

ANALYZING GENERAL-PURPOSE COMPUTING

PERFORMANCE ON GPU

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Fanfu Meng

December 2015

ii	
	

©2015

Fanfu Meng

ALL RIGHTS RESERVED

iii	
	

COMMITTEE MEMBERSHIP

TITLE: Analyzing General-Purpose Computing
Performance on GPU

AUTHOR: Fanfu Meng

DATE SUBMITTED: December 2015

COMMITEE CHAIR: John Y. Oliver, Ph.D.
 Associate Professor of Electrical Engineering,

Director of CPE Program

COMMITEE MEMBER: Bridget Benson, Ph.D.
 Assistant Professor of Electrical Engineering

COMMITEE MEMBER: Tina Smilkstein, Ph.D.
 Associate Professor of Electrical Engineering

iv	
	

ABSTRACT

Analyzing General-Purpose Computing Performance on GPU

Fanfu Meng

Graphic Processing Unit (GPU) has become one of the most

important components in modern computer systems. GPUs have evolved

from a single -purpose graphic rendering hardware to a powerful processor

that is capable of handling many different kinds of computing tasks.

However, GPUs don’t perform well on every application, and it takes a lot of

design effort to get good performance on a GPU.

This thesis aims to investigate the relative performance of a GPU vs.

CPU. Design effort is held minimum for both CPU implementations and

GPU implementations. Matrix multiplication, Advance Encryption Standard

(AES) and 32-bit Cyclic Redundancy Check (CRC32) are implemented on

both a CPU and GPU. Input data size is varied to test the performance of

the CPU and the GPU. The GPU generally has better performance than the

CPU for matrix multiplication and AES because of the applications' good

instruction and data parallelism. CRC has very poor parallelism, so the CPU

performs better. For very small data inputs, the CPU generally outperformed

the GPU because of GPU memory transfer overhead.

v	
		

ACKNOWLEDGMENTS

 I would like to thank my thesis committee for helping me with the

thesis and my parents for supporting me all these years.

vi	
	

TABLE OF CONTENTS

Page

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

Chapter 1. Introduction .. 1

1.1 Introduction .. 1

Chapter 2. Background ... 5

2.1 Hardware .. 5

 2.1.1 Development Platform ... 5

 2.1.2 GPU Architecture .. 7

2.2 CUDA Programming Model .. 11

2.3 Related Work ... 15

Chapter 3. Implementations of the Applications .. 19

3.1 Introduction .. 19

3.2 Matrix Multiplication .. 20

3.3 AES .. 25

3.4 32-bit Cyclic Redundancy Check (CRC32) 32

Chapter 4. Performance Analysis .. 34

4.1 Introduction .. 34

4.2 Matrix Multiplication Performance .. 35

4.3 AES Performance .. 37

4.4 CRC32 Performance .. 39

vii	
	

4.5 Other Findings .. 41

4.6 Conclusion ... 42

Chapter 5. Conclusion ... 43

Chapter 6. Future Work ... 44

BIBLIOGRAPHY .. 46

APPENDICES

APPENDIX A .. 49

viii	
	

LIST OF TABLES

Table Page

Table 1. GPU Direct Accelerated Applications [16] 44

ix	
	

LIST OF FIGURES

Figure Page

Figure 1. Die Photo of Apple A6 SoC [4] .. 2

Figure 2. Die Photo of Apple A8X [5] ... 3

Figure 3. NVIDIA Jetson TK1 Development Board 6

Figure 4. Tegra K1 Block Diagram [6] .. 7

Figure 5. SMXes and SPs in a Desktop GPU .. 8

Figure 6. System Memory Architecture .. 9

Figure 7. Warp Pipelines in the GPU [7] .. 11

Figure 8. Templates of a Kernel and a Kernel Call Function 12

Figure 9. Grid and Block Mapping to Hardware 13

Figure 10. Relationships between Grids/Blocks and Memory [9] 14

Figure 11. CUDA Compiling Process [7] .. 15

Figure 12. Results of Implementing Convolution on GPU [10] 16

Figure 13. Parallel AES Implementation [11] ... 17

Figure 14. Matrix Multiplication ... 21

Figure 15. Matrix Multiplication Pseudo CPU code 22

Figure 16. Matrix Multiplication GPU Implementation – Thread Block

Operation .. 23

Figure 17. Matrix Multiplication GPU Implementation - GPU Thread

Operation .. 24

Figure 18. Matrix Multiplication – CPU Code vs. GPU code 25

Figure 19. AES Key Expansion Process .. 26

x	
		

Figure 20. AES Encryption Process [13] .. 27

Figure 21. AES GPU Encryption .. 29

Figure 22. AES GPU Implementation Key Rotate and State Sub-bytes .. 29

Figure 23. AES Implementation - Comparison Between CPU Code and

GPU Code ... 31

Figure 24. CRC CPU Implementation – CRC Pseudo Code 33

Figure 25. Matrix Multiplication – CPU/GPU Throughput 36

Figure 26. AES – CPU/GPU Throughput ... 38

Figure 27. CRC32 – CPU/GPU Throughput ... 40

Figure 28. Tegra K1's GPU Memory Transfer Overhead

 Characterization .. 41

	 1

Chapter 1. Introduction
	
1.1 Introduction
	

The Graphic Processing Unit (GPU) was introduced in the 1970s to

perform graphic generating tasks such as line drawing [1]. People started

to use computers for their daily life as the processing power of the

computers gained. Entertainment industries such as movie and gaming

became the main driving force in the development of GPU technologies.

The software development tools of GPU programming developed along

with the GPU hardware. APIs like OpenCL and DirectX brought flexibility

into GPU computing through heterogeneous programming models.

The popularity of General-Purpose GPU increased greatly with the

introduction of NVIDIA Compute Unified Device Architecture (CUDA).

CUDA is a parallel computing platform and programming model invented

by NVIDIA [2]. CUDA enables NVIDIA GPUs for general-purpose

computing by allowing programmers to directly access to the GPU’s virtual

instruction set and parallel computational elements [3]. GPUs have since

become one of the dominant forces in High-Performance Computing

(HPC) area for crunching extremely large amounts of data quickly.

Today, GPUs have made their way into mobile devices. The

leading System-on-Chip (SoC) manufactures put a lot of effort into

optimizing the performance and power consumption of GPU in order to

meet mobile devices’ demands for computing power and limited power

budget. Thanks to silicon fabrication technologies, an increasing number

	 2

of GPU cores are integrated into SoCs to boost GPU performance. Figure

1 and Figure 2 show the die photos of Apple A6 and Apple A8X SoCs. A6

has a dual-core CPU and a triple-core GPU. A8X has a triple-core CPU

and an 8-core GPU. The two SoCs are only two years apart, but the

number of GPU cores in the package has almost increased 3x.

	

Figure 1. Die Photo of Apple A6 SoC [4]

	 3

	
Figure 2. Die Photo of Apple A8X [5]

In many applications, the parallel computing capabilities give GPUs

tremendous advantage over CPU, which is a sequential processing based

device. However, GPU processing is not good for every application. The

CPU will potentially outperform the GPU when there is little parallelism in

an application.

This thesis aims to investigate the relative performance of a GPU

vs. CPU when minimum design effort is held for both CPU

implementations and GPU implementations. Matrix multiplication,

Advance Encryption Standard (AES) and 32-bit Cyclic Redundancy Check

(CRC32) are implemented on both CPU and GPU. Input data size is

varied to test the performance of the CPU and the GPU. The GPU

generally has better had better performance than the CPU for matrix

multiplication and AES, because these applications have a high amount of

	 4

instruction and data parallelism. CRC has a very low amount of

parallelism, so the CPU performs better for most of the data sizes. For

very small data inputs, the CPU generally outperformed the GPU because

of GPU memory transfer overhead.

Detailed background information will be provided in Chapter 2,

followed by implementations in Chapter 3, performance analysis in

Chapter 4, conclusions in Chapter 5 and future work in Chapter 6.

	

	 5

Chapter 2. Background
	
 The hardware and the programming model used in this thesis are

introduced in this Chapter. In the hardware section, the development

platform and GPU architecture are discussed. In the programming model

section, basics of CUDA programming and CUDA memory types are

discussed. Related work is in the end of this chapter.

2.1 Hardware
	
2.1.1 Development Platform
	

The development platform used for this thesis is a 32-bit version

NVIDIA Jetson TK1 Embedded Development Kit (See Figure 3). The

reason for using this mobile device platform is that GPU is becoming more

and more important in mobile devices (smart phones, tablets, etc.) as

mentioned in Chapter 1, and the GPU of Tegra K1 is one of the top

performers on the market. The platform is armed with a Tegra K1 SoC.

Linux Unbuntu 14.04 is the operating system on this platform. CUDA 6.5

SDK is installed to compile the code and analyze the performance.

	 6

	

Figure 3.NVIDIA Jetson TK1 Development Board

 As shown in Figure 4, the SoC has 5 ARM Cortex A15 cores with

one being the battery saving core. The CPU is fabricated with the 28nm

process. The maximum clock speed is 2.3 GHz. The Kepler GPU has 192

CUDA cores running at 960MHz.

	 7

	

Figure 4. Tegra K1 Block Diagram [6]

2.1.2 GPU Architecture
	
 The architecture of the Kepler GPU in Tegra K1 is virtually identical

to the Kepler GPU architecture used in high-end systems [6]. In the big

picture, the GPU consists of many small processors and has its own data

storage hardware. This section introduces these processors, the memory

architecture and hardware parallelism of the GPU.

	 8

Streaming Multiprocessor (SMX) and Streaming Processor(SP) of the

GPU

Figure 5 illustrates the SMXes and SPs in a desktop GPU. Desktop

GPUs usually have multiple SMXes. There is one streaming

multiprocessor (SMX) in the GPU on Tegra K1. The SMX consists of

many streaming processors (SPs). For the GPU on Tegra K1, there are

192 SPs in the SMX. The term streaming processor is equivalent to CUDA

core. To be consistent, this thesis uses streaming processor or SP. The

number of SPs in the GPU on Tegra K1 is more than the number of SPs in

many entry-level desktop GPU of just a few years ago [6]. NVIDIA

GeForce GTS 250 had 128 cores as the entry-level desktop GPU in 2009.

Figure 5. SMXes and SPs in a Desktop GPU

	 9

GPU Memory Architecture

The system memory architecture is shown in Figure 6. As shown in

Figure 6, the GPU does not have direct access to the system DRAM. The

CPU manages memory transactions between the CPU and the GPU. The

GPU allocates memory space and copies data from host memory to its

own DRAM before processing, and transfers data back to system DRAM

after processing. Data transfers between system DRAM and GPU DRAM

creates GPU memory transfer overhead.

Figure 6. System Memory Architecture

GPU DRAM is off-chip. There are also on-chip data storage

hardware in the GPU, cache and shared memory. The GPU

implementation approach in this thesis is to fully utilize shared memory,

and cache is seldom used. Thus, only shared memory is discussed here.

Shared memory is a piece of high performance on-chip data

storage hardware. It acts like a user controllable cache. Programmers can

write instructions in software to copy data from DRAM to shared memory

	 10

and vice versa. The hardware doesn’t evict data at GPU kernel runtime,

but the data can be overwritten by software instructions. The concept of

GPU kernel will be discussed later in CUDA Programming Model section.

Each SMX has its dedicated shared memory that can be accessed by all

SPs in the SMX. Shared memory is banked memory. For the GPU on

Tegra K1, the bank can be configured as 4-byte or 8-byte. The term

shared memory is also used in CUDA programming model by NVIDIA,

which will be explained in the programming model section.

Hardware Parallelism

Hardware parallelism is achieved through, as defined by NVIDIA,

Single-Instruction-Multiple-Thread (SIMT). SIMT is similar to Single-

Instruction-Multiple-Data (SIMD). However, programmers have to explicitly

mask the data in a data set in SIMD if this data needs to be executed with

different instructions. In SIMT, the masking is done by hardware.

Threads in the GPU are grouped into warps, which are defined by

NVIDIA, to be executed simultaneously. A warp can have up to 32

threads. Warps are scheduled and pipelined by the warp scheduler.

Figure 7 shows the warp pipelines. The figure shows the GPU executes

the instructions in next warp while waiting for data for the current warp.

The GPU on Tegra K1 has a quad warp scheduler, and each warp

scheduler contains two instruction dispatch units.

	 11

	

Figure 7. Warp Pipelines in the GPU [7]

2.2 CUDA Programming Model
	

CUDA provides a complete programming environment. GPU code

is written in C/C++ or fortran with a variety of CUDA libraries. This section

introduces basics in the CUDA programming model in C including GPU

kernels, grids/blocks, types of memory, and the compiling process.

Kernel

A kernel is a function executed on the GPU as array of threads in

parallel [7]. The kernel definition starts with __global__. The instructions

in the kernel function are executed N times when N threads are launched

in parallel [8]. The CUDA runtime library needs to be included in order for

the compiler to identify the kernel. Figure 8 shows templates of a kernel

and a function that calls the kernel. The number of parallel threads is

defined by grid_size and block_size, which will be explained next.

	 12

	

Figure 8. Templates of a Kernel and a Kernel Call Function

	
	
Grids and Blocks

 As shown in Figure 8, the kernel needs to be launched with a grid

size and a block size. A grid is composed of all CUDA threads in an

application. In the grid, threads are divided into thread blocks (see left side

in Figure 9). One grid is mapped to one SMX. Multiple grids can run on

multiple SMXes in parallel. As shown in Figure 9, blocks are distributed

among the SPs to be executed in parallel once a grid is mapped to a

SMX. Blocks and threads have their own IDs. The IDs do not have

relationships to the physical locations of the SPs. The distribution is

managed by hardware.

	 13

	

Figure 9. Grid and Block Mapping to Hardware

 The dimensions of blocks need to be set when launching the kernel

and cannot be changed while the kernel is being executed. There are

limitations on the dimensions of grids and blocks. Different GPUs may

have different limitations. The GPU on Tegra K1 has the following

limitations:

Max dimension size of a thread block (x,y,z): (1024,
1024, 64)
Max dimension size of a grid size (x,y,z):
(2147483647, 65535, 65535)

The information is obtained from running deviceQuery application

provided in CUDA SDK.

	 14

Types of Memory

 There are different types of memory in CUDA programming model.

The largest and slowest memory is global memory. Global memory

resides in the off-chip DRAM. Global memory is per-grid memory, as

shown in Figure 10, and also accessible to the CPU. Shared memory

(memory type) is a much smaller and faster memory compared to global

memory. Shared memory (memory type) resides in the on-chip shared

memory hardware. Shared memory is allocated per-block (see Figure 10).

Shared memory can only be declared in a kernel function. The lifetime of

shared memory is the lifetime of the kernel. The fastest memory is

registers. Registers are private to an individual thread. Usually,

programmers copy data from global memory into shared memory or

registers for better performance.

 	

Figure 10. Relationships between Grids/Blocks and Memory [9]

	

	 15

CUDA Compiling Process

 The process for compiling CPU code and GPU code is shown in

Figure 11. GPU code compiled with NVCC, which is NVIDIA’s GPU

compiler, while CPU code is compiled with G++. Then the linker links the

complied GPU object with the compiled CPU object into an executable.

GPU code and CPU code are assigned to NVCC and G++ in the make

file.

Figure 11. CUDA Compiling Process [7]

	
2.3 Related Work
	

Research performed by University of Virginia focuses on the impact

of GPU overhead on the overall GPU performance. In the publication

Where is the Data? Why You Cannot Debate CPU vs. GPU Performance

Without the Answer [10], the authors addressed the significance of GPU

overhead through a few applications. Figure 12 shows the results of

implementing convolution on a Fermi architecture based GPU

documented by the authors. It can be seen that the duration for data

	 16

transfer is much longer than the duration of kernel execution. The

research concludes that GPU memory transfer overhead is generally too

big to ignore.

	

Figure 12. Results of Implementing Convolution on GPU [10]

 My thesis takes a similar approach but extends the research with

the CPU/GPU performance comparisons with GPU overhead accounted

for. The memory transfer overhead is characterized on my specific

platform so that the relationship between data size and memory transfer

overhead is more obvious.

In Parallel AES Algorithm for Fast Data Encryption on GPU

published by Changshu Institute of Technology, an implementation of AES

on GPU is experimented [11]. The encryption process is as shown in

Figure 13. This implementation shows good performance of the GPU

implementation.

	 17

	

Figure 13. Parallel AES Implementation [11]

However, it is not fully utilizing instruction-level parallelism in AES

since key expansion is done prior to the encryption as shown in Figure 13.

The implementation of AES in this thesis does the key expansion in

parallel along with encryption rounds.

In Improving Performance of Matrix Multiplication and FFT on GPU

published by Peking University, performance of their GPU matrix

multiplication implementation is analyzed in detail [12]. The

implementation was optimized specifically for GPU, which utilizes warps

and break the input matrices into sub-blocks for parallel processing to

	 18

maximize the throughput. It is fair to compare the GPU performance and

the CPU performance, because only the GPU is optimized with a great

amount of design effort.

The implementation in this thesis only utilized the data parallelism

in matrix multiplication. No extra design effort was put into GPU

implementation to boost GPU performance. Thus, this thesis provides a

fairer CPU vs. GPU performance comparison.

	 19

Chapter 3. Implementations of the Applications
	
3.1 Introduction
	
 There are three applications chosen for comparing the CPU

performance and GPU performance: matrix multiplication, Advanced

Encryption Standards (AES) and 32-bit Cyclic Redundancy Check

(CRC32). These applications are widely used, and they can represent

applications that have similar characteristics.

Matrix multiplications are widely used in mathematics and

engineering. Matrix multiplication represents applications that are very

easy to implement in GPU parallel programming and very likely to have

good performance due to good data parallelism and simple instructions.

AES is a widely used encryption algorithm because of its

robustness. AES represents algorithms with mixed serial and parallel

structure. The encryption steps in AES have to be executed in serial, but

key (cipher) expansion and encryption can run in parallel. There is good

data parallelism within each serial step.

CRC32 is the common method for checking the integrity of data for

data transmission. CRC32 represents algorithms that have poor

parallelism. There is no instruction or data parallelism for calculating the

CRC32 code for a single input message, but multiple input messages can

be processed in parallel.

 In this chapter, the CPU implementations and GPU

implementations of matrix multiplication, Advanced Encryption Standard

	 20

(AES) and Cyclic Redundancy Check (CRC32) are explained. In the big

picture, CPU implementations are direct translation of the theoretical

algorithms, and the approach of GPU implementations is as following:

• Utilizing instruction-level parallelism and data parallelism in each

application if there is any

• Utilizing shared memory

• Providing no optimizations are made for GPU warp pipelining

By following these rules, a programmer with basic CUDA programming

knowledge can implement matrix multiplication, AES and CRC32 quickly.

3.2 Matrix Multiplication
	
 Matrix multiplication computes the product of two matrices. The

theoretical operation is shown in Figure 14, where matrix A and matrix B

are the input matrices, and matrix C is the output matrix.

	 21

	
Figure 14. Matrix Multiplication

	
	
CPU Implementation

The CPU implementation is the most basic implementation. The

pseudo code is as shown in Figure 15:

	 22

	

Figure 15. Matrix Multiplication Pseudo CPU code

In each iteration of the for loops, the code computes the products of

two elements from matrix A and matrix B and adds the product to the

result from previous iterations of the loops. For an n-by-n square matrix, to

compute one element in matrix C, the CPU performs n multiply operations

and n-1 sum operations. So, for the entire multiplication, there are n3

multiply operations and n2 x (n-1) sum operations.

 GPU Implementation

The GPU utilizes the data parallelism in matrix multiplication. The

kernel launches n2 thread blocks for an n-by-n square matrix

multiplication. Each block does the multiplication and summation for a row

in input matrix A and a column in input matrix B (see Figure 16). Each

thread in a block computes the product of one element in the row and one

element in the column (see Figure 17).

	 23

	

Figure 16. Matrix Multiplication GPU Implementation – Thread Block

Operation

	 24

Figure 17. Matrix Multiplication GPU Implementation - GPU Thread

Operation

The multiplication core in CPU code and GPU code are in Figure

18 side by side. It can be seen that the GPU is not more complicated than

the CPU code. The only tricky part is the indexing with block ID and thread

ID.

	 25

	

	

	

Figure 18. Matrix Multiplication – CPU Code vs. GPU code

	
3.3 AES
	
 The AES in this thesis is 128-bit AES, which means every 128 bits

of data are encrypted with a 128-bit cipher. The AES algorithm deals two

sets of data, the state and the key. The state is the actual message, and

the key is the cipher. By utilizing the instruction parallelism in AES, state

and keys are calculated independently. Keys follow the key schedule. In

each round of encryption, keys are added to the state through XOR

operation.

CPU	

GPU	

	 26

CPU Implementation

 The CPU implementation calculates keys for the entire message of

prior to the actual encryption. In the end, the 16 bytes of cipher expand to

176 bytes. The process of the key expansion core is shown in Figure 19.

Start

Index % 4 = 0?

Rotate

Sub-word

Rcon Op

Copy 4 bytes of
cipher in to
registers

no

yes

Key size > 176 ?

no

yes

End

Figure 19. AES Key Expansion Process

The core processes of the key expansion are as follows:

• Rotate: rotate the 4-byte word to the left by 1. For example,

K0 = K1, K1 = K2, K2 = K3 and K4 = K0.

	 27

• Sub-word: the previous round keys are substituted with values in s-

box. s-box is a hard-coded lookup table. For example,

key_next_round = s-box[key_previous_round].

• Rcon Op: Rcon is another hard-coded lookup table. There is one

Rcon value for each iteration in the key expansion loop,

Rcon[round_number/(128/(4x3))]. Then the value that comes out

from the Rcon table and the previous key are processed through an

XOR operation.

After the round key expansion, the encryption process starts. The

process is shown in Figure 20.

Figure 20. AES Encryption Process [13]

The core processes of the encryption are as follows:

• Sub-byte: It is the same as Sub-word step in the key expansion.

• Shift rows: It is the same as Rotate in the key expansion.

	 28

• Mix columns: Each column is treated as a polynomial over GF(28).

Then the column is multiplied modulo x4 + 1 with a fixed polynomial

c(x) = 3x3 + x2 + x + 2. The multiplication is performed with XOR

since the math is done in Rijndael’s Galois field.

• Add round keys: XOR each element in the state with the element in

the round key that is in the same position in the 4-by-4 matrix

There is a total of 10 rounds of encryption for every 128 bits of data.

GPU Implementation

 The GPU implementation utilizes instruction-level parallelism

between the key expansion process and encryption process and data

parallelism in each step in key expansion and encryption. As shown in the

key expansion process and encryption process, the operations in each

step depend on the results from the previous step. Thread synchronization

is used to ensure the serial process. In each round of encryption, the

process is implemented as shown in Figure 21, which indicates that the

steps in key expansion and steps in encryption are processed in parallel.

	 29

Round Start

Key Rotate State Sub-bytes

Key Sub-word State Shift Rows

Key Rcon Op State Mix Columns

Add Round Key

Round End

Figure 21. AES GPU Encryption

For example, Figure 22 shows the first step in the kernel:

	

Figure 22. AES GPU Implementation Key Rotate and State Sub-bytes

	

	 30

 Operations in key expansion and round encryption have good data

parallelism within each step, which is suitable for GPU programming. The

only tricky steps are rotation steps. CPU implementation requires a

temporary register to hold the data in the first position while copying data

from position 2 to position 1, position 3 to position 2 and position 4 to

position 3. Instead of doing the serial process, 16 bytes of char registers

are created to hold the values after rotation. To take advantage of the

memory redundancy, the temporary registers are used instead of copying

the values back to the original registers in the next step.

 A comparison of Shift Rows step in the encryption between CPU

code and GPU code is shown in Figure 23. The CPU code is longer, but it

is simpler than the GPU code. In the GPU code, thread IDs are selected

for designated tasks. From GPU programming’s standpoint, the GPU code

is not complicated.

	 31

	

Figure 23. AES Implementation - Comparison Between CPU Code and
GPU Code

CPU	

GPU	

	 32

3.4 32-bit Cyclic Redundancy Check (CRC32)
	
 CRC32 has no instruction parallelism or data parallelism. There is a

possibility to break up one message in several parts and combine the

CRC results into one as the way zlib's crc32_combine does, but the

complexity in the combining algorithm is too high for the GPU to gain any

advantage over CPU. The combining method is not a practical way to

implement on the CPU as well due to its high complexity. There are other

faster lookup table oriented CRC32 implementations such as Intel

proposed in " Fast CRC Computation for iSCSI Polynomial Using CRC32

Instruction"[14]. However, the lookup tables can be rather large that

exceeds the size of GPU shared memory. In this case, threads have to

constantly access the global memory on the GPU, which violates the

design approach in this thesis. Accessing global memory greatly

decreases the performance of the GPU.

CPU Implementation

 The CPU implementation is based on Stephan Brumme's bitwise

branch-free CRC32 [15]. The pseudo code is shown in Figure 24, where

the polynomial is 0xEDB88320.

	 33

	
Figure 24. CRC CPU Implementation – CRC Pseudo Code

	
	
GPU Implementation

 The same CRC function in the CPU code is defined for the GPU in

the GPU code. The kernel calls this function after copying the data into

shared memory. Each thread block runs a single thread to do the CRC

process. Many thread blocks run in parallel to process multiple sets of

data.

	 34

Chapter 4. Performance Analysis

4.1 Introduction

This chapter will show and analyze the performance of GPU

implementations and CPU implementations of matrix multiplication, AES

and CRC32. Other findings from the experiments are in the end of this

chapter, which includes GPU memory transfer overhead characterization.

For each application, the input data size is varied to test the

performance. For all CPU implementations and GPU implementations, the

performance is measured as throughput. For GPU performance, two kinds

of throughput are measured:

• GPU kernel throughput: GPU memory transfer overhead is not

included in the throughput calculation. It is the theoretical

performance of the GPU. GPU kernel throughput is calculated as:

𝐺𝑃𝑈	𝐾𝑒𝑟𝑛𝑒𝑙	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡	 =
𝐷𝑎𝑡𝑎	𝑆𝑖𝑧𝑒

𝐺𝑃𝑈	𝐾𝑒𝑟𝑛𝑒𝑙	𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒

• GPU overall throughput: GPU memory transfer overhead is

included in the throughput calculation. It is the real performance of

the GPU. GPU overall throughput is calculated as:

𝐺𝑃𝑈	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡	

=
𝐷𝑎𝑡𝑎	𝑆𝑖𝑧𝑒

𝐺𝑃𝑈	𝐾𝑒𝑟𝑛𝑒𝑙	𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 + 𝐺𝑃𝑈	𝑀𝑒𝑚𝑜𝑟𝑦	𝑇𝑟𝑛𝑎𝑠𝑓𝑒𝑟	𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑

GPU timers are set to get the GPU kernel execution time and GPU

memory transfer overhead. GPU memory transfer overhead include time

	 35

for data moving from system DRAM to GPU DRAM and from GPU DRAM

to system DRAM.

 There is a CPU timer set to get CPU processing time as well. The

CPU throughput is calculated as:

𝐶𝑃𝑈	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐷𝑎𝑡𝑎	𝑆𝑖𝑧𝑒

𝐶𝑃𝑈	𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒

4.2 Matrix Multiplication Performance
	
 To test the performance of the CPU implementation and GPU

implementation, the CPU function and the GPU function take in two arrays

that store values of two n-by-n matrices, and compute the product of the

matrices. The input matrices are square matrices. The dimensions of the

input matrices range from 8-by-8 to 64-by-64 increasing in powers of 2.

The values of the input matrices are randomly generated 1-byte data.

 The throughputs of the CPU implementation and the GPU

implementation are shown in Figure 25. Y-axis is log10 scale. The higher

the bar is, the better the performance is. The plot indicates that GPU

kernel has higher throughput than the CPU for all input data sizes. GPU

overall throughput is higher when the size is larger than or equal to 2kB

(16 x 16 x 4 x 2 = 2kB, where 4 comes from that elements in the matrices

are 4-byte data, and 2 comes from that there are two input matrices). For

8-by-8 input matrices, CPU throughput is 2.5x the GPU overall throughput.

The GPU overall throughput increases when input data size increases.

	 36

For 64-by-64 input matrices, the GPU overall throughput is 100x the CPU

throughput.

Figure 25. Matrix Multiplication – CPU/GPU Throughput

 Memory access is the cause of the decreasing trend of the CPU

throughput. One reason being the memory locality was not taken into

consideration in the CPU implementation since the design effort was held

minimum. Thus, the larger the data is, the poorer performance the CPU

gets. The other reason is the cache capacity. The 32kB L1 cache cannot

hold the data if the data size is too large. When the input matrices are 64 x

64, there will be 64 x 64 x 4 x 3 = 48kB data on the fly, where 4 is the size

of the elements in the matrices, and 3 includes 2 input matrices and 1

output matrix.

 The GPU kernel throughput has a decreasing trend as well. The

limitation of parallel computing ability of the GPU is one of the reasons.

The Kepler GPU on Tegra K1 can schedule and pipeline 64 warps

0.01

0.1

1

10

100

8	x	8 16x16 32x32 64x64

TP
(kB/s)

Matrix	Dimension

Matrix	Multiplication	- CPU/GPU	Throughput

CPU	TP

GPU	Ker	TP

GPU	OA	TP

	 37

simultaneously, which translates to 2048 threads at a time. There are

4096 threads running to multiply two 64 x 64 matrices. The threads need

to be scheduled twice to complete matrix multiplication. The

implementation could be optimized to process data in smaller chunks at a

time for better pipelining to get better performance.

 The GPU memory transfer overhead has negative impact on the

overall GPU throughput. As shown in Figure 25, when the dimension of

the input matrices is 8-by-8, GPU memory transfer overhead causes the

GPU overall throughput to be 10x lower than the GPU kernel overhead,

which indicates that the memory transfer time is much longer than the

kernel execution time. The GPU overall throughput is 3x lower than the

CPU throughput for 8-by-8 matrices. As input data size grows, the GPU

overall throughput increases gradually and gets closer and closer to the

GPU kernel throughput, which indicates that the GPU execution time

grows faster than the GPU memory transfer overhead when data size

increases.

	
4.3 AES Performance
	

To test the performance of AES on the CPU and the GPU, the

programs encrypt randomly generated messages. The message is

composed of an array of randomly generated 1-byte data. The message

size goes from 512kB to 16MB increasing in powers of 2.

 The throughputs of the CPU implementation and the GPU

implementation are shown in Figure 26. Higher bars indicate better

	 38

performance. Y-axis is in linear scale. The plot shows that the GPU kernel

has higher throughput for all test cases. The overall GPU throughput is

higher when the input message size is larger than or equal to 4MB. At

16MB, the GPU overall throughput is 1.5x the CPU throughput.

Figure 26. AES – CPU/GPU Throughput

The throughput of the CPU shows little scaling. This is because the

CPU executes the same instructions for encrypting every 16 bytes of data.

If the input message size increases N times, the execution time increases

N times, which results in constant throughput in theory.

The GPU kernel performs better than the CPU, because the GPU

implementation utilizes instruction-level parallelism and data parallelism

are utilized. GPU kernel throughput increases when the input message

size grows due to more parallel threads running in the GPU.

 The overall GPU throughput increases gradually. The GPU overall

throughput gets suppressed when the input message size is small due to

0

0.5

1

1.5

2

2.5

3

3.5

4

256k 512k 1M 2M 4M 8M 16M

TP
(MB/s)

Message	Size	

AES	- CPU/GPU	Throughput

CPU	TP

GPU	Ker	TP

GPU	OA	TP

	 39

the GPU memory transfer overhead. When the input message size is

256kB, the GPU overall throughput is 4x lower than the GPU kernel

throughput as shown in Figure 26. The negative impact of GPU transfer

overhead is weaker for large input message sizes, because the growth in

the kernel execution time is faster than the growth in the GPU memory

transfer overhead.

4.4 CRC32 Performance
	
 To test the performance of the CRC32 CPU implementation and

the CRC32 GPU implementation, the programs calculate CRC32 code for

a randomly generated message. The message is an array of randomly

generated 8-bit data. The message sizes range from 16kB to 1MB

increasing in powers of 2. The message is composed of many 1024-byte

data segments. A CRC32 code is calculated for each data segment.

 The throughputs of the CRC32 CPU implementation and the

CRC32 GPU implementation are shown in Figure 27. Higher bars indicate

higher performance. Y-axis is in log10 scale. The plot shows that the CPU

throughput is 2x to 4x higher than the GPU kernel throughput and the

GPU overall throughput depending on data size. The larger the input

message size is, the higher the ratio between the CPU throughput and the

GPU kernel/overall throughput.

	 40

	

Figure 27. CRC32 – CPU/GPU Throughput

The throughput of the CPU increases gradually as the input

message size gets bigger. The growth rate of the CPU throughput

decreases, as the data size gets bigger, because the pipelines of the CPU

get saturated.

The throughput of GPU kernel is lower than the CPU throughput in

all test cases since there is no instruction-level parallelism and data

parallelism in CRC32.

The GPU overall throughput is about the same as the GPU kernel

throughput in most test cases. The kernel execution time is longer than

the GPU memory transfer overhead, because CRC32 has poor

instruction-parallelism and data parallelism.

	

	

1

10

100

16k 32k 64k 128k 256k 512k 1M

TP
(MB/s)

Message	Size	

CRC32	- CPU/GPU	Throughput

CPU	TP

GPU	Ker	TP

GPU	OA	TP

	 41

4.5 Other Findings
	
 Results of matrix multiplication and AES performance testing show

that GPU memory transfer overhead generally can’t be ignored when

talking about GPU overall performance for small input data size. Thus, it is

necessary to quantize GPU memory transfer overhead for the platform. An

experiment was setup to measure the time duration for transferring data

from system (host) DRAM to system (device) DRAM and from GPU

DRAM to system DRAM with a GPU timer. Figure 28 shows the results of

the characterization. Note that X-axis is in log10 scale.

	

Figure 28. Tegra K1’s GPU Memory Transfer Overhead Characterization

 Figure 28 shows that the memory transfer time for under 100kB is

close to 0.5ms. When the data size is larger than 100kB, the time starts to

increase linearly.

0

0.5

1

1.5

2

2.5

0.01 0.1 1 10 100 1000

Time	Elapsed
(ms)

Data	Size	(Bytes)

Tegra	K1	GPU	Memory	Transfer	Overhead

HtoD

DtoH

k	 k k k k k

	 42

4.6 Conclusion
	
	 The results from the experiments show that the GPU does not

always have performance advantage over the CPU. For matrix

multiplication and AES, the GPU is able to hide memory transfer overhead

with parallel processing when the input data size is large, because the

applications have good instruction-level parallelism or data parallelism.

When the input data size is small, the GPU overall performance is

suppressed by the GPU overhead. The GPU performs poorly in CRC32

because of the poor instruction-level parallelism and data parallelism in

CRC32.

	 43

Chapter 5. Conclusion
	
 This thesis has shown the performance of the GPU

implementations and the GPU implementations of matrix multiplication,

AES and CRC32 comparing to the CPU implementations when design

effort is held minimum for both GPU implementations and CPU

implementations. The performances of the implementations show that

GPU memory transfer overhead has negative impact on the GPU overall

throughput. Though the GPU kernel performs better than the CPU in the

majority of the test cases in matrix multiplication and AES, GPU memory

transfer overhead suppresses the GPU performance when GPU memory

transfer overhead is considered. For matrix multiplication and AES, which

have good instruction-level and data parallelism, the results recommend

using the GPU instead of the CPU to get better performance when input

data size is large. It is not recommended using GPU for CRC32 since

CRC has poor parallelism.

 GPU memory transfer overhead is quantized for NVIDIA Jetson K1

development platform. Knowing GPU memory transfer overhead can help

programmers decide whether or not to use the GPU based on the input

data size of certain applications.

	

	 44

	

Chapter 6. Future Work
	
 This thesis analyzed the impact of GPU overhead on the GPU

performance when the GPU acts like a slave device to the CPU. However,

NVIDIA GPUs are able to be the master when communicating with

external devices through NVIDIA GPUDirect. NVIDIA GPUDirect was

introduced in 2013. The technology can eliminate GPU overhead in the

following situations:

Table 1. GPU Direct Accelerated Applications [16]

Applications shown in Table 5.1 involve interactions between GPU

and other external devices. Traditionally, the CPU will collect the data from

external devices through data bus. GPUDirect cuts off the CPU

involvement and grants direct inter-system memory access for the GPU to

minimize the memory transfer overhead. According to Nvidia, the memory

transfer time can be reduced up to 45% [16]. Communicating with external

devices introduces inter-system communication delay such as

synchronization between the GPU system and the external device.

	 45

Characterizing the delay and analyzing the performance of GPUDirect

enabled GPU can be a research topic.

Experiments in this thesis show that the CPU may have better

performance than the GPU when input data size is small though the

application has good instruction-level parallelism or data parallelism. Thus,

a heterogeneous programming model can be applied to some

applications. Applications can be designed to run on the CPU when the

data size is small and on the GPU when the data size is large. However,

the CPU does not stall when the GPU is running. It is possible that the

GPU finishes processing while the CPU is busy, which leads to delay of

transferring data from GPU DRAM to CPU DRAM. If the delay is not

deterministic or too big, the heterogeneous approach may lead to poor

performance. The delay caused by CPU-GPU synchronization when the

CPU has a high amount of workload needs to be studied.

	 46

BIBLIOGRAPHY
	
	
[1] G. Singer, “The History of the Modern Graphics Processor,” TechSpot,

2013. [Online]. Available at: http://www.techspot.com/article/650-

history-of-the-gpu/. [Accessed: Oct-2015].

[2] “Parallel Programming and Computing Platform | CUDA |

NVIDIA|NVIDIA,” Parallel Programming and Computing Platform |

CUDA | NVIDIA|NVIDIA. [Online]. Available at:

http://www.nvidia.com/object/cuda_home_new.html. [Accessed:

Feb-2015].

[3] F. Abi-Chahla, “Nvidia's CUDA: The End of the CPU? - Introduction,”

Tom's Hardware, 2008. [Online]. Available at:

http://www.tomshardware.com/reviews/nvidia-cuda-gpu,1954.html.

[Accessed: Nov-2015].

[4] A. Lal Shimpi, B. Klug, and V. Gowri, “The iPhone 5 Review,”

AnandTech, 2012. [Online]. Available at:

http://www.anandtech.com/show/6330/the-iphone-5-review/4.

[Accessed: 2015].

[5] R. Smith, “Apple A8X's GPU - GXA6850, Even Better Than I Thought,”

AnandTech, Nov-2014. [Online]. Available at:

http://www.anandtech.com/show/8716/apple-a8xs-gpu-gxa6850-

even-better-than-i-thought. [Accessed: May-2015].

	 47

[6] Whitepaper NVIDIA Tegra K1 A New Era in Mobile Computing,”

nvidia.com, 2014. [Online]. Available at: whitepaper nvidia tegra k1

a new era in mobile computing. [Accessed: Jan-2015].

[7] C. Woolley, “CUDA Overview,”

http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/02-

cuda-overview.pdf. [Online]. Available at:

http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/02-

cuda-overview.pdf. [Accessed: Jan-2015].

[8] “Programming Guide :: CUDA Toolkit Documentation,” Programming

Guide :: CUDA Toolkit Documentation, Jan-2015. [Online].

Available at: https://docs.nvidia.com/cuda/cuda-c-programming-

guide. [Accessed: 2015].

[9] “Whitepaper NVIDIA’s Next Generation CUDATM Compute

Architecture: Fermi,” nvidia.com, 2009. [Online]. Available at:

https://www.nvidia.com/content/pdf/fermi_white_papers/nvidiafermi

computearchitecturewhitepaper.pdf. [Accessed: 2015].

[10] C. Gregg and K. Hazelwood, “Where is the data? Why you cannot

debate CPU vs. GPU performance without the answer,” (Ieee

Ispass) Ieee International Symposium On Performance Analysis Of

Systems And Software.

[11] D. Le, J. Chang, X. Gou, A. Zhang, and C. Lu, “Parallel AES algorithm

for fast Data Encryption on GPU,” 2010 2nd International

Conference on Computer Engineering and Technology.

	 48

[12] X. Cui, Y. Chen, and H. Mei, “Improving Performance of Matrix

Multiplication and FFT on GPU,” 2009 15th International

Conference on Parallel and Distributed Systems.

[13] J. Kubieziel, “Wie AES funktioniert,” kubieziel.de, 2008. [Online].

Available at: http://www.kubieziel.de/blog/archives/937-wie-aes-

funktioniert.html. [Accessed: 2015].

[14] Monteiro, A. Dandache, A. M'sir, and B. Lepley, “A fast CRC

implementation on FPGA using a pipelined architecture for the

polynomial division,” ICECS 2001. 8th IEEE International

Conference on Electronics, Circuits and Systems (Cat.

No.01EX483).

[15] “Fast CRC32,” create.stephan-brumme.com, Oct-2011. [Online].

Available at: http://create.stephan-brumme.com/crc32/#branch-free.

[Accessed: 2015].

[16] “NVIDIA GPUDirect Technology,” developer.download.nvidia.com,

2012. [Online]. Available at:

http://developer.download.nvidia.com/devzone/devcenter/cuda/doc

s/gpudirect_technology_overview.pdf. [Accessed: 2015].

	 49

APPENDICES
	
APPENDIX A

Matrix Multiplication

main.cpp – page 1 of 2

	 50

Matrix Mutiplication

main.cpp – page 2 of 2

	 51

Matrix Multiplication

gpu_matrixMul.h – page 1 of 1

	 52

Matrix Multiplication

gpu_matrixMul.cu – page 1 of 2

	 53

Matrix Multiplication

gpu_matrixMul.cu – page 2 of 2

	 54

AES

main.cpp – page 1 of 6

	 55

AES

main.cpp – page 2 of 6

	 56

AES

main.cpp – page 3 of 6

	 57

AES

main.cpp – page 4 of 6

	 58

AES

main.cpp – page 5 of 6

	 59

AES

main.cpp – page 6 of 6

		
	
	

	 60

AES
	
aes_gpu.h – page 1 of 1

	 61

AES

aes_gpu.cu – page 1 of 4

	 62

AES

aes_gpu.cu – page 2 of 4

	 63

AES

aes_gpu.cu – page 3 of 4

		

	

	
		
	

	 64

AES

aes_gpu.cu – page 4 of 4	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 65

CRC32

crc32.cpp – page 1 of 2

	 66

CRC32

crc32.cpp – page 2 of 2

	 67

CRC32

crc_gpu.h – page 1 of 1

	 68

CRC32

crc_gpu.cu – page 1 of 2

	 69

CRC32
crc_gpu.cu – page 2 of 2

