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Abstract There is considerable evidence that smoke

exposure during pregnancy (SDP) environmentally influ-

ences birth weight after controlling for genetic influences

and maternal characteristics. However, maternal smoking

during pregnancy—the behavior that leads to smoke

exposure during pregnancy—is also genetically-influenced,

indicating the potential role of passive gene-environment

correlation. An alternative to passive gene-SDP correlation

is a cascading effect whereby maternal and child genetic

influences are causally linked to prenatal exposures, which

then have an ‘environmental’ effect on the development of

the child’s biology and behavior. We describe and

demonstrate a conceptual framework for disentangling

passive rGE from this cascading GE effect using a sys-

tems-based polygenic scoring approach comprised of genes

shown to be important in the xenobiotic (substances for-

eign to the body) metabolism pathway. Data were drawn

from 5044 families from the Avon Longitudinal Study of

Parents and Children with information on maternal SDP,

birth weight, and genetic polymorphisms in the xenobiotic

pathway. Within a k-fold cross-validation approach

(k = 5), we created weighted maternal and child polygenic

scores using 18 polymorphisms from 10 genes that have

been implicated in the xenobiotic metabolism pathway.

Mothers and children shared variation in xenobiotic

metabolism genes. Amongst mothers who smoked during

pregnancy, neither maternal nor child xenobiotic metabo-

lism polygenic scores were associated with a higher like-

lihood of smoke exposure during pregnancy, or the severity

of smoke exposure during pregnancy (and therefore, nei-

ther proposed mechanism was supported), or with child

birth weight. SDP was consistently associated with lower

child birth weight controlling for the polygenic scores,

maternal educational attainment, social class, psychiatric

problems, and age. Limitations of the study design and the

potential of the framework using other designs are

discussed.
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Introduction

Smoke exposure during pregnancy (generally assessed via

maternal smoking during pregnancy) has been extensively

studied as an environmental teratogen which can adversely

affect child physical and behavioral development (e.g.,

Gaysina et al. 2013; Herrmann et al. 2008; Knopik 2009;

Kramer 1987; Milberger et al. 1996; Stone et al. 2014;

Ward et al. 2007). In recent years this association, partic-

ularly with behavioral outcomes, has been challenged by

researchers using genetically-informed approaches that
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have shown reductions in the strength of associations when

controlling for genetic influences (e.g., Agrawal et al.

2008; D’Onofrio et al. 2003; Gaysina et al. 2013; Knopik

2009; Rice et al. 2009; Thapar et al. 2003). Importantly,

associations of SDP with neurobiological and behavioral

outcomes later in development may be mediated by low

birth weight (Agrawal et al. 2010). Generally, SDP is

associated with about a 5 % reduction in birth weight (on

average * 150 g Kramer 1987; Kramer et al. 2001), fol-

lowing a dose response pattern, with more SDP resulting in

lower birth weight and with SDP later in pregnancy

exaggerating the effect. Low birth weight has been asso-

ciated with increased morbidity and mortality (McIntire

et al. 1999), and the link between low birth weight and

mortality appears stable (e.g., from 1997 to 2002) despite

advances in obstetric and neonatal health care (Fanaroff

et al. 2007). Here, we examine competing hypotheses for

how SDP is associated with low birth weight, as under-

standing potential causes and possible mechanisms of low

birth weight is imperative for improving mental and

physical health outcomes as well as reducing infant

mortality.

Smoke exposure during pregnancy may cause low birth

weight due to the environmental (intrauterine) impact of

nicotine and toxins in cigarette smoke on placental and

fetal development (e.g., as evidenced by animal models;

Ernst et al. 2001). However, if specific maternal and child

genetic variation or sets of genetic variants are associated

with SDP exposure, and mothers pass those variants (or

sets of variants) in addition to exposure to SDP to the child,

passive gene-environment correlation (rGE) may explain at

least part of this association. Much of the early research

examined zero-order associations without considering

possible confounding factors. More recently, genetically-

informed studies have examined whether SDP actually

exerts an environmental influence on child development

beyond the contributions of genetics and other maternal

characteristics. There is considerable evidence that SDP

does environmentally influence birth weight, although the

association may be attenuated after controlling for genetic

influences and other maternal characteristics (e.g., maternal

age, education, SES, etc.; Agrawal et al. 2010; D’Onofrio

et al. 2003; Juárez and Merlo 2013; Knopik et al. 2015b;

Rice et al. 2009). However, several quantitative genetic

study designs (e.g., children of twins) have also shown that

SDP is under genetic influence, indicating a potential role

of passive rGE (Agrawal et al. 2008; D’Onofrio et al.

2003). That is, maternal genes may confound the associa-

tion of SDP and birth weight via the likelihood of mothers

smoking, severity of mothers’ smoking, or via differential

metabolism of smoking byproducts that may influence

birth weight. In further support of the passive rGE pathway

is the finding that controlling for family influences reduces

the SDP-birth weight association, suggesting that this

relationship is partially confounded by maternal charac-

teristics or genetics (Juárez and Merlo 2013). In sum,

existing evidence is unclear as to whether and to what

extent the SDP-birth weight association may be a direct

environmental influence or confounded by passive rGE

(e.g., can be accounted for by genetic factors).

Whether SDP has a causal environmental effect on low

birth weight or whether the association arises via passive

rGE has important implications. For example, in general, if

SDP has a causal, environmental effect on low birth

weight, then SDP is a plausible target for interventions

aiming to reduce negative sequelae related to low birth

weight (e.g., later ADHD problems, infant mortality and

morbidity). However, if SDP is spuriously associated with

low birth weight, through a passive rGE, then intervention

efforts could be better spent on other plausibly causal tar-

gets during pregnancy (e.g., other teratogens, dietary

choices). Thus, in this study we present a new conceptual

framework for understanding whether SDP has a causal

environmental effect on low birth weight or whether the

association arises via passive rGE. This work complements

the existing literature using specialized genetically-in-

formed designs and attempts to further elucidate the

mechanisms of the association between SDP and birth

weight.

Mechanisms of genetic and SDP influences on child

outcomes

The possibility of passive rGE is particularly important to

investigate. As noted above, passive rGE occurs when

genetic variation that the parent and child share influences

both the environment provided by the parent and the out-

come of interest in the child. That is, passive rGE is a non-

causal explanation such that genetic influences shared by

the mother and child, which are also associated with the

exposure (SDP), explain the association of SDP and birth

weight. Thus, the association of interest (SDP and birth

weight) would be spurious, and instead SDP would be a

variable that represents genetic risk for birth weight. Thus,

if passive rGE is operating, it would be unlikely to uncover

a mechanism by which SDP influences birth weight

because of the confounding effect of genetic transmission;

a direct environmental mechanism would not drive the

association in this case. In contrast, genetic influences may

only partly confound the association; passive rGE may

explain a part of the association leaving a smaller role for

direct environmental mechanisms than would be concluded

from non-genetically informed studies. Of the various

quantitative genetic study designs, thus far, only children-

of-twins designs have been able to show that maternal

genetic influences are associated with her smoking during



pregnancy (e.g., D’Onofrio et al. 2003). These findings

provide evidence of possible (not definitive) passive rGE in

the association of SDP and child outcomes.

An alternative to passive gene-SDP correlation is a

cascading effect whereby genetic influences (some of

which the child is likely to inherit) are causally linked to

prenatal exposures, which then have an ‘environmental’

effect on the development of the child’s biology and

behavior. Importantly, this is a plausibly causal mecha-

nism, which includes genetic and environmental influences

unfolding in a temporal process through biologically based

mechanisms. It is possible to disentangle passive rGE from

the cascading effect described above using molecular

genetic data. The criteria for concluding passive rGE and a

cascading effect are presented in Fig. 1. For both passive

rGE and the cascade, two conditions must be met:

(a) mother and child must share the genetic variation of

interest, and (b) maternal genetic variation must be related

to SDP. For passive rGE to be occurring, (c) that same

genetic variation in the child must also be related to SDP.

However, this is not a necessary condition for a develop-

mental cascade, because there could be a teratogenic effect

of SDP independent from an association of child genetic

variation with SDP. A significant correlation of child

genetic variation and SDP does not necessarily rule out the

cascade effect because the association may only partly

account for relations of SDP and birth weight. That is, there

may still be environmental teratogenic effects of SDP on

birth weight that are either independent, or potentially

moderated by child genetic variation. The key difference

needed to understand whether passive rGE is occurring or

whether there is a potentially causal cascade including both

genetic and environment influences is found in (d) the

nature of the association of SDP with the child outcome, in

this case birth weight. If SDP is related to the outcome at

the zero-level only, but not after controlling for genetic

influences, then passive rGE is occurring. This is because a

key concept of rGE is that it describes genetic mediation of

environment-outcome associations (Plomin 2014). That is,

if genetics fully mediate the association, and therefore the

association is explained by passive rGE, then the associa-

tion would need to disappear when the relevant genes are

added to the model. However, if SDP is related to the

outcome even after controlling for genetic influences

(particularly Gc [child genetic influences], but also Gm

[maternal genetic influences], in Fig. 1), then there is

stronger evidence for a developmental GE cascade. That is,

the genetic confound is insufficient to fully explain the

association of SDP and birth weight, and so there could be

a biologically based mechanism by which SDP exposure

leads to lower birth weight.

The utility of molecular genetic data

As noted above, thus far, quantitative genetic designs have

been used to infer (in the case of children-of-twins studies)

or control for (in the case of adoption designs) passive rGE.

It is important to confirm findings from quantitative genetic

designs using other strategies in order to ensure that find-

ings do not arise from sampling techniques. In particular, it

is important to use measured genes (Plomin 2014) to

determine whether maternal genetic influences are associ-

ated with the amount of smoke exposure during pregnancy

experienced by the developing fetus. Examining measured

genes may better elucidate specific biologically-based

mechanisms by which SDP or potential passive gene-pre-

natal environment correlation contributes to child devel-

opment than quantitative genetic designs.

Molecular genetic data allows for better specificity than

is possible using latent factors to assess genetic influences

Fig. 1 Conceptual Model. For both passive rGE and a GE cascade,

a (mother and child share genetic variation) and b (maternal genetic

variation is related to the environmental measure) must be present.

The presence of a and b are equivalent to what has typically been

called passive rGE or possible passive rGE. A more conservative test

of passive rGE also requires c (child genetic variation shared with

maternal genetic variation correlated with the environmental

measure) to be present. If d (environmental measure associated with

outcome) is significant only at baseline, and not when also accounting

for the contributions of Gm (maternal genetic influences) and Gc

(child genetic influences), and a, b, and c are true, this is strong

evidence of passive rGE specific to the biological mechanism in

question. If d is significant after controlling for Gm and Gc, and a and

b are true, then the evidence is more supportive of a GE cascade



as in quantitative genetic studies. One commonly used

approach for creating and examining the polygenicity of

behavioral phenotypes involves a two-step approach. First,

a discovery sample is used to identify the gene variants

most highly correlated with the outcome of interest. Then,

a polygenic risk score is computed and tested in an inde-

pendent sample using those most relevant genes identified

in the discovery sample (e.g., Purcell et al. 2009; Salvatore

et al. 2014). However, when specific biological mecha-

nisms are of interest, theoretically and biologically-based

sets of genes can be grouped in order to index the genetic

variation underlying the specific biological pathway or

mechanism of interest (rather than empirically identifying

the most highly associated gene variants across the entire

genome). Thus far, systems-based genetic analyses have

been most frequently implemented using computed poly-

genic scores comprised of a set of genes carefully chosen to

characterize a specific biological mechanism (e.g., Der-

ringer et al. 2012; Juhasz et al. 2014). However, other

methods besides the computation of polygenic scores can

be used (e.g., Genome-Wide Complex Trait Analysis

(GCTA); Yang et al. 2011). Polygenic scores may be

particularly useful in the absence of complete genome-

wide data and in the case of smaller sample sizes, as there

is a single regression test of the polygenic score on the

outcome after the score is created, whereas GCTA requires

an extremely large sample in order to obtain enough

genetic variation across unrelated individuals to fit the

biometric models. The present study utilizes a systems-

based polygenic scoring approach for investigating the

possibility of a specific, identifiable passive rGE underly-

ing the association of maternal smoking during pregnancy

and child birth weight.

Xenobiotic metabolism genes

As an example of one plausible biological mechanism that

may represent passive rGE or a cascading effect of genes

and SDP for birth weight, we consider the role of xeno-

biotic metabolism genes. Maternal xenobiotic metabolism

genes help regulate the metabolism of teratogens. This

includes the metabolism of nicotine, but also many other

teratogens (e.g., pesticides, alcohol, other toxins). Thus,

maternal xenobiotic metabolism genes putatively have an

effect on the amount of nicotine (and other teratogens) that

will be available to cross the placenta and affect fetal

development. Further, maternal xenobiotic metabolism

genes are likely to also have an effect on the extent to

which mothers smoke, and their ability or desire to quit or

continue smoking during pregnancy. For example, some

genes implicated in the xenobiotic metabolism pathway

(e.g., CYP2A6) have been linked with smoking behavior

(Thorgeirsson et al. 2010), and some (e.g., in the alcohol

dehydrogenase family) have been selected for inclusion on

a chip designed to index genes associated with nicotine

dependence and other smoking phenotypes (http://bior

ealmresearch.com/smokescreen/). Thus, in the case of

genes in the xenobiotic metabolism pathways, we would

expect maternal genetic variation to be associated with the

extent to which children are exposed to maternal smoking

during pregnancy (e.g., path b in the conceptual model,

Fig. 1). Mothers are also likely to pass these genes related

to drug metabolism to the child, as mothers and children

share 50 % of their genes on average (e.g., path a in the

conceptual model, Fig. 1). Thus, child xenobiotic meta-

bolism genes make up the ‘third line of defense’ (after the

placenta; Blumenfeld et al. 2009) in the metabolism of

nicotine and will further have an effect on the amount of

nicotine and other smoke byproducts available to affect

fetal development1 (e.g., path c in Fig. 1).

Passive rGE

If maternal and child xenobiotic metabolism genes are

associated with SDP exposure (paths b and c in the con-

ceptual model, Fig. 1, respectively) and mothers pass the

genes in addition to the SDP exposure to the child (path a

in the conceptual model, Fig. 1), then passive rGE may

explain the association of SDP and birth weight. In the

literature, passive rGE is clearly defined as non-causal.

Thus far, because passive rGE has primarily been explored

using quantitative genetic designs, it is often considered in

broad terms. Here, we extend the broader concept of pas-

sive rGE to consider a specific example of a narrower,

biologically informed passive rGE. A spurious association

of SDP and birthweight, when xenobiotic metabolism

genes are implicated (e.g., there is a direct influence of

xenobiotic metabolism genes on birth weight rendering the

SDP-birthweight association spurious), is an example of a

specific passive rGE. That is, the SDP-birthweight asso-

ciation would not be a direct environmental influence but

rather explained by the action of xenobiotic metabolism

genes on birthweight even when mothers do not smoke

during pregnancy. Thus, for this specific passive rGE to

occur, xenobiotic metabolism genes must have a direct

influence on birth weight.

There is some evidence of this direct association in

candidate gene studies (e.g., Infante-Rivard et al. 2006;

Nukui et al. 2004) although recent GWAS studies of birth

weight have not found significant hits among xenobiotic

1 Xenobiotic metabolism genes may also be expressed in placental

tissue, which represents the second line of defense for the developing

child (Blumenfeld et al. Blumenfeld et al. 2009). However, here we

focus on maternal and child genetic variation only, as epigenetic

information from the placenta is needed to thoroughly investigate this

mechanism which is out of the scope of the current manuscript.



metabolism genes specifically (although it is unclear how

well xenobiotic genes were covered in the arrays used, or

whether there was sufficient exposure to manifest effects;

Freathy et al. 2010; Horikoshi et al. 2013). The mechanism

of action of xenobiotic metabolism genes does allow for

xenobiotic metabolism genes to have a direct influence on

birth weight. For example, genes in the glutathione

S-transferase family each play an important role in detox-

ification by coding for enzymes that catalyze the conju-

gation of reduced glutathione with a variety of hydrophobic

and electrophilic compounds. Deletions in the glutathione

S-transferase mu 1 (GSTM1) gene and from the glutathione

S-transferase theta 1 (GSTT1) gene (and especially both

risk alleles together) have been shown to be associated with

fetal growth restriction in infants exposed to organochlo-

rine pesticides (Sharma et al. 2012), and the GSTT1

deletion has been associated with small-for-gestational age,

especially among youth exposed to smoking during preg-

nancy (Infante-Rivard et al. 2006). Consuming more iron

during pregnancy was associated with higher birth weight

in infants without the GSTM1 deletion, even adjusting for a

host of maternal and fetal covariates, including urinary

cotinine levels (Hur et al. 2013). Thus, genes in the glu-

tathione S-transferase family are mechanistically linked to

birth weight through the ways in which exposures to

multiple teratogens are metabolized in both the mother and

child. These findings provide evidence that genes impli-

cated in the xenobiotic pathway may have direct effects on

birth weight, and further that their effects on birth weight

can be independent of smoking during pregnancy as a

specific teratogenic exposure.

In terms of passive rGE, SDP then may be an environ-

mental influence that is associated with xenobiotic meta-

bolism genes in the mother (e.g., associated with maternal

smoking behavior and her inability to quit smoking during

pregnancy), but not actually exert an influence on birth

weight if the direct association of these genes in the fetus

on birth weight is driven by the metabolism and level of

exposure of other teratogens experienced by the mother

and fetus (e.g., pesticides, dietary choices). These other

exposures may or may not be associated with SDP and are

infrequently measured and controlled in studies of SDP and

birth weight. Thus, it is possible that xenobiotic metabo-

lism genes have a more broad direct effect on birth weight,

which could render the more specific association of SDP

and birth weight spurious and therefore fall under the

mechanism of a specific passive rGE.

Developmental gene-environment cascade

Alternatively, the xenobiotic metabolism genes may

launch a cascade influencing (1) mothers’ ability or

inability to quit, subsequently exposing the child to SDP,

(2) mother’s and child’s ability to metabolize nicotine and

other smoke byproducts and therefore modifying the

extent of the child’s exposure to SDP, and (3) subse-

quently the association of SDP to birth weight. As noted

above, the key difference (if paths a, b, and c are present)

would be whether the association of SDP and birth weight

(path d in the conceptual model, Fig. 1) is significant after

controlling for the influence of maternal (path Gm in the

conceptual model, Fig. 1) and child (path Gc in the con-

ceptual model, Fig. 1) xenobiotic metabolism genes. This

gene-environment cascade mechanism is supported by

findings that the association of SDP and birth weight

remains robust even when controlling for genetic influ-

ences and other maternal characteristics (Agrawal et al.

2010; D’Onofrio et al. 2003; Juárez & Merlo 2013;

Knopik et al. 2015b; Rice et al. 2009).

Present study

The goal of the current study is to test whether there is a

passive gene-SDP correlation, or whether SDP-birth weight

associations represent a developmental gene-environment

cascade using a large cohort of mothers and their children.

We use a conservative systems-based approach in order to

ascertain whether genes from the maternal xenobiotic

pathway are associated with her smoking behavior during

pregnancy. We also test specifically for passive gene-SDP

associations by testing whether mothers and children share

xenobiotic metabolizing gene variation, and whether child

xenobiotic metabolizing genes are also associated with

SDP at the zero-order level, and after controlling for the

polygenic score indexing xenobiotic metabolism gene

variation and other maternal characteristics. Based on

previous literature, we expect that (a) mother and child will

share at least 50 % (expected for mother- to- child trans-

mission) of xenobiotic metabolizing gene variation, and

(b) that maternal gene variation will be related to SDP. We

were unable to hypothesize whether (c) child xenobiotic

metabolizing gene variation would be related to SDP.

However, we do expect that (d) associations of SDP and

birth weight would be present, even after controlling for

genetic influences. Because of hypothesis (d), overall we

expected results to be consistent with a cascade model

rather than passive rGE.

Method

Participants

Data were drawn from the Avon Longitudinal Study of

Parents and Children (ALSPAC; Boyd et al. 2013).

ALSPAC recruited 14,541 pregnant women resident in



Avon, UK with expected dates of delivery 1st April 1991 to

31st December 1992. The total sample represented 15,458

fetuses; 14,775 were live births and 14,701 were alive at

1 year of age. Ethical approval for the study was obtained

from the ALSPAC Ethics and Law Committee and the

Local (Rhode Island Hospital) Research Ethics Commit-

tees. We used only the portion of the live births for which

there was information on maternal smoking during preg-

nancy (N = 11,133), and birth weight (N = 13,901), and

had the relevant polymorphisms (see below) for mothers

(N = 7553) and children (N = 6754). For multiple births

(N = 406), we randomly chose only one twin for inclusion

in the analysis. This resulted in an analytic sample of 5044

families. Please see Boyd et al. (2013) for additional

sample and recruitment details.

Measures

Please note that the study website contains details of all the

data that is available through a fully searchable data dic-

tionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/).

Xenobiotic metabolism genes

We used 18 polymorphisms from 10 genes that have been

implicated in the xenobiotic metabolism pathway (see

Table 1 for details). These included rs4986782 and

rs4987076 from NAT1, and rs1799930, rs1799931, and

rs1801280 from NAT2 within the N-acetyltransferase

family; rs1695 from GSTP1 and deletions from GSTM1

and GSTT1 within the glutathione S-transferase family;

rs284779 from ADH7, rs975833, rs1229966, and

rs2866151 from ADH1A, rs2066701 and rs4147536 from

ADH1B, and rs3762894, rs4148884, rs4699714 from

ADH4 within the alcohol dehydrogenase family;

rs28399433 from CY2A6_9 within cytochrome P450,

family 2, subfamily A. See Table 1 for more information

on the gene families, functions, as well as specific genes

and polymorphisms included here.

Smoking during pregnancy (SDP)

The quantity of cigarettes smoked on average per day

across the first 3 months of pregnancy was assessed via

self-report when mothers were 18 weeks pregnant. The

current number of cigarettes smoked per day was also

assessed via self-report when mothers were 32 weeks

pregnant. These variables were used to create a SDP

severity score theoretically consistent with research

showing dose–response patterns of exposure to nicotine

and low birth weight (Ernst et al. 2001). The severity score

was built on the following assumptions: (1) continuing to

smoke later in pregnancy represents a higher likelihood of

risk than successfully quitting in or shortly after the first

trimester; (2) smoking later in pregnancy imparts greater

risk than smoking earlier in pregnancy (in the rare instan-

ces where mothers begin to smoke after the first trimester;

e.g., Dwyer et al. 2009; Hebel et al. 1988); (3) smoking less

than a half pack per day, smoking between a half and

whole pack per day, and smoking more than a pack per day

represent qualitatively different levels of risk (McNeil

1995). As such, the severity score had 7 levels (see Knopik

et al. 2015a also in this Special Issue):

0 = no smoking during pregnancy in either the first

trimester or later in pregnancy (N = 8036)

1 = 1-10 cigarettes per day in the first trimester, no

smoking later in pregnancy (N = 473)

2 = 11-20 cigarettes per day in the first trimester, no

smoking later in pregnancy (N = 45)

3 = 21 ? cigarettes per day in the first trimester, no

smoking later in pregnancy (N = 33)

4 = any smoking later in pregnancy but not during the

first trimester (N = 169)

5 = 1-10 cigarettes per day later in pregnancy and any

smoking in the first trimester (N = 1289)

6 = 11-20 cigarettes per day later in pregnancy and any

smoking in the first trimester (N = 457)

7 = 21 ? cigarettes per day later in pregnancy and any

smoking in the first trimester (N = 343)

Birth weight

Birth weight was assessed from obstetric data, recorded by

the ALSPAC measurers, and via birth notification. We used

the ALSPAC preferred birth weight (detailed notation

available on the study website; http://www.bris.ac.uk/

alspac/researchers/data-access/data-dictionary/). Briefly, if

all birth weights from each data source were identical, that

was the preferred birth weight. In cases where the dis-

agreement across the different assessments was [100 g

birth weight was set to missing. In cases where the dis-

agreement across the different assessments was \100 g,

the lower birth weight was used.

Covariates

We included the following covariates: child sex and

maternal educational attainment, social class, psychiatric

problems, and age. Maternal educational attainment, social

class, psychiatric problems, and age were assessed when

mothers were 32 weeks pregnant. Social class is a standard

variable derived by the ALSPAC team comprised of

occupation information (e.g., occupation, industry, man-

agerial status). ‘Psychiatric problems’ is an indicator



variable denoting the absence/presence of any of the fol-

lowing: drug addiction, alcoholism, schizophrenia, anor-

exia nervosa, severe depression, and ‘‘other psychiatric

problem’’ either recently or in the past, assessed during

pregnancy. Detailed notation for each covariate is available

on the study website; http://www.bris.ac.uk/alspac/

researchers/data-access/data-dictionary/.

Analytic strategy

In order to test for criterion (a) we examined whether

mothers and children were concordant for the number of

minor alleles for each polymorphism. This was opera-

tionalized as the percentage of genes for which mothers

and children were concordant for the number of minor

alleles for each polymorphism. We then averaged the

concordance (e.g., percentage of the number of minor

alleles shared) across all 18 polymorphisms in order to

obtain an average percentage of minor alleles shared within

the portion of the xenobiotic pathway sampled here.

To create polygenic scores comprised of xenobiotic

metabolism genes, we used a k-fold cross validation

approach using a p threshold of 1, therefore including all

genes in the xenobiotic pathway regardless of significance

Table 1 Xenobiotic metabolism genes included in the present study

Family Function Gene rs#

N-

acetyltransferase

family

Codes an enzyme that is involved in the metabolism of drugs by

catalyzing the transfer of an acetyl group during the drug

metabolism process

N-acetyltransferase 1 (NAT1) rs4986782

rs4987076

Codes an enzyme that both activates and deactivates the

compounds catalyzed by the enzyme encoded by NAT1 as well

as carcinogens, and governs the speed of transferring acetyl

groups during drug metabolism (which is associated with drug

toxicity)

N-acetyltransferase 2 (NAT2) rs1799930

rs1799931

rs1801280

Glutathione

S-transferase

family

Plays important role in detoxification by coding for enzymes that

catalyze the conjugation of reduced glutathione with a variety of

hydrophobic and electrophilic compounds

Glutathione S-transferase pi 1

(GSTP1)

rs1695

Glutathione S-transferase mu 1

(GSTM1)

Deletion

Glutathione S-transferase theta 1

(GSTT1)

Deletion

Alcohol

dehydrogenase

family

Plays important role in the metabolism of a wide variety of drugs,

including alcohol

Alcohol dehydrogenase 7

(ADH7)

rs284779 intron

variant

Alcohol dehydrogenase 1A

(ADH1A)

rs975833 intron

variant

rs1229966 intron

variant 2 KB

upstream

rs2866151

Alcohol dehydrogenase 1B

(ADH1B)

s2066701 intron

variant

rs4147536 intron

variant

Alcohol dehydrogenase 4

(ADH4)

rs3762894 intron

variant 2 KB

upstream

rs4148884 intron

variant 2 KB

upstream

rs4699714 intron

variant

Cytochrome P450,

family 2,

subfamily A

Encodes cytochrome P450 proteins, which catalyze many

reactions involved in drug metabolism

Cytochrome P450, family 2,

subfamily A, polypeptide 6

(CYP2A6_9)

rs28399433



of the individual SNP. First, we split the participants ran-

domly into one of five (i.e., k = 5) folds. Then, inside of a

primary loop

1. We selected four folds as the discovery set and one

fold as the test set.

a.

Embedded in a second loop, we

i. mean centered each polymorphism,

ii. identified monomorphic polymorphisms, and

iii. ran a series of baseline regressions that

assessed the main effect of each individual

SNP on the outcome (described below) in the

discovery sample (comprised of 80 % of the

sample). Any monomorphic polymorphisms

identified in the specific training set were

given a beta-coefficient of 0 and p value of 1.

A. Maternal polymorphisms predicting SDP

(zero-inflated Poisson regression)

B. Child polymorphisms predicting SDP

(zero-inflated Poisson regression)

C. Child polymorphisms predicting birth

weight (linear regression)

D. Maternal polymorphisms predicting birth

weight (linear regression)

iv. From this series of baseline regressions (one

per polymorphism), we saved the coefficients.

This loop ran 18 times, equal to the number of

xenobiotic pathway polymorphisms available

in the data.

2. Next, (outside of the second loop but inside the

primary loop) we created a matrix of the genotypes in

the test sample after centering the genotypes in the test

matrix, and gave any missing values a value of 0 (equal

to the test sample average number of minor alleles for

that polymorphism). This is a mean imputation of

missing polymorphism information in the test sample.

3. Four polymorphisms in the alcohol dehydrogenase

family were in LD: rs1229966 with rs975833,

rs2066701, and (negatively) rs2866151; and rs975833

with rs2066701 for both mothers and children. There-

fore, we also pruned for LD (R2[ .70). For each pair

of SNPs in LD, we kept the coefficient and p-value of

the polymorphisms more highly associated with the

outcome, and set the coefficient to zero for the

polymorphisms more weakly associated with the

outcome so that it would not contribute to the

polygenic score.

4. Then, we multiplied the test matrix by the polymor-

phism coefficients to create our polygenic scores.

Specifically, the test matrix is 18 columns (for the 18

polymorphisms) by N rows (1 per individual). It gets

multiplied by a vector that is 18 values long (the 18

polymorphism weights from the training set). First,

each polymorphism weight is multiplied by each

individual’s corresponding polymorphism, and then

all the resulting values in that row (e.g., for that

individual) is summed. This results in a single value

for that individual’s weighted polygenic score.

5. Finally, we conducted a series of hypothesis-testing

regressions (described below). This primary loop was

repeated (k) times, so that each fold was the test set

once.

Thus, at the end of the primary loop (k) we had two

vectors for each regression analysis. There was a list of 5

(one for each loop (k), corresponding to each unique test

sample) coefficients from each regression assessing the

effect of the polygenic score on each outcome, and a list of

5 p-values for those coefficients. Consistency across these

results indicates a stable effect.

Within this framework, several regression analyses were

conducted. For models of smoking during pregnancy

(SDP), we used zero-inflated Poisson regressions to

account for the zero-inflated nature of SDP. For models of

child birth weight, linear regressions were used.

To assess criterion (b) relation of maternal genes and

SDP:

1. Maternal polygenic score conditioned on SDP (e.g.,

consisting of weighted coefficients from the models

where individual maternal polymorphisms predicted

SDP; A above), predicting SDP.

2. Maternal polygenic score conditioned on SDP (e.g.,

the same score as in regression 1) and a series of

potential confounding variables (child sex, maternal

educational attainment, social class, psychiatric prob-

lems, and age) added as covariates, predicting SDP.

To assess criterion (c) relation of child genes and SDP:

3. Child polygenic score conditioned on SDP (e.g.,

consisting of weighted coefficients from the models

where individual child polymorphisms predicted SDP;

B above) predicting SDP.

4. Child polygenic score conditioned on SDP (e.g., the

same score as in regression 3) and the potential

confounding variables predicting SDP.

To assess the baseline relation of genetic influence on

birth weight:

5. Child polygenic score conditioned on birth weight

(e.g., consisting of weighted coefficients from the

models where individual child polymorphisms pre-

dicted birth weight; C above) predicting child birth

weight



To assess criterion (d) relation of SDP and birth weight

accounting for child genetic influences:

6. Child polygenic score conditioned on birth weight

(e.g., the same score as in regression 5), SDP, and the

potential confounding variables, predicting child birth

weight.

We also examined the contribution of maternal genes on

birth weight for completeness:

7. Maternal polygenic score conditioned on birth weight

(e.g., consisting of weighted coefficients from the

models where individual maternal polymorphisms

predicted birth weight; D above), predicting child

birth weight

8. Maternal polygenic score conditioned on birth weight

(e.g., the same score as in regression 7), SDP, and the

potential confounding variables predicting SDP pre-

dicting child birth weight.

Results

We first assessed the percentage of polymorphisms for

which mothers and children were concordant for the

number of minor alleles in each of the 18 xenobiotic

metabolism genes. Across the 18 polymorphisms, mother

and child concordance was 57 % (statistically significantly

above the 50 % expected for mother- to- child transmis-

sion). Thus, the criterion (a) is met.

Results from the regression analyses within the K-fold

validation approach are summarized in Table 2. Neither

maternal nor child xenobiotic metabolism polygenic scores

were associated with a higher likelihood of smoking during

pregnancy, or to the severity of smoking during pregnancy

if SDP was endorsed. Thus, criteria (b) and (c) were not

met. SDP was associated with child birth weight. The zero-

order association in the full sample indicated that SDP was

associated with lower child birth weight (r = -.15,

unstandardized b = -37.30, p\ .0001). We examined

this association within the cross-validation approach in

order to test the association more conservatively. Even

controlling for the polygenic score (both maternal and

child) and maternal educational attainment, social class,

psychiatric problems, and age predicted child birth weight,

SDP was consistently (e.g., in each of the 5 folds) associ-

ated with lower birth weight. Neither the maternal nor child

xenobiotic metabolism polygenic score was directly asso-

ciated with child birth weight. Because criterion (b) and

(c) were not met, the data cannot support the passive rGE

or developmental GE cascade mechanism. We can only

conclude that SDP is consistently associated with birth

weight above and beyond other modeled maternal charac-

teristics and the influence of the polygenic contribution of

xenobiotic metabolism genes sampled here.

Discussion

We presented a theoretical method for disentangling

causal from non-causal joint effects of genetic and envi-

ronmental influences using molecular genetic data as a

way to corroborate findings from twin and family studies.

Empirically, we corroborated a very well-characterized

association of prenatal smoking exposure and low child

birth weight in a very large sample using a conservative

test—a k-fold cross-validation approach. The association

held consistently across folds even when controlling for

other maternal characteristics and a polygenic score rep-

resenting polymorphisms implicated in the xenobiotic

metabolism pathway. Our data did not meet the initial

criteria needed to separate these mechanisms. Nonethe-

less, we believe that our conceptual framework will be

useful for future studies harnessing molecular genetic data

to test findings from quantitative genetic designs. Cor-

roboration across study types and across quantitative and

molecular genetic study designs is imperative, as each

sample design comes with its own specific assumptions

and limitations.

Our findings potentially suggest that xenobiotic meta-

bolism genes are not likely contributing to the overlap in

genetic and SDP influences found in previous children-of-

twins and child-based twin studies. However, that conclu-

sion is tempered by the fact that the xenobiotic- or drug-

metabolizing pathways are highly complex, and we had

very limited coverage of the system with the 18 polymor-

phisms included in this study. We hope to explore these

questions using a more thorough examination including a

better sample of polymorphisms in the xenobiotic meta-

bolism pathway genes in the future. The limitation of our

insufficient coverage of a complex system is compounded

by the complexity of gene products, and that polymor-

phisms inherently measure gene structure, which is only

partly responsible for gene function. We summed the

effects of the polymorphisms into the weighted polygenic

score. A risk is that some polymorphisms have slightly

positive and others slightly negative effects on SDP. Thus,

when summed, some polymorphisms may wash the effects

of other out, and we are more likely to have a polygenic



score with null effects.2 Whereas this does limit our like-

lihood of finding a clear polygenic signal related to the

outcome, we believe that this most closely resembles the

underlying biology. Indeed, an individual likely has many

genes imparting risk and many others that act protectively

against the teratogenic effects of SDP, or of mothers’

ability to quit smoking. This may in part explain the null

findings for direct effects of xenobiotic metabolism genes on

SDP exposure and birth weight in this study. The field

examining polygenicity is very rapidly advancing, and as our

polygenic scoring methods improve, it will be worth revis-

iting the questions examined here to determine whether

methodological limitations led to the null findings for poly-

genic effects of xenobiotic metabolism genes on SDP.

Alternatively, xenobiotic metabolism pathway genes may

not be the relevant biological pathway for genetic influences

on SDP, or may be one of several pathways acting together.

Conceptual framework for passive rGE

and developmental genetic-environmental cascade

The most important contribution of this study is the theo-

retical framework for disentangling these important

mechanisms. We proposed a way to use molecular genetic

data to disentangle the inherently non-causal mechanism

(e.g., confounded with family background) of passive rGE

from a potentially causal (e.g., teratogenic) mechanism

whereby genetic and environmental influences unfold

temporally through biologically based mechanisms. Given

a set of underlying (fully testable) assumptions (Fig. 1a)

that mothers and children share the genetic variation of

interest, (Fig. 1b) that those maternal genetic variations are

related to the environmental exposure, and (Fig. 1c) that

child genetic variations are also related to the environ-

mental exposure (especially for passive rGE), one key

Table 2 Regression Results

Fold 1 b Fold 2 b Fold 3 b Fold 4 b Fold 5 b

Predicting the likelihood of not smoking during pregnancy (Inflated Zeros)

Maternal XMGV

Baseline 1.17 -0.56 0.68 0.08 -0.12

Controlled 2.29 -0.49 1.22 0.95 0.03

Child XMGV

Baseline -1.15 -0.96 -0.09 -0.96 -0.31

Controlled -2.61* -0.55 -0.19 -1.13 -0.23

Predicting SDP severity (Count, if SDP is present)

Maternal XMGV

Baseline -0.08 -0.02 -0.22 1.57 -0.10

Controlled -0.15 -0.54 -1.16 1.65 0.09

Child XMGV

Baseline 0.11 -0.50 -0.10 0.15 -0.42

Controlled -0.35 -0.47 -0.16 0.88 -0.68

Predicting Birth Weight

Main effects Only

Maternal XMGV 0.66 0.23 0.88 0.55 0.58

Child XMGV 0.03 0.63 0.56 0.39 -.31

SDP -35.23* -51.46* -46.27* -19.54* -35.31*

Controlled

Maternal XMGV 0.98 -0.14 -0.28 0.93 0.71

Child XMGV -0.06 0.54 0.34 0.15 -0.40

SDP controlling for covariates and maternal XMGV -21.46* -44.82* -57.17* -18.24* -39.46*

SDP controlling for covariates and child XMGV -22.51* -44.84* -57.16* -19.27* -39.59*

Covariates include child sex, maternal educational attainment, social class, psychiatric problems, and age

XMGV xenobiotic metabolism gene variants

* p\ .001

2 We also constructed scores using only the polymorphisms posi-

tively associated with conditioning variable in one score and the

polymorphisms negatively associated with the conditioning variable

in a separate score, and there were no differences in results



parameter (Fig. 1d) differentiates the two mechanisms. If

the association of the exposure and outcome is present

initially, but disappears when the polygenic score is added

to the model, then this is evidence of a specific passive

rGE. However, if the association is present and persists

when the maternal (Fig. 1, Gm) and child (Fig. 1, Gc)

polygenic scores are added to the model, then this is evi-

dence of a developmental GE cascade.

Thus far, quantitative genetic designs have been able to

investigate (e.g., children-of-twins) or control for (e.g.,

adoption, in vitro designs) passive rGE. A limitation of

quantitative genetic designs is that influences are neces-

sarily non-specific. Using polygenic scores (or other novel

methods) comprised of theoretically relevant gene sets can

help hone in on whether genetic and environmental influ-

ences work together for specific biologically based mech-

anism important for child development, or to understand

specific passive rGEs. Systems-based polygenic approa-

ches—when the system is adequately characterized—

should explain more variance in the phenotype than

broader molecular genetic approaches because a clear

effect (e.g., with less noise) related to the mechanism of

interest may be observed. However, this clear effect can

only explain the amount of the variance in the phenotype

that the specific mechanism under consideration actually

plays (not necessarily expected to be anywhere close to

100 %). It may become more difficult to find genetic

influences that play a meaningful role in the mechanism of

interest when the mechanism is insufficiently covered (e.g.,

only few relevant polymorphisms from only few relevant

genes are included) in the polygenic score. Further,

including phenotypes that are closer to the process (e.g.,

conditioning the polygenic score on a measure of efficiency

of drug metabolism) may increase the likelihood of

observing genetic influences that play a meaningful role in

the process of interest by cutting down the number of levels

the genetic influences need to operate across in order to

influence the phenotype. Thus, conditioning the polygenic

score on phenotypes as close to the biological mechanism

of interest and ensuring good coverage of both polymor-

phisms in each gene and relevant genes in the biological

system will increase the utility of this approach in future

work.

Other limitations and future directions

In addition to the limitations already discussed, there are a

number of other considerations important to keep in mind.

Including maternal and child genetic variation can help

elucidate causality in quantitative genetic designs (e.g., the

extended children of twins model; Narusyte et al. 2008).

However, as we move toward specificity of genetic (e.g.,

do not account for 100 % of the genetic variation) and

environmental influences to examine specific mechanisms

of interest (e.g., the role of xenobiotic metabolism genes

and SDP exposure for low birth weight), we no longer can

infer causality (e.g., using the conceptual framework pre-

sented here).

This is due to a number of limitations. First, it is prob-

able that related and confounding pathways exist, but are

not explicitly modeled, as is common in any study of

human behavior. The concepts of equifinality (the likeli-

hood that the same outcome is a downstream effect of

multiple possible temporally preceding influences) and

multifinality (the likelihood that a single developmental

influence can result in multiple outcomes through multiple

pathways; Cicchetti and Rogosch 1996) lead to predictions

that multiple biological pathways are likely to be impli-

cated in multiple outcomes. Specificity is very important to

understand these mechanisms, but is necessarily limited

because of how many important factors are necessarily

excluded from the model. Second, excluded genes are

highly likely to be associated with the genes included,

which diminishes our confidence that (especially small)

gene sets are causally linked to the exposure or outcome of

interest. Third, SDP was assessed via self-report and

therefore may be subject to error, for example, due to non-

disclosure. Future studies may do well to confirm SDP

exposure with cotinine levels, although self-report and

retrospective report have been shown to be valid in the

literature (e.g., Knopik et al. 2015b; Pickett et al. 2009;

Reich et al. 2003).

Further, there is a problem of correlated residual error

in the genetic influence whenever multiple genes are

examined together. This problem varies with the methods

used to examine joint effects of multiple genes. The

problem of correlated residual error in genotypes is

attenuated considerably by using genetic relatedness

matrixes in GCTA, but is generally unaccounted for when

using polygenic risk scores (thus far). Therefore, while the

framework presented here has the potential to disentangle

specific passive rGEs from plausibly causal biological

mechanisms, we stress that this framework does not infer

causality. Recent developments in using genome-wide

data have allowed for explicit tests of passive rGE using

an extended Genome-wide Complex Trait Analysis

(GCTA; Yang et al. 2011) approach incorporating both

maternal and child genome-wide data (m-GCTA; Eaves

et al. 2014). A strength of m-GCTA is that it maps quite

well onto quantitative genetic study designs, using similar

variance decomposition strategies and examining broad-

sense additive heritability. This approach has great

potential to disentangle causal environmental effects from

those confounded by maternal and child genes, and pas-

sive rGE in order to corroborate findings from quantitative

genetic models.



We continue to hope that examining variation from

multiple genes together will result in a stronger signal to

examine gene-environment interplay, and believe that

taking theoretically derived, systems-based approaches will

further augment our power for understanding when and

how genetic variation influences behavior in conjunction

with the environment. In terms of the present study, more

work is needed to understand whether the xenobiotic

metabolism pathway is actually unrelated to the smoking

during pregnancy- birth weight association because of the

limitations of the data used here. Further, we plan to vet the

current conceptual framework using simulated data in

order to further provide a proof of concept for the utility of

polygenic scores related to specific pathways to discover

when passive rGE plays a role versus when a GE cascade

may influence child development. As convergence across

multiple study designs with different limitations provides

the strongest evidence for gene-environment interplay, we

encourage the use of multiple ways of examining poly-

genicity and the continued use of both quantitative and

molecular genetic approaches.
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