	0.0				
·····	70.19	·····		18.923	K Factor = 16.14
16S	18.00 1.049	1E	2.0 5.000		K Factor = 5.60
to	120.0		0.0 2.000		
16A	18.0 0.1070		0.0 7.000	0.749	Vel = 6.68

COSCO FIRE PROTECTION INC.

	IRE PROTE	CTION INC. TY, SAN LUIS	OBISPO	, CA. 9340	07			Page 9 Date 11-04-2010
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.		Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
16A	0.0	1.38	1E	3.0	13.000	8.742		
to 17A	18.0	120.0 0.0282		0.0 0.0	3.000 16.000	0.0 0.451		Vel = 3.86
17A	16.98	1.38		0.0	11.500	9.193		K Factor = 5.60
0	10.00	120.0		0.0	0.0	0.0		
18A	34.98	0.0963		0.0	11.500	1.107	18	Vel = 7.50
18A	17.97	1.38		0.0	11.000	10.300		K Factor = 5.60
0		120.0		0.0	0.0	0.0		
19A	52.95	0.2074		0.0	11.000	2.281		Vel = 11.36
19A	19.86	1.61 120.0		0.0 0.0	12.000 0.0	12.581 0.0		K Factor = 5.60
o 20A	72.81	0.1764		0.0	12.000	0.0 2.117		Vel = 11.47
20A	0.0	1.61	1T	8.0	13.500	14.698		
20/1	0.0	120.0		0.0	8.000	0.0		
21A	72.81	0.1764		0.0	21.500	3.792		Vel = 11.47
21A	0.0	1.61	1T	8.0	1.000	18.490		
0	-	120.0		0.0	8.000	0.260		
22A	72.81	0.1764		0.0	9.000	1.588		Vel = 11.47
	0.0					20.338		K Factor = 16.14
7 4	72.81	0.457		0.0	10.000	18.535	,	RT actor = 10.14
7A :o	69.39	2.157 120.0		0.0 0.0	10.000 0.0	0.0		
.0 15A	69.39	0.0388		0.0	10.000	0.388		Vel = 6.09
15A	70.19	2.157		0.0	10.000	18.923		
to		120.0		0.0	0.0	0.0		
22A	139.58	0.1415		0.0	10.000	1.415		Vel = 12.25
22A	72.82	2.157	1T	12.307	30.000	20.338		
to	040.4	120.0		0.0	12.307	0.0		10 - 10 65
23A	212.4	0.3076		0.0	42.307	13.015		Vel = 18.65
23A	0.0	2.635	2E	16.474 0.0	34.000 16.474	33.353 0.0		
to 24A	212.4	120.0 0.1161		0.0	50.474	5.858		Vel = 12.50
24A	0.0	2.635	2E	16.474	5.000	39.211		
to	0.0	120.0	25	0.0	16.474	0.0		
25A	212.4	0.1160		0.0	21.474	2.492	<u></u>	Vel = 12.50
25A	0.0	2.635	1E	8.237	42.000	41.703		
to		120.0		0.0	8.237	-16.544		10.50
26A	212.4	0.1160		0.0	50.237	5.830		Vel = 12.50
26A	0.0	2.635	1T	16.474	13.000	30.989		
to 28A	212.4	120.0 0.1160		0.0 0.0	16.474 29.474	-0.866 3.420		Vel = 12.50
2017	0.0	0.1100						
	212.40					33.543		K Factor = 36.67
1	-16.88	1.38		0.0	14.200	46.457		
to		120.0		0.0	0.0	0.0		
2	-16.88	-0.0250		0.0	14.200	-0.355		Vel = 3.62
2	0.0	1.38		0.0	14.200	46.102		
to		120.0		0.0	0.0	0.0		$\lambda = 262$
3	-16.88	-0.0250		0.0	14.200	-0.355		Vel = 3.62

Final Ca	lculations	- Hazen-W	illiams					
		ECTION INC. ITY, SAN LUIS	S OBISPO	, CA. 934	407			Page 10 Date 11-04-2010
Hyd. Ref.	Qa	Dia. "C"	Fitting or	-	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
3	0.0	1.38	1T	6.0	6.000	45.747		
to 11	-16.88	120.0 -0.0250		0.0 0.0 0.0	6.000 12.000	0.0 -0.300		Vel = 3.62
11 to	0.0	1.61 120.0	1 T	8.0 0.0	1.000 8.000	45.447 0.433		
12	-16.88 0.0	-0.0119		0.0	9.000	-0.107	<u>., .</u>	Vel = 2.66
	- <u>16.88</u> 0.0	1.38	1T	6.0	9.000	45.773 45.447		K Factor = -2.49
4 to 11	0.0	120.0 0.0	11	0.0 0.0 0.0	6.000 15.000	0.0		Vel = 0
	0.0	0.0		0.0		45.447	· · · · ·	K Factor = 0
1 to	16.88	1.38 120.0	1T	6.0 0.0	176.000 6.000	46.457		
31	<u>16.88</u> 0.0	0.0250	1T	0.0	<u>182.000</u> 1.000	<u>4.554</u> 51.011		Vel = 3.62
31 to 32	16.88	120.0 0.0118	11	0.0 0.0 0.0	8.000 9.000	-3.248 0.106		Vel = 2.66
	0.0	0.0110		0.0		47.869	×	K Factor = 2.44
5	-16.97	1.38		0.0 0.0	14.200 0.0	42.747		
to 6	-16.97	120.0 -0.0253		0.0	14.200	-0.359		Vel = 3.64
6 to 7	0.0 -16.97	1.38 120.0 -0.0252		0.0 0.0 0.0	14.200 0.0 14.200	42.388 0.0 -0.358		Vel = 3.64
7	0.0	1.38 120.0	1T	6.0 0.0	6.000 6.000	42.030 0.0		
to <u>13</u> 13	<u>-16.97</u> 0.0	-0.0253	1T	0.0 0.0 8.0	<u>12.000</u> 1.000	-0.304 41.726		Vel = 3.64
to 14	-16.97	120.0 -0.0119		0.0 0.0 0.0	8.000 9.000	0.433		Vel = 2.67
	0.0 -16.97					42.052		K Factor = -2.62
8 to	0.0	1.38 120.0	1T	6.0 0.0	9.000 6.000	41.726 0.0		
13	0.0	0.0		0.0	15.000	0.0	14.	Vel = 0
5	0.0	1.38	1T	6.0	176.000	41.726 42.747		K Factor = 0
to 33	16.97	120.0	11	0.0 0.0 0.0	6.000 182.000	0.0 4.596		Vel = 3.64
33 to	0.0	1.61 120.0	1T	8.0 0.0	1.000 8.000	47.343		
34	16.97		<u></u>	0.0	9.000	0.108		Vel = 2.67

0.0

COSCO FIRE PROTECTION INC. 0 00 02407

Hyd.	Qa	Dia.	Fitting]	Pipe	Pt	Pt	
Ref. Point	Qt	"C" Pf/Ft	or Eqv.	Ln.	Ftng's Total	Pe Pf	Pv Pn	******* Notes *****
	16.97					45.285		K Factor = 2.52
9	-17.24	1.38	1T	6.0	6.000	39.317		
0 15	-17.24	120.0 -0.0261		0.0 0.0	6.000 12.000	0.0 -0.313		Vel = 3.70
15 15	0.0	1.61	1 T	8.0	12.000	39.004		
0	0.0	120.0		0.0	8.000	0.433		
16	-17.24	-0.0122		0.0	9.000	-0.110		Vel = 2.72
	0.0							
	-17.24					39.327		K Factor = -2.75
10	0.0	1.38	1T	6.0 0.0	9.000 6.000	39.004 0.0		
ю 15	0.0	120.0 0.0		0.0	15.000	0.0		Vel = 0
_ · -	0.0							
	0.0					39.004		K Factor = 0
9	17.24	1.38	1T	6.0	204.400	39.317		
to 25	17.24	120.0 0.0260		0.0 0.0	6.000 210.400	0.0 5.472		Vel = 3.70
35 35	0.0	1.61	1T	8.0	1.000	44.789		
to	0.0	120.0	11	0.0	8.000	-1.083		
36	17.24	0.0123		0.0	9.000	0.111		Vel = 2.72
	0.0							
	17.24					43.817		K Factor = 2.60
17 to	-18.03	1.61 120.0	1T	8.0 0.0	1.000 8.000	37.245 0.433		
to 18	-18.03	-0.0133		0.0	9.000	-0.120		Vel = 2.84
	0.0							
	-18.03					37.558		K Factor = -2.94
17	18.03	1.38	1T	6.0	210.400	37.245		
to	10.00	120.0		0.0	6.000	0.0 6.115		Vel = 3.87
37	<u>18.03</u> 0.0	0.0283	1T	0.0 8.0	<u>216.400</u> 1.000	43.360		
37 to	0.0	120.0	11	0.0 0.0	8.000	-0.433		
38	18.03	0.0132		0.0	9.000	0.119		Vel = 2.84
	0.0		_					
	18.03					43.046		K Factor = 2.75
19 to	-18.15	1.61 120.0	1T	8.0	10.000 8.000	33.238 3.465		
to 20	-18.15	120.0 -0.0135		0.0 0.0	18.000	-0.243		Vel = 2.86
	0.0		·				1-100 PT	
	-18.15					36.460		K Factor = -3.01
19	18.15	1.38	1T	6.0	210.400	33.238		
to	40.4-	120.0		0.0	6.000	0.0		1/01 - 2.80
39	18.15	0.0286	4 -	0.0	216.400	6.188		Vel = 3.89
39 to	0.0	1.61 120.0	1T	8.0 0.0	10.000 8.000	39.426 3.465		
40	18.15			0.0	18.000	0.243		Vel = 2.86
	0.0		-					

0.0

COSCO FIRE PROTECTION INC.

Hyd.	Qa	Dia. "C"	Fitting)	Pipe	Pt	Pt	****** Notoe *****
Ref. Point	Qt	Pf/Ft	or Eqv.	Ln.	Ftng's Total	Pe Pf	Pv Pn	******* Notes *****
1								
	18.15					43.134		K Factor = 2.76
21	-19.66	1.61	1T	8.0	10.000	32.505		
22	-19.66	120.0 -0.0157		0.0 0.0	8.000 18.000	3.465 -0.282		Vel = 3.10
	0.0		<u>.</u>	0.0	10.000			
	-19.66					35.688		K Factor = -3.29
21	19.66	1.38	1T	6.0	210.400	32.505		
)	40.00	120.0		0.0	6.000	0.0		
41	19.66	0.0331	4 -	0.0	216.400	7.173		Vel = 4.22
41 ว	0.0	1.61 120.0	1T	8.0 0.0	10.000 8.000	39.678 4.331		
, 42	19.66	0.0157		0.0	18.000	0.282		Vel = 3.10
	0.0 19.66					44.291		K Factor = 2.95
23	-21.04	1.61	1T	8.0	1.000	35.763		
D		120.0		0.0	8.000	0.433		
24	-21.04	-0.0178		0.0	9.000	-0.160		Vel = 3.32
	0.0 -21.04					36.036		K Factor = -3.50
23	21.04	1.38	1T	6.0	210.400	35.763		
5 43	21.04	120.0 0.0376		0.0 0.0	6.000 216.400	0.0 8.131		Vel = 4.51
4 <u>3</u> 43	0.0	1.61	1T	8.0	1.000	43.894		
43 0	0.0	120.0		0.0	8.000	1.949		
44	21.04	0.0177		0.0	9.000	0.159		Vel = 3.32
	0.0 21.04					46.002		K Factor = 3.10
25	-23.48	1.61	1T	8.0	1.000	35.929		
0		120.0		0.0	8.000	0.433		
26	-23.48	-0.0218		0.0	9.000	-0.196		Vel = 3.70
	0.0 -23.48					36.166		K Factor = -3.90
25	23.48	1.38	1T	6.0	210.400	35.929		
0		120.0		0.0	6.000	0.0		
45	23.48	0.0461	47	0.0	216.400	9.967		Vel = 5.04
45 o	0.0	1.61 120.0	1T	8.0 0.0	1.000 8.000	45.896 3.032		
46	23.48	0.0218		0.0	9.000	0.196		Vel = 3.70
	0.0					40 404		K Factor - 3 25
	23.48	1.64	4.7	0 0	1 000	<u>49.124</u> 36.556		K Factor = 3.35
27 o	-26.71	1.61 [°] 120.0	1T	8.0 0.0	1.000 8.000	0.433		
28	-26.71	-0.0276		0.0	9.000	-0.248		Vel = 4.21
	0.0							
	-26.71					36.741		K Factor = -4.41
27	26.71	1.38	1T	6.0 0.0	210.400	36.556 0.0		
o 47	26.71	120.0 0.0585		0.0 0.0	6.000 216.400	0.0 12.650		Vel = 5.73

COSCO FIRE PROTECTION INC.

Hyd. Ref.	Qa	Dia. "C"	Fitting or	I	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes ******
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
47	0.0	1.61	1T	8.0	1.000	49.206		
0	06.74	120.0		0.0	8.000 9.000	0.433 0.248		Vel = 4.21
48	26.71	0.0276		0.0	9.000	0.240		VEI - 4.21
	0.0 26.71		*****			49.887		K Factor = 3.78
29	-34.23	1.61	1T	8.0	1.000	34.818		
D		120.0		0.0	8.000	13.426		
30	-34.23	-0.0437		0.0	9.000	-0.393		Vel = 5.39
	0.0 -34.23					47.851		K Factor = -4.95
29	34.23	1.38	1T	6.0	210.400	34.818		
0	01.20	120.0		0.0	6.000	0.0		
49	34.23	0.0925		0.0	216.400	20.019		Vel = 7.34
49	0.0	1.61	1T	8.0	1.000	54.837		
0	- /	120.0		0.0	8.000	-0.866		
50	34.23	0.0437		0.0	9.000	0.393	in	Vel = 5.39
	0.0 34.23					54.364		K Factor = 4.64
12	-16.88	2.157		0.0	14.000	45.773		
0	10.00	120.0		0.0	0.0	-3.681		
14	-16.88	-0.0029	_	0.0	14.000	-0.040		Vel = 1.48
14	-16.97	2.157		0.0	12.300	42.052		
0	~~ ~-	120.0		0.0	0.0	-2.599		
16	-33.85	-0.0102		0.0	12.300	-0.126		Vel = 2.97
16	-17.25	2.157 120.0		0.0 0.0	11.500 0.0	39.327 -1.516		
to 18	-51.1	-0.0220		0.0	11.500	-0.253		Vel = 4.49
18	-18.03	2.157		0.0	6.000	37.558	AL	
io	10.00	120.0		0.0	0.0	-0.866		
20	-69.13	-0.0387		0.0	6.000	-0.232		Vel = 6.07
20	-18.15	2.157		0.0	13.000	36.460		
0		120.0		0.0	0.0	0.0		
22	-87.28	-0.0594		0.0	13.000	-0.772		Vel = 7.66
22	-19.65	2.157 120.0		0.0 0.0	6.000 0.0	35.688 0.866		
to 24	-106.93	-0.0863		0.0	6.000	-0.518		Vel = 9.39
24	-21.04	2.157		0.0	11.500	36.036		
to	21.04	120.0		0.0	0.0	1.516		
26	-127.97	-0.1205		0.0	11.500	-1.386		Vel = 11.24
26	-23.48	2,157		0.0	12.300	36.166		
to		120.0		0.0	0.0	2.599		
28	-151.45	-0.1646		0.0	12.300	-2.024		Vel = 13.30
28	-26.71	2.157	1T	12.307	12.800	36.741 2.382		
to 28A	-178.16	120.0 -0.2222		0.0 0.0	12.307 25.107	-5.580		Vel = 15.64
28A	212.39	2.157		0.0	1.500	33.543		
to	212.03	120.0		0.0	0.0	14.292		
30	34.23	0.0107		0.0	1.500	0.016		Vel = 3.01

Page 13

Final Ca	alculations	- Hazen-W	illiams					
		CTION INC. ITY, SAN LUIS	S OBISPO), CA. 934()7			Page 14 Date 11-04-2010
Hyd. Ref.	Qa	Dia. "C"	Fittin or		Pipe Ftng's	Pt Pe	Pt Pv	******* Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
	0.0							<u></u>
	34.23					47.851		K Factor = 4.95
.32	16.88	2.635		0.0	14.000	47.869		
to 34	16.88	120.0 0.0011		0.0 0.0	0.0 14.000	-2.599 0.015		Vel = 0.99
34	16.97	2.635		0.0	12.300	45.285		
to	10.97	120.0		0.0	0.0	-1.516		
36	33.85	0.0039		0.0	12.300	0.048		Vel = 1.99
36	17.25	2.635		0.0	11.500	43.817		
to		120.0		0.0	0.0	-0.866		
38	51.1	0.0083		0.0	11.500	0.095		Vel = 3.01
38	18.03	2.635		0.0	6.000	43.046		
to 40	69.13	120.0 0.0147		0.0 0.0	0.0 6.000	0.0 0.088		Vel = 4.07
40	18.15	2.635		0.0	13.000	43.134		
to	10.10	120.0		0.0	0.0	0.866		
42	87.28	0.0224		0.0	13.000	0.291		Vel = 5.14
42	19.65	2.635		0.0	6.000	44.291		
to		120.0		0.0	0.0	1.516		
44	106.93	0.0325		0.0	6.000	0.195		Vel = 6.29
44	21.04	2.635		0.0	11.500	46.002		
to 46	127.97	120.0 0.0455		0.0 0.0	0.0 11.500	2.599 0.523		Vel = 7.53
40	23.48	2.635	· · ·	0.0	12.300	49.124		VCI - 7.00
to	23.40	120.0		0.0	0.0	0.0		
48	151.45	0.0620		0.0	12.300	0.763		Vel = 8.91
48	26.71	2.635	1T	16.474	9.500	49.887		
to		120.0		0.0	16.474	2.382		
51	178.16	0.0839		0.0	25.974	2.178		Vel = 10.48
	0.0					54 447		
	178.16		47	40.474		54.447		K Factor = 24.14
50	34.23	2.635 120.0	1T	16.474 0.0	4.500 16.474	54.364 0.0		
to 51	34.23	0.0040		0.0	20.974	0.083		Vel = 2.01
51	178.17	2.635	2E	16.474	13.000	54.447		
to		120.0		0.0	16.474	0.0		
52	212.4	0.1161	1 	0.0	29.474	3.421		Vel = 12.50
52	0.0	2.635	2E	16.474	6.000	57.868		
to	040.4	120.0		0.0	16.474	1.299		
53	212.4	0.1161	~-	0.0	22.474	2.609		Vel = 12.50
53	0.0	3.26 120.0	2E	18.815 0.0	42.000 18.815	61.776 18.060		
to 54	212.4	0.0412		0.0 0.0	60.815	2.503		Vel = 8.16
 54	0.0	3.26	2E	18.815	15.000	82.339		
to	0.0	120.0	26	0.0	18.815	0.0		
55	212.4	0.0412		0.0	33.815	1.392		Vel = 8.16
	0.0	0.00	4.7	20 150	6 000	00 704		·····

1

55

56

to

0.0

212.4

3.26

120.0 0.0412

1T

20.159

0.0

0.0

(1

83.731

0.476

1.077

Vel = 8.16

6.000

20.159 26.159

1

COSCO FIRE PROTECTION INC. LIS OBISPO CA 93407

	IRE PROTE Y UNIVERS	Page 15 Date 11-04-2010						
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittin or Eqv.	-	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
							<u></u>	
56	0.0	3.26	1T	20.159	5.000	85.284		
to		120.0	1E	9.408	29.567	-1.732		$V_{0} = 9.46$
TOR	212.4	0.0412		0.0	34.567	1.423		Vel = 8.16
TOR	0.0	3.26	1E	9.408	7.000	84.975		
to		120.0	1Fsp	0.0	24.192	7.851		* Fixed loss = 3
BOR	212.4	0.0411	1G 1Avk	1.344 13.44	31.192	1.283		Vel = 8.16
BOR	100.00	6.357	3E	52.808	6.000	94.109	<u> </u>	Qa = 100
to		120.0	1T	37.72	90.528	0.0		
100	312.4	0.0033		0.0	96.528	0.314		Vel = 3.16
100	0.0	6.16	4L	51.645	10.000	94.423		
to		140.0		0.0	51.645	0.0		
101	312.4	0.0029		0.0	61.645	0.176		Vel = 3.36
101	0.0	6.16	6L	77.467	30.000	94.599		
to	0.0	140.0		0.0	77.467	0.0		
102	312.4	0.0028		0.0	107.467	0.306		Vel = 3.36
102	0.0	6.16	2E	40.168	6.000	94.905		
to	0.0	140.0		0.0	40.168	7.000		* Fixed loss = 7
103	312.4	0.0029		0.0	46.168	0.132		Vel = 3.36
103	0.0	6.16	1G	4.304	30.000	102.037		
to	0.0	140.0	2L	25.822	73.163	0.0		
104	312.4	0.0028	1T	43.037	103.163	0.294		Vel = 3.36
104	0.0	8.27	2L	41.12	260.000	102.331	- 48 -	
to	0.0	140.0	1G	6.326	102.800	0.0		
105	312.4	0.0007	10 1T	55.354	362.800	0.246		Vel = 1.87
	0.0	0.0001	<u></u>					
	0.0 312.40					102.577		K Factor = 30.85
	512.40					102.011		

Fire Hydrant Flow & Pressure Test

Date of test: 3/8/2010Time of test: 4:40 PMHydrant Site ID#: 47Class_____Street Address Adjacent to Hydrant: Campus WayElev. @ Hydrant: 330.57Number of ports flowed: 11

Static:	150]psi before flowing
Residual:		psi while flowing
Pitot:	50	pitot gauge reading
Nozzle Coefficient:	0.9	(Note 3)
Diameter:	2.5	size of opening tested
This hydrant is flowing:	1186.48	GPM from the test outlet
Projected available hydrant flow @ 20psi:		GPM (Note 1)
2nd Static: (with handheld pitot gauge)		secondary psi before flowing
2nd Residual:		secondary psi while flowing
The main can be expected to flow about:		<u>GPM</u>

Field Notes:

Number of Tanks in System: <u>2</u> Tank No. 1: <u>N/A</u> Tank No. 2: <u>N/A</u> Water Main Size:___12''_____ Pumps:

Notes:

1. Projected available flows calculated at 20 psi residual, or $\frac{1}{2}$ the static pressure for low pressure hydrants having static pressures of less than 40 psi.

2. This calculator is based on established Hazen-Williams formulas and is provided for convenience and estimation purposes only. The author and Cannon express no warranty for its suitability for any particular purpose.

3. Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is opened.

3/18/2010

140

132

0.9

2.5

0.00

Field Notes:

Fire Hydrant Flow & Pressure Test

Date of test:3/8/2010Hydrant Site ID#:51Street Address Adjacent to Hydrant:Adjacent to new poolNumber of ports flowed:1

Time of test: <u>5:00 PM</u> Elev. @ Hydrant: <u>346.00</u>

psi before flowing psi while flowing

pitot gauge reading

GPM (Note 1)

size of opening tested

GPM from the test outlet

secondary psi before flowing secondary psi while flowing

Static:	
Residual:	
Pitot:	
Nozzle Coefficient:	
Diameter:	
This hydrant is flowing:	
Projected available hydrant flow @ 20psi:	
2nd Static: (with handheld pitot gauge)	
2nd Residual:	
The main can be expected to flow about:	

of Tanks in System: <u>2</u> Tank No. 1: N/A Tank No. 2: N/A Water Main Size:___12''_____ Pumps:

<u>GPM</u>

(Note 3)

Notes:

1. Projected available flows calculated at 20 psi residual, or ½ the static pressure for low pressure hydrants having static pressures of less than 40 psi.

2. This calculator is based on established Hazen-Williams formulas and is provided for convenience and estimation purposes only. The author and Cannon express no warranty for its suitability for any particular purpose.

3. Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is

January 22, 2010

MICROFAST® AND MicrofastHP[®] QUICK **RESPONSE UPRIGHT AND** CONVENTIONAL SPRINKLERS

TECHNICAL DATA

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

1. DESCRIPTION

Viking Microfast® and MicrofastHP® Quick Response Upright and Conventional (Old Style) Sprinklers are small, thermosensitive, glass-bulb spray sprinklers available in several different finishes, temperature ratings, and K-Factors to meet design requirements. The special Polyester and Teflon[®] coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive atmospheres and are cULus listed as corrosion resistant as indicated in the Approval Chart. (Note: FM Global has no approval classification for Teflon® and Polyester coatings as corrosion resistant.)

2. LISTINGS AND APPROVALS

cULus Listed: Category VNIV

FM Approved: Class 2020

NYC Approved: Calendar Number 219-76-SA and MEA 89-92-E, Volume 16

ABS Certified: Certificate 04-HS407984B-PDA

VdS Approved: Certificate G4060054, G4060056, G4880046, G4930039, and G4980020

LPC Approved: Ref. No. 096e/03, TE30401, and TE30872

CE Certified: Standard EN 12259-1, EC-certificate of conformity 0832-CPD-2001, 0832-CPD-2003, 0786-CPD-40131, and 0786-CPD-40171

MED Certified: Standard EN 12259-1. EC-certificate of conformity 0832-MED-1003 and 0832-MED-1008 NOTE: Other International approval certificates are available upon request.

Refer to the Approval Chart on page 51d and Design Criteria on page 51e for cULus and FM approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Available since 1987.

Minimum Operating Pressure: 7 psi (0.5 bar)*

Maximum Working Pressure: Sprinklers VK315 and VK340 are rated for use with water working pressures ranging from the minimum 7 psi (0.5 bar) up to 250 psi (17 bar) for high-pressure systems. High-pressure (HP) sprinklers can be identified by locating "250" stamped on the deflector. All other Part Nos. not mentioned above are rated to a maximum 175 psi (12 bar) wwp.

Factory tested hydrostatically to 500 psi (34.5 bar)

Testing: U.S.A. Patent No. 4,831,870

Thread size: Refer to the Approval Chart

Nominal K-Factor: Refer to the Approval Chart

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

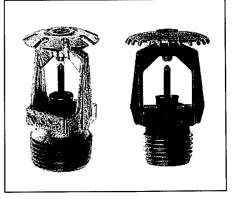
Overall Length: Refer to the Approval Chart

*cULus Listing, FM Approval, and NFPA 13 installs require a minimum of 7 psi (0.5 bar). The minimum operating pressure for LPCB and CE Approvals ONLY is 5 psi (0.35 bar).

Material Standards:

Frame Casting: Brass UNS-C84400 or QM Brass for Sprinklers 06661B, 06766B, 07060, and 12281. Brass UNS-C84400 for all other sprinklers.

Deflector: Brass UNS-C23000 or Copper UNS-C19500 for Sprinklers 06661B and 12281. Copper UNS-C19500 for Sprinklers 06665B, 06764B, and 07060. Brass UNS-C26000 for all other Sprinklers.


Bushing (for Sprinklers 06719B, 06717B, and 12286): Brass UNS-C36000

Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with Teflon Tape Screw: Brass UNS-C36000

Replaces page 51a-e, dated April 25, 2008. (Updated sprinkler materials. Min. operating pressure for Form No. F_080488 LPCB and CE approval ONLY is 5 psi (0.35 bar). Added alternate frame material for Sprinklers 06661B, 06766B, 07060, and 12281. Removed VdS Approval from Sprinklers 06665B, 06764B, and 14817.)

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com. The Web site may include a more recent edition of this Technical Data Page.

Sprinkler 51b

TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE UPRIGHT AND CONVENTIONAL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

Pip Cap Attachment (for Sprinklers VK300 and VK325): Brass UNS-C36000

For Teflon® Coated Sprinklers: Belleville Spring-Exposed, Screw-Nickel Plated, Pip Cap-Teflon® Coated

For Polyester Coated Sprinklers: Belleville Spring-Exposed

Ordering Information: (Also refer to the current Viking price list.)

Order Microfast[®] and MicrofastHP[®] Quick Response Upright and Conventional Sprinklers by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome-Enloy® = F, White Polyester = M-/W, Black Polyester = M-/B, and Black Teflon® = N

Temperature Suffix (°F/°C): 135°/57° = A, 155°/68° = B, 175°/79° = D, 200°/93° = E, and 286°/141° = G

For example, sprinkler VK300 with a 1/2" thread, Brass finish and a 155 °F/68 °C temperature rating = Part No. 06661BAB **Available Finishes And Temperature Ratings:**

Defer to Table 4

Refer to Table 1

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking data book.)

Sprinkler Wrenches:

Standard Wrench: Part No. 10896W/B (available since 2000)

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A (available since 1971)

B. Twelve-head capacity: Part No. 01725A (available since 1971)

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking Microfast[®] and MicrofastHP[®] Quick Response Upright and Conventional Sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

January 22, 2010

Sprinkler 51c

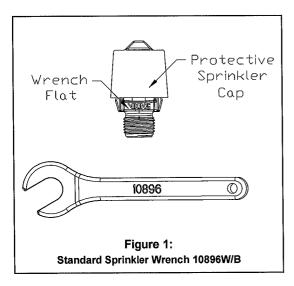
TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK **RESPONSE UPRIGHT AND** CONVENTIONAL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES								
Spacialita, Gampitazituze Classalita: 1960	spanitikus atommen Rempensius Rating/	Therefore an Automatic Confirmer Remarketer	Exerts Conter					
Ordinary	135 °F (57 °C)	100 °F (38 °C)	Orange					
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red					
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow					
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green					
High	286 °F (141 °C)	225 °F (107 °C)	Blue					


Sprinkler Finishes: Brass, Chrome-Enloy®, White Polyester, Black Polyester, and Black Teflon® Corrosion-Resistant Coatings4: White Polyester, Black Polyester, and Black Teflon®

Footnotes

¹ The sprinkler temperature rating is stamped on the deflector.

² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

³ The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated on pages 51d. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester and Teflon® coatings.

TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE UPRIGHT AND CONVENTIONAL SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

					Å	agir Synall	Cheri							
				- Miles				at Present	6		11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	enperature Naisto	KEY	
						nil Cinavin				[/	XIXX<= I	isentercen(fi	ল্যালেলাক)	
						m (Males)								
Sina podrato da la da		and the second	in a star a com	No	minal	den and a second			Lis	stings an	d App	rovals ³		
Base Part	SIN	Threa	d Size		actor	Overall L	.ength	(Refe		o Design			qe 51e.)
Number ¹		NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM ⁷	NYC		LPCB	ĬΕ	۲
						ight-Stand	ard Orifi							
06661B	VK300	1/2"	15 mm	5.6	80.6	2-3/16	56	A2	<u>A3</u>	A2			B3 ¹²	 B3 ¹⁴
07060	VK345		15 mm	5.6	80.6	2-3/16 ntional-Sta	56		<u>A3</u>		A3	A3	<u>B</u> 3	
06766B	VK310	1/2"	15 mm	5.6	80.6	2-3/16	56	A3		A3		A3	B3 ¹²	B3 ¹⁴
007000		112		0.0		pright-Larg				7.0		<u> </u>		
06665B	VK350	3/4"		8.0	115.2	2-5/16	59	A2	A3	A2		A3	B3 ¹²	
14817	VK350		20 mm	8.0	115.2	2-5/16	59	A2	A3	A2		A3	B3 ¹²	
06764B	VK350	1/2"	15 mm	8.0	115.2	2-5/16	59	A2		A2				
06768B	VK354	3/4"	20 mm	8.0	115.2	ventional-L 2-5/16	59	A2		A3		A3	B3 ¹²	
007000	VK354	5/4	20 1111	0.0	Un	right-Smal				1	L	7.0	1	· · · · ·
06717B ¹¹	VK325	1/2"	15 mm	2.8	40.3	2-3/16	56	A2	A1	A2				
06719B ¹¹	VK327	1/2"	_15 mm	4.2	60.0	2-3/16	56	A2		A2				
06931B ¹¹	VK327		10 mm_	4.2	60.0	2-3/16	56				A3		E1 ¹³	
						im 250 PSI								
				No	Upr minal	ight-Stand			11	stings an	d Ann	rovals ³		
Base Part	SIN	Threa	d Size		actor	Overall I	_ength	(Ref		to Desigr			ae 51e.	3
Number ¹		NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM	NYC ⁹	VdS		1 CE	Ø
12281	VK315	1/2"	15 mm	5.6	80.6	2-3/16	56	A2		A2				
						right-Smal		10			- r		<u> </u>	T
1228611	VK340	1/2"	15 mm	2.8	40.3	2-3/16	56	A2		A2				
			emperatu						A	proved Fi	nichos			
A - 135 °F (8 °C), 17	5°F (78	(°C), 200	°F (93 °C),					manea	•		
	°F (141°C				and 000	0F (4440C)		ss and Chro ass, Chrome			Polyost	or ^{5,6} Blo	ck Poly	actor ^{5,6}
B - 155 °F (6								Black Teflor		, vvince r	olyest		or i oiy	, ,
C - 135 °F (5 D - 135 °F (5						1 (141 0)		ss, Chrome-		Mhite Pol	vester ^{5,}	⁶ and Bla	ack Polv	ester ^{5,6}
E - 155 °F (6		0 F (00	C), and T	75 F (7	9 ()		10 - Dia	ss, onione-	Linoy,	winte i or	yester	, and Di	20101 01.j	00101
E - 155 1 (0	<u>, , , , , , , , , , , , , , , , , , , </u>					Footno	toe							
1		Laura Car			har rafar ta			achodulo						
¹ Base part n									lin kDa	divide the l	motrio k	factor ch	own by 1	0.0
² Metric K-fact														0.0.
³ This table sl							Спеск w	ith the manu	racturer	for any ad	aitionai	approvais	5.	
⁴ Listed by Ur	nderwriters	Laborato	ories Inc. fo	r use in t	he U.S. and	Canada.								
⁵ cULus Liste														
⁶ Other color:														
⁷ For installat										dvisory Bu	illetins.			
⁸ Accepted for								ber 219-76-S	SA.					
⁹ Accepted for	or use, City	of New \	/ork Depar	tment of I	Buildings, M	IEA 89-92-E,	Vol. 16.							
wet system	⁹ Accepted for use, City of New York Department of Buildings, MEA 89-92-E, Vol. 16. ¹⁰ Listings and Approvals limited to Light Hazard Occupancies where allowed by the installation standards being applied, with hydraulically calculated wet systems only. Exception: 4.2 K sprinklers may be installed on hydraulically calculated dry pipe systems where piping is corrosion resistant or internally galvanized.													
¹¹ The sprinkle		bushed.												
12 € Certifie			259-1 FC-	certificate	of conform	ity 0832-CPI	D-2001 a	nd 0832-CPE)-2003.					
¹³ CE Certifie			,			•								
14 @ MED C									MED-1	008				
	oruneu, ol		12203-1	LO-CEIL										

TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE UPRIGHT AND CONVENTIONAL SPRINKLERS

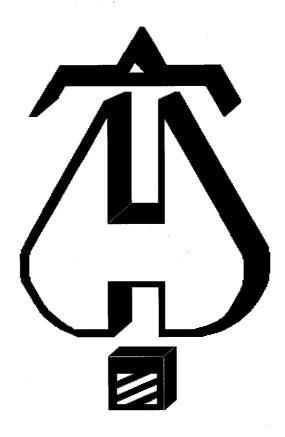
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

DIFISICIN CERTIFICIAL (Alan action to the Approval Cherd on partic Stat)

cULus Listing Requirements:

Microfast[®] and MicrofastHP[®] Quick Response Upright and Conventional Sprinklers are cULus Listed as indicated in the Approval Chart for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers, or old style (conventional) sprinklers.


- Designed for use in Light and Ordinary Hazard occupancies (exception: small orifice sprinklers are limited to Light Hazard where allowed by the installation standards being applied, with hydraulically calculated wet systems only).
- The sprinkler installation rules contained in NFPA 13 for standard spray upright sprinklers must be followed. For conventional sprinklers, refer to the installation guidelines for old style (conventional) sprinklers.

FM Approval Requirements:

For installation in accordance with the latest applicable FM Loss Prevention Data Sheets (including 2-8N) and Technical Advisory Bulletins. FM Global Loss Prevention Data Sheets and Technical Advisory Bulletins contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page QR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

... Fire Protection by Computer Design

COSCO FIRE PROTECTION INC. 4233 W. SIERRA MADRE AVE. **SUITE #108** FRESNO, CA. 93722 (559) 275-3795

Building Location System Contract Data File

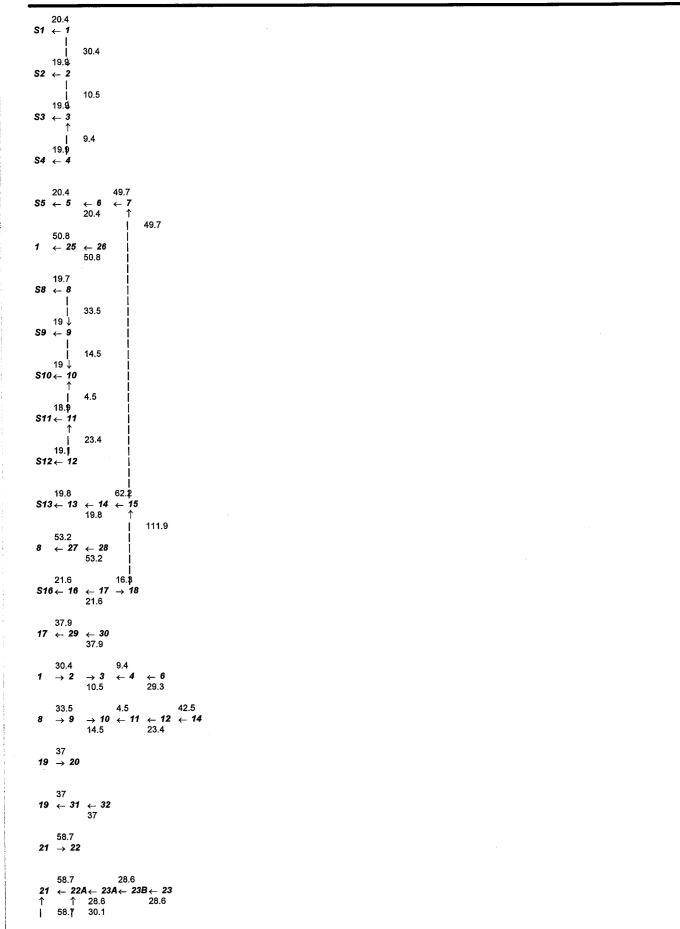
Job Name : CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407 : EXIST GYM, OFFICES, REMOTE AREA E4 : RECREATION CENTER EXPANSION : E-OFFICE : FD-1075 : CALPOLY-E4OFFICES.WXF

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Hydraulic Design Information Sheet
Name - CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407 Date - 11-04-2010 Location - RECREATION CENTER EXPANSION Building - EXIST GYM, OFFICES, REMOTE AREA E4 System No E-OFFICE Contractor - COSCO FIRE PROTECTION INC. Contract No FD-1075 Calculated By - KO Drawing No FP-E1 PIPE Construction: () Combustible (X) Non-Combustible Ceiling Height - 10' Occupancy - LIGHT HAZARD, but Calced at higher ORD. HZD. 1
S(X) NFPA 13 () Lt. Haz. Ord.Haz.Gp. (x) 1 () 2 () 3 () Ex.Haz.Y() NFPA 231 () NFPA 231C () FigureSOther Quick Response reduction utilized per NFPA#13-2002, 11.2.3.2.3.1TSpecific RulingE
Area of Sprinkler Operation - 900 System Type Sprinkler/Nozzle Density 15 (X) Wet Make VIKING D Area Per Sprinkler - 100 () Dry Model PENDANT E Elevation at Highest Outlet - 10' () Deluge Size 1/2" S Hose Allowance - Inside - 100 () Preaction K-Factor 5.6 I Rack Sprinkler Allowance - NA () Other Temp.Rat.155 G Hose Allowance - Outside - 150 N Note Offices are light hazard, but calced at higher Ord. Hzd.1 occupancy.
Calculation Flow Required - 337.57 Press Required - 45.23 BOR Summary C-Factor Used: 120 Overhead 140 Underground W Water Flow Test: Pump Data: Tank or Reservoir: A Date of Test - 3-8-2010 Cap T Time of Test - 3 PM Rated Cap E Static Press - 140 @ Press - R Residual Press - 132 Elev Flow - 1186 Well Flow - 1186 Proof Flow S Elevation - 0 U P Location - FIRE HYDRANT #47 & #51 ON SITE P L Source of Information - FLOW TEST PERFORMED ON SITE 3-8-2010 Y BY CANNON ENGINEERING , RESULTS ATTACHED TO CALCS.
C Commodity Class Location O Storage Ht. Area Aisle W. M Storage Method: Solid Piled % Palletized % Rack () Single Row () Conven. Pallet () Auto. Storage () Encap. S R () Double Row () Slave Pallet () Solid Shelf () Non T A () Mult. Row () Slave Pallet () Open Shelf O C R K Flue Spacing Clearance:Storage to Ceiling A Longitudinal Transverse G Horizontal Barriers Provided:

Page 1 Date 11-04-2010

C)	
Water Supply Curve (C)	


	CA. 93407	
COSCO FIRE PROTECTION INC.	CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407	

2	11-04-2010
Page	Date

Demand: D1 - Elevation D2 - System Flow D2 - System Pressure D2 - System Pressure Hose (Adj City) Hose (Demand) D3 - System Demand D3 - System Demand Safety Margin Safety Margin	1800	
	1600	
	C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C	
pply: c Pressure : 140 dual Pressure: 132 dual Flow : 1186		
City Water Supply: C1 - Static Pressure C2 - Residual Pressure: C2 - Residual Flow	150 150 150 120 130 130 130 130 130 130 130 13	

Flow Diagram

COSCO FIRE PROTECTION INC.
CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Flow Diagram

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

	30. † 4 ← 23									
7	49.7 ← 15	← 18 111.9	← 20	← 22 58.7						
	50.8		104		178.9	237.6	337.6	337.6	337.6	

li V
Summary
Used S
ittings ^I

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

S	11-04-2010
Page	Date

Fitting L Abbrev.	Fitting Legend Abbrev. Name	1/2	12 % 1		11/4 11/2	1½	7	2%	ю	3½	4	5	9	8	10	12 14	14	16	8	20	24
H-GFRAK	Alarm Viking J1 NFPA 13 90' Standard Elbow Flow Switch Potter VSR NFPA 13 Gate Valve NFPA 13 Long Turn Elbow NFPA 13 90' Flow thru Tee	Fittin 0 3.5	ig gener 0 4	ates a F 0 5	1 2 2 3 4 Fitting generates a Fixed Loss Base 0 0 0 0 0 0.5 1 2 2 2 3 4 5 6 8	s Based 0 8	5 00 Flow 3 3 10	9 7 7 9	15 15	17 8	20 6 20 20	25 25 25	30 3 14 20 30 3 14 20	23 23 35 35	50 50 50	27 6 60	35 71 71	81 81	45 10 91	50 11 101	61 121 121

Units Summary

Diameter Units Length Units Flow Units Pressure Units

Inches Feet US Gallons per Minute Pounds per Square Inch

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Pressure / Flow Summary - STANDARD

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Page 6 Date 11-04-2010

		.,						
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
S1	8.0	5.6	13.32	na	20.44	0.15	100	7.0
S2	8.0	5.6	12.64	na	19.91	0.15	100	7.0
S3	8.0	5.6	12.59	na	19.87	0.15	100	7.0
S3 S4	8.0	5.6	12.66	na	19.92	0.15	100	7.0
S5	8.0	5.6	13.23	na	20.37	0.15	100	7.0
5	9.8		14.07	na				
6	9.8		14.32	na				
1	9.8		13.9	na				
25	9.8		26.96	na				
25 S8	8.0	5.6	12.38	na	19.7	0.15	100	7.0
S9	8.0	5.6	11.57	na	19.05	0.15	100	7.0
S10	8.0	5.6	11.46	na	18.96	0.15	100	7.0
S11	8.0	5.6	11.37	na	18.88	0.15	100	7.0
S12	8.0	5.6	11.65	na	19.12	0.15	100	7.0
S13	8.0	5.6	12.44	na	19.75	0.15	100	7.0
13	9.8		13.89	na				
14	9.8		14.12	na				
8	9.8		12.87	na				
27	9.8		27.1	na				
S16	8.0	5.6	14.88	na	21.6	0.15	144	7.0
16	9.8		15.97	na				
17	9.8		16.35	na				
29	9.8		27.83	na				
2	9.8		13.16	na				
3	9.8		13.09	na				
4	9.8		13.17	na				
9	9.8		11.98	na				
10	9.8		11.86	na				
11	9.8		11.87	na				
12	9.8		12.19	na				
19	9.8		17.41	na				
31	9.8		28.4	na				
21	9.8		18.3	na				
22A	9.8		22.09	na				
23A	9.8		22.72	na				
23B	9.8		28.22	na				
23	9.8		28.79	na				
33	9.8		29.31	na				
7	9.0		15.45	na				
, 15	9.0		15.66	na				
18	9.0		16.6	na				
20	9.0		17.3	na				
26	9.0		28.12	na				
26A	9.0		28.27	na				
28	9.0		28.34	na				
30	9.0		28.65	na				
30 32	9.0		29.2	na				
34	9.0		30.04	na				
34 56	7.2		35.78	na				
TOR	11.2		35.8	na				
BOR	0.0		45.23	na	100.0			
100	0.0		45.59	na				
100	0.0		45.79	na				
102	0.0		46.15	na				
102	0.0		53.3	na				
103	0.0		53.64	na	150.0			
105	0.0		54.2		100.0			
105	0.0		54.2	na				

The maximum velocity is 13.98 and it occurs in the pipe between nodes 34 and 56

COSCO FIRE PROTECTION INC.

Hyd.	Qa	Dia.	Fitting	י	Pipe	Pt	Pt	
Ref.	Qa	"C"	or	4	Fing's	Pe	Pv	******* Notes ******
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
04	20.44	1.040	46	2.0	2 000	13.321		K Factor = 5.60
S1 ว	20.44	1.049 120.0	1E 1T	2.0 5.0	3.000 7.000	-0.780		R = 0.00
1	20.44	0.1355		0.0	10.000	1.355		Vel = 7.59
	0.0 20.44					13.896		K Factor = 5.48
S2	19.91	1.049	1E	2.0	3.000	12.644	<u> </u>	K Factor = 5.60
2	10.01	120.0	1T	5.0	7.000	-0.780		
2	<u>19.91</u> 0.0	0.1291		0.0	10.000	1.291		Vel = 7.39
	19.91					13.155		K Factor = 5.49
S3	19.87	1.049	1E	2.0	3.000	12.587		K Factor = 5.60
o 3	19.87	120.0 0.1286	1T	5.0 0.0	7.000 10.000	-0.780 1.286		Vel = 7.38
•	0.0							ay and a second s
	19.87					13.093	·	K Factor = 5.49
S4 ว	19.92	1.049 120.0	1E 1T	2.0 5.0	3.000 7.000	12.657 -0.780		K Factor = 5.60
4	19.92	0.1292		0.0	10.000	1.292		Vel = 7.39
	0.0					12 460		K Easter = 5.40
S5	<u>19.92</u> 20.37	1.049	2E	4.0	3.000	13.169 13.232		<u>K Factor = 5.49</u> K Factor = 5.60
0		120.0	1T	5.0	9.000	-0.780		
5	20.37	0.1347	·····	0.0	12.000	1.616		Vei = 7.56
5 0	0.0	1.38 120.0	1T	6.0 0.0	1.000 6.000	14.068 0.0		
6	20.37	0.0354		0.0	7.000	0.248	. .	Vel = 4.37
6	29.33	1.61	1T	8.0	1.000	14.316		
o 7	49.7	120.0 0.0871		0.0 0.0	8.000 9.000	0.346 0.784		Vei = 7.83
	0.0					15 446		K Factor = 12.65
1	49.70 50.81	1.38	1T -	6.0	62.000	<u> </u>		K Factor - 12.05
o		120.0		0.0	6.000	0.0		
25	50.81	0.1921	4-	0.0	68.000	13.062		Vel = 10.90
25 o	0.0	1.61 120.0	1T	8.0 0.0	1.000 8.000	26.958 0.346		
26	50.81	0.0908		0.0	9.000	0.817		Vel = 8.01
	0.0 50.81					28.121		K Factor = 9.58
S8	19.70	1.049	1E	2.0	3.000	12.380		K Factor = 5.60
o		120.0	1T	5.0	7.000	-0.780		
8	<u>19.7</u> 0.0	0.1266		0.0	10.000	1.266		Vel = 7.31
	0.0 19.70					12.866		K Factor = 5.49
S9	19.05	1.049	1E	2.0	3.000	11.567		K Factor = 5.60
o 9	19.05	120.0 0.1189	1 T	5.0 0.0	7.000 10.000	-0.780 1.189		Vel = 7.07
J	19.05	0.1109		0.0	10.000	1.109		VCI - 1.01

COSCO FIRE PROTECTION INC. CAL-POLY UNIVERSITY, SAN LUIS OBISPO, CA. 93407

Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.	J Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
	0.0 19.05					11.976		K Factor = 5.50
S10	18.96	1.049	1E	2.0	3.000	11.464		K Factor = 5.60
2	(0.00	120.0	1T	5.0	7.000	-0.780		
10	18.96	0.1179		0.0	10.000	1.179		Vel = 7.04
	0.0 18.96					11.863		K Factor = 5.50
S11	18.88	1.049	1E	2.0	4.000	11.366		K Factor = 5.60
0	10.00	120.0	1T	5.0	7.000	-0.780		
11	18.88	0.1169		0.0	11.000	1.286		Vel = 7.01
	0.0					44.000		
	18.88		. –			11.872		K Factor = 5.48
S12	19.12	1.049 120.0	1E 1T	2.0 5.0	4.000 7.000	11.654 -0.780		K Factor = 5.60
o 12	19.12	0.1198	11	0.0	11.000	1.318		Vel = 7.10
	0.0							
	19.12					12.192		K Factor = 5.48
S13	19.75	1.049	2E	4.0	8.500	12.442		K Factor = 5.60
0		120.0	1T	5.0	9.000	-0.780		
13	19.75	0.1272		0.0	17.500	2.226		Vel = 7.33
13 o	0.0	1.38 120.0	1T	6.0 0.0	1.000 6.000	13.888 0.0		
14	19.75	0.0334		0.0	7.000	0.234		Vel = 4.24
14	42.47	1.61	1T	8.0	1.000	14.122		
o		120.0		0.0	8.000	0.346		
15	62.22	0.1319		0.0	9.000	1.187		Vel = 9.81
	0.0 62.22					15.655		K Factor = 15.73
8	53.23	1.38	1T	6.0	62.000	12.866		KT actor = 15.75
0	00.20	120.0	11	0.0	6.000	0.0		
27	53.23	0.2094		0.0	68.000	14.237		Vel = 11.42
27	0.0	1.61	1T	8.0	1.000	27.103		
0	50.00	120.0		0.0	8.000	0.346		
28	53.23	0.0989		0.0	9.000	0.890		Vel = 8.39
	0.0 53.23					28.339		K Factor = 10.00
S16	21.60	1.049	2E	4.0	8.500	14.878		K Factor = 5.60
:0	21.00	120.0		0.0	4.000	-0.780		
16	21.6	0.1501		0.0	12.500	1.876		Vel = 8.02
16	0.0	1.38	1T	6.0	3.500	15.974		
17	21 6	120.0		0.0 0.0	6.000 9.500	0.0 0.374		Vel = 4.63
<u>17</u> 17	<u>21.6</u> -37.86	0.0394	1T	8.0	9.500	16.348	<u>.</u>	
17 :0	-31.00	120.0	11	0.0	8.000	0.346		
18	-16.26	-0.0109		0.0	9.000	-0.098		Vel = 2.56
	0.0							
	-16.26				10 TIME	16.596		K Factor = -3.99

Page 8

COSCO FIRE PROTECTION INC.

Hyd.	Qa	Dia.	Fitting	а	Pipe	Pt	Pt	
Ref.	va	"C"	or	-	Ftng's	Pe	Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	
17	37.86	1.38	1T	6.0	97.000	16.348		
o 29	37.86	120.0 0.1115		0.0 0.0	6.000 103.000	0.0 11.481		Vel = 8.12
29 D	0.0	1.61 120.0	1T	8.0 0.0	1.000 8.000	27.829 0.346		
30	37.86	0.0527		0.0	9.000	0.474		Vel = 5.97
	0.0 37.86					28.649		K Factor = 7.07
1	-30.37	1.38 120.0		0.0 0.0	10.000 0.0	13.896 0.0		nerme and a second s
o 2	-30.37	-0.0741		0.0	10.000	-0.741		Vel = 6.51
2 0	19.91	໌ 1.38 120.0		0.0 0.0	6.000 0.0	13.155 0.0		
3	-10.46	-0.0103		0.0	6.000	-0.062		Vel = 2.24
3 0	19.87	1.38 120.0		0.0 0.0	9.000 0.0	13.093 0.0		
4	9.41	0.0084		0.0	9.000	0.076		Vel = 2.02
4 0	19.92	1.38 120.0	1T	6.0 0.0	10.500 6.000	13.169 0.0		
6	29.33	0.0695		0.0	16.500	1.147		Vel = 6.29
	0.0 29.33					14.316		K Factor = 7.75
8	-33.53	1.38		0.0	10.000	12.866		
o 9	-33.53	120.0 -0.0890		0.0 0.0	0.0 10.000	0.0 -0.890		Vel = 7.19
9	19.04	1.38		0.0	6.000	11.976 0.0		
o 10	-14.49	120.0 -0.0188		0.0 0.0	0.0 6.000	-0.113		Vel = 3.11
10	18.97	1.38 120.0		0.0 0.0	4.500 0.0	11.863 0.0		
io 11	4.48	0.0020		0.0	4.500	0.009		Vel = 0.96
11 to	18.87	1.38 120.0		0.0 0.0	7.000 0.0	11.872 0.0		
12	23.35	0.0457		0.0	7.000	0.320		Vel = 5.01
12 to	19.12	1.38 120.0	1T	6.0 0.0	8.000 6.000	12.192 0.0		
14	42.47	0.1379		0.0	14.000	1.930	-	Vel = 9.11
	0.0 42.47					14.122		K Factor = 11.30
19	-36.98	1.61	1T	8.0	1.000	17.406		
to 20	-36.98	120.0 -0.0503		0.0 0.0	8.000 9.000	0.346 -0.453		Vel = 5.83
-	0.0							
19	<u>-36.98</u> 36.98	1.38	1T	6.0	97.000	<u>17.299</u> 17.406		K Factor = -8.89
to		120.0		0.0	6.000	0.0		$V_{0} = -7.02$
<u>31</u> 31	<u>36.98</u> 0.0	0.1067	1T	0.0 8.0	103.000	10.993 28.399		Vel = 7.93
to	2.0	120.0		0.0	8.000	0.346		

Computer Programs by Hydratec Inc. Route 111 Windham N.H. USA 03087

Hyd.	Qa	Dia.	Fitting	Pipe	Pt	Pt	
Ref.		"C"	or	Ftng's	Pe	Pv	******* Notes *****
Point	Qt	Pf/Ft	Eqv. Ln.	Total	Pf	Pn	
<u> . </u>	0.0				29.199		K Factor = 6.84
21	36.98 -58.68	1.61	1T 8.0	1.000	18.302		
)	-00.00	120.0	0.0	8.000	-4.418		
22	-58.68	-0.1182	0.0	9.000	-1.064		Vel = 9.25
	0.0 -58.68				12.820	10° -	K Factor = -16.39
21	58.68	1.61	1T 8.0	24.000	18.302		
o 22A	58.68	120.0 0.1183	0.0 0.0	8.000 32.000	0.0 3.787		Vel = 9.25
22A	-30.08	1.61	0.01T 8.0	12.000	22.089		
0		120.0	0.0	8.000	0.0		
23A	28.6	0.0313	0.0	20.000	0.626		Vel = 4.51
23A	0.0	1.38	4E 12.0	65.000	22.715 0.0		
o 23B	28.6	120.0 0.0663	1T 6.0 0.0	18.000 83.000	5.507		Vel = 6.13
23B	0.0	1.61	1T 8.0	10.000	28.222		
0		120.0	0.0	8.000	0.0		
23	28.6	0.0313	0.0	18.000	0.564		Vel = 4.51
	0.0 28.60				28.786		K Factor = 5.33
22A	30.07	1.38	6E 18.0	68.000	22.089		
to	00.07	120.0	1T 6.0	24.000	0.0		$V_{c} = GAE$
23 23	30.07	0.0728	0.0 1E 5.0	92.000	<u>6.697</u> 28.786	87 I I	Vel = 6.45
23 to	28.61	120.0	0.0	5.000	0.0		
33	58.68	0.0351	0.0	15.000	0.526		Vel = 5.61
33	0.0	2.067	1T 10.0	1.000	29.312		
to 34	58 68	120.0 0.0351	0.0 0.0	10.000 11.000	0.346 0.386		Vel = 5.61
34	<u>58.68</u> 0.0	0.0301	0.0	11.000	0.000		
	58.68				30.044		K Factor = 10.71
7	49.70	2.157	0.0	10.000	15.446		
to	<u> </u>	120.0	0.0	0.0	0.0		
15	49.7	0.0209	0.0	10.000	0.209		Vel = 4.36
15 to	62.22	2.157 120.0	0.0 0.0	10.000 0.0	15.655 0.0		
18	111.92	0.0941	0.0	10.000	0.941		Vel = 9.83
18	-16.26	2.157	0.0	10.000	16.596		
to	05 66	120.0	0.0	0.0 10.000	0.0 0.703		Vel = 8.40
20 20	95.66 -36.98	0.0703	0.0	10.000	17.299		VGI - 0.40
20 to	-30.30	2.157 120.0	0.0	0.0	-4.764		
22	58.68	0.0285	0.0	10.000	0.285		Vel = 5.15
	0.0				/		
	58.68				12.820		K Factor = 16.39
26	50.81	2.635	1T 16.47		28.121		
to 26A	50.81	120.0 0.0082	0.0 0.0	16.474 18.474	0.0 0.152		Vel = 2.99

COSCO FIRE PROTECTION INC.

Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.	-	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	******* Notes ******
_					····	<u> </u>		
26A	0.0	2.635		0.0	8.000	28.273		
o 28	50.81	120.0 0.0082		0.0 0.0	0.0 8.000	0.0 0.066		Vel = 2.99
28	53.24	2.635		0.0	10.000	28.339		
0		120.0		0.0	0.0	0.0		
30	104.05	0.0310		0.0	10.000	0.310		Vel = 6.12
30	37.86	2.635		0.0	10.000	28.649		
0	141.04	120.0		0.0	0.0 10.000	0.0 0.550		Vel = 8.35
32	141.91	0.0550		0.0		29.199		VEI - 0.00
32	36.98	2.635 120.0		0.0 0.0	10.000 0.0	29.199 0.0		
o 34	178.89	0.0845		0.0	10.000	0.845		Vel = 10.52
34	58.68	2.635	1E	8.237	10.000	30.044	•	
to	00.00	120.0	1 <u>–</u> 1T	16.474	24.711	0.780		
56	237.57	0.1428		0.0	34.711	4.956		Vel = 13.98
56	0.0	3.26	1T	20.159	5.000	35.780		
:0		120.0	1E	9.408	29.567	-1.732		
TOR	237.57	0.0506		0.0	34.567	1.750		Vel = 9.13
TOR	0.0	3.26	1E	9.408	7.000	35.798		
to	007 57	120.0	1Fsp	0.0	24.192	7.851		* Fixed loss = 3 Vel = 9.13
BOR	237.57	0.0506	1G 1Avk	1.344 13.44	31.192	1.579		ver - 9.13
BOR	100.00	6.357	3E	52.808	6.000	45.228		Qa = 100
to		120.0	1T	37.72	90.528	0.0		
100	337.57	0.0038		0.0	96.528	0.362		Vel = 3.41
100	0.0	6.16	4L	51.645	10.000	45.590		
to		140.0		0.0	51.645	0.0		
101	337.57	0.0033		0.0	61.645	0.203		Vel = 3.63
101	0.0	6.16	6L	77.467	30.000	45.793		
to	007 57	140.0		0.0	77.467	0.0		Vel = 3.63
102	337.57	0.0033		0.0	107.467	0.353		ver - 3.03
102	0.0	6.16	2E	40.168	6.000	46.146		* Fixed loss = 7
to 103	337.57	140.0 0.0033		0.0 0.0	40.168 46.168	7.000 0.152		Vel = 3.63
	0.0	6.16	1G	4.304	30.000	53.298	<u> </u>	
103 to	0.0	140.0	2L	4.304 25.822	73.163	0.0		
104	337.57	0.0033	1T	43.037	103.163	0.339		Vel = 3.63
104	150.00	8.27	2L	41.12	260.000	53.637		Qa = 150
to	100.00	140.0	1G	6.326	102.800	0.0		
105	487.57	0.0015	1T	55.354	362.800	0.562		Vel = 2.91
	0.0							
	487.57					54.199		K Factor = 66.23

Page 11

Fire Hydrant Flow & Pressure Test

Date of test: 3/8/2010Time of test: 4:40 PMHydrant Site ID#: 47Class_____Street Address Adjacent to Hydrant: Campus WayElev. @ Hydrant: 330.57Number of ports flowed: 11

Static:	150	psi before flowing
Residual:		psi while flowing
Pitot:	50	pitot gauge reading
Nozzle Coefficient:	0.9	(Note 3)
Diameter:	2.5	size of opening tested
This hydrant is flowing:	1186.48	GPM from the test outlet
Projected available hydrant flow @ 20psi:		GPM (Note 1)
2nd Static: (with handheld pitot gauge)		secondary psi before flowing
2nd Residual:		secondary psi while flowing
The main can be expected to flow about:		<u>GPM</u>

Number of Tanks in System: <u>2</u> Tank No. 1: <u>N/A</u> Tank No. 2: <u>N/A</u> Water Main Size:___12''_____

Pum	nc	•
FUIII	μэ	•

Notes:

1. Projected available flows calculated at 20 psi residual, or ½ the static pressure for low pressure hydrants having static pressures of less than 40 psi.

2. This calculator is based on established Hazen-Williams formulas and is provided for convenience and estimation purposes only. The author and Cannon express no warranty for its suitability for any particular purpose.

3. Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is opened.

Field Notes:

3/18/2010

Fire Hydrant Flow & Pressure Test

 Date of test: 3/8/2010

 Hydrant Site ID#: 51
 Class______

 Street Address Adjacent to Hydrant: Adjacent to new pool

 Number of ports flowed: 1

Static: Residual: Pitot: Nozzle Coefficient: Diameter: This hydrant is flowing: Projected available hydrant flow @ 20psi: 2nd Static: (with handheld pitot gauge) 2nd Residual: The main can be expected to flow about:

of Tanks in System: <u>2</u> Tank No. 1: N/A Tank No. 2: N/A Water Main Size:___12''_____

Notes:

1. Projected available flows calculated at 20 psi residual, or ½ the static pressure for low pressure hydrants having static pressures of less than 40 psi.

2. This calculator is based on established Hazen-Williams formulas and is provided for convenience and estimation purposes only. The author and Cannon express no warranty for its suitability for any particular purpose.

3. Since hydrant nozzles typically don't produce perfect discharge columns, this is a correction factor which is often used to compensate for errant pitot readings. Hydrant manufacturers should be able to provide coefficients for their products. For hydrants where the coefficient is unknown, we use .95 or .9 depending upon how uniform the discharge stream looks when the hydrant is Time of test: <u>5:00 PM</u> Elev. @ Hydrant: <u>346.00</u>

140	psi before flowing
132	psi while flowing
	pitot gauge reading
0.9	(Note 3)
2.5	size of opening tested
0.00	GPM from the test outlet
	GPM (Note 1)
	secondary psi before flowing
	secondary psi while flowing
	<u>GPM</u>

Pumps:

Field Notes:

TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com

1. DESCRIPTION

Viking Microfast[®] and MicrofastHP[®] Quick Response Pendent Sprinklers are small, thermosensitive, glass-bulb spray sprinklers available in several different finishes and temperature ratings and K-Factors to meet design requirements. The special Polyester and Teflon[®] coatings can be used in decorative applications where colors are desired. In addition, these coatings have been investigated for installation in corrosive atmospheres and are cULus listed as corrosion resistant as indicated in the Approval Chart. (Note: FM Global has no approval classification for Teflon[®] and Polyester coatings as corrosion resistant.)

2. LISTINGS AND APPROVALS

cULus Listed: Category VNIV

FM Approved: Class 2020

NYC Approved: Calendar Number 219-76-SA and MEA 89-92-E, Volume 16

ABS Certified: Certificate 04-HS407984C-PDA

VdS Approved: Certificate G4040095, G4040097, G4060056, G4060057, G4880045, G4930038, and G4980021 LPC Approved: Ref. No. 096e/03 and 096e/04

CE Certified: Standard EN 12259-1, EC-certificate of conformity 0832-CPD-2001, 0832-CPD-2003, 0786-CPD-40130, and 0786-CPD-40170

MED Certified: Standard EN 12259-1, EC-certificate of conformity 0832-MED-1003 and 0832-MED-1008

NOTE: Other International approval certificates are available upon request.

Refer to the Approval Chart on page 41d and Design Criteria on page 41e for cULus and FM approval requirements that must be followed.

3. TECHNICAL DATA

Specifications:

Available since 1987.

Minimum Operating Pressure: 7 psi (0.5 bar)

Maximum Working Pressure: Sprinklers 12282 and 12290 are rated for use with water working pressures ranging from the minimum 7 psi (0.5 bar) up to 250 psi (17 bar) for high-pressure systems. High-pressure (HP) sprinklers can be identified by locating "250" stamped on the deflector. All other Part Nos. not mentioned above are rated to a maximum 175 psi (12 bar) wwp.

Factory tested hydrostatically to 500 psi (34.5 bar) Testing: U.S.A. Patent No. 4,831,870

Thread size: Refer to the Approval Chart

Nominal K-Factor: Refer to the Approval Chart

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: Refer to the Approval Chart

Material Standards:

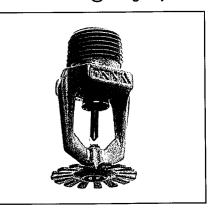
Frame Casting: Brass UNS-C84400

Deflector: Phosphor Bronze UNS-C51000 or Copper UNS-C19500 for Sprinklers 06662B, 06666B, 06765B, and 12104. Copper UNS-C19500 for Sprinkler 12282. Brass UNS-C26000 for all other Sprinklers.

Bushing (for Sprinklers 06718B, 06720B, and 12290): Brass UNS-C36000

Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with Teflon Tape Screw: Brass UNS-C36000


Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

Pip Cap Attachment: Brass UNS-C36000

Ejector Spring (for Sprinkler 12104): Stainless Steel

Form No. F_081296

Replaces page 41a-f, dated October 12, 2007. (Added LPCB Approval and updated CE Approval for Sprinkler 06666B, Added Dry System note in approval chart for Small Orifice.)

Viking Technical Data may be found on The Viking Corporation's Web site at http://www.vikinggroupinc.com. The Web site may include a more recent

edition of this Technical Data Page.

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

For Teflon® Coated Sprinklers: Belleville Spring-Exposed, Screw-Nickel Plated, Pip Cap-Teflon® Coated

For Polyester Coated Sprinklers: Belleville Spring-Exposed

Ordering Information: (Also refer to the current Viking price list.)

Order Microfast[®] and MicrofastHP[®] Quick Response Pendent Sprinklers by first adding the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, Chrome-Enloy[®] = F, White Polyester = M-/W, Black Polyester = M-/B, and Black Teflon[®] = N Temperature Suffix (°F/°C): 135°/68° = A, 155°/68° = B, 175°/79° = D, 200°/93° = E, and 286°/141° = G

For example, sprinkler VK302 with a 1/2" thread, Brass finish and a 155 °F/68 °C temperature rating = Part No. 06662BAB

Available Finishes And Temperature Ratings:

Refer to Table 1

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking data book.)

Sprinkler Wrenches:

A. Standard Wrench: Part No. 10896W/B (available since 2000).

B. Wrench for coated and/or recessed sprinklers: Part No. 12144W/B** (available since 2003)

NOTE: RECESSED PENDENT SPRINKLERS WITH PROTECTIVE CAPS MUST USE WRENCH 12144W/B.

**A 1/2" ratchet is required (not available from Viking).

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A (available since 1971)

B. Twelve-head capacity: Part No. 01725A (available since 1971)

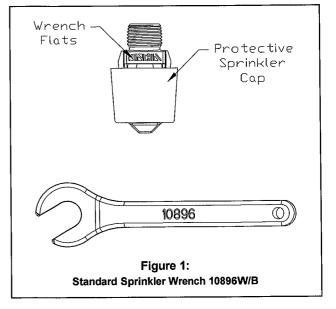
4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During fire conditions, the heat-sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the sprinkler deflector, forming a uniform spray pattern to extinguish or control the fire.

6. INSPECTIONS, TESTS AND MAINTENANCE


Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Viking Microfast[®] and MicrofastHP[®] Quick Response Pendent Sprinklers are available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

8. GUARANTEE

For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

March 14, 2008

Sprinkler 41c

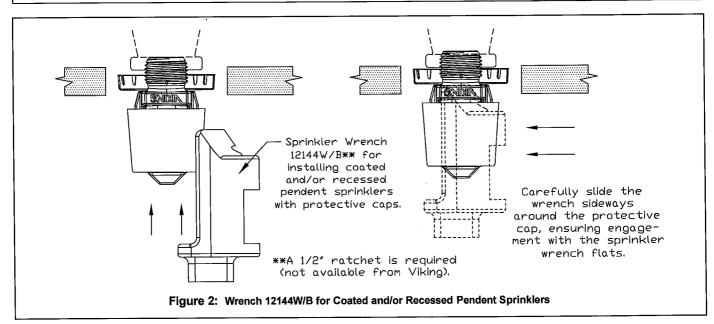
TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES						
Simmilar famnachure Glasnificathan	รัญกัทรโละ Nomiteu โลกกระณนธะศิลมัญฐ์"	ក្រុងព្រះបាន ភ្នំនៅ១៣៣៤ សំណាត់ ខេត្តព្រះស្រុកសំរី	Eleffer (Conterfe			
Ordinary	135 °F (57 °C)	100 °F (38 °C)	Orange			
Ordinary	155 °F (68 °C)	100 °F (38 °C)	Red			
Intermediate	175 °F (79 °C)	150 °F (65 °C)	Yellow			
Intermediate	200 °F (93 °C)	150 °F (65 °C)	Green			
High	286 °F (141 °C)	225 °F (107 °C)	Blue			


Sprinkler Finishes: Brass, Chrome-Enloy[®], White Polyester, Black Polyester, and Black Teflon[®] Corrosion-Resistant Coatings⁴: White Polyester, Black Polyester, and Black Teflon[®]

Footnotes

¹ The sprinkler temperature rating is stamped on the deflector.

² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.

³ The corrosion-resistant coatings have passed the standard corrosion test required by the approving agencies indicated on pages 41d. These tests cannot and do not represent all possible corrosive environments. Prior to installation, verify through the end-user that the coatings are compatible with or suitable for the proposed environment. For automatic sprinklers, the coatings indicated are applied to the exposed exterior surfaces only. Note that the spring is exposed on sprinklers with Polyester and Teflon[®] coatings.

NIKING

TECHNICAL DATA

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

				Villené	afek (⁶ . afe	n narði	93141	ntorveil (C) Moninte Re 175 PSI hars	मिठेलास्ट्रेस्ट होस्		inikies	5	— Temperatura — Finist (= Securizon ((Tep	(ABY) aleatury
Sprinkler Base	SIN	Thre	ad Size		minal actor	Over Leng	all	WITT OF COMPANY		Listing		Approvals³ riteria on p		<u></u>
Part No. ¹	Sill	NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM⁵	NYC ⁶	VdS	LPCB	(€	0
						au	St	andard Orifi	ce	I	L	h		
06662B	VK302	1/2"	15 mm	5.6	80.6	2-1/4"	58	A1X, B1Y	A3X, B3Y	A1X, B1Y	A3	A3X, B3Y	C3X, E3Y ¹³	C3X, E3Y ¹⁵
								Large Orifice	•					_
06666B	VK352	3/4"	20 mm	8.0	115.2	2-3/8"	60	A1X, B1Y	A2X, B2Y	A1X, B1Y		A3X	C3 ¹³	
12104	VK352	3/4"	20 mm	8.0	115.2	2-1/4"	58				G3			
06765B	VK352	1/2"	15 mm	8.0	115.2	2-3/8"	60	A1X, B1Y		A1X, B1Y	A3			
Small Orifice ⁹														
06718B ¹⁰	VK329	1/2"	15 mm	2.8	40.3	2-3/16"	56	A1X, B1Y	A2X	A1X, B1Y				
06720B ¹⁰	VK331	1/2"	15 mm	4.2	60.5	2-1/4"	58	A1X, B1Y		A1X, B1Y				
06932B	VK331		10 mm	4.2	60.5	2-3/8"	60				A3		G2 ¹⁴	
Maximum 250 PSI (17 bar) WWP Standard Orifice														
Sprinkler Base	SIN	Thre	ad Size		NominalOverallListings and Approvals³K-FactorLength(Refer also to Design Criteria on page 41e)									
Part No ¹		NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM	NYC ¹¹	VdS	LPCB	(€	0
12282	VK317	1/2"	15 mm	5.6	80.6	2-1/4"	58	A1X, B1Y	-	A1X				
						Max		250 PSI (17 Small Orifice	•	•				
1229010	VK342	1/2"	15 mm	2.8	40.3	2-3/16"	56	A1X, B1Y	-	A1X				
Approved Temperature RatingsA - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), 200 °F (93 °C), and 286 °F (141 °C)Approved FinishesApproved FinishesB - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C), (141 °C)1 - Brass, Chrome-Enloy®, White Poly- ester ^{7,8} , Black Polyester ^{7,8} , and Black Teflon®7X - Standard surface-mounted escutcheo the Viking Microfast® Model F-1 Adjust Escutcheon12D - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C), (141 °C)1 - Brass, Chrome-Enloy®, White Poly- ester ^{7,8} , Black Polyester ^{7,8} , and Black Teflon®7Y - Standard surface-mounted escutcheo the Viking Microfast® Model F-1 Adjust Escutcheon12D - 135 °F (57 °C), 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C) F - 155 °F (68 °C), 175 °F (79 °C), and 200 °F (93 °C) F - 155 °F (68 °C), 175 °F (79 °C), and 286 °F (141 °C)2 - Brass and Chrome-Enloy®, White Polyester ⁸ , and Black Polyester ⁸ Y - Standard surface-mounted escutcheo the Viking Microfast® Model F-1 Adjust Escutcheon12 Y - Standard surface-mounted escutcheo the Viking Microfast® Model F-1 Adjust Escutcheon12 or recessed with the Vi Micromatic® Model E-1 or E-2 Recess Escutcheon					escutcheon or F-1 Adjustable escutcheon or F-1 Adjustable ith the Viking									
 ² Metric K-f ³ This table ⁴ Listed by ⁵ FM Apprometry ⁶ Mutual E ⁶ Accepted ⁷ cULus Lister ⁸ Other col ⁹ Listings a only. Exco ¹⁰ The sprintler ¹¹ Accepted ¹² The Vikir sprinkler ¹³ C C certi 	G - 155 °F (68 °C) Footnotes * Footnotes * Base part number is shown. For complete part number, refer to Viking's current price schedule. * Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0. * This table shows the listings and approvals available at the time of printing. Check with the manufacturer for any additional approvals. * Listed by Underwriters Laboratories Inc. for use in the U.S. and Canada. * FM Approved for use only in wet-pipe sprinkler systems (or preaction systems qualifying as wet systems) for protection of occupancies described in the Factory Mutual Engineering and Research Loss Prevention Data Sheets and Technical Advisory Bulletins. * Accepted for use, City of New York Board of Standards and Appeals, Calendar Number 219-76-SA. * CulLus Listed as corrosion resistant. * Other colors are available on request with the same Listings and Approvals as the standard colors. * Listings and Approvals limited to Light Hazard Occupancies where allowed by the installation standards being applied, with hydraulically calculated wet systems only. Exception: 4.2K sprinklers may be installed on hydraulically calculated dry pipe systems where piping is corrosion resistant or internally galvanized. * * Listings of use, City of New York Department of Buildings, MEA Number 89-92-E, Vol. 16. *													

Sprinkler 41e

TECHNICAL DATA

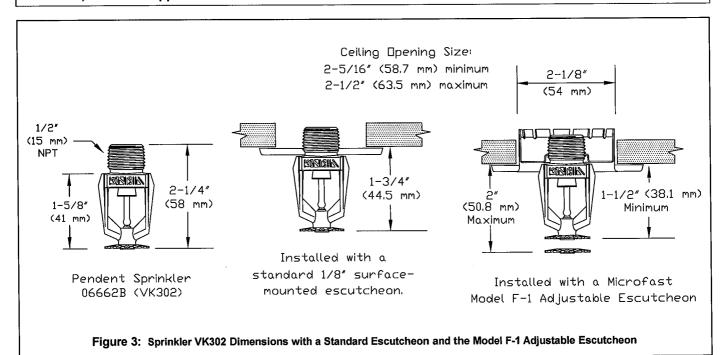
MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

cULus Listing Requirements:

Microfast[®] and MicrofastHP[®] Quick Response Pendent Sprinklers are cULus Listed as indicated in the Approval Chart for installation in accordance with the latest edition of NFPA 13 for standard spray sprinklers.

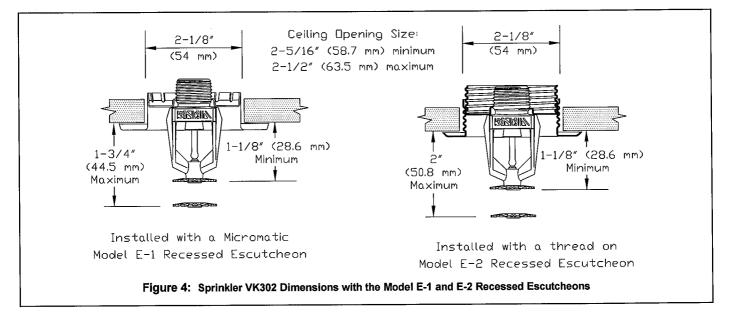

- Designed for use in Light and Ordinary Hazard occupancies (exception: small orifice sprinklers are limited to Light Hazard where allowed by the installation standards being applied, with hydraulically calculated wet systems only).
- The sprinkler installation rules contained in NFPA 13 for standard spray pendent sprinklers must be followed.

FM Approval Requirements:

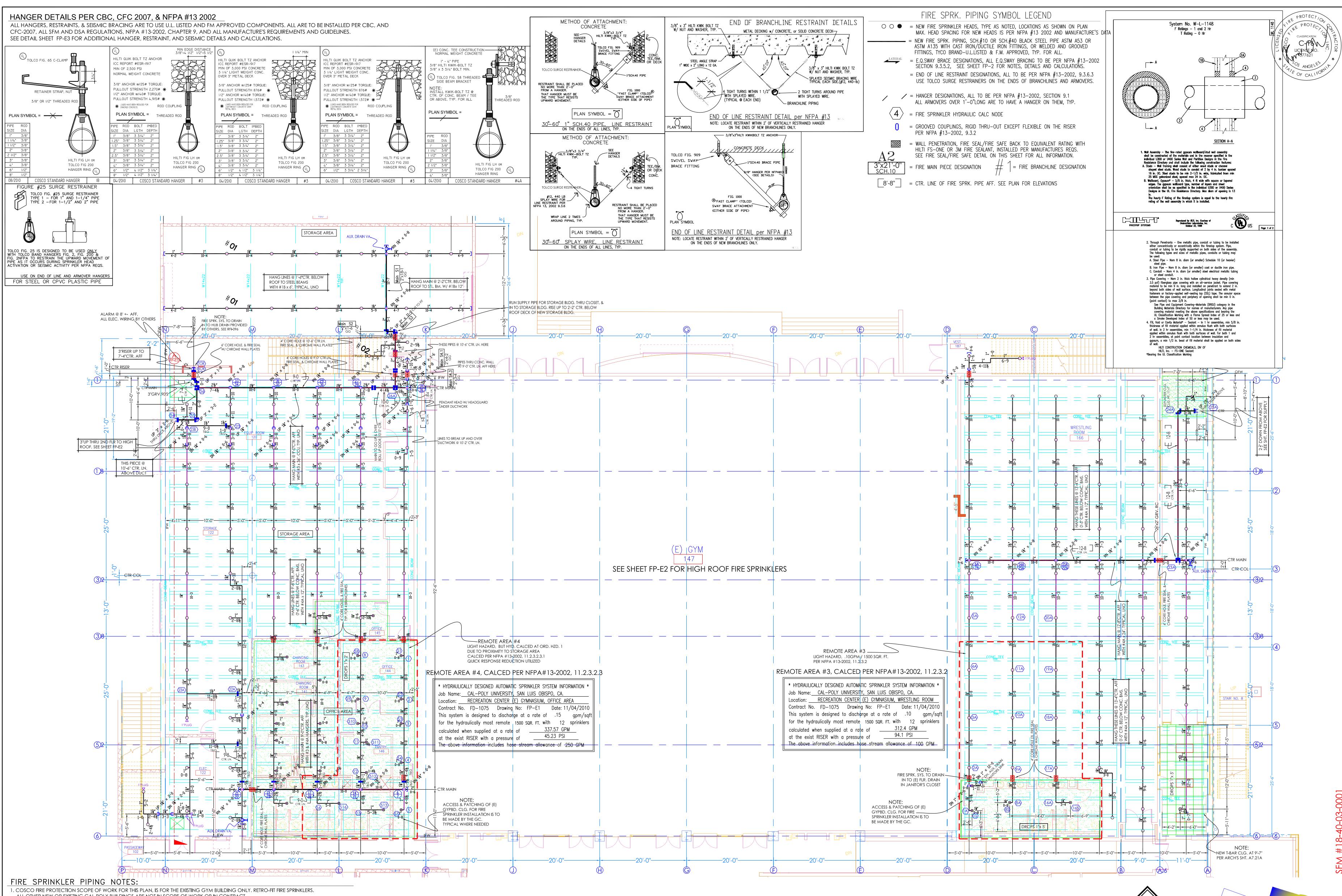
For installation in accordance with the latest applicable FM Loss Prevention Data Sheets (including 2-8N) and Technical Advisory Bulletins. FM Global Loss Prevention Data Sheets and Technical Advisory Bulletins contain guidelines relating to, but not limited to: minimum water supply requirements, hydraulic design, ceiling slope and obstructions, minimum and maximum allowable spacing, and deflector distance below the ceiling.

NOTE: The FM installation guidelines may differ from cULus and/or NFPA criteria.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page QR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, FM Global, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.


Sprinkler 41f

TECHNICAL DATA

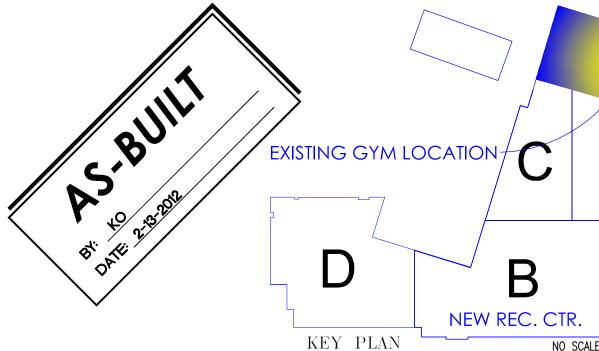

MICROFAST® AND MicrofastHP® QUICK RESPONSE PENDENT SPRINKLERS

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058 Telephone: 269-945-9501 Technical Services 877-384-5464 Fax: 269-945-4495 Email: techsvcs@vikingcorp.com

APPENDIX E

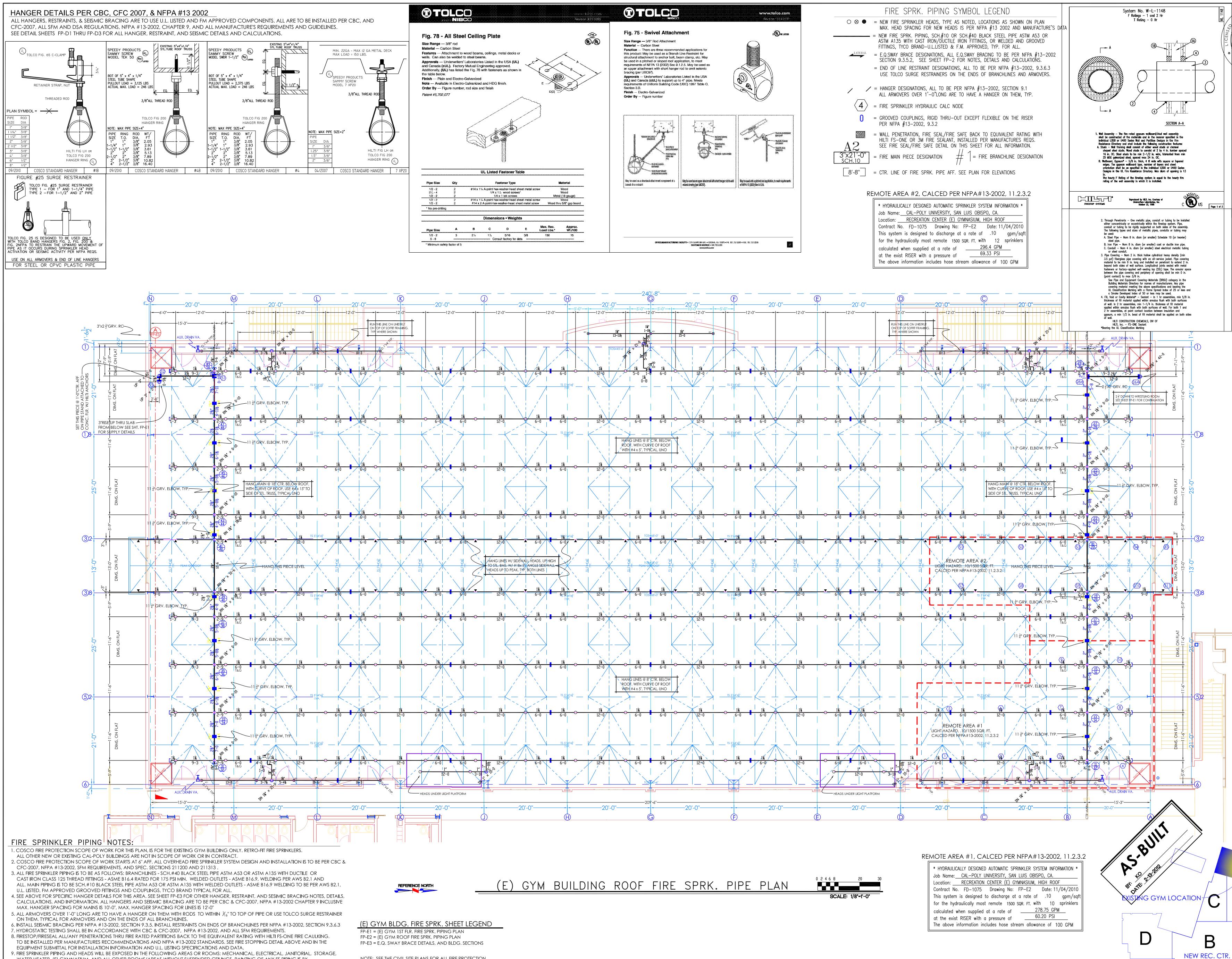
RECREATION CENTER – SPRINKLER PIPING ARRANGEMENT

- ALL OTHER NEW OR EXISTING CAL-POLY BUILDINGS ARE NOT IN SCOPE OF WORK OR IN CONTRACT. 2. COSCO FIRE PROTECTION SCOPE OF WORK STARTS AT 6" AFF. ALL OVERHEAD FIRE SPRINKLER SYSTEM DESIGN AND INSTALLATION IS TO BE PER CBC & CFC-2007, NFPA #13-2002, SFM REQUIREMENTS, AND SPEC. SECTIONS 211200 AND 211313.
- 3. ALL FIRE SPRINKLER PIPING IS TO BE AS FOLLOWS: BRANCHLINES SCH.#40 BLACK STEEL PIPE ASTM A53 OR ASTM A135 WITH DUCTILE OR CAST IRON CLASS 125 THREAD FITTINGS - ASME B16.4 RATED FOR 175 PSI MIN. WELDED OUTLETS - ASME B16.9, WELDING PER AWS B2.1 AND
- ALL. MAIN PIPING IS TO BE SCH.#10 BLACK STEEL PIPE ASTM A53 OR ASTM A135 WITH WELDED OUTLETS ASME B16.9 WELDING TO BE PER AWS B2.1, U.L. LISTED, FM APPROVED GROOVED FITTINGS AND COUPLINGS, TYCO BRAND TYPICAL FOR ALL. 4. SEE ABOVE FOR SPECIFIC HANGER DETAILS FOR THIS AREA. SEE SHEET FP-E3 FOR ALL HANGER, RESTRAINT, AND SESIMIC BRACING NOTES, DETAILS,
- CALCULATIONS, AND INFORMATION. ALL HANGERS AND SEISMIC BRACING ARE TO BE PER CBC & CFC-2007, NFPA #13-2002 CHAPTER 9 INCLUSIVE, ALL SFM REQUIREMENTS, AND MANUFACTURES GUIDELINES AND RECOMMENDATIONS.
- 5. ALL ARMOVERS OVER 1'-0" LONG ARE TO HAVE A HANGER ON THEM WITH RODS TO WITHIN 1/6" TO TOP OF PIPE OR USE TOLCO SURGE RESTRAINER ON THEM. TYPICAL FOR ARMOVERS AND ON THE ENDS OF ALL BRANCHLINES.
- 6. INSTALL SEISMIC BRACING PER NFPA #13-2002, SECTION 9.3.5. INSTALL RESTRAINTS ON ENDS OF BRANCHLINES PER NFPA #13-2002, SECTION 9.3.6.3
 7. HYDROSTATIC TESTING SHALL BE IN ACCORDANCE WITH CBC & CFC-2007, NFPA #13-2002, AND ALL SFM REQUIREMENTS.
 8. FIRESTOP/FIRESEAL ALL/ANY PENETRATIONS THRU FIRE RATED PARTITIONS BACK TO THE EQUIVALENT RATING WITH HILTI FS-ONE FIRE CAULKING.
- TO BE INSTALLED PER MANUFACTURES RECOMMENDATIONS AND NFPA #13-2002 STANDARDS. SEE FIRE STOPPING DETAIL ABOVE AND IN THE EQUIPMENT SUBMITTAL FOR INSTALLATION INFORMATION AND U.L. LISTING SPECIFICATIONS AND DATA. 9. FIRE SPRINKLER PIPING AND HEADS WILL BE EXPOSED IN THE FOLLOWING AREAS OR ROOMS: MECHANICAL, ELECTRICAL, JANITORIAL, STORAGE, WATER HEATER, (E) GYMNASIUM, AND ALL OTHER ROOMS/AREAS WITHOUT SUSPENDED CEILINGS. PAINTING OF ANY FS PIPING IS BY OTHERS ENTIRELY. PAINTING OF FIRE SPRINKLER HEADS IS PROHIBITED, EXCEPT BY THE FACTORY


(E) GYM BUILDING 1ST FLR FIRE SPRK. PIPE PLAN

(E) GYM BLDG. FIRE SPRK. SHEET LEGEND

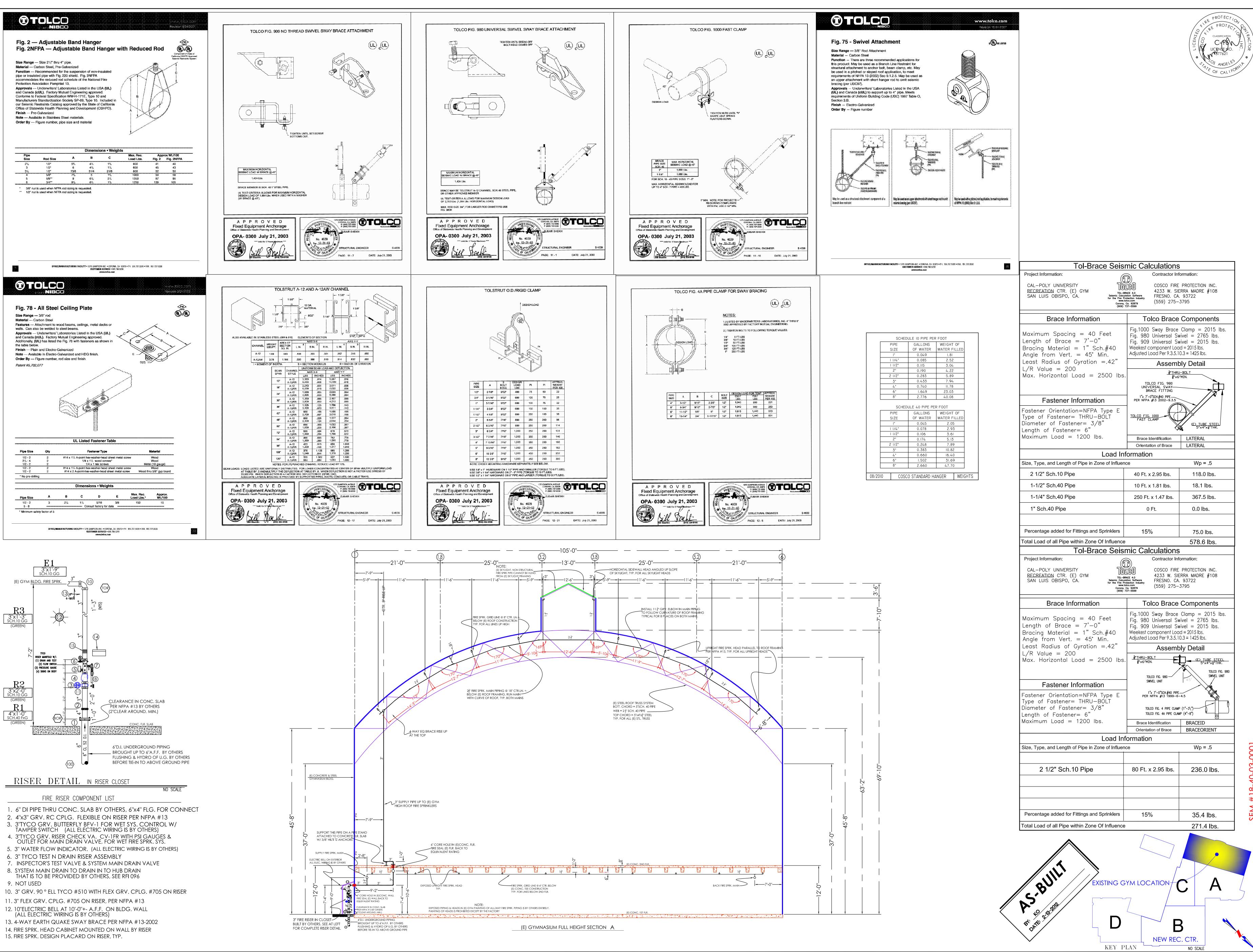
FP-E1 = (E) GYM 1ST FLR. FIRE SPRK. PIPING PLAN FP-E2 = (E) GYM ROOF FIRE SPRK. PIPING PLAN FP-E3 = E.Q. SWAY BRACE DETAILS, AND BLDG. SECTIONS


NOTE: SEE THE CIVIL SITE PLANS FOR ALL FIRE PROTECTION UNDERGROUND LAYOUT, NOTES, DETAILS, AND INFORMATION

0 2 4 6 8 20 30 REFERENCE NORTH SCALE: 1/8'=1'-0'

SH		PROJECT:		SPRINKLER HEAD LEGEND :	SYMBOL S/N ORIFICE NPT K-FACT FINSH FINISH	act¦ finish finish temp. quan.	ż	REVISIONS	
EET		TE :		VIKING CONCEALED QREC FIRE SPRK HEAD	● VK634 3/4" 3/4" 8.C	8.0 BRASS CHROME 155 0	NO. DESCRIPTION	N	DATE BY
NO.	0.	san luis obispo, california 93407		VIKING RECESSED QREC FIRE SPRK HEAD	 VK602 3/4" 3/4" 8.0 	8.0 CHROME CHROME 155 1			
				VIKING SIDEWALL QREC FIRE SPRK HEAD	VK606 3/4" 3/4" 8.C	8.0 CHROME CHROME 155 0			
_	3"= 1 :0 1 <i>1</i>	-20	FIRE PROTECTION AND LIFE SAFETY SPECIALISTS	VIKING RECESSED QR FIRE SPRK HEAD	S VK302 1/2" 1/2" 5.6	5.6 CHROME CHROME 155 32			
		10		VIKING CONCEALED QRSC FIRE SPRK HEAD	80 VK462 1/2" 1/2" 5.6	5.6 BRASS CHROME 155 0			
	75	S	California C-16 4233 W. Slerra Maare, Sulte 108 www.coscofire.com UC. # 577621 Fresno, California 93722	VIKING UPRIGHT QR FIRE SPRK HEAD	O VK300 1/2" 1/2" 5.6	5.6 BRASS NA 155 122			
\wedge			call (559) 275-3795•fax (559) 275-8006	APPROVALS BY:		TOTAL SPRINKLERS = 155			
7			san diego • Los angeles • fresno • san francisco • sacramento • portland • seattle • anchorage			THIS SHEET			

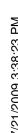
A

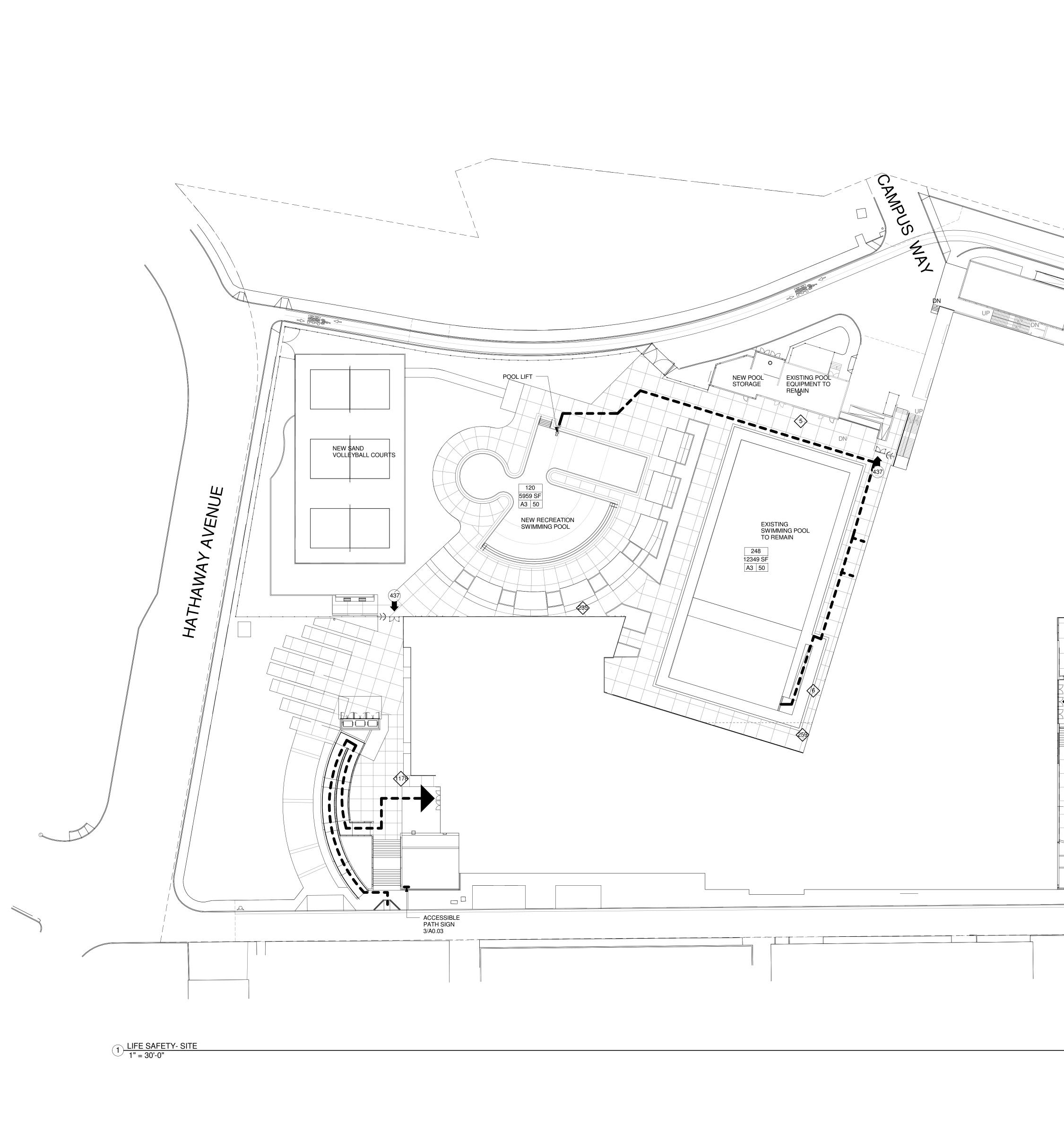

- WATER HEATER, (E) GYMNASIUM, AND ALL OTHER ROOMS/AREAS WITHOUT SUSPENDED CEILINGS. PAINTING OF ANY FS PIPING IS BY OTHERS ENTIRELY. PAINTING OF FIRE SPRINKLER HEADS IS PROHIBITED, EXCEPT BY THE FACTORY

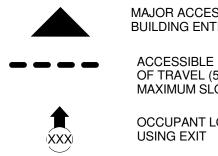
NOTE: SEE THE CIVIL SITE PLANS FOR ALL FIRE PROTECTION UNDERGROUND LAYOUT, NOTES, DETAILS, AND INFORMATION

KEY PLAN

NO SCALE


RE	PRO PR	TECT	Or	
	classif CLASSIF			ATRACT
			<u>,</u>	TOR ¥
XAY	OS AI	CALIF	ORNIA	




REVISIONS	NO. DESCRIPTION DATE BY							
QUAN.	0	0	0	0	0	0	0	
K-FACT HEAD FINISH TEMP. QUAN.	8.0 BRASS CHROME 155	8.0 CHROMECHROME 155	8.0 CHROME CHROME 155	5.6 CHROME CHROME 155	5.6 BRASS CHROME 155	5.6 BRASS NA 155		IHIS SHEEI
SYMBOL S/N ORIFICE NPT K-FACT FINISH FINISH	VK634 3/4" 3/4"	 VK602 3/4" 3/4" 	► VK606 3/4" 3/4"	X VK302 1/2" 1/2"	% VK462 1/2" 1/2"	O VK300 1/2" 1/2"	HAL	
SPRINKLER HEAD LEGEND :	VIKING CONCEALED QREC FIRE SPRK HEAD	viking recessed arec fire sprk head	VIKING SIDEWALL QREC FIRE SPRK HEAD	viking recessed ar fire sprk head	VIKING CONCEALED QRSC FIRE SPRK HEAD	VIKING UPRIGHT QR FIRE SPRK HEAD	APPROVALS BY: ARCH. & STATE FIRE MARSHAL	
		• •		FIRE PROTECTION AND LIFE SAFETY SPECIALISTS		LIC. # 577621 Fresno, California 93722 www.coscofire.com	call (559) 275-3795•fax (559) 275-8006	San DIEGO • LOS ANGELES • FRESNO • SAN FRANCISCO • SACRAMENTO • PORTLAND • SEATTLE • ANCHORAGE
	CAL POLY UNIVERSILY, RECREATION CENTER	san luis obispo, california 93407	CONTRACT WITH:	SUNDT CONSTRUCTION INC		SAN LUIS OBISPO, CA. 93407		
PROJECT:			CONT				DRAWI	
PROJEC		:	9-1	-20 3''= 1			DRAWI	
L PROJEC	TE : ALE AWN 3 N	BY 0.	9-1 1/8 KO	-20 3''= 1	'-0''			
DA ⁻ SC. JOR	TE : ALE AWN B N	BY	9-1 1/8 КО	-20 [°] 3''= 1				

APPENDIX F

RECREATION CENTER – LIFE SAFETY DRAWINGS

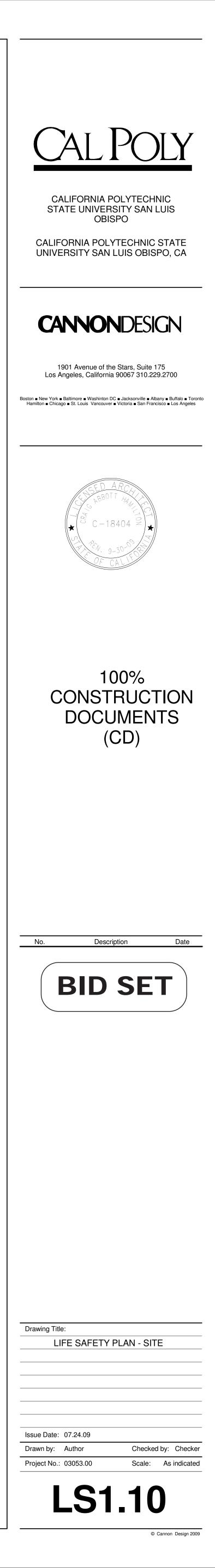
ACCESSIBLE PATH OF TRAVEL (5% MAXIMUM SLOPE) OCCUPANT LOAD

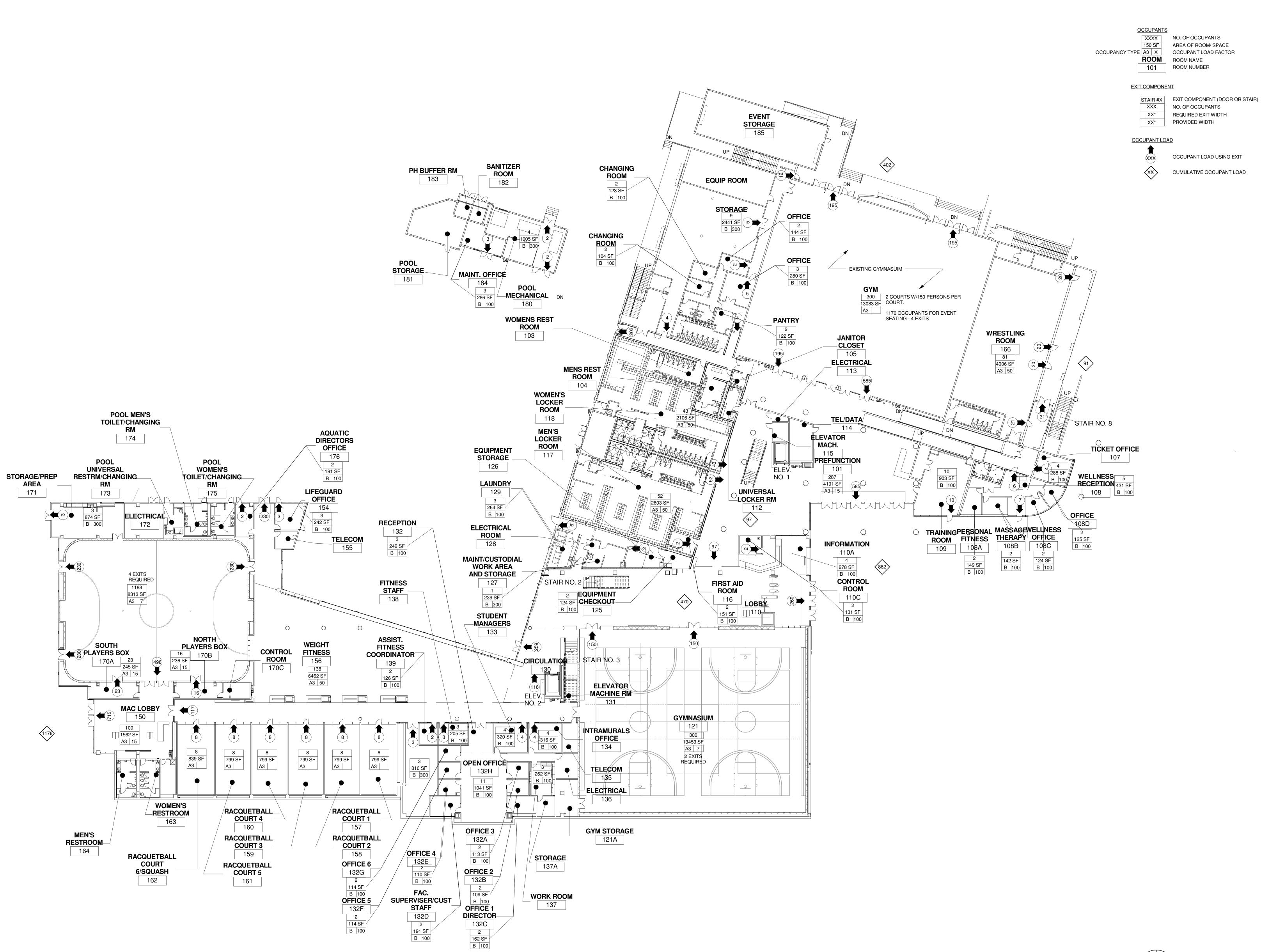
NOTES: 1. PATH OF TRAVEL (P.O.T.) INDICATED IS BARRIER-FREE ACCESS

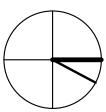
2. PATH OF TRAVEL INDICATED IS 48" WIDE MINIMUM WITHOUT ANY ABRUPT CHANGES EXCEEDING 1/2" AT 1:2 MAXIMUM SLOPE, EXCEPT THAT LEVEL CHANGES DO NOT EXCEED 1/4" VERTICAL. 3. MAXIMUM CROSS-SLOPE 2% TYPICAL.

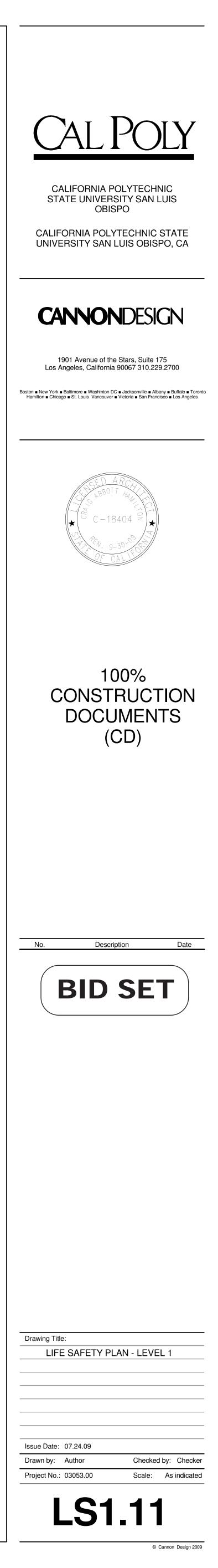
402 \Box \boldsymbol{Q} V Ò Ľ Ľ Ш Н ERIME Q \Box SO ACCESSIBLE PATH SIGN 3/A0.03 └────── ____ **%**2 =DŇ= EXISTING KINESIOLOGY DN= \square

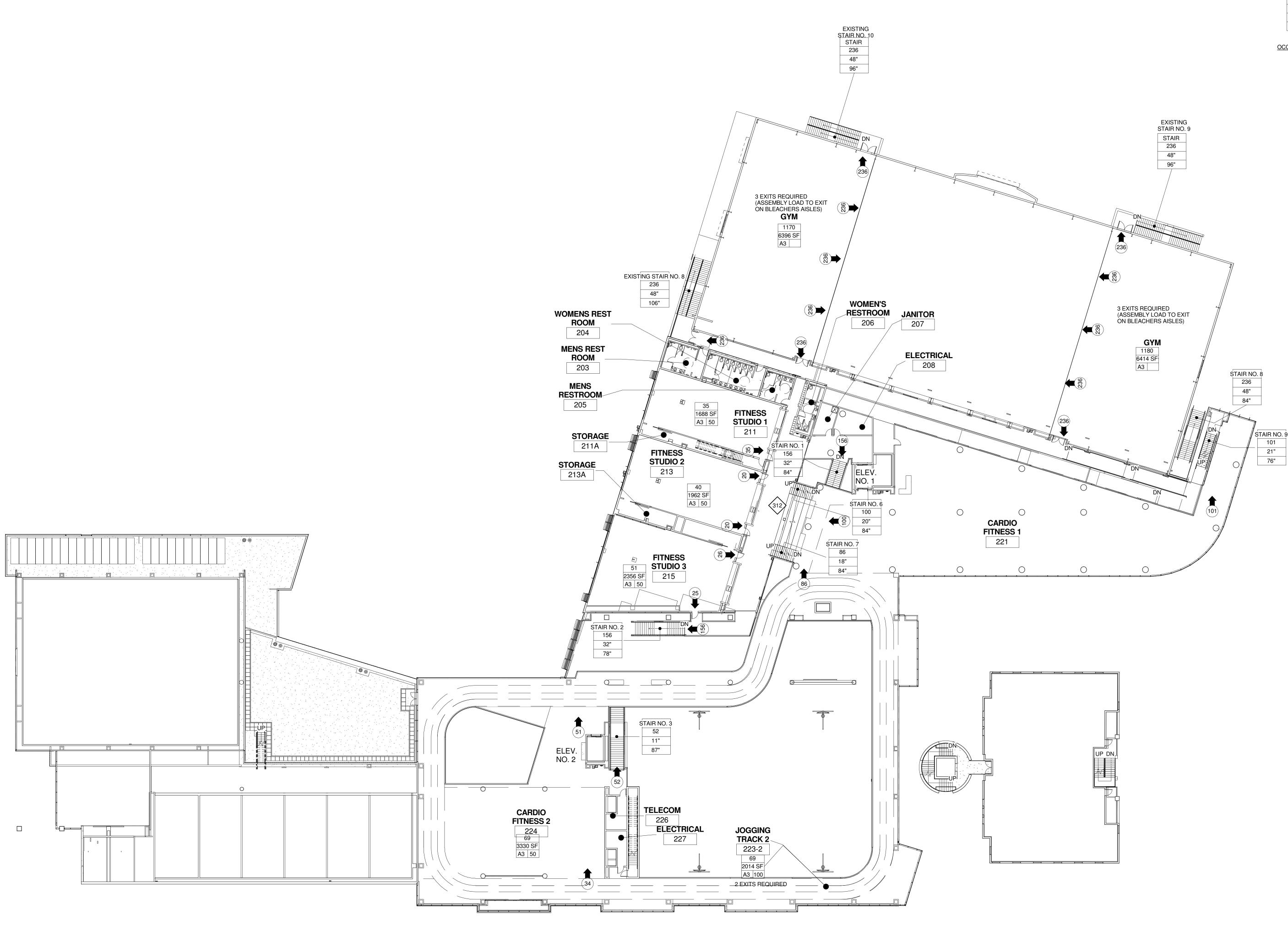
' //

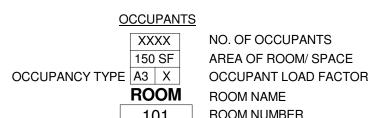

CERTIFIED NOTE: THIS IS TO CERTIFY THAT, TO THE BEST OF OUR KNOWLEDGE, ALL PATHS OF TRAVEL (P.O.T.) INDICATED ARE IN COMPLIANCE WITH CCR, TITLE-24 AS DEFINED BY THE 2001 CALIFORNIA BUILDING CODE (CBC), INCLUDING ALL WALKS, CURB RAMP(S), LIFT(S) AND ELEVATORS (AS APPLY).

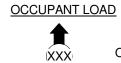

THE CONTRACTOR SHALL VERIFY THAT THE INDICATED PATH OF TRAVEL HAS BEEN CONSTRUCTED WITHOUT BARRIERS, AND SHALL TAKE SUCH STEPS AS REQUIRED TO CORRECT ANY DEFICIENCIES FOUND.


THIS MAY RESULT IN CONSTRUCTION CHANGE ORDERS AS NECESSARY TO MITIGATE THESE NON-COMPLYING CONDITIONS.


PROJECT ARCHITECT DATE (AT TIME OF DOCUMENT APPROVAL)

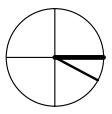

CONSTRUCTION SUPERVISOR DATE (AFTER CHECKING THE SITE)

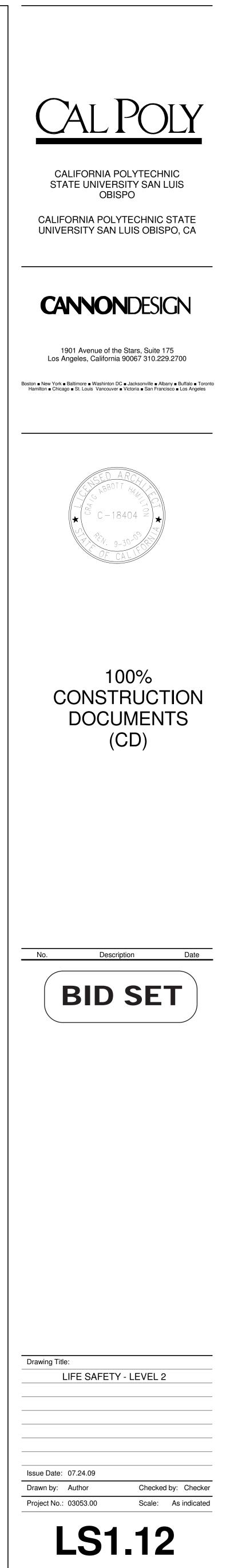




XXXX NO. OF OCCUPANTS AREA OF ROOM/ SPACE ROOM NAME 101 ROOM NUMBER

EXIT COMPONENT


XX"


STAIR #X EXIT COMPONENT (DOOR OR STAIR) XXX NO. OF OCCUPANTS XX" REQUIRED EXIT WIDTH PROVIDED WIDTH

 $\langle x x \rangle$

OCCUPANT LOAD USING EXIT CUMULATIVE OCCUPANT LOAD

APPENDIX G

RECREATION CENTER – FIRE SAFETY MANAGEMENT PLAN

TABLE OF CONTENTS

Introduct	íon	2
Part I: App	blicable IFC Provisions.	
	Fire Safety Plans during Construction	3
	A. Precautions against Fire3	
	B. Flammable and Combustible Liquids	
	C. Owner's Responsibility for fire	
	D. Fire Reporting4	
	E. Access for Fire Fighting4	
	F. Means of Egress4	
	G. Water Supply for Fire Protection4	
	H. Stand pipes5	
	I. Automatic Sprinkler Systems5	
	J. Portable Fire Extinguishers5	
	K. Motorízed Equípment5	
	L. Safeguarding Roofing Operations	
PartII	Fire Safety Plan for Calpoly Recreation Center	7
	1. Building Information7	
	2. List of Fire Safety Equipment7	
	3. Proposed Maintenance Schedule	
	4. Fire and Evacuation Plans10	
	5. Employee Training on Fire Response14	
	6. Fire Drills15	
	7. Control of Fire Hazards16	
APPENDIC	ÆS	
Appendíx	1: Recreation Center Perspective Diagrams	
Appendíx	2: Lífe Safety Síte plans	
Appendíx	3: List of Fire Safety Equipment	

INTRODUCTION

The Recreation Center opened in 1993 as the first comprehensive facility of its kind in the CSU system. In January 2012, the renovated Recreation Center opened its doors after major expanding works, which some old sections were to be demolished, re-modeled and re-built.

The Center is a welcoming destination for Cal Poly community to relax, recreate and socialize. The renovated Recreation Center is a two-story building of 165 000 square feet recreation space that includes three separate exercise areas filled with state of the art weight and cardio equipment, three fitness studios for group exercise classes, an indoor track, a lounge area, a leisure pool, locker rooms with individual showers, a martial arts training room and much more variety of fitness and recreation programs that promote lifelong healthy habits.

The report covers the Fire Safety management plan for the recreation center building in two aspects:

- Part I: The section covers applicable IFC provisions during construction of the recreation center
- Part II: The section covers the fire safety management plan during occupancy

The applicable IFC provisions are summarized in part 1 to illustrate what code provisions need to be observed in order to comply with IFC code regulations with regards to fire safety during construction and occupancy.

The fire safety plan is developed to provide occupant safety in the event of a fire, to provide effective utilization of the fire safety features of the building or to minimize the possibility of fires.

PART I: APPLICABLE IFC PROVISIONS

FIRE SAFETY PLANS DURING CONSTRUCTION

The fire safety management plan for the recreation center applicable during construction is essentially based on IFC, chapter 14 provisions.

The following provisions are included in the fire safety management to be applied during the construction of the recreation center:

A. PRECAUTIONS AGAINST FIRE

- Smoking shall be prohibited except in approved areas. Signs shall be posted in approved areas where smoking is permitted and approved ashtrays shall be provided.
- Combustible debris shall not be accumulated within buildings. Combustible debris, rubbish and waste material shall be removed from buildings at the end of each shift of work. Combustible debris, rubbish and waste material shall not be disposed of by burning on the site unless approved.
- Materials susceptible to spontaneous ignition, such as oily rags, shall be stored in a listed disposal container.
- Operations involving the use of cutting and welding shall be done in accordance with Chapter 26.
- Temporary wiring for electrical power and lighting installations used in connection with the construction, alteration or demolition of buildings, structures, equipment or similar activities shall comply with NFPA 70.
- Open burning that is offensive or objectionable because of smoke emissions or when atmospheric conditions or local circumstances make such fire hazardous shall be prohibited.

B. FLAMMABLE AND COMBUSTIBLE LIQUIDS

- Storage of flammable and combustible liquids shall be in accordance with section 3404
- The storage, use and handling of flammable and combustible liquids at construction sites shall be in accordance with section 3406.2. Ventilation shall be provided for operations involving the application of materials containing flammable solvents.
- Sources of ignition and smoking shall be prohibited in flammable and combustible liquid storage areas. Sign shall be posted in accordance with section 310.
- Class I and II liquids shall be kept in approved safety containers.
- Leaking vessels shall be immediately repaired or taken out of service and spills shall be cleaned up and disposed of property.

C. OWNER'S RESPONSIBILITY FOR FIRE

- CalPoly University, as owner, shall designate a person to be the fire prevention program superintendent who shall have authority and be responsible for the fire prevention program and ensure that it is carried out through completion of the construction project. Where guard service is provided, the superintendent shall be responsible for the guard service.
- Training of responsible personnel in the use of fire protection equipment shall be the responsibility of the fire prevention program superintendent.

- The fire prevention program superintendent shall develop and maintain an approved pre-fire plan in cooperation with the fire chief. The fire chief and the fire code official shall be notified of changes affecting the utilization of information contained in such pre-fire plans.
- The fire prevention program superintendent shall determine that all fire protection equipment is maintained and serviced in accordance with the IFC code. The quantity and type of fire protection equipment shall be approved.
- The fire prevention program superintendent shall be responsible for supervising the permit system for hot work operations in accordance with chapter 26
- Coverings placed on or over fire protection devices to protect them from damage during construction processes shall be immediately removed upon the completion of the construction processes in the room or area in which the devices are installed.

D. FIRE REPORTING

• Readily accessible emergency telephone facilities shall be provided in approved location at the construction site. The street address of the construction site and the emergency telephone number of the fire department shall be posted adjacent of the telephone.

E. ACCESS FOR FIRE FIGHTING

- Approved vehicle access for firefighting shall be provided to all construction. Vehicle access shall be
 provided to within 100 feet (30480 mm) of temporary or permanent fire department connections.
 Vehicle access shall be provided by either temporary or permanent roads, capable of supporting
 vehicle loading under all weather conditions. Vehicle access shall be maintained until permanent fire
 apparatus access roads are available.
- •

F. MEANS OF EGRESS

- Where a building has been constructed to a building height of 50 feet (15240 mm) or four stories, or where an existing building exceeding 50 feet (15240mm) in building heights altered, at least one temporary lighted stairway shall be provided unless one or more of the permanent stairways are erected as the construction progresses.
- Required means of egress shall be maintained during construction, remodeling or alterations and additions to any building.
 The recreation center project will not meet this provision during construction due to its limited height.

G. WATER SUPPLY FOR FIRE PROTECTION

• An approved water supply for fire protection, either temporary or permanent, shall be made available as soon as combustible material arrives on the site.

H. STANDPIPES

- The recreation center shall be equipped with not less than one standpipe during construction. Such standpipes shall be installed when the progress of construction is not more than 40 feet in height above the lowest level of fire department vehicle access. Such standpipe shall be provided with fire department hose connections at accessible locations adjacent to usable stairs. Such standpipes shall be extended as construction progresses to within one floor of the highest point of construction having secured decking or flooring.
- For the old sections of the recreation center that will be demolished, if a standpipe is existing within such a building, such standpipe shall be maintained in an operable condition so as to be available for use by the fire department. Such standpipe shall be demolished with the building but shall not be demolished more than one floor below the floor being demolished.
- Standpipes shall be installed in accordance with the provision of Section 905. Standpipes shall be either temporary or permanent in nature, and with or without a water supply, provided that such standpipes comply with the requirements of Section 905 as to capacity, outlets and materials.

I. AUTOMATIC SPRINKLER SYSTEM

- It shall be unlawful to occupy a portion of the recreation center until the automatic sprinkler system installation has been tested and approved.
- Operation of sprinkler valve shall be allowed only by property authorized personnel and shall be accompanied by notification of duty designated parties. When the sprinkler protection is being regularly turned off and on to facilitate connection of newly completed segments, the sprinkler control valves shall be checked at the end of each work period to ascertain that protection is in service.

J. PORTABLE FIRE EXTINGUISHERS

- The recreation center construction site shall be provided with not less than one approved portable fire extinguisher in accordance with Section 906 and sized for not less than ordinary hazard as follows:
 - o Each stairway, on all floor levels where combustible materials have accumulated
 - Every storage and construction shed
 - Where special hazards exist such, not limited to, storage and use of flammable and combustible liquids

K. MOTORIZED EQUIPMENT

- Internal-combustion powered construction equipment shall be used in accordance with all of the following conditions:
 - o Equipment shall be located so that exhausts do not discharge against combustible material
 - o Exhausts shall be piped to the outside of the building
 - Equipment shall not be refueled while in operation
 - Fuel for equipment shall be stored in an approved area

L. SAFEGUARDING ROOFING OPERATIONS

- Roofing operations utilizing heat-producing systems or other ignition sources shall be conducted in accordance with Sections 1417.2 and 1417.3 and Chapter 26.
- Asphalt and tar kettles, if used, shall be operates in accordance with Section 303.
- They shall be not less than one multipurpose portable fire extinguisher with a minimum 3-A 40-B:C rating on the roof being covered or repaired.

PART II: FIRE SAFETY PLAN FOR CALPOLY RECREATION CENTER

This Fire Safety Plan is required in accordance with IFC Section 404.2: "An approved fire safety and evacuation plan shall be prepared and maintained for the following occupancies and buildings. Group A, other than Group A occupancies used exclusively for purposes of religious worship that have an occupant load less than 2000".

This Fire Safety plan is designed to provide center's occupants safety in the event of a fire, to provide effective utilization of the fire safety features of the building or to minimize the possibility of fires.

The plan discusses what occupants need to do in the event of a fire, fire safety, supervisory shift or related duties, and other related issues.

This Fire Safety Plan will also assist fire-fighters in the performance of their duties by providing floor plans and office staffs and users information if an emergency ever occurs.

Building Name	Cal Poly Rec Center				
Building Location	1 Grand Avenue, San Luis Obispo. Calpoly main campus				
Building Owner	CalPoly University				
Building Manager	Hossein Sedghi				
Building Deputy Manager	ТВС				
Building Floor Area	 a) Number of stories: 2 plus basement b) Height: 49 ft (average height of highest roof) c) Total area: 165 715 Square ft 				

1 BUILDING INFORMATION

2 LIST OF FIRE SAFETY EQUIPMENT

Refer to Appendix 3 for more details

Installation	Tests and Frequency	Competent Person
Fire Detection and	As per NFPA 72 and IFC chapter	Calpoly Electrical
Smoke Alarm Systems	9 requirements	Department
Fire Sprinkler Systems	As per NFPA 25 and IFC chapter 9	Licensed Fire Sprinkler
	requirements	Contractor
Portable Fire	As per NFPA 10 and IFC chapter 9	Licensed Fire Appliance
Extinguishers	requirements	Contractor
Exit Signs and	As NFPA 70 and IFC chapter 9	Licensed Fire Contractor
Emergency Lighting	requirements	
Manual Fire boxes	As per NFPA 72 and IFC chapter 9	Licensed Fire Appliance
	requirements	Contractor
Exit Door Hardware	Ensure correct operation all the	Manager's appointed
	times	personnel

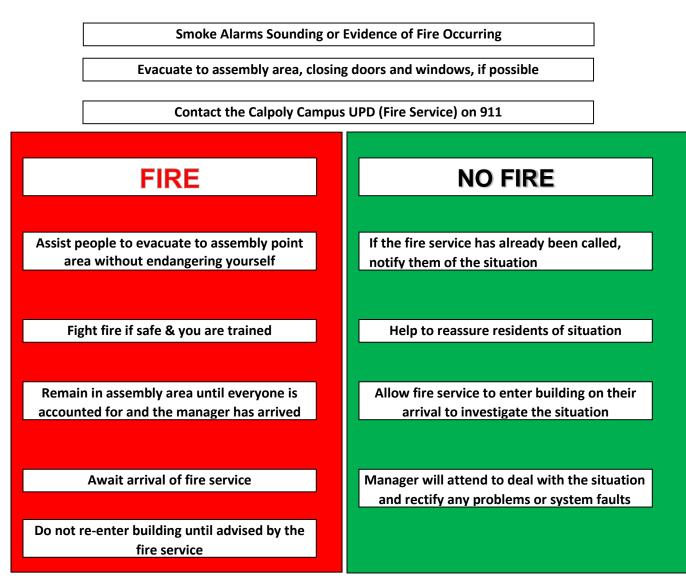
3 PROPOSED MAINTENANCE SCHEDULE

Table 3-1: Proposed Maintenance Schedule

Figure 3.1: Fire sprinkler maintenance works

Figure 3.2: Fire alarm system maintenance works

Figure 3.3: Fire extinguisher maintenance works


Figure 3.4: Exit signs and emergency lighting

4 FIRE AND EVACUATION PLAN

This section includes emergency evacuation procedures for all recreation center's personnel and center's users, and their visitors. The procedures describe what to do when discovering a fire or smoke; and hearing the fire alarm.

EMERGENCY PROCEDURE CHECKLIST FOR CENTER'S USERS

In an emergency, phone 911. Building Manager – Hoss Sedghi

FIRE ALARM PROCEDURES

A. IN FIRE EMERGENCIES:

When the smoke alarms activate, students using the center and building staff shall leave the building immediately, in orderly manner and gather at a predetermined assembly point area.

The following actions shall be performed (unless otherwise instructed by the Fire Service) by the building manager or his/her appointed assistant in attendance:

- Investigate the fire situation. Go to fire alarm annunciator panel behind the reception desk.
 Look for red light on annunciator panel zones. Should there be red light, that light will tell you what location to go look at, and verify you have a fire or smoke.
- If there is a fire, ensure the Fire Department has been called. If there is any doubt regarding
 whether there is a fire situation, the Fire Department should still be notified by the
 dispatcher from the University Central Control room.
- Ensure the safe evacuation of all building personnel and students using the center from the building.
- Ensure the Fire Department has been notified and provided with information regarding the incident.
- Account for all occupants at the assembly area following the entrance registry.
- If required and safe to do, conduct a search for any missing persons.
- Meet the first fire respondents and advise them of any information relevant to the emergency.

B. IN REAL FIRE EMERGENCIES (when a fire event has been confirmed):

The building manager or his/her appointed assistance in attendance will:

- Ensure the evacuation of the building manually activate voice evacuation system if not automatically activated yet; in order to alert all building attendants without further delay that can compromise life
- Attempt to extinguish the fire if safe to do so If the fire is small enough, use a nearby fire
 extinguisher to control and extinguish the fire. However no attempt to extinguish the fire in
 any of the following conditions:
 - You have not been trained or instructed in using a fire extinguisher
 - You do not know what's burning
 - The fire is spreading rapidly
 - You don't have the proper equipment
 - You cannot do so with your back to an exit
 - The fire might block your means of escape
 - You might inhale toxic smoke
 - Your instincts tell you not to do so
 - If the first attempts to put out the fire do not succeed, evacuate the building immediately.
- Meet the Fire Service on arrival and inform them of the situation; regardless whether the fire
 has been extinguished or not

C. IN NO FIRE SITUATION (in event fire was not found after a nuisance alarm):

The building manager or his/her appointed deputy in attendance should:

- Inform building attendants of the situation
- Meet the Fire Service on arrival and inform them of the situation
- Authorize recreation center's personnel and users to re-enter the building after the Fire Department has confirmed that it is safe to do so.

D. RESPONSIBILITY OF THE CENTER'S MANAGER: The manager is responsible for:

- All personnel and procedures until the arrival of the Fire Department
- Maintaining of an up-to date registry of personnel and students using the Center
- Appointing a person to assume the emergency duties of the Manager in his/her absence
- Logging accurately any problems encountered, performance of fire alerting and extinguishing systems, the egress performance of building attendants, the conduct of a debriefing with everyone involved in the event, and the continual improvement of the effectiveness of the evacuation plan

E. OCCUPANT FIRE PROCEDURE SIGNAGE

The above emergency procedure shall be posted by each manual pull station, within elevator lobbies and places agreed upon with fire official.

The following emergency evacuation plan will posted along with a pictogram showing assembly point. See Attachment 3 for details of emergency assembly areas

EMERGENCY EVACUATION PLAN

In case of **FIRE**

Leave through the nearest

- If you see SMOKE, FLAMES or hear the FIRE ALARM, leave the building immediately
- If safe, close any windows and doors to confine the fire.
- Follow the **EXIT** signs to locate and leave through the nearest emergency exit and proceed to the assembly point.
- TELEPHONE THE CALPOLY UPD at 911
- If unable to safely evacuate, stay in your room, close the door, and signal your presence at a window.
- Calmly follow instructions given by staff or the attending fire fighters.
- **Do not re-enter the building** until you are **told to do so** by the building manager or his/her deputy in charge or by the fire fighter in command.
- The building manager or his appointed assistant in attendance will account for all occupants and report persons missing to the fire fighters.

F. PERSONS REQUIRING ASSISTANCE

Staff members who will require assistance in emergency situations shall fill out a form to be handed to the building manager. The building manager will make readily available to the fire service upon their arrival, a list of all those members with conditions requiring assistance.

Figure 4.1: Fire evacuation of assisted employee

5 EMPLOYEE TRAINING ON FIRE RESPONSE

- The frequency of fire drills are set in IFC code section 405; the recreation center shall conduct fire drills at least quarterly or with cooperation with the fire code official.
- The building manager shall appoint fire safety assistants to be trained to assist with fire drills.
- The building staff members shall be trained in the fire emergency procedures described in the fire evacuation and fire safety plans. Records of staff members shall be kept updated and available to the fire code official upon. The training will include:
 - The procedure to follow in an emergency
 - The location of emergency exits
 - The paths of travel to exits
 - The location of firefighting equipment
 - The method of raising the alarm if the smoke alarms do not activate
 - The location of the assembly area
- Personnel assigned fire-fighting duties shall be trained to know the locations and proper use of
 portable fire extinguishers or other manual fire-fighting equipment and the protective clothing
 or equipment required for its safe and proper use.
- Permanent Employees of the recreation center shall receive instruction within 1 month of commencing work, and repeated at intervals of no more than 12 months.
- The instructions given are the procedure to be followed in the event of fire, means of escape from the building in the event of fire and the location and method of operation of firefighting equipment and fire alarms or equipment for warning of fire.
- A record of worker instruction will be retained with the original Fire Safety Management Plan and kept by the building manager.

Figure 5.1: Employee training on fire emergency response

6 FIRE DRILLS

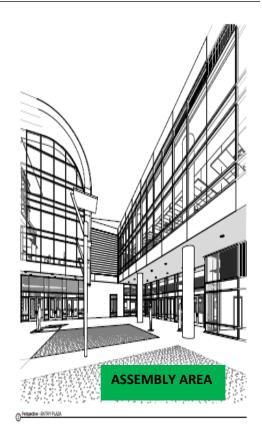
- The fire drills shall be conduct on a date decided in cooperation with the campus UPD, which
 exact time shall not be revealed to the building fire safety assistants or students using the
 facility in order to simulate real emergency event.
- The building manager will manually activate the evacuation alarm system; no fire alarms shall be utilized during drills that automatically notifies fire service of potential fire.
- Staff members and students using the center shall leave the center immediately and in orderly manner upon hearing the alarm.
- The fire safety assistants shall guide building occupants as they leave and gather in assembly points allocated in specific areas around the center
- The fire safety manager will time the egress of building occupants, and encourage people to leave the building in orderly manner and as fast as they could.
- Fire safety assistants shall observe that staff members and students take the fire drill seriously.
- When a fire drill is conducted, all emergency procedures for an actual fire shall be followed with the exception of the notification of actual emergency to fire department.
- Records shall be maintained of required emergency evacuation drills and include the following information:
 - Identify of the person conducting the drill
 - Date and time of the drill
 - \circ Notification method used
 - Staff members on duty and participating
 - Number of occupants evacuated
 - Special conditions simulated
 - o Problems encountered
 - o Weather conditions when occupants were evacuated
 - o Time spent to accomplish complete evacuation

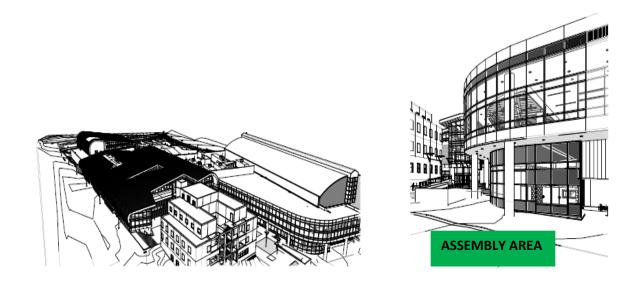
Figure 6.1: Fire drills

7 CONTROL OF FIRE HAZARDS

- Staff members shall be trained to identify the fire hazards of materials to which they are exposed to.
- The building manager shall make readily available Material safety Data Sheets (MSDS) for all hazardous materials stored or used in the recreation center. The MSDS shall be available on on the premise as a paper copy, or where approved shall be permitted to be ready retrievable by electronic access.
- Staff members shall be encouraged to practice basic measures to avoid any potential fire hazards and hence they should assist center's users to practice best practice for the disposal of any combustible materials.
- Building workers shall use appropriate individual containers of hazardous materials, cartons or packages clearly labeled in accordance with applicable federal regulations.
- Staff members responsible for the operation of areas in which hazardous materials are stored, dispensed, handled or used shall be familiar with the chemical nature of the materials and the appropriate mitigating actions necessary in the event of fire, leak or spill. Responsible persons shall be designated and trained to be liaison personnel for the fire department.

Figure 7.1: Control of fire hazard materials


APPENDICES


APPENDIX 1: RECREATION CENTER PERSPECTIVE DIAGRAMS

- **APPENDIX 2**: LIFE SAFETY SITE PLANS:
 - Fire Department Access Routes
 - Fire Evacuation Plans
- APPENDIX 3: LIST OF FIRE SAFETY EQUIPMENT

APPENDIX 1: RECREATION CENTER PERSPECTIVE DIAGRAMS

APPENDIX 2: LIFE SAFETY SITE PLAN: FIRE DEPARTMENT ACCESS

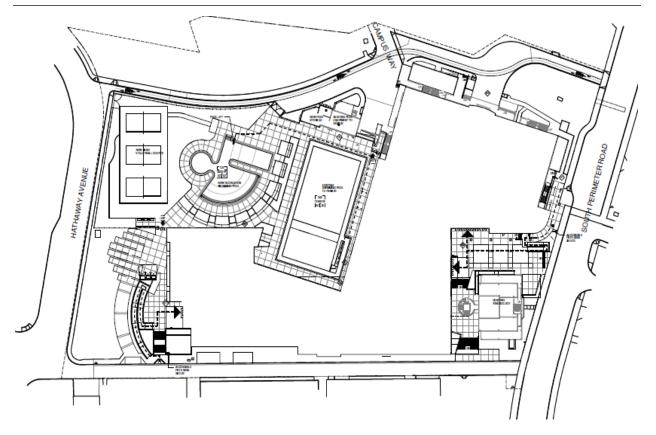


Figure A-2.1: *Fire Department Access Routes*

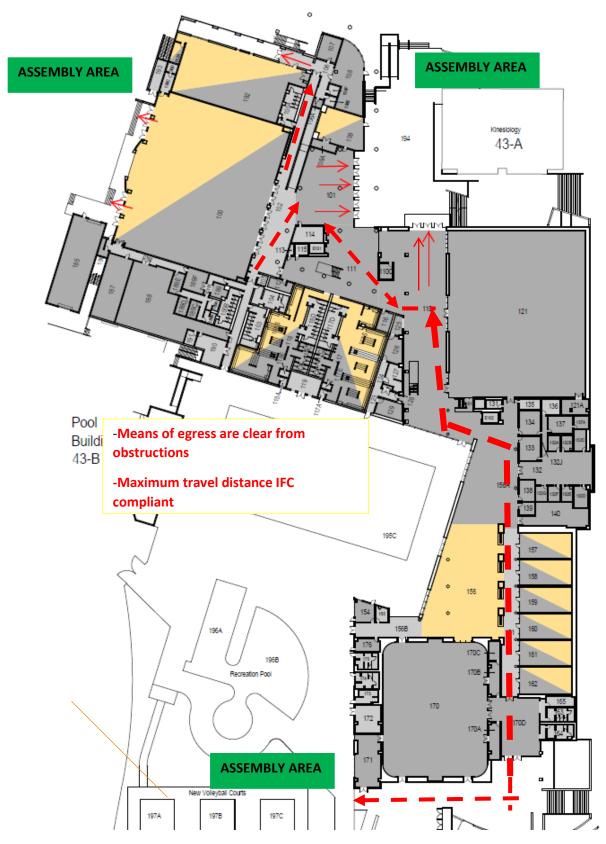


Figure A-2.2: 1st floor fire evacuation plan

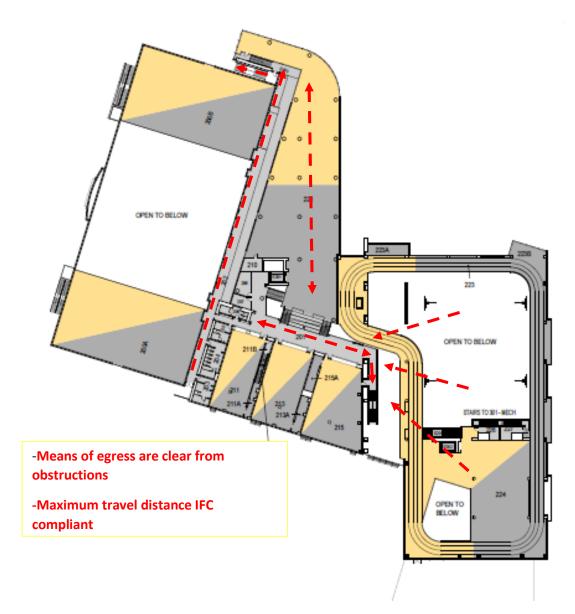


Figure A-2.3: **2**nd floor fire evacuation plan

APPENDIX 3: LIST OF FIRE SAFETY EQUIPMENT

The following tables summarize the different types and locations of fire safety equipment installed in the recreation center.

The entire recreation center is fully protected by fire sprinkler systems

1. Table 3.1: LIST OF EQUIPMENT

Device Type		Numbers of devices					
First Floor	Zone A	Zone B	Zone C	Zone D	Zone E		
Area smoke detectors	0	6	15	1	6		
Duct-type air smoke detectors	0	0	1	0	1		
Heat detectors	0	1	2	0	0		
Manual fire alarm box (manual pull station)	6	3	4	4	1		
Flow switches and Tamper switches	0	2 and 2	0	0	1 and 1		
Fire extinguishers	8	4	6	6	4		
Second Floor	Zone A	Zone B	Zone C		Zone E		
Area smoke detectors	4	6	7		0		
Duct-type air smoke detectors	0	0	0		0		
Heat detectors	0	0	0		0		
Manual fire alarm box (manual pull station)	1	2	1		1		
Flow switches and Tamper switches	0	0	0		0		
Fire extinguishers	2	4	4		4		
Roof		Co	ommon Zo	ne			
Duct-type air smoke detectors 8			8				
Manual fire alarm box (manual pull station)			4				

2. Table 3.2: EQUIPMENT LOCATION

Location	Placement and Spacing				
	First Floor				
	Fire Alarm Smoke Detectors				
	Zone B				
Elevator 2 lobby room 130: L1D016	Located on flat smooth ceiling just above elevator door				
Elevator 2 machine room: L1D017	Located on flat smooth ceiling				
Intramurals office room 134: L1D019	In-duct smoke detector				
Electrical room 136: L1D020 and L1D023	One area smoke detector on ceiling(D020), one in-duct detector				
Work room: DSD022	In-duct smoke detector				
Zone C					
Electric room 113: L1D001	Located on flat smooth ceiling				
Elevator 1 machine room 115: L1D002	Located on level ceiling				
Elevator 1 lobby room 111: L1D004	Located on smooth ceiling just above elevator 1 door				
Telecom room 114: L1D005, L1D006, L1D007 & L1D008	In-duct smoke detectors				
Control room110C: L1D010	Located on flat smooth ceiling				
Men's locker room 117: L1D011,L1D012 & L1D013	In-duct smoke detectors				
Building power supply room 190: L1D014	Above the fire alarm control panel, mounted on flat smooth ceiling				
Mechanical room 191: L1D025 and L1D102	One air handling unit smoke detector (D025) and the other area smoke detector located on flat smooth ceiling				
1 st floor storage room 111: L1D103 and L1D104	Room served by zones (C and E), each zone has two area air smoke detectors				
	Zone D				
Electrical room 172: L1D021	Located on flat smooth ceiling				
	Zone E				
1 st floor storage room 111: L1D105 and L1D106	Room served by zones (C and E), each zone has two area air smoke detectors				
Equipment room 187: L1D107	Mounted on flat smooth ceiling				
Corridor C102: L1D108	Mounted on flat smooth ceiling				
Wrestling room (electrical	Area smoke detectors on flat smooth ceiling (D109 and D110) and				
compartment) 100C and 100D: L1D110, L1D109 and L1D114	one air handling unit smoke detector				
Main gym room 100: L1D113	Air handling unit smoke detector				

Location	Placement and Spacing
	Second Floor
	Zone A
Telecom and data room 210: L1D136, L1D137, L1D138, L1D139 and L1D140	In-duct smoke detectors
	Zone B
Telecom room 226: L1D044 and L1D045	In-duct detectors
Electrical room 227: L1D046, L1D047 and L1D048	One area smoke detector on flat smooth ceiling (D046) and two in- duct air smoke detectors
Stretching area 224A: L1D159	Area smoke detector on flat smooth ceiling above elevator door
	Zone C
Women's restroom room 206: L1D031	In-duct air smoke detector
Electrical room 208: L1D032	Smoke detector located on flat smooth ceiling
Elevator 1 lobby areas:	Smoke detectors on flat smooth ceiling in passage areas above both
L1D033 and L1D034	East and West elevator doors
Storage room 213A: L1D041	In-duct air smoke detector
Jogging track 2: L1D042	In-duct air smoke detector
	Roof
Roof electrical room: L1D158	Area smoke detector on flat smooth ceiling
Air Handling Unit 1: L1D117	Duct-type smoke detector
Air Handling Unit 2: L1D118	Duct-type smoke detector
Air Handling Unit 3: L1D119	Duct-type smoke detector
Air Handling Unit 4: L1D120	Duct-type smoke detector
Air Handling Unit 5: L1D121	Duct-type smoke detector
Air Handling Unit 6: L1D122	Duct-type smoke detector
Air Handling Unit 7: L1D123	Duct-type smoke detector
Air Handling Unit 8: L1D124 Air Handling Unit 9: L1D125	Duct-type smoke detector
	Duct-type smoke detector
Air Handling Unit 10: L1D126	Duct-type smoke detector
Location	Placement and Spacing
Elevator 1 machine room: L1D003 and L1D024	Located on level ceiling
Elevator 2 machine room: L1D018	Located on level ceiling

Location	Placement	
	First Floor	
	Zone A	
Vestibule area 106: L1M001 and L1M098	Located next to West and East exit doors	
Wellness reception area 108: L1M002	Located next to East exit door	
Training room 109: L1M03	Located next to East exit door	
Pre-function room 101: L1M04	Located next to East exit door	
Main Gym room 100: L1M097	Located next to East exit door	
Zone B		
Lobby room 110: L1M06 and L1M07	Located next to both North exit doors	
Circulation (lobby south) area 130: L1M08	Located next to South exit door	
	Zone C	
Hallway area 123: L1M09	Located next to South exit door	
Men's vestibule room 117A: L1M010	Located next to South exit door	
Women's vestibule room 118A: L1M011	Located next to South exit door	
Passageway area 102: L1M012	Located next to South exit door	
	Zone D	
Circulation area 156B: L1M013	Located next to exit West door	
MAC room 170: L1M014 and L1M015	Located next to both South exit doors	
MAC lobby area 170D: L1M016	Located next to exit South door	
	Zone E	
Event storage room 185: L1M05	Located next to North exit door	
Pool pump room 180: L1M017 and L1M018	Located next to both West and East exit doors	
Pool equipment room 184: L1M019	Located next to East exit door	
Main Gym room 100: L1M096	Located next to West exit door	
	Second Floor	
Zone A		
North stairwell: L1M041	Located at exit door connecting to vestibule 106	
Zone B		
Passage stair 201: L1M042	Located next to stairs leading to first floor	
Cardio fittingness 2 room 224: L1M023	Located next to stairs leading to first floor	
	Zone C	
Passage 202: L1M102	Located next South exit door	
	Zone E	
North Gym 200B: L1M160	Located next to West exit door	
	Roof	
Roof West: L1M131	Located next to stairs	
Roof East: L1M132	Located next to stairs	
Roof North-East: L1M133	Located next to AHU 3	
Roof South: L1M134	Located next AHU 2	
Location	Placement	
East sprinkler connection: L1M023 and L1M026	Each connected to 2" wet-pipe riser manifolds	
West sprinkler valve connection: L1M028	Connected to 2" wet-pipe riser manifold	
-	· ·	

Location	Placement
Main fire water connection: L1M095	Tamper switch connected to main water supply gate
	valves
East sprinkler valve connection: L1M024	Tamper switch covers of flow switches L1M023 and
and L1M027	L1M026 respectively
West sprinkler valve connection: L1M029	Tamper switch encased in flow switch L1M028