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ABSTRACT: Marine ecologists commonly use discriminant function analysis (DFA) to evaluate the 
similarity of distinct populations and to classify individuals of unknown origin to known populations. 
However, investigators using DFA must account for (1) the possibility of correct classification due to 
chance alone, and (2) the influence of prior probabilities of group membership on classification 
results. A search of the recent otolith chemistry literature showed that these two concerns are some­
times ignored, so we used simulated data sets to explore the potential pitfalls of such oversights. We 
found that when estimating reclassification success for a training data set, small sample sizes or 
unbalanced sampling designs can produce remarkably high reclassification success rates by chance 
alone, especially when prior probabilities are estimated from sample size. When using a training data 
set to classify unknown individuals, maximum likelihood estimation of mixture proportions and 
group membership afforded up to 20 % improvement over DFA with uninformative priors when 
groups contributed to the sample unequally. Given these results, we recommend the use of (1) ran­
domization tests to estimate the probability that reclassification success is better than random, and 
(2) maximum likelihood estimation of mixture proportions in place of uninformative priors. 
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INTRODUCTION 

In recent years, marine ecologists have relied in­
creasingly on multivariate statistics to elucidate struc­
ture in their data sets. For example, somatic morpho­
metrics are frequently used to discriminate fish stocks 
(Cadrin 2000) and a growing subfield of marine eco­
logy uses chemical signatures deposited in calcified 
structures to infer patterns of movement between 
water masses (Campana 2005). Discriminant function 
analysis (DFA) is a popular statistical tool in these stud­
ies, partly because it can classify individuals of un­
known origin into groups using a discriminant function 
(DF) generated from a training data set composed of 
individuals of known origin (see McGarigal et al. 2000 
for an accessible mathematical treatment). However, 
DFA has limitations that are sometimes overlooked by 

practitioners. First, DFA will classify some samples cor­
rectly by chance alone, so the performance of a DFA 
must be evaluated against that chance success rate. 
Second, the assignments generated by DFA can be 
strongly affected by the prior probabilities of group 
membership, so poor estimation of these priors may 
undermine classification accuracy. 

The classification accuracy of DFA is commonly eval­
uated by leave-one-out cross-validation, also called jack­
knife reclassification. This procedure omits 1 individual 
from the data set, recalculates the DF, and assigns the 
omitted individual to a group using the new DF (Lachen­
bruch & Mickey 1968). This process is then repeated for 
every sample in the data set. Since actual group mem­
bership is known, the fraction of samples correctly re­
assigned to their respective groups can be calculated; 
this is the jackknife reclassification success rate. 
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A low jackknife value suggests that the DF is unable 
to classify samples accurately. However, some success 
is expected by chance even if there are no real differ­
ences among groups, the amount of which depends on 
the number of groups being compared, g: if groups are 
evenly represented in the data set, the null expectation 
for reclassification success should be 1/g. However, an 
unbalanced data set will deviate from this expectation; 
if 1 group dominates the data set, the DF may reclassify 
many samples correctly by chance even if no real dif­
ferences exist among groups. This issue necessitates 
some sort of chance-corrected estimate of the null 
expectation for reclassification success (McGarigal et 
al. 2000). Unfortunately, the null expectations for com­
plex data sets are often non-intuitive. Even when the 
null expectation is obvious, a direct comparison to the 
jackknife value is hindered by the high variance of the 
jackknife estimator at low sample sizes (Glick 1978). 
Clearly investigators need a reliable method for test­
ing the null hypothesis that reclassification success is 
better than that expected by chance. 

Wastell (1987) and Solow (1990) advocated the use of 
a randomization test for this purpose. While some fish­
eries scientists have applied this technique (Cadrin 
2000), its utility has gone unheeded by many marine 
ecologists and in particular by otolith chemistry investi­
gators. To highlight this problem, we performed a search 
of the ISI (Institute for Scientific Information) Web of 
Science database using the keywords ‘otolith’ and 
‘chemistry.’ The search returned 81 articles between the 
years 2000 and 2005, of which 65 were empirical and 30 
used DFA. None of these used a randomization tech­
nique to test the no-better-than-random null hypothesis, 
and only one (Wells et al. 2000) explicitly considered the 
1/g reclassification success expectation. Several authors 
used other means to assess the reliability of their DFA 
results, such as complementary assignment techniques 
(e.g. artificial neural networks; Thorrold et al. 1998) or 
Cohen’s kappa statistic (DeVries et al. 2002), although 
the latter is only appropriate for use with hold-out re­
classification (see McGarigal et al. 2000 for details). 
Nonetheless, while most ecologists rarely report sum­
mary statistics (e.g. differences among sample means) 
without some estimate of the probability of obtaining 
those values by chance (e.g. p-values), authors regu­
larly report reclassification success results without such 
supporting statistics. 

It is important to clarify that the null hypothesis 
being tested here (no-better-than-random reclassifica­
tion) is not equivalent to the parametric null hypothesis 
of no difference between the true group population 
means. The latter hypothesis is properly tested with 
multivariate analysis of variance (MANOVA), not DFA. 
Some otolith studies use MANOVA to ensure groups 
are different before proceeding with DFA (e.g. Thor­

rold et al. 1998); this worthwhile practice provides 
assurance that classification is possible but does not 
directly evaluate reclassification success. 

A second issue confronting DFA users is the estimation 
of prior probabilities. These a priori estimates of the 
probability of membership in each group are incorpo­
rated into the DFs used for classification, and an arbitrary 
assignment of priors can result in similarly arbitrary clas­
sifications (Williams 1983). When reporting jackknife 
reclassification success, authors generally use non-
informative uniform priors or let priors be proportional 
to group sample sizes. Depending on the evenness of 
sampling effort, this choice could greatly affect the re­
classification success. When classifying truly unknown 
individuals, the choice of priors becomes crucial because 
the DF is dependent on the probability of an unknown 
belonging to a given group. At the same time, estimating 
priors is difficult because we rarely know the relative 
contribution of different groups to the pool of unknowns. 
For these reasons, the choice of priors is a contentious 
topic. Ideally, independent ancillary data such as relative 
stock abundances or flow regimes affecting fish move­
ment would be fashioned into prior probabilities. In 
the absence of such information, maximum likelihood 
(ML) methods can be used in place of DFA to simultan­
eously estimate mixture proportions (i.e. posterior prob­
abilities of group membership) and group assignments 
(Millar 1987). Because DFA can be cast as a likelihood-
ratio method when the data are multivariate normal 
(Williams 1983), ML classifications are equivalent to 
those produced by DFA if the a posteriori ML mixture 
proportions were used as priors. Maximum likelihood 
methods are commonly used in the otolith literature to 
supplement inferences from DFA (Campana et al. 1999, 
2000, Thorrold et al. 2001, Gillanders 2002, Wells et al. 
2003). However, some investigators prefer to classify un­
knowns using DFA with uniform priors, and the differ­
ence in classification success between this method and 
ML classification is unknown. 

Here we use a combination of empirical and simu­
lated data to emphasize the potential problems of 
ignoring chance classifications and mis-estimating 
prior probabilities. We describe the proper method for 
testing the null hypothesis of no-better-than-random 
reclassification success and evaluate the success of the 
ML solution for the prior probability dilemma. We also 
provide Matlab code for both procedures. 

METHODS AND RESULTS 

Chance classification success. To determine the prob­
ability of obtaining a given jackknife value due to 
chance alone, one could generate the distribution of ex­
pected jackknife values if no differences exist among 
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groups. Comparing the observed value to this distribu­
tion will allow the investigator to estimate the probabil­
ity that the observed jackknife value was drawn from 
this distribution, i.e. the probability (p-value) that this re­
sult was obtained by chance alone. The distribution of 
null jackknife values can be approximated by random­
ization: each individual is assigned to a group at random, 
then the jackknife reclassification success is calculated 
for the new, randomized data set. Repeating this process 
many times (the simulations presented here used 1000 
randomizations) approximates the distribution of null 
jackknife values. 

We used this method to generate some general guide­
lines for the interpretation of jackknife reclassification 
success rates in a range of scenarios. First we evaluated 
the effects of number of groups and overall sample size 
on DFA success by calculating the null jackknife reclas­
sification success value for linear DFA using a simulated 
data set with 3 predictor variables (using more variables 
does not affect the results) and 2 to 4 groups with equal 
sample sizes ranging from 10 to 130 per group. Predictor 
variable values were drawn from the standard multivari­
ate normal distribution (μμi = [0 0 0] for each group i, Σ = I; 
our results hold with other covariance matrices) to create 
a data set with no differences among groups. The results 
of these simulations confirmed that null expectations of 
jackknife reclassification success are well approximated 
by 1/g for balanced samples (Fig. 1A). The variance 
associated with the null expectation was high for 
small sample size (n < ~30 per group) but decreased 
appreciably as sample size increased. 

Choice of prior probabilities for jackknife reclassifi­
cation estimator. Because real data sets often vary in 
sample size among groups, we also explored the change 
in null jackknife reclassification success as sample sizes 
become more unequal. For this simulation, we used 
two groups, varied the ratio of group sample size from 
1:1 to 4:1, held total sample size constant at either 100 or 
200, and generated multivariate normal data sets in the 
same way as above. In such cases there are 2 ways to cal­
culate the reclassification success rate: with uniform 
prior probabilities or using ‘empirical’ priors equal to the 
relative sample sizes of the groups. When sample sizes 
are unbalanced, the latter method produces higher null 
reclassification success values than the former. 

With either set of priors there was a monotonic 
increase in null jackknife values above the 1/g expec­
tation with increasing inequality among group sample 
sizes (Fig. 1B). This increase was modest when uniform 
priors are used (an increase from 50% with equal sam­
ple size to 56% with a 4:1 ratio of sample sizes and n = 
100) but extreme with empirical priors. When n = 200 
with a 4:1 ratio of sample sizes, reclassification success 
must be >80% to exceed null expectations. This devia­
tion from 1/g appears to result from increased chance 

reclassification success for the larger group. With both 
sets of priors, increasing sample size reduces the vari­
ance in the null expectation but has minimal effect on 
the deviation from 1/g. 

Classification of unknowns without informative 
priors. Here we used data from an investigation of the 
potential use of otolith chemistry in measuring popula­
tion connectivity among Galápagos islands which are 
typical of the data sets used by otolith chemistry in­
vestigators (Ruttenberg & Warner 2006). For a portion 
of their study, these authors collected 13 benthic egg 
clutches of the damselfish Stegastes beebei from three 
areas in the western Galápagos for a total of 119 indi­
viduals (n1 = 50, n2 = 45, n3 = 24). They then used laser-
ablation inductively-coupled plasma mass spectro­
metry (ICPMS) to determine the concentration of 3 
elements (86Sr, 138Ba, and 208Pb, all normalized to cal­
cium) in the natal sagittal otoliths. Their goal was to de­
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Fig. 1. Null expectations for linear DFA jackknife reclassifica­
tion success (±95% confidence intervals) for randomly assem­
bled data sets. Dashed lines: 1/g expectations for reclassifica­
tion success; symbols offset for clarity. (A) Data sets with 
variable sample size, 2 (d), 3 (m), or 4 (j) groups, and 3 pre­
dictor variables. (B) Data sets with 2 groups and uneven sam­
ple size; total sample sizes fixed at 50 (s,h) or 100 (d,j): 
nA:nB ratio of larger group sample size to smaller group sam­
ple size, reclassification success estimated with uniform priors 

(s,d) or priors proportional to sample sizes (h,j) 
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termine whether fish spawned in the 3 areas had dis­
tinct natal otolith chemical signatures that could be 
used to distinguish natal sites. Using quadratic DFA this 
analysis produced a 66.4 % jackknife reclassification 
success (using uniform priors), significantly better than 
the 33.0 % expected by chance (p < 0.0001). 

As is often the case in this type of investigation, we are 
unable to propose informed prior estimates of population 
membership in this system, so we must classify un­
knowns using either quadratic DFA with uniform priors 
or ML. To compare the success rates of these methods we 
classified simulated data sets of ‘unknown’ individuals 
mixed in varying proportions. We used the sample 
means and covariance matrices in the original data as es­
timates of the true parameters for each area, then simu­
lated natal signatures from each area as random draws 
from multivariate normal distributions with those para­
meters. We first generated a new ‘known’ training data 
set with sample sizes equal to those in the original sam­
ple (using the original sample as the training data set 
would have biased the classification of unknowns gener­
ated from the parameters of that sample). We then gen­
erated 6 sets of 500 ‘unknown’ samples of 500 individu­
als: one set mixed in uniform proportions (167:167:166) 
and the other sets with arbitrarily skewed proportions 
ranging from 200:150:150 to 450:25:25. Because the true 
source population for each ‘unknown’ individual was 
actually known, we could determine whether classifica­
tion was accurate. We recorded the fraction of successful 
classifications of the ‘unknown’ samples using the simu­
lated training data set and either quadratic DFA with 
uniform prior probabilities or a maximum likelihood 
classification procedure. Maximum likelihood classi­
fications were generated using Millar’s expectation-
maximization (EM) algorithm (Millar 1987); this algo­
rithm is designed to calculate mixture proportions but we 
adapted it to also classify individuals to the group for 
which they have the highest likelihood. 

With uniform priors, the DF correctly assigned a 
mean of 66.3 % (SD = 2.1 %) of the individuals in the 

Table 1. Results of classifying simulated ‘unknown’ samples 
(n = 500) using a training data set (n = 119) simulated from 
actual data and either quadratic DFA with uniform priors or 
maximum likelihood assignment using the EM algorithm. 

Each value is the mean (SD) of 500 simulations 

Relative Mean percent classification accuracy 
sample sizes 
(total = 500) DFA (uniform priors) Max. likelihood 

167:167:166 66.3 (2.1) 65.9 (1.6) 
200:150:150 66.2 (2.8) 67.6 (3.0) 
300:100:100 68.0 (3.2) 72.8 (1.7) 
350:75:75 70.4 (2.1) 78.1 (1.6) 
400:50:50 71.6 (2.5) 84.4 (1.1) 
450:25:25 72.9 (2.1) 91.8 (0.7) 

uniformly mixed samples. This matches the jackknife 
reclassification success estimate of 66.4 % almost 
exactly. Using ML classification did not improve accu­
racy for the uniformly mixed samples, but this method 
outperformed DFAs with uniform priors by an increas­
ing margin as the mixing proportions of the samples 
became more skewed (Table 1). 

DISCUSSION 

Our simulations confirm that with equal sample sizes 
across groups, the null expectation of jackknife reclas­
sification success is 1/g. However, the estimated null 
reclassification values do change with unequal sample 
sizes, especially when priors are specified as propor­
tional to relative sample sizes. When priors are speci­
fied in this way, the probability of correctly classifying 
individuals by chance alone increases greatly when 1 
group dominates the data set. While this method may 
result in higher jackknife reclassification success val­
ues, the null expectation for reclassification success 
also increases, so these values are less likely to be 
significant. Furthermore, unless sampling effort for the 
training data set corresponds to the mixture of groups 
one expects to encounter in an unknown sample, jack­
knife values calculated in this way do not provide an 
informative estimate of reclassification success. When 
jackknife values are calculated for unbalanced data 
sets with uniform priors, the positive deviations from 
1/g are still present but minimal, so 1/g appears to be a 
robust estimate of the null expectation. Regardless of 
the evenness of the sample, the variance of the null 
expectation increases sharply for small sample sizes, so 
more effort should be devoted to increasing sample 
size, even at the expense of sample evenness. 

Given these results, it seems that except for the small­
est data sets, most reasonably high jackknife values (cal­
culated with uniform priors) will be statistically signifi­
cant. Indeed, we suspect that most of the jackknife 
values reported in the 30 published DFA results from our 
literature search are statistically significant — the in­
tuition of authors, editors, and reviewers that relatively 
high jackknife values are statistically meaningful is 
likely to be correct. However, it is important to note that 
low p-values do not always indicate a meaningful result; 
with a large data set or many groups, a poorly perform­
ing DF may have a jackknife value that is relatively low 
yet significantly greater than null expectations. 

The classification of simulated Galápagos data yielded 
several lessons. First, the jackknife procedure does pro­
duce an unbiased estimate of reclassification success 
when the unknown sample is mixed with uniform pro­
portions. This is not a new insight (Lachenbruch & 
Mickey 1968), but some investigators still report non­
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jackknifed reclassification success, a practice which 
should be discouraged. More importantly, our results 
demonstrate the value of using ML procedures for clas­
sifying unknowns: > 20 % improvement in reclassifica­
tion success over that achieved with DFA and uniform 
priors for some of our hypothetical examples. Given the 
simplicity and availability of numerical methods for 
estimating mixture proportions from the sample data 
(such as the EM algorithm used here), there seems to be 
little justification for further use of DFA with uninforma­
tive priors, even when knowledge of the relevant biology 
or oceanography is nebulous. In fact, ML methods simi­
lar to that used here may be a better choice for all 
classification tasks, except in cases where the distribu­
tional assumptions are severely violated (Millar 1990). 

One factor affecting classification success that we 
did not directly address here is the number of predictor 
variables used. In general, additional data should 
improve the success of DFA and ML classification, as 
with any multivariate technique. For example, the 
jackknife statistic for the Galápagos data decreases 
from 66.3 % to an average of 60.8 % when only 2 of the 
3 variables are used. However, Van Ness & Simpson 
(1976) found that additional variables must increase 
the distance between groups in multivariate space (i.e. 
add information) in order to improve reclassification 
success, while adding variables that are collinear with 
existing variables can hinder analysis (Williams 1983). 

The continued interest among biologists in describ­
ing differences in fishery stocks and connectivity 
among fish populations and the availability of power­
ful statistical software is increasing the popularity of 
both otolith chemistry (Campana 2005) and DFA. In 
order to improve statistical rigor and accuracy using 
this analytical technique, we encourage investigators 
to use the randomization method presented here to 
assign p-values to jackknife reclassification success 
estimates and to use ML assignment when classifying 
unknown individuals. To this end, the Matlab code 
used to perform the tests described here is available at 
http://archive.lifesci.ucsb.edu/2006/07/17/01/dfa.zip. 
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