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ABSTRACT 
 
 

Analyzing General-Purpose Computing Performance on GPU 
 

Fanfu Meng 
 

Graphic Processing Unit (GPU) has become one of the most 

important components in modern computer systems. GPUs have evolved 

from a single -purpose graphic rendering hardware to a powerful processor 

that is capable of handling many different kinds of computing tasks. 

However, GPUs don’t perform well on every application, and it takes a lot of 

design effort to get good performance on a GPU. 

This thesis aims to investigate the relative performance of a GPU vs. 

CPU. Design effort is held minimum for both CPU implementations and 

GPU implementations. Matrix multiplication, Advance Encryption Standard 

(AES) and 32-bit Cyclic Redundancy Check (CRC32) are implemented on 

both a CPU and GPU. Input data size is varied to test the performance of 

the CPU and the GPU. The GPU generally has better performance than the 

CPU for matrix multiplication and AES because of the applications' good 

instruction and data parallelism. CRC has very poor parallelism, so the CPU 

performs better. For very small data inputs, the CPU generally outperformed 

the GPU because of GPU memory transfer overhead.  
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Chapter 1. Introduction 
	
1.1 Introduction 
	

The Graphic Processing Unit (GPU) was introduced in the 1970s to 

perform graphic generating tasks such as line drawing [1]. People started 

to use computers for their daily life as the processing power of the 

computers gained. Entertainment industries such as movie and gaming 

became the main driving force in the development of GPU technologies. 

The software development tools of GPU programming developed along 

with the GPU hardware. APIs like OpenCL and DirectX brought flexibility 

into GPU computing through heterogeneous programming models.  

The popularity of General-Purpose GPU increased greatly with the 

introduction of NVIDIA Compute Unified Device Architecture (CUDA). 

CUDA is a parallel computing platform and programming model invented 

by NVIDIA [2]. CUDA enables NVIDIA GPUs for general-purpose 

computing by allowing programmers to directly access to the GPU’s virtual 

instruction set and parallel computational elements [3]. GPUs have since 

become one of the dominant forces in High-Performance Computing 

(HPC) area for crunching extremely large amounts of data quickly.  

Today, GPUs have made their way into mobile devices. The 

leading System-on-Chip (SoC) manufactures put a lot of effort into 

optimizing the performance and power consumption of GPU in order to 

meet mobile devices’ demands for computing power and limited power 

budget. Thanks to silicon fabrication technologies, an increasing number 
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of GPU cores are integrated into SoCs to boost GPU performance. Figure 

1 and Figure 2 show the die photos of Apple A6 and Apple A8X SoCs. A6 

has a dual-core CPU and a triple-core GPU. A8X has a triple-core CPU 

and an 8-core GPU. The two SoCs are only two years apart, but the 

number of GPU cores in the package has almost increased 3x. 

	

Figure 1. Die Photo of Apple A6 SoC [4] 
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Figure 2. Die Photo of Apple A8X [5] 

In many applications, the parallel computing capabilities give GPUs 

tremendous advantage over CPU, which is a sequential processing based 

device. However, GPU processing is not good for every application. The 

CPU will potentially outperform the GPU when there is little parallelism in 

an application.  

This thesis aims to investigate the relative performance of a GPU 

vs. CPU when minimum design effort is held for both CPU 

implementations and GPU implementations. Matrix multiplication, 

Advance Encryption Standard (AES) and 32-bit Cyclic Redundancy Check 

(CRC32) are implemented on both CPU and GPU. Input data size is 

varied to test the performance of the CPU and the GPU. The GPU 

generally has better had better performance than the CPU for matrix 

multiplication and AES, because these applications have a high amount of 
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instruction and data parallelism. CRC has a very low amount of 

parallelism, so the CPU performs better for most of the data sizes. For 

very small data inputs, the CPU generally outperformed the GPU because 

of GPU memory transfer overhead. 

Detailed background information will be provided in Chapter 2, 

followed by implementations in Chapter 3, performance analysis in 

Chapter 4, conclusions in Chapter 5 and future work in Chapter 6. 
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Chapter 2. Background 
	
 The hardware and the programming model used in this thesis are 

introduced in this Chapter. In the hardware section, the development 

platform and GPU architecture are discussed. In the programming model 

section, basics of CUDA programming and CUDA memory types are 

discussed. Related work is in the end of this chapter.  

2.1 Hardware  
	
2.1.1 Development Platform 
	

The development platform used for this thesis is a 32-bit version 

NVIDIA Jetson TK1 Embedded Development Kit (See Figure 3). The 

reason for using this mobile device platform is that GPU is becoming more 

and more important in mobile devices (smart phones, tablets, etc.) as 

mentioned in Chapter 1, and the GPU of Tegra K1 is one of the top 

performers on the market. The platform is armed with a Tegra K1 SoC. 

Linux Unbuntu 14.04 is the operating system on this platform. CUDA 6.5 

SDK is installed to compile the code and analyze the performance. 
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Figure 3.NVIDIA Jetson TK1 Development Board 

 As shown in Figure 4, the SoC has 5 ARM Cortex A15 cores with 

one being the battery saving core. The CPU is fabricated with the 28nm 

process. The maximum clock speed is 2.3 GHz. The Kepler GPU has 192 

CUDA cores running at 960MHz. 
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Figure 4. Tegra K1 Block Diagram [6] 

2.1.2 GPU Architecture 
	
 The architecture of the Kepler GPU in Tegra K1 is virtually identical 

to the Kepler GPU architecture used in high-end systems [6]. In the big 

picture, the GPU consists of many small processors and has its own data 

storage hardware. This section introduces these processors, the memory 

architecture and hardware parallelism of the GPU. 
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Streaming Multiprocessor (SMX) and Streaming Processor(SP) of the 

GPU 

Figure 5 illustrates the SMXes and SPs in a desktop GPU. Desktop 

GPUs usually have multiple SMXes. There is one streaming 

multiprocessor (SMX) in the GPU on Tegra K1. The SMX consists of 

many streaming processors (SPs). For the GPU on Tegra K1, there are 

192 SPs in the SMX. The term streaming processor is equivalent to CUDA 

core. To be consistent, this thesis uses streaming processor or SP. The 

number of SPs in the GPU on Tegra K1 is more than the number of SPs in 

many entry-level desktop GPU of just a few years ago [6]. NVIDIA 

GeForce GTS 250 had 128 cores as the entry-level desktop GPU in 2009.  

 

Figure 5. SMXes and SPs in a Desktop GPU 
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GPU Memory Architecture 

The system memory architecture is shown in Figure 6. As shown in 

Figure 6, the GPU does not have direct access to the system DRAM. The 

CPU manages memory transactions between the CPU and the GPU. The 

GPU allocates memory space and copies data from host memory to its 

own DRAM before processing, and transfers data back to system DRAM 

after processing. Data transfers between system DRAM and GPU DRAM 

creates GPU memory transfer overhead. 

 

Figure 6. System Memory Architecture 

GPU DRAM is off-chip. There are also on-chip data storage 

hardware in the GPU, cache and shared memory. The GPU 

implementation approach in this thesis is to fully utilize shared memory, 

and cache is seldom used. Thus, only shared memory is discussed here. 

Shared memory is a piece of high performance on-chip data 

storage hardware. It acts like a user controllable cache. Programmers can 

write instructions in software to copy data from DRAM to shared memory 
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and vice versa. The hardware doesn’t evict data at GPU kernel runtime, 

but the data can be overwritten by software instructions. The concept of 

GPU kernel will be discussed later in CUDA Programming Model section. 

Each SMX has its dedicated shared memory that can be accessed by all 

SPs in the SMX. Shared memory is banked memory. For the GPU on 

Tegra K1, the bank can be configured as 4-byte or 8-byte. The term 

shared memory is also used in CUDA programming model by NVIDIA, 

which will be explained in the programming model section. 

 

Hardware Parallelism 

Hardware parallelism is achieved through, as defined by NVIDIA, 

Single-Instruction-Multiple-Thread (SIMT). SIMT is similar to Single-

Instruction-Multiple-Data (SIMD). However, programmers have to explicitly 

mask the data in a data set in SIMD if this data needs to be executed with 

different instructions. In SIMT, the masking is done by hardware.  

Threads in the GPU are grouped into warps, which are defined by 

NVIDIA, to be executed simultaneously. A warp can have up to 32 

threads. Warps are scheduled and pipelined by the warp scheduler. 

Figure 7 shows the warp pipelines. The figure shows the GPU executes 

the instructions in next warp while waiting for data for the current warp. 

The GPU on Tegra K1 has a quad warp scheduler, and each warp 

scheduler contains two instruction dispatch units.  
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Figure 7. Warp Pipelines in the GPU [7] 

2.2 CUDA Programming Model 
	

CUDA provides a complete programming environment. GPU code 

is written in C/C++ or fortran with a variety of CUDA libraries. This section 

introduces basics in the CUDA programming model in C including GPU 

kernels, grids/blocks, types of memory, and the compiling process. 

 

Kernel 

A kernel is a function executed on the GPU as array of threads in 

parallel [7]. The kernel definition starts with __global__.  The instructions 

in the kernel function are executed N times when N threads are launched 

in parallel [8]. The CUDA runtime library needs to be included in order for 

the compiler to identify the kernel. Figure 8 shows templates of a kernel 

and a function that calls the kernel. The number of parallel threads is 

defined by grid_size and block_size, which will be explained next. 
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Figure 8. Templates of a Kernel and a Kernel Call Function 

	
	
Grids and Blocks  

 As shown in Figure 8, the kernel needs to be launched with a grid 

size and a block size. A grid is composed of all CUDA threads in an 

application. In the grid, threads are divided into thread blocks (see left side 

in Figure 9). One grid is mapped to one SMX. Multiple grids can run on 

multiple SMXes in parallel. As shown in Figure 9, blocks are distributed 

among the SPs to be executed in parallel once a grid is mapped to a 

SMX. Blocks and threads have their own IDs. The IDs do not have 

relationships to the physical locations of the SPs. The distribution is 

managed by hardware.  
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Figure 9. Grid and Block Mapping to Hardware 

 The dimensions of blocks need to be set when launching the kernel 

and cannot be changed while the kernel is being executed. There are 

limitations on the dimensions of grids and blocks. Different GPUs may 

have different limitations. The GPU on Tegra K1 has the following 

limitations: 

Max dimension size of a thread block (x,y,z): (1024, 
1024, 64) 
Max dimension size of a grid size (x,y,z): 
(2147483647, 65535, 65535) 
 

The information is obtained from running deviceQuery application 

provided in CUDA SDK. 
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Types of Memory 

 There are different types of memory in CUDA programming model. 

The largest and slowest memory is global memory. Global memory 

resides in the off-chip DRAM. Global memory is per-grid memory, as 

shown in Figure 10, and also accessible to the CPU. Shared memory 

(memory type) is a much smaller and faster memory compared to global 

memory. Shared memory (memory type) resides in the on-chip shared 

memory hardware. Shared memory is allocated per-block (see Figure 10). 

Shared memory can only be declared in a kernel function. The lifetime of 

shared memory is the lifetime of the kernel. The fastest memory is 

registers. Registers are private to an individual thread. Usually, 

programmers copy data from global memory into shared memory or 

registers for better performance. 

 

 	

Figure 10. Relationships between Grids/Blocks and Memory [9] 
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CUDA Compiling Process 

 The process for compiling CPU code and GPU code is shown in 

Figure 11. GPU code compiled with NVCC, which is NVIDIA’s GPU 

compiler, while CPU code is compiled with G++. Then the linker links the 

complied GPU object with the compiled CPU object into an executable. 

GPU code and CPU code are assigned to NVCC and G++ in the make 

file. 

   

Figure 11. CUDA Compiling Process [7] 

	
2.3 Related Work 
	

Research performed by University of Virginia focuses on the impact 

of GPU overhead on the overall GPU performance. In the publication 

Where is the Data? Why You Cannot Debate CPU vs. GPU Performance 

Without the Answer [10], the authors addressed the significance of GPU 

overhead through a few applications. Figure 12 shows the results of 

implementing convolution on a Fermi architecture based GPU 

documented by the authors. It can be seen that the duration for data 
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transfer is much longer than the duration of kernel execution. The 

research concludes that GPU memory transfer overhead is generally too 

big to ignore. 

	

Figure 12. Results of Implementing Convolution on GPU [10] 

 My thesis takes a similar approach but extends the research with 

the CPU/GPU performance comparisons with GPU overhead accounted 

for. The memory transfer overhead is characterized on my specific 

platform so that the relationship between data size and memory transfer 

overhead is more obvious. 

In Parallel AES Algorithm for Fast Data Encryption on GPU 

published by Changshu Institute of Technology, an implementation of AES 

on GPU is experimented [11]. The encryption process is as shown in 

Figure 13. This implementation shows good performance of the GPU 

implementation.  
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Figure 13. Parallel AES Implementation [11] 

However, it is not fully utilizing instruction-level parallelism in AES 

since key expansion is done prior to the encryption as shown in Figure 13. 

The implementation of AES in this thesis does the key expansion in 

parallel along with encryption rounds. 

In Improving Performance of Matrix Multiplication and FFT on GPU 

published by Peking University, performance of their GPU matrix 

multiplication implementation is analyzed in detail [12]. The 

implementation was optimized specifically for GPU, which utilizes warps 

and break the input matrices into sub-blocks for parallel processing to 
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maximize the throughput. It is fair to compare the GPU performance and 

the CPU performance, because only the GPU is optimized with a great 

amount of design effort.  

The implementation in this thesis only utilized the data parallelism 

in matrix multiplication. No extra design effort was put into GPU 

implementation to boost GPU performance. Thus, this thesis provides a 

fairer CPU vs. GPU performance comparison. 
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Chapter 3. Implementations of the Applications 
	
3.1 Introduction 
	
 There are three applications chosen for comparing the CPU 

performance and GPU performance: matrix multiplication, Advanced 

Encryption Standards (AES) and 32-bit Cyclic Redundancy Check 

(CRC32). These applications are widely used, and they can represent 

applications that have similar characteristics. 

Matrix multiplications are widely used in mathematics and 

engineering. Matrix multiplication represents applications that are very 

easy to implement in GPU parallel programming and very likely to have 

good performance due to good data parallelism and simple instructions.  

AES is a widely used encryption algorithm because of its 

robustness. AES represents algorithms with mixed serial and parallel 

structure. The encryption steps in AES have to be executed in serial, but 

key (cipher) expansion and encryption can run in parallel. There is good 

data parallelism within each serial step.  

CRC32 is the common method for checking the integrity of data for 

data transmission. CRC32 represents algorithms that have poor 

parallelism. There is no instruction or data parallelism for calculating the 

CRC32 code for a single input message, but multiple input messages can 

be processed in parallel. 

 In this chapter, the CPU implementations and GPU 

implementations of matrix multiplication, Advanced Encryption Standard 
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(AES) and Cyclic Redundancy Check (CRC32) are explained. In the big 

picture, CPU implementations are direct translation of the theoretical 

algorithms, and the approach of GPU implementations is as following: 

• Utilizing instruction-level parallelism and data parallelism in each 

application if there is any 

• Utilizing shared memory 

• Providing no optimizations are made for GPU warp pipelining 

By following these rules, a programmer with basic CUDA programming 

knowledge can implement matrix multiplication, AES and CRC32 quickly. 

 

3.2 Matrix Multiplication 
	
       Matrix multiplication computes the product of two matrices. The 

theoretical operation is shown in Figure 14, where matrix A and matrix B 

are the input matrices, and matrix C is the output matrix. 
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Figure 14. Matrix Multiplication 

	
	
CPU Implementation 

The CPU implementation is the most basic implementation. The 

pseudo code is as shown in Figure 15: 
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Figure 15. Matrix Multiplication Pseudo CPU code 

In each iteration of the for loops, the code computes the products of 

two elements from matrix A and matrix B and adds the product to the 

result from previous iterations of the loops. For an n-by-n square matrix, to 

compute one element in matrix C, the CPU performs n multiply operations 

and n-1 sum operations. So, for the entire multiplication, there are n3 

multiply operations and n2 x (n-1) sum operations. 

 

 GPU Implementation 

The GPU utilizes the data parallelism in matrix multiplication. The 

kernel launches n2 thread blocks for an n-by-n square matrix 

multiplication. Each block does the multiplication and summation for a row 

in input matrix A and a column in input matrix B (see Figure 16). Each 

thread in a block computes the product of one element in the row and one 

element in the column (see Figure 17). 
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Figure 16. Matrix Multiplication GPU Implementation – Thread Block 

Operation 
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Figure 17. Matrix Multiplication GPU Implementation - GPU Thread 

Operation 

The multiplication core in CPU code and GPU code are in Figure 

18 side by side. It can be seen that the GPU is not more complicated than 

the CPU code. The only tricky part is the indexing with block ID and thread 

ID. 
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Figure 18. Matrix Multiplication – CPU Code vs. GPU code 

	
3.3 AES 
	
 The AES in this thesis is 128-bit AES, which means every 128 bits 

of data are encrypted with a 128-bit cipher. The AES algorithm deals two 

sets of data, the state and the key. The state is the actual message, and 

the key is the cipher. By utilizing the instruction parallelism in AES, state 

and keys are calculated independently. Keys follow the key schedule. In 

each round of encryption, keys are added to the state through XOR 

operation. 

CPU	

GPU	
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CPU Implementation 

  The CPU implementation calculates keys for the entire message of 

prior to the actual encryption. In the end, the 16 bytes of cipher expand to 

176 bytes. The process of the key expansion core is shown in Figure 19. 

Start

Index % 4 = 0?

Rotate

Sub-word

Rcon Op

Copy 4 bytes of 
cipher in to 
registers

no

yes

Key size > 176 ?

no

yes

End

 

Figure 19. AES Key Expansion Process 

The core processes of the key expansion are as follows: 

• Rotate: rotate the 4-byte word to the left by 1. For example,  

K0 = K1, K1 = K2, K2 = K3 and K4 = K0. 
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• Sub-word: the previous round keys are substituted with values in s-

box. s-box is a hard-coded lookup table. For example, 

key_next_round = s-box[key_previous_round]. 

• Rcon Op: Rcon is another hard-coded lookup table. There is one 

Rcon value for each iteration in the key expansion loop, 

Rcon[round_number/(128/(4x3))]. Then the value that comes out 

from the Rcon table and the previous key are processed through an 

XOR operation. 

 

After the round key expansion, the encryption process starts. The 

process is shown in Figure 20. 

 

 

Figure 20. AES Encryption Process [13] 

The core processes of the encryption are as follows: 

• Sub-byte: It is the same as Sub-word step in the key expansion. 

• Shift rows: It is the same as Rotate in the key expansion. 
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• Mix columns: Each column is treated as a polynomial over GF(28). 

Then the column is multiplied modulo x4 + 1 with a fixed polynomial 

c(x) = 3x3 + x2 + x + 2. The multiplication is performed with XOR 

since the math is done in Rijndael’s Galois field. 

• Add round keys: XOR each element in the state with the element in 

the round key that is in the same position in the 4-by-4 matrix 

There is a total of 10 rounds of encryption for every 128 bits of data. 

 

GPU Implementation 

 The GPU implementation utilizes instruction-level parallelism 

between the key expansion process and encryption process and data 

parallelism in each step in key expansion and encryption. As shown in the 

key expansion process and encryption process, the operations in each 

step depend on the results from the previous step. Thread synchronization 

is used to ensure the serial process. In each round of encryption, the 

process is implemented as shown in Figure 21, which indicates that the 

steps in key expansion and steps in encryption are processed in parallel. 
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Round Start

Key Rotate State Sub-bytes

Key Sub-word State Shift Rows

Key Rcon Op State Mix Columns

Add Round Key

Round End

 

Figure 21. AES GPU Encryption 

For example, Figure 22 shows the first step in the kernel: 

	

Figure 22. AES GPU Implementation Key Rotate and State Sub-bytes 
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 Operations in key expansion and round encryption have good data 

parallelism within each step, which is suitable for GPU programming. The 

only tricky steps are rotation steps. CPU implementation requires a 

temporary register to hold the data in the first position while copying data 

from position 2 to position 1, position 3 to position 2 and position 4 to 

position 3. Instead of doing the serial process, 16 bytes of char registers 

are created to hold the values after rotation. To take advantage of the 

memory redundancy, the temporary registers are used instead of copying 

the values back to the original registers in the next step.  

 A comparison of Shift Rows step in the encryption between CPU 

code and GPU code is shown in Figure 23. The CPU code is longer, but it 

is simpler than the GPU code. In the GPU code, thread IDs are selected 

for designated tasks. From GPU programming’s standpoint, the GPU code 

is not complicated. 
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Figure 23. AES Implementation - Comparison Between CPU Code and 
GPU Code 

CPU	

GPU	
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3.4 32-bit Cyclic Redundancy Check (CRC32) 
	
 CRC32 has no instruction parallelism or data parallelism. There is a 

possibility to break up one message in several parts and combine the 

CRC results into one as the way zlib's crc32_combine does, but the 

complexity in the combining algorithm is too high for the GPU to gain any 

advantage over CPU. The combining method is not a practical way to 

implement on the CPU as well due to its high complexity. There are other 

faster lookup table oriented CRC32 implementations such as Intel 

proposed in " Fast CRC Computation for iSCSI Polynomial Using CRC32 

Instruction"[14]. However, the lookup tables can be rather large that 

exceeds the size of GPU shared memory. In this case, threads have to 

constantly access the global memory on the GPU, which violates the 

design approach in this thesis. Accessing global memory greatly 

decreases the performance of the GPU.  

 

CPU Implementation 

 The CPU implementation is based on Stephan Brumme's bitwise 

branch-free CRC32 [15]. The pseudo code is shown in Figure 24, where 

the polynomial is 0xEDB88320.  
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Figure 24. CRC CPU Implementation – CRC Pseudo Code 

	
	
GPU Implementation 

 The same CRC function in the CPU code is defined for the GPU in 

the GPU code. The kernel calls this function after copying the data into 

shared memory. Each thread block runs a single thread to do the CRC 

process. Many thread blocks run in parallel to process multiple sets of 

data. 
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Chapter 4. Performance Analysis 
 
4.1 Introduction 
  

This chapter will show and analyze the performance of GPU 

implementations and CPU implementations of matrix multiplication, AES 

and CRC32. Other findings from the experiments are in the end of this 

chapter, which includes GPU memory transfer overhead characterization. 

For each application, the input data size is varied to test the 

performance. For all CPU implementations and GPU implementations, the 

performance is measured as throughput. For GPU performance, two kinds 

of throughput are measured: 

• GPU kernel throughput: GPU memory transfer overhead is not 

included in the throughput calculation. It is the theoretical 

performance of the GPU. GPU kernel throughput is calculated as: 

𝐺𝑃𝑈	𝐾𝑒𝑟𝑛𝑒𝑙	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡	 =
𝐷𝑎𝑡𝑎	𝑆𝑖𝑧𝑒

𝐺𝑃𝑈	𝐾𝑒𝑟𝑛𝑒𝑙	𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 

• GPU overall throughput: GPU memory transfer overhead is 

included in the throughput calculation. It is the real performance of 

the GPU. GPU overall throughput is calculated as: 

𝐺𝑃𝑈	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡	

=
𝐷𝑎𝑡𝑎	𝑆𝑖𝑧𝑒

𝐺𝑃𝑈	𝐾𝑒𝑟𝑛𝑒𝑙	𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 + 𝐺𝑃𝑈	𝑀𝑒𝑚𝑜𝑟𝑦	𝑇𝑟𝑛𝑎𝑠𝑓𝑒𝑟	𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 

GPU timers are set to get the GPU kernel execution time and GPU 

memory transfer overhead. GPU memory transfer overhead include time 
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for data moving from system DRAM to GPU DRAM and from GPU DRAM 

to system DRAM. 

 There is a CPU timer set to get CPU processing time as well. The 

CPU throughput is calculated as: 

𝐶𝑃𝑈	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐷𝑎𝑡𝑎	𝑆𝑖𝑧𝑒

𝐶𝑃𝑈	𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 

 

4.2 Matrix Multiplication Performance 
	
 To test the performance of the CPU implementation and GPU 

implementation, the CPU function and the GPU function take in two arrays 

that store values of two n-by-n matrices, and compute the product of the 

matrices. The input matrices are square matrices. The dimensions of the 

input matrices range from 8-by-8 to 64-by-64 increasing in powers of 2. 

The values of the input matrices are randomly generated 1-byte data. 

 The throughputs of the CPU implementation and the GPU 

implementation are shown in Figure 25. Y-axis is log10 scale. The higher 

the bar is, the better the performance is. The plot indicates that GPU 

kernel has higher throughput than the CPU for all input data sizes. GPU 

overall throughput is higher when the size is larger than or equal to 2kB 

(16 x 16 x 4 x 2 = 2kB, where 4 comes from that elements in the matrices 

are 4-byte data, and 2 comes from that there are two input matrices). For 

8-by-8 input matrices, CPU throughput is 2.5x the GPU overall throughput. 

The GPU overall throughput increases when input data size increases. 
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For 64-by-64 input matrices, the GPU overall throughput is 100x the CPU 

throughput. 

 

Figure 25. Matrix Multiplication – CPU/GPU Throughput 

 Memory access is the cause of the decreasing trend of the CPU 

throughput. One reason being the memory locality was not taken into 

consideration in the CPU implementation since the design effort was held 

minimum. Thus, the larger the data is, the poorer performance the CPU 

gets. The other reason is the cache capacity. The 32kB L1 cache cannot 

hold the data if the data size is too large. When the input matrices are 64 x 

64, there will be 64 x 64 x 4 x 3 = 48kB data on the fly, where 4 is the size 

of the elements in the matrices, and 3 includes 2 input matrices and 1 

output matrix.  

 The GPU kernel throughput has a decreasing trend as well. The 

limitation of parallel computing ability of the GPU is one of the reasons. 

The Kepler GPU on Tegra K1 can schedule and pipeline 64 warps 
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simultaneously, which translates to 2048 threads at a time. There are 

4096 threads running to multiply two 64 x 64 matrices. The threads need 

to be scheduled twice to complete matrix multiplication. The 

implementation could be optimized to process data in smaller chunks at a 

time for better pipelining to get better performance. 

 The GPU memory transfer overhead has negative impact on the 

overall GPU throughput. As shown in Figure 25, when the dimension of 

the input matrices is 8-by-8, GPU memory transfer overhead causes the 

GPU overall throughput to be 10x lower than the GPU kernel overhead, 

which indicates that the memory transfer time is much longer than the 

kernel execution time. The GPU overall throughput is 3x lower than the 

CPU throughput for 8-by-8 matrices. As input data size grows, the GPU 

overall throughput increases gradually and gets closer and closer to the 

GPU kernel throughput, which indicates that the GPU execution time 

grows faster than the GPU memory transfer overhead when data size 

increases.  

	
4.3 AES Performance 
	

To test the performance of AES on the CPU and the GPU, the 

programs encrypt randomly generated messages. The message is 

composed of an array of randomly generated 1-byte data. The message 

size goes from 512kB to 16MB increasing in powers of 2. 

 The throughputs of the CPU implementation and the GPU 

implementation are shown in Figure 26. Higher bars indicate better 
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performance. Y-axis is in linear scale. The plot shows that the GPU kernel 

has higher throughput for all test cases. The overall GPU throughput is 

higher when the input message size is larger than or equal to 4MB. At 

16MB, the GPU overall throughput is 1.5x the CPU throughput. 

 

Figure 26. AES – CPU/GPU Throughput 

The throughput of the CPU shows little scaling. This is because the 

CPU executes the same instructions for encrypting every 16 bytes of data. 

If the input message size increases N times, the execution time increases 

N times, which results in constant throughput in theory.   

The GPU kernel performs better than the CPU, because the GPU 

implementation utilizes instruction-level parallelism and data parallelism 

are utilized. GPU kernel throughput increases when the input message 

size grows due to more parallel threads running in the GPU. 

 The overall GPU throughput increases gradually. The GPU overall 

throughput gets suppressed when the input message size is small due to 
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the GPU memory transfer overhead. When the input message size is 

256kB, the GPU overall throughput is 4x lower than the GPU kernel 

throughput as shown in Figure 26. The negative impact of GPU transfer 

overhead is weaker for large input message sizes, because the growth in 

the kernel execution time is faster than the growth in the GPU memory 

transfer overhead. 

 

4.4 CRC32 Performance 
	
 To test the performance of the CRC32 CPU implementation and 

the CRC32 GPU implementation, the programs calculate CRC32 code for 

a randomly generated message. The message is an array of randomly 

generated 8-bit data. The message sizes range from 16kB to 1MB 

increasing in powers of 2. The message is composed of many 1024-byte 

data segments. A CRC32 code is calculated for each data segment.  

 The throughputs of the CRC32 CPU implementation and the 

CRC32 GPU implementation are shown in Figure 27. Higher bars indicate 

higher performance. Y-axis is in log10 scale. The plot shows that the CPU 

throughput is 2x to 4x higher than the GPU kernel throughput and the 

GPU overall throughput depending on data size. The larger the input 

message size is, the higher the ratio between the CPU throughput and the 

GPU kernel/overall throughput. 
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Figure 27. CRC32 – CPU/GPU Throughput 

The throughput of the CPU increases gradually as the input 

message size gets bigger. The growth rate of the CPU throughput 

decreases, as the data size gets bigger, because the pipelines of the CPU 

get saturated. 

The throughput of GPU kernel is lower than the CPU throughput in 

all test cases since there is no instruction-level parallelism and data 

parallelism in CRC32. 

The GPU overall throughput is about the same as the GPU kernel 

throughput in most test cases. The kernel execution time is longer than 

the GPU memory transfer overhead, because CRC32 has poor 

instruction-parallelism and data parallelism. 
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4.5 Other Findings 
	
 Results of matrix multiplication and AES performance testing show 

that GPU memory transfer overhead generally can’t be ignored when 

talking about GPU overall performance for small input data size. Thus, it is 

necessary to quantize GPU memory transfer overhead for the platform. An 

experiment was setup to measure the time duration for transferring data 

from system (host) DRAM to system (device) DRAM and from GPU 

DRAM to system DRAM with a GPU timer. Figure 28 shows the results of 

the characterization. Note that X-axis is in log10 scale. 

	

Figure 28. Tegra K1’s GPU Memory Transfer Overhead Characterization 

 Figure 28 shows that the memory transfer time for under 100kB is 

close to 0.5ms. When the data size is larger than 100kB, the time starts to 

increase linearly.  
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4.6 Conclusion 
	
	 The results from the experiments show that the GPU does not 

always have performance advantage over the CPU. For matrix 

multiplication and AES, the GPU is able to hide memory transfer overhead 

with parallel processing when the input data size is large, because the 

applications have good instruction-level parallelism or data parallelism. 

When the input data size is small, the GPU overall performance is 

suppressed by the GPU overhead.  The GPU performs poorly in CRC32 

because of the poor instruction-level parallelism and data parallelism in 

CRC32.   
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Chapter 5. Conclusion 
	
 This thesis has shown the performance of the GPU 

implementations and the GPU implementations of matrix multiplication, 

AES and CRC32 comparing to the CPU implementations when design 

effort is held minimum for both GPU implementations and CPU 

implementations. The performances of the implementations show that 

GPU memory transfer overhead has negative impact on the GPU overall 

throughput. Though the GPU kernel performs better than the CPU in the 

majority of the test cases in matrix multiplication and AES, GPU memory 

transfer overhead suppresses the GPU performance when GPU memory 

transfer overhead is considered. For matrix multiplication and AES, which 

have good instruction-level and data parallelism, the results recommend 

using the GPU instead of the CPU to get better performance when input 

data size is large. It is not recommended using GPU for CRC32 since 

CRC has poor parallelism. 

 GPU memory transfer overhead is quantized for NVIDIA Jetson K1 

development platform. Knowing GPU memory transfer overhead can help 

programmers decide whether or not to use the GPU based on the input 

data size of certain applications. 
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Chapter 6. Future Work 
	
 This thesis analyzed the impact of GPU overhead on the GPU 

performance when the GPU acts like a slave device to the CPU. However, 

NVIDIA GPUs are able to be the master when communicating with 

external devices through NVIDIA GPUDirect. NVIDIA GPUDirect was 

introduced in 2013. The technology can eliminate GPU overhead in the 

following situations: 

 

Table 1. GPU Direct Accelerated Applications [16] 

Applications shown in Table 5.1 involve interactions between GPU 

and other external devices. Traditionally, the CPU will collect the data from 

external devices through data bus. GPUDirect cuts off the CPU 

involvement and grants direct inter-system memory access for the GPU to 

minimize the memory transfer overhead. According to Nvidia, the memory 

transfer time can be reduced up to 45% [16]. Communicating with external 

devices introduces inter-system communication delay such as 

synchronization between the GPU system and the external device. 
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Characterizing the delay and analyzing the performance of GPUDirect 

enabled GPU can be a research topic.  

Experiments in this thesis show that the CPU may have better 

performance than the GPU when input data size is small though the 

application has good instruction-level parallelism or data parallelism. Thus, 

a heterogeneous programming model can be applied to some 

applications. Applications can be designed to run on the CPU when the 

data size is small and on the GPU when the data size is large. However, 

the CPU does not stall when the GPU is running. It is possible that the 

GPU finishes processing while the CPU is busy, which leads to delay of 

transferring data from GPU DRAM to CPU DRAM. If the delay is not 

deterministic or too big, the heterogeneous approach may lead to poor 

performance. The delay caused by CPU-GPU synchronization when the 

CPU has a high amount of workload needs to be studied.  
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APPENDIX A 
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main.cpp – page 1 of 2 
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main.cpp – page 2 of 2 
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Matrix Multiplication 
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Matrix Multiplication 
 
 
gpu_matrixMul.cu – page 1 of 2 
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Matrix Multiplication 
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main.cpp – page 3 of 6 
 
 
 
 
 

 

 

 
 
 



	 57 

AES 
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