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ABSTRACT 
 

Inductive Monitoring Systems: A CubeSat Ground-Based Prototype 
 

Michelle Kristyn Haddock 
 

Inductive Monitoring Systems (IMS) are the newest form of health 
monitoring available to the aerospace industry. IMS is a program that 
builds a knowledge base of nominal state vectors from a nominal data set 
using data mining techniques. The nominal knowledge base is then used 
to monitor new data vectors for off-nominal conditions within the system. 
IMS is designed to replace the current health monitoring process, 
referred to as model-based reasoning, by automating the process of 
classifying healthy states and anomaly detection. An IMS prototype was 
designed and implemented in MATLAB. A verification analysis then 
determined if the IMS program could connect to a CubeSat in a testing 
environment and could successfully monitor all sensors on board the 
CubeSat before in-flight use. This program consisted of two main 
algorithms, one for learning and one for monitoring. The learning 
algorithm creates the nominal knowledge bases and was developed 
using three data mining algorithms: the gap statistic method to find the 
optimal number of clusters, the K-means++ algorithm to initialize the 
centroids, and the K-means algorithm to partition the data vectors into 
the appropriate clusters. The monitoring algorithm employed the nearest 
neighbor searching algorithm to find the closest cluster and compared 
the new data vector with the closest cluster. The clusters found were 
used to establish the knowledge bases. Any data vector within the 
boundaries of the clusters was deemed nominal and any data vector 
outside the boundaries was deemed off-nominal. The learning and 
monitoring algorithms were then adapted to handle the data format used 
on a CubeSat and to monitor the data in real time. The developed 
algorithms were then integrated into a MATLAB GUI for ease of use. The 
learning and monitoring algorithms were verified with a 2-dimensional 
data set to ensure that they performed as expected. The final IMS 
CubeSat prototype was verified using 56-dimensional emulated data 
packages. Both verification methods confirmed that the IMS ground-
based prototype was able to successfully identify all off-nominal 
conditions induced into the system.  
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1   INTRODUCTION  

Monitoring the health of a spacecraft is vital to the success of a 

mission and can be a very complex task before and after launch. Health 

monitoring determines if the spacecraft is working as expected by 

comparing the current telemetry data values to a range of expected 

values. If the current telemetry data values fall within the expected range, 

the spacecraft is considered healthy. If not, the spacecraft is considered 

unhealthy. 

1.1   MOTIVATION  

Currently, the process of health monitoring is tedious and requires 

extensive manual labor. A newer approach that can automate portions of 

the health monitoring process is currently being researched and 

developed and an implementation of such an approach is the topic of this 

thesis. 

1.1.1   CURRENT HEALTH MONITORING 

When simplifying the current process of health monitoring, there 

are three separate steps. The first step in health monitoring is determining 

what constitutes a healthy system. A healthy spacecraft, or one that is 

operating nominally, is defined as a spacecraft with telemetry values that 

are within a range of expected values. Creating a reference table of the 

expected values is the most common practice and requires extensive 

knowledge of the system. In addition to requiring someone who knows 
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the entirety of the system well, a significant amount of time is needed to 

develop a reference table of nominal value ranges that accurately 

describes all the nominal health states of a spacecraft. While determining 

the health states is reasonable for a simple system, “Determining the 

health state of [sophisticated and complex] systems using traditional 

methods is becoming more difficult as the number of sensors and 

component interactions grows” [10]. At times, creating a model that 

accurately describes all the interactions and states within a complex 

system is deemed too difficult or impossible. 

The second step in monitoring the health of a spacecraft is to 

consistently read the spacecraft’s current telemetry values and compare 

them to the reference table of healthy telemetry values. The health of the 

spacecraft is then determined by examining this comparison. If all of the 

spacecraft’s telemetry values are contained within the range of healthy 

values in the reference table, the system is deemed healthy; the 

spacecraft is in a nominal state. If one or more values fall outside the 

healthy value ranges, the system is deemed unhealthy; the spacecraft is 

in an off-nominal state.  

The final step in health monitoring is determining the cause of an 

off-nominal state, as well as a procedure to remedy the anomaly. This 

step is executed on the ground by engineers involved with the spacecraft. 

Determining the cause of the off-nominal state requires a quick 
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investigation into the anomaly and quick decision-making from a team of 

experts on how to return the spacecraft to a healthy state.  

1.1.2   A NEW METHOD OF HEALTH MONITORING 
 

The three steps of health monitoring are, at the time of this work, 

the standard practice in the spacecraft industry. The main goal of a new 

proposed method of health monitoring, Inductive Monitoring Systems 

(IMS), is to automate the first two steps of the process. The IMS method 

can be broken down into two sections: the learning algorithm and the 

monitoring algorithm. The learning algorithm builds its own reference 

table of nominal value ranges from an existing data set, eliminating the 

need for an expert to determine the nominal value ranges. The cost of the 

development period is reduced via the process automation. The learning 

algorithm also increases the reliability of a complex system by being able 

to learn the healthy value ranges of what previously was too complex to 

define. The monitoring algorithm uses the nominal value ranges 

generated by the learning algorithm as the comparison for the system’s 

current telemetry values. The monitoring algorithm then autonomously 

determines if the spacecraft is operating nominally or off-nominally. If off-

nominal, the monitoring algorithm reports a quantitative value that 

demonstrates how far the system has deviated from nominal. 
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1.1.3   IMS BACKGROUND 
 

To date, IMS has been integrated into a wide range of applications. 

As David L. Iverson wrote in his paper Inductive System Health 

Monitoring, “The IMS methodology is domain independent and can be 

used in a variety of system monitoring situations including aerospace, 

transportation, manufacturing, power generation and transmission, 

medical, or process monitoring applications” [9].  IMS is gaining 

popularity in many fields because “the advantage of using IMS is that it is 

fast and simple yet very effective” [7].  

Halim described IMS in the previous quote when referring to why 

he chose to utilize IMS to monitor the equipment used in his field of 

mining, mineral, and metal processing. In another study, IMS was used to 

“maintain effective plug load management system performance, identify 

malfunctioning equipment, and reduce building energy consumption” 

[18]. While IMS is applicable to other industries, it was originally founded 

in the the aerospace industry and recently gained popularity. 

1.1.3.1   STS-107 COLUMBIA SPACE SHUTTLE 
 

The first known investigation into using IMS in an aerospace 

application was conducted by Iverson in 2004. Iverson applied IMS to the 

archived data of the STS-107 Columbia Space Shuttle mission. The STS-

107 mission and the lives of the crew members on board were lost when 

the orbiter was destroyed upon re-entry. The cause of the destruction 

was determined to be “a breach in the Thermal Protection System on the 
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leading edge of the left wing, caused by a piece of insulating foam that 

struck the wing approximately 82 seconds after launch” [9]. This breach 

went unnoticed by mission controllers until 17 days later at the time of re-

entry. A slight increase in brake line temperature of the left main landing 

gear was noticed seven minutes before the loss of the vehicle.  

Iverson used IMS to determine the nominal ranges of archived 

temperature sensor data from previous successful Columbia Space 

Shuttle missions. He then used those nominal ranges to analyze the 

archived telemetry data from the STS-107 Columbia Space Shuttle 

mission. Iverson’s investigation concentrated on four temperature 

sensors on each of the two wings. The results of the investigation are 

shown in Figure 1, where the pink line shows the results of the left wing 

and the blue line shows the results of the right wing. The figure shows the 

IMS distance over time. The IMS distance is a measurement of how far 

from nominal the current telemetry value has deviated. At 15:40:22, a 

vertical line shows when the breach in the brake line occurred. Before the 

impact, the right wing and left wing had similar trends. The left wing IMS 

distance appears to increase before the impact, but this is not the 

indication of the error. Instead, the indication of the error from IMS is 

seen after the impact as the overall trend of the left wing drastically strays 

away from the right wing and does not return to nominal. Iverson 

concluded that this significant difference in the trends of the left wing and 

right wing was an early indication that an error had occurred. 
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Figure 1: IMS Results for STS-107 [9] 

Iverson concluded from this investigation that IMS could provide 

monitoring capability similar to, if not better than, the current techniques 

used. IMS could also aid in alerting a mission controller of vehicle health 

and provide earlier detection of anomalies [9]. 
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requirements for data collection, data filtering, and 
interpretation are comparable. In addition, issues involved in 
modeling, integrating, and fielding [IMS] are similar for both 
platforms” [14].  
 

Mackey et. al believed that if IMS performed as expected on an aircraft, 

the results would translate to a spacecraft. 

JPL developed their own version of IMS that could monitor a 

complex system, such as the F/A-18, without the need for a manually 

developed model. JPL then integrated their version of IMS with their 

Beacon-Based Exception Analysis for Multi-Missions (BEAM) software. 

Mackey et. al describes BEAM as a “software technology that analyzes 

system data to detect anomalies, classify faults, and track degradation in 

physical systems” [14] and reduces the amount of telemetry data 

transferred to the mission controller.   

BEAM reduces the amount of data by transmitting only a beacon 

consisting of one of the following health specifications to the mission 

controller: healthy, anomalous behavior, degradation, or failure. When the 

system is specified as healthy, only the beacon, no telemetry data, is 

transmitted. When the beacon is one of the three latter health 

specifications, only the pertinent telemetry data associated with the 

anomalous event is transmitted. A beacon-based program reduces the 

amount of transmitted telemetry data during the majority of the mission 

but still allows for an investigation into the data in the case of an anomaly 

[11]. 
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The JPL-developed IMS and BEAM were integrated into the flight 

software on-board the F/A-18 and test flights were performed at the 

Armstrong Flight Research Center. The team concluded that the test bed 

was appropriate for IMS and that it met all of their success criteria.  This 

conclusion brought IMS up to Technology Readiness Level (TRL) 6, 

defined as “prototyping implementations on full-scale realistic problems” 

[4] and readied the process for TRL 7, which is a demonstration of the 

prototype in its operational environment [12]. 

1.1.3.3   	  ARES I-X GROUND DIAGNOSTIC PROTOTYPE 

IMS was most recently implemented into the Thrust-Vector Control 

(TVC) system of an Ares I-X launch. A ground diagnostic prototype of IMS 

was developed to support the detection of anomalies during launch. The 

results were later compared to other diagnostic programs in use at the 

time of launch to assess the abilities of IMS.  

Due to the lack of previous test data of the Ares I-X, data collected 

from the TVC system of previous Space Shuttle missions were used to 

create the nominal telemetry value ranges.  This application of IMS failed 

to accurately find all of the failures within the TVC system. The team 

concluded that the performance of IMS is directly related to the quality of 

the original nominal data set that is provided to create the knowledge 

base. Due to the difference in the hardware between the two TVC 

systems the IMS failed to detect some errors, as well as gave false-

positives.  They concluded that IMS added value to the health 
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determination process, but a nominal data set with higher fidelity would 

have yielded better results. IMS had some benefits over the other model-

based diagnostic programs but would require improvement before it was 

deemed a success for this application [16]. 

1.1.4   CUBESAT APPLICATION 

Currently, the IMS method is referred to as an experimental 

algorithm because it has not been proven in-flight on an entire system. By 

integrating the IMS method into a CubeSat’s software architecture, flight 

heritage of an entire system is gained at a lower risk due to the smaller 

cost of the overall mission.  

Adding IMS to the software architecture of a CubeSat will not only 

add reliability to the system, but the addition will also improve the 

scientific goals of the mission. Currently, CubeSats downlink their data, 

telemetry and scientific, during very short communication passes. The 

passes occur three to four times per day and are currently only about 

twelve minutes long. The telemetry portion of data utilizes about 10% of 

the data downlink when a CubeSat is operating nominally. Due to the 

limitations inherent to the CubeSat design, the data rate of a CubeSat is 

very limited. Implementing IMS into the software architecture provides an 

alternative method to obtaining more scientific data from the CubeSat by 

reducing the telemetry data. When IMS is fully integrated to detect 

anomalous conditions, there is no need to transmit the telemetry data 

during a downlink for post-processing. A reduction in the volume of 
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telemetry data will result in more critical science data (approximately 

11%) during a downlink.  

In order to fully integrate IMS into the flight software of a CubeSat, 

a step must be made beforehand to increase the success of such 

implementation. The first step is to verify that IMS can successfully 

monitor and determine the faults in a CubeSat. The first verification 

process of an experimental algorithm, such as IMS, is performed in a 

non-essential setting. This means that IMS should not be fully relied upon 

to detect faults until it has been verified that it has the ability to detect all 

the faults in a system. To verify that IMS can be relied upon in flight to 

detect faults in the system, a prototype must first be built and applied to 

a CubeSat during testing on the ground. Once the prototype of the 

algorithm has demonstrated the ability to to detect faults in the system, it 

then is developed for flight software, tested, and flown on-board a 

CubeSat. 

1.2   THESIS  OVERVIEW  

This thesis describes the development of a ground-based 

prototype of IMS developed for a CubeSat testbed at Cal Poly. This 

thesis describes how IMS was implemented in MATLAB and a user-

friendly interface was developed and integrated into the CubeSat testing 

environment. Finally, this thesis demonstrates the success of the IMS 

method in determining faults when monitoring an emulated CubeSat 

system. 
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This paper first introduces the methodology of Inductive 

Monitoring Systems in Chapter 2. Inductive Monitoring Systems are 

composed of two distinct algorithms: learning and monitoring. Chapter 3 

and Chapter 4 describe these algorithms respectively and their specific 

implementation chosen for this application. Chapter 5 describes how the 

algorithms are integrated in this implementation of IMS to achieve the 

expected outcome, as well as how the algorithms interact with the 

CubeSat testing environment. Chapter 6 explains the verification process 

that was performed on the developed IMS software. Finally, Chapter 7 

concludes the paper and describes the future work needed to fully 

integrate IMS into CubeSat flight software. 
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2   INDUCTIVE  MONITORING  SYSTEMS  (IMS)    

Currently the spacecraft industry uses model-based reasoning to 

predict when a system is functioning nominally or off-nominally which 

requires building a theoretical model of the system. The model uses 

various ranges of simulation software inputs to compute ranges of 

outputs that determine the nominal system states. To determine if a 

system is preforming nominally, the telemetry data collected from the 

system is compared against the range of outputs generated by the 

simulation software. If the telemetry data is within the expected nominal 

range, the system is classified as performing nominally and is healthy. If 

the telemetry data is outside the expected range, it is off-nominal. This 

type of error-detection has a long-standing history of success despite the 

models being difficult and time-consuming to build. The aerospace 

engineering industry continues to push the limits of design and create 

even more complex systems. With the movement toward more complex 

designs, modelling the overall system has become increasingly difficult 

and in some cases, impossible. This is where the IMS approach has value 

and thus has developed interest in the research and development of it.   

IMS is a software that uses a nominal data set to build a 

knowledge base of the various states of nominal behavior.  IMS then uses 

that nominal knowledge base to monitor the health of a system in real 

time. To build the required knowledge bases IMS utilizes techniques 

developed for machine-learning and data mining [2].  
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IMS differs from other monitoring systems because IMS doesn’t 

need to see a failure or error in order to assess when an error occurs. 

Instead, IMS proactively monitors the system’s deviation from the 

nominal state. The deviation is defined as the distance between the 

system’s current state and the nominal state. When the calculated 

deviation has exceeded the maximum deviation allowed, the system is 

deemed off-nominal.  

The motivation for IMS partially stems from the difficulty in 

modeling systems due to their complexity. IMS does not require a model 

but rather a nominal data set [2]. The IMS software can monitor systems 

with nearly the same fidelity as the model-based reasoning approach but 

with less effort in the development of the nominal states [2]. 

Inductive System Health Monitoring (ISHM) is a specific form of 

IMS that was described by Iverson at the 2004 International Conference 

on Artificial Intelligence and is the particular method being applied to the 

CubeSat testbed prototype.  

2.1   ISHM METHODOLOGY 

IMS is broken down into two separate algorithms: the learning 

algorithm and monitoring algorithm. Figure 2 gives a visual representation 

of the relationship between the two algorithms. 
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Figure 2: Relationship Between the Learning and Monitoring Algorithms 

 

ISHM first builds a knowledge base of nominal data sets that will 

later be used for health determination. The learning algorithm uses data-

mining and machine-learning algorithms on archived data in order to 

gather a generalized nominal data set. This generalized data set covers all 

states of the system. The ISHM algorithm then clusters the data into 

groups of similar values. Clustering assigns the data vectors into groups 

such that the data in a group are as similar as possible and data in 

different groups are as dissimilar as possible. Those groups, or clusters, 

define the telemetry value limits for a particular state of the system. Each 

cluster defines a different nominal state of the spacecraft quantitatively.  

In order to utilize the learning algorithm, the data must be in a 

particular form. The form suggested for ISHM is a state vector consisting 

of parameter values. The parameter values are the individual sensor value 

measurements included in the telemetry data. Because ISHM is being 

developed to monitor any number of parameters, the vectors define a 

point in an N-dimensional space, where N is the number of parameters 



 15 

being monitored. This data vector is time variant; multiple data vectors 

would represent the state of the system at multiple times. An example of 

a vector that would be used in this thesis is shown in Table 1. 

Table 1: ISHM Data Vector Example 

Sensor 1: 
Power 

[A] 

Sensor 2: 
Power 

[V] 

Sensor 3: 
Temperature 

[K] 

… Sensor N: 
Parameter 

[Unit] 
3 32 298 … Value 

 

After the parameter values are properly formatted into the state 

vector, the data is then clustered into groups of similar values. While 

there are various clustering methods that can be used, the K-means 

clustering algorithm is recommended and is described later in this paper. 

The maximum and minimum of each parameter in a cluster describe the 

range of nominal values allowed. An example of the final ISHM cluster 

structure is shown in Table 2. 

Table 2: ISHM Cluster Structure 

 Sensor 1: 
Power 

[A] 

Sensor 2: 
Power 

[V] 

Sensor 3: 
Temperature 

[K] 

… Sensor N: 
Parameter 

[Unit] 
Minimum 2.1 31.1 295.3 … Value 
Maximum 4.3 33.2 298.3 … Value 
 

The centroid (or center of each cluster) is then defined as a vector 

in N-dimensional space in which each component of the vector is the 

average of the sensor values contained within that cluster for that 

particular parameter. This is where the ISHM algorithm has similarities to 
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the model-based reasoning algorithm; the allowable nominal values are 

contained within a range. In model-based reasoning, a range of values is 

sent into the developed simulation software and a range of allowable 

response values is output to form the nominal range of values. 

 Now that healthy nominal state vectors have been defined using 

the learning algorithm, a monitoring algorithm is used to determine the 

current health of the system. Telemetry is gathered from the system and 

the monitoring algorithm formats the telemetry data into the same vector 

format shown in Table 1. The monitoring algorithm then utilizes a nearest-

neighbor searching algorithm to locate the closest cluster, measured by 

distance, to the data vector being analyzed.  

Once the closest cluster has been found, the algorithm determines 

if the telemetry gathered from the CubeSat falls within the cluster limits, 

shown in Table 2. The cluster limits are referred to as the bounding N-

dimensional hypercube.  If the telemetry data falls within the cluster limits, 

the algorithm concludes the system is performing nominally (healthy). If 

the telemetry data does not fall within the limits, the algorithm calculates 

the deviation value which is a ratio of two quantities: the distance 

between the data vector and the centroid and the distance between the 

furthest point of the cluster and the centroid.   

If the telemetry does not fall within the limits of the closest cluster’s 

N-dimensional hypercube, the algorithm first determines if it falls within a 

threshold value,	  𝜀. The threshold value is previously determined by the 
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user and is defined as the maximum allowable distance between the 

center of a cluster and the data point being analyzed. If the telemetry falls 

within the threshold value, the cluster structure is updated to include the 

new value. This threshold value allows for the knowledge base to be 

continuously updated as the system is operated. By adding in the 

threshold value the assumption is made that not every single nominal 

state vector was accounted for in the nominal data set provided to the 

learning algorithm.  

The user can also make the assumption that all nominal ranges 

were covered in the learning algorithm and not use the 𝜀 threshold value.  

The size of the threshold value is very important: too large and errors may 

be missed, too small and false positives for errors may be seen. There is 

not an exact value to set the threshold value to and it must be adjusted 

for the exact application at hand. 
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3   LEARNING ALGORITHM 

The learning algorithm uses machine-learning and data mining 

techniques on archived data to create a nominal knowledge base. A 

nominal knowledge base is composed of clusters of data that contain 

similar values. The clusters of data will quantitatively classify the nominal 

states of a system. The methodology laid out in Iverson’s proposal of 

ISHM was very broad and merely suggested various techniques for 

clustering the data. This chapter will describe in detail the specific 

methods chosen for this implementation.  

3.1   K-MEANS CLUSTERING ALGORITHM 

There are many clustering techniques available in the data mining 

field. In the ISHM methodology laid out by Iverson, he suggests the use 

of the K-means algorithm for this application. K-means is a widely utilized 

unsupervised machine-learning algorithm that has become popular due 

to its simplicity. An unsupervised algorithm is defined by the ability to run 

without a response variable [13]. The goal of the K-means algorithm (or 

any clustering algorithm) is to find groups of data points within a data set 

in which intra-cluster data points are as similar as possible, while inter-

cluster data points are as dissimilar as possible [5]. To define this 

quantitatively, the K-means algorithm tries to minimize the intra-cluster 

variance. Variance is defined as the sum of the squared distances from 

the data points to their assigned cluster’s centroids.  
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The K-means algorithm originates from the vector quantization 

techniques developed from signal processing. Vector quantization 

organizes vectors into groups such that each group has approximately 

the same number of points. This method is usually used for data 

compression because it significantly reduces the size of the data from the 

number of data points to the number of clusters. It is considered a lossy 

compression method because not every data point is remembered; the 

mean of the data points in a particular cluster is remembered and thus 

the data resolution is decreased [20]. K-means was developed by J. 

MacQueen with the intention of taking this idea, altering it slightly, and 

using it in various applications such as “methods for similarity grouping, 

nonlinear prediction, approximating multivariate distributions, and 

nonparametric tests for independence among several variables” [15]. 

The K-means algorithm is fairly simplistic and iterates as follows [3]: 

1.   Choose K number of points at random from the data set. These 

points will be the initial centroids. 

2.   Calculate the distances between every data point and each 

centroid. 

3.   Determine the closest centroid to each data point and assign the 

data point to that centroid’s cluster. 

4.   Calculate the mean of all the data points assigned to a cluster. This 

mean becomes the new centroid. 
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5.   Iterate on steps 2-4 until the centroid no longer moves or moves 

less than a set tolerance.  

There are many different methods used to determine the distance 

between a data point and the centroids. For this application, the 

Euclidean distance was recommended and is shown below for two 

points, 𝑥 and 𝑦, that are composed of n dimensions each (i, j, … n). 

 𝐷&' = 𝑥) − 𝑦) + + 𝑥- − 𝑦-
+ + ⋯+ 𝑥/ − 𝑦/ + (1) 

3.1.1   SHORTCOMINGS OF K-MEANS 

The K-means algorithm random initialization was not appropriate 

for this application. The K-means clustering algorithm is very sensitive to 

the initial centroids, which are chosen at random. The best possible case, 

or the global optimum, is when each centroid ends in its own natural 

cluster. With random initialization, there is a probability that two centroids 

will end in the same natural cluster or that a centroid will converge on a 

location in between natural clusters. Any case where a natural cluster 

does not contain exactly one centroid means that the solution converged 

on a local optimum. There is no theoretical guarantee on the quality of the 

centroids that the K-means algorithm finds, just a guarantee that it will 

find K number of clusters.  

To demonstrate a local optimum solution, the K-means clustering 

algorithm was applied to the 2-dimensional data set shown in   Figure 3 

that contains five natural clusters, visualized with separate colors. As 
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seen in Figure 4, two centroids split one natural cluster and one centroid 

controls two naturally separate clusters. 

 

  Figure 3: Data With Natural Clusters   Figure 4: Local Optimum Solution 

When the algorithm settles on a local optimum solution, the 

clusters no longer accurately describe the range of nominal values. 

Notice in Figure 3 that a natural cluster, shown in green, spans a range of 

y-values of approximately 10 to 40 and the light blue natural cluster 

spans y-values of -40 to -10. With the local optimum solution, the light 

green cluster spans all the y-values between the two clusters, -40 to 40. 

The local optimum solution has added a span of y-values, -10 to 10, to 

the solution that is not normally there. The local optimum solution would 

not serve as a good representation of the nominal value ranges. Upon 

further research, local optimum convergence was found to be a known 

issue of the K-means algorithm. There are many extensions to the K-

means algorithm that are less prone to the issue of local optimum 

convergence. 
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In addition to converging on a local optimum solution, the time K-

means algorithm takes to converge is directly related to the size of the 

data set. So, large data sets will take a long time to converge.  For the 

learning algorithm, larger data sets are ideal to ensure all nominal states 

are represented in the nominal data set. A larger data set used for the 

learning algorithm results in more confidence that the centroids 

accurately represent all the nominal states of the system.  

To confirm the well-known issue of the K-means convergence 

time, the K-means algorithm was implemented in MATLAB and 

performed on data sets with five natural clusters of varying sizes. The K-

means algorithm was performed on each data set 100 times to 

demonstrate the distribution of convergence times. Figure 5 shows the 

time the K-means algorithm takes to converge as the size of the data set 

grows. A full verification analysis of the IMS algorithms was performed 

and is explained later in Chapter 6. 
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Figure 5: K-Means Time to Converge 

As expected, Figure 5 shows that an increase in the data size 

increases the convergence time as well. To give a rough estimate of the 

size of the data set, a data set with 50,000 points (the maximum points 

shown) would come from a nominal test that lasted 13.88 hours and was 

sampling 2-dimensional data at a rate of 1 Hz. The average time to 

converge on a data set of that size was about 6 minutes. The worst case 

took 62.02 minutes to converge. A reduction in this time would add 

efficiency to the algorithms. 

K-means requires the user to understand the data set at-hand and 

supply the number of clusters. While this may seem like an easy task for 

the data sets previously laid out in   Figure 3, the data sets in Figure 3 

were manually created with natural clusters so it could easily be 
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confirmed if they converged to the correct solution. However, in real 

scenarios, the clusters may not be as easy to distinguish and count.  

3.2   USING K-MEANS++ FOR CENTROID INITIALIZATION 

K-Means++ is an algorithm that replaces the first step of K-means 

where the centroids are initialized through random selection. K-means++ 

chooses the initial centroids for the K-means algorithm to then use 

instead of having them randomly initialized.  Using K-means++ to select 

the initial centroids decreases the convergence time as well as decreases 

the probability of converging on local optimum solutions. 

The K-means++ algorithm chooses centroids that are far away 

from each other so they are more apt to converge on separate clusters. 

The algorithm starts by choosing one center at random from the data set. 

The distance from each point in the data set to this chosen centroid is 

calculated. The remaining centroids are chosen based on the following D2 

weighting. 

𝐷)(𝑥)+

𝐷)(𝑥)+&∈3
 

where x is the individual state vector and X the set of all the state vectors. 

Let Di
2 be defined as  

𝐷)+ = min	  (| 𝑥) − 𝑥89 | … | 𝑥) − 𝑥89 |)	  
+
 

where the subscript, cl, is a vector that denotes all the previously 

determined centroids. The size of this vector increases as more centroids 

are chosen [1].  

(2) 

(3) 
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The remaining centroids were chosen using the above weighting 

scheme and the roulette wheel selection process proposed by Holland 

[8].  This selection method is derived from the genetic algorithm that 

stems from Charles’ Darwin theory of natural selection. The main premise 

behind this selection method is that the probability of selection is based 

upon the fitness value [6]. When applied to this application, the fitness 

value was defined as the D2 weighting value. 

3.2.1   IMPROVEMENT OF ADDING K-MEANS ++ 

After the K-means++ algorithm was implemented, a short 

verification analysis was performed to see if improvements in the 

algorithm were seen. This analysis only sought to demonstrate the 

benefits K-means++ added to the system; a full verification analysis of all 

the IMS software is explained later in Chapter 6. 

 In order to see the results in a side-side comparison, a data set of 

2,500 2-dimensional data points was used and each type of centroid 

initialization (K-means and K-means++) was performed on the data set. 

Each initialization method was set to run 1,000 times on the data set and 

the average of the results from the test are shown in Table 3. 

Table 3: K-Means and K-Means++ Comparison 

 K-Means K-Means++ 
Number of Local Optimum Convergences 130 1 
Time to Converge on Global Optimization 14.53 seconds 8.45 seconds 
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As the table shows, there was an improvement when K-Means++ 

was used to initialize the centroids. K-means converged on the local 

optimum 13% of the time and K-means++ reduced this percentage to 

0.1%. When examining only the cases where the global optimum was 

found, the K-means convergence time reduced to almost half when K-

Means++ was added. Overall, K-Means++ proved to be a beneficial 

addition to the learning algorithm.  

3.3   GAP  STATISTIC  

The   gap   statistic   method   eliminates   the   need   for   the   user   to  

determine  the  number  of  clusters  present  in  the  data.  The  gap  statistic  is  

based  on  the  idea  behind  clustering  which  is  to  maximize  the  intra-cluster  

similarity  and  minimize  the  inter-cluster  similarity.    

3.3.1   BACKGROUND 

One way to quantitatively define intra-cluster and inter-cluster 

similarity is with the variance value, Wk.  The variance value is the 

calculation of dispersion within each cluster. To calculate it, let there be a 

set of data points in which i=1, 2, 3, …n, where n is the number of 

observations, and j=1, 2, 3, …p, where p is the number of dimensions of 

each observation.  Let dii’ be the squared Euclidean distance between 

point 𝑖 and it’s assigned centroid 𝑖< such that 

 𝑑))> = (𝑥)- − 𝑥)>-)+-   

For a data set that has been grouped into k clusters, where each 

cluster is defined individually by 𝐶@, 𝐶B, 𝐶B, …𝐶C, respectively, let the sum 

(4) 
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of the distance between the center of a cluster and each data point 

assigned to the cluster be defined by 

𝐷D = 𝑑))>
),)>E	  FG

 

 The variance quantity is then calculated by adding all of the intra-

cluster distances. 

𝑊C =
1
2𝑛D

𝐷D

C

DL@

 

When the optimal number of clusters for a given data set is 

unknown, the variance of the data set with respect to varying number of 

clusters can give insight into what the optimal k value is.  The best way to 

view this data is shown in Figure 6. 

 

Figure 6: Variance for a Data Set With 5 Natural Clusters 

The above figure was created using the same data set shown in   

Figure 3 which has five natural clusters in it. The data was clustered with 

(5) 

(6) 
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k=1, 2, 3, …10 using the K-means algorithm previously described. The 

variance of the clusters for each k value was calculated and the results 

are shown in Figure 6.  

As seen in the graph of Figure 6, the variance decreases when the 

k value increases, meaning clusters that are more tightly packed are 

being chosen. The ideal k value is equal to the number of data points, so 

that each data point has its own classification. However, this many 

classifications are not useful in the overall learning algorithm.  

The optimal number of clusters is interpreted from the graph. From 

the trend in the graph, one can see that a natural bend in the graph 

exists. Before the bend in the graph, the variance decreases rapidly with 

an increase in the number of clusters. The slope before the bend is 

steeper than the slope after the bend. At the bend in the graph, referred 

to as the ‘elbow’ of the graph, the optimal number of clusters exists. After 

the ‘elbow’, the gain of adding more clusters becomes marginal, and thus 

the point right at the ‘elbow’ is chosen. 

3.3.2   HEURISTIC APPROACH TO DETERMING OPTIMAL K 

Using the method previously stated will get you the optimal 

number of clusters. However, this method requires the user to determine 

where the ‘elbow’ in the graph occurs. The previous example had a very 

distinct ‘elbow’ and it was fairly easy to distinguish where the ‘elbow’ 

occurred. For data sets that do not have as distinct clusters, the ‘elbow’ 

point will be less easy to distinguish.   
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The gap statistic is a heuristic approach to determining where the 

‘elbow’ occurs in the data set and minimizes the user’s input. The gap 

statistic method is a very versatile approach and can be applied to any 

clustering method because the gap statistic method does not evaluate 

the actual clustering method, only the results. 

The goal of using the gap statistic method developed by 

Tibshirani, Walther, and Hastie is to “standardize the graph of 𝑙𝑜𝑔	  (𝑊C) by 

comparing it with its expectation under an appropriate null reference 

distribution of the data” [19]. Using this method, the optimal value for k 

can be estimated as the value that lies furthest from the reference 

distribution curve.  To define the distance from the reference curve, let 

 𝐺𝑎𝑝/ 𝑘 = 𝐸/∗ log	  (𝑊C) − log	  (𝑊C) (7) 

where 𝐸/∗  , referred to as the expected value, is the average of the 

reference distributions. The asterisk from here on denotes that 

accompanying variable is calculated for the reference distribution and not 

the original data set. By subtracting off the 𝑙𝑜𝑔	  (𝑊C) from this expected 

value, we get the distance from the reference curve, 𝐺𝑎𝑝/ 𝑘 . The value 

for k is chosen at the maximum 𝐺𝑎𝑝/ 𝑘  in order to achieve the value that 

lies furthest from the reference curve. 

 Knowing that the optimal k is the one such that 𝑙𝑜𝑔	  (𝑊C)  falls 

furthest from the reference comes from the following. Let there be a data 

set of n uniform data points in p dimensions with K clusters where the 
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centers have converged equally spaced. The approximate 𝐸/∗	  of this data 

set is  

 log 𝑝𝑛 12 − 2 𝑝 log 𝑘 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8) 

 If the data set actually has K natural clusters, the expected rate of 

decay is similar to 2 𝑝 log 𝐾  when p and n are held constant across 

the data sets. A k value less than the K natural clusters is expected to 

decrease faster. When the k value is greater than the K natural clusters, 

there is an additional centroid in the middle of a natural cluster. The 

equation shows that the 𝑙𝑜𝑔	  (𝑘) will decrease slower than the expected 

rate of K natural clusters. The optimal k is selected when the gap statistic 

is largest, which occurs at k=K. 

 In order to calculate the expected value of the null reference 

distribution, the Monte Carlo method was used to create B number of 

data sets. The data sets are restrained to a reference distribution defined 

by the boundaries of the original data set.  The average of 𝑙𝑜𝑔 𝑊C
∗ 	  of 

each of the B copies of data determines the estimated 	  𝐸/∗ 𝑙𝑜𝑔	  (𝑊C) .  The 

standard deviation of the data sets is calculated and denoted by 𝑠𝑑	  (𝑘).  

  𝑠𝑑 𝑘 = @
^

(log 𝑊C_
∗ − @

^
∗ log 𝑊C_

∗
_ )+_        (9) 

 Finally, accounting for the simulation error of 𝐸/∗ log	  (𝑊C) 	  along 

with the standard deviation, let 

 𝑠C = 1 + 1 𝐵 ∗ 𝑠𝑑(𝑘). (10)    
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In order to choose the optimal cluster size, the smallest k is chosen 

such that the following is still true [19]. 

 𝐺𝑎𝑝 𝑘 ≥ 𝐺𝑎𝑝 𝑘 + 1 − 𝑠Cb@ (11) 

3.3.3   GAP STATISTIC IMPLEMENTATION  

The following procedure using the methodology described above 

was implemented into MATLAB in order to calculate the optimal K for the 

data set at hand [19]: 

1.   Cluster the given data with a varying amount of clusters, k=1,2,…n. 

2.   Calculate the variance, Wk, for each number of clusters. 

3.   Find the maximum and minimum of each dimension of the data 

vectors. 

4.   Create B number of data sets using the Monte Carlo method with 

the same number of points as the original data set and bounded 

by the maximum and minimum of the original data set. 

5.   Cluster the new data sets with the same varying amount of 

clusters as before: k=1,2,…n. 

6.   Calculate the variance, 𝑊C
∗, for each cluster amount for each new 

data set. 

7.   For each k value, calculate 	  𝐸/∗ log	  (𝑊C)  by taking the average of 

the variances, 𝑊C
∗, across the B number of data sets. 

8.   Calculate the gap statistic for each value of k using Eqn. 7. 

9.   Calculate the standard deviation for each k value using Eqn. 9 and 

then apply to Eqn. 10. 
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10.   Choose the smallest k value such that Eqn. 11 holds true. 

3.4   CONCLUSION 

The learning algorithm developed for this specific application is 

composed of three separate algorithms. The gap statistic algorithm 

determines the optimal number of clusters needed for a data set. The K-

means++ algorithm selects the initial centroids for optimal solutions. 

Finally, the K-means algorithm groups the data sets into clusters of 

similar values. 
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4   MONITORING ALGORITHM 

The monitoring algorithm receives telemetry data vectors from the 

system being monitored and compares them to a knowledge base of 

nominal clusters derived from the learning algorithm. The monitoring 

algorithm selects the closest cluster to the telemetry data point and uses 

this cluster for comparison. The monitoring algorithm then decides if the 

system is operating nominally or off-nominally by determining if the 

telemetry data vector is contained within the bounds of the cluster’s       

N-dimensional hypercube. Data points within the bounds are classified as 

nominal and data points outside the bounds are classified as off-nominal. 

This chapter will describe how the closest cluster is chosen for the 

monitoring algorithm. 

4.1   NEAREST NEIGHBOR SEARCHING 

Nearest neighbor searching is a method of finding the closest point 

in a data set to the query point. There are many different methods of 

nearest neighbor searching, the most common being the k-d tree and R-

tree. However, these algorithms are very complex in design and the 

complexity grows exponentially with an increase in the dimension of the 

data being analyzed [17]. As the design gets more complex, the amount 

of memory needed also grows. Since memory is an issue on-board a 

CubeSat, a method that utilizes less is ideal. K-d tree and R-tree are 

suggested for dimensions of 15 or less but not high-dimensional data 

sets, which are defined as any set greater than 25 dimensions [17]. Since 
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CubeSats usually have 50 or more sensors, the state vector would be 50 

dimensions or more. The method suggested by Sameer Nene and Shree 

Neer at Columbia University was found to be a better fit for a CubeSat 

application. The method is detailed in A Simple Algorithm for Nearest 

Neighbor Search in High Dimensions.  

4.1.1   A SIMPLE ALGORITHM IN HIGH DIMENSIONS 
 

A brute force way to perform a nearest neighbor search would be 

to find the Euclidean distance between the query point and every other 

data point in the set. The minimum Euclidean distance calculated would 

result in the “nearest neighbor.” With a high-dimensional data set, the 

time to compute all of the Euclidean distances increases. Nene and Neer 

suggest a solution that minimizes this search area.  

To better explain Nene and Neer’s method, a 3-dimensional data 

set will be used as an example, but this method is meant to be scaled to 

higher dimensions. The purpose of this method is to find the closest point 

within 𝜀-distance of a given query point, Q(x,y,z). A cube with side lengths 

of 2𝜀 is formed around the query point to define this search space. The 

tolerance 𝜀  is usually chosen to be relatively small so that a minimal 

amount of points is contained within the search space. The Euclidean 

distance between the query point, Q(x,y,z), and all the points that fall 

within the search space are calculated and the point with the shortest 

Euclidean distance to Q(x,y,z) is deemed the ‘nearest neighbor’. 
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To create the search space in the N-dimensional space, a ‘search-

by-slicing’ method is used. First, a slice of one dimension is analyzed by 

placing two parallel planes in the first dimension that are each 𝜀-distance 

away from the query point. In the 3-dimensional example the parallel 

planes would be X1 and X2. Any points in the data set that fall between 

these two planes are added to the “candidate list.” The next dimension is 

then analyzed, which in this example would be the y-dimension. Again, 

two planes (Y1and Y2) are placed 𝜀-distance away from the query point in 

the y-dimension. Instead of looking in the data set for data points that fall 

between these two parallel planes, the candidate list is now referenced. 

Any points within the candidate list that do not fall between the two 

planes, Y1 and Y2, are eliminated. The process is then repeated for the 

remaining dimensions until the candidate list only contains data-points 

contained within the search space. Because this example was shown in 

3-dimensions, the search space results in a cube and a visual 

representation of this search space produced by Nene and Nayar is 

shown in Figure 7. 
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Figure 7: Search Space Around Query Point, Q(x,y,z) [17] 

4.2   CALCULATING THE DEVIATION VALUE 

To demonstrate how far the system has deviated from the nominal 

state, the monitoring algorithm calculates a deviation value. The deviation 

value is a ratio of the distance between the queried state vector, i, and its 

assigned closest centroid, i’, and the distance from the closest centroid 

to the furthest point in the cluster, imax. With state vectors containing                    

j-dimensions, the deviation value is 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	  𝑉𝑎𝑙𝑢𝑒 =
𝑥)- − 𝑥)>-

+
-

(𝑥)>- − 𝑥)ghi-)+-
 

4.3   CONCLUSION 

The monitoring algorithm determines the health of the system by 

comparing the current health state vector to the knowledge base of 

nominal clusters. To make this comparison, the monitoring algorithm 

employs nearest neighbor searching to find the closest centroid. For this 

(12) 
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application, the search space is reduced by Nene and Nayar’s ‘search-

by-slicing’ method. Once the closest centroid is found, the monitoring 

algorithm classifies the health of the system by determining if the current 

state is contained within the bounds defined by the N-dimensional 

hypercube of the closest centroid. Finally, to demonstrate how far the 

system has deviated from the nominal state, the deviation value is 

calculated. 
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5   IMPLEMENTATION 

IMS is composed of two distinct algorithms: learning and 

monitoring. As discussed in Chapters 3 and 4, the learning and 

monitoring algorithms are broken down further into smaller algorithms 

that were chosen for the CubeSat application. The individual algorithms 

were implemented into MATLAB code to form a ground-based prototype. 

The following chapter will discuss how the chosen algorithms function 

together, their integration with the CubeSat testing environment, and the 

user-interface developed for the CubeSat prototype. 

5.1   FUNCTIONAL RELATIONSHIP WITHIN IMS 

In the two previous chapters, the details of the learning and 

monitoring algorithms were explained. Individually, none of the 

algorithms explained are able to monitor the health of a system, but 

when used in succession the algorithms form an IMS prototype that is 

able to monitor the health. A visual representation of the relationship 

between the functions is shown in Figure 8. 
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Figure 8: Functional Relationship Within IMS 

First, the learning algorithm, shown in green, needs to form the 

knowledge base of nominal data sets that will later be used for health 

determination. A data set containing vectors of nominal data will be used 

to form the knowledge base. The gap statistic algorithm is used first to 

determine the optimal number of clusters for the data set provided to it. 

In addition to the nominal data set, the gap statistic algorithm needs a 

span of k values from which the gap statistic algorithm will determine the 

optimal k value. The gap statistic method also needs the number of null 

reference distributions the algorithm should use for the Monte Carlo data 

generation. Using these inputs, the gap statistic determines the optimal 

k value and passes the information, along with the data set, to the K-

means++ algorithm. The K-means++ algorithm then selects k number of 

centroids based upon their fitness value, or D2 weighting. The K-means 

algorithm uses the selected initial centroids and the nominal data set to 
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build the appropriate knowledge base, which is composed of the 

clusters and their centroids. The knowledge base is the final outcome of 

the learning algorithm. 

The learning algorithm passes the generated knowledge base to 

the monitoring algorithm, shown in blue in Figure 8. When a new data 

point is received, the monitoring algorithm uses the nearest neighbor 

searching algorithm to find the closest cluster to that data point in the 

knowledge base. When that cluster is found, the health monitoring 

algorithm determines the health state of the system by concluding 

whether or not the new data point is contained within the bounds of its 

closest cluster. As part of the health determination, the deviation value of 

the data point is also calculated. The monitoring algorithm finally outputs 

the state of the data point, nominal or off-nominal, and the deviation 

value. 

5.2   FUNCTIONAL RELATIONSHIP WITH CUBESAT 

After the IMS software was developed in MATLAB, the software 

was adapted to allow for real-time health monitoring within the CubeSat 

testing environment. A visual representation of the functional relationship 

between IMS and the CubeSat testing environment is shown below in 

Figure 9. 
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Figure 9: Functional Relationship Between IMS and CubeSat 

 
The learning algorithm uses archived CubeSat test data to form the 

knowledge base. When the learning algorithm receives the data, the data 

must be in the format outlined in Table 1. The learning algorithm uses this 

data to form clusters as described in the previous section. The clusters 

contained in the knowledge base quantitatively describe the CubeSat’s 

nominal states within the archived test data. This knowledge base is 

passed through to the monitoring algorithm where the knowledge base is 

used to assess the system’s health state. 

In order to monitor the health of the CubeSat, the monitoring 

algorithm must proactively request the CubeSat’s current state and then 

determine the health of that state. The IMS prototype is executed on a 

standalone laptop that is connected to the CubeSat’s network via an 

Ethernet cable. The monitoring algorithm requests the state of the 

CubeSat over this connection using the sys-util program. The sys-util 

program is an executable c-file that queries the CubeSat and requests 
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the current telemetry data values. When the sys-util command is sent, the 

CubeSat responds with a data package containing all the telemetry 

values, housekeeping data, and time of package generation. The health 

monitoring algorithm parses this data package for the telemetry values 

and formats them into the data vector format in Table 1. Once the data 

vector has been formatted, the monitoring algorithm determines the 

closest cluster in the nominal knowledge base.  

In order to allow for continuous use, a slight adjustment to the 

prescribed nearest neighbor algorithm had to be made to avoid having an 

empty N-dimensional hypercube that would cause an error in the 

program and interrupt the monitoring. The program has a set 𝜀; however, 

if the cube is empty after the search is complete, the 𝜀-value is doubled 

and the program repeats the search with a larger cube. This is done until 

a nearest neighbor solution is found. 

The monitoring algorithm then determines the health state of the 

CubeSat by deciding if the data vector is contained within the bounds of 

the closest cluster’s N-dimensional hypercube. Determining the health 

state also include calculating the deviation value. Finally, the monitoring 

algorithm reports the health state conclusion, along with the time and 

deviation value, to the test conductor. 

5.3   USER INTERFACE 

A Graphical User Interface (GUI) was created for the developed 

IMS software which makes the interaction between the user and the IMS 
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software a fluid and seamless process. A user interface eliminates the 

need to understand the inputs and output formats of the MATLAB 

functions.  

The GUI consists of two panels, one for the learning algorithm and 

one for the monitoring algorithm, shown in Figure 10 and Figure 11 

respectively. The learning algorithm assists the user in clustering the data 

set by prompting for the necessary inputs, shown in Figure 8. When 

commanded to cluster, the GUI then performs the appropriate MATLAB 

functions in the order shown in Figure 8 to achieve the knowledge base. 

The GUI autonomously passes the new information gained from each 

function to the next function.  

The monitoring algorithm panel serves as a visual representation of 

the outcome of the monitoring algorithm. The panel contains a view graph 

of the calculated deviation value over time that continuously updates 

while IMS is monitoring. The GUI also alerts the user of any off-nominal 

conditions. For more information on the GUI, a user guide can be found in 

Appendix C. 
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Figure 10: Learning Algorithm Panel 

 

Figure 11: Monitoring Algorithm Panel 
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5.4   CONCLUSION 

The learning algorithm creates a knowledge base that classifies the 

nominal states of the CubeSat. The learning algorithm produces this 

knowledge base by utilizing the gap statistic method to determine the 

appropriate number of clusters, the K-means++ algorithm to initialize the 

centers of the clusters, and the K-means algorithm to partition the data 

set into the appropriate clusters.  The knowledge base output is 

composed of these clusters.  

The monitoring algorithm monitors data by utilizing the nearest 

neighbor searching algorithm to find the closest cluster in the knowledge 

base. The monitoring algorithm then determines if the telemetry data from 

the CubeSat falls inside or outside the bounds of the closest cluster, 

which translates to nominal telemetry data or off-nominal telemetry data.  

To integrate the IMS software with the CubeSat testing 

environment, the monitoring algorithm was modified slightly.  The 

software was altered to actively request data packages from the 

CubeSat, parse them, and format the data into the appropriate data 

vector for use in the monitoring algorithm. The IMS software was also 

altered to output a visual representation of the results to the test 

conductor. To assist with the interaction between the test conductor and 

the IMS software, a GUI was created.  
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6   VERIFICATION 

The developed IMS software was verified using two different 

methods. The first method verified that the specific algorithms chosen for 

the learning algorithm and monitoring algorithm produced the expected 

outcome. A unit test of each of the five algorithms described in Section 

5.1 (gap statistic, K-means++, K-means, nearest neighbor searching, and 

health determination) was performed in succession with 2-dimensional 

data vectors. The second method verified that the developed ground-

based prototype could successfully monitor for errors when integrated 

with the CubeSat testing environment. An acceptance test of the IMS 

ground-based prototype was performed using 56-dimensional emulated 

data packages. 

6.1   ALGORITHM VERIFICATION 

The algorithms themselves were verified with a 2-dimensional data 

set, which allowed the author to see a visual representation and manually 

check the progression of the algorithms. First, five clusters containing 

500 data points each were created randomly.  The five clusters were 

centered around the following centroids: 

Table 4: Centroids Used for Verification 

 Dimension 1 Dimension 2 
Centroid 1 0.16 -0.14 
Centroid 2 24.88 25.03 
Centroid 3 24.88 -24.87 
Centroid 4 -24.88 24.93 
Centroid 5 -25.24 -24.95 
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The gap statistic algorithm was performed on the data set over a span of 

K values of 2-8 using 10 copies of the data (B =10) for the Monte Carlo 

data generation. The gap statistic algorithm was run 10 times on the data 

to ensure the same solution was found each time. A visual representation 

of the outcome of the algorithm is shown in Figure 12. 

 

 
Figure 12: Gap Statistic Results 

 The algorithm took an average of 44.9 minutes to run and 

concluded that there were 5 clusters within the data set. The information 

gained from the graphs above support this conclusion. One can see that 

there is an ‘elbow’ at k=5 in the Wk vs Number of Clusters graph, which 

indicates the optimal number of clusters. In the final graph, in the bottom 

right hand corner, one can see that at k=5 the graph flips from negative to 

positive. The value switching sign is the first indication that 𝐺𝑎𝑝 𝑘 ≥

𝐺𝑎𝑝 𝑘 + 1 − 𝑠Cb@. The gap statistic algorithm correctly chose the optimal 

k value. 
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 The K-Means++ algorithm was then applied to the generated data 

set to find the initial centroids of the five clusters. An example of how the 

K-means++ first initialized the centroids is shown in Figure 13. 

 

Figure 13: Initial Centroids from K-means++ Algorithm 

 
In the above graph, the red X’s represent the centroids that the K-

means++ chose for initialization. The K-means algorithm was then 

applied to the centroids and iterated until the algorithm converged on a 

solution. The K-means++ algorithm followed by the K-means algorithm 

was performed 5 times and the solutions are shown in the table below: 
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Table 5: Centroids Found by K-Means++ and K-Means 

 Solution 1 Solution 2 Solution 3 
 X Y X Y X Y 
Centroid 1 0.16 -0.14 0.16 -0.14 0.16 -0.14 
Centroid 2 24.88 25.03 24.88 25.03 24.88 25.03 
Centroid 3 24.88 -24.87 24.88 -24.87 24.88 -24.87 
Centroid 4 -24.88 24.93 -24.88 24.93 -24.88 24.93 
Centroid 5 -25.24 -24.95 -25.24 -24.95 -25.24 -24.95 

 
 
 
  
 

 

 

The table shows that the K-means++ and K-means algorithms 

consistently found the accurate values for the centroids. Once the 

centroids were found, the monitoring algorithm was tested. A data set 

with 500 2-dimensional data points was created for monitoring. Of the 

500 data points, 480 fell within the clusters and 20 fell outside the 

clusters. The 20 that fell outside the clusters are listed in Table 6.  

Table 6: Off-Nominal Data Points Used for Verification 

X Y X Y X Y X Y X Y 
-30 0 -60 30 30 4 0 -35 -5 -40 
43 0 8 22 -28 -55 -50 38 40 40 
20 0 60 60 -40 -40 45 46 32 6 
0 29 8 49 -45 60 23 73 4 89 

 
The monitoring algorithm which employed the nearest neighbor 

searching method checked all 500 points and returned how many points 

were found that fell outside the bounds of the clusters. Each time the 

 Solution 4 Solution 5 
 X Y X Y 
Centroid 1 0.16 -0.14 0.16 -0.14 
Centroid 2 24.88 25.03 24.88 25.03 
Centroid 3 24.88 -24.87 24.88 -24.87 
Centroid 4 -24.88 24.93 -24.88 24.93 
Centroid 5 -25.24 -24.95 -25.24 -24.95 
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monitoring program was executed, 10 times in total, exactly 480 points 

were found that fell within the clusters and 20 that fell outside the 

clusters. The monitoring algorithm successfully discovered all off-nominal 

data points. 

6.2   PROTOTYPE VERIFICATION 

Once the algorithms were verified, the ground-based prototype 

needed to be verified to ensure compatibility with the CubeSat testing 

environment and the CubeSat’s response. However, due to the fact that 

there was not a working CubeSat available at the time of verification, this 

became a two-step process. 

First, the interaction between MATLAB and the CubeSat needed to 

be verified because the CubeSat had never been commanded by 

MATLAB before. The sys-util package was installed on the laptop that the 

prototype would be running on and the laptop was connected via 

Ethernet cable to the CubeSat network. Once the program was installed, 

the commands that query the CubeSat were sent from MATLAB to the 

computer. From there, the commands were autonomously executed and 

sent across the network to the specific IP address assigned to the 

CubeSat.  The CubeSat responded as expected each time the command 

was sent and returned a data package containing the status of the 

CubeSat, which was composed of the telemetry of all the sensors on 

board the CubeSat, 56 in total. Although the CubeSat responded with the 

expected data package, the telemetry values all read zero. This was due 
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to an internal problem within the CubeSat and was expected. An example 

of the CubeSat’s null response can be seen in Appendix A. MATLAB’s 

ability to query the spacecraft and receive the expected package was 

verified. 

Next, the performance of the prototype itself needed to be verified. 

Because the CubeSat was only returning null telemetry values, the testing 

had to be done on emulated data packages. First, data vectors, 

formatted the same as in Table 1, were created that represented a 

nominal test. Since there are 56 sensors on board the CubeSat, a 56-

dimensional vector was created for each nominal data point. Each scalar 

in the vector represented the response from an individual sensor. The 

individual response from each sensor was chosen at random within the 

sensor’s range of nominal values. In order to have multiple nominal states 

of the CubeSat, the ranges for the sensors were varied 6 times. In total, 

1200 random nominal data vectors were created. This meant that there 

were 200 data points for each nominal state of the CubeSat. The range of 

values for each sensor within the six nominal states created for this 

testing can be seen in Appendix B.  

The prototype imported the nominal data set and determined how 

many clusters were ideal. The optimal number of clusters was found to 

be six, which is what was expected due to the six separate nominal 

states generated.  The data was then clustered into six clusters of 56-

dimensional data vectors. 
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Once the clustering algorithm had converged on an appropriate 

solution, those clusters and centroids needed to be tested to determine if 

the system could detect an anomaly occurring in the system based on 

the nominal knowledge base. An anomaly occurring in the system would 

be represented by a sensor value occurring outside of its nominal value 

range.  

In MATLAB, 500 nominal data packages were composed that 

emulated the CubeSat’s response to the sys-util command. The data 

packages included the telemetry data, the housekeeping data, and the 

time. Of the 500 data packages, 10 of them were replaced by manually 

created data packages containing off-nominal values. All of the data 

packages were then placed into a cell structure. Instead of sending the 

sys-util command to the CubeSat and expecting a response, the software 

called the first data package from the cell. The next time a data package 

was requested, the second data package from the cell was called, and so 

on. MATLAB received the data package in the same format as the direct 

response from the CubeSat: a string of letters and numbers. The IMS 

prototype then parsed the emulated data package in the same manner 

that the CubeSat’s response would be parsed. 

The IMS prototype was prompted to begin monitoring with a 

sample rate of 1 Hz and view size of 10 data points. The data was 

monitored for 8.43 minutes and the IMS prototype concluded that there 

were 20 errors in the data monitored, which was expected. The IMS 
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prototype successfully monitored the data and detected all errors that 

had been induced into the emulated data. 

6.3   CONCLUSION 

The ground-based prototype of IMS described in this paper was 

verified in two separate steps. The developed IMS algorithms’ 

functionalities were verified using a manually-created 2-dimensional data 

set with five natural clusters. The prototype developed for the CubeSat 

testing environment was verified using emulated 56-dimensional data 

packages. In both cases of verification, the algorithms were able to 

detect all injected faults. 
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7   CONCLUSION 

Inductive Monitoring Systems (IMS) have great potential in the 

aerospace industry. When completely integrated, they automate the 

process of classifying the healthy states of a system and anomaly 

detection.  

Before IMS can be completely integrated into large flight systems, 

they must demonstrate more flight heritage and CubeSats pose as a very 

well-developed test bed to do so. There are two steps to integrating an 

IMS program into a CubeSat. The first of which is to prove that the 

program works as expected on the ground and the second being that the 

program functions properly while in flight. This thesis created a program 

that completed the first of the two steps: a prototype that monitors the 

CubeSat during on-ground testing.  

This prototype was a program developed in MATLAB that 

contained two algorithms: learning and monitoring. The learning algorithm 

creates data vectors that classify the nominal states of the CubeSat 

through data mining techniques.  This algorithm utilizes the gap statistic 

method to determine the appropriate number of clusters, the K-means++ 

algorithm to initialize the centers of the clusters, and the K-means 

algorithm to partition the data set into the appropriate clusters. The 

monitoring algorithm monitors data received directly from the CubeSat in 

real time by utilizing the nearest neighbor searching algorithm to find the 

closest cluster. The monitoring algorithm then determines if the telemetry 
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data from the CubeSat falls inside or outside the bounds of the closest 

cluster, which translates to nominal telemetry data or off-nominal 

telemetry data respectively. 

The IMS CubeSat prototype was tested through two verification 

techniques, algorithm verification using a 2-dimensional system and GUI 

verification using 56-dimensional data packages. The prototype 

successfully found all of the off-nominal data points that were induced 

into the system. The first of the two steps to fully integrating IMS into 

CubeSat’s software architecture is complete. 

7.1   FUTURE WORK 

The work laid out here is the first step in the IMS CubeSat 

implementation. To attain flight heritage of an entire system IMS needs to 

be flown on-board the spacecraft during flight.  

 Due to the bad timing of the development of this software, a 

functioning CubeSat was not available.  The next step in developing the 

IMS prototype is to confirm the success of the verification process 

performed in this thesis with a telemetry data set from a functioning 

CubeSat, i.e. IPEX. 

The next step to developing IMS for CubeSats would be to run the 

algorithm regularly during CubeSat testing.  In the beginning, it is 

important that the system not be relied on for the anomaly detection. The 

CubeSat test conductors should perform their usual procedure for 
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anomaly detection while IMS is running and confirm that IMS detects the 

same results as they do, possibly even more.  

Once the results of tests performed for this thesis have been 

confirmed with real, active tests, the next step in the development 

process would be to implement IMS as flight software. The software 

developer should have a rough estimate of how large the software 

package will be based on the code written for this thesis. All of the code 

used for the IMS ground-based prototype was written specifically for the 

prototype and no built-in MATLAB functions were used.  

The final aspect of giving IMS flight heritage is to fly the IMS 

software on-board an active spacecraft to analyze the performance 

during flight.  
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APPENDICES 
 

A: CUBESAT RESPONSE TO SYS-UTIL 
 
sys-util: getting status... 
daughter_aTmpSensor  temp:        0.000000 C 
- 
daughter_bTmpSensor  temp:        0.000000 C 
- 
threeV_plTmpSensor   temp:        0.000000 C 
- 
rf_ampTmpSensor      temp:        0.000000 C 
- 
tempNz               temp:        0.000000 C 
- 
tempPz               temp:        0.000000 C 
- 
tempNx               temp:        0.000000 C 
- 
tempPx               temp:        0.000000 C 
- 
tempNy               temp:        0.000000 C 
- 
tempPy               temp:        0.000000 C 
- 
atmelPwrSensor       volt:        0.000000 V 
atmelPwrSensor       current:     0.000000 A 
- 
threeVPwrSensor      volt:        0.000000 V 
threeVPwrSensor      current:     0.000000 A 
- 
threeV_plPwrSensor   volt:        0.000000 V 
threeV_plPwrSensor   current:     0.000000 A 
- 
fiveV_plPwrSensor    volt:        0.000000 V 
fiveV_plPwrSensor    current:     0.000000 A 
- 
daughter_aPwrSensor  volt:        0.000000 V 
daughter_aPwrSensor  current:     0.000000 A 
- 
daughter_bPwrSensor  volt:        0.000000 V 
daughter_bPwrSensor  current:     0.000000 A 
- 
fuelGaugeOne         volt:        0.000000 V 
fuelGaugeOne         current:     0.000000 A 
fuelGaugeOne         currentAccum:    0.000000 A 
- 
fuelGaugeTwo         volt:        0.000000 V 
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fuelGaugeTwo         current:     0.000000 A 
fuelGaugeTwo         currentAccum:    0.000000 A 
- 
sidePanel3v3         volt:        0.000000 V 
sidePanel3v3         current:     0.000000 A 
- 
sidePanel5v0         volt:        0.000000 V 
sidePanel5v0         current:     0.000000 A 
- 
solar2PwrNz          volt:        0.000000 V 
solar2PwrNz          current:     0.000000 A 
- 
solar2PwrPz          volt:        0.000000 V 
solar2PwrPz          current:     0.000000 A 
- 
solar2PwrNx          volt:        0.000000 V 
solar2PwrNx          current:     0.000000 A 
- 
solar2PwrPx          volt:        0.000000 V 
solar2PwrPx          current:     0.000000 A 
- 
solar2PwrNy          volt:        0.000000 V 
solar2PwrNy          current:     0.000000 A 
- 
solar2PwrPy          volt:        0.000000 V 
solar2PwrPy          current:     0.000000 A 
- 
solar1PwrNz          volt:        0.000000 V 
solar1PwrNz          current:     0.000000 A 
- 
solar1PwrPz          volt:        0.000000 V 
solar1PwrPz          current:     0.000000 A 
- 
solar1PwrNx          volt:        0.000000 V 
solar1PwrNx          current:     0.000000 A 
- 
solar1PwrPx          volt:        0.000000 V 
solar1PwrPx          current:     0.000000 A 
- 
solar1PwrNy          volt:        0.000000 V 
solar1PwrNy          current:     0.000000 A 
- 
solar1PwrPy          volt:        0.000000 V 
solar1PwrPy          current:     0.000000 A 
- 
Curr_Accum: 0 
Max_Accum: 511180 
UTC Epoch time: 946689462 
UTC time: 1:17:42  1/1/2000 
usage_dString=0 
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usage_dUInt=0 
userTime=4231 
niceTime=0 
sysTime=1266 
idleTime=6025 
pageIn=121 
pageOut=0 
swapIn=90 
swapOut=0 
interrupts=1184053 
context_swaps=180031 
boottime=946689344 
processes=737 
procs_running=1 
procs_blocked=0 
memFree=49012 
buffers=1004 
cached=59156 
active=10468 
inactive=54168 
vmallocTotal=899072 
vmallocUsed=271856 
freeDataFlash=184169 Kb 
freeSD=605748 Kb 
LDC=0 
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B: NOMINAL CUBESAT RANGES 

Name Parameter Value 
    'daughter_aTmpSensor [C]' 1 
    'daughter_bTmpSensor [C]' 2 
    'threeV_plTmpSensor [C]' 3 
    'rf_ampTmpSensor [C]' 4 
    'tempNz [C]' 5 
    'tempPz [C]' 6 
    'tempNx [C]' 7 
    'tempPx [C]' 8 
    'tempNy [C]' 9 
    'tempPy [C]' 10 
    'atmelPwrSensor [V]' 11 
    'atmelPwrSensor [A]' 12 
    'threeVPwrSensor [V]' 13 
    'threeVPwrSensor [A]' 14 
    'threeV_plPwrSensor [V]' 15 
    'threeV_plPwrSensor [A]' 16 
    'fiveV_plPwrSensor [V]' 17 
    'fiveV_plPwrSensor [A]' 18 
    'daughter_aPwrSensor [V]' 19 
    'daughter_aPwrSensor [A]' 20 
    'daughter_bPwrSensor [V]' 21 
    'daughter_bPwrSensor [A]' 22 
    'fuelGaugeOne [V]' 23 
    'fuelGaugeOne [A]' 24 
    'fuelGaugeOne [A]' 25 
    'fuelGaugeTwo [V]' 26 
    'fuelGaugeTwo [A]' 27 
    'fuelGaugeTwo [A]' 28 
    'sidePanel3v3 [V]' 29 
    'sidePanel3v3 [A]' 30 
    'sidePanel5v0 [V]' 31 
    'sidePanel5v0 [A]' 32 
    'solar2PwrNz [V]' 33 
    'solar2PwrNz [A]' 34 
    'solar2PwrPz [V]' 35 
    'solar2PwrPz [A]' 36 
    'solar2PwrNx [V]' 37 
    'solar2PwrNx [A]' 38 
    'solar2PwrPx [V]' 39 
    'solar2PwrPx [A]' 40 
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    'solar2PwrNy [V]' 41 
    'solar2PwrNy [A]' 42 
    'solar2PwrPy [V]' 43 
    'solar2PwrPy [A]' 44 
    'solar1PwrNz [V]' 45 
    'solar1PwrNz [A]' 46 
    'solar1PwrPz [V]' 47 
    'solar1PwrPz [A]' 48 
    'solar1PwrNx [V]' 49 
    'solar1PwrNx [A]' 50 
    'solar1PwrPx [V]' 51 
    'solar1PwrPx [A]' 52 
    'solar1PwrNy [V]' 53 
    'solar1PwrNy [A]' 54 
    'solar1PwrPy [V]' 55 
    'solar1PwrPy [A]' 56 
    'Curr_Accum' 57 
    'Max_Accum' 58 
    'UTC Epoch time' 59 
 

Param 
Value 

State 1 State 2 State 3  State  4 State 5 State 6 
Min Max Min Max Min Max Min Max Min Max Min Max 

1 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 31.0 33.0 
2 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 31.0 33.0 
3 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 31.0 33.0 
4 27.0 29.0 27.0 29.0 27.0 29.0 27.0 29.0 27.0 29.0 27.0 29.0 
5 23.0 29.0 23.0 29.0 26.0 29.0 23.0 29.0 23.0 26.1 23.0 29.0 
6 23.0 29.0 23.0 29.0 23.0 29.0 23.0 29.0 23.0 29.0 23.0 29.0 
7 23.0 29.0 23.0 29.0 18.0 22.0 23.0 29.0 18.0 22.0 23.0 29.0 
8 24.8 29.0 24.8 29.0 18.0 22.0 23.0 27.3 18.0 22.0 23.0 29.0 
9 23.0 29.0 23.0 29.0 18.0 22.0 23.0 29.0 18.0 22.0 23.0 29.0 
10 23.0 29.0 23.0 29.0 18.0 22.0 23.0 29.0 18.0 22.0 23.0 29.0 
11 3.80 4.19 3.80 4.19 3.80 4.19 3.80 4.19 3.80 4.19 3.80 4.19 
12 0.01 0.50 0.01 0.50 0.01 0.11 0.01 0.50 0.01 0.11 0.01 0.11 
13 2.80 3.20 2.80 3.20 2.80 3.20 2.80 3.20 2.80 3.20 2.80 3.20 
14 0.01 0.50 0.01 0.50 0.01 0.11 0.01 0.50 0.01 0.11 0.01 0.11 
15 1.11 1.80 1.11 1.80 1.11 1.80 1.11 1.80 1.11 1.80 1.11 1.80 
16 0.01 0.50 0.01 0.50 0.01 0.50 0.01 0.50 0.01 0.11 0.01 0.11 
17 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 
18 0.01 0.50 0.01 0.50 0.01 0.11 0.01 0.50 0.01 0.11 0.01 0.11 
19 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 
20 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 
21 0.20 0.30 0.20 0.30 0.20 0.30 0.20 0.30 0.20 0.30 0.20 0.30 
22 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 
23 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
24 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 
25 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 
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26 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
27 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 
28 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 
29 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 
30 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
31 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 
32 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
33 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
34 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
35 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
36 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
37 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
38 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
39 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
40 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
41 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
42 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
43 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
44 0.20 1.20 0.20 1.20 0.00 0.20 0.20 1.20 0.00 0.20 0.00 0.20 
45 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
46 0.20 1.20 0.20 1.20 0.00 0.20 0.20 1.20 0.00 0.20 0.00 0.20 
47 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
48 0.20 1.20 0.20 1.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
49 3.50 4.50 3.50 4.50 4.50 5.50 3.50 4.50 3.50 4.50 3.50 4.50 
50 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
51 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
52 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
53 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
54 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
55 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 
56 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 
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C: USER GUIDE FOR THE GROUND-BASED PROTOTYPE 

The IMS algorithms explained above were implemented into 

MATLAB and a graphical user interface (GUI) was created for ease of use. 

When the script, CubeSatHealthMonitoring.m, is executed, the 

screen shown in Figure 14 appears. 

 

Figure 14: Initialization Screen of CubeSat Health Monitoring GUI 

 
This screen is the beginning of the learning algorithm. First, a 

nominal data set must be selected and can be done in two ways. If 

known, the data path can be manually entered in the edit box where it 

currently says ‘Data Path’. The other option is to click the ‘Browse’ 

button, which brings up the directory to the computer in which the IMS 
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program is being run. Here, the user can click through the computer’s 

directory in order to find the nominal data file. Once the user finds and 

selects the data file, the program uses the path to the file and imports the 

data from that location to the current workspace. The file selected must 

have been previously formatted to match the data vector presented in 

Figure 2.  

 The data needs to be grouped into clusters after being selected 

and imported. There are two options for doing this and once the data has 

been selected the GUI allows for the choice to be made. 

 

 
Figure 15: Clustering Options 

The two options for clustering depend on the knowledge of data 

that the user has. If the user knows from prior knowledge how many 
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clusters there are, then the user would choose to ‘Input K’. If the user has 

no prior knowledge of the dataset being imported, then they would 

choose to have K calculated by clicking the ‘Calculate K’ button.  

  
 
 

 

Both of the ‘Cluster’ buttons shown in the Figure 16 and 17 have 

the same end goal, to group the imported data into clusters and build the 

nominal knowledge base. They both use the K-means++ and K-means 

algorithm to obtain the centroids. However, the difference between the 

two buttons is that the ‘Cluster’ for ‘Calculate K’ uses the gap statistic 

algorithm to find the optimal K value to use. While the choice may be 

obvious to always let the software decide on K, the option to input K is 

available because the gap statistic takes a substantial amount of extra 

Figure 17: Response to 'Input K' Figure 16: Response to 'Calculate K' 
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time to run. If the user does know the appropriate K value, the program 

allows for the option to skip the unnecessary step. 

 When the program has converged on a solution to the K-means 

algorithm, the program demonstrates this by displaying the centroids to 

the right, shown in Figure 18. The centroids are shown to indicate that the 

algorithm is complete and the program is ready to move on. The user can 

view them at this point to better understand how the system is 

quantitatively describing the nominal states of the CubeSat. If the 

centroids are longer than the 2-dimensions shown in Figure 18, the user 

can scroll to see all the dimensions. 

 
Figure 18: Response to Clustering Being Complete 
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Once the centroids have been determined for the nominal data set, 

the program stores those centroid values for later use in the monitoring 

algorithm.  

In order to start the monitoring algorithm, the user must first switch 

to the appropriate screen via the drop down list at the upper left of the 

window, which currently says ‘Learning Algorithm’ in Figure 13. By 

selecting ‘Monitoring Algorithm’ from the drop down list, the program 

switches the GUI to the screen shown in Figure 19. 

 

Figure 19: Monitoring Algorithm 

The screen in Figure 19 is the gateway into the health monitoring 

algorithm. First, the user inputs the IP address that is associated with the 

CubeSat that will be monitored.  
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Once the IP address has been added, the user then chooses the 

sample rate that they would like the program to conduct. This sampling 

rate indicates how often the program should query the CubeSat for data 

and check the telemetry values for nominal or off-nominal operation. The 

sampling rate can be increased or decreased; however, it is limited by the 

internal rate of the CubeSat. If the sampling rate exceeds the internal rate, 

the algorithm will still perform but will have stagnant data until the internal 

data updates.  

The ‘Monitor Size’ input allows the user to choose how many 

previous data points they would like to have visible on the screen at all 

times. The monitor size is currently set at 10 data points; coupled with the 

1 Hz sampling rate, the user would be able to monitor the past 10 

seconds of deviation values. This ‘Monitor Size’ can be increased or 

decreased during testing, and the view graph will reflect the update. 

The final two buttons on this screen are ‘Begin Monitoring’ and 

‘Stop Monitoring’. When the ‘Begin Monitoring’ button is pushed, the 

system queries the CubeSat through the sys-util program installed on the 

monitoring computer. The current state of the CubeSat is requested with 

the sys-util program. In response, the CubeSat responds with a packet of 

telemetry and housekeeping data. An example of this response is laid out 

in Appendix A.   Once the response is received, the program then parses 

and formats the data to match the data vector presented in Figure 2.  

Once this data is formatted correctly, the program performs a nearest 
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neighbor search. In the nearest neighbor search, the formatted response 

from the CubeSat is the query point and the centroids that were 

calculated in the learning algorithm are the data set.   

 Once a nearest neighbor is found, the system determines if each 

parameter value of the new telemetry data is within the bounds of the 

cluster. This deviation from nominal is presented to the user in the view 

graph on the screen. The view graph shows deviation and the correlated 

time of the query in local 24-hour clock time. The local 24-hour clock time 

allows the user to easily see when an error occurred.  

The view graph notifies the user of an off-nominal condition by 

turning red when one occurs. As the system updates, the error 

progresses to the left in the view graph and a large red asterisk marks 

that an error occurred at that time. In addition to showing the errors 

graphically on the screen, the GUI also includes the most recent error in 

the bottom left-hand corner. If a test conductor gets distracted for more 

time than is visual on the screen, then they can quickly determine if any 

off-nominal conditions have occurred in that time. Figures 20 and 21 

demonstrate an error occurring in the system and the monitoring 

algorithm’s response. 
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Figure 20: Initial Response to an Error 

 

Figure 21: Previous Error Indication 
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Figure 20 shows what happens when the error initially occurs. The 

user is notified of an error occurring by the view graph flashing red for 1 

second. Figure 21 shows how the error is still visible to the user as time 

passes, even if the state of the CubeSat returns to normal.  

The final aspect to the ‘Monitoring Algorithm’ panel is the ‘Stop 

Monitoring’ button. When this button is pressed, the monitoring algorithm 

stops querying the spacecraft for new data and stops updating the view 

graph. The user is then given the option to save the data. If the user 

selects ‘yes,’ he or she is prompted for a file name. A suggestion of 

‘Monitoring_Test_Data_DD-MMM-YYYY’ is given where the DD-MM-

YYYY is automatically filled in with the current date. If the user selects a 

file name that has already been used, then the program notifies the user 

and asks if the user would like to replace the existing file or change the 

file name. When saving the data, the program saves the deviation from 

nominal values and the CubeSat UTC times. This is so that the times can 

be easily cross-referenced with any other testing files to investigate the 

anomaly and have equivalent time frames. 

 


