
MEDICAL IMAGE REGISTRATION USING ARTIFICIAL NEURAL NETWORK

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Hyunjong Choi

December 2015

ii

© 2015

Hyunjong Choi

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Medical Image Registration using Artificial

Neural Network

AUTHOR: Hyunjong Choi

DATE SUBMITTED: December 2015

COMMITTEE CHAIR: Xiao-Hua (Helen) Yu, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Jane Zhang, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Wayne Pilkington, Ph.D.

Associate Professor of Electrical Engineering

iv

ABSTRACT

Medical Image Registration using Artificial Neural Network

Hyunjong Choi

Image registration is the transformation of different sets of images into one coordinate system in

order to align and overlay multiple images. Image registration is used in many fields such as

medical imaging, remote sensing, and computer vision. It is very important in medical research,

where multiple images are acquired from different sensors at various points in time. This allows

doctors to monitor the effects of treatments on patients in a certain region of interest over time.

In this thesis, artificial neural networks with curvelet keypoints are used to estimate the

parameters of registration. Simulations show that the curvelet keypoints provide more accurate

results than using the Discrete Cosine Transform (DCT) coefficients and Scale Invariant Feature

Transform (SIFT) keypoints on rotation and scale parameter estimation.

v

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

Chapter 1. Introduction ... 1

Chapter 2. Literature review ... 3

2.1. Area-based approaches ... 3

2.1.1. Correlation methods .. 4

2.1.2. Fourier methods .. 5

2.1.3. Mutual information (MI) methods .. 5

2.2. Feature-based approaches ... 6

2.2.1. Neural network methods ... 6

2.3. Summary ... 9

2.4. Problem definition .. 10

Chapter 3. Background ... 12

3.1. Affine transform introduction ... 12

3.2. Discrete cosine transform (DCT) .. 16

3.3. Scale invariant feature transform (SIFT) algorithm.. 17

3.3.1. Scale-space extrema .. 18

3.3.2. Accurate keypoints.. 20

vi

3.3.3. Eliminating edge responses... 20

3.3.4. Orientations ... 21

3.3.5. Keypoint descriptors ... 22

3.3.6. Image matching ... 22

3.4. Wavelet neural network (WNN) ... 25

3.5. Curvelet transform .. 28

3.5.1. Introduction of curvelet transform (CT) ... 28

3.5.2. Digital curvelet transforms ... 29

3.5.2.1. Digital coronization .. 29

3.5.2.2. Curvelet transform using wrapping method ... 30

3.5.2.3. Curvelet transform for brain MRI image .. 33

3.5.2.4. Curvelet coefficients via thresholding approach ... 36

3.5.2.5. Curvelet keypoints based on modified thresholding method 39

Chapter 4. Simulation ... 47

4.1. Neural network structure... 48

4.2. Simulation with single transformation parameter ... 51

4.2.1. Rotation ... 51

4.2.2. Scaling... 53

4.2.3. Translation .. 56

4.2.4. Shear ... 58

vii

4.3. Simulation with multiple transformation parameters ... 60

4.3.1. DCT coefficients and SIFT keypoints .. 60

4.3.2. Curvelet coefficients ... 63

4.3.3. Curvelet keypoints .. 64

4.3.4. The generalization issue of neural network .. 65

4.3.5. Using DCT and curvelet coefficients .. 67

4.3.6. Using DCT and curvelet keypoints ... 68

4.3.7. Cross validation .. 69

4.4. Robustness to noisy images .. 70

 4.4.1. DCT coefficients with noisy images .. 71

 4.4.2. DCT coefficients and SIFT keypoints with noisy images 72

 4.4.3. DCT coefficients and curvelet keypoints with noisy images 74

Chapter 5. Conclusions and future work .. 76

BIBLIOGRAPHY ... 77

APPENDICES

Appendix A Matlab codes .. 83

viii

LIST OF TABLES

Table Page

Table 3-1 Sample images with affine transformation ... 15

Table 3-2 The number of sub-bands of curvelet transform .. 34

Table 3-3 The number of coefficients at each scale level ... 42

Table 4-1 Neural network training error with various hidden layers and neurons 49

Table 4-2 Neural network testing error with various hidden layers and neurons 50

Table 4-3 Training and Testing error of rotation applied images ... 51

Table 4-4 Training and Testing error of scale applied images ... 54

Table 4-5 Training and Testing error of translation applied images. ... 56

Table 4-6 Training and Testing error of shear applied images ... 58

Table 4-7 Training and testing error with DCT and DCT with SIFT ... 61

Table 4-8 Training and testing error of curvelet coefficients ... 63

Table 4-9 Training and testing error of curvelet keypoints .. 64

Table 4-10 Training and testing error of DCT with curvelet coefficients 67

Table 4-11 Training and testing error of DCT with curvelet keypoints 69

Table 4-12 Cross validation of DCT with curvelet keypoints .. 70

Table 4-13 Testing results with Gaussian noise images (DCT coefficients) 72

Table 4-14 Testing results with Salt & Pepper noise images (DCT coefficients) 72

Table 4-15 Testing results with Gaussian noise images (DCT + SIFT) 73

Table 4-16 Testing results with Salt & Pepper noise images (DCT + SIFT) 73

Table 4-17 Testing results with Gaussian noise images (DCT with curvelet keypoints) 74

Table 4-18 Testing results with Salt & Pepper noise images (DCT with curvelet keypoints) 74

ix

 LIST OF FIGURES

Figure Page

Figure 1.1 Basic approach of Image registration .. 2

Figure 2.1 Artificial neural network architecture ... 7

Figure 2.2 The structure of a neuron ... 8

Figure 2.3 Feature-based image registration; Feature-based image registration; in these two

satellite images, control points (corners) were matched using invariants based on complex

moments [20].The numbers identify corresponding control points. The bottom image shows

the registration result... 11

Figure 3.1 Affine transformation (Rotation) ... 13

Figure 3.2 Affine transformation (Scale) .. 14

Figure 3.3 Affine transformation (Shear) ... 14

Figure 3.4 Examples of affine transformation .. 15

Figure 3.5 Comparison of DCT and DFT ... 17

Figure 3.6 Periodicity of DFT and DCT ... 17

Figure 3.7 SIFT algorithm sequences ... 18

Figure 3.8 Gaussian pyramid & DOG [22] ... 19

Figure 3.9 Key point [22].. 19

Figure 3.10 Keypoints selection steps [22] ... 21

Figure 3.11 SIFT keypoints of the original image .. 23

Figure 3.12 SIFT keypoints of the affine transformed image ... 24

Figure 3.13 23 matched keypoints between Figure 3.11 and Figure 3.12 24

Figure 3.14 Structure of wavelet neural network.. 25

x

Figure 3.15 Wavelet neuron .. 26

Figure 3.16 Morlet wavelet function .. 27

Figure 3.17 Induced tiling of the frequency plane. In Fourier space, curvelets are supported

near a “parabolic” wedge, and the shaded are represents a generic wedge [26] 31

Figure 3.18 Digital tiling. The windows smoothly localize the Fourier transform near the

sheared wedges obeying the parabolic scaling [26] .. 31

Figure 3.19 Wrapping data, initially inside a parallelogram, into a rectangle by

periodicity [26].. 32

Figure 3.20 Fast discrete curvelet transform via wrapping (FDCT) ... 33

Figure 3.21 Curvelet coefficients (Original: left, Scale 1: center, Scale 6: right) 34

Figure 3.22 Curvelet coefficients at level 2 (16) .. 34

Figure 3.23 Curvelet coefficients at level 3 (32) .. 35

Figure 3.24 Curvelet coefficients at level 4 (32) .. 35

Figure 3.25 Curvelet coefficients at level 5 (64) .. 36

Figure 3.26 Curvelet coefficients plot .. 37

Figure 3.27 Reconstruction with the strongest 10% of coefficients from all sub-bands 38

Figure 3.28 Reconstruction with the strongest 0.0135% of coefficients from all sub-bands 38

Figure 3.29 Reconstruction with 100 DCT coefficients ... 39

Figure 3.30 Curvelet keypoints based on modified thresholding method 40

Figure 3.31 Threshold at each scale level. Take the highest 30% of coefficients from

each scale. Threshold is 555, 414, 222, and 91 at scale level 2, 3, 4, and 5 respectively 41

Figure 3.32 Selected coefficients (31) at scale level 2.. 43

Figure 3.33 Keypoints matching between spatial domain and coefficients of sub-bands 44

xi

Figure 3.34 Curvelet keypoints extraction examples .. 45

Figure 3.35 Reconstructed image using suggested algorithm .. 46

Figure 4.1 Simulation process... 47

Figure 4.2 Training error of ANN/WNN according to the structures... 50

Figure 4.3 Rotation simulation with DCT coefficients ... 52

Figure 4.4 Rotation simulation with DCT coefficients and SIFT keypoints 52

Figure 4.5 Rotation simulation with curvelet keypoints ... 53

Figure 4.6 Scale simulation with DCT coefficients .. 54

Figure 4.7 Scale simulation with DCT coefficients and SIFT keypoints 55

Figure 4.8 Scale simulation with curvelet keypoints .. 55

Figure 4.9 Translation simulation with DCT coefficients .. 56

Figure 4.10 Translation simulation with DCT coefficients and SIFT keypoints 57

Figure 4.11 Translation simulation with curvelet keypoints .. 57

Figure 4.12 Shear simulation with DCT coefficients ... 59

Figure 4.13 Shear simulation with DCT coefficients and SIFT keypoints 59

Figure 4.14 Shear simulation with curvelet keypoints.. 60

Figure 4.15 Difference between training and testing of DCT ... 62

Figure 4.16 Difference between training and testing of DCT + SIFT .. 62

Figure 4.17 Difference between training and testing of curvelet coefficients 63

Figure 4.18 Difference between training and testing of curvelet keypoints 65

Figure 4.19 Input data sequences of DCT with SIFT and curvelet keypoints 66

Figure 4.20 DCT with curvelet coefficients simulation.. 67

Figure 4.21 Training and testing error of DCT with curvelet keypoints 68

xii

Figure 4.22 Noisy images; Gaussian noise (top), Salt & Pepper noise (bottom) 71

Figure 4.23 False curvelet keypoints of salt & pepper noisy image (10%) 75

1

Chapter 1. Introduction

Image registration is the process of transforming a multiple image set of the same subject

that was taken from different points of view, times, depths, or sensors into one coordinate system

[1]. Image registration has its applications in various fields such as remote sensing,

environmental monitoring, change detection, weather forecasting, integrating information into

geographic information system (GIS), and in medical fields. Image registration is a spatial

transform and it can be divided into three groups based on how the reference and the sensed

image could be taken: [1]

1. The images were taken at different points of time.

2. The images were taken using different devices like MRI, CT, PET, SPECT etc. (multi

modal).

3. The images were taken from different angles in order to have 2D or 3D perspective

(multi temporal).

In medical fields, image registration is one of the most important techniques combining

data from different modalities, e.g. Computer Tomography (CT) and Magnetic Resonance

Imaging (MRI), to obtain complete information about the patient, and monitoring tumor or

cancer growth. This allows doctors to monitor the effects of treatments on patients in a certain

region of interest over time.

There exist many methods to carry out the registration depending on the problem [2] [3].

However, most of the algorithms basically follow the same approach as Figure 1.1 [4].

2

Figure 1.1 Basic approach of Image registration

At the feature detection step, salient and distinctive features such as edges, contours,

closed-boundary regions are detected in both reference and sensed images. A comparison

between the features in the reference and sensed images is established in feature matching. Then,

mapping functions are estimated that aligning the sensed image with the reference image. At an

image transformation stage, the sensed image is transformed based on the mapping function.

This thesis consists of five chapters. In chapter 2, we review the previous work of image

registration methods and compare their advantage and drawbacks. Then, we define the problem

and the range of research based on the neural network approach. Fundamental algorithms and the

suggested approach using curvelet transform is explained in chapter 3. Simulation results are

shown in chapter 4. According to the results in chapter 4, we conclude our research and discuss

potential future work.

3

Chapter 2. Literature review

There exist many methods to perform image registration. These methods can be

categorized with respect to various criteria including the application fields, dimensionality of

data, computational cost, and the basis of the registration algorithm. Essentially, registration

methods can be categorized into two types, depending on whether they use feature extraction or

not [1]. They are area-based and feature-based methods. In this chapter, we're going to review

previous literature in those two categories.

2.1. Area-based approaches

Area-based methods, also called correlation methods, deal with the images without

detecting significant objects. They use correlation, mutual information (MI), cross-correlation, or

Fourier analysis method to measure the similarity of images [5] [6]. The area can be the entire

image or part of image with a predefined rectangular window, which is most often used, to

estimate the correspondence. The rectangular window works well for registration when only

translation differences exist between images. If images are deformed by more complex

transformations, this type of windows is not able to work properly. Another limitation of the

area-based methods is 'remarkableness' of window content. If a window only contains a smooth

area without any prominent details, it may be matched incorrectly with the smooth, but totally

unrelated another image [1]. Fourier methods exploit the representation of the images in the

frequency domain. They are preferred rather than the spatial correlation methods if images are

corrupted by frequency-dependent noise or acquired under time varying illumination. However,

the computational cost and time expense grows greatly as the image size increases or the

condition of transformation is more severe.

4

2.1.1. Correlation methods

Cross-correlation (CC) method exploits image intensities directly, without any structural

analysis. So, they are sensitive to image intensity changes, noise, varying illumination, and

sensor types. The representative algorithm of area-based methods is to use normalized cross-

correlation (CC): [7]

x y

x y

vyuxI

vyuxIyxT
vuCC

),(

),(),(
),(

2
 (2.1)

This function is computed for window pairs from the reference and the sensed images,

and is searched for its maximum value. The parts of the two images producing the maximum

cross-correlation value are considered the corresponding ones. This method works successfully

when rotation and scaling exist in small degrees. The main drawbacks of this method are the

flatness due to self-similarity of the images and high computational cost if the transformation is

complex. Some modification methods are suggested in order to overcome its limitations. Pratt

applied image filtering to improve CC performance on noisy or highly correlated images [8], and

Van Wie and Anuta exploited correlation on the edge extraction instead of using the entire

original images [9] [10] . The advantage of these modification methods is that the results are

sensitive to intensity variation and noisy images. A sequential similarity detection algorithm

(SSDA) is also suggested which is similar to the CC methods. It uses the sums of the differences

in the intensity values for the window pairs and if the difference is too high, the pair is rejected

as a non-match. The advantage of this method is that computation of SSDA is simpler than the

CC. As mentioned above, even though there exist some limitations on correlation-like methods;

they are still one of the most useful registration methods due to being easy to implement in

hardware systems [1].

5

2.1.2. Fourier methods

Fourier methods are preferred over the correlation-like methods when the images are

acquired under severe conditions and include noise [1]. It employed Fourier representation of the

images. The representative algorithm in this approach is to use phase correlation [11]. It

calculates the cross-power spectrum of the reference and sensed images and finds the peak point

in its inverse domain. The method shows strong robustness against the correlated and frequency

dependent noise and non-uniform, time varying illumination disturbances. However, this

method, like the previous area methods, is just strong when there is only translation present. De

Castro and Morandi introduced an extension of the phase correlation for additional rotation

transform [12]. If the change of image scale is present, the images can be registered using the

combination of polar-log mapping of the spectral magnitude and the phase correlation.

2.1.3. Mutual information (MI) methods

Mutual information (MI) technique is a measure of the dependence between two random

variables and a very useful algorithm in multimodal registration. MI between two random

variables X and Y is given by: [1]

))(((log)(),()()()|()(),(2 xPExHyxHyHxHXYHYHyxMI (2.2)

Where))(((log)(2 xPExH represents entropy of random variable)(xP and is the

probability distribution of X .

Especially, MI methods have been widely used in medical imaging applications and have

been proved to be very effective. However, they are not so successful in other fields such as

military target recognition system. First, it takes a long time to search the global transformation

parameters by optimizing MI similarity measure. So, it could not be used for real time systems.

6

In addition, it could fall into a local extreme not correlated in the global measurement. Several

methods are proposed to solve this issue, which usually combined the MI with other feature-

based methods to get higher robustness [4].

2.2. Feature-based approaches

Feature-based matching methods are typically used when the local structural information

is more significant than the image's intensities [1] [13] [14]. They allow registering completely

different images and can handle complex between-image distortions. The common drawback of

the feature-based methods is that the respective features might be hard to detect or unstable in

time. The crucial point of feature-based matching methods is that prominent features are

invariant to transformations. So, the important task is to find the pair-wise correspondence

between the reference and sensed images using their spatial relations or descriptors of features.

Also, the descriptors should have met the conditions such as invariance, uniqueness, stability,

and independence. Figure 2.3 shows an example of feature-based methods with two satellite

images [1]. The descriptors (control points) in this example are invariant to the shift and scale

parameters so they could be used effectively for registration.

2.2.1. Neural network methods

An artificial neural network (ANN) is a computational model based on biological human

brain. The ANN is an adaptive system that can change its internal structure using the external

information that flows through the network during learning phase. They can be used to map out

complex relationships between inputs and outputs or pattern recognition in computer vision. The

architecture of ANN adapts a parallel computational structure that is composed of a number of

7

neurons connected through a set of links, which have some weight associated with them.

Neurons consist of a number of inputs, summing junction, and an activation function to pass

information to another neuron [15].

The structure of feedforward neural network is shown at Figure 2.1. The number of

hidden layers depends on the complexity of the problem. Generally, if the number of hidden

layers is increasing, it is able to handle more complex situation. A weight is assigned to each

input and the results of the input times the weight are summed up. Then, the sum is passed

through an activation function as shown at Figure 2.2. The most commonly used activation

function is a sigmoid function and in this thesis a hyper-tangent function is used as an activation

function.

Figure 2.1 Artificial neural network architecture

8

Figure 2.2 The structure of a neuron

There have been researches using neural network for image registration. In 2000,

Sheinfeld, Tal, and Trisoh exploited Discrete Cosine Transform (DCT) coefficients as inputs to

train the network [16]. The majority information of DCT coefficients is stored in the top left

corner, so they used a rectangular window to select coefficients. This method gives a good result

when there exist a small amount of rotation, scaling, and translation and shows robustness to

Gaussian and salt and pepper noise. However, it is vulnerable to scaling factor. In 2006, Abche,

Maalouf, Karam used Fourier coefficients instead of using DCT [17]. They used an 8 by 8

window to select coefficients around zero frequency. This method performed far more accurate

than DCT coefficients approach with respect to the scaling factor. Jianzhen Wu and Jianying Xie

trained their networks using low order Zernike moments [18]. Zernike moments are a sequence

of polynomials that form an orthogonal basis on the unit disc. They are the projection of the

image onto the orthogonal basis functions and have been used greatly in pattern recognition. An

advantage using Zernike moments is that the absolute values of the moments are rotation

invariant, robust to noise, and fast to compute. The previous approaches used general

feedforward neural network. Pramod used the wavelet neural network which employed a wavelet

9

function as an activation function [19]. Wavelet function can be trained more adaptively at each

neuron node with its parameters, that are scale and translation parameters, comparing to hyper-

tangent function which is the same at all neurons. Wavelet neural network method performed

more accurate and faster than general feedforward neural network due to its fewer neurons and a

single hidden layer.

This thesis exploits artificial neural network approaches for image registration. The

advantage of using neural network is that it requires less time to estimate parameters. Neural

network is able to output all transformation parameters at once while conventional methods only

estimate parameters one at a time. So, once the network is trained it is a simple work of passing

an input vector to the network. Another advantage of neural network is that it is a very useful

method to map non-linear relationships between inputs and outputs. This is because neural

network uses a non-linear activation function for each neuron's output. This enables the network

to cover the severe cases when there exist high distortion of the images.

2.3. Summary

Area-based methods are preferably applied when the images do not have many prominent

details and the distinctive information is provided by gray levels/colors rather than by shapes and

structure. They have two principal limitations. Reference and sensed images must have somehow

‘similar’ intensity functions, either identical (and then correlation-like methods can be used) or at

least statistically dependent (this typically occurs in multimodal registration). Area-based

methods often employ pyramidal image representations and sophisticated optimization

algorithms to find the maximum of the similarity matrix [1] [4].

10

Feature-based matching methods are typically applied when the local structural

information is more significant than the information carried by the image intensities. They allow

registering images of completely different nature (like aerial photograph and map) and can

handle complexity between-image distortions. The common drawback of the feature-based

methods is that the respective features might be hard to detect and/or unstable in time. The

crucial point of all feature-based matching methods is to have discriminative and robust feature

descriptors that are invariant to all assumed differences between the images [1] [4].

2.4. Problem definition

A challenge still remained in medical image registration is that how fast and accurate to

estimate parameters with robustness to noise of the images. Neural networks inspired by

biological brain structure are parallel learning algorithms can be used to estimate parameters and

approximate functions that need a large number of inputs. It is most commonly used in medical

image registration because once it is trained, any input pattern can be computed through the

networks extremely fast to get an output. In this study, the registration of MRI medical image is

investigated using Scale-Invariant Feature Transform (SIFT), Discrete Cosine Transform (DCT),

Discrete Wavelet Transform (DWT), and Discrete Curvelet Transform (CT) as inputs for

artificial neural network. The problem is to reduce the training and testing error of the network.

N

at
RMSE

N

i ii

 1

2)(
 (2.3)

Where, N is the number of training or testing sets, t is target of outputs, and a is actual

outputs from the network.

11

Figure 2.3 Feature-based image registration; Feature-based image registration; in these two

satellite images, control points (corners) were matched using invariants based on complex

moments [20].The numbers identify corresponding control points. The bottom image shows the

registration result

12

Chapter 3. Background

 The main points of neural network approaches in image registration are the selection of

parameters to train the network and the type of neural network to use. Previous work used

Discrete Cosine Transform (DCT) coefficients, keypoints from Scale Invariant Feature

Transform (SIFT), and wavelet neural network [17] [19]. In this chapter, we're going to review

those algorithms and discuss how it can be meaningful solution to solve medical image

registration problem.

3.1. Affine transform introduction

Before moving on to the main algorithm, images are used for inputs, should be affined

based on several transformations. In geometry, an affine transformation is a function between

affine spaces that preserves points, line, and planes. Examples of affine transformations include

rotation, scaling, translation, shear mapping, and compositions of them in any combination. An

affine map is composition of two functions: a translation and a linear map. If the linear map is

represented as a multiplication by a matrix A and the translation as the addition of a vector

b , an

affine map f acting on a vector

x can be represented as below.

 bxAxfy)((3.1)

 Where

y is the transformed coordinates and

x is the original coordinates. A 3 by 3

matrix form is usually used instead of 2 by 2 matrixes for translation parameter which is not a

linear operation in 2-D representation. By adding another row of translation enables to be

performed as a linear operation as below.

13

11001

y

x

fed

cba

y

x

 (3.2)

 A rotation operation can be represented as (3.3). The sample image that applied a

rotation transform is shown at Figure 3.1.

1100

0)cos()sin(

0)sin()cos(

1

y

x

y

x

 (3.3)

Figure 3.1 Affine transformation (Rotation)

Scale, shear, and translation transform can be performed using equations (3.4), (3.5),

and (3.6), respectively. The example images applied those transform are shown below.

1100

00

00

1

y

x

scale

scale

y

x

y

x

 (3.4)

14

Figure 3.2 Affine transformation (Scale)

1100

01

01

1

y

x

shear

shear

y

x

y

x

 (3.5)

Figure 3.3 Affine transformation (Shear)

1100

10

01

1

y

x

ntranslatio

ntranslatio

y

x

y

x

 (3.6)

15

In this study, all above transforms are applied at the same time with specific ranges.

Some of sample images that applied transformation are shown at Figure 3.4. The images used in

this study are MRI images of brain that were taken from an image database at Magnetic

Resonance - Technology Information Portal [21]. Table 3-1 shows parameter values used at

Figure 3.4 and the range of transformation parameters used in this thesis.

Figure 3.4 Examples of affine transformation

Table 3-1 Sample images with affine transformation

 T1 T2 T3 T4 Max. Range

Rotation(Degree) -11 -8 -7 -11 -12 ~ 12

Scale(X-Axis) 0.9697 1.0915 0.9446 1.0878 0.9 ~ 1.1

Scale(Y-Axis) 0.9354 1.0485 1.0231 0.9394 0.9 ~ 1.1

Translation(X-Axis)[pixel] 0 3 1 5 -5 ~ 5

Translation(Y-Axis)[pixel] -4 3 -2 2 -5 ~ 5

Shear(X-Axis) 0.0195 0.0523 0.0149 0.0301 -0.1 ~ 0.1

Shear(Y-Axis) 0.0394 0.0990 0.0147 0.0029 -0.1 ~ 0.1

16

3.2. Discrete cosine transform (DCT)

There have been several researches on using DCT coefficients for image registration and

given decent results [17]. Frequency information can be found for any image and provide global

information of the image. When viewing translation and rotation properties in the

spectral domain, some interesting points arise. For example, the Fourier shift translation property

of Fourier transform, which states that if I1 and I2 are two images differ only in their translation,

is related by:

)(2

120012
00),(),(),(),(

vyuxj
evuFvuFyyxxIyxI

(3.7)

It can also be shown that other affine transformations have distinct representation in

Fourier domain. Thus, it can be concluded that taking an appropriate amount of coefficients

result in providing the necessary information for estimating registration parameters.

The advantage of using DCT instead of Discrete Fourier Transform (DFT) is that DCT

can compact information better than DFT, which means ability to pack the energy of the spatial

sequence into as few frequency coefficients as possible. Figure 3.5 shows how DCT coefficients

are compacted to top-left corner compared to DFT coefficients. This is very important in image

compression and beneficial in other applications, too.

The reason DCT is more efficient than DFT is that it uses different boundary conditions

which lead to remove discontinuities containing a lot of high frequencies. So, it has a smooth

continuous transition. In this study, we use a 10 by 10 window to extract coefficients from top-

left corner of DCT.

17

Figure 3.5 Comparison of DCT and DFT

Figure 3.6 Periodicity of DFT and DCT

3.3. Scale invariant feature transform (SIFT) algorithm

SIFT algorithm, was developed in 1999 by Lowe David G., is usually used in computer

vision such as image matching and object recognition [22]. The advantage of this algorithm is

that the features are invariant to scale, rotation, and translation. It has been used in image

registration as well [23]. In this study, SIFT keypoints are considered as inputs for neural

network training.

18

SIFT algorithm mainly consists of two steps. Finding key points and assigning descriptor

to it as the first step, and in a second step, matching original image and target image using

descriptors is performed as Figure 3.7. In other words, features, which are defined as extrema,

could be found from various scaled images. Then, the information including orientation and

magnitude that can account for the features is assigned. In a matching step, features from original

image and target features are matched by comparing the distance between them.

Figure 3.7 SIFT algorithm sequences

3.3.1. Scale-space extrema

The advantage of SIFT algorithm is that it can extract keypoints that are invariant to

scale, orientation, luminance, and affine transform. This step is the process to extract interest

point to be expected to be invariant scale and orientation. Difference of Gaussian (DOG) is used

to improve the processing time. Gaussian pyramid is the process to calculate Gaussian

convolution with various scales as Figure 3.8. The difference of pyramid image is the similar

result with the second derivative of Laplacian of Gaussian (LOG). So, we can measure the

features of the original image.

In order to be invariant to the change of illuminance, it figures out to select the object’s

maximum or minimum. After building Gaussian pyramid, key candidate is extracted from the

19

point of blob using DOG. Key candidate is to be considered when it is the maximum or the

minimum comparing to its 26 around points in upper or lower scale levels like Figure 3.9.

Figure 3.8 Gaussian pyramid & DOG [22]

Due to the comparison method, if DOG generates n, n+3 Gaussian images should be

created for 1 Octave, and the rate of scale change is n

1

2 .

Figure 3.9 Key point [22]

20

3.3.2. Accurate keypoints

Once key candidates are selected, more accurate points should be extracted which

represents features clearly. Among the candidates, there might be low contrast points or edge key

points which are not good features to represent.

Lowe applied Taylor expansion, Brown suggested, to find more accurate keypoints and

calculate contrast of the point using interpolation to filter out keypoints. Equation (3.8) is to

find extrema using interpolation with Taylor second expansion.

X

D

X

D
X

yyxxXX
X

D
XX

X

D
DXD T

T

2

12

0002

2

)),,((,
2

1
)(

 (3.8)

This value is applied to Taylor first expansion (3.9) and if the contrast is below 0.03, the

points are discarded.

discardXDif

X
X

D
DXD

T

03.0)(

2

1
)(

 (3.9)

3.3.3. Eliminating edge responses

It is not sufficient to reject keypoints with low contrast. So, Lowe used Harris corner

detection method to remove edges. He set the threshold 10r as an appropriate value.

21

Figure 3.10 Keypoints selection steps [22]

Figure 3.10 shows the stages of keypoint selection. (a) is the 233x189 pixel original image.

(b) is the initial 832 keypoints locations at maxima and minima of the difference of Gaussian

function. Keypoints are displayed as vectors indicating scale, orientation, and location. After

applying a threshold on minimum contrast, 729 keypoints remain as in (c). The final 536 keypoints

are remained in (d).

3.3.4. Orientations

By assigning a consistent orientation to each keypoint based on local image properties,

the keypoint descriptor can be represented relative to this orientation. Gaussian blurring is

applied to the image of 16 by 16 around keypoint then assigned the orientation and scale of the

gradient to each point. Equation (3.10) is used where L is the Gaussian blurred image.

))1,()1,(/()),1(),1(((tan),(

))1,()1,(()),1(),1((),(

1

22

 yxLyxLyxLyxLyx

yxLyxLyxLyxLyxm

 (3.10)

The orientation of keypoint is determined by using all magnitudes and orientations of the

16 by 16 image. An orientation histogram is formed with 36 bins covering 360 degree range of

22

orientation. So, the peak value is the orientation of the keypoint. If there exist more than 1 peak

point over 80% of the peak, this keypoint is considered with multiple keypoints.

3.3.5. Keypoint descriptors

The first three steps ensured invariance to location, scale, and rotation by assigning to

each keypoint a location, scale, and orientation. So, the last step is to ensure invariant to the

change of illumination. This can be done by sampling gradient magnitudes and orientations

around each keypoint. The Gaussian image is selected based on scale of the keypoint, then

orientation histogram with 8 bins is formed over 4 by 4 neighborhood regions from sampled

magnitude and orientation values in 16 by16 image. A Gaussian weighting function is used to

assign a weight to the magnitude of each sample point. The descriptor is a feature vector

consisting of all the values in the histogram.

3.3.6. Image matching

In this step, the Euclidean distance of keypoints between original image and target image

is calculated as (3.11).

2

1

)(

n

i

ii baD (3.11)

The keypoint which has the minimum distance D is matching keypoint. Dr. David Lowe

suggested a method to check whether the matching is done correctly using the ratio between the

closest keypoint and the second closest keypoint. When the value is over 0.8, there is high

probability of miss matching so they are discarded. Figure 3.11 shows the keypoints and its

descriptors of original MRI brain image we used in this study. Figure 3.12 is for the affine

transformed image. Matched keypoints between these two images are shown at Figure 3.13.

23

There are 23 matched keypoints for these images. The coordinate information of the affined

image is used to train neural network.

Figure 3.11 SIFT keypoints of the original image

24

Figure 3.12 SIFT keypoints of the affine transformed image

Figure 3.13 23 matched keypoints between Figure 3.11 and Figure 3.12

25

3.4. Wavelet neural network (WNN)

Wavelet neural networks combine the theory of wavelets and neural networks into one

[24]. A wavelet neural network generally consists of a feedforward neural network with one

hidden layer and activation functions are from an orthonormal wavelet family. The structure of

wavelet neural network is similar to the feedforward neural network as Figure 3.14. The neurons

of wavelet are usually referred to as wavelons [24].

Figure 3.14 Structure of wavelet neural network

The simplest form of wavelet neural network is one with a single input and a single

output. The hidden layer of neurons consists of wavelons whose parameters include the wavelet

dilation and translation values. The output of a wavelet neural network is a linear weighted

combination of the wavelet activation functions. The single input wavelon is defined as:

)()(,

tu
ut

 (3.12)

Where and t are dilation and translation parameters respectively. The architecture of

single wavelet network is shown in Figure 3.15. The hidden layer consists of M wavelons and

26

the output is just a summer. So, the output can be defined with a weighted sum of the wavelon

outputs as (3.13).

Figure 3.15 Wavelet neuron

M

i

ti yuwuy
ii

1

)()((3.13)

In a wavelet network all parameter twy ,,, are adjustable by learning algorithm. A

multidimensional wavelet network is an extension of single input and output architecture into

multi-input and outputs system. Therefore the input-output mapping of the network is defined as:

M

i i

i
i y

tu
wuy

1

)()(

 (3.14)

The parameters twy ,,, should be formed into one vector . The objective function to

be minimized is:

}))()({(

2

1
)(2ufuyEC (3.15)

The minimization is performed using a stochastic gradient algorithm. This recursively

modifies , in the opposite direction of the gradient of

 2))()((
2

1
))(,,(kkkk ufuyufuc (3.16)

27

The gradient for each parameter of can be found by calculating the partial derivatives

of))(,,(kk ufuc as follows:

)()(

)(
1

)(

2 ki

i

ik
ik

i

ki

i

ik

i

kik

i

k

z
tu

we
c

zwe
t

c

ze
w

c

e
y

c

 (3.17)

Where
i

ik
kikkk

tu
zufuye

),()(and

dz

zd
z

)(
)(

 .

In this study, the Morlet wavelet function is exploited for activation functions of neuron.

Figure 3.16 Morlet wavelet function

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Morlet Wavelet

28

3.5. Curvelet transform

In this chapter, a new approach using neural network for image registration is suggested.

The Curvelet Transform (CT) is used to extract features from the images sets as inputs to train

the network [25]. As being extracted coordinate information from SIFT algorithm, we suggest a

method to extract curvelet keypoints information instead of using statistical measure of curvelet

coefficients.

3.5.1. Introduction of curvelet transform (CT)

Multiresolution methods are deeply related to image processing, biological and computer

vision. The curvelet transform is a multiscale directional transform that allows an almost optimal

non-adaptive sparse representation of objects with edges [25]. Although wavelet transform

becomes increasingly popular in engineering fields, it only performs well at representing point

singularities since they ignore the geometric properties of structures and do not exploit the

regularity of edges. So, wavelet-based applications are computationally inefficient for geometric

features with line and surface singularities. In other words, in the field of biological and

computer vision, wavelets do not supply good direction selectivity, which is an important

response property of objects. To overcome the missing directional selectivity of conventional 2-

D discrete wavelet transforms, a multiresolution geometric analysis (MGA), named curvelet

transform, was proposed by Candes and Donoho in 2000 [26]. Unlike the isotropic elements of

wavelets, the curvelet transform possess very high directional sensitivity and anisotropy with the

needle-shaped elements. So, it can represent edges and other singularities along curves much

more efficiently than traditional transforms, i.e. using significantly fewer coefficients for a given

accuracy of reconstruction.

29

The implementation of the first generation of curvelet uses a pre-processing step

involving a special partitioning of phase-space followed by the ridgelet transform. However, in

the second generation of curvelet, the algorithm is redesigned to make them easier to use. As a

result, Fast Discrete Curvelet Transforms (FDCTs) is considerably simpler, faster, and less

redundant than the first proposals [26]. There are two distinct implementation ways of FDCT:

unequispaced FFTs (USFFT-based) and Wrapping-based. In this study, we used a wrapping-

based method, which is faster than USFFT one.

3.5.2. Digital curvelet transforms

3.5.2.1. Digital coronization

 The digital transformation is linear and takes as input Cartesian arrays of the form

nttttf 2121 ,0],,[. The coefficients),,(kljcD
are obtained by:

ntt

D

klj

D ttttfkljc
21 ,0

21,,21],[],[:),,(
(3.18)

 Where each
D

klj ,, is a digital curvelet waveform (the superscript D stands for “digital”).

In the continuous-time definition, the window jU smoothly extracts frequencies near dyadic

corona }22{ 1 jj r and near the angle }22{ 2/2/ jj as Figure 3.17. In discrete-

time domain, it is convenient to replace the concepts by Cartesian equivalents based on

concentric squares and shears as Figure 3.18. The Cartesian analog to the family

)2()(j

j WW , would be a window of the form:

0,)()()(
~ 22

1 jW jjj ,

30

 Where is defined as the product of low-pass one dimensional windows. This is how to

separate scales in a Cartesian-friendly fashion and the angular localization V is set as:

)/2()(12

|2/| j

j VV

Then, the Cartesian window is defined as:

)()(
~

:)(
~

 jjj VWU
(3.19)

However,)(
~

jU is hard to represent frequencies near the wedge, so a modified window

is suggested as:

)()(
~

:)(
~

, l
SVWU jjlj

(3.20)

Where S is the shear matrix,

1tan

01
:

S

When completed by symmetry around the origin and rotation by 2/ radians, the ljU ,

~

defines the Cartesian to the family which is a concentric tiling whose geometry is displayed in

Figure 3.18.

3.5.2.2. Curvelet transform using wrapping method

The process of curvelet transform with wrapping method is as follow.

(1) Both image and curvelet filter bank are transformed into Fourier domain.

2/,2/],,[ˆ 2121 nnnnnnf

31

Figure 3.17 Induced tiling of the frequency plane. In Fourier space, curvelets are supported near

a “parabolic” wedge, and the shaded are represents a generic wedge [26]

Figure 3.18 Digital tiling. The windows smoothly localize the Fourier transform near the sheared

wedges obeying the parabolic scaling [26]

32

(2) Then the convolution of the curvelet with the image in spatial domain becomes the

product in Fourier domain.

],[ˆ],[
~

2121, nnfnnU lj

(3) Compute the curvelet coefficient by applying inverse Fourier transform. The wedge

must be wrapped into rectangular to perform inverse Fourier transform because the

frequency response of curvelet is non rectangular wedge.

],)[ˆ~
(],[

~
21,21, nnfUWnnf ljlj

Where the range for
1n and

2n is jLn ,110 and jLn ,220 .

(4) By periodic wedge tiling wrapping is done, then collecting the rectangular coefficient

(),,(kljcD
) area in the center by applying the inverse 2D FFT to each ljf ,

~
. The

overall procedure is described in Figure 3.20.

Figure 3.19 Wrapping data, initially inside a parallelogram, into a rectangle by periodicity [26]

33

Figure 3.20 Fast discrete curvelet transform via wrapping (FDCT)

3.5.2.3. Curvelet transform for brain MRI image

 In this study, we resized the medical image to size 512 by 512. The feature extraction

using curvelet is applied to the original brain image. For image size of 512 by 512, the maximum

number of levels is 6. So the image is decomposed into 6 levels of scales using curvelet

transform. The numbers of sub-bands at different scales are different. For 6 levels of

decomposition, there are 1, 16, 32, 32, 64, and 1 sub-bands at decomposition level 1, 2, 3, 4, 5,

and 6 respectively. Therefore, 6 levels decomposition creates 146 sub-bands of curvelet

coefficients. Figure 3.21 shows the original image and coefficients of sub-bands at scale

1(center) and 6(right). From Figure 3.22 to Figure 3.25, curvelet coefficients of sub-bands at

34

level 2, 3, 4, and 5 are displayed. All curvelet coefficients of sub-bands are figured in Figure

3.26.

Figure 3.21 Curvelet coefficients (Original: left, Scale 1: center, Scale 6: right)

Figure 3.22 Curvelet coefficients at level 2 (16)

Table 3-2 The number of sub-bands of curvelet transform

Scale Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total

Number of

Bands
1 16 32 32 64 1 146

Figure 3.26 displays all curvelet coefficients at a single image. Low frequency

coefficients are positioned at the center of the figure. The outer coronae correspond to higher

35

frequencies. Each corona has four strips further subdivided in angular panels. And each panel

represents coefficients at a specified scale and orientation. The displayed coefficients in Figure

3.26 are normalized at each scale level which means divided by maximum value of the level.

Figure 3.23 Curvelet coefficients at level 3 (32)

Figure 3.24 Curvelet coefficients at level 4 (32)

36

Figure 3.25 Curvelet coefficients at level 5 (64)

3.5.2.4. Curvelet coefficients via thresholding approach

If we use curvelet coefficients from all sub-bands of each scale for neural network inputs,

there exist too many inputs for the network. Even the number of coefficients at level 1 is 21 by

21 (441 values), which needs a larger size of network structure. So, it might need extremely high

computational cost if we take coefficients from scale 2 to 6 together.

37

Figure 3.26 Curvelet coefficients plot

 Statistical measures of curvelet coefficients such as mean, variance and entropy have

been used to extract features using curvelet transform [27] [28] [29] [30] [31]. However, we

found a poor accuracy using these approaches. So, the alternative approach is based on

thresholding the curvelet coefficients [32]. We extract image features of MRI image by applying

curvelet transform then take coefficients above threshold value from all sub-bands. Figure 3.27

shows an example, when we assume that we use 10 percent of the strongest coefficients from all

sub-bands. The right image is reconstructed image with those 10 percent coefficients. The

selected coefficients have enough information to reconstruct the image, so the right image shows

pretty detail features of the original image. The problem we use these coefficients is that there

still too many coefficients. With the 512 by 512 image, there are 73900 coefficients from 10

curvelet coefficients

38

percent of curvelet coefficients. It still needs too big neural network structure which is

ineffective comparing to 100 DCT and 100 keypoints from SIFT algorithm.

Figure 3.27 Reconstruction with the strongest 10% of coefficients from all sub-bands

Figure 3.28 Reconstruction with the strongest 0.0135% of coefficients from all sub-bands

Original image

100 200 300 400 500

100

200

300

400

500

Partial reconstruction with 10% of coefficients

100 200 300 400 500

100

200

300

400

500

Original image

100 200 300 400 500

100

200

300

400

500

Partial reconstruction with 0.0135% of coefficients

100 200 300 400 500

100

200

300

400

500

39

Figure 3.29 Reconstruction with 100 DCT coefficients

In order to compare the 100 DCT coefficients, we take 0.0135% of curvelet coefficients

from all sub-bands which could generate exactly 100 coefficients. It shows that the number of

coefficients to be extracted is appropriate for training the network, however it loses lots of

information especially on curves, lines shown as Figure 3.28. If we compare the reconstruction

image with 100 DCT coefficients, curvelet coefficients seem to have more features on curves

and edges while DCT coefficients have coarse features of the image.

3.5.2.5. Curvelet keypoints based on modified thresholding method

Now, we suggest a method that can have critical features as well as keep the limitation of

the number of coefficients based on modified thresholding approach of curvelet coefficients. In

other words, the purpose of this algorithm is to get significant features with minimum number of

coefficients. There are three steps for this algorithm as follow:

Original image

100 200 300 400 500

100

200

300

400

500

Partial reconstruction with 100 DCTcoefficients

100 200 300 400 500

100

200

300

400

500

40

Figure 3.30 Curvelet keypoints based on modified thresholding method

Modified thresholding method

At first step, we apply discrete curvelet transform to the image and take coefficients using

modified thresholding method. The thresholding method in the previous section is to take a

certain percentage value of coefficients from all sub-bands. This method might have possibility

of ignoring important coefficients at specific scale level, if the value of coefficients from another

scale is significantly high. Therefore, we suggest a way to take coefficients above threshold

based on each scale level. This method can avoid ignoring coefficients at a certain scale level. In

addition, we only consider the mid-bands (from 2 to 5 scales) of the curvelets because the first

scale level (1st scale level) coefficients have coarse resolution and high local variations at fine

resolutions at the highest level (6th scale level). Those two scale level do not have directional

information which means that they are not dominant coefficients. Figure 3.31 is a bar graph of

coefficients at each scale level and its threshold which is 70% of its maximum value. The

41

number of coefficients that are taken from this method is 48, 34, 54, and 16 respectively and

totally 152 coefficients at this example.

Figure 3.31 Threshold at each scale level. Take the highest 30% of coefficients from each scale.

Threshold is 555, 414, 222, and 91 at scale level 2, 3, 4, and 5 respectively

42

Table 3-3 The number of coefficients at each scale level

Scale 2 Scale 3 Scale 4 Scale 5 Total

Original coefficients 5,984 22,880 90,144 357,408 476,416

Threshold 48 34 54 16 152

Ratio (%) 31.58 22.37 35.53 10.53 100

Dynamic arrange 31 22 37 10 100

Determine the number of coefficients dynamically

 In order to meet the number of coefficients we want to take (100), we apply a method that

can re-arrange the number of coefficients we should take based on the ratio to all scale levels.

The reason we called it dynamic re-arrangement is that the algorithm is to assign the number of

coefficients no matter it lacks or over the maximum number of coefficients. Basically, the higher

ratio scale has higher probability to extract more coefficients while lower ratio scale has higher

chance to discard values when the total number is over the limitation. Table 3-3 is an example of

the result at step 2. Therefore, 31, 22, 37, and 10 coefficients are taken from each scale level

respectively based on its ratio. The number of total coefficients is 100. And from now on, we

only consider those 100 coefficients. The selected coefficients at scale level 2 are shown at

Figure 3.32. There are 31 coefficients which represented by small white circles.

43

Figure 3.32 Selected coefficients (31) at scale level 2

Extract coordinate index for curvelet keypoints

We are able to use selected coefficients directly from above section. However, as we

mentioned from previous work about SIFT algorithm, coordinate information of features in

spatial domain can impact for training neural network significantly. So, we extract coordinate

information using selected coefficients at step 2. Basically, a single point in the image can have

multiple coefficients at different sub-bands as Figure 3.33. We are able to exploit this

characteristic oppositely. In other words, a single coefficient at a sub-band has its matching

coordinate information in the image. Some coefficients might point to the same spatial

coordinates but we only take 100 coefficients which is very small portion compare to the number

of all coefficients. Thus, it has low chance for multiple coefficients to point the same spatial

coordinates.

44

Figure 3.33 Keypoints matching between spatial domain and coefficients of sub-bands

The result of curvelet keypoints extraction is shown at Figure 3.34. Yellow markers are

keypoints from scale level 2. Red, green, and magenta represents keypoints from scale level 3, 4,

and 5 respectively. If we compare to keypoints from SIFT algorithm, curvelet keypoints

represent the curves and directional features rather than keypoints of SIFT (Figure 3.13).

In addition, 100 curvelet keypoints via our algorithm has much more information than

just using a general threshold method. The right image of Figure 3.35 is the reconstructed image

45

Figure 3.34 Curvelet keypoints extraction examples

using 100 coefficients via suggested algorithm. If we compare it to the reconstructed image from

in Figure 3.28, our algorithm can represent the curve and line features much better than

thresholding method. We also can see that it has lots of directional information which expect a

good performance for rotation and translation parameters in training neural network.

In chapter 4, we’re going to train neural network using DCT coefficients, keypoints from

SIFT algorithm, wavelet coefficients, and curvelet keypoints we suggested in this chapter. We

Curvelet keypoints extraction

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Curvelet keypoints extraction

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Curvelet keypoints extraction

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Curvelet keypoints extraction

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

46

compare the results and which one has the best performance in terms of computational cost and

accuracy.

Figure 3.35 Reconstructed image using suggested algorithm

Using All coefficients image

100 200 300 400 500

100

200

300

400

500

Using keypoints

100 200 300 400 500

100

200

300

400

500

47

Chapter 4. Simulation

In this chapter, we simulate the image registration based on the algorithm suggested in

chapter 3. Simulation are performed in two stages. First, the pre-registration stage is to

synthesize original image to make training sets using affine transformations. Then, features such

as DCT coefficients, SIFT keypoints, wavelet coefficients, or curvelet keypoints are extracted

from the affined image. These inputs, normalized with zscore method, are used to train the

network. In registration phase, which is a testing stage, features are extracted from registered

image and feed to the trained network. The overall process is shown at Figure 4.1.

Figure 4.1 Simulation process

The neural network we used for the simulation is general artificial neural network and

wavelet neural network we mentioned in chapter 3. However, the performance of two structures

is not significantly different, so most simulations are only performed on artificial neural network.

Root Mean Square Error (RMSE) between parameters of target images and outputs of trained

networks is compared to measure the performance.

48

4.1. Neural network structure

Before training the neural network, it is important to determine the structure of neural

network. Coefficients from DCT, wavelet, or keypoints from SIFT and curvelet transform could

be the inputs to train the network. The outputs of the network are the transformation parameters

such as rotation, scale, translation, and shear. The general feedforward network uses sigmoid

function as an activation function in hidden layers and linear function in output layer. The

network is trained using 500 source-target image pairs. Among 500 image pairs, 50 pairs of

images are used to validate the network that is performed at every 5 iteration during training.

Another 50 image pairs then generated to test the network. Backpropagation algorithm is used to

train the networks until the desired error is below 0.00001 or the maximum iteration reaches

15000. Learning rate () is set to 0.0001 which is considered appropriate value that doesn’t

make the error oscillate and the network fall into the local minimum. A small learning rate

means the network will change at a slower rate and will take longer to converge while a large

learning rate makes the network change faster but invoke oscillation to converge. A large

learning rate might not converge at all as it could lead to ‘over-shooting’ the solution.

In order to determine the number of hidden layers and neurons of each layer, several

simulations are performed with various numbers of layers and the number of neurons. Table 4-7

shows the result of training error (RMSE) with various neural network structures. A hundred

DCT coefficients are used for this simulation. The performance of training error with two or

three hidden layers is better than the structure of single hidden layer or four hidden layers.

However, the testing errors of the trained network are similar each other. Therefore, the size of

neural network used in the simulation is a single hidden layer or three hidden layers that have 64,

40, and 15 neurons at each layer depending on the simulations. The training error graph is shown

49

at Figure 4.2. It shows that the network with two or three hidden layers is better than a single

layer network.

Wavelet neural network is also used in this study. As mentioned in chapter 3, the

difference between general artificial neural network and wavelet neural network is the activation

function as an output of each neuron. General feedforward neural network has the same sigmoid

function for all neurons, on the other hand, wavelet function has different dilation and translation

parameters. So, wavelet neural network can be trained more adaptively than general neural

network. Table 4-1 and Figure 4.2 shows that wavelet neural network has slightly better

performance in some parameters than general feedforward network but it’s hard to measure that

wavelet neural network is better. Thus, we only used a general artificial neural network for

simulations.

Table 4-1 Neural network training error with various hidden layers and neurons

Training error

 ANN WNN

RMSE [64] [64 40] [64 40 15] [64 40 15 9] [64]

Rotation 1.0349 0.2702 0.1693 1.1700 0.8709

Scale(X-Axis) 0.0520 0.0523 0.0562 0.0580 0.0543

Scale(Y-Axis) 0.0582 0.0561 0.0592 0.0601 0.0581

Translation(X-Axis) 0.2987 0.2210 0.1892 2.5129 0.3039

Translation(Y-Axis) 0.3061 0.2304 0.1675 1.8517 0.3202

Shear(X-Axis) 0.0194 0.0149 0.0269 0.0289 0.0164

Shear(Y-Axis) 0.0191 0.0127 0.0235 0.0294 0.0186

50

Table 4-2 Neural network testing error with various hidden layers and neurons

Testing error

 ANN WNN

RMSE [64] [64 40] [64 40 15] [64 40 15 9] [64]

Rotation 1.1961 1.2005 1.2392 1.2096 1.2081

Scale(X-Axis) 0.0515 0.0555 0.0513 0.0501 0.0529

Scale(Y-Axis) 0.0607 0.0584 0.0579 0.0571 0.0582

Translation(X-Axis) 0.3691 0.3526 0.3714 3.2338 0.4076

Translation(Y-Axis) 0.3681 0.4125 0.4199 1.2110 0.4593

Shear(X-Axis) 0.0242 0.0345 0.0328 0.0319 0.0221

Shear(Y-Axis) 0.0232 0.0286 0.0283 0.0281 0.0240

Figure 4.2 Training error of ANN/WNN according to the structures

2000 4000 6000 8000 10000 12000 14000

0

0.1

0.2

0.3

0.4

0.5

Iteration

M
S

E

ANN/WNN training error

ANN [64]

ANN [64 40]

ANN [64 40 15]

WNN[64]

51

4.2. Simulation with single transformation parameter

At this section, before applying all affine transformations together, images that are

transformed with a single parameter is used to train the network: rotation, scale, translation, and

shear respectively. The performance of three cases, DCT coefficients, DCT with SIFT keypoints,

and curvelet keypoints that we suggested in chapter 3, are compared.

4.2.1. Rotation

 Table 4-3 shows the result of three simulation cases estimating rotation parameter. The

threshold for convergence is 10e-6. Curvelet keypoints has the best performance in estimating

rotation parameters in terms of accuracy and computational cost. It is straightforward because

curvelet keypoints that we suggested in chapter 3 has strong characteristic of directional

selectivity compared to DCT and SIFT keypoints features. From Figure 4.3 to Figure 4.5 shows

the error graph for each case. Training, validation, and testing error are represented by asterisk,

triangle, and square marker respectively. Curvelet keypoints case even converged at 123

iteration. Thus, we recognize that curvelet keypoints is the most effective features to estimate

rotation parameter.

Table 4-3 Training and Testing error of rotation applied images

DCT DCT + SIFT Curvelet keypoints

 Train Test Train Test Train Test

Rotation 0.0377 0.0287 0.0153 0.0176 0.0031 0.0003

Total inputs 100 200 200

Training time 162 sec 209 sec 26 sec

Iteration 1000 (no converge) 1000 (no converge) 123 (converge)

52

Figure 4.3 Rotation simulation with DCT coefficients

Figure 4.4 Rotation simulation with DCT coefficients and SIFT keypoints

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

M
S

E

Rotation(DCT)

Training error

Validation error

Testing error

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

M
S

E

Rotation(DCT+SIFT)

Training error

Validation error

Testing error

53

Figure 4.5 Rotation simulation with curvelet keypoints

4.2.2. Scaling

 The range of scale parameter is 0.9 to 1.1 for both x-axis and y-axis. Table 4-4 shows the

result. As the same with rotation simulation, curvelet keypoints has the best performance among

the three cases. Curvelet transform is one of multi-resolution analysis methods, so one of its

characteristics is invariant to scales. Figure 4.6, Figure 4.7, and Figure 4.8 shows the mean

square error plot during training, validation, and testing.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

M
S

E

Rotation(Curvelet keypoints)

Training error

Validation error

Testing error

54

Table 4-4 Training and Testing error of scale applied images

DCT DCT + SIFT Curvelet keypoints

 Train Test Train Test Train Test

Scale X 0.0562 0.0506 0.0560 0.0507 0.0236 0.0362

Scale Y 0.0578 0.0539 0.0572 0.0535 0.0291 0.0386

Total inputs 100 200 200

Training time 163 sec 208 sec 206 sec

Iteration 1000 (no converge) 1000 (no converge) 1000 (no converge)

Figure 4.6 Scale simulation with DCT coefficients

0 100 200 300 400 500 600 700 800 900 1000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

55

Figure 4.7 Scale simulation with DCT coefficients and SIFT keypoints

Figure 4.8 Scale simulation with curvelet keypoints

0 100 200 300 400 500 600 700 800 900 1000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

0 100 200 300 400 500 600 700 800 900 1000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

56

4.2.3. Translation

The range of translation parameter is -5 to 5 for both x-axis and y-axis. The performance

of translation parameters is the best when the training inputs are DCT coefficients and DCT with

SIFT keypoints. As we noticed at Figure 3.17 and Figure 3.18, curvelet transform has strong

features to extract directional information from the image and it exploited a polar coordinate

instead of using rectangular coordinate in the process of curvelet transform. Table 4-5 shows

Table 4-5 Training and Testing error of translation applied images

DCT DCT + SIFT Curvelet Keypoints

 Train Test Train Test Train Test

Translation X 0.0443 0.0439 0.0389 0.0401 0.0686 0.2108

Translation Y 0.0457 0.0410 0.0406 0.0389 0.0315 0.4396

Total inputs 100 200 200

Training time 415 sec 207 sec 208 sec

Iteration 1000 (no converge) 1000 (no converge) 1000 (no converge)

Figure 4.9 Translation simulation with DCT coefficients

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

57

Figure 4.10 Translation simulation with DCT coefficients and SIFT keypoints

Figure 4.11 Translation simulation with curvelet keypoints

the result. The MSE for training is shown at Figure 4.9, Figure 4.10, and Figure 4.11

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

58

4.2.4. Shear

 The range of shear parameter used in the simulation is from 0 to 0.1. DCT coefficients

and DCT with SIFT keypoints cases are better than curvelet keypoints on shear transformation.

We expected the curvelet keypoints have better performance due to its strong directional

features. The performance of curvelet keypoints is slightly better than DCT coefficients case but

worse than DCT with SIFT keypoints case. We can see that the SIFT keypoints can have a

decisive effect on estimating shear parameter. The result is shown at Table 4-6. The MSE for

training and testing is shown at Figure 4.12, Figure 4.13, and Figure 4.14.

Table 4-6 Training and Testing error of shear applied images

DCT DCT + SIFT Curvelet Keypoints

 Train Test Train Test Train Test

Shear X 0.0136 0.0121 0.0073 0.0068 0.0121 0.0113

Shear Y 0.0155 0.0143 0.0076 0.0072 0.0100 0.0133

Total inputs 100 200 200

Training time 167 sec 203 sec 204 sec

Iteration 1000 (no converge) 1000 (no converge) 1000 (no converge)

59

Figure 4.12 Shear simulation with DCT coefficients

Figure 4.13 Shear simulation with DCT coefficients and SIFT keypoints

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

60

Figure 4.14 Shear simulation with curvelet keypoints

4.3. Simulation with multiple transformation parameters

In this section, simulations are performed using images that several affine transformation

parameters are applied together.

4.3.1. DCT coefficients and SIFT keypoints

The simulation starts with the case of a hundred DCT coefficients. The case of a hundred

DCT coefficients with fifty pairs of keypoints from SIFT algorithm is also simulated at this

section. Keypoints are coordinate information from the image which is applied affine

transformations. Fifty pairs of keypoints means a hundred inputs including x, and y coordinate

information. Thus, totally two hundred inputs are used for training/testing and there are seven

output parameters. Table 4-7 shows the result of using DCT coefficients only and DCT

coefficients with SIFT keypoints. The overall training performance of DCT with SIFT keypoints

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

Iteration

M
S

E

Shear(Curvelet keypoints)

Training error

Testing error

Validation error

61

is better than DCT only case. Especially, training of rotation and translation parameters are

trained well comparing to other parameters. This does make sense because the features from

SIFT keypoints are to be invariant to rotation, scale, and translation. However, the testing errors

are similar for both cases. If we compare the error graph in detail in order to analyze the

difference between the training and the testing error, it seems to be a generalization issue on

DCT with SIFT keypoints case [Figure 4.15, and Figure 4.16]. Generally, there could be

occurred a generalization problem when the network is over-trained or the complexity of the

system is higher than the inputs. If it is happened due to over-training, there are several methods

to avoid over-training issues of neural network. One of the simplest ways is to stop training early

before the testing error will be increased. So, we can use trained weights and bias at the point the

testing error has the minimum. The testing error at Table 4-7 is measured by applying an early

stop method. However, the testing error does not follow the training error exactly. We’ll

investigate this problem more detail after performing curvelet keypoints simulation.

Table 4-7 Training and testing error with DCT and DCT with SIFT

DCT DCT + SIFT

RMSE Training Testing Training Testing

Rotation 1.1594 1.2282 1.0646 1.2433

Scale(X-Axis) 0.0576 0.0541 0.0569 0.0527

Scale(Y-Axis) 0.0545 0.0520 0.0542 0.0537

Translation(X-Axis) 0.3320 0.3560 0.3013 0.3757

Translation(Y-Axis) 0.3373 0.3178 0.3168 0.3394

Shear(X-Axis) 0.0211 0.0225 0.0216 0.0258

Shear(Y-Axis) 0.0216 0.0221 0.0202 0.0264

62

Figure 4.15 Difference between training and testing of DCT

Figure 4.16 Difference between training and testing of DCT + SIFT

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
S

E

DCT

Training error

Validation error

Testing error

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
S

E

DCT + SIFT

Training error

Validation error

Testing error

63

4.3.2. Curvelet coefficients

We mentioned that how to take a hundred curvelet coefficients from the scale level 2 to

scale level 5 using a modified threshold method. We used curvelet coefficients as inputs to

training the neural network. The training error of rotation and scale is much better than DCT

coefficients and DCT with SIFT keypoints, but the testing error much worse than the others.

Table 4-8 Training and testing error of curvelet coefficients

Curvelet coefficients

RMSE Training Testing

Rotation 0.2655 3.1592

Scale(X-Axis) 0.0487 0.0639

Scale(Y-Axis) 0.0453 0.0548

Translation(X-Axis) 0.3797 3.1193

Translation(Y-Axis) 0.3958 3.4386

Shear(X-Axis) 0.0259 0.0351

Shear(Y-Axis) 0.0281 0.0314

Figure 4.17 Difference between training and testing of curvelet coefficients

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

Iteration

M
S

E

Curvelet coefficients

Training error

Validation error

Testing error

64

If we see the Figure 4.17 the testing error does not follow the training error. The

generalization capability is much worse than the DCT coefficients with SIFT keypoints case.

4.3.3. Curvelet keypoints

Curvelet keypoints are coordinate information of the images and used for training neural

network as inputs. As we mentioned at chapter 3, a hundred keypoints pairs are extracted from

curvelet transformation which means two hundred inputs including x-axis and y-axis coordinate

information. Those keypoints are the position information of curvelet coefficients as we used at

the above section. The training result is at Table 4-9. Training error is significantly better than

the DCT coefficients and DCT with SIFT keypoints simulations same as we noticed in a single

parameter estimation. However, the testing error is much worse than the others, which seems to

be the same generalization issue with curvelet coefficients simulation. Figure 4.18 shows a huge

difference between training and testing error. So, now we’ll look over about the generalization

issue of neural network more detail.

Table 4-9 Training and testing error of curvelet keypoints

Curvelet keypoints

RMSE Training Testing

Rotation 0.00095 3.7093

Scale(X-Axis) 0.0364 0.1249

Scale(Y-Axis) 0.0368 0.1539

Translation(X-Axis) 0.00098 3.1551

Translation(Y-Axis) 0.00099 2.9657

Shear(X-Axis) 0.0243 0.0313

Shear(Y-Axis) 0.0270 0.0317

65

Figure 4.18 Difference between training and testing of curvelet keypoints

4.3.4. The generalization issue of neural network

The performance of artificial neural networks is mostly depends upon its generalization

capability. Generalization of the neural network is ability to handle unseen data. The

generalization capability of the network is usually determined by system complexity and training

of the network. Poor generalization is observed when the network is over-trained or system

complexity (or degree of freedom) is relatively more than the training data. There exist several

approaches to avoid over-training of neural network such as an early stop training, cross-

validation, or weight decaying methods. We tried to apply an early stop training approach but it

does not improve the capability of generalization. When the system complexity is high than the

training data, pruning method is able to reduce the system complexity. Reducing the number of

neurons of hidden layers could have the similar effects of pruning approach to the network. Even

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

Iteration

M
S

E

Training/Validation/Testing error

Training error

Validation error

Testing error

66

though we used 32 neurons, which is a half of network structure, it did not solve the

generalization issue. Now, we looked into the input data that are DCT coefficients, SIFT

keypoints, and curvelet keypoints. Figure 4.19 shows the 20 input data sets for DCT with SIFT

keypoints (left) and curvelet keypoints (right). The range from 0 to 100 in x-axis at left plot of

Figure 4.19 represents DCT coefficients and the data from index 101 to 200 in x-axis represents

coordinate information of SIFT keypoints. The scale of DCT coefficients is relatively larger than

curvelet keypoints.

Figure 4.19 Input data sequences of DCT with SIFT and curvelet keypoints

From Figure 3.29, we can also guess that DCT coefficients can represent the overall

information of the image while curvelet coefficients and keypoints can express details of the

image such as curves and lines. Therefore, we may think that DCT coefficients could play an

important role to generalize the unseen data. In Figure 4.19, even though the transformation

parameters of 20 sets of images are different, the DCT coefficients seem to have a consistent

pattern while the pattern of curvelet keypoints seem to be hard to predict. In order to increase

generalization capability, we might need to add some kinds of overall information of the image

for training the neural network.

0 20 40 60 80 100 120 140 160 180 200
-10

-8

-6

-4

-2

0

2

4

6

8

10

inputs

v
a
lu

e
s

DCT + SIFT inputs (20 sets)

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

inputs

v
a
lu

e
s

Curvelet keypoints inputs (20 sets)

67

4.3.5. Using DCT and curvelet coefficients

At this section, we tried to use DCT coefficients and curvelet coefficients together. As we

mentioned above, we might need overall information of the image in order to solve

generalization issue that was occurred in curvelet coefficients and curvelet keypoints simulation.

Figure 4.20 DCT with curvelet coefficients simulation

Table 4-10 Training and testing error of DCT with curvelet coefficients

DCT + Curvelet coefficients

RMSE Training Testing

Rotation 1.1115 1.2322

Scale(X-Axis) 0.0572 0.0519

Scale(Y-Axis) 0.0531 0.0537

Translation(X-Axis) 0.3262 0.3697

Translation(Y-Axis) 0.3260 0.3572

Shear(X-Axis) 0.0211 0.0252

Shear(Y-Axis) 0.0210 0.0258

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
S

E

DCT + Curvelet coefficients

Training error

Validation error

Testing error

68

 When we used DCT coefficients of the image, it improves the generalization capability as

we expected. However, DCT coefficients effect on training the neural network dominantly. Thus,

the training and testing results are similar with DCT coefficients case.

4.3.6. Using DCT and curvelet keypoints

We also use a hundred DCT coefficients of the image and a hundred curvelet keypoints

to training the neural network. The results is shown at Table 4-11. DCT coefficients are also able

to increase generalization capability of the neural network. We can see that curvelet keypoints

are more effective to train the neural network. Even though DCT coefficients played dominantly

by reducing generalization error, we can see training error is better than the others. The testing

error is also slightly better than the others in all parameters.

Figure 4.21 Training and testing error of DCT with curvelet keypoints

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
S

E

DCT + curvelet keypoints

Training error

Validation error

Testing error

69

Table 4-11 Training and testing error of DCT with curvelet keypoints

DCT + Curvelet keypoints

RMSE Training Testing

Rotation 0.9690 1.1909

Scale(X-Axis) 0.0519 0.0502

Scale(Y-Axis) 0.0534 0.0515

Translation(X-Axis) 0.2654 0.3440

Translation(Y-Axis) 0.2734 0.3285

Shear(X-Axis) 0.0222 0.0227

Shear(Y-Axis) 0.0196 0.0215

4.3.7. Cross validation

 We can increase generalization capability by adding DCT of the image for training the

neural network at the above section. However, there still seems to be the over-training at Figure

4.21. As mentioned above, early stop training approach does not significantly improve the over-

training. We applied a cross-validation method for training the network. First, we combine

training and testing data set and mix it. Then the data sets are divided into 10 sub sets that each

set has 50 inputs and outputs pairs. At the first round, we train sub sets from 2 to 10 and test with

set number 1. We train sub sets 1 and from 3 to 10, and test with set number 2 at a second round

of training. We continue to train the network using data set rotationally. After 5 round of

training, we could get a better training result comparing without applying cross-validation.

[Table 4-12]. In testing, it has significantly better performance to estimate rotation parameter.

70

Table 4-12 Cross validation of DCT with curvelet keypoints

DCT + Curvelet keypoints after cross-validation

RMSE Training Testing

Rotation 0.9401 0.8197

Scale(X-Axis) 0.0603 0.0836

Scale(Y-Axis) 0.0608 0.0791

Translation(X-Axis) 0.4828 0.7696

Translation(Y-Axis) 0.4837 0.6324

Shear(X-Axis) 0.0281 0.0303

Shear(Y-Axis) 0.0301 0.0295

4.4. Robustness to noisy images

At this section, we test neural network with noisy images instead of clear images. We add

two types of noise: Gaussian noise, and salt and pepper noise [Figure 4.22]. For Gaussian noise,

signal to noise ratio is described as Equation (4.1). 5dB, 2dB, and 1dB noisy images are tested in

this simulation. Salt and pepper noise is added by based on percentage of image pixels and 2%,

5%, and 10% images are tested.

)(

)(
log10log10 1010

noiseVar

imageVar

P

P
SNR

noise

signal
 (4.1)

71

Figure 4.22 Noisy images; Gaussian noise (top), Salt & Pepper noise (bottom)

 Trained parameters at above sections are used for testing noisy images. We compare the

results with DCT coefficients, DCT coefficients with SIFT keypoints, and DCT with curvelet

keypoints cases.

4.4.1. DCT coefficients with noisy images

Table 4-13 and Table 4-14 show the results of simulation with noisy images. As the

amount of noise is increasing, the performance becomes worse for both Gaussian and salt &

pepper type noise. The rotation and translation parameters become worse than other parameters.

72

Table 4-13 Testing results with Gaussian noise images (DCT coefficients)

Gaussian Noise w/o noise Noise (5dB) Noise (2dB) Noise (1dB)

Rotation 1.2282 1.5937 1.9068 2.0620

Scale(X-Axis) 0.0541 0.0588 0.0627 0.0642

Scale(Y-Axis) 0.0520 0.0556 0.0594 0.0612

Translation(X-Axis) 0.3560 1.0515 1.3996 1.5609

Translation(Y-Axis) 0.3178 0.7274 0.7726 0.7824

Shear(X-Axis) 0.0225 0.0231 0.0231 0.0230

Shear(Y-Axis) 0.0221 0.0232 0.0239 0.0242

Table 4-14 Testing results with Salt & Pepper noise images (DCT coefficients)

w/o noise Noise (2%) Noise (5%) Noise (10%)

Rotation 1.2282 1.2920 1.4885 1.8839

Scale(X-Axis) 0.0541 0.0550 0.0561 0.0591

Scale(Y-Axis) 0.0520 0.0524 0.0531 0.0562

Translation(X-Axis) 0.3560 0.4976 0.8798 1.3400

Translation(Y-Axis) 0.3178 0.3338 0.4369 0.7345

Shear(X-Axis) 0.0225 0.0225 0.0229 0.0231

Shear(Y-Axis) 0.0221 0.0223 0.0225 0.0233

4.4.2. DCT coefficients and SIFT keypoints with noisy images

 Table 4-15, and Table 4-16 show the results of DCT coefficients and SIFT keypoints.

The overall performance is better than DCT coefficients only case[Table 4-13, Table 4-14]

73

Table 4-15 Testing results with Gaussian noise images (DCT + SIFT)

 w/o noise Noise (5dB) Noise (2dB) Noise (1dB)

Rotation 1.2433 1.5335 1.8420 1.9813

Scale(X-Axis) 0.0527 0.0554 0.0587 0.0602

Scale(Y-Axis) 0.0537 0.0545 0.0564 0.0582

Translation(X-Axis) 0.3757 0.9252 1.2478 1.4120

Translation(Y-Axis) 0.3394 0.8677 0.9017 0.8987

Shear(X-Axis) 0.0258 0.0258 0.0258 0.0258

Shear(Y-Axis) 0.0264 0.0266 0.0267 0.0268

The estimation for translation parameters is worse than the other ones, which is the similar trend

with DCT coefficients case.

Table 4-16 Testing results with Salt & Pepper noise images (DCT + SIFT)

 w/o noise Noise (2%) Noise (5%) Noise (10%)

Rotation 1.2433 1.2450 1.4332 1.8133

Scale(X-Axis) 0.0527 0.0532 0.0541 0.0568

Scale(Y-Axis) 0.0537 0.0538 0.0531 0.0549

Translation(X-Axis) 0.3757 0.4657 0.7785 1.1808

Translation(Y-Axis) 0.3394 0.3693 0.4688 0.7634

Shear(X-Axis) 0.0258 0.0257 0.0258 0.0260

Shear(Y-Axis) 0.0264 0.0264 0.0265 0.0265

74

4.4.3. DCT coefficients and curvelet keypoints with noisy images

One of the applications of curvelet transform is to reduce noise of the image. However, in

this simulation, curvelet transform does not improve the estimation performance so much. The

result is slightly better when we exploit DCT coefficients and curvelet keypoints together [Table

4-11]. Table 4-17 and Table 4-18 show the estimation results using DCT and curvelet keypoints

together. The testing error of noisy images does not show the improvement compared to DCT

coefficients and DCT with SIFT keypoints, rather slightly worse in some parameters.

Table 4-17 Testing results with Gaussian noise images (DCT with curvelet keypoints)

 w/o noise Noise (5dB) Noise (2dB) Noise (1dB)

Rotation 1.1909 1.5606 1.9340 2.1279

Scale(X-Axis) 0.0502 0.0556 0.0588 0.0600

Scale(Y-Axis) 0.0515 0.0554 0.0588 0.0610

Translation(X-Axis) 0.3440 1.0869 1.4571 1.6173

Translation(Y-Axis) 0.3285 0.7615 0.7892 0.8141

Shear(X-Axis) 0.0227 0.0223 0.0222 0.0224

Shear(Y-Axis) 0.0215 0.0224 0.0234 0.0236

Table 4-18 Testing results with Salt & Pepper noise images (DCT with curvelet keypoints)

w/o noise Noise (2%) Noise (5%) Noise (10%)

Rotation 1.1909 1.2060 1.4057 1.8441

Scale(X-Axis) 0.0502 0.0508 0.0527 0.0550

Scale(Y-Axis) 0.0515 0.0522 0.0534 0.0557

Translation(X-Axis) 0.3440 0.5074 0.8846 1.3553

Translation(Y-Axis) 0.3285 0.3501 0.4689 0.7598

Shear(X-Axis) 0.0227 0.0221 0.0224 0.0225

Shear(Y-Axis) 0.0215 0.0217 0.0217 0.0224

75

The reason we might guess is that if curvelet keypoints are extracted well from noisy

image, it can estimate parameters better. However, it also has possible to get worse results, when

the curvelet keypoints do not represent its features well as displayed in Figure 4.23.

Figure 4.23 False curvelet keypoints of salt & pepper noisy image (10%)

76

Chapter 5. Conclusions and future work

In this thesis, neural networks are used to estimate the parameters needed for registration

of brain images. The inputs to the networks are DCT coefficients and coordinate information.

We suggested to use curvelet keypoints that are extracted by using curvelet transformation as

coordinate information. Curvelet transform is a multiresolution geometric analysis that is able to

exploit the geometric properties of structures better than wavelet transform due to its high

directional sensitivity. As discussed in chapter 4, the training of neural network with curvelet

keypoints approach performed significantly better than other methods on the estimation of

rotation or scale parameters. The training and testing errors of ANN with DCT coefficients and

curvelet keypoints are slightly better than other methods when all image registration parameters

are applied.

For future work, we will apply this approach (DCT with curvelet keypoints) to more

images to further test its performance.

77

BIBLIOGRAPHY

[1] Barbara Zitová, Jan Flusser, "Image Registration Methods: a survey," Image and Vision

Computing, vol. 21, no. 11, pp. 977-1000, 2003.

[2] S. Damas, O. Cordon, J. Santamaria, "Medical Image Registration Using Evolutionary

Computation: An Experimental Survey," IEEE Computational Intelligence Magazine, pp.

26-42, 2011.

[3] W. Rui, L. Minglu, "An Overview of Medical Image Registration," Proceedings of the

Fifth International Conference on Computational Intelligence and Multimedia

Applications, pp. 385-390, 2003.

[4] Medha V. Wyawahare, Dr. Pradeep M. Patil, and Hemant K. Abhyankar, "Image

Registration Techniques: An overview," International Journal of Signal Processing, Image

Processing and Pattern Recognition, vol. 2, 2009.

[5] A. Malviya, S.G. Bhirud, "Wavelet based Image Registration using Mutual Information,"

International Conference on Emerging Trends in Electronic and Photonic Devices &

Systems, pp. 241-244, 2009.

[6] Y. Yamamura, "A Method for Image Registration by Maximization of Mutual

Information," SICE_ICASE International Join Conference, pp. 1469-1472, 2006.

[7] W. Pratt, Digital Image Processing, Wiley, 1991.

[8] W. Pratt, "Correlation Techniques of Image Registration," IEEE Transactions on

Aerospace and Electronic Systems, vol. 10, pp. 353-358, 1974.

78

[9] P. van Wie, M. Stein, "A Landsat Digital Image Rectification System," IEEE Transactions

on Geoscience Electronics, vol. 15, pp. 130-136, 1977.

[10] P. Anuta, "Spatial Registration of Multispectral and Multitemporal Digital Imagery using

Fast Fourier Transform," IEEE Transactions on Geoscience Electronics, vol. 8, pp. 353-

368, 1970.

[11] R. Bracewell, The Fourier Transform and Its Applications, New York: McGraw-Hill, 1965.

[12] E.D. Castro, C. Morandi, "Registration of Translated and Rotated Images using Finite

Fourier Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

9, pp. 700-703, 1987.

[13] H.S. Alhichri, M. Kamel, "Virtual Circles: a new set of features for fast image

registration," Pattern Recognition Letters, vol. 24, pp. 1181-1190, 2003.

[14] A. Noble, "Finding corners," Image and Vision Computing, vol. 6, pp. 121-128, 1988.

[15] S. Haykin, Neural Networks and Learning Machines, New York: Prentice Hall, 2009.

[16] I Elhanany, M Sheinfeld, A Beck, Y Kadmon, N Tal, D Tirosh, "Robust Image

Registration Based on Feedforward Neural Networks," IEEE International Conference on

Systems, Man, and Cybernetics, pp. 1507-1511, 2000.

[17] A.B. Abche, F. Yaacoub, A. Maalouf, E. Karam, "Image Registration based on Neural

Network and Fourier Transform," Proceedings of the 28th IEEE EMBS Annual

International Conference, pp. 4803-4806, 2006.

[18] J. Wu, J. Xie, "“Zernike Moment-based Image Registration Scheme Utilizing Feedforward

Neural Networks," Proceedings of the 5th World Congress on Intelligent Control and

Automation, pp. 4046-4048, 2004.

79

[19] P. Gadde, "Affine Image Registration Using Artificial Neural Networks," California

Polytechnic State University, San Luis Obispo, 2013.

[20] J. Flusser, B. Zitova, "Combined Invariants to Linear Filtering and Rotation," International

Journal of Pattern Recognition and Artificial Intelligence, vol. 13, pp. 1123-1136, 1999.

[21] "Magnetic Resonance –Technology Information Portal," 2012. [Online]. Available:

http://www.mr-tip.com/serv1.php.

[22] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," University of

British Columbia, 2004.

[23] I. A. El Rube, M. A. Sharks, A. R. Salem, "Image Registration Based on Multi-Scale SIFT

for Remote Sensing Images," International Conference on Signal Processing and

Communication Systems, pp. 1-5, 2009.

[24] D. Veitch, "Wevelet Neural Networks and Their Application in The Study of Dynamical

Systems," Department of Mathematics, University of York, 2005.

[25] Jianwei Ma, Gerlind Plonka, "The Curvelet Transform," IEEE Signal Processing

Magagine, 2010.

[26] Emmanuel Cand`es, Laurent Demanet, David Donoho and Lexing Ying, "Fast Discrete

Curvelet Transforms," Applied and Computational Mathematics, 2006.

[27] Alzubi, S., Islam, N., Abbod, M., "Multiresolution Analysis Using Wavelet, Ridgelet, and

Curvelet Transforms for Medical Image Segmentation," Int J Biomed Imaging, p. 136034,

2011.

80

[28] Ankita Kaushal, Paramjeet Kaur, "Curvelet and Wavelet Image Fusion using Neural

Network Algorithm," International Journal of Computer Science and Information

Technologies, pp. 7508-7512, 2014.

[29] Bhawna Gupta, Shamik Tiwari, "Lung Cancer Detection using Curvelet Transform and

Neural Network," International Journal of Computer Applications, pp. 15-17, 214.

[30] Khaled Abu Mahmoud, Adel Al-Jumaily, Maen Takruri, "Wavelet and Curvelet Analysis

for Automatic Identification of Melanoma Based on Neural Network Classification,"

International Journal of Computer Information Systems and Industrial Management, vol.

5, pp. 606-614, 2013.

[31] Khalil al-saif, Nagham ajeel al-ajeely, "Normalized Cut Algorithm on Curvelet Coefficient

for Digital Image Segmentation," International Journal of Engineering and Innovative

Technology, vol. 3, no. 11, 2014.

[32] S. Elaiwat, M. Bennamoun, F. Boussaid, and A. El-Sallam, "3-D Face Recognition Using

Curvelet Local Features," IEEE Signal Processing Letters, vol. 21, 2014.

[33] L. Y. Laurent Demanet, "Curvelets and Wave Atoms for Mirror-Extended Images,"

Stanford University, University of Texas at Austin, 2007.

[34] U. Qayyum, "Phase Efficient Neural Network using Curvelet Features for Face

Recognition," IEEE International Multitopic Conference, 23 December 2008.

[35] A. Graps, "An Introduction to Wavelets," IEEE Computational Science and Engineering,

vol. 2, 1995.

[36] Michel Misiti, Yves Misiti, Georges Oppenheim, Jean-Michel Poggi, "Wavelet Toolbox 4

user's guide," The MathWorks, Inc., 1997.

81

[37] Hana Hejazi, Mohammed Alhanjouri, "Face Recognition Using Curvelet Transform," pp.

388-396, 2010.

[38] Tanaya Guha, Q. M. Jonathan Wu, "Curvelet Based Feature Extraction," Face Recognition,

2010.

[39] P.-Y. Lin, "An introduction to Wavelet Transform," Graduate Institute of Communication

Engineering, National Taiwan University, 2007.

[40] C.-L. Liu, "A Tutorial of Wavelet Transform," 2010.

[41] Mark Hudson Beale, Martin T. Hagan, Howard B. Demuth, "Neural Network Toolbox

User Guide," 1992.

[42] L. Y. Laurent Demanet, "Curvelets, Wave Atoms, and Wave Equations," 2006.

[43] SHREEJA R, KHUSHALI DEULKAR, "Neuro Fuzzy Model for Face Recognition with

Ccurvelet Based Feature Image," International Journal of Engineering Science and

Technology, vol. 3, no. 6, pp. 5306-5312, 2011.

[44] Amol D. Rahulkar, Dattatraya V. Jadhav, Raghunath S. Holambe, "Fast Discrete Curvelet

Transform Based Anisotropic Feature Extraction for Iris Recognition," ICTACT Journal on

Image and Video Processing, pp. 69-75, 2010.

[45] Elaiwat, S., Bennamoun, M., Boussaid, F., El-Sallam, A., "A Curvelet-based Approach for

Textured 3D Face Recognition," Pattern Recognition, pp. 1235-1246, 2015.

[46] N. Vujovic, D. Brzakovic, "Establishing The Correspondence Between Control Points,"

IEEE Transactions on Image Processing, vol. 6, pp. 1388-1399, 1997.

82

[47] Liu Zhaoying, Zhou Fugen, Bai Xiangzhi, Wang Hui, Tan Dongjie, "Multi-Modal Image

Registration by Mutual Information Based on Optimal Region Selection," International

Conference on Information, Networking and Automation, pp. 249-253, 2010.

[48] Alman, D.H. and L. Ningfang, "Overtraining in Back-propagation Neural Networks: A

CRT Color Calibration Example," Color Research & Application, pp. 122-125, 2002.

[49] R. Vidakovic, "Wavelets for Kids, a tutorial introduction," Wavelet Digest, 1991.

83

APPENDICES

Appendix A Matlab codes

- Neural network training script

%% Image registration Simulation
% Author - Hyunjong Choi

clc; clear all; close all;% delete H.mat bias.mat weights.mat;

% Load training inputs/outputs files
load train_test_data/326_inputs_cv_test5.mat;
load train_test_data/326_outputs_cv_test5.mat;

% Train parameters
H = [64]; % Hidden neurons
rate = 0.0001; % Learning rate
epoch = 1000; % Iteration

% Train weighting factors and parameters
[weights, layer_out, error, val_error, bias, actcnt, train_time, save_w,

save_b] = NeuralNetwork_Train_Validation(inputs, outputs, H, rate, epoch);

%% Calculate RMSE of trained networks
Err = abs(outputs(:,1:400) - layer_out{end});
rot_E = sqrt(mean(Err(1,:).^2));
scale_x_E = sqrt(mean(Err(2,:).^2));
scale_y_E = sqrt(mean(Err(3,:).^2));
trans_x_E = sqrt(mean(Err(4,:).^2));
trans_y_E = sqrt(mean(Err(5,:).^2));
shear_x_E = sqrt(mean(Err(6,:).^2));
shear_y_E = sqrt(mean(Err(7,:).^2));
Train_result =

[rot_E;scale_x_E;scale_y_E;trans_x_E;trans_y_E;shear_x_E;shear_y_E];

- Neural network testing script

%% 2. Testing networks
%clc; %clear all;

load train_test_data/327_t_inputs_cv_test4_S_10.mat;
load train_test_data/327_t_outputs_cv_test5.mat;

% Testing network
idx = 1;
for s = 5 : 5: length(save_w)
 test_out = NeuralNetwork(t_inputs, save_w{s}, H, save_b{s});

 t_Err = t_outputs' - test_out{end}';

 mean_Err = mean(t_Err)';

84

 absmean_Err = mean(abs(t_Err))';
 std_Err = std(t_Err)';
 rmse = sqrt(mean(t_Err.^2))';
 max_Err = max(abs(t_Err))';
 min_Err = min(abs(t_Err))';

 tmp_test_E = t_outputs - test_out{end};
 test_E(idx) = mean(sum((tmp_test_E)'.^2)/50);

 idx = idx + 1;
end
% Find minimum error and check the error values
[Y I] = min(test_E);

test_out = NeuralNetwork(t_inputs, save_w{I*5}, H, save_b{I*5});
t_Err = t_outputs' - test_out{end}';

mean_Err = mean(t_Err)';
absmean_Err = mean(abs(t_Err))';
std_Err = std(t_Err)';
rmse = sqrt(mean(t_Err.^2))';
max_Err = max(abs(t_Err))';
min_Err = min(abs(t_Err))';
result = [rmse mean_Err absmean_Err std_Err max_Err min_Err];

fig = figure(1);
x = 5:5:actcnt;
plot(error, 'k--', 'LineWidth', 1, 'Marker', '*'); grid on; hold on;
plot(x, val_error, 'k:', 'LineWidth', 1, 'Marker', '^');
tline = plot(x, test_E, 'k-.', 'LineWidth', 1, 'Marker', 's');
xlabel('Iteration'); ylabel('MSE'); title('Training/Validation/Testing

error');
legend('Training error','Validation error','Testing error');
xlim([0 1000]);

dcm_obj = datacursormode(fig);
set(dcm_obj,

'DisplayStyle','datatip','SnapToDataVertex','off','Enable','on');
target = handle(tline);
dtip = dcm_obj.createDatatip(target);
position = [I*5, Y];
update(dtip, position);

- Neural network training function

function [weights, layer_out, E, val_E, bias, cnt, train_time, save_w,

save_b] = NeuralNetwork_Train_Validation(raw_inputs, raw_outputs, H, rate,

epoch)
% function [weights, actOutputs] = NeuralNetwork_Train(inputs, d_outputs, H,

rate, epoch)
% Description of the function : The function is to train weights and

parameters of general artificial neural network.
%

85

% Input parameters(arguments) are :
% inputs : Input vectors
% outputs : Desired outputs
% H : hidden layer & the number of neurons
% iteration : the number of iteration to execute
% rate : learning rate
%
% Output values returned are :
% weights : Weights factors
% layer_out : Actual output vectors
% E : training error
% bias : bias
%
% Developed by: Hyunjong Choi
% Revised: 6/1/2015
% Updated: 10/4/2015
% - a bug based on handcalculation code:
% - remove useless parameters

rand('seed',1);

% Divide training and validation set
inputs = raw_inputs(:,1:400);
outputs = raw_outputs(:, 1:400);
val_inputs = raw_inputs(:, 401:450);
val_outputs = raw_outputs(:, 401:450);

% Get NN dimensions
HLayer = size(H, 2);
TLayer = HLayer + 2;
M = size(inputs, 1);
N = size(outputs, 1);
Q = size(inputs, 2);
a = 1; b = 1; alpha = 0.5;

% Initialize parameters
% weights : It includes weights for bias at first row)
for h = 1 : HLayer+1
 if h == 1
 weights{h} = 0.01*rands(H(h), M);
 elseif h == (HLayer+1)
 weights{h} = 0.01*rands(N, H(h-1));
 else
 weights{h} = 0.01*rands(H(h), H(h-1));
 end
end

% load 'init_weights.mat';
n_weights = weights;
p_weights = weights;
p_d_w = weights;
d_w = weights;
save_w = {};
save_b = {};
for l = 1 : TLayer
 if l == 1

86

 layer_out{l} = ones(M, Q);
 elseif l == TLayer
 layer_out{l} = ones(N, Q);
 net{l} = ones(N, Q);
 bias{l} = 0.01*rands(N, 1);
 else
 layer_out{l} = ones(H(l-1), Q);
 net{l} = ones(H(l-1), Q);
 bias{l} = 0.01*rands(H(l-1), 1);
 end
end

% load 'init_bias.mat';
n_bias = bias;
p_bias = bias;
p_d_b = bias;
d_b = bias;

cnt = 1; val_cnt = 1;
tic
for i = 1 : epoch
 order = randperm(Q);
 for q = 1 : Q
 % For one iteration, it includes the number of input SETs
 % A set of inputs has the number of input elements
 % Generate noise and add it to training inputs
 layer_out{1}(:,order(q)) = inputs(:,order(q));

 % Forward path of networks
 for n = 1 : (TLayer-1)
 % Summation part
 net{n+1}(:,order(q)) = weights{n}*layer_out{n}(:,order(q)) +

bias{n+1};

 % Activation part
 if n == TLayer-1
 layer_out{n+1}(:,order(q)) = purelin(net{n+1}(:,order(q)));
 else
 layer_out{n+1}(:,order(q)) =

hyperbolic(net{n+1}(:,order(q)), a, b);
 end
 end

 % Backward path (Update parameters)
 for n = 1 : (TLayer-1)
 % Derivative of output of neurons (edited 10/4/2015)
 out_der = (b/a).*(a-layer_out{TLayer-

n+1}(:,order(q))).*(a+layer_out{TLayer-n+1}(:,order(q)));

 % Output layer neurons
 if n == 1
 % Calculate errors of output neurons (edited 10/4/2015)
 error = outputs(:,order(q)) - layer_out{TLayer}(:,order(q));
 delta{TLayer}(:,order(q)) = error;
 else

87

 delta{TLayer-n+1}(:,order(q)) = weights{TLayer-

n+1}'*delta{TLayer-n+2}(:,order(q)).*out_der;
 end
 end

 for n = 1 : (TLayer-1)
 if n == 1
 d_w{TLayer-1} = alpha*p_d_w{TLayer-1} +

rate.*delta{TLayer}(:,order(q))*layer_out{TLayer-1}(:,order(q))';
 n_weights{TLayer-1} = weights{TLayer-1} + d_w{TLayer-1};

 d_b{TLayer} = alpha*p_d_b{TLayer} +

rate.*delta{TLayer}(:,order(q));
 n_bias{TLayer} = bias{TLayer} + d_b{TLayer};
 else
 d_w{TLayer-n} = alpha*p_d_w{TLayer-n} + rate.*delta{TLayer-

n+1}(:,order(q))*layer_out{TLayer-n}(:,order(q))';
 n_weights{TLayer-n} = weights{TLayer-n} + d_w{TLayer-n};
 d_b{TLayer-n+1} = alpha*p_d_b{TLayer-n+1} +

rate.*delta{TLayer-n+1}(:,order(q));
 n_bias{TLayer-n+1} = bias{TLayer-n+1} + d_b{TLayer-n+1};
 end
 end

 % Save as previous stage value
 p_weights = weights;
 weights = n_weights;
 p_bias = bias;
 bias = n_bias;
 p_d_w = d_w;
 p_d_b = d_b;

 end

 % Denormalising
 tmp_E = outputs - layer_out{TLayer};
 E(cnt) = mean(sum((tmp_E)'.^2)/Q);
 E(1,cnt)

 if (mod(cnt,5) == 0)
 val_act = NeuralNetwork(val_inputs, weights, H, bias);
 tmp_E_val = val_outputs - val_act{TLayer};
 tmp_val_E = mean(sum((tmp_E_val)'.^2)/50);
 val_E(val_cnt) = tmp_val_E;

 save_w{cnt} = weights;
 save_b{cnt} = bias;

 val_cnt = val_cnt + 1;
 end

 if (E(1,cnt) < 0.00001)
 break;
 end
 cnt = cnt + 1;

88

end
train_time = toc
end

- Neural network forward loop function

function [layer_outs] = NeuralNetwork(inputs, weights, H, bias)
% function [outputs] = NeuralNetwork(inputs, weights, H, a, b);
% Description of function : This function is to get output of wavelet
% neural network with trained weighting factors and parameters of wavelet
% function
%
% Input parameters (arguments) are:
% inputs : input vectors (N X M), N:elements, M:# of input sets
% weights : weights factors
% H : hidden layer & the number of neurons
% bias : bias values
%
% Output values returned are:
% layer_out: outputs of NN
%
% Developed by: Hyunjong Choi
% Revised: 6/1/2015

HLayer = size(H, 2);
TLayer = HLayer + 2;
M = size(inputs, 1);
Q = size(inputs, 2);
P = H(1);
a = 1; b = 1;

% tic
for q = 1 : Q
 % For one iteration, it includes the number of input SETs
 % A set of inputs has the number of input elements
 layer_outs{1}(:,q) = inputs(:,q);

 % Forward path of networks
 for n = 1 : (TLayer-1)
 % Summation part
 net{n+1}(:,q) = weights{n}*layer_outs{n}(:,q) + bias{n+1};

 % Activation part
 if n == TLayer-1
 layer_outs{n+1}(:,q) = purelin(net{n+1}(:,q));
 else

 layer_outs{n+1}(:,q) = hyperbolic(net{n+1}(:,q), a, b);
 end
 end
end
% test_time = toc;
end

89

- Generate training/testing image sets

%% Image registration Generate train and test sets
clc; clear all; close all;

%% 1. Read image file and set the number of training and testing
filename = 'brain2';
im = imread([filename, '.jpg']);

% Train parameters
numTrain = 450; % Number of training pairs
numTest = 50; % Number of testing pairs
M = numTrain + numTest;
keypoints = 50; % Number of keypoints coordinates from SIFT

%% 2. Generate random variables for rotation, scale, translation, shear
rand('seed',2);
rotation = randi([-12 12],M,1);
scale_x = 0.9 + (1.1 - 0.9).*rand(M, 1);
scale_y = 0.9 + (1.1 - 0.9).*rand(M, 1);
trans_x = randi([-5 5],M,1);
trans_y = randi([-5 5],M,1);
shear_x = 0.1.*rand(M, 1);
shear_y = 0.1.*rand(M, 1);

%% 3. Save variables & generate affined images

affine_para = [rotation scale_x scale_y trans_x trans_y shear_x shear_y];

for n = 1 : M
 outputImg = Affine_Images(im, rotation(n), scale_x(n), scale_y(n),

trans_x(n), trans_y(n), shear_x(n), shear_y(n));

 imwrite(outputImg, ['../train_images/', filename, '-', num2str(n), '-of-

1000.jpg']);
end

%% 4. Find out keypoints using SIFT (should run in window PC)
for n = 1 : M
 affined = ['../train_images/', filename, '-', num2str(n), '-of-

1000.jpg'];
 [matched_num(n) origin_pos{n} matched_pos{n}] = match([filename,

'.jpg'], affined);
 origin_pairs = origin_pos{n}(1:keypoints, :);
 affined_pairs = matched_pos{n}(1:keypoints,:);

 origin_crd{n} = [origin_pairs(:,1); origin_pairs(:,2)];
 affined_crd{n} = [affined_pairs(:,1); affined_pairs(:,2)];
end

%% 5. Get DCT coefficients from affined images

90

dct_tmp1 = {}; dct_coeffi = {};
for m = 1 : M
 im2 = imread(['../train_images/', filename, '-', num2str(m), '-of-

1000.jpg']);
 im2_gray = rgb2gray(im2);
 dct_origin = dct2(im2_gray);
 dct_tmp1{m} = dct_origin(1:10, 1:10);
end

%% 6. Normalization inputs and structuring for network inputs
for m = 1 : M
 input = reshape(dct_tmp1{m}, [], 1);

 tmp_inputs(:, m) = [input; affined_crd{m}];
 inputs(:, m) = zscore(tmp_inputs(:,m));
 outputs(:, m) = [rotation(m) scale_x(m) scale_y(m) trans_x(m)

trans_y(m) shear_x(m) shear_y(m)]';
end

%% 7. Divide for training and testing samples
t_inputs = inputs(:,numTrain+1:numTrain+numTest);
t_outputs = outputs(:,numTrain+1:numTrain+numTest);

inputs = inputs(:,1:numTrain);
outputs = outputs(:,1:numTrain);

- Affine transform function

function [outputImage] = Affine_Images(Im, r_angle, sx, sy, tx, ty, shx,

shy)

% Rotation matrix
R = [cos(r_angle*pi/180) sin(r_angle*pi/180) 0;
 -sin(r_angle*pi/180) cos(r_angle*pi/180) 0;
 0 0 1];

% Scaling matrix
S = [sx 0 0;
 0 sy 0;
 0 0 1];

% % Shearing matrix
SH = [1 shx 0;
 shy 1 0;
 0 0 1];

% Transformation function
TR = R*S*SH;

tform = maketform('affine', TR);
[I X Y] = imtransform(Im, tform, 'XYScale', 1);
outputImage = imtranslate(I, [tx, ty],'OutputView','full');

91

end

- Extract curvelet keypoints script

%% Extract keypoints based on curvelet transform
clc; clear all; close all;

% Train parameters
numTrain = 450; % Number of training pairs
numTest = 50; % Number of testing pairs
M = numTrain + numTest;
filename = 'brain2';

for m = 1 : 100
 % Load image
 im = imread(['../../../train_images/brain2-500/', filename, '-',

num2str(m), '-of-500.jpg']);
 im_gray = rgb2gray(im);
 [M N] = size(im_gray);

% % Noisy image pre-processing
% disp('Compute all thresholds');
% F = ones(M);
% X = fftshift(ifft2(F)) * sqrt(prod(size(F)));
% Cn = fdct_wrapping(X,0,2);
%
% % Compute norm of curvelets (exact)
% E = cell(size(Cn));
% for s=1:length(Cn)
% E{s} = cell(size(Cn{s}));
% for w=1:length(Cn{s})
% A = Cn{s}{w};
% E{s}{w} = sqrt(sum(sum(A.*conj(A))) / prod(size(A)));
% end
% end
% Cn = fdct_wrapping(im_gray,1,2);
% % Apply thresholding
% Cnt = Cn; sigma = 20;
% for s = 2:length(Cn)
% thresh = 3*sigma + sigma*(s == length(Cn));
% for w = 1:length(Cn{s})
% Cnt{s}{w} = Cn{s}{w}.* (abs(Cn{s}{w}) > thresh*E{s}{w});
% end
% end
%
% % Take inverse curvelet transform
% im_gray = real(ifdct_wrapping(Cnt,1));
%

 % Discrete Curvelet transform
 tic; C = fdct_wrapping(double(im_gray), 0); toc;
 Ct = C;
 tt = (real(Ct{1}{1}));
 cv_Dct = dct2(tt);
 curveletDCT = reshape(cv_Dct(1:5,1:5), [], 1);

92

 % Get Parameters from the result of Curvelet
 [X_rows, X_cols, F_rows, F_cols, N_rows, N_cols] =

fdct_wrapping_param(C, M, N);

 % Get Mean value of each scale
 for s = 1 : length(C)
 cfs = [];
 for w = 1 : length(C{s})
 cfs = [cfs; abs(C{s}{w}(:))];
 end
 scale{s} = sort(cfs, 'descend');
 % scale_mean{s} = mean(cfs);
 scale_mean{s} = max(cfs)*0.7;
 end
 [s1r s1c] = size(C{1}{1});
 [sr sc] = size(C{length(C)}{1});

 C{1}{1} = zeros(s1r, s1c);
 C{length(C)}{1} = zeros(sr, sc);

 % Set small coefficients to zero
 for s = 1 : length(C)
 for w = 1 : length(C{s})
 C_Keypoints{s}{w} = C{s}{w}.* (abs(C{s}{w})>scale_mean{s});
 end
 end

 % Get keypoints index information of each scale,
 % Take the index information of non-zero values
 origin_key_num = zeros(1, length(C_Keypoints));
 for s = 1 : length(C_Keypoints)
 for w = 1 : length(C_Keypoints{s})
 [tmp_KeyidxR{s}{w} tmp_KeyidxC{s}{w}] = find(C_Keypoints{s}{w} ~=

0);
 origin_key_num(1, s) = length(tmp_KeyidxR{s}{w}) +

origin_key_num(1, s);
 end
 end

 % Determine the number of keypoint to extract
 ratio = floor(origin_key_num./sum(origin_key_num)*150);
 while sum(ratio) < 150
 [val_ratio midx] = max(ratio);
 ratio(midx) = ratio(midx) + 1;
 end
 ratio(1) = 1; ratio(6) = 1;

 % Set small coefficients to zero
 for s = 1 : length(C)
 for w = 1 : length(C{s})
 CS_Keypoints{s}{w} = C{s}{w}.*

(abs(C{s}{w})>=scale{s}(ratio(s)*2));
 end

93

 end

 for s = 1 : length(CS_Keypoints)
 for w = 1 : length(CS_Keypoints{s})
 [KeyidxR{s}{w} KeyidxC{s}{w}] = find(CS_Keypoints{s}{w} ~= 0);
 end
 end

 figure(m);
 imshow(im); hold on;
 % Get keypoints index in the original image
 num_key = 0; num_key_2 = 0; num_key_3 = 0; num_key_4 = 0; num_key_5 = 0;
 cnt = 1;
 for s = 2 : length(C)-1
 for w = 1 : length(C{s})/2
 for i = 1 : length(KeyidxR{s}{w})
 % Curvelet coefficients
 cv_coeff(cnt, 1) = abs(CS_Keypoints{s}{w}(KeyidxR{s}{w}(i),

KeyidxC{s}{w}(i)));
 cnt = cnt + 1;
 % Coordinate information in the image
 imgIdx{s}{w}(i, 1) = (X_rows{s}{w}(KeyidxR{s}{w}(i),

KeyidxC{s}{w}(i)));
 imgIdx{s}{w}(i, 2) = (X_cols{s}{w}(KeyidxR{s}{w}(i),

KeyidxC{s}{w}(i)));
 % Total number of keypoints
 num_key = num_key + 1;
 keypoints_crd(num_key, 1) = imgIdx{s}{w}(i, 2);
 keypoints_crd(num_key, 2) = imgIdx{s}{w}(i, 1);

 if s == 2 % Scale 2
 plot(imgIdx{s}{w}(i, 2), imgIdx{s}{w}(i, 1), 'y*');
 num_key_2 = num_key_2 + 1;
 elseif s == 3 % Scale 3
 plot(imgIdx{s}{w}(i, 2), imgIdx{s}{w}(i, 1), 'r*');
 num_key_3 = num_key_3 + 1;
 elseif s == 4 % Scale 4
 plot(imgIdx{s}{w}(i, 2), imgIdx{s}{w}(i, 1), 'g*');
 num_key_4 = num_key_4 + 1;
 elseif s == 5 % Scale 5
 plot(imgIdx{s}{w}(i, 2), imgIdx{s}{w}(i, 1), 'm*');
 num_key_5 = num_key_5 + 1;
 end
 end
 end
 end

 input_cvKey = [keypoints_crd(:, 1); keypoints_crd(:, 2)];
 inputs(:, m) = zscore([curveletDCT; input_cvKey]);
 outputs(:,m) = affine_para(m,:)';

end

%% Divide for training and testing samples
t_inputs = inputs(:,numTrain+1:numTrain+numTest);

94

t_outputs = outputs(:,numTrain+1:numTrain+numTest);

inputs = inputs(:,1:numTrain);
outputs = outputs(:,1:numTrain);

- Wavelet neural network training function

function [weights, layer_out, E, val_E, bias, lamda, tau, cnt, train_time,

save_w, save_b, save_t, save_l] = Wavelet_NN_Train_Validation(raw_inputs,

raw_outputs, H, rate, epoch)
% function [weights, layer_out, E, bias, lamda, tau, cnt] = Wavelet_NN_Train

(inputs, outputs, H, rate, epoch)
% Description of the function : The function is to train weights and

parameters
% of wavelet neural network.
%
% Input parameters(arguments) are :
% inputs : Input vectors
% outputs : Desired outputs
% H : hidden layer & the number of neurons
% epoch : the number of iteration to execute
% rate : learning rate
%
% Output values returned are :
% weights : Weights factors
% Layer_out : Actual output vectors
% E : training error
% bias : bias
%
% Developed by: Hyunjong Choi
% Revised: 6/1/2015

% Divide training and validation set
inputs = raw_inputs(:,1:250);
outputs = raw_outputs(:, 1:250);
val_inputs = raw_inputs(:, 251:300);
val_outputs = raw_outputs(:, 251:300);

% Get NN dimensions
HLayer = size(H, 2);
TLayer = HLayer + 2;
M = size(inputs, 1);
N = size(outputs, 1);
Q = size(inputs, 2);
a = 1; b = 1;
alpha = 0.4;

% Initialize parameters
% weights : It includes weights for bias at first row)
for h = 1 : HLayer+1
 if h == 1
 weights{h} = 0.01*rands(H(h), M);
 elseif h == (HLayer+1)
 weights{h} = 0.01*rands(N, H(h-1));

95

 else
 weights{h} = 0.01*rands(H(h), H(h-1));
 end
end
n_weights = weights;
p_weights = weights;
p_d_w = weights;
d_w = weights;
tmp_weights = weights;

for l = 1 : TLayer
 if l == 1
 layer_out{l} = ones(M, Q);
 elseif l == TLayer
 layer_out{l} = ones(N, Q);
 net{l} = ones(N, Q);
 bias{l} = rands(N, 1);
 lamda{l} = rands(N, 1);
 tau{l} = rands(N, 1);

 p_lamda{l} = lamda{l};
 p_tau{l} = tau{l};
 else
 layer_out{l} = ones(H(l-1), Q);
 net{l} = ones(H(l-1), Q);
 bias{l} = rands(H(l-1), 1);
 lamda{l} = rands(H(l-1), 1);
 tau{l} = rands(H(l-1), 1);
 p_lamda{l} = lamda{l};
 p_tau{l} = tau{l};

 end
end
n_bias = bias;
p_bias = bias;
p_d_b = bias;
d_b = bias;

d2 = max(max(inputs)); d1 = min(min(inputs));
for l = 2 : TLayer-1
 for h = 1 : H(l-1)
 if h == 1
 a = rands(1);
 tau{l}(h,1) = (d2 - d1)*a;
 lamda{l}(h,1) = 0.5*(d2 - d1);
 elseif mod(h,2) == 0
 tau{l}(h,1) = tau{l}(h/2,1)*rands(1);
 lamda{l}(h,1) = 0.5*(tau{l}(h/2,1) - d1);
 elseif mod(h,2) == 1
 tau{l}(h,1) = d2 - tau{l}((h-1)/2,1)*rands(1);
 lamda{l}(h,1) = 0.5*(d2 - tau{l}((h-1)/2, 1));
 end
 end
end
p_d_tau = tau;
p_d_lamda = lamda;

96

d_tau = tau;
tmp_tau = tau;
d_lamda = lamda;
tmp2_lamda = lamda;

save_w = {}; save_b={}; save_l={}; save_t={};
cnt = 1; val_cnt = 1; E(1) = 1000; p_E = E;
tic
for i = 1 : epoch
 order = randperm(Q);
 for q = 1 : Q
 % For one iteration, it includes the number of input SETs
 % A set of inputs has the number of input elements
 layer_out{1}(:,order(q)) = inputs(:,order(q));

 % Forward path of networks
 for n = 1 : (TLayer-1)
 % Summation part
 net{n+1}(:,order(q)) = weights{n}*layer_out{n}(:,order(q)) +

bias{n+1};

 % Activation part
 if n == TLayer-1
 layer_out{n+1}(:,order(q)) = purelin(net{n+1}(:,order(q)));
 else
 layer_out{n+1}(:,order(q)) =

Morlet_Wavelet(net{n+1}(:,order(q)), lamda{n+1}, tau{n+1}, '');
 end
 end

 % Backward path (Update parameters)
 for n = 1 : (TLayer-1)
 % Output layer neurons
 out_der{TLayer-n+1}(:,order(q)) = Morlet_Wavelet(net{TLayer-

n+1}(:,order(q)), lamda{TLayer-n+1}, tau{TLayer-n+1}, 'de');

 if n == 1
 % Calculate errors of output neurons
 error = outputs(:,order(q)) - layer_out{TLayer}(:,order(q));
 delta{TLayer} = error;
 else
 tmp_lamda = (net{TLayer-n+1}(:,order(q)) - tau{TLayer-

n+1})./(lamda{TLayer-n+1}.^2);

 delta{TLayer-n+1} = weights{TLayer-

n+1}'*delta{TLayer}.*out_der{TLayer-n+1}(:,order(q));
 delta_lamda{TLayer-n+1} = weights{TLayer-

n+1}'*delta{TLayer}.*tmp_lamda;
 delta_tau{TLayer-n+1} = weights{TLayer-

n+1}'*delta{TLayer}.*(1./lamda{TLayer-n+1});

 end
 end

97

 for n = 1 : (TLayer-1)
 if n == 1
 d_w{TLayer-1} = rate.*delta{TLayer}*layer_out{TLayer-

1}(:,order(q))';% + alpha*p_d_w{TLayer-1};
 n_weights{TLayer-1} = weights{TLayer-1} + d_w{TLayer-1};

 d_b{TLayer} = rate.*delta{TLayer};% + alpha*p_d_b{TLayer};
 n_bias{TLayer} = bias{TLayer} + d_b{TLayer};
 else
 d_w{TLayer-n} = rate.*delta{TLayer-n+1}*layer_out{TLayer-

n}(:,order(q))';% + alpha*p_d_w{TLayer-n};
 n_weights{TLayer-n} = weights{TLayer-n} + d_w{TLayer-n};
 d_b{TLayer-n+1} = rate.*delta{TLayer-n+1};% +

alpha*p_d_b{TLayer-n+1};
 n_bias{TLayer-n+1} = bias{TLayer-n+1} + d_b{TLayer-n+1};

 d_tau{TLayer-n+1} = rate.*delta_tau{TLayer-

n+1}.*out_der{TLayer-n+1}(:,order(q));% + alpha*p_d_tau{TLayer-n+1};
 tmp_tau{TLayer-n+1} = tau{TLayer-n+1} + d_tau{TLayer-n+1};
 test_out = Wavelet_NN(inputs(:,order(q)), weights, H, bias,

lamda, tmp_tau);
 tmp_E = mean(sum((outputs(:,order(q)) -

test_out{TLayer})'.^2));
 if (tmp_E < p_E(end))
 tau{TLayer-n+1} = tmp_tau{TLayer-n+1};
 p_E(end) = tmp_E;
 end

 d_lamda{TLayer-n+1} = rate.*delta_lamda{TLayer-

n+1}.*out_der{TLayer-n+1}(:,order(q));% + alpha*p_d_lamda{TLayer-n+1};
 tmp2_lamda{TLayer-n+1} = lamda{TLayer-n+1} + d_lamda{TLayer-

n+1};
 test_out = Wavelet_NN(inputs(:,order(q)), weights, H, bias,

tmp2_lamda, tau);
 tmp_E = mean(sum((outputs(:,order(q)) -

test_out{TLayer})'.^2));
 if (tmp_E < p_E(end))
 lamda{TLayer-n+1} = tmp2_lamda{TLayer-n+1};
 p_E(end) = tmp_E;
 end
 end
 end

 % Save as previous stage value
 p_weights = weights;
 weights = n_weights;
 p_bias = bias;
 bias = n_bias;
 p_d_w = d_w;
 p_d_b = d_b;

 p_d_w = d_w;
 p_d_b = d_b;
 p_d_tau = d_tau;
 p_d_lamda = d_lamda;
 end

98

 p_E = E;
 err(1) = sum((outputs(1,:) - layer_out{TLayer}(1,:)).^2)./Q;
 err(2) = sum((outputs(2,:) - layer_out{TLayer}(2,:)).^2)./Q;
 err(3) = sum((outputs(3,:) - layer_out{TLayer}(3,:)).^2)./Q;
 err(4) = sum((outputs(4,:) - layer_out{TLayer}(4,:)).^2)./Q;
 err(5) = sum((outputs(5,:) - layer_out{TLayer}(5,:)).^2)./Q;
 err(6) = sum((outputs(6,:) - layer_out{TLayer}(6,:)).^2)./Q;
 err(7) = sum((outputs(7,:) - layer_out{TLayer}(7,:)).^2)./Q;
 E(cnt) = (err(1)+err(2)+err(3)+err(4)+err(5)+err(6)+err(7))/7;
 E(1,cnt)

 if (mod(cnt,5) == 0)
 val_act = Wavelet_NN(val_inputs, weights, H, bias, lamda, tau);
 tmp_val_E = mean(sum((val_outputs - val_act{TLayer})'.^2)/50);
 val_E(val_cnt) = tmp_val_E;
 save_w{cnt} = weights;
 save_b{cnt} = bias;
 save_t{cnt} = tau;
 save_l{cnt} = lamda;
 val_cnt = val_cnt + 1;
 end

 if (E(1,cnt) < 0.00001)
 break;
 end
 p_E = E(1, cnt);
 cnt = cnt + 1;

end
train_time = toc
end

- Wavelet neural network forward loop function

function [layer_out] = Wavelet_NN(inputs, weights, H, bias, lamda, tau)
% function [layer_out] = Wavelet_NN(inputs, weights, H, bias, lamda, tau);
% Description of function : This function is to get output of wavelet
% neural network with trained weighting factors and parameters of wavelet
% function
%
% Input parameters (arguments) are:
% inputs : input vectors (N X M), N:elements, M:# of input sets
% weights : weights factors
% H : hidden layer & the number of neurons
% tau: parameters of wavelet function
% lamda: parameters of wavelet function
% bias : bias for output layer
%
% Output values returned are:
% outputs : outputs of WNN
%
% Developed by: Hyunjong Choi
% Revised: 6/1/2015

99

HLayer = size(H, 2);
TLayer = HLayer + 2;
epsil = 0.1;
M = size(inputs, 1);
Q = size(inputs, 2);
P = H(1);

% tic
for q = 1 : Q
 layer_out{1}(:,q) = inputs(:,q);

 for n = 1 : (TLayer-1)
 net{n+1}(:,q) = weights{n}*layer_out{n}(:,q) + bias{n+1};
 % Activation part
 if n == TLayer-1
 layer_out{n+1}(:,q) = purelin(net{n+1}(:,q));
 else
 layer_out{n+1}(:,q) = Morlet_Wavelet(net{n+1}(:,q), lamda{n+1},

tau{n+1}, '');
 end
 end

end
% test_time = toc
end

