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ABSTRACT 

Medical Image Registration using Artificial Neural Network 

Hyunjong Choi 

 

Image registration is the transformation of different sets of images into one coordinate system in 

order to align and overlay multiple images. Image registration is used in many fields such as 

medical imaging, remote sensing, and computer vision. It is very important in medical research, 

where multiple images are acquired from different sensors at various points in time. This allows 

doctors to monitor the effects of treatments on patients in a certain region of interest over time. 

In this thesis, artificial neural networks with curvelet keypoints are used to estimate the 

parameters of registration. Simulations show that the curvelet keypoints provide more accurate 

results than using the Discrete Cosine Transform (DCT) coefficients and Scale Invariant Feature 

Transform (SIFT) keypoints on rotation and scale parameter estimation. 
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Chapter 1. Introduction 

Image registration is the process of transforming a multiple image set of the same subject 

that was taken from different points of view, times, depths, or sensors into one coordinate system 

[1]. Image registration has its applications in various fields such as remote sensing, 

environmental monitoring, change detection, weather forecasting, integrating information into 

geographic information system (GIS), and in medical fields. Image registration is a spatial 

transform and it can be divided into three groups based on how the reference and the sensed 

image could be taken: [1] 

1. The images were taken at different points of time. 

2. The images were taken using different devices like MRI, CT, PET, SPECT etc. (multi 

modal). 

3. The images were taken from different angles in order to have 2D or 3D perspective 

(multi temporal). 

In medical fields, image registration is one of the most important techniques combining 

data from different modalities, e.g. Computer Tomography (CT) and Magnetic Resonance 

Imaging (MRI), to obtain complete information about the patient, and monitoring tumor or 

cancer growth. This allows doctors to monitor the effects of treatments on patients in a certain 

region of interest over time. 

There exist many methods to carry out the registration depending on the problem [2] [3]. 

However, most of the algorithms basically follow the same approach as Figure 1.1 [4]. 
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Figure 1.1 Basic approach of Image registration  

At the feature detection step, salient and distinctive features such as edges, contours, 

closed-boundary regions are detected in both reference and sensed images. A comparison 

between the features in the reference and sensed images is established in feature matching. Then, 

mapping functions are estimated that aligning the sensed image with the reference image. At an 

image transformation stage, the sensed image is transformed based on the mapping function. 

This thesis consists of five chapters. In chapter 2, we review the previous work of image 

registration methods and compare their advantage and drawbacks. Then, we define the problem 

and the range of research based on the neural network approach. Fundamental algorithms and the 

suggested approach using curvelet transform is explained in chapter 3. Simulation results are 

shown in chapter 4. According to the results in chapter 4, we conclude our research and discuss 

potential future work. 
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Chapter 2. Literature review 

There exist many methods to perform image registration. These methods can be 

categorized with respect to various criteria including the application fields, dimensionality of 

data, computational cost, and the basis of the registration algorithm. Essentially, registration 

methods can be categorized into two types, depending on whether they use feature extraction or 

not [1]. They are area-based and feature-based methods. In this chapter, we're going to review 

previous literature in those two categories. 

 

2.1. Area-based approaches 

Area-based methods, also called correlation methods, deal with the images without 

detecting significant objects. They use correlation, mutual information (MI), cross-correlation, or 

Fourier analysis method to measure the similarity of images [5] [6]. The area can be the entire 

image or part of image with a predefined rectangular window, which is most often used, to 

estimate the correspondence. The rectangular window works well for registration when only 

translation differences exist between images. If images are deformed by more complex 

transformations, this type of windows is not able to work properly. Another limitation of the 

area-based methods is 'remarkableness' of window content. If a window only contains a smooth 

area without any prominent details, it may be matched incorrectly with the smooth, but totally 

unrelated another image [1]. Fourier methods exploit the representation of the images in the 

frequency domain. They are preferred rather than the spatial correlation methods if images are 

corrupted by frequency-dependent noise or acquired under time varying illumination. However, 

the computational cost and time expense grows greatly as the image size increases or the 

condition of transformation is more severe. 
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2.1.1. Correlation methods 

Cross-correlation (CC) method exploits image intensities directly, without any structural 

analysis. So, they are sensitive to image intensity changes, noise, varying illumination, and 

sensor types. The representative algorithm of area-based methods is to use normalized cross-

correlation (CC): [7] 

 

 

 





x y

x y

vyuxI

vyuxIyxT
vuCC

),(

),(),(
),(
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 ( 2.1 ) 

This function is computed for window pairs from the reference and the sensed images, 

and is searched for its maximum value. The parts of the two images producing the maximum 

cross-correlation value are considered the corresponding ones. This method works successfully 

when rotation and scaling exist in small degrees. The main drawbacks of this method are the 

flatness due to self-similarity of the images and high computational cost if the transformation is 

complex. Some modification methods are suggested in order to overcome its limitations. Pratt 

applied image filtering to improve CC performance on noisy or highly correlated images [8], and 

Van Wie and Anuta exploited correlation on the edge extraction instead of using the entire 

original images [9] [10] . The advantage of these modification methods is that the results are 

sensitive to intensity variation and noisy images. A sequential similarity detection algorithm 

(SSDA) is also suggested which is similar to the CC methods. It uses the sums of the differences 

in the intensity values for the window pairs and if the difference is too high, the pair is rejected 

as a non-match. The advantage of this method is that computation of SSDA is simpler than the 

CC. As mentioned above, even though there exist some limitations on correlation-like methods; 

they are still one of the most useful registration methods due to being easy to implement in 

hardware systems [1]. 
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2.1.2. Fourier methods 

Fourier methods are preferred over the correlation-like methods when the images are 

acquired under severe conditions and include noise [1]. It employed Fourier representation of the 

images. The representative algorithm in this approach is to use phase correlation [11]. It 

calculates the cross-power spectrum of the reference and sensed images and finds the peak point 

in its inverse domain. The method shows strong robustness against the correlated and frequency 

dependent noise and non-uniform, time varying illumination disturbances. However, this 

method, like the previous area methods, is just strong when there is only translation present. De 

Castro and Morandi introduced an extension of the phase correlation for additional rotation 

transform [12]. If the change of image scale is present, the images can be registered using the 

combination of polar-log mapping of the spectral magnitude and the phase correlation. 

 

2.1.3. Mutual information (MI) methods 

Mutual information (MI) technique is a measure of the dependence between two random 

variables and a very useful algorithm in multimodal registration. MI between two random 

variables X and Y is given by: [1] 

 ))(((log)(),()()()|()(),( 2 xPExHyxHyHxHXYHYHyxMI   ( 2.2 ) 

Where ))(((log)( 2 xPExH  represents entropy of random variable )(xP  and is the 

probability distribution of X . 

Especially, MI methods have been widely used in medical imaging applications and have 

been proved to be very effective. However, they are not so successful in other fields such as 

military target recognition system. First, it takes a long time to search the global transformation 

parameters by optimizing MI similarity measure. So, it could not be used for real time systems. 
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In addition, it could fall into a local extreme not correlated in the global measurement. Several 

methods are proposed to solve this issue, which usually combined the MI with other feature-

based methods to get higher robustness [4]. 

 

2.2. Feature-based approaches 

Feature-based matching methods are typically used when the local structural information 

is more significant than the image's intensities [1] [13] [14]. They allow registering completely 

different images and can handle complex between-image distortions. The common drawback of 

the feature-based methods is that the respective features might be hard to detect or unstable in 

time. The crucial point of feature-based matching methods is that prominent features are 

invariant to transformations. So, the important task is to find the pair-wise correspondence 

between the reference and sensed images using their spatial relations or descriptors of features. 

Also, the descriptors should have met the conditions such as invariance, uniqueness, stability, 

and independence. Figure 2.3 shows an example of feature-based methods with two satellite 

images [1]. The descriptors (control points) in this example are invariant to the shift and scale 

parameters so they could be used effectively for registration. 

 

2.2.1. Neural network methods 

An artificial neural network (ANN) is a computational model based on biological human 

brain. The ANN is an adaptive system that can change its internal structure using the external 

information that flows through the network during learning phase. They can be used to map out 

complex relationships between inputs and outputs or pattern recognition in computer vision. The 

architecture of ANN adapts a parallel computational structure that is composed of a number of 
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neurons connected through a set of links, which have some weight associated with them. 

Neurons consist of a number of inputs, summing junction, and an activation function to pass 

information to another neuron [15]. 

The structure of feedforward neural network is shown at Figure 2.1. The number of 

hidden layers depends on the complexity of the problem. Generally, if the number of hidden 

layers is increasing, it is able to handle more complex situation. A weight is assigned to each 

input and the results of the input times the weight are summed up. Then, the sum is passed 

through an activation function as shown at Figure 2.2. The most commonly used activation 

function is a sigmoid function and in this thesis a hyper-tangent function is used as an activation 

function. 

 

Figure 2.1 Artificial neural network architecture 
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Figure 2.2 The structure of a neuron 

There have been researches using neural network for image registration. In 2000, 

Sheinfeld, Tal, and Trisoh exploited Discrete Cosine Transform (DCT) coefficients as inputs to 

train the network [16]. The majority information of DCT coefficients is stored in the top left 

corner, so they used a rectangular window to select coefficients. This method gives a good result 

when there exist a small amount of rotation, scaling, and translation and shows robustness to 

Gaussian and salt and pepper noise. However, it is vulnerable to scaling factor. In 2006, Abche, 

Maalouf, Karam used Fourier coefficients instead of using DCT [17]. They used an 8 by 8 

window to select coefficients around zero frequency. This method performed far more accurate 

than DCT coefficients approach with respect to the scaling factor. Jianzhen Wu and Jianying Xie 

trained their networks using low order Zernike moments [18]. Zernike moments are a sequence 

of polynomials that form an orthogonal basis on the unit disc. They are the projection of the 

image onto the orthogonal basis functions and have been used greatly in pattern recognition. An 

advantage using Zernike moments is that the absolute values of the moments are rotation 

invariant, robust to noise, and fast to compute. The previous approaches used general 

feedforward neural network. Pramod used the wavelet neural network which employed a wavelet 
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function as an activation function [19]. Wavelet function can be trained more adaptively at each 

neuron node with its parameters, that are scale and translation parameters, comparing to hyper-

tangent function which is the same at all neurons. Wavelet neural network method performed 

more accurate and faster than general feedforward neural network due to its fewer neurons and a 

single hidden layer. 

This thesis exploits artificial neural network approaches for image registration. The 

advantage of using neural network is that it requires less time to estimate parameters. Neural 

network is able to output all transformation parameters at once while conventional methods only 

estimate parameters one at a time. So, once the network is trained it is a simple work of passing 

an input vector to the network. Another advantage of neural network is that it is a very useful 

method to map non-linear relationships between inputs and outputs. This is because neural 

network uses a non-linear activation function for each neuron's output. This enables the network 

to cover the severe cases when there exist high distortion of the images. 

 

2.3. Summary 

Area-based methods are preferably applied when the images do not have many prominent 

details and the distinctive information is provided by gray levels/colors rather than by shapes and 

structure. They have two principal limitations. Reference and sensed images must have somehow 

‘similar’ intensity functions, either identical (and then correlation-like methods can be used) or at 

least statistically dependent (this typically occurs in multimodal registration). Area-based 

methods often employ pyramidal image representations and sophisticated optimization 

algorithms to find the maximum of the similarity matrix [1] [4]. 
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Feature-based matching methods are typically applied when the local structural 

information is more significant than the information carried by the image intensities. They allow 

registering images of completely different nature (like aerial photograph and map) and can 

handle complexity between-image distortions. The common drawback of the feature-based 

methods is that the respective features might be hard to detect and/or unstable in time. The 

crucial point of all feature-based matching methods is to have discriminative and robust feature 

descriptors that are invariant to all assumed differences between the images [1] [4]. 

 

2.4. Problem definition 

A challenge still remained in medical image registration is that how fast and accurate to 

estimate parameters with robustness to noise of the images. Neural networks inspired by 

biological brain structure are parallel learning algorithms can be used to estimate parameters and 

approximate functions that need a large number of inputs. It is most commonly used in medical 

image registration because once it is trained, any input pattern can be computed through the 

networks extremely fast to get an output. In this study, the registration of MRI medical image is 

investigated using Scale-Invariant Feature Transform (SIFT), Discrete Cosine Transform (DCT), 

Discrete Wavelet Transform (DWT), and Discrete Curvelet Transform (CT) as inputs for 

artificial neural network. The problem is to reduce the training and testing error of the network. 

 

N

at
RMSE

N

i ii 


 1

2)(
 ( 2.3 ) 

Where, N is the number of training or testing sets, t  is target of outputs, and a  is actual 

outputs from the network. 
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Figure 2.3 Feature-based image registration; Feature-based image registration; in these two 

satellite images, control points (corners) were matched using invariants based on complex 

moments [20].The numbers identify corresponding control points. The bottom image shows the 

registration result 
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Chapter 3. Background 

 The main points of neural network approaches in image registration are the selection of 

parameters to train the network and the type of neural network to use. Previous work used 

Discrete Cosine Transform (DCT) coefficients, keypoints from Scale Invariant Feature 

Transform (SIFT), and wavelet neural network [17] [19]. In this chapter, we're going to review 

those algorithms and discuss how it can be meaningful solution to solve medical image 

registration problem. 

 

3.1. Affine transform introduction 

Before moving on to the main algorithm, images are used for inputs, should be affined 

based on several transformations. In geometry, an affine transformation is a function between 

affine spaces that preserves points, line, and planes. Examples of affine transformations include 

rotation, scaling, translation, shear mapping, and compositions of them in any combination. An 

affine map is composition of two functions: a translation and a linear map. If the linear map is 

represented as a multiplication by a matrix A and the translation as the addition of a vector 


b , an 

affine map f  acting on a vector 


x  can be represented as below. 

 

 bxAxfy )(  ( 3.1 ) 

 Where 


y  is the transformed coordinates and 


x  is the original coordinates. A 3 by 3 

matrix form is usually used instead of 2 by 2 matrixes for translation parameter which is not a 

linear operation in 2-D representation. By adding another row of translation enables to be 

performed as a linear operation as below. 
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 A rotation operation can be represented as ( 3.3 ). The sample image that applied a 

rotation transform is shown at Figure 3.1. 
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Figure 3.1 Affine transformation (Rotation) 

Scale, shear, and translation transform can be performed using equations ( 3.4 ), ( 3.5 ), 

and ( 3.6 ), respectively. The example images applied those transform are shown below. 
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Figure 3.2 Affine transformation (Scale) 
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Figure 3.3 Affine transformation (Shear) 
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In this study, all above transforms are applied at the same time with specific ranges. 

Some of sample images that applied transformation are shown at Figure 3.4. The images used in 

this study are MRI images of brain that were taken from an image database at Magnetic 

Resonance - Technology Information Portal [21]. Table 3-1 shows parameter values used at 

Figure 3.4 and the range of transformation parameters used in this thesis. 

 

Figure 3.4 Examples of affine transformation 

Table 3-1 Sample images with affine transformation 

 T1 T2 T3 T4 Max. Range 

Rotation(Degree) -11 -8 -7 -11 -12 ~ 12 

Scale(X-Axis) 0.9697 1.0915 0.9446 1.0878 0.9 ~ 1.1 

Scale(Y-Axis) 0.9354 1.0485 1.0231 0.9394 0.9 ~ 1.1 

Translation(X-Axis)[pixel] 0 3 1 5 -5 ~ 5 

Translation(Y-Axis)[pixel] -4 3 -2 2 -5 ~ 5 

Shear(X-Axis) 0.0195 0.0523 0.0149 0.0301 -0.1 ~ 0.1 

Shear(Y-Axis) 0.0394 0.0990 0.0147 0.0029 -0.1 ~ 0.1 
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3.2. Discrete cosine transform (DCT) 

There have been several researches on using DCT coefficients for image registration and 

given decent results [17]. Frequency information can be found for any image and provide global 

information of the image. When viewing translation and rotation properties in the 

spectral domain, some interesting points arise. For example, the Fourier shift translation property 

of Fourier transform, which states that if I1 and I2 are two images differ only in their translation, 

is related by: 

 )(2

120012
00),(),(),(),(
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( 3.7 ) 

It can also be shown that other affine transformations have distinct representation in 

Fourier domain. Thus, it can be concluded that taking an appropriate amount of coefficients 

result in providing the necessary information for estimating registration parameters.  

The advantage of using DCT instead of Discrete Fourier Transform (DFT) is that DCT 

can compact information better than DFT, which means ability to pack the energy of the spatial 

sequence into as few frequency coefficients as possible. Figure 3.5 shows how DCT coefficients 

are compacted to top-left corner compared to DFT coefficients. This is very important in image 

compression and beneficial in other applications, too. 

The reason DCT is more efficient than DFT is that it uses different boundary conditions 

which lead to remove discontinuities containing a lot of high frequencies. So, it has a smooth 

continuous transition. In this study, we use a 10 by 10 window to extract coefficients from top-

left corner of DCT. 
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Figure 3.5 Comparison of DCT and DFT 

 

Figure 3.6 Periodicity of DFT and DCT 

 

3.3. Scale invariant feature transform (SIFT) algorithm 

SIFT algorithm, was developed in 1999 by Lowe David G., is usually used in computer 

vision such as image matching and object recognition [22]. The advantage of this algorithm is 

that the features are invariant to scale, rotation, and translation. It has been used in image 

registration as well [23]. In this study, SIFT keypoints are considered as inputs for neural 

network training. 
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SIFT algorithm mainly consists of two steps. Finding key points and assigning descriptor 

to it as the first step, and in a second step, matching original image and target image using 

descriptors is performed as Figure 3.7. In other words, features, which are defined as extrema, 

could be found from various scaled images. Then, the information including orientation and 

magnitude that can account for the features is assigned. In a matching step, features from original 

image and target features are matched by comparing the distance between them. 

 

Figure 3.7 SIFT algorithm sequences 

 

3.3.1. Scale-space extrema 

The advantage of SIFT algorithm is that it can extract keypoints that are invariant to 

scale, orientation, luminance, and affine transform. This step is the process to extract interest 

point to be expected to be invariant scale and orientation. Difference of Gaussian (DOG) is used 

to improve the processing time. Gaussian pyramid is the process to calculate Gaussian 

convolution with various scales as Figure 3.8. The difference of pyramid image is the similar 

result with the second derivative of Laplacian of Gaussian (LOG). So, we can measure the 

features of the original image. 

In order to be invariant to the change of illuminance, it figures out to select the object’s 

maximum or minimum. After building Gaussian pyramid, key candidate is extracted from the 
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point of blob using DOG. Key candidate is to be considered when it is the maximum or the 

minimum comparing to its 26 around points in upper or lower scale levels like Figure 3.9. 

 

Figure 3.8 Gaussian pyramid & DOG [22] 

Due to the comparison method, if DOG generates n, n+3 Gaussian images should be 

created for 1 Octave, and the rate of scale change is n

1

2 . 

 

Figure 3.9 Key point [22] 
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3.3.2. Accurate keypoints 

Once key candidates are selected, more accurate points should be extracted which 

represents features clearly. Among the candidates, there might be low contrast points or edge key 

points which are not good features to represent.  

Lowe applied Taylor expansion, Brown suggested, to find more accurate keypoints and 

calculate contrast of the point using interpolation to filter out keypoints. Equation ( 3.8 ) is to 

find extrema using interpolation with Taylor second expansion. 
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 ( 3.8 ) 

This value is applied to Taylor first expansion ( 3.9 ) and if the contrast is below 0.03, the 

points are discarded. 
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3.3.3. Eliminating edge responses 

It is not sufficient to reject keypoints with low contrast. So, Lowe used Harris corner 

detection method to remove edges. He set the threshold 10r  as an appropriate value. 
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Figure 3.10 Keypoints selection steps [22] 

Figure 3.10 shows the stages of keypoint selection. (a) is the 233x189 pixel original image. 

(b) is the initial 832 keypoints locations at maxima and minima of the difference of Gaussian 

function. Keypoints are displayed as vectors indicating scale, orientation, and location.  After 

applying a threshold on minimum contrast, 729 keypoints remain as in (c). The final 536 keypoints 

are remained in (d). 

 

3.3.4. Orientations 

By assigning a consistent orientation to each keypoint based on local image properties, 

the keypoint descriptor can be represented relative to this orientation. Gaussian blurring is 

applied to the image of 16 by 16 around keypoint then assigned the orientation and scale of the 

gradient to each point. Equation ( 3.10 ) is used where L is the Gaussian blurred image. 
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The orientation of keypoint is determined by using all magnitudes and orientations of the 

16 by 16 image. An orientation histogram is formed with 36 bins covering 360 degree range of 
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orientation. So, the peak value is the orientation of the keypoint. If there exist more than 1 peak 

point over 80% of the peak, this keypoint is considered with multiple keypoints. 

 

3.3.5. Keypoint descriptors 

The first three steps ensured invariance to location, scale, and rotation by assigning to 

each keypoint a location, scale, and orientation. So, the last step is to ensure invariant to the 

change of illumination. This can be done by sampling gradient magnitudes and orientations 

around each keypoint. The Gaussian image is selected based on scale of the keypoint, then 

orientation histogram with 8 bins is formed over 4 by 4 neighborhood regions from sampled 

magnitude and orientation values in 16 by16 image. A Gaussian weighting function is used to 

assign a weight to the magnitude of each sample point. The descriptor is a feature vector 

consisting of all the values in the histogram. 

 

3.3.6. Image matching 

In this step, the Euclidean distance of keypoints between original image and target image 

is calculated as ( 3.11 ). 
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The keypoint which has the minimum distance D is matching keypoint. Dr. David Lowe 

suggested a method to check whether the matching is done correctly using the ratio between the 

closest keypoint and the second closest keypoint. When the value is over 0.8, there is high 

probability of miss matching so they are discarded. Figure 3.11 shows the keypoints and its 

descriptors of original MRI brain image we used in this study. Figure 3.12 is for the affine 

transformed image. Matched keypoints between these two images are shown at Figure 3.13. 
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There are 23 matched keypoints for these images. The coordinate information of the affined 

image is used to train neural network. 

 

Figure 3.11 SIFT keypoints of the original image 
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Figure 3.12 SIFT keypoints of the affine transformed image 

 

Figure 3.13 23 matched keypoints between Figure 3.11 and Figure 3.12 
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3.4. Wavelet neural network (WNN) 

Wavelet neural networks combine the theory of wavelets and neural networks into one 

[24]. A wavelet neural network generally consists of a feedforward neural network with one 

hidden layer and activation functions are from an orthonormal wavelet family. The structure of 

wavelet neural network is similar to the feedforward neural network as Figure 3.14. The neurons 

of wavelet are usually referred to as wavelons [24]. 

 

Figure 3.14 Structure of wavelet neural network 

The simplest form of wavelet neural network is one with a single input and a single 

output. The hidden layer of neurons consists of wavelons whose parameters include the wavelet 

dilation and translation values. The output of a wavelet neural network is a linear weighted 

combination of the wavelet activation functions. The single input wavelon is defined as: 
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Where  and t  are dilation and translation parameters respectively. The architecture of 

single wavelet network is shown in Figure 3.15. The hidden layer consists of M wavelons and 
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the output is just a summer. So, the output can be defined with a weighted sum of the wavelon 

outputs as ( 3.13 ). 

 

Figure 3.15 Wavelet neuron 
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In a wavelet network all parameter twy ,,,   are adjustable by learning algorithm. A 

multidimensional wavelet network is an extension of single input and output architecture into 

multi-input and outputs system. Therefore the input-output mapping of the network is defined as: 
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The parameters twy ,,,   should be formed into one vector . The objective function to 

be minimized is: 
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The minimization is performed using a stochastic gradient algorithm. This recursively 

modifies , in the opposite direction of the gradient of 
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The gradient for each parameter of   can be found by calculating the partial derivatives 

of ))(,,( kk ufuc   as follows: 
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In this study, the Morlet wavelet function is exploited for activation functions of neuron. 

 

Figure 3.16 Morlet wavelet function 
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3.5. Curvelet transform 

In this chapter, a new approach using neural network for image registration is suggested. 

The Curvelet Transform (CT) is used to extract features from the images sets as inputs to train 

the network [25]. As being extracted coordinate information from SIFT algorithm, we suggest a 

method to extract curvelet keypoints information instead of using statistical measure of curvelet 

coefficients. 

 

3.5.1. Introduction of curvelet transform (CT) 

Multiresolution methods are deeply related to image processing, biological and computer 

vision. The curvelet transform is a multiscale directional transform that allows an almost optimal 

non-adaptive sparse representation of objects with edges [25]. Although wavelet transform 

becomes increasingly popular in engineering fields, it only performs well at representing point 

singularities since they ignore the geometric properties of structures and do not exploit the 

regularity of edges. So, wavelet-based applications are computationally inefficient for geometric 

features with line and surface singularities. In other words, in the field of biological and 

computer vision, wavelets do not supply good direction selectivity, which is an important 

response property of objects. To overcome the missing directional selectivity of conventional 2-

D discrete wavelet transforms, a multiresolution geometric analysis (MGA), named curvelet 

transform, was proposed by Candes and Donoho in 2000 [26]. Unlike the isotropic elements of 

wavelets, the curvelet transform possess very high directional sensitivity and anisotropy with the 

needle-shaped elements. So, it can represent edges and other singularities along curves much 

more efficiently than traditional transforms, i.e. using significantly fewer coefficients for a given 

accuracy of reconstruction. 
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The implementation of the first generation of curvelet uses a pre-processing step 

involving a special partitioning of phase-space followed by the ridgelet transform. However, in 

the second generation of curvelet, the algorithm is redesigned to make them easier to use. As a 

result, Fast Discrete Curvelet Transforms (FDCTs) is considerably simpler, faster, and less 

redundant than the first proposals [26]. There are two distinct implementation ways of FDCT: 

unequispaced FFTs (USFFT-based) and Wrapping-based. In this study, we used a wrapping-

based method, which is faster than USFFT one. 

 

3.5.2. Digital curvelet transforms 

3.5.2.1. Digital coronization 

 The digital transformation is linear and takes as input Cartesian arrays of the form

nttttf  2121 ,0],,[ . The coefficients ),,( kljcD
are obtained by: 

 



ntt
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( 3.18 ) 

 Where each 
D

klj ,,  is a digital curvelet waveform (the superscript D stands for “digital”). 

In the continuous-time definition, the window jU  smoothly extracts frequencies near dyadic 

corona }22{ 1 jj r  and near the angle }22{ 2/2/ jj     as Figure 3.17. In discrete-

time domain, it is convenient to replace the concepts by Cartesian equivalents based on 

concentric squares and shears as Figure 3.18. The Cartesian analog to the family

)2()(  j

j WW  , would be a window of the form: 

0,)()()(
~ 22

1   jW jjj  , 
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 Where   is defined as the product of low-pass one dimensional windows. This is how to 

separate scales in a Cartesian-friendly fashion and the angular localization V  is set as: 

)/2()( 12

|2/|  j

j VV   

Then, the Cartesian window is defined as: 
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( 3.19 ) 

However, )(
~

jU  is hard to represent frequencies near the wedge, so a modified window 

is suggested as: 
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Where S  is the shear matrix, 
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When completed by symmetry around the origin and rotation by 2/  radians, the ljU ,

~
 

defines the Cartesian to the family which is a concentric tiling whose geometry is displayed in 

Figure 3.18. 

 

3.5.2.2. Curvelet transform using wrapping method 

The process of curvelet transform with wrapping method is as follow. 

(1) Both image and curvelet filter bank are transformed into Fourier domain. 

2/,2/],,[ˆ 2121 nnnnnnf   
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Figure 3.17 Induced tiling of the frequency plane. In Fourier space, curvelets are supported near 

a “parabolic” wedge, and the shaded are represents a generic wedge [26] 

 

Figure 3.18 Digital tiling. The windows smoothly localize the Fourier transform near the sheared 

wedges obeying the parabolic scaling [26] 
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(2) Then the convolution of the curvelet with the image in spatial domain becomes the 

product in Fourier domain. 

],[ˆ],[
~

2121, nnfnnU lj  

(3) Compute the curvelet coefficient by applying inverse Fourier transform. The wedge 

must be wrapped into rectangular to perform inverse Fourier transform because the 

frequency response of curvelet is non rectangular wedge. 

],)[ˆ~
(],[

~
21,21, nnfUWnnf ljlj   

Where the range for 
1n  and 

2n  is jLn ,110   and jLn ,220  . 

(4) By periodic wedge tiling wrapping is done, then collecting the rectangular coefficient 

( ),,( kljcD
) area in the center by applying the inverse 2D FFT to each ljf ,

~
. The 

overall procedure is described in Figure 3.20. 

 

Figure 3.19 Wrapping data, initially inside a parallelogram, into a rectangle by periodicity [26] 
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Figure 3.20 Fast discrete curvelet transform via wrapping (FDCT) 

  

3.5.2.3. Curvelet transform for brain MRI image 

 In this study, we resized the medical image to size 512 by 512. The feature extraction 

using curvelet is applied to the original brain image. For image size of 512 by 512, the maximum 

number of levels is 6. So the image is decomposed into 6 levels of scales using curvelet 

transform. The numbers of sub-bands at different scales are different. For 6 levels of 

decomposition, there are 1, 16, 32, 32, 64, and 1 sub-bands at decomposition level 1, 2, 3, 4, 5, 

and 6 respectively. Therefore, 6 levels decomposition creates 146 sub-bands of curvelet 

coefficients. Figure 3.21 shows the original image and coefficients of sub-bands at scale 

1(center) and 6(right). From Figure 3.22 to Figure 3.25, curvelet coefficients of sub-bands at 
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level 2, 3, 4, and 5 are displayed. All curvelet coefficients of sub-bands are figured in Figure 

3.26. 

 

Figure 3.21 Curvelet coefficients (Original: left, Scale 1: center, Scale 6: right) 

 

Figure 3.22 Curvelet coefficients at level 2 (16) 

Table 3-2 The number of sub-bands of curvelet transform 

Scale Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total 

Number of 

Bands 
1 16 32 32 64 1 146 

 

Figure 3.26 displays all curvelet coefficients at a single image. Low frequency 

coefficients are positioned at the center of the figure. The outer coronae correspond to higher 



 

35 

 

frequencies. Each corona has four strips further subdivided in angular panels. And each panel 

represents coefficients at a specified scale and orientation. The displayed coefficients in Figure 

3.26 are normalized at each scale level which means divided by maximum value of the level. 

 

Figure 3.23 Curvelet coefficients at level 3 (32) 

 

Figure 3.24 Curvelet coefficients at level 4 (32) 
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Figure 3.25 Curvelet coefficients at level 5 (64) 

  

3.5.2.4. Curvelet coefficients via thresholding approach 

If we use curvelet coefficients from all sub-bands of each scale for neural network inputs, 

there exist too many inputs for the network. Even the number of coefficients at level 1 is 21 by 

21 (441 values), which needs a larger size of network structure. So, it might need extremely high 

computational cost if we take coefficients from scale 2 to 6 together.  
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Figure 3.26 Curvelet coefficients plot 

 Statistical measures of curvelet coefficients such as mean, variance and entropy have 

been used to extract features using curvelet transform [27] [28] [29] [30] [31]. However, we 

found a poor accuracy using these approaches. So, the alternative approach is based on 

thresholding the curvelet coefficients [32]. We extract image features of MRI image by applying 

curvelet transform then take coefficients above threshold value from all sub-bands. Figure 3.27 

shows an example, when we assume that we use 10 percent of the strongest coefficients from all 

sub-bands. The right image is reconstructed image with those 10 percent coefficients. The 

selected coefficients have enough information to reconstruct the image, so the right image shows 

pretty detail features of the original image. The problem we use these coefficients is that there 

still too many coefficients. With the 512 by 512 image, there are 73900 coefficients from 10 

curvelet coefficients
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percent of curvelet coefficients. It still needs too big neural network structure which is 

ineffective comparing to 100 DCT and 100 keypoints from SIFT algorithm. 

 

Figure 3.27 Reconstruction with the strongest 10% of coefficients from all sub-bands 

 

Figure 3.28 Reconstruction with the strongest 0.0135% of coefficients from all sub-bands 
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Figure 3.29 Reconstruction with 100 DCT coefficients 

In order to compare the 100 DCT coefficients, we take 0.0135% of curvelet coefficients 

from all sub-bands which could generate exactly 100 coefficients. It shows that the number of 

coefficients to be extracted is appropriate for training the network, however it loses lots of 

information especially on curves, lines shown as Figure 3.28. If we compare the reconstruction 

image with 100 DCT coefficients, curvelet coefficients seem to have more features on curves 

and edges while DCT coefficients have coarse features of the image. 

 

3.5.2.5. Curvelet keypoints based on modified thresholding method 

Now, we suggest a method that can have critical features as well as keep the limitation of 

the number of coefficients based on modified thresholding approach of curvelet coefficients. In 

other words, the purpose of this algorithm is to get significant features with minimum number of 

coefficients. There are three steps for this algorithm as follow: 
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Figure 3.30 Curvelet keypoints based on modified thresholding method 

 

Modified thresholding method 

At first step, we apply discrete curvelet transform to the image and take coefficients using 

modified thresholding method. The thresholding method in the previous section is to take a 

certain percentage value of coefficients from all sub-bands. This method might have possibility 

of ignoring important coefficients at specific scale level, if the value of coefficients from another 

scale is significantly high. Therefore, we suggest a way to take coefficients above threshold 

based on each scale level. This method can avoid ignoring coefficients at a certain scale level. In 

addition, we only consider the mid-bands (from 2 to 5 scales) of the curvelets because the first 

scale level (1st scale level) coefficients have coarse resolution and high local variations at fine 

resolutions at the highest level (6th scale level). Those two scale level do not have directional 

information which means that they are not dominant coefficients. Figure 3.31 is a bar graph of 

coefficients at each scale level and its threshold which is 70% of its maximum value. The 
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number of coefficients that are taken from this method is 48, 34, 54, and 16 respectively and 

totally 152 coefficients at this example. 

 

 

 

Figure 3.31 Threshold at each scale level. Take the highest 30% of coefficients from each scale. 

Threshold is 555, 414, 222, and 91 at scale level 2, 3, 4, and 5 respectively 
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Table 3-3 The number of coefficients at each scale level 

 
Scale 2 Scale 3 Scale 4 Scale 5 Total 

Original coefficients 5,984 22,880 90,144 357,408 476,416 

Threshold 48 34 54 16 152 

Ratio (%) 31.58 22.37 35.53 10.53 100 

Dynamic arrange 31 22 37 10 100 

 

Determine the number of coefficients dynamically 

 In order to meet the number of coefficients we want to take (100), we apply a method that 

can re-arrange the number of coefficients we should take based on the ratio to all scale levels. 

The reason we called it dynamic re-arrangement is that the algorithm is to assign the number of 

coefficients no matter it lacks or over the maximum number of coefficients. Basically, the higher 

ratio scale has higher probability to extract more coefficients while lower ratio scale has higher 

chance to discard values when the total number is over the limitation. Table 3-3 is an example of 

the result at step 2. Therefore, 31, 22, 37, and 10 coefficients are taken from each scale level 

respectively based on its ratio. The number of total coefficients is 100. And from now on, we 

only consider those 100 coefficients. The selected coefficients at scale level 2 are shown at 

Figure 3.32. There are 31 coefficients which represented by small white circles. 
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Figure 3.32 Selected coefficients (31) at scale level 2 

 

Extract coordinate index for curvelet keypoints 

We are able to use selected coefficients directly from above section. However, as we 

mentioned from previous work about SIFT algorithm, coordinate information of features in 

spatial domain can impact for training neural network significantly. So, we extract coordinate 

information using selected coefficients at step 2. Basically, a single point in the image can have 

multiple coefficients at different sub-bands as Figure 3.33. We are able to exploit this 

characteristic oppositely. In other words, a single coefficient at a sub-band has its matching 

coordinate information in the image. Some coefficients might point to the same spatial 

coordinates but we only take 100 coefficients which is very small portion compare to the number 

of all coefficients. Thus, it has low chance for multiple coefficients to point the same spatial 

coordinates.  
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Figure 3.33 Keypoints matching between spatial domain and coefficients of sub-bands 

The result of curvelet keypoints extraction is shown at Figure 3.34. Yellow markers are 

keypoints from scale level 2. Red, green, and magenta represents keypoints from scale level 3, 4, 

and 5 respectively. If we compare to keypoints from SIFT algorithm, curvelet keypoints 

represent the curves and directional features rather than keypoints of SIFT (Figure 3.13). 

In addition, 100 curvelet keypoints via our algorithm has much more information than 

just using a general threshold method. The right image of Figure 3.35 is the reconstructed image  
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Figure 3.34 Curvelet keypoints extraction examples 

using 100 coefficients via suggested algorithm. If we compare it to the reconstructed image from 

in Figure 3.28, our algorithm can represent the curve and line features much better than 

thresholding method. We also can see that it has lots of directional information which expect a 

good performance for rotation and translation parameters in training neural network. 

In chapter 4, we’re going to train neural network using DCT coefficients, keypoints from 

SIFT algorithm, wavelet coefficients, and curvelet keypoints we suggested in this chapter. We 
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compare the results and which one has the best performance in terms of computational cost and 

accuracy. 

 

Figure 3.35 Reconstructed image using suggested algorithm 
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Chapter 4. Simulation 

 

In this chapter, we simulate the image registration based on the algorithm suggested in 

chapter 3. Simulation are performed in two stages. First, the pre-registration stage is to 

synthesize original image to make training sets using affine transformations. Then, features such 

as DCT coefficients, SIFT keypoints, wavelet coefficients, or curvelet keypoints are extracted 

from the affined image. These inputs, normalized with zscore method, are used to train the 

network. In registration phase, which is a testing stage, features are extracted from registered 

image and feed to the trained network. The overall process is shown at Figure 4.1. 

 

Figure 4.1 Simulation process 

The neural network we used for the simulation is general artificial neural network and 

wavelet neural network we mentioned in chapter 3. However, the performance of two structures 

is not significantly different, so most simulations are only performed on artificial neural network. 

Root Mean Square Error (RMSE) between parameters of target images and outputs of trained 

networks is compared to measure the performance. 
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4.1. Neural network structure 

Before training the neural network, it is important to determine the structure of neural 

network. Coefficients from DCT, wavelet, or keypoints from SIFT and curvelet transform could 

be the inputs to train the network. The outputs of the network are the transformation parameters 

such as rotation, scale, translation, and shear. The general feedforward network uses sigmoid 

function as an activation function in hidden layers and linear function in output layer. The 

network is trained using 500 source-target image pairs. Among 500 image pairs, 50 pairs of 

images are used to validate the network that is performed at every 5 iteration during training. 

Another 50 image pairs then generated to test the network. Backpropagation algorithm is used to 

train the networks until the desired error is below 0.00001 or the maximum iteration reaches 

15000. Learning rate ( ) is set to 0.0001 which is considered appropriate value that doesn’t 

make the error oscillate and the network fall into the local minimum. A small learning rate 

means the network will change at a slower rate and will take longer to converge while a large 

learning rate makes the network change faster but invoke oscillation to converge. A large 

learning rate might not converge at all as it could lead to ‘over-shooting’ the solution. 

In order to determine the number of hidden layers and neurons of each layer, several 

simulations are performed with various numbers of layers and the number of neurons. Table 4-7 

shows the result of training error (RMSE) with various neural network structures. A hundred 

DCT coefficients are used for this simulation. The performance of training error with two or 

three hidden layers is better than the structure of single hidden layer or four hidden layers. 

However, the testing errors of the trained network are similar each other. Therefore, the size of 

neural network used in the simulation is a single hidden layer or three hidden layers that have 64, 

40, and 15 neurons at each layer depending on the simulations. The training error graph is shown 
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at Figure 4.2. It shows that the network with two or three hidden layers is better than a single 

layer network. 

Wavelet neural network is also used in this study. As mentioned in chapter 3, the 

difference between general artificial neural network and wavelet neural network is the activation 

function as an output of each neuron. General feedforward neural network has the same sigmoid 

function for all neurons, on the other hand, wavelet function has different dilation and translation 

parameters. So, wavelet neural network can be trained more adaptively than general neural 

network. Table 4-1 and Figure 4.2 shows that wavelet neural network has slightly better 

performance in some parameters than general feedforward network but it’s hard to measure that 

wavelet neural network is better. Thus, we only used a general artificial neural network for 

simulations. 

Table 4-1 Neural network training error with various hidden layers and neurons 

 
Training error  

 ANN WNN 

RMSE [64] [64 40] [64 40 15] [64 40 15 9] [64] 

Rotation 1.0349 0.2702 0.1693 1.1700 0.8709 

Scale(X-Axis) 0.0520 0.0523 0.0562 0.0580 0.0543 

Scale(Y-Axis) 0.0582 0.0561 0.0592 0.0601 0.0581 

Translation(X-Axis) 0.2987 0.2210 0.1892 2.5129 0.3039 

Translation(Y-Axis) 0.3061 0.2304 0.1675 1.8517 0.3202 

Shear(X-Axis) 0.0194 0.0149 0.0269 0.0289 0.0164 

Shear(Y-Axis) 0.0191 0.0127 0.0235 0.0294 0.0186 

 

 

 

 



 

50 

 

Table 4-2 Neural network testing error with various hidden layers and neurons 

 
Testing error  

 ANN WNN 

RMSE [64] [64 40] [64 40 15] [64 40 15 9] [64] 

Rotation 1.1961 1.2005 1.2392 1.2096 1.2081 

Scale(X-Axis) 0.0515 0.0555 0.0513 0.0501 0.0529 

Scale(Y-Axis) 0.0607 0.0584 0.0579 0.0571 0.0582 

Translation(X-Axis) 0.3691 0.3526 0.3714 3.2338 0.4076 

Translation(Y-Axis) 0.3681 0.4125 0.4199 1.2110 0.4593 

Shear(X-Axis) 0.0242 0.0345 0.0328 0.0319 0.0221 

Shear(Y-Axis) 0.0232 0.0286 0.0283 0.0281 0.0240 

 

 

Figure 4.2 Training error of ANN/WNN according to the structures 
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4.2. Simulation with single transformation parameter 

At this section, before applying all affine transformations together, images that are 

transformed with a single parameter is used to train the network: rotation, scale, translation, and 

shear respectively. The performance of three cases, DCT coefficients, DCT with SIFT keypoints, 

and curvelet keypoints that we suggested in chapter 3, are compared. 

 

4.2.1. Rotation 

 Table 4-3 shows the result of three simulation cases estimating rotation parameter. The 

threshold for convergence is 10e-6. Curvelet keypoints has the best performance in estimating 

rotation parameters in terms of accuracy and computational cost. It is straightforward because 

curvelet keypoints that we suggested in chapter 3 has strong characteristic of directional 

selectivity compared to DCT and SIFT keypoints features. From Figure 4.3 to Figure 4.5 shows 

the error graph for each case. Training, validation, and testing error are represented by asterisk, 

triangle, and square marker respectively. Curvelet keypoints case even converged at 123 

iteration. Thus, we recognize that curvelet keypoints is the most effective features to estimate 

rotation parameter. 

Table 4-3 Training and Testing error of rotation applied images 

 
DCT DCT + SIFT Curvelet keypoints 

 Train Test Train Test Train Test 

Rotation 0.0377 0.0287 0.0153 0.0176 0.0031 0.0003 

Total inputs 100 200 200 

Training time 162 sec 209 sec 26 sec 

Iteration 1000 (no converge) 1000 (no converge) 123 (converge) 
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Figure 4.3 Rotation simulation with DCT coefficients 

 

Figure 4.4 Rotation simulation with DCT coefficients and SIFT keypoints 
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Figure 4.5 Rotation simulation with curvelet keypoints 
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 The range of scale parameter is 0.9 to 1.1 for both x-axis and y-axis. Table 4-4 shows the 

result. As the same with rotation simulation, curvelet keypoints has the best performance among 

the three cases. Curvelet transform is one of multi-resolution analysis methods, so one of its 

characteristics is invariant to scales. Figure 4.6, Figure 4.7, and Figure 4.8 shows the mean 

square error plot during training, validation, and testing. 
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Table 4-4 Training and Testing error of scale applied images 

 
DCT DCT + SIFT Curvelet keypoints 

 Train Test Train Test Train Test 

Scale X 0.0562 0.0506 0.0560 0.0507 0.0236 0.0362 

Scale Y 0.0578 0.0539 0.0572 0.0535 0.0291 0.0386 

Total inputs 100 200 200 

Training time 163 sec 208 sec 206 sec 

Iteration 1000 (no converge) 1000 (no converge) 1000 (no converge) 

 

 

Figure 4.6 Scale simulation with DCT coefficients 
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Figure 4.7 Scale simulation with DCT coefficients and SIFT keypoints 

 

Figure 4.8 Scale simulation with curvelet keypoints 
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4.2.3. Translation 

The range of translation parameter is -5 to 5 for both x-axis and y-axis. The performance 

of translation parameters is the best when the training inputs are DCT coefficients and DCT with 

SIFT keypoints. As we noticed at Figure 3.17 and Figure 3.18, curvelet transform has strong 

features to extract directional information from the image and it exploited a polar coordinate 

instead of using rectangular coordinate in the process of curvelet transform. Table 4-5 shows  

Table 4-5 Training and Testing error of translation applied images 

 
DCT DCT + SIFT Curvelet Keypoints 

 Train Test Train Test Train Test 

Translation X 0.0443 0.0439 0.0389 0.0401 0.0686 0.2108 

Translation Y 0.0457 0.0410 0.0406 0.0389 0.0315 0.4396 

Total inputs 100 200 200 

Training time 415 sec 207 sec 208 sec 

Iteration 1000 (no converge) 1000 (no converge) 1000 (no converge) 

 

Figure 4.9 Translation simulation with DCT coefficients 
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Figure 4.10 Translation simulation with DCT coefficients and SIFT keypoints 

 

Figure 4.11 Translation simulation with curvelet keypoints 

the result. The MSE for training is shown at Figure 4.9, Figure 4.10, and Figure 4.11 
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4.2.4. Shear 

 The range of shear parameter used in the simulation is from 0 to 0.1. DCT coefficients 

and DCT with SIFT keypoints cases are better than curvelet keypoints on shear transformation. 

We expected the curvelet keypoints have better performance due to its strong directional 

features. The performance of curvelet keypoints is slightly better than DCT coefficients case but 

worse than DCT with SIFT keypoints case. We can see that the SIFT keypoints can have a 

decisive effect on estimating shear parameter. The result is shown at Table 4-6. The MSE for 

training and testing is shown at Figure 4.12, Figure 4.13, and Figure 4.14. 

Table 4-6 Training and Testing error of shear applied images 

 
DCT DCT + SIFT Curvelet Keypoints 

 Train Test Train Test Train Test 

Shear X 0.0136 0.0121 0.0073 0.0068 0.0121 0.0113 

Shear Y 0.0155 0.0143 0.0076 0.0072 0.0100 0.0133 

Total inputs 100 200 200 

Training time 167 sec 203 sec 204 sec 

Iteration 1000 (no converge) 1000 (no converge) 1000 (no converge) 
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Figure 4.12 Shear simulation with DCT coefficients 

 

Figure 4.13 Shear simulation with DCT coefficients and SIFT keypoints 
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Figure 4.14 Shear simulation with curvelet keypoints 
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is better than DCT only case. Especially, training of rotation and translation parameters are 

trained well comparing to other parameters. This does make sense because the features from 

SIFT keypoints are to be invariant to rotation, scale, and translation. However, the testing errors 

are similar for both cases. If we compare the error graph in detail in order to analyze the 

difference between the training and the testing error, it seems to be a generalization issue on 

DCT with SIFT keypoints case [Figure 4.15, and Figure 4.16]. Generally, there could be 

occurred a generalization problem when the network is over-trained or the complexity of the 

system is higher than the inputs. If it is happened due to over-training, there are several methods 

to avoid over-training issues of neural network. One of the simplest ways is to stop training early 

before the testing error will be increased. So, we can use trained weights and bias at the point the 

testing error has the minimum. The testing error at Table 4-7 is measured by applying an early 

stop method. However, the testing error does not follow the training error exactly. We’ll 

investigate this problem more detail after performing curvelet keypoints simulation. 

Table 4-7 Training and testing error with DCT and DCT with SIFT 

 
DCT DCT + SIFT    

RMSE Training Testing Training Testing    

Rotation 1.1594 1.2282 1.0646 1.2433    

Scale(X-Axis) 0.0576 0.0541 0.0569 0.0527    

Scale(Y-Axis) 0.0545 0.0520 0.0542 0.0537    

Translation(X-Axis) 0.3320 0.3560 0.3013 0.3757    

Translation(Y-Axis) 0.3373 0.3178 0.3168 0.3394    

Shear(X-Axis) 0.0211 0.0225 0.0216 0.0258    

Shear(Y-Axis) 0.0216 0.0221 0.0202 0.0264    
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Figure 4.15  Difference between training and testing of DCT 

 

Figure 4.16 Difference between training and testing of DCT + SIFT 
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4.3.2. Curvelet coefficients  

We mentioned that how to take a hundred curvelet coefficients from the scale level 2 to 

scale level 5 using a modified threshold method. We used curvelet coefficients as inputs to 

training the neural network. The training error of rotation and scale is much better than DCT 

coefficients and DCT with SIFT keypoints, but the testing error much worse than the others. 

Table 4-8 Training and testing error of curvelet coefficients 

 
Curvelet coefficients    

RMSE Training Testing    

Rotation 0.2655 3.1592     

Scale(X-Axis) 0.0487 0.0639     

Scale(Y-Axis) 0.0453 0.0548     

Translation(X-Axis) 0.3797 3.1193     

Translation(Y-Axis) 0.3958 3.4386     

Shear(X-Axis) 0.0259 0.0351     

Shear(Y-Axis) 0.0281 0.0314     

 

Figure 4.17 Difference between training and testing of curvelet coefficients 
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If we see the Figure 4.17 the testing error does not follow the training error. The 

generalization capability is much worse than the DCT coefficients with SIFT keypoints case.  

 

4.3.3. Curvelet keypoints 

Curvelet keypoints are coordinate information of the images and used for training neural 

network as inputs. As we mentioned at chapter 3, a hundred keypoints pairs are extracted from 

curvelet transformation which means two hundred inputs including x-axis and y-axis coordinate 

information. Those keypoints are the position information of curvelet coefficients as we used at 

the above section. The training result is at Table 4-9. Training error is significantly better than 

the DCT coefficients and DCT with SIFT keypoints simulations same as we noticed in a single 

parameter estimation. However, the testing error is much worse than the others, which seems to 

be the same generalization issue with curvelet coefficients simulation. Figure 4.18 shows a huge 

difference between training and testing error. So, now we’ll look over about the generalization 

issue of neural network more detail. 

Table 4-9 Training and testing error of curvelet keypoints 

 
Curvelet keypoints    

RMSE Training Testing    

Rotation 0.00095 3.7093    

Scale(X-Axis) 0.0364 0.1249    

Scale(Y-Axis) 0.0368 0.1539    

Translation(X-Axis) 0.00098 3.1551    

Translation(Y-Axis) 0.00099 2.9657    

Shear(X-Axis) 0.0243 0.0313    

Shear(Y-Axis) 0.0270 0.0317    
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Figure 4.18 Difference between training and testing of curvelet keypoints 
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though we used 32 neurons, which is a half of network structure, it did not solve the 

generalization issue. Now, we looked into the input data that are DCT coefficients, SIFT 

keypoints, and curvelet keypoints. Figure 4.19 shows the 20 input data sets for DCT with SIFT 

keypoints (left) and curvelet keypoints (right). The range from 0 to 100 in x-axis at left plot of 

Figure 4.19 represents DCT coefficients and the data from index 101 to 200 in x-axis represents 

coordinate information of SIFT keypoints. The scale of DCT coefficients is relatively larger than 

curvelet keypoints. 

  

Figure 4.19 Input data sequences of DCT with SIFT and curvelet keypoints 
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4.3.5. Using DCT and curvelet coefficients 

At this section, we tried to use DCT coefficients and curvelet coefficients together. As we 

mentioned above, we might need overall information of the image in order to solve 

generalization issue that was occurred in curvelet coefficients and curvelet keypoints simulation. 

 

Figure 4.20 DCT with curvelet coefficients simulation 

Table 4-10 Training and testing error of DCT with curvelet coefficients 
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 When we used DCT coefficients of the image, it improves the generalization capability as 

we expected. However, DCT coefficients effect on training the neural network dominantly. Thus, 

the training and testing results are similar with DCT coefficients case. 

 

4.3.6. Using DCT and curvelet keypoints 

We also use a hundred DCT coefficients of the image and a hundred curvelet keypoints 

to training the neural network. The results is shown at Table 4-11. DCT coefficients are also able 

to increase generalization capability of the neural network. We can see that curvelet keypoints 

are more effective to train the neural network. Even though DCT coefficients played dominantly 

by reducing generalization error, we can see training error is better than the others. The testing 

error is also slightly better than the others in all parameters. 

 

Figure 4.21 Training and testing error of DCT with curvelet keypoints 
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Table 4-11 Training and testing error of DCT with curvelet keypoints 

 
DCT + Curvelet keypoints 

RMSE Training Testing 

Rotation 0.9690 1.1909 

Scale(X-Axis) 0.0519 0.0502 

Scale(Y-Axis) 0.0534 0.0515 

Translation(X-Axis) 0.2654 0.3440 

Translation(Y-Axis) 0.2734 0.3285 

Shear(X-Axis) 0.0222 0.0227 

Shear(Y-Axis) 0.0196 0.0215 

 

 

4.3.7. Cross validation 

 We can increase generalization capability by adding DCT of the image for training the 

neural network at the above section. However, there still seems to be the over-training at Figure 

4.21. As mentioned above, early stop training approach does not significantly improve the over-

training. We applied a cross-validation method for training the network. First, we combine 

training and testing data set and mix it. Then the data sets are divided into 10 sub sets that each 

set has 50 inputs and outputs pairs. At the first round, we train sub sets from 2 to 10 and test with 

set number 1. We train sub sets 1 and from 3 to 10, and test with set number 2 at a second round 

of training. We continue to train the network using data set rotationally. After 5 round of 

training, we could get a better training result comparing without applying cross-validation. 

[Table 4-12]. In testing, it has significantly better performance to estimate rotation parameter.  
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Table 4-12 Cross validation of DCT with curvelet keypoints 

 
DCT + Curvelet keypoints after cross-validation 

RMSE Training Testing 

Rotation 0.9401  0.8197  

Scale(X-Axis) 0.0603  0.0836  

Scale(Y-Axis) 0.0608  0.0791  

Translation(X-Axis) 0.4828  0.7696  

Translation(Y-Axis) 0.4837  0.6324  

Shear(X-Axis) 0.0281  0.0303  

Shear(Y-Axis) 0.0301  0.0295  

 

 

4.4. Robustness to noisy images 

At this section, we test neural network with noisy images instead of clear images. We add 

two types of noise: Gaussian noise, and salt and pepper noise [Figure 4.22]. For Gaussian noise, 

signal to noise ratio is described as Equation (4.1). 5dB, 2dB, and 1dB noisy images are tested in 

this simulation. Salt and pepper noise is added by based on percentage of image pixels and 2%, 

5%, and 10% images are tested. 
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Figure 4.22 Noisy images; Gaussian noise (top), Salt & Pepper noise (bottom) 

 Trained parameters at above sections are used for testing noisy images. We compare the 

results with DCT coefficients, DCT coefficients with SIFT keypoints, and DCT with curvelet 

keypoints cases. 

4.4.1. DCT coefficients with noisy images 

Table 4-13 and Table 4-14 show the results of simulation with noisy images. As the 

amount of noise is increasing, the performance becomes worse for both Gaussian and salt & 

pepper type noise. The rotation and translation parameters become worse than other parameters.  
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Table 4-13 Testing results with Gaussian noise images (DCT coefficients) 

Gaussian Noise w/o noise Noise (5dB) Noise (2dB) Noise (1dB) 

Rotation 1.2282 1.5937 1.9068 2.0620 

Scale(X-Axis) 0.0541 0.0588 0.0627 0.0642 

Scale(Y-Axis) 0.0520 0.0556 0.0594 0.0612 

Translation(X-Axis) 0.3560 1.0515 1.3996 1.5609 

Translation(Y-Axis) 0.3178 0.7274 0.7726 0.7824 

Shear(X-Axis) 0.0225 0.0231 0.0231 0.0230 

Shear(Y-Axis) 0.0221 0.0232 0.0239 0.0242 

 

Table 4-14 Testing results with Salt & Pepper noise images (DCT coefficients) 

 
w/o noise Noise (2%) Noise (5%) Noise (10%) 

Rotation 1.2282 1.2920 1.4885 1.8839 

Scale(X-Axis) 0.0541 0.0550 0.0561 0.0591 

Scale(Y-Axis) 0.0520 0.0524 0.0531 0.0562 

Translation(X-Axis) 0.3560 0.4976 0.8798 1.3400 

Translation(Y-Axis) 0.3178 0.3338 0.4369 0.7345 

Shear(X-Axis) 0.0225 0.0225 0.0229 0.0231 

Shear(Y-Axis) 0.0221 0.0223 0.0225 0.0233 

 

 

4.4.2. DCT coefficients and SIFT keypoints with noisy images 

 Table 4-15, and Table 4-16 show the results of DCT coefficients and SIFT keypoints. 

The overall performance is better than DCT coefficients only case[Table 4-13, Table 4-14] 
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Table 4-15 Testing results with Gaussian noise images (DCT + SIFT) 

 

 w/o noise Noise (5dB) Noise (2dB) Noise (1dB) 

Rotation 1.2433 1.5335 1.8420 1.9813 

Scale(X-Axis) 0.0527 0.0554 0.0587 0.0602 

Scale(Y-Axis) 0.0537 0.0545 0.0564 0.0582 

Translation(X-Axis) 0.3757 0.9252 1.2478 1.4120 

Translation(Y-Axis) 0.3394 0.8677 0.9017 0.8987 

Shear(X-Axis) 0.0258 0.0258 0.0258 0.0258 

Shear(Y-Axis) 0.0264 0.0266 0.0267 0.0268 

 

The estimation for translation parameters is worse than the other ones, which is the similar trend 

with DCT coefficients case. 

Table 4-16 Testing results with Salt & Pepper noise images (DCT + SIFT) 

 

 w/o noise Noise (2%) Noise (5%) Noise (10%) 

Rotation 1.2433 1.2450 1.4332 1.8133 

Scale(X-Axis) 0.0527 0.0532 0.0541 0.0568 

Scale(Y-Axis) 0.0537 0.0538 0.0531 0.0549 

Translation(X-Axis) 0.3757 0.4657 0.7785 1.1808 

Translation(Y-Axis) 0.3394 0.3693 0.4688 0.7634 

Shear(X-Axis) 0.0258 0.0257 0.0258 0.0260 

Shear(Y-Axis) 0.0264 0.0264 0.0265 0.0265 
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4.4.3. DCT coefficients and curvelet keypoints with noisy images 

One of the applications of curvelet transform is to reduce noise of the image. However, in 

this simulation, curvelet transform does not improve the estimation performance so much. The 

result is slightly better when we exploit DCT coefficients and curvelet keypoints together [Table 

4-11]. Table 4-17 and Table 4-18 show the estimation results using DCT and curvelet keypoints 

together. The testing error of noisy images does not show the improvement compared to DCT 

coefficients and DCT with SIFT keypoints, rather slightly worse in some parameters.  

Table 4-17 Testing results with Gaussian noise images (DCT with curvelet keypoints) 

 w/o noise Noise (5dB) Noise (2dB) Noise (1dB) 

Rotation 1.1909 1.5606 1.9340 2.1279 

Scale(X-Axis) 0.0502 0.0556 0.0588 0.0600 

Scale(Y-Axis) 0.0515 0.0554 0.0588 0.0610 

Translation(X-Axis) 0.3440 1.0869 1.4571 1.6173 

Translation(Y-Axis) 0.3285 0.7615 0.7892 0.8141 

Shear(X-Axis) 0.0227 0.0223 0.0222 0.0224 

Shear(Y-Axis) 0.0215 0.0224 0.0234 0.0236 

 

Table 4-18 Testing results with Salt & Pepper noise images (DCT with curvelet keypoints) 

 
w/o noise Noise (2%) Noise (5%) Noise (10%) 

Rotation 1.1909 1.2060 1.4057 1.8441 

Scale(X-Axis) 0.0502 0.0508 0.0527 0.0550 

Scale(Y-Axis) 0.0515 0.0522 0.0534 0.0557 

Translation(X-Axis) 0.3440 0.5074 0.8846 1.3553 

Translation(Y-Axis) 0.3285 0.3501 0.4689 0.7598 

Shear(X-Axis) 0.0227 0.0221 0.0224 0.0225 

Shear(Y-Axis) 0.0215 0.0217 0.0217 0.0224 
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The reason we might guess is that if curvelet keypoints are extracted well from noisy 

image, it can estimate parameters better. However, it also has possible to get worse results, when 

the curvelet keypoints do not represent its features well as displayed in Figure 4.23. 

 

Figure 4.23 False curvelet keypoints of salt & pepper noisy image (10%) 
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Chapter 5. Conclusions and future work 

In this thesis, neural networks are used to estimate the parameters needed for registration 

of brain images. The inputs to the networks are DCT coefficients and coordinate information. 

We suggested to use curvelet keypoints that are extracted by using curvelet transformation as 

coordinate information. Curvelet transform is a multiresolution geometric analysis that is able to 

exploit the geometric properties of structures better than wavelet transform due to its high 

directional sensitivity. As discussed in chapter 4, the training of neural network with curvelet 

keypoints approach performed significantly better than other methods on the estimation of 

rotation or scale parameters. The training and testing errors of ANN with DCT coefficients and 

curvelet keypoints are slightly better than other methods when all image registration parameters 

are applied. 

For future work, we will apply this approach (DCT with curvelet keypoints) to more 

images to further test its performance. 
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APPENDICES 

Appendix A Matlab codes 

- Neural network training script 

%% Image registration Simulation 
% Author - Hyunjong Choi 

 
clc; clear all; close all;% delete H.mat bias.mat weights.mat; 
 

% Load training inputs/outputs files 
load train_test_data/326_inputs_cv_test5.mat; 
load train_test_data/326_outputs_cv_test5.mat; 

 
% Train parameters 
H = [64];    % Hidden neurons 
rate = 0.0001;  % Learning rate 
epoch = 1000;   % Iteration 

  
% Train weighting factors and parameters 
[ weights, layer_out, error, val_error, bias, actcnt, train_time, save_w, 

save_b] = NeuralNetwork_Train_Validation(inputs, outputs, H, rate, epoch); 

  
%% Calculate RMSE of trained networks 
Err = abs(outputs(:,1:400) - layer_out{end}); 
rot_E = sqrt(mean(Err(1,:).^2)); 
scale_x_E = sqrt(mean(Err(2,:).^2)); 
scale_y_E = sqrt(mean(Err(3,:).^2)); 
trans_x_E = sqrt(mean(Err(4,:).^2)); 
trans_y_E = sqrt(mean(Err(5,:).^2)); 
shear_x_E = sqrt(mean(Err(6,:).^2)); 
shear_y_E = sqrt(mean(Err(7,:).^2)); 
Train_result = 

[rot_E;scale_x_E;scale_y_E;trans_x_E;trans_y_E;shear_x_E;shear_y_E]; 

 

- Neural network testing script 

%% 2. Testing networks 
%clc; %clear all; 

  
load train_test_data/327_t_inputs_cv_test4_S_10.mat; 
load train_test_data/327_t_outputs_cv_test5.mat; 

 
% Testing network 
idx = 1; 
for s = 5 : 5: length(save_w) 
    test_out = NeuralNetwork( t_inputs, save_w{s}, H, save_b{s}); 

     
    t_Err = t_outputs' - test_out{end}'; 

     
    mean_Err = mean(t_Err)'; 
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    absmean_Err = mean(abs(t_Err))'; 
    std_Err = std(t_Err)'; 
    rmse = sqrt(mean(t_Err.^2))'; 
    max_Err = max(abs(t_Err))'; 
    min_Err = min(abs(t_Err))'; 

     
    tmp_test_E = t_outputs - test_out{end}; 
    test_E(idx) = mean(sum((tmp_test_E)'.^2)/50); 

     
    idx = idx + 1; 
end 
% Find minimum error and check the error values 
[Y I] = min(test_E); 

 
test_out = NeuralNetwork( t_inputs, save_w{I*5}, H, save_b{I*5}); 
t_Err = t_outputs' - test_out{end}'; 

 
mean_Err = mean(t_Err)'; 
absmean_Err = mean(abs(t_Err))'; 
std_Err = std(t_Err)'; 
rmse = sqrt(mean(t_Err.^2))'; 
max_Err = max(abs(t_Err))'; 
min_Err = min(abs(t_Err))'; 
result = [rmse mean_Err absmean_Err std_Err max_Err min_Err]; 

  
fig = figure(1); 
x = 5:5:actcnt; 
plot(error, 'k--', 'LineWidth', 1, 'Marker', '*'); grid on; hold on; 
plot(x, val_error, 'k:', 'LineWidth', 1, 'Marker', '^'); 
tline = plot(x, test_E, 'k-.', 'LineWidth', 1, 'Marker', 's'); 
xlabel('Iteration'); ylabel('MSE'); title('Training/Validation/Testing 

error'); 
legend('Training error','Validation error','Testing error'); 
xlim([0 1000]); 

 
dcm_obj = datacursormode(fig); 
set(dcm_obj, 

'DisplayStyle','datatip','SnapToDataVertex','off','Enable','on'); 
target = handle(tline); 
dtip = dcm_obj.createDatatip(target); 
position = [I*5, Y]; 
update(dtip, position); 

 

- Neural network training function 

function [weights, layer_out, E, val_E, bias, cnt, train_time, save_w, 

save_b] = NeuralNetwork_Train_Validation(raw_inputs, raw_outputs, H, rate, 

epoch) 
% function [weights, actOutputs] = NeuralNetwork_Train(inputs, d_outputs, H, 

rate, epoch) 
% Description of the function : The function is to train weights and 

parameters of general artificial neural network. 
%  
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%   Input parameters(arguments) are : 
%       inputs : Input vectors 
%       outputs : Desired outputs 
%       H : hidden layer & the number of neurons 
%       iteration : the number of iteration to execute 
%       rate : learning rate 
%  
%   Output values returned are : 
%       weights : Weights factors 
%       layer_out : Actual output vectors 
%       E : training error 
%       bias : bias 
%  
% Developed by: Hyunjong Choi 
% Revised: 6/1/2015 
% Updated: 10/4/2015 
% - a bug based on handcalculation code:  
% - remove useless parameters 

  
rand('seed',1); 

  
% Divide training and validation set 
inputs = raw_inputs(:,1:400); 
outputs = raw_outputs(:, 1:400); 
val_inputs = raw_inputs(:, 401:450); 
val_outputs = raw_outputs(:, 401:450); 

 
% Get NN dimensions 
HLayer = size(H, 2); 
TLayer = HLayer + 2; 
M = size(inputs, 1); 
N = size(outputs, 1); 
Q = size(inputs, 2); 
a = 1; b = 1; alpha = 0.5; 

  
% Initialize parameters  
% weights : It includes weights for bias at first row) 
for h = 1 : HLayer+1 
    if h == 1 
        weights{h} = 0.01*rands(H(h), M); 
    elseif h == (HLayer+1) 
        weights{h} = 0.01*rands(N, H(h-1)); 
    else 
        weights{h} = 0.01*rands(H(h), H(h-1)); 
    end 
end 

  
% load 'init_weights.mat'; 
n_weights = weights; 
p_weights = weights; 
p_d_w = weights; 
d_w = weights; 
save_w = {}; 
save_b = {}; 
for l = 1 : TLayer 
    if l == 1 
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        layer_out{l} = ones(M, Q); 
    elseif l == TLayer 
        layer_out{l} = ones(N, Q); 
        net{l} = ones(N, Q); 
        bias{l} = 0.01*rands(N, 1); 
    else 
        layer_out{l} = ones(H(l-1), Q); 
        net{l} = ones(H(l-1), Q); 
        bias{l} = 0.01*rands(H(l-1), 1); 
    end 
end 

  
% load 'init_bias.mat'; 
n_bias = bias; 
p_bias = bias; 
p_d_b = bias; 
d_b = bias; 

  
cnt = 1; val_cnt = 1; 
tic 
for i = 1 : epoch 
    order = randperm(Q); 
    for q = 1 : Q 
        % For one iteration, it includes the number of input SETs 
        % A set of inputs has the number of input elements 
        % Generate noise and add it to training inputs 
        layer_out{1}(:,order(q)) = inputs(:,order(q)); 

         
        % Forward path of networks 
        for n = 1 : (TLayer-1) 
            % Summation part 
            net{n+1}(:,order(q)) = weights{n}*layer_out{n}(:,order(q)) + 

bias{n+1}; 

             
            % Activation part 
            if n == TLayer-1 
                layer_out{n+1}(:,order(q)) = purelin(net{n+1}(:,order(q))); 
            else 
                layer_out{n+1}(:,order(q)) = 

hyperbolic(net{n+1}(:,order(q)), a, b); 
            end 
        end 

         
        % Backward path (Update parameters) 
        for n = 1 : (TLayer-1) 
            % Derivative of output of neurons (edited 10/4/2015) 
            out_der = (b/a).*(a-layer_out{TLayer-

n+1}(:,order(q))).*(a+layer_out{TLayer-n+1}(:,order(q))); 

 
            % Output layer neurons 
            if n == 1 
                % Calculate errors of output neurons (edited 10/4/2015) 
                error = outputs(:,order(q)) - layer_out{TLayer}(:,order(q)); 
                delta{TLayer}(:,order(q)) = error; 
            else 
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                delta{TLayer-n+1}(:,order(q)) = weights{TLayer-

n+1}'*delta{TLayer-n+2}(:,order(q)).*out_der; 
            end 
        end 

         
        for n = 1 : (TLayer-1) 
            if n == 1 
                d_w{TLayer-1} = alpha*p_d_w{TLayer-1} + 

rate.*delta{TLayer}(:,order(q))*layer_out{TLayer-1}(:,order(q))'; 
                n_weights{TLayer-1} = weights{TLayer-1} + d_w{TLayer-1}; 

                 
                d_b{TLayer} = alpha*p_d_b{TLayer} + 

rate.*delta{TLayer}(:,order(q)); 
                n_bias{TLayer} = bias{TLayer} + d_b{TLayer}; 
            else 
                d_w{TLayer-n} = alpha*p_d_w{TLayer-n} + rate.*delta{TLayer-

n+1}(:,order(q))*layer_out{TLayer-n}(:,order(q))'; 
                n_weights{TLayer-n} = weights{TLayer-n} + d_w{TLayer-n}; 
                d_b{TLayer-n+1} = alpha*p_d_b{TLayer-n+1} + 

rate.*delta{TLayer-n+1}(:,order(q)); 
                n_bias{TLayer-n+1} = bias{TLayer-n+1} + d_b{TLayer-n+1}; 
            end 
        end 

 
        % Save as previous stage value 
        p_weights = weights; 
        weights = n_weights;         
        p_bias = bias; 
        bias = n_bias; 
        p_d_w = d_w; 
        p_d_b = d_b; 

         
    end 

     
    % Denormalising 
    tmp_E = outputs - layer_out{TLayer}; 
    E(cnt) = mean(sum((tmp_E)'.^2)/Q); 
    E(1,cnt) 

  
    if (mod(cnt,5) == 0) 
        val_act = NeuralNetwork( val_inputs, weights, H, bias); 
        tmp_E_val = val_outputs - val_act{TLayer}; 
        tmp_val_E = mean(sum((tmp_E_val)'.^2)/50); 
        val_E(val_cnt) = tmp_val_E; 

 
        save_w{cnt} = weights; 
        save_b{cnt} = bias; 

 
        val_cnt = val_cnt + 1; 
    end 

  
    if (E(1,cnt) < 0.00001) 
        break; 
    end 
    cnt = cnt + 1; 
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end 
train_time = toc 
end 

 

- Neural network forward loop function 

function [ layer_outs ] = NeuralNetwork( inputs, weights, H, bias) 
% function [ outputs ] = NeuralNetwork( inputs, weights, H, a, b); 
% Description of function : This function is to get output of wavelet 
% neural network with trained weighting factors and parameters of wavelet 
% function 
% 
% Input parameters (arguments) are: 
%     inputs : input vectors (N X M), N:elements, M:# of input sets 
%     weights : weights factors  
%     H : hidden layer & the number of neurons 
%     bias : bias values 
%  
% Output values returned are: 
%     layer_out: outputs of NN 
%  
% Developed by: Hyunjong Choi 
% Revised: 6/1/2015 

  
HLayer = size(H, 2); 
TLayer = HLayer + 2; 
M = size(inputs, 1); 
Q = size(inputs, 2); 
P = H(1); 
a = 1; b = 1; 

  
% tic 
for q = 1 : Q 
    % For one iteration, it includes the number of input SETs 
    % A set of inputs has the number of input elements 
    layer_outs{1}(:,q) = inputs(:,q); 

  
    % Forward path of networks 
    for n = 1 : (TLayer-1) 
        % Summation part 
        net{n+1}(:,q) = weights{n}*layer_outs{n}(:,q) + bias{n+1}; 

  
        % Activation part 
        if n == TLayer-1 
            layer_outs{n+1}(:,q) = purelin(net{n+1}(:,q)); 
        else 

             
            layer_outs{n+1}(:,q) = hyperbolic(net{n+1}(:,q), a, b); 
        end 
    end 
end 
% test_time = toc; 
end 
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- Generate training/testing image sets 

%% Image registration Generate train and test sets 
clc; clear all; close all; 
 

%% 1. Read image file and set the number of training and testing 
filename = 'brain2'; 
im = imread([filename, '.jpg']); 

  
% Train parameters 
numTrain = 450;      % Number of training pairs 
numTest = 50;        % Number of testing pairs 
M = numTrain + numTest;   
keypoints = 50;      % Number of keypoints coordinates from SIFT 
 

%% 2. Generate random variables for rotation, scale, translation, shear 
rand('seed',2); 
rotation = randi([-12 12],M,1); 
scale_x = 0.9 + (1.1 - 0.9).*rand(M, 1); 
scale_y = 0.9 + (1.1 - 0.9).*rand(M, 1); 
trans_x = randi([-5 5],M,1); 
trans_y = randi([-5 5],M,1); 
shear_x = 0.1.*rand(M, 1); 
shear_y = 0.1.*rand(M, 1); 

 
%% 3. Save variables & generate affined images  

 
affine_para = [rotation scale_x scale_y trans_x trans_y shear_x shear_y]; 

 
for n = 1 : M 
    outputImg = Affine_Images(im, rotation(n), scale_x(n), scale_y(n), 

trans_x(n), trans_y(n), shear_x(n), shear_y(n)); 

 
    imwrite(outputImg, ['../train_images/', filename, '-', num2str(n), '-of-

1000.jpg']); 
end 

 
%% 4. Find out keypoints using SIFT (should run in window PC) 
for n = 1 : M 
     affined = ['../train_images/', filename, '-', num2str(n), '-of-

1000.jpg']; 
     [matched_num(n) origin_pos{n} matched_pos{n}] = match([filename, 

'.jpg'], affined); 
     origin_pairs = origin_pos{n}(1:keypoints, :); 
     affined_pairs = matched_pos{n}(1:keypoints,:); 

  
     origin_crd{n} = [origin_pairs(:,1); origin_pairs(:,2)]; 
     affined_crd{n} = [affined_pairs(:,1); affined_pairs(:,2)]; 
end 

  

  
%% 5. Get DCT coefficients from affined images 
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dct_tmp1 = {}; dct_coeffi = {}; 
for m = 1 : M 
    im2 = imread(['../train_images/', filename, '-', num2str(m), '-of-

1000.jpg']); 
    im2_gray = rgb2gray(im2); 
    dct_origin = dct2(im2_gray); 
    dct_tmp1{m} = dct_origin(1:10, 1:10); 
end 

  
%% 6. Normalization inputs and structuring for network inputs 
for m = 1 : M 
     input = reshape(dct_tmp1{m}, [], 1); 

      
     tmp_inputs(:, m) = [input; affined_crd{m}]; 
     inputs(:, m) = zscore(tmp_inputs(:,m)); 
     outputs(:, m) = [rotation(m) scale_x(m) scale_y(m) trans_x(m) 

trans_y(m) shear_x(m) shear_y(m)]'; 
end 

  
%% 7. Divide for training and testing samples 
t_inputs = inputs(:,numTrain+1:numTrain+numTest); 
t_outputs = outputs(:,numTrain+1:numTrain+numTest); 

  
inputs = inputs(:,1:numTrain); 
outputs = outputs(:,1:numTrain); 

 

- Affine transform function 

function [ outputImage ] = Affine_Images( Im, r_angle, sx, sy, tx, ty, shx, 

shy ) 

  
% Rotation matrix 
R = [cos(r_angle*pi/180) sin(r_angle*pi/180) 0; 
    -sin(r_angle*pi/180) cos(r_angle*pi/180) 0; 
    0 0 1]; 

  
% Scaling matrix 
S = [sx 0 0; 
    0 sy 0; 
    0 0 1]; 

  
% % Shearing matrix 
SH = [1 shx 0; 
    shy 1 0; 
    0 0 1]; 

  
% Transformation function 
TR = R*S*SH; 

  
tform = maketform('affine', TR); 
[I X Y] = imtransform(Im, tform, 'XYScale', 1); 
outputImage = imtranslate(I, [tx, ty],'OutputView','full'); 
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end 

- Extract curvelet keypoints script 

%% Extract keypoints based on curvelet transform 
clc; clear all; close all; 

  

 
% Train parameters 
numTrain = 450;      % Number of training pairs 
numTest = 50;        % Number of testing pairs 
M = numTrain + numTest;      
filename = 'brain2'; 

  
for m = 1 : 100 
    % Load image 
    im = imread(['../../../train_images/brain2-500/', filename, '-', 

num2str(m), '-of-500.jpg']); 
    im_gray = rgb2gray(im); 
    [M N] = size(im_gray); 

     
%     % Noisy image pre-processing 
%     disp('Compute all thresholds'); 
%     F = ones(M); 
%     X = fftshift(ifft2(F)) * sqrt(prod(size(F))); 
%     Cn = fdct_wrapping(X,0,2); 
%  
%     % Compute norm of curvelets (exact) 
%     E = cell(size(Cn)); 
%     for s=1:length(Cn) 
%       E{s} = cell(size(Cn{s})); 
%       for w=1:length(Cn{s}) 
%         A = Cn{s}{w}; 
%         E{s}{w} = sqrt(sum(sum(A.*conj(A))) / prod(size(A))); 
%       end 
%     end 
%     Cn = fdct_wrapping(im_gray,1,2); 
%     % Apply thresholding 
%     Cnt = Cn; sigma = 20; 
%     for s = 2:length(Cn) 
%       thresh = 3*sigma + sigma*(s == length(Cn)); 
%       for w = 1:length(Cn{s}) 
%         Cnt{s}{w} = Cn{s}{w}.* (abs(Cn{s}{w}) > thresh*E{s}{w}); 
%       end 
%     end 
%  
%     % Take inverse curvelet transform  
%     im_gray = real(ifdct_wrapping(Cnt,1)); 
%      

   
    % Discrete Curvelet transform 
    tic; C = fdct_wrapping(double(im_gray), 0); toc; 
    Ct = C; 
    tt = (real(Ct{1}{1})); 
    cv_Dct = dct2(tt); 
    curveletDCT = reshape(cv_Dct(1:5,1:5), [], 1); 
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    % Get Parameters from the result of Curvelet 
    [X_rows, X_cols, F_rows, F_cols, N_rows, N_cols] = 

fdct_wrapping_param(C, M, N); 

     
    % Get Mean value of each scale 
    for s = 1 : length(C) 
        cfs = []; 
        for w = 1 : length(C{s}) 
            cfs = [cfs; abs(C{s}{w}(:))]; 
        end 
        scale{s} = sort(cfs, 'descend'); 
    %     scale_mean{s} = mean(cfs); 
        scale_mean{s} = max(cfs)*0.7; 
    end 
    [s1r s1c] = size(C{1}{1}); 
    [sr sc] = size(C{length(C)}{1}); 

  
    C{1}{1} = zeros(s1r, s1c); 
    C{length(C)}{1} = zeros(sr, sc); 

  
    % Set small coefficients to zero 
    for s = 1 : length(C) 
        for w = 1 : length(C{s}) 
            C_Keypoints{s}{w} = C{s}{w}.* (abs(C{s}{w})>scale_mean{s}); 
        end 
    end 

  
    % Get keypoints index information of each scale, 
    % Take the index information of non-zero values 
    origin_key_num = zeros(1, length(C_Keypoints)); 
    for s = 1 : length(C_Keypoints) 
        for w = 1 : length(C_Keypoints{s}) 
           [tmp_KeyidxR{s}{w} tmp_KeyidxC{s}{w}] = find(C_Keypoints{s}{w} ~= 

0); 
           origin_key_num(1, s) = length(tmp_KeyidxR{s}{w}) + 

origin_key_num(1, s); 
        end 
    end 

  
    % Determine the number of keypoint to extract 
    ratio = floor(origin_key_num./sum(origin_key_num)*150); 
    while sum(ratio) < 150 
        [val_ratio midx] = max(ratio); 
        ratio(midx) = ratio(midx) + 1; 
    end 
    ratio(1) = 1; ratio(6) = 1; 

  
    % Set small coefficients to zero 
    for s = 1 : length(C) 
        for w = 1 : length(C{s}) 
            CS_Keypoints{s}{w} = C{s}{w}.* 

(abs(C{s}{w})>=scale{s}(ratio(s)*2)); 
        end 



 

93 

 

    end 

  
    for s = 1 : length(CS_Keypoints) 
        for w = 1 : length(CS_Keypoints{s}) 
           [KeyidxR{s}{w} KeyidxC{s}{w}] = find(CS_Keypoints{s}{w} ~= 0); 
        end 
    end 

  
    figure(m); 
    imshow(im); hold on; 
    % Get keypoints index in the original image 
    num_key = 0; num_key_2 = 0; num_key_3 = 0; num_key_4 = 0; num_key_5 = 0; 
    cnt = 1; 
    for s = 2 : length(C)-1 
        for w = 1 : length(C{s})/2 
            for i = 1 : length(KeyidxR{s}{w}) 
                % Curvelet coefficients 
                cv_coeff(cnt, 1) = abs(CS_Keypoints{s}{w}(KeyidxR{s}{w}(i), 

KeyidxC{s}{w}(i))); 
                cnt = cnt + 1; 
                % Coordinate information in the image 
                imgIdx{s}{w}(i, 1) = (X_rows{s}{w}(KeyidxR{s}{w}(i), 

KeyidxC{s}{w}(i))); 
                imgIdx{s}{w}(i, 2) = (X_cols{s}{w}(KeyidxR{s}{w}(i), 

KeyidxC{s}{w}(i))); 
                % Total number of keypoints 
                num_key = num_key + 1; 
                keypoints_crd(num_key, 1) = imgIdx{s}{w}(i, 2); 
                keypoints_crd(num_key, 2) = imgIdx{s}{w}(i, 1); 

  
                if s == 2   % Scale 2 
                    plot(imgIdx{s}{w}(i, 2), imgIdx{s}{w}(i, 1), 'y*'); 
                    num_key_2 = num_key_2 + 1; 
                elseif s == 3   % Scale 3 
                    plot(imgIdx{s}{w}(i, 2), imgIdx{s}{w}(i, 1), 'r*'); 
                    num_key_3 = num_key_3 + 1; 
                elseif s == 4   % Scale 4 
                    plot(imgIdx{s}{w}(i, 2), imgIdx{s}{w}(i, 1), 'g*'); 
                    num_key_4 = num_key_4 + 1; 
                elseif s == 5   % Scale 5 
                    plot(imgIdx{s}{w}(i, 2), imgIdx{s}{w}(i, 1), 'm*'); 
                    num_key_5 = num_key_5 + 1; 
                end 
            end 
        end 
    end 

 
    input_cvKey = [keypoints_crd(:, 1); keypoints_crd(:, 2)]; 
    inputs(:, m) = zscore([curveletDCT; input_cvKey]); 
    outputs(:,m) = affine_para(m,:)'; 

     
end 

  
%% Divide for training and testing samples 
t_inputs = inputs(:,numTrain+1:numTrain+numTest); 
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t_outputs = outputs(:,numTrain+1:numTrain+numTest); 

  
inputs = inputs(:,1:numTrain); 
outputs = outputs(:,1:numTrain); 

 

- Wavelet neural network training function 

function [weights, layer_out, E, val_E, bias, lamda, tau, cnt, train_time, 

save_w, save_b, save_t, save_l] = Wavelet_NN_Train_Validation(raw_inputs, 

raw_outputs, H, rate, epoch) 
% function [weights, layer_out, E, bias, lamda, tau, cnt] = Wavelet_NN_Train 

(inputs, outputs, H, rate, epoch) 
% Description of the function : The function is to train weights and 

parameters 
% of wavelet neural network. 
%  
%   Input parameters(arguments) are : 
%       inputs : Input vectors 
%       outputs : Desired outputs 
%       H : hidden layer & the number of neurons 
%       epoch : the number of iteration to execute 
%       rate : learning rate 
%  
%   Output values returned are : 
%       weights : Weights factors 
%       Layer_out : Actual output vectors 
%       E : training error 
%       bias : bias 
% 
% Developed by: Hyunjong Choi 
% Revised: 6/1/2015 

 
% Divide training and validation set 
inputs = raw_inputs(:,1:250); 
outputs = raw_outputs(:, 1:250); 
val_inputs = raw_inputs(:, 251:300); 
val_outputs = raw_outputs(:, 251:300); 

  
% Get NN dimensions 
HLayer = size(H, 2); 
TLayer = HLayer + 2; 
M = size(inputs, 1); 
N = size(outputs, 1); 
Q = size(inputs, 2); 
a = 1; b = 1; 
alpha = 0.4; 

  
% Initialize parameters  
% weights : It includes weights for bias at first row) 
for h = 1 : HLayer+1 
    if h == 1 
        weights{h} = 0.01*rands(H(h), M); 
    elseif h == (HLayer+1) 
        weights{h} = 0.01*rands(N, H(h-1)); 
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    else 
        weights{h} = 0.01*rands(H(h), H(h-1)); 
    end 
end 
n_weights = weights; 
p_weights = weights; 
p_d_w = weights; 
d_w = weights; 
tmp_weights = weights; 

  
for l = 1 : TLayer 
    if l == 1 
        layer_out{l} = ones(M, Q); 
    elseif l == TLayer 
        layer_out{l} = ones(N, Q); 
        net{l} = ones(N, Q); 
        bias{l} = rands(N, 1); 
        lamda{l} = rands(N, 1); 
        tau{l} = rands(N, 1); 

         
        p_lamda{l} = lamda{l}; 
        p_tau{l} = tau{l}; 
    else 
        layer_out{l} = ones(H(l-1), Q); 
        net{l} = ones(H(l-1), Q); 
        bias{l} = rands(H(l-1), 1); 
        lamda{l} = rands(H(l-1), 1); 
        tau{l} = rands(H(l-1), 1); 
        p_lamda{l} = lamda{l}; 
        p_tau{l} = tau{l}; 

         
    end 
end 
n_bias = bias; 
p_bias = bias; 
p_d_b = bias; 
d_b = bias; 

  
d2 = max(max(inputs)); d1 = min(min(inputs)); 
for l = 2 : TLayer-1 
    for h = 1 : H(l-1) 
        if h == 1 
            a = rands(1); 
            tau{l}(h,1) = (d2 - d1)*a; 
            lamda{l}(h,1) = 0.5*(d2 - d1); 
        elseif mod(h,2) == 0 
            tau{l}(h,1) = tau{l}(h/2,1)*rands(1); 
            lamda{l}(h,1) = 0.5*(tau{l}(h/2,1) - d1); 
        elseif mod(h,2) == 1 
            tau{l}(h,1) = d2 - tau{l}((h-1)/2,1)*rands(1); 
            lamda{l}(h,1) = 0.5*(d2 - tau{l}((h-1)/2, 1)); 
        end 
    end 
end 
p_d_tau = tau; 
p_d_lamda = lamda; 
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d_tau = tau; 
tmp_tau = tau; 
d_lamda = lamda; 
tmp2_lamda = lamda; 

  
save_w = {}; save_b={}; save_l={}; save_t={}; 
cnt = 1; val_cnt = 1; E(1) = 1000; p_E = E; 
tic 
for i = 1 : epoch 
    order = randperm(Q); 
    for q = 1 : Q 
        % For one iteration, it includes the number of input SETs 
        % A set of inputs has the number of input elements 
        layer_out{1}(:,order(q)) = inputs(:,order(q)); 

         
        % Forward path of networks 
        for n = 1 : (TLayer-1) 
            % Summation part 
            net{n+1}(:,order(q)) = weights{n}*layer_out{n}(:,order(q)) + 

bias{n+1}; 

             
            % Activation part 
            if n == TLayer-1 
                layer_out{n+1}(:,order(q)) = purelin(net{n+1}(:,order(q))); 
            else 
                layer_out{n+1}(:,order(q)) = 

Morlet_Wavelet(net{n+1}(:,order(q)), lamda{n+1}, tau{n+1}, ''); 
            end 
        end 

         
        % Backward path (Update parameters) 
        for n = 1 : (TLayer-1) 
            % Output layer neurons 
            out_der{TLayer-n+1}(:,order(q)) = Morlet_Wavelet(net{TLayer-

n+1}(:,order(q)), lamda{TLayer-n+1}, tau{TLayer-n+1}, 'de'); 

  
            if n == 1 
                % Calculate errors of output neurons 
                error = outputs(:,order(q)) - layer_out{TLayer}(:,order(q)); 
                delta{TLayer} = error; 
            else 
                tmp_lamda = (net{TLayer-n+1}(:,order(q)) - tau{TLayer-

n+1})./(lamda{TLayer-n+1}.^2); 

  
                delta{TLayer-n+1} = weights{TLayer-

n+1}'*delta{TLayer}.*out_der{TLayer-n+1}(:,order(q)); 
                delta_lamda{TLayer-n+1} = weights{TLayer-

n+1}'*delta{TLayer}.*tmp_lamda; 
                delta_tau{TLayer-n+1} = weights{TLayer-

n+1}'*delta{TLayer}.*(1./lamda{TLayer-n+1}); 

                 
            end 
        end 
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        for n = 1 : (TLayer-1) 
            if n == 1 
                d_w{TLayer-1} = rate.*delta{TLayer}*layer_out{TLayer-

1}(:,order(q))';% + alpha*p_d_w{TLayer-1}; 
                n_weights{TLayer-1} = weights{TLayer-1} + d_w{TLayer-1}; 

  
                d_b{TLayer} = rate.*delta{TLayer};% + alpha*p_d_b{TLayer}; 
                n_bias{TLayer} = bias{TLayer} + d_b{TLayer}; 
            else 
                d_w{TLayer-n} = rate.*delta{TLayer-n+1}*layer_out{TLayer-

n}(:,order(q))';% + alpha*p_d_w{TLayer-n}; 
                n_weights{TLayer-n} = weights{TLayer-n} + d_w{TLayer-n}; 
                d_b{TLayer-n+1} = rate.*delta{TLayer-n+1};% + 

alpha*p_d_b{TLayer-n+1}; 
                n_bias{TLayer-n+1} = bias{TLayer-n+1} + d_b{TLayer-n+1}; 

                 
                d_tau{TLayer-n+1} = rate.*delta_tau{TLayer-

n+1}.*out_der{TLayer-n+1}(:,order(q));% + alpha*p_d_tau{TLayer-n+1}; 
                tmp_tau{TLayer-n+1} = tau{TLayer-n+1} + d_tau{TLayer-n+1}; 
                test_out = Wavelet_NN( inputs(:,order(q)), weights, H, bias, 

lamda, tmp_tau); 
                tmp_E = mean(sum((outputs(:,order(q)) - 

test_out{TLayer})'.^2)); 
                if (tmp_E < p_E(end)) 
                    tau{TLayer-n+1} = tmp_tau{TLayer-n+1}; 
                    p_E(end) = tmp_E; 
                end 

                 
                d_lamda{TLayer-n+1} = rate.*delta_lamda{TLayer-

n+1}.*out_der{TLayer-n+1}(:,order(q));% + alpha*p_d_lamda{TLayer-n+1}; 
                tmp2_lamda{TLayer-n+1} = lamda{TLayer-n+1} + d_lamda{TLayer-

n+1}; 
                test_out = Wavelet_NN( inputs(:,order(q)), weights, H, bias, 

tmp2_lamda, tau); 
                tmp_E = mean(sum((outputs(:,order(q)) - 

test_out{TLayer})'.^2)); 
                if (tmp_E < p_E(end)) 
                    lamda{TLayer-n+1} = tmp2_lamda{TLayer-n+1}; 
                    p_E(end) = tmp_E; 
                end 
            end 
        end 

         
        % Save as previous stage value 
        p_weights = weights; 
        weights = n_weights;         
        p_bias = bias; 
        bias = n_bias; 
        p_d_w = d_w; 
        p_d_b = d_b; 

         
        p_d_w = d_w; 
        p_d_b = d_b; 
        p_d_tau = d_tau; 
        p_d_lamda = d_lamda; 
    end 
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    p_E = E; 
    err(1) = sum((outputs(1,:) - layer_out{TLayer}(1,:)).^2)./Q; 
    err(2) = sum((outputs(2,:) - layer_out{TLayer}(2,:)).^2)./Q; 
    err(3) = sum((outputs(3,:) - layer_out{TLayer}(3,:)).^2)./Q; 
    err(4) = sum((outputs(4,:) - layer_out{TLayer}(4,:)).^2)./Q; 
    err(5) = sum((outputs(5,:) - layer_out{TLayer}(5,:)).^2)./Q; 
    err(6) = sum((outputs(6,:) - layer_out{TLayer}(6,:)).^2)./Q; 
    err(7) = sum((outputs(7,:) - layer_out{TLayer}(7,:)).^2)./Q;     
    E(cnt) = (err(1)+err(2)+err(3)+err(4)+err(5)+err(6)+err(7))/7; 
    E(1,cnt) 

     
    if (mod(cnt,5) == 0) 
        val_act = Wavelet_NN( val_inputs, weights, H, bias, lamda, tau); 
        tmp_val_E = mean(sum((val_outputs - val_act{TLayer})'.^2)/50); 
        val_E(val_cnt) = tmp_val_E; 
        save_w{cnt} = weights; 
        save_b{cnt} = bias; 
        save_t{cnt} = tau; 
        save_l{cnt} = lamda; 
        val_cnt = val_cnt + 1; 
    end 

 
    if (E(1,cnt) < 0.00001) 
        break; 
    end 
    p_E = E(1, cnt); 
    cnt = cnt + 1; 

     
end 
train_time = toc 
end 

 

- Wavelet neural network forward loop function 

function [ layer_out ] = Wavelet_NN( inputs, weights, H, bias, lamda, tau) 
% function [layer_out] = Wavelet_NN(inputs, weights, H, bias, lamda, tau); 
% Description of function : This function is to get output of wavelet 
% neural network with trained weighting factors and parameters of wavelet 
% function 
% 
% Input parameters (arguments) are: 
%     inputs : input vectors (N X M), N:elements, M:# of input sets 
%     weights : weights factors  
%     H : hidden layer & the number of neurons 
%     tau: parameters of wavelet function 
%     lamda: parameters of wavelet function 
%     bias : bias for output layer 
%  
% Output values returned are: 
%     outputs : outputs of WNN 
%  
% Developed by: Hyunjong Choi 
% Revised: 6/1/2015 
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HLayer = size(H, 2); 
TLayer = HLayer + 2; 
epsil = 0.1; 
M = size(inputs, 1); 
Q = size(inputs, 2); 
P = H(1); 

  
% tic 
for q = 1 : Q 
    layer_out{1}(:,q) = inputs(:,q); 

  
    for n = 1 : (TLayer-1) 
        net{n+1}(:,q) = weights{n}*layer_out{n}(:,q) + bias{n+1}; 
        % Activation part 
        if n == TLayer-1 
            layer_out{n+1}(:,q) = purelin(net{n+1}(:,q)); 
        else 
            layer_out{n+1}(:,q) = Morlet_Wavelet(net{n+1}(:,q), lamda{n+1}, 

tau{n+1}, ''); 
        end 
    end 

  
end 
% test_time = toc 
end 

 


