

INDUCTIVE MONITORING SYSTEMS: A CUBESAT
GROUND-BASED PROTOTYPE

A Thesis
presented to

the Faculty of California Polytechnic State University,
San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Aerospace Engineering

by
Michelle Kristyn Haddock

December 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32434556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

© 2015 

Michelle Kristyn Haddock

ALL RIGHTS RESERVED

 iii

COMMITTEE MEMBERSHIP

TITLE: Inductive Monitoring Systems: A CubeSat

Ground-Based Prototype

AUTHOR: Michelle Kristyn Haddock

DATE SUBMITTED: December 2015

COMMITTEE CHAIR: Eric Mehiel, Ph.D.

Professor of Aerospace Engineering

COMMITTEE MEMBER: Kira Abercromby, Ph.D.
Assistant Professor of Aerospace Engineering

COMMITTEE MEMBER: John Bellardo, Ph.D.
Associate Professor of Computer Science

COMMITTEE MEMBER: Jordi Puig-Suari, Ph.D.
Professor of Aerospace Engineering

 iv

ABSTRACT

Inductive Monitoring Systems: A CubeSat Ground-Based Prototype

Michelle Kristyn Haddock

Inductive Monitoring Systems (IMS) are the newest form of health
monitoring available to the aerospace industry. IMS is a program that
builds a knowledge base of nominal state vectors from a nominal data set
using data mining techniques. The nominal knowledge base is then used
to monitor new data vectors for off-nominal conditions within the system.
IMS is designed to replace the current health monitoring process,
referred to as model-based reasoning, by automating the process of
classifying healthy states and anomaly detection. An IMS prototype was
designed and implemented in MATLAB. A verification analysis then
determined if the IMS program could connect to a CubeSat in a testing
environment and could successfully monitor all sensors on board the
CubeSat before in-flight use. This program consisted of two main
algorithms, one for learning and one for monitoring. The learning
algorithm creates the nominal knowledge bases and was developed
using three data mining algorithms: the gap statistic method to find the
optimal number of clusters, the K-means++ algorithm to initialize the
centroids, and the K-means algorithm to partition the data vectors into
the appropriate clusters. The monitoring algorithm employed the nearest
neighbor searching algorithm to find the closest cluster and compared
the new data vector with the closest cluster. The clusters found were
used to establish the knowledge bases. Any data vector within the
boundaries of the clusters was deemed nominal and any data vector
outside the boundaries was deemed off-nominal. The learning and
monitoring algorithms were then adapted to handle the data format used
on a CubeSat and to monitor the data in real time. The developed
algorithms were then integrated into a MATLAB GUI for ease of use. The
learning and monitoring algorithms were verified with a 2-dimensional
data set to ensure that they performed as expected. The final IMS
CubeSat prototype was verified using 56-dimensional emulated data
packages. Both verification methods confirmed that the IMS ground-
based prototype was able to successfully identify all off-nominal
conditions induced into the system.

 v

ACKNOWLEDGMENTS

I would like to take the time to thank the people that have helped

me get to where I am now.

First, I would like to thank John Bellardo, Ph.D., for the inspiration

to pursue this thesis topic. Even though he is part of the Computer

Science Department, Dr. Bellardo understood my passions and guided

me in the direction of experimental health algorithms. Without Dr.

Bellardo’s guidance, I probably would still be wondering what topic I

should do my thesis on.

I would also like to thank Sean Sheen. Despite being a computer

science graduate student himself, Sean took many hours out of his days

to help me get associated with the CubeSat test setup. Without his

assistance, this thesis would not have reached its completion.

I would also like to thank my parents, Randy and Susan, for their

unwavering support through this experience.

Finally, I would like to thank the three people who were there for

me day in and day out, Chris Barlog, Tim Fitzgerald, and Michael Strange.

Whether it be making this experience as enjoyable as it was, encouraging

me to get it together, or just being there when things got rough, this

journey wouldn’t have been the same without them.

 vi

TABLE OF CONTENTS
 Page
LIST OF TABLES………………………………………………………………viii
LIST OF FIGURES……………………………………………………………...ix

CHAPTER
1 INTRODUCTION ... 1

1.1 MOTIVATION ... 1
1.1.1 CURRENT HEALTH MONITORING 1
1.1.2 A NEW METHOD OF HEALTH MONITORING 3
1.1.3 IMS BACKGROUND ... 4

 1.1.3.1 STS-107 COLUMBIA SPACE SHUTTLE………………. 4
 1.1.3.2 BEACON-BASED EXCEPTION ANALYSIS FOR
 MULTI-MISSIONS (BEAM) ……………..………………. 6

 1.1.3. 3 ARES 1-X GROUND DIAGNOSTIC PROTOTYPE…….. 8
1.1.4 CUBESAT APPLICATION ... 9

1.2 THESIS OVERVIEW ... 10
2 INDUCTIVE MONITORING SYSTEMS (IMS) 12

2.1 ISHM METHODOLOGY ... 13
3 LEARNING ALGORITHM .. 18

3.1 K-MEANS CLUSTERING ALGORITHM 18
3.1.1 SHORTCOMINGS OF K-MEANS 20

3.2 USING K-MEANS++ FOR CENTROID INITIALIZATION 24
3.2.1 IMPROVEMENT OF ADDING K-MEANS ++ 25

3.3 GAP STATISTIC ... 26
3.3.1 BACKGROUND .. 26
3.3.2 HEURISTIC APPROACH TO DETERMING OPTIMAL K 28
3.3.3 GAP STATISTIC IMPLEMENTATION 31

3.4 CONCLUSION ... 32
4 MONITORING ALGORITHM ... 33

4.1 NEAREST NEIGHBOR SEARCHING ... 33
4.1.1 A SIMPLE ALGORITHM IN HIGH DIMENSIONS 34

4.2 CALCULATING THE DEVIATION VALUE 36
4.3 CONCLUSION ... 36

5 IMPLEMENTATION ... 38
5.1 FUNCTIONAL RELATIONSHIP WITHIN IMS 38
5.2 FUNCTIONAL RELATIONSHIP WITH CUBESAT 40
5.3 USER INTERFACE ... 42
5.4 CONCLUSION ... 45

6 VERIFICATION .. 46
6.1 ALGORITHM VERIFICATION ... 46
6.2 PROTOTYPE VERIFICATION ... 50
6.3 CONCLUSION ... 53

 vii

7 CONCLUSION ... 54
7.1 FUTURE WORK ... 55

BIBLIOGRAPHY ... 57

APPENDICES
 A. CUBESAT RESPONSE TO SYS-UTIL ...……………………………... 60
 B. NOMINAL CUBESAT RANGES ...…………………………………..… 63
 C. USER GUIDE FOR THE GROUND-BASED PROTOTYPE …...……. 66

 viii

LIST OF TABLES

Table Page

Table 1: ISHM Data Vector Example .. 15	

Table 2: ISHM Cluster Structure .. 15	

Table 3: K-Means and K-Means++ Comparison 25	

Table 4: Centroids Used for Verification .. 46	

Table 5: Centroids Found by K-Means++ and K-Means 49	

Table 6: Off-Nominal Data Points Used for Verification 49	

 ix

LIST OF FIGURES

Figure Page

Figure 1: IMS Results for STS-107 [9] .. 6	

Figure 2: Relationship Between the Learning and Monitoring
 Algorithms ... 14

Figure 3: Data With Natural Clusters………………………………………...21	

Figure 4: Local Optimum Solution………. .. 21	

Figure 5: K-Means Time to Converge .. 23	

Figure 6: Variance for a Data Set With 5 Natural Clusters 27	

Figure 7: Search Space Around Query Point, Q(x,y,z) [17] 36	

Figure 8: Functional Relationship Within IMS .. 39	

Figure 9: Functional Relationship Between IMS and CubeSat 41	

Figure 10: Learning Algorithm Panel .. 44	

Figure 11: Monitoring Algorithm Panel ... 44	

Figure 12: Gap Statistic Results ... 47	

Figure 13: Initial Centroids from K-means++ Algorithm 48	

Figure 14: Initialization Screen of CubeSat Health Monitoring GUI 66	

Figure 15: Clustering Options .. 67	

Figure 16: Response to 'Calculate K' ... 68	

Figure 17: Response to 'Input K' .. 68	

Figure 18: Response to Clustering Being Complete 69	

Figure 19: Monitoring Algorithm ... 70	

Figure 20: Initial Response to an Error ... 73	

 x

Figure 21: Previous Error Indication ... 73

 1

1 INTRODUCTION

Monitoring the health of a spacecraft is vital to the success of a

mission and can be a very complex task before and after launch. Health

monitoring determines if the spacecraft is working as expected by

comparing the current telemetry data values to a range of expected

values. If the current telemetry data values fall within the expected range,

the spacecraft is considered healthy. If not, the spacecraft is considered

unhealthy.

1.1 MOTIVATION

Currently, the process of health monitoring is tedious and requires

extensive manual labor. A newer approach that can automate portions of

the health monitoring process is currently being researched and

developed and an implementation of such an approach is the topic of this

thesis.

1.1.1 CURRENT HEALTH MONITORING

When simplifying the current process of health monitoring, there

are three separate steps. The first step in health monitoring is determining

what constitutes a healthy system. A healthy spacecraft, or one that is

operating nominally, is defined as a spacecraft with telemetry values that

are within a range of expected values. Creating a reference table of the

expected values is the most common practice and requires extensive

knowledge of the system. In addition to requiring someone who knows

 2

the entirety of the system well, a significant amount of time is needed to

develop a reference table of nominal value ranges that accurately

describes all the nominal health states of a spacecraft. While determining

the health states is reasonable for a simple system, “Determining the

health state of [sophisticated and complex] systems using traditional

methods is becoming more difficult as the number of sensors and

component interactions grows” [10]. At times, creating a model that

accurately describes all the interactions and states within a complex

system is deemed too difficult or impossible.

The second step in monitoring the health of a spacecraft is to

consistently read the spacecraft’s current telemetry values and compare

them to the reference table of healthy telemetry values. The health of the

spacecraft is then determined by examining this comparison. If all of the

spacecraft’s telemetry values are contained within the range of healthy

values in the reference table, the system is deemed healthy; the

spacecraft is in a nominal state. If one or more values fall outside the

healthy value ranges, the system is deemed unhealthy; the spacecraft is

in an off-nominal state.

The final step in health monitoring is determining the cause of an

off-nominal state, as well as a procedure to remedy the anomaly. This

step is executed on the ground by engineers involved with the spacecraft.

Determining the cause of the off-nominal state requires a quick

 3

investigation into the anomaly and quick decision-making from a team of

experts on how to return the spacecraft to a healthy state.

1.1.2 A NEW METHOD OF HEALTH MONITORING

The three steps of health monitoring are, at the time of this work,

the standard practice in the spacecraft industry. The main goal of a new

proposed method of health monitoring, Inductive Monitoring Systems

(IMS), is to automate the first two steps of the process. The IMS method

can be broken down into two sections: the learning algorithm and the

monitoring algorithm. The learning algorithm builds its own reference

table of nominal value ranges from an existing data set, eliminating the

need for an expert to determine the nominal value ranges. The cost of the

development period is reduced via the process automation. The learning

algorithm also increases the reliability of a complex system by being able

to learn the healthy value ranges of what previously was too complex to

define. The monitoring algorithm uses the nominal value ranges

generated by the learning algorithm as the comparison for the system’s

current telemetry values. The monitoring algorithm then autonomously

determines if the spacecraft is operating nominally or off-nominally. If off-

nominal, the monitoring algorithm reports a quantitative value that

demonstrates how far the system has deviated from nominal.

 4

1.1.3 IMS BACKGROUND

To date, IMS has been integrated into a wide range of applications.

As David L. Iverson wrote in his paper Inductive System Health

Monitoring, “The IMS methodology is domain independent and can be

used in a variety of system monitoring situations including aerospace,

transportation, manufacturing, power generation and transmission,

medical, or process monitoring applications” [9]. IMS is gaining

popularity in many fields because “the advantage of using IMS is that it is

fast and simple yet very effective” [7].

Halim described IMS in the previous quote when referring to why

he chose to utilize IMS to monitor the equipment used in his field of

mining, mineral, and metal processing. In another study, IMS was used to

“maintain effective plug load management system performance, identify

malfunctioning equipment, and reduce building energy consumption”

[18]. While IMS is applicable to other industries, it was originally founded

in the the aerospace industry and recently gained popularity.

1.1.3.1 STS-107 COLUMBIA SPACE SHUTTLE

The first known investigation into using IMS in an aerospace

application was conducted by Iverson in 2004. Iverson applied IMS to the

archived data of the STS-107 Columbia Space Shuttle mission. The STS-

107 mission and the lives of the crew members on board were lost when

the orbiter was destroyed upon re-entry. The cause of the destruction

was determined to be “a breach in the Thermal Protection System on the

 5

leading edge of the left wing, caused by a piece of insulating foam that

struck the wing approximately 82 seconds after launch” [9]. This breach

went unnoticed by mission controllers until 17 days later at the time of re-

entry. A slight increase in brake line temperature of the left main landing

gear was noticed seven minutes before the loss of the vehicle.

Iverson used IMS to determine the nominal ranges of archived

temperature sensor data from previous successful Columbia Space

Shuttle missions. He then used those nominal ranges to analyze the

archived telemetry data from the STS-107 Columbia Space Shuttle

mission. Iverson’s investigation concentrated on four temperature

sensors on each of the two wings. The results of the investigation are

shown in Figure 1, where the pink line shows the results of the left wing

and the blue line shows the results of the right wing. The figure shows the

IMS distance over time. The IMS distance is a measurement of how far

from nominal the current telemetry value has deviated. At 15:40:22, a

vertical line shows when the breach in the brake line occurred. Before the

impact, the right wing and left wing had similar trends. The left wing IMS

distance appears to increase before the impact, but this is not the

indication of the error. Instead, the indication of the error from IMS is

seen after the impact as the overall trend of the left wing drastically strays

away from the right wing and does not return to nominal. Iverson

concluded that this significant difference in the trends of the left wing and

right wing was an early indication that an error had occurred.

 6

Figure 1: IMS Results for STS-107 [9]

Iverson concluded from this investigation that IMS could provide

monitoring capability similar to, if not better than, the current techniques

used. IMS could also aid in alerting a mission controller of vehicle health

and provide earlier detection of anomalies [9].

1.1.3.2 BEACON-BASED EXCEPTION ANALYSIS FOR MULTI-

MISSIONS (BEAM)

The NASA Jet Propulsion Laboratory and the NASA Armstrong

Flight Research Center took the next stride in IMS research and

application by integrating the JPL-developed IMS into an F/A-18. The

idea Mackey et. al. had behind using an aircraft as a proxy to a

spacecraft was that

“A high-performance aircraft provides many of the same
relevant characteristics and challenges as a spacecraft and
could effectively be used as a surrogate for developing new
technologies for space flight. […] Software development

IM
S

Di
st

an
ce

 (%
 o

ff
ba

se
lin

e)

Time (GMT)

 7

requirements for data collection, data filtering, and
interpretation are comparable. In addition, issues involved in
modeling, integrating, and fielding [IMS] are similar for both
platforms” [14].

Mackey et. al believed that if IMS performed as expected on an aircraft,

the results would translate to a spacecraft.

JPL developed their own version of IMS that could monitor a

complex system, such as the F/A-18, without the need for a manually

developed model. JPL then integrated their version of IMS with their

Beacon-Based Exception Analysis for Multi-Missions (BEAM) software.

Mackey et. al describes BEAM as a “software technology that analyzes

system data to detect anomalies, classify faults, and track degradation in

physical systems” [14] and reduces the amount of telemetry data

transferred to the mission controller.

BEAM reduces the amount of data by transmitting only a beacon

consisting of one of the following health specifications to the mission

controller: healthy, anomalous behavior, degradation, or failure. When the

system is specified as healthy, only the beacon, no telemetry data, is

transmitted. When the beacon is one of the three latter health

specifications, only the pertinent telemetry data associated with the

anomalous event is transmitted. A beacon-based program reduces the

amount of transmitted telemetry data during the majority of the mission

but still allows for an investigation into the data in the case of an anomaly

[11].

 8

The JPL-developed IMS and BEAM were integrated into the flight

software on-board the F/A-18 and test flights were performed at the

Armstrong Flight Research Center. The team concluded that the test bed

was appropriate for IMS and that it met all of their success criteria. This

conclusion brought IMS up to Technology Readiness Level (TRL) 6,

defined as “prototyping implementations on full-scale realistic problems”

[4] and readied the process for TRL 7, which is a demonstration of the

prototype in its operational environment [12].

1.1.3.3 	 ARES I-X GROUND DIAGNOSTIC PROTOTYPE

IMS was most recently implemented into the Thrust-Vector Control

(TVC) system of an Ares I-X launch. A ground diagnostic prototype of IMS

was developed to support the detection of anomalies during launch. The

results were later compared to other diagnostic programs in use at the

time of launch to assess the abilities of IMS.

Due to the lack of previous test data of the Ares I-X, data collected

from the TVC system of previous Space Shuttle missions were used to

create the nominal telemetry value ranges. This application of IMS failed

to accurately find all of the failures within the TVC system. The team

concluded that the performance of IMS is directly related to the quality of

the original nominal data set that is provided to create the knowledge

base. Due to the difference in the hardware between the two TVC

systems the IMS failed to detect some errors, as well as gave false-

positives. They concluded that IMS added value to the health

 9

determination process, but a nominal data set with higher fidelity would

have yielded better results. IMS had some benefits over the other model-

based diagnostic programs but would require improvement before it was

deemed a success for this application [16].

1.1.4 CUBESAT APPLICATION

Currently, the IMS method is referred to as an experimental

algorithm because it has not been proven in-flight on an entire system. By

integrating the IMS method into a CubeSat’s software architecture, flight

heritage of an entire system is gained at a lower risk due to the smaller

cost of the overall mission.

Adding IMS to the software architecture of a CubeSat will not only

add reliability to the system, but the addition will also improve the

scientific goals of the mission. Currently, CubeSats downlink their data,

telemetry and scientific, during very short communication passes. The

passes occur three to four times per day and are currently only about

twelve minutes long. The telemetry portion of data utilizes about 10% of

the data downlink when a CubeSat is operating nominally. Due to the

limitations inherent to the CubeSat design, the data rate of a CubeSat is

very limited. Implementing IMS into the software architecture provides an

alternative method to obtaining more scientific data from the CubeSat by

reducing the telemetry data. When IMS is fully integrated to detect

anomalous conditions, there is no need to transmit the telemetry data

during a downlink for post-processing. A reduction in the volume of

 10

telemetry data will result in more critical science data (approximately

11%) during a downlink.

In order to fully integrate IMS into the flight software of a CubeSat,

a step must be made beforehand to increase the success of such

implementation. The first step is to verify that IMS can successfully

monitor and determine the faults in a CubeSat. The first verification

process of an experimental algorithm, such as IMS, is performed in a

non-essential setting. This means that IMS should not be fully relied upon

to detect faults until it has been verified that it has the ability to detect all

the faults in a system. To verify that IMS can be relied upon in flight to

detect faults in the system, a prototype must first be built and applied to

a CubeSat during testing on the ground. Once the prototype of the

algorithm has demonstrated the ability to to detect faults in the system, it

then is developed for flight software, tested, and flown on-board a

CubeSat.

1.2 THESIS OVERVIEW

This thesis describes the development of a ground-based

prototype of IMS developed for a CubeSat testbed at Cal Poly. This

thesis describes how IMS was implemented in MATLAB and a user-

friendly interface was developed and integrated into the CubeSat testing

environment. Finally, this thesis demonstrates the success of the IMS

method in determining faults when monitoring an emulated CubeSat

system.

 11

This paper first introduces the methodology of Inductive

Monitoring Systems in Chapter 2. Inductive Monitoring Systems are

composed of two distinct algorithms: learning and monitoring. Chapter 3

and Chapter 4 describe these algorithms respectively and their specific

implementation chosen for this application. Chapter 5 describes how the

algorithms are integrated in this implementation of IMS to achieve the

expected outcome, as well as how the algorithms interact with the

CubeSat testing environment. Chapter 6 explains the verification process

that was performed on the developed IMS software. Finally, Chapter 7

concludes the paper and describes the future work needed to fully

integrate IMS into CubeSat flight software.

 12

2 INDUCTIVE MONITORING SYSTEMS (IMS)

Currently the spacecraft industry uses model-based reasoning to

predict when a system is functioning nominally or off-nominally which

requires building a theoretical model of the system. The model uses

various ranges of simulation software inputs to compute ranges of

outputs that determine the nominal system states. To determine if a

system is preforming nominally, the telemetry data collected from the

system is compared against the range of outputs generated by the

simulation software. If the telemetry data is within the expected nominal

range, the system is classified as performing nominally and is healthy. If

the telemetry data is outside the expected range, it is off-nominal. This

type of error-detection has a long-standing history of success despite the

models being difficult and time-consuming to build. The aerospace

engineering industry continues to push the limits of design and create

even more complex systems. With the movement toward more complex

designs, modelling the overall system has become increasingly difficult

and in some cases, impossible. This is where the IMS approach has value

and thus has developed interest in the research and development of it.

IMS is a software that uses a nominal data set to build a

knowledge base of the various states of nominal behavior. IMS then uses

that nominal knowledge base to monitor the health of a system in real

time. To build the required knowledge bases IMS utilizes techniques

developed for machine-learning and data mining [2].

 13

IMS differs from other monitoring systems because IMS doesn’t

need to see a failure or error in order to assess when an error occurs.

Instead, IMS proactively monitors the system’s deviation from the

nominal state. The deviation is defined as the distance between the

system’s current state and the nominal state. When the calculated

deviation has exceeded the maximum deviation allowed, the system is

deemed off-nominal.

The motivation for IMS partially stems from the difficulty in

modeling systems due to their complexity. IMS does not require a model

but rather a nominal data set [2]. The IMS software can monitor systems

with nearly the same fidelity as the model-based reasoning approach but

with less effort in the development of the nominal states [2].

Inductive System Health Monitoring (ISHM) is a specific form of

IMS that was described by Iverson at the 2004 International Conference

on Artificial Intelligence and is the particular method being applied to the

CubeSat testbed prototype.

2.1 ISHM METHODOLOGY

IMS is broken down into two separate algorithms: the learning

algorithm and monitoring algorithm. Figure 2 gives a visual representation

of the relationship between the two algorithms.

 14

Figure 2: Relationship Between the Learning and Monitoring Algorithms

ISHM first builds a knowledge base of nominal data sets that will

later be used for health determination. The learning algorithm uses data-

mining and machine-learning algorithms on archived data in order to

gather a generalized nominal data set. This generalized data set covers all

states of the system. The ISHM algorithm then clusters the data into

groups of similar values. Clustering assigns the data vectors into groups

such that the data in a group are as similar as possible and data in

different groups are as dissimilar as possible. Those groups, or clusters,

define the telemetry value limits for a particular state of the system. Each

cluster defines a different nominal state of the spacecraft quantitatively.

In order to utilize the learning algorithm, the data must be in a

particular form. The form suggested for ISHM is a state vector consisting

of parameter values. The parameter values are the individual sensor value

measurements included in the telemetry data. Because ISHM is being

developed to monitor any number of parameters, the vectors define a

point in an N-dimensional space, where N is the number of parameters

 15

being monitored. This data vector is time variant; multiple data vectors

would represent the state of the system at multiple times. An example of

a vector that would be used in this thesis is shown in Table 1.

Table 1: ISHM Data Vector Example

Sensor 1:
Power

[A]

Sensor 2:
Power

[V]

Sensor 3:
Temperature

[K]

… Sensor N:
Parameter

[Unit]
3 32 298 … Value

After the parameter values are properly formatted into the state

vector, the data is then clustered into groups of similar values. While

there are various clustering methods that can be used, the K-means

clustering algorithm is recommended and is described later in this paper.

The maximum and minimum of each parameter in a cluster describe the

range of nominal values allowed. An example of the final ISHM cluster

structure is shown in Table 2.

Table 2: ISHM Cluster Structure

 Sensor 1:
Power

[A]

Sensor 2:
Power

[V]

Sensor 3:
Temperature

[K]

… Sensor N:
Parameter

[Unit]
Minimum 2.1 31.1 295.3 … Value
Maximum 4.3 33.2 298.3 … Value

The centroid (or center of each cluster) is then defined as a vector

in N-dimensional space in which each component of the vector is the

average of the sensor values contained within that cluster for that

particular parameter. This is where the ISHM algorithm has similarities to

 16

the model-based reasoning algorithm; the allowable nominal values are

contained within a range. In model-based reasoning, a range of values is

sent into the developed simulation software and a range of allowable

response values is output to form the nominal range of values.

 Now that healthy nominal state vectors have been defined using

the learning algorithm, a monitoring algorithm is used to determine the

current health of the system. Telemetry is gathered from the system and

the monitoring algorithm formats the telemetry data into the same vector

format shown in Table 1. The monitoring algorithm then utilizes a nearest-

neighbor searching algorithm to locate the closest cluster, measured by

distance, to the data vector being analyzed.

Once the closest cluster has been found, the algorithm determines

if the telemetry gathered from the CubeSat falls within the cluster limits,

shown in Table 2. The cluster limits are referred to as the bounding N-

dimensional hypercube. If the telemetry data falls within the cluster limits,

the algorithm concludes the system is performing nominally (healthy). If

the telemetry data does not fall within the limits, the algorithm calculates

the deviation value which is a ratio of two quantities: the distance

between the data vector and the centroid and the distance between the

furthest point of the cluster and the centroid.

If the telemetry does not fall within the limits of the closest cluster’s

N-dimensional hypercube, the algorithm first determines if it falls within a

threshold value,	 𝜀. The threshold value is previously determined by the

 17

user and is defined as the maximum allowable distance between the

center of a cluster and the data point being analyzed. If the telemetry falls

within the threshold value, the cluster structure is updated to include the

new value. This threshold value allows for the knowledge base to be

continuously updated as the system is operated. By adding in the

threshold value the assumption is made that not every single nominal

state vector was accounted for in the nominal data set provided to the

learning algorithm.

The user can also make the assumption that all nominal ranges

were covered in the learning algorithm and not use the 𝜀 threshold value.

The size of the threshold value is very important: too large and errors may

be missed, too small and false positives for errors may be seen. There is

not an exact value to set the threshold value to and it must be adjusted

for the exact application at hand.

 18

3 LEARNING ALGORITHM

The learning algorithm uses machine-learning and data mining

techniques on archived data to create a nominal knowledge base. A

nominal knowledge base is composed of clusters of data that contain

similar values. The clusters of data will quantitatively classify the nominal

states of a system. The methodology laid out in Iverson’s proposal of

ISHM was very broad and merely suggested various techniques for

clustering the data. This chapter will describe in detail the specific

methods chosen for this implementation.

3.1 K-MEANS CLUSTERING ALGORITHM

There are many clustering techniques available in the data mining

field. In the ISHM methodology laid out by Iverson, he suggests the use

of the K-means algorithm for this application. K-means is a widely utilized

unsupervised machine-learning algorithm that has become popular due

to its simplicity. An unsupervised algorithm is defined by the ability to run

without a response variable [13]. The goal of the K-means algorithm (or

any clustering algorithm) is to find groups of data points within a data set

in which intra-cluster data points are as similar as possible, while inter-

cluster data points are as dissimilar as possible [5]. To define this

quantitatively, the K-means algorithm tries to minimize the intra-cluster

variance. Variance is defined as the sum of the squared distances from

the data points to their assigned cluster’s centroids.

 19

The K-means algorithm originates from the vector quantization

techniques developed from signal processing. Vector quantization

organizes vectors into groups such that each group has approximately

the same number of points. This method is usually used for data

compression because it significantly reduces the size of the data from the

number of data points to the number of clusters. It is considered a lossy

compression method because not every data point is remembered; the

mean of the data points in a particular cluster is remembered and thus

the data resolution is decreased [20]. K-means was developed by J.

MacQueen with the intention of taking this idea, altering it slightly, and

using it in various applications such as “methods for similarity grouping,

nonlinear prediction, approximating multivariate distributions, and

nonparametric tests for independence among several variables” [15].

The K-means algorithm is fairly simplistic and iterates as follows [3]:

1. Choose K number of points at random from the data set. These

points will be the initial centroids.

2. Calculate the distances between every data point and each

centroid.

3. Determine the closest centroid to each data point and assign the

data point to that centroid’s cluster.

4. Calculate the mean of all the data points assigned to a cluster. This

mean becomes the new centroid.

 20

5. Iterate on steps 2-4 until the centroid no longer moves or moves

less than a set tolerance.

There are many different methods used to determine the distance

between a data point and the centroids. For this application, the

Euclidean distance was recommended and is shown below for two

points, 𝑥 and 𝑦, that are composed of n dimensions each (i, j, … n).

 𝐷&' = 𝑥) − 𝑦) + + 𝑥- − 𝑦-
+ + ⋯+ 𝑥/ − 𝑦/ + (1)

3.1.1 SHORTCOMINGS OF K-MEANS

The K-means algorithm random initialization was not appropriate

for this application. The K-means clustering algorithm is very sensitive to

the initial centroids, which are chosen at random. The best possible case,

or the global optimum, is when each centroid ends in its own natural

cluster. With random initialization, there is a probability that two centroids

will end in the same natural cluster or that a centroid will converge on a

location in between natural clusters. Any case where a natural cluster

does not contain exactly one centroid means that the solution converged

on a local optimum. There is no theoretical guarantee on the quality of the

centroids that the K-means algorithm finds, just a guarantee that it will

find K number of clusters.

To demonstrate a local optimum solution, the K-means clustering

algorithm was applied to the 2-dimensional data set shown in Figure 3

that contains five natural clusters, visualized with separate colors. As

 21

seen in Figure 4, two centroids split one natural cluster and one centroid

controls two naturally separate clusters.

 Figure 3: Data With Natural Clusters Figure 4: Local Optimum Solution

When the algorithm settles on a local optimum solution, the

clusters no longer accurately describe the range of nominal values.

Notice in Figure 3 that a natural cluster, shown in green, spans a range of

y-values of approximately 10 to 40 and the light blue natural cluster

spans y-values of -40 to -10. With the local optimum solution, the light

green cluster spans all the y-values between the two clusters, -40 to 40.

The local optimum solution has added a span of y-values, -10 to 10, to

the solution that is not normally there. The local optimum solution would

not serve as a good representation of the nominal value ranges. Upon

further research, local optimum convergence was found to be a known

issue of the K-means algorithm. There are many extensions to the K-

means algorithm that are less prone to the issue of local optimum

convergence.

 22

In addition to converging on a local optimum solution, the time K-

means algorithm takes to converge is directly related to the size of the

data set. So, large data sets will take a long time to converge. For the

learning algorithm, larger data sets are ideal to ensure all nominal states

are represented in the nominal data set. A larger data set used for the

learning algorithm results in more confidence that the centroids

accurately represent all the nominal states of the system.

To confirm the well-known issue of the K-means convergence

time, the K-means algorithm was implemented in MATLAB and

performed on data sets with five natural clusters of varying sizes. The K-

means algorithm was performed on each data set 100 times to

demonstrate the distribution of convergence times. Figure 5 shows the

time the K-means algorithm takes to converge as the size of the data set

grows. A full verification analysis of the IMS algorithms was performed

and is explained later in Chapter 6.

 23

Figure 5: K-Means Time to Converge

As expected, Figure 5 shows that an increase in the data size

increases the convergence time as well. To give a rough estimate of the

size of the data set, a data set with 50,000 points (the maximum points

shown) would come from a nominal test that lasted 13.88 hours and was

sampling 2-dimensional data at a rate of 1 Hz. The average time to

converge on a data set of that size was about 6 minutes. The worst case

took 62.02 minutes to converge. A reduction in this time would add

efficiency to the algorithms.

K-means requires the user to understand the data set at-hand and

supply the number of clusters. While this may seem like an easy task for

the data sets previously laid out in Figure 3, the data sets in Figure 3

were manually created with natural clusters so it could easily be

 24

confirmed if they converged to the correct solution. However, in real

scenarios, the clusters may not be as easy to distinguish and count.

3.2 USING K-MEANS++ FOR CENTROID INITIALIZATION

K-Means++ is an algorithm that replaces the first step of K-means

where the centroids are initialized through random selection. K-means++

chooses the initial centroids for the K-means algorithm to then use

instead of having them randomly initialized. Using K-means++ to select

the initial centroids decreases the convergence time as well as decreases

the probability of converging on local optimum solutions.

The K-means++ algorithm chooses centroids that are far away

from each other so they are more apt to converge on separate clusters.

The algorithm starts by choosing one center at random from the data set.

The distance from each point in the data set to this chosen centroid is

calculated. The remaining centroids are chosen based on the following D2

weighting.

𝐷)(𝑥)+

𝐷)(𝑥)+&∈3

where x is the individual state vector and X the set of all the state vectors.

Let Di
2 be defined as

𝐷)+ = min	 (| 𝑥) − 𝑥89 | … | 𝑥) − 𝑥89 |)	
+

where the subscript, cl, is a vector that denotes all the previously

determined centroids. The size of this vector increases as more centroids

are chosen [1].

(2)

(3)

 25

The remaining centroids were chosen using the above weighting

scheme and the roulette wheel selection process proposed by Holland

[8]. This selection method is derived from the genetic algorithm that

stems from Charles’ Darwin theory of natural selection. The main premise

behind this selection method is that the probability of selection is based

upon the fitness value [6]. When applied to this application, the fitness

value was defined as the D2 weighting value.

3.2.1 IMPROVEMENT OF ADDING K-MEANS ++

After the K-means++ algorithm was implemented, a short

verification analysis was performed to see if improvements in the

algorithm were seen. This analysis only sought to demonstrate the

benefits K-means++ added to the system; a full verification analysis of all

the IMS software is explained later in Chapter 6.

 In order to see the results in a side-side comparison, a data set of

2,500 2-dimensional data points was used and each type of centroid

initialization (K-means and K-means++) was performed on the data set.

Each initialization method was set to run 1,000 times on the data set and

the average of the results from the test are shown in Table 3.

Table 3: K-Means and K-Means++ Comparison

 K-Means K-Means++
Number of Local Optimum Convergences 130 1
Time to Converge on Global Optimization 14.53 seconds 8.45 seconds

 26

As the table shows, there was an improvement when K-Means++

was used to initialize the centroids. K-means converged on the local

optimum 13% of the time and K-means++ reduced this percentage to

0.1%. When examining only the cases where the global optimum was

found, the K-means convergence time reduced to almost half when K-

Means++ was added. Overall, K-Means++ proved to be a beneficial

addition to the learning algorithm.

3.3 GAP STATISTIC

The gap statistic method eliminates the need for the user to

determine the number of clusters present in the data. The gap statistic is

based on the idea behind clustering which is to maximize the intra-cluster

similarity and minimize the inter-cluster similarity.

3.3.1 BACKGROUND

One way to quantitatively define intra-cluster and inter-cluster

similarity is with the variance value, Wk. The variance value is the

calculation of dispersion within each cluster. To calculate it, let there be a

set of data points in which i=1, 2, 3, …n, where n is the number of

observations, and j=1, 2, 3, …p, where p is the number of dimensions of

each observation. Let dii’ be the squared Euclidean distance between

point 𝑖 and it’s assigned centroid 𝑖< such that

 𝑑))> = (𝑥)- − 𝑥)>-)+-

For a data set that has been grouped into k clusters, where each

cluster is defined individually by 𝐶@, 𝐶B, 𝐶B, …𝐶C, respectively, let the sum

(4)

 27

of the distance between the center of a cluster and each data point

assigned to the cluster be defined by

𝐷D = 𝑑))>
),)>E	 FG

 The variance quantity is then calculated by adding all of the intra-

cluster distances.

𝑊C =
1
2𝑛D

𝐷D

C

DL@

When the optimal number of clusters for a given data set is

unknown, the variance of the data set with respect to varying number of

clusters can give insight into what the optimal k value is. The best way to

view this data is shown in Figure 6.

Figure 6: Variance for a Data Set With 5 Natural Clusters

The above figure was created using the same data set shown in

Figure 3 which has five natural clusters in it. The data was clustered with

(5)

(6)

 28

k=1, 2, 3, …10 using the K-means algorithm previously described. The

variance of the clusters for each k value was calculated and the results

are shown in Figure 6.

As seen in the graph of Figure 6, the variance decreases when the

k value increases, meaning clusters that are more tightly packed are

being chosen. The ideal k value is equal to the number of data points, so

that each data point has its own classification. However, this many

classifications are not useful in the overall learning algorithm.

The optimal number of clusters is interpreted from the graph. From

the trend in the graph, one can see that a natural bend in the graph

exists. Before the bend in the graph, the variance decreases rapidly with

an increase in the number of clusters. The slope before the bend is

steeper than the slope after the bend. At the bend in the graph, referred

to as the ‘elbow’ of the graph, the optimal number of clusters exists. After

the ‘elbow’, the gain of adding more clusters becomes marginal, and thus

the point right at the ‘elbow’ is chosen.

3.3.2 HEURISTIC APPROACH TO DETERMING OPTIMAL K

Using the method previously stated will get you the optimal

number of clusters. However, this method requires the user to determine

where the ‘elbow’ in the graph occurs. The previous example had a very

distinct ‘elbow’ and it was fairly easy to distinguish where the ‘elbow’

occurred. For data sets that do not have as distinct clusters, the ‘elbow’

point will be less easy to distinguish.

 29

The gap statistic is a heuristic approach to determining where the

‘elbow’ occurs in the data set and minimizes the user’s input. The gap

statistic method is a very versatile approach and can be applied to any

clustering method because the gap statistic method does not evaluate

the actual clustering method, only the results.

The goal of using the gap statistic method developed by

Tibshirani, Walther, and Hastie is to “standardize the graph of 𝑙𝑜𝑔	 (𝑊C) by

comparing it with its expectation under an appropriate null reference

distribution of the data” [19]. Using this method, the optimal value for k

can be estimated as the value that lies furthest from the reference

distribution curve. To define the distance from the reference curve, let

 𝐺𝑎𝑝/ 𝑘 = 𝐸/∗ log	 (𝑊C) − log	 (𝑊C) (7)

where 𝐸/∗ , referred to as the expected value, is the average of the

reference distributions. The asterisk from here on denotes that

accompanying variable is calculated for the reference distribution and not

the original data set. By subtracting off the 𝑙𝑜𝑔	 (𝑊C) from this expected

value, we get the distance from the reference curve, 𝐺𝑎𝑝/ 𝑘 . The value

for k is chosen at the maximum 𝐺𝑎𝑝/ 𝑘 in order to achieve the value that

lies furthest from the reference curve.

 Knowing that the optimal k is the one such that 𝑙𝑜𝑔	 (𝑊C) falls

furthest from the reference comes from the following. Let there be a data

set of n uniform data points in p dimensions with K clusters where the

 30

centers have converged equally spaced. The approximate 𝐸/∗	 of this data

set is

 log 𝑝𝑛 12 − 2 𝑝 log 𝑘 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8)

 If the data set actually has K natural clusters, the expected rate of

decay is similar to 2 𝑝 log 𝐾 when p and n are held constant across

the data sets. A k value less than the K natural clusters is expected to

decrease faster. When the k value is greater than the K natural clusters,

there is an additional centroid in the middle of a natural cluster. The

equation shows that the 𝑙𝑜𝑔	 (𝑘) will decrease slower than the expected

rate of K natural clusters. The optimal k is selected when the gap statistic

is largest, which occurs at k=K.

 In order to calculate the expected value of the null reference

distribution, the Monte Carlo method was used to create B number of

data sets. The data sets are restrained to a reference distribution defined

by the boundaries of the original data set. The average of 𝑙𝑜𝑔 𝑊C
∗ 	 of

each of the B copies of data determines the estimated 	 𝐸/∗ 𝑙𝑜𝑔	 (𝑊C) . The

standard deviation of the data sets is calculated and denoted by 𝑠𝑑	 (𝑘).

 𝑠𝑑 𝑘 = @
^

(log 𝑊C_
∗ − @

^
∗ log 𝑊C_

∗
_)+_ (9)

 Finally, accounting for the simulation error of 𝐸/∗ log	 (𝑊C) 	 along

with the standard deviation, let

 𝑠C = 1 + 1 𝐵 ∗ 𝑠𝑑(𝑘). (10)

 31

In order to choose the optimal cluster size, the smallest k is chosen

such that the following is still true [19].

 𝐺𝑎𝑝 𝑘 ≥ 𝐺𝑎𝑝 𝑘 + 1 − 𝑠Cb@ (11)

3.3.3 GAP STATISTIC IMPLEMENTATION

The following procedure using the methodology described above

was implemented into MATLAB in order to calculate the optimal K for the

data set at hand [19]:

1. Cluster the given data with a varying amount of clusters, k=1,2,…n.

2. Calculate the variance, Wk, for each number of clusters.

3. Find the maximum and minimum of each dimension of the data

vectors.

4. Create B number of data sets using the Monte Carlo method with

the same number of points as the original data set and bounded

by the maximum and minimum of the original data set.

5. Cluster the new data sets with the same varying amount of

clusters as before: k=1,2,…n.

6. Calculate the variance, 𝑊C
∗, for each cluster amount for each new

data set.

7. For each k value, calculate 	 𝐸/∗ log	 (𝑊C) by taking the average of

the variances, 𝑊C
∗, across the B number of data sets.

8. Calculate the gap statistic for each value of k using Eqn. 7.

9. Calculate the standard deviation for each k value using Eqn. 9 and

then apply to Eqn. 10.

 32

10. Choose the smallest k value such that Eqn. 11 holds true.

3.4 CONCLUSION

The learning algorithm developed for this specific application is

composed of three separate algorithms. The gap statistic algorithm

determines the optimal number of clusters needed for a data set. The K-

means++ algorithm selects the initial centroids for optimal solutions.

Finally, the K-means algorithm groups the data sets into clusters of

similar values.

 33

4 MONITORING ALGORITHM

The monitoring algorithm receives telemetry data vectors from the

system being monitored and compares them to a knowledge base of

nominal clusters derived from the learning algorithm. The monitoring

algorithm selects the closest cluster to the telemetry data point and uses

this cluster for comparison. The monitoring algorithm then decides if the

system is operating nominally or off-nominally by determining if the

telemetry data vector is contained within the bounds of the cluster’s

N-dimensional hypercube. Data points within the bounds are classified as

nominal and data points outside the bounds are classified as off-nominal.

This chapter will describe how the closest cluster is chosen for the

monitoring algorithm.

4.1 NEAREST NEIGHBOR SEARCHING

Nearest neighbor searching is a method of finding the closest point

in a data set to the query point. There are many different methods of

nearest neighbor searching, the most common being the k-d tree and R-

tree. However, these algorithms are very complex in design and the

complexity grows exponentially with an increase in the dimension of the

data being analyzed [17]. As the design gets more complex, the amount

of memory needed also grows. Since memory is an issue on-board a

CubeSat, a method that utilizes less is ideal. K-d tree and R-tree are

suggested for dimensions of 15 or less but not high-dimensional data

sets, which are defined as any set greater than 25 dimensions [17]. Since

 34

CubeSats usually have 50 or more sensors, the state vector would be 50

dimensions or more. The method suggested by Sameer Nene and Shree

Neer at Columbia University was found to be a better fit for a CubeSat

application. The method is detailed in A Simple Algorithm for Nearest

Neighbor Search in High Dimensions.

4.1.1 A SIMPLE ALGORITHM IN HIGH DIMENSIONS

A brute force way to perform a nearest neighbor search would be

to find the Euclidean distance between the query point and every other

data point in the set. The minimum Euclidean distance calculated would

result in the “nearest neighbor.” With a high-dimensional data set, the

time to compute all of the Euclidean distances increases. Nene and Neer

suggest a solution that minimizes this search area.

To better explain Nene and Neer’s method, a 3-dimensional data

set will be used as an example, but this method is meant to be scaled to

higher dimensions. The purpose of this method is to find the closest point

within 𝜀-distance of a given query point, Q(x,y,z). A cube with side lengths

of 2𝜀 is formed around the query point to define this search space. The

tolerance 𝜀 is usually chosen to be relatively small so that a minimal

amount of points is contained within the search space. The Euclidean

distance between the query point, Q(x,y,z), and all the points that fall

within the search space are calculated and the point with the shortest

Euclidean distance to Q(x,y,z) is deemed the ‘nearest neighbor’.

 35

To create the search space in the N-dimensional space, a ‘search-

by-slicing’ method is used. First, a slice of one dimension is analyzed by

placing two parallel planes in the first dimension that are each 𝜀-distance

away from the query point. In the 3-dimensional example the parallel

planes would be X1 and X2. Any points in the data set that fall between

these two planes are added to the “candidate list.” The next dimension is

then analyzed, which in this example would be the y-dimension. Again,

two planes (Y1and Y2) are placed 𝜀-distance away from the query point in

the y-dimension. Instead of looking in the data set for data points that fall

between these two parallel planes, the candidate list is now referenced.

Any points within the candidate list that do not fall between the two

planes, Y1 and Y2, are eliminated. The process is then repeated for the

remaining dimensions until the candidate list only contains data-points

contained within the search space. Because this example was shown in

3-dimensions, the search space results in a cube and a visual

representation of this search space produced by Nene and Nayar is

shown in Figure 7.

 36

Figure 7: Search Space Around Query Point, Q(x,y,z) [17]

4.2 CALCULATING THE DEVIATION VALUE

To demonstrate how far the system has deviated from the nominal

state, the monitoring algorithm calculates a deviation value. The deviation

value is a ratio of the distance between the queried state vector, i, and its

assigned closest centroid, i’, and the distance from the closest centroid

to the furthest point in the cluster, imax. With state vectors containing

j-dimensions, the deviation value is

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	 𝑉𝑎𝑙𝑢𝑒 =
𝑥)- − 𝑥)>-

+
-

(𝑥)>- − 𝑥)ghi-)+-

4.3 CONCLUSION

The monitoring algorithm determines the health of the system by

comparing the current health state vector to the knowledge base of

nominal clusters. To make this comparison, the monitoring algorithm

employs nearest neighbor searching to find the closest centroid. For this

(12)

 37

application, the search space is reduced by Nene and Nayar’s ‘search-

by-slicing’ method. Once the closest centroid is found, the monitoring

algorithm classifies the health of the system by determining if the current

state is contained within the bounds defined by the N-dimensional

hypercube of the closest centroid. Finally, to demonstrate how far the

system has deviated from the nominal state, the deviation value is

calculated.

 38

5 IMPLEMENTATION

IMS is composed of two distinct algorithms: learning and

monitoring. As discussed in Chapters 3 and 4, the learning and

monitoring algorithms are broken down further into smaller algorithms

that were chosen for the CubeSat application. The individual algorithms

were implemented into MATLAB code to form a ground-based prototype.

The following chapter will discuss how the chosen algorithms function

together, their integration with the CubeSat testing environment, and the

user-interface developed for the CubeSat prototype.

5.1 FUNCTIONAL RELATIONSHIP WITHIN IMS

In the two previous chapters, the details of the learning and

monitoring algorithms were explained. Individually, none of the

algorithms explained are able to monitor the health of a system, but

when used in succession the algorithms form an IMS prototype that is

able to monitor the health. A visual representation of the relationship

between the functions is shown in Figure 8.

 39

Figure 8: Functional Relationship Within IMS

First, the learning algorithm, shown in green, needs to form the

knowledge base of nominal data sets that will later be used for health

determination. A data set containing vectors of nominal data will be used

to form the knowledge base. The gap statistic algorithm is used first to

determine the optimal number of clusters for the data set provided to it.

In addition to the nominal data set, the gap statistic algorithm needs a

span of k values from which the gap statistic algorithm will determine the

optimal k value. The gap statistic method also needs the number of null

reference distributions the algorithm should use for the Monte Carlo data

generation. Using these inputs, the gap statistic determines the optimal

k value and passes the information, along with the data set, to the K-

means++ algorithm. The K-means++ algorithm then selects k number of

centroids based upon their fitness value, or D2 weighting. The K-means

algorithm uses the selected initial centroids and the nominal data set to

 40

build the appropriate knowledge base, which is composed of the

clusters and their centroids. The knowledge base is the final outcome of

the learning algorithm.

The learning algorithm passes the generated knowledge base to

the monitoring algorithm, shown in blue in Figure 8. When a new data

point is received, the monitoring algorithm uses the nearest neighbor

searching algorithm to find the closest cluster to that data point in the

knowledge base. When that cluster is found, the health monitoring

algorithm determines the health state of the system by concluding

whether or not the new data point is contained within the bounds of its

closest cluster. As part of the health determination, the deviation value of

the data point is also calculated. The monitoring algorithm finally outputs

the state of the data point, nominal or off-nominal, and the deviation

value.

5.2 FUNCTIONAL RELATIONSHIP WITH CUBESAT

After the IMS software was developed in MATLAB, the software

was adapted to allow for real-time health monitoring within the CubeSat

testing environment. A visual representation of the functional relationship

between IMS and the CubeSat testing environment is shown below in

Figure 9.

 41

Figure 9: Functional Relationship Between IMS and CubeSat

The learning algorithm uses archived CubeSat test data to form the

knowledge base. When the learning algorithm receives the data, the data

must be in the format outlined in Table 1. The learning algorithm uses this

data to form clusters as described in the previous section. The clusters

contained in the knowledge base quantitatively describe the CubeSat’s

nominal states within the archived test data. This knowledge base is

passed through to the monitoring algorithm where the knowledge base is

used to assess the system’s health state.

In order to monitor the health of the CubeSat, the monitoring

algorithm must proactively request the CubeSat’s current state and then

determine the health of that state. The IMS prototype is executed on a

standalone laptop that is connected to the CubeSat’s network via an

Ethernet cable. The monitoring algorithm requests the state of the

CubeSat over this connection using the sys-util program. The sys-util

program is an executable c-file that queries the CubeSat and requests

 42

the current telemetry data values. When the sys-util command is sent, the

CubeSat responds with a data package containing all the telemetry

values, housekeeping data, and time of package generation. The health

monitoring algorithm parses this data package for the telemetry values

and formats them into the data vector format in Table 1. Once the data

vector has been formatted, the monitoring algorithm determines the

closest cluster in the nominal knowledge base.

In order to allow for continuous use, a slight adjustment to the

prescribed nearest neighbor algorithm had to be made to avoid having an

empty N-dimensional hypercube that would cause an error in the

program and interrupt the monitoring. The program has a set 𝜀; however,

if the cube is empty after the search is complete, the 𝜀-value is doubled

and the program repeats the search with a larger cube. This is done until

a nearest neighbor solution is found.

The monitoring algorithm then determines the health state of the

CubeSat by deciding if the data vector is contained within the bounds of

the closest cluster’s N-dimensional hypercube. Determining the health

state also include calculating the deviation value. Finally, the monitoring

algorithm reports the health state conclusion, along with the time and

deviation value, to the test conductor.

5.3 USER INTERFACE

A Graphical User Interface (GUI) was created for the developed

IMS software which makes the interaction between the user and the IMS

 43

software a fluid and seamless process. A user interface eliminates the

need to understand the inputs and output formats of the MATLAB

functions.

The GUI consists of two panels, one for the learning algorithm and

one for the monitoring algorithm, shown in Figure 10 and Figure 11

respectively. The learning algorithm assists the user in clustering the data

set by prompting for the necessary inputs, shown in Figure 8. When

commanded to cluster, the GUI then performs the appropriate MATLAB

functions in the order shown in Figure 8 to achieve the knowledge base.

The GUI autonomously passes the new information gained from each

function to the next function.

The monitoring algorithm panel serves as a visual representation of

the outcome of the monitoring algorithm. The panel contains a view graph

of the calculated deviation value over time that continuously updates

while IMS is monitoring. The GUI also alerts the user of any off-nominal

conditions. For more information on the GUI, a user guide can be found in

Appendix C.

 44

Figure 10: Learning Algorithm Panel

Figure 11: Monitoring Algorithm Panel

 45

5.4 CONCLUSION

The learning algorithm creates a knowledge base that classifies the

nominal states of the CubeSat. The learning algorithm produces this

knowledge base by utilizing the gap statistic method to determine the

appropriate number of clusters, the K-means++ algorithm to initialize the

centers of the clusters, and the K-means algorithm to partition the data

set into the appropriate clusters. The knowledge base output is

composed of these clusters.

The monitoring algorithm monitors data by utilizing the nearest

neighbor searching algorithm to find the closest cluster in the knowledge

base. The monitoring algorithm then determines if the telemetry data from

the CubeSat falls inside or outside the bounds of the closest cluster,

which translates to nominal telemetry data or off-nominal telemetry data.

To integrate the IMS software with the CubeSat testing

environment, the monitoring algorithm was modified slightly. The

software was altered to actively request data packages from the

CubeSat, parse them, and format the data into the appropriate data

vector for use in the monitoring algorithm. The IMS software was also

altered to output a visual representation of the results to the test

conductor. To assist with the interaction between the test conductor and

the IMS software, a GUI was created.

 46

6 VERIFICATION

The developed IMS software was verified using two different

methods. The first method verified that the specific algorithms chosen for

the learning algorithm and monitoring algorithm produced the expected

outcome. A unit test of each of the five algorithms described in Section

5.1 (gap statistic, K-means++, K-means, nearest neighbor searching, and

health determination) was performed in succession with 2-dimensional

data vectors. The second method verified that the developed ground-

based prototype could successfully monitor for errors when integrated

with the CubeSat testing environment. An acceptance test of the IMS

ground-based prototype was performed using 56-dimensional emulated

data packages.

6.1 ALGORITHM VERIFICATION

The algorithms themselves were verified with a 2-dimensional data

set, which allowed the author to see a visual representation and manually

check the progression of the algorithms. First, five clusters containing

500 data points each were created randomly. The five clusters were

centered around the following centroids:

Table 4: Centroids Used for Verification

 Dimension 1 Dimension 2
Centroid 1 0.16 -0.14
Centroid 2 24.88 25.03
Centroid 3 24.88 -24.87
Centroid 4 -24.88 24.93
Centroid 5 -25.24 -24.95

 47

The gap statistic algorithm was performed on the data set over a span of

K values of 2-8 using 10 copies of the data (B =10) for the Monte Carlo

data generation. The gap statistic algorithm was run 10 times on the data

to ensure the same solution was found each time. A visual representation

of the outcome of the algorithm is shown in Figure 12.

Figure 12: Gap Statistic Results

 The algorithm took an average of 44.9 minutes to run and

concluded that there were 5 clusters within the data set. The information

gained from the graphs above support this conclusion. One can see that

there is an ‘elbow’ at k=5 in the Wk vs Number of Clusters graph, which

indicates the optimal number of clusters. In the final graph, in the bottom

right hand corner, one can see that at k=5 the graph flips from negative to

positive. The value switching sign is the first indication that 𝐺𝑎𝑝 𝑘 ≥

𝐺𝑎𝑝 𝑘 + 1 − 𝑠Cb@. The gap statistic algorithm correctly chose the optimal

k value.

 48

 The K-Means++ algorithm was then applied to the generated data

set to find the initial centroids of the five clusters. An example of how the

K-means++ first initialized the centroids is shown in Figure 13.

Figure 13: Initial Centroids from K-means++ Algorithm

In the above graph, the red X’s represent the centroids that the K-

means++ chose for initialization. The K-means algorithm was then

applied to the centroids and iterated until the algorithm converged on a

solution. The K-means++ algorithm followed by the K-means algorithm

was performed 5 times and the solutions are shown in the table below:

 49

Table 5: Centroids Found by K-Means++ and K-Means

 Solution 1 Solution 2 Solution 3
 X Y X Y X Y
Centroid 1 0.16 -0.14 0.16 -0.14 0.16 -0.14
Centroid 2 24.88 25.03 24.88 25.03 24.88 25.03
Centroid 3 24.88 -24.87 24.88 -24.87 24.88 -24.87
Centroid 4 -24.88 24.93 -24.88 24.93 -24.88 24.93
Centroid 5 -25.24 -24.95 -25.24 -24.95 -25.24 -24.95

The table shows that the K-means++ and K-means algorithms

consistently found the accurate values for the centroids. Once the

centroids were found, the monitoring algorithm was tested. A data set

with 500 2-dimensional data points was created for monitoring. Of the

500 data points, 480 fell within the clusters and 20 fell outside the

clusters. The 20 that fell outside the clusters are listed in Table 6.

Table 6: Off-Nominal Data Points Used for Verification

X Y X Y X Y X Y X Y
-30 0 -60 30 30 4 0 -35 -5 -40
43 0 8 22 -28 -55 -50 38 40 40
20 0 60 60 -40 -40 45 46 32 6
0 29 8 49 -45 60 23 73 4 89

The monitoring algorithm which employed the nearest neighbor

searching method checked all 500 points and returned how many points

were found that fell outside the bounds of the clusters. Each time the

 Solution 4 Solution 5
 X Y X Y
Centroid 1 0.16 -0.14 0.16 -0.14
Centroid 2 24.88 25.03 24.88 25.03
Centroid 3 24.88 -24.87 24.88 -24.87
Centroid 4 -24.88 24.93 -24.88 24.93
Centroid 5 -25.24 -24.95 -25.24 -24.95

 50

monitoring program was executed, 10 times in total, exactly 480 points

were found that fell within the clusters and 20 that fell outside the

clusters. The monitoring algorithm successfully discovered all off-nominal

data points.

6.2 PROTOTYPE VERIFICATION

Once the algorithms were verified, the ground-based prototype

needed to be verified to ensure compatibility with the CubeSat testing

environment and the CubeSat’s response. However, due to the fact that

there was not a working CubeSat available at the time of verification, this

became a two-step process.

First, the interaction between MATLAB and the CubeSat needed to

be verified because the CubeSat had never been commanded by

MATLAB before. The sys-util package was installed on the laptop that the

prototype would be running on and the laptop was connected via

Ethernet cable to the CubeSat network. Once the program was installed,

the commands that query the CubeSat were sent from MATLAB to the

computer. From there, the commands were autonomously executed and

sent across the network to the specific IP address assigned to the

CubeSat. The CubeSat responded as expected each time the command

was sent and returned a data package containing the status of the

CubeSat, which was composed of the telemetry of all the sensors on

board the CubeSat, 56 in total. Although the CubeSat responded with the

expected data package, the telemetry values all read zero. This was due

 51

to an internal problem within the CubeSat and was expected. An example

of the CubeSat’s null response can be seen in Appendix A. MATLAB’s

ability to query the spacecraft and receive the expected package was

verified.

Next, the performance of the prototype itself needed to be verified.

Because the CubeSat was only returning null telemetry values, the testing

had to be done on emulated data packages. First, data vectors,

formatted the same as in Table 1, were created that represented a

nominal test. Since there are 56 sensors on board the CubeSat, a 56-

dimensional vector was created for each nominal data point. Each scalar

in the vector represented the response from an individual sensor. The

individual response from each sensor was chosen at random within the

sensor’s range of nominal values. In order to have multiple nominal states

of the CubeSat, the ranges for the sensors were varied 6 times. In total,

1200 random nominal data vectors were created. This meant that there

were 200 data points for each nominal state of the CubeSat. The range of

values for each sensor within the six nominal states created for this

testing can be seen in Appendix B.

The prototype imported the nominal data set and determined how

many clusters were ideal. The optimal number of clusters was found to

be six, which is what was expected due to the six separate nominal

states generated. The data was then clustered into six clusters of 56-

dimensional data vectors.

 52

Once the clustering algorithm had converged on an appropriate

solution, those clusters and centroids needed to be tested to determine if

the system could detect an anomaly occurring in the system based on

the nominal knowledge base. An anomaly occurring in the system would

be represented by a sensor value occurring outside of its nominal value

range.

In MATLAB, 500 nominal data packages were composed that

emulated the CubeSat’s response to the sys-util command. The data

packages included the telemetry data, the housekeeping data, and the

time. Of the 500 data packages, 10 of them were replaced by manually

created data packages containing off-nominal values. All of the data

packages were then placed into a cell structure. Instead of sending the

sys-util command to the CubeSat and expecting a response, the software

called the first data package from the cell. The next time a data package

was requested, the second data package from the cell was called, and so

on. MATLAB received the data package in the same format as the direct

response from the CubeSat: a string of letters and numbers. The IMS

prototype then parsed the emulated data package in the same manner

that the CubeSat’s response would be parsed.

The IMS prototype was prompted to begin monitoring with a

sample rate of 1 Hz and view size of 10 data points. The data was

monitored for 8.43 minutes and the IMS prototype concluded that there

were 20 errors in the data monitored, which was expected. The IMS

 53

prototype successfully monitored the data and detected all errors that

had been induced into the emulated data.

6.3 CONCLUSION

The ground-based prototype of IMS described in this paper was

verified in two separate steps. The developed IMS algorithms’

functionalities were verified using a manually-created 2-dimensional data

set with five natural clusters. The prototype developed for the CubeSat

testing environment was verified using emulated 56-dimensional data

packages. In both cases of verification, the algorithms were able to

detect all injected faults.

 54

7 CONCLUSION

Inductive Monitoring Systems (IMS) have great potential in the

aerospace industry. When completely integrated, they automate the

process of classifying the healthy states of a system and anomaly

detection.

Before IMS can be completely integrated into large flight systems,

they must demonstrate more flight heritage and CubeSats pose as a very

well-developed test bed to do so. There are two steps to integrating an

IMS program into a CubeSat. The first of which is to prove that the

program works as expected on the ground and the second being that the

program functions properly while in flight. This thesis created a program

that completed the first of the two steps: a prototype that monitors the

CubeSat during on-ground testing.

This prototype was a program developed in MATLAB that

contained two algorithms: learning and monitoring. The learning algorithm

creates data vectors that classify the nominal states of the CubeSat

through data mining techniques. This algorithm utilizes the gap statistic

method to determine the appropriate number of clusters, the K-means++

algorithm to initialize the centers of the clusters, and the K-means

algorithm to partition the data set into the appropriate clusters. The

monitoring algorithm monitors data received directly from the CubeSat in

real time by utilizing the nearest neighbor searching algorithm to find the

closest cluster. The monitoring algorithm then determines if the telemetry

 55

data from the CubeSat falls inside or outside the bounds of the closest

cluster, which translates to nominal telemetry data or off-nominal

telemetry data respectively.

The IMS CubeSat prototype was tested through two verification

techniques, algorithm verification using a 2-dimensional system and GUI

verification using 56-dimensional data packages. The prototype

successfully found all of the off-nominal data points that were induced

into the system. The first of the two steps to fully integrating IMS into

CubeSat’s software architecture is complete.

7.1 FUTURE WORK

The work laid out here is the first step in the IMS CubeSat

implementation. To attain flight heritage of an entire system IMS needs to

be flown on-board the spacecraft during flight.

 Due to the bad timing of the development of this software, a

functioning CubeSat was not available. The next step in developing the

IMS prototype is to confirm the success of the verification process

performed in this thesis with a telemetry data set from a functioning

CubeSat, i.e. IPEX.

The next step to developing IMS for CubeSats would be to run the

algorithm regularly during CubeSat testing. In the beginning, it is

important that the system not be relied on for the anomaly detection. The

CubeSat test conductors should perform their usual procedure for

 56

anomaly detection while IMS is running and confirm that IMS detects the

same results as they do, possibly even more.

Once the results of tests performed for this thesis have been

confirmed with real, active tests, the next step in the development

process would be to implement IMS as flight software. The software

developer should have a rough estimate of how large the software

package will be based on the code written for this thesis. All of the code

used for the IMS ground-based prototype was written specifically for the

prototype and no built-in MATLAB functions were used.

The final aspect of giving IMS flight heritage is to fly the IMS

software on-board an active spacecraft to analyze the performance

during flight.

 57

BIBLIOGRAPHY

[1] Arthur, David, and Sergei Vassilvitskii. "K-means++: The

Advantages of Careful Seeding." Journal of the Franklin

Institute 59.1 (1855): 68-70. Ilpubs. Standford. Web. 30 Aug.

2015.

[2] Beato-Day, Pam. "Inductive Monitoring System." (n.d.): n.

pag. Technology Opportunity. NASA. Web. 11 Nov. 2015.

[3] "Clustering - K-means." Clustering - K-means. N.p., n.d. Web. 4

Sept. 2015.

[4] Definition Of Technology Readiness Levels." (2009): n. pag. Earth

Science Technology Office. NASA. Web. 1 Dec. 2015.

[5] "Finding the K in K-Means Clustering." The Data Science Lab. N.p.,

27 Dec. 2013. Web. 8 Sept. 2015.

[6] Gen, Mitsuo, and Runwei Cheng. Genetic Algorithms and

Engineering Design. New York: Wiley, 1997.

[7] Halim, Enayet, Harigopal Raghavan, and Sarish Shah. "Application

of Inductive Monitoring System for Equipment Condition

Monitoring Automation in Mining, Mineral and Metal

Processing." 2009 IFAC Workshop on Automation in Mining,

Mineral and Metal Industry (n.d.): 324-29. Web.

[8] Holland, John Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and

Artificial Intelligence. Cambridge, Mass.: MIT Press, 1992.

 58

[9] Iverson, David “Inductive System Health Monitoring”. In

Proceedings of The 2004 International Conference on Artificial

Intelligence (IC-AI04), Las Vegas, Nevada, June 2004. CSREA

Press

[10] Iverson, David, Rodney Martin, Mark Schwabacher, Liljana

Spirkovska, William Taylor, Ryan Mackey, and J.patrick Castle.

"General Purpose Data-Driven System Monitoring for Space

Operations." AIAA Infotech@Aerospace Conference (2009): n.

pag. Web.

[11] James, M., Mackey, R., Park, H., & Zak, M. BEAM: Technology for

Autonomous Self Analysis, IEEE Aerospace Conference, March

2001.

[12] Johnson, Stephen B. System Health Management: With

Aerospace Applications. Hoboken, NJ: Wiley, 2011. Print.

[13] "Machine Learning Technique for Finding Hidden Patterns or

Intrinsic Structures in Data." Unsupervised Learning.

Mathworks, n.d. Web. 8 Nov. 2015.

 [14] Mackey, Ryan, David Iverson, Greg Pisanich, Mike Toberman,

and Ken Hicks. "Integrated System Health Management (ISHM)

Technology Demonstration Project Final Report." (2006): n.

pag. Web.

 59

[15] MacQueen, J. "Some Methods For Classification and Analysis of

Multivariate Observations." University of California, Los

Angeles, n.d. Web. 03 Nov. 2015.

[16] Martin, Rodney A., Mark A. Schwabacher, and Bryan L.

Matthews. Data-Driven Anomaly Detection Performance for the

Ares I-X Ground Diagnostic Prototype. Rep. N.p.: Annual

Conference of the Prognostics and Health Management

Society, 2010. Web.

[17] Nene, Sameer A., and Shree K. Nayar. A Simple Algorithm for

Nearest Neighbor Search in High Dimension. Tech. no. CUCS-

030-95. N.p.: n.p., n.d. Oct 1995. Web. 12 Nov 2015

[18] Teubert, Christopher, and Scott Poll. Application of Inductive

Monitoring System to Plug Load Anomaly Detection (2012): n.

pag. Web.

[19] Tibshirani, Robert, Guenther Walther, and Trevor Hastie.

"Estimating the Number of Clusters in a Data Set via the Gap

Statistic." J.R. Statist. Soc. B (n.d.): 411-23. Nov. 200. Web. 8

Sept. 2015.

[20] "Vector Quantization." Data Compression. N.p., 2000. Web. 03

Nov. 2015.

 60

APPENDICES

A: CUBESAT RESPONSE TO SYS-UTIL

sys-util: getting status...
daughter_aTmpSensor temp: 0.000000 C
-
daughter_bTmpSensor temp: 0.000000 C
-
threeV_plTmpSensor temp: 0.000000 C
-
rf_ampTmpSensor temp: 0.000000 C
-
tempNz temp: 0.000000 C
-
tempPz temp: 0.000000 C
-
tempNx temp: 0.000000 C
-
tempPx temp: 0.000000 C
-
tempNy temp: 0.000000 C
-
tempPy temp: 0.000000 C
-
atmelPwrSensor volt: 0.000000 V
atmelPwrSensor current: 0.000000 A
-
threeVPwrSensor volt: 0.000000 V
threeVPwrSensor current: 0.000000 A
-
threeV_plPwrSensor volt: 0.000000 V
threeV_plPwrSensor current: 0.000000 A
-
fiveV_plPwrSensor volt: 0.000000 V
fiveV_plPwrSensor current: 0.000000 A
-
daughter_aPwrSensor volt: 0.000000 V
daughter_aPwrSensor current: 0.000000 A
-
daughter_bPwrSensor volt: 0.000000 V
daughter_bPwrSensor current: 0.000000 A
-
fuelGaugeOne volt: 0.000000 V
fuelGaugeOne current: 0.000000 A
fuelGaugeOne currentAccum: 0.000000 A
-
fuelGaugeTwo volt: 0.000000 V

 61

fuelGaugeTwo current: 0.000000 A
fuelGaugeTwo currentAccum: 0.000000 A
-
sidePanel3v3 volt: 0.000000 V
sidePanel3v3 current: 0.000000 A
-
sidePanel5v0 volt: 0.000000 V
sidePanel5v0 current: 0.000000 A
-
solar2PwrNz volt: 0.000000 V
solar2PwrNz current: 0.000000 A
-
solar2PwrPz volt: 0.000000 V
solar2PwrPz current: 0.000000 A
-
solar2PwrNx volt: 0.000000 V
solar2PwrNx current: 0.000000 A
-
solar2PwrPx volt: 0.000000 V
solar2PwrPx current: 0.000000 A
-
solar2PwrNy volt: 0.000000 V
solar2PwrNy current: 0.000000 A
-
solar2PwrPy volt: 0.000000 V
solar2PwrPy current: 0.000000 A
-
solar1PwrNz volt: 0.000000 V
solar1PwrNz current: 0.000000 A
-
solar1PwrPz volt: 0.000000 V
solar1PwrPz current: 0.000000 A
-
solar1PwrNx volt: 0.000000 V
solar1PwrNx current: 0.000000 A
-
solar1PwrPx volt: 0.000000 V
solar1PwrPx current: 0.000000 A
-
solar1PwrNy volt: 0.000000 V
solar1PwrNy current: 0.000000 A
-
solar1PwrPy volt: 0.000000 V
solar1PwrPy current: 0.000000 A
-
Curr_Accum: 0
Max_Accum: 511180
UTC Epoch time: 946689462
UTC time: 1:17:42 1/1/2000
usage_dString=0

 62

usage_dUInt=0
userTime=4231
niceTime=0
sysTime=1266
idleTime=6025
pageIn=121
pageOut=0
swapIn=90
swapOut=0
interrupts=1184053
context_swaps=180031
boottime=946689344
processes=737
procs_running=1
procs_blocked=0
memFree=49012
buffers=1004
cached=59156
active=10468
inactive=54168
vmallocTotal=899072
vmallocUsed=271856
freeDataFlash=184169 Kb
freeSD=605748 Kb
LDC=0

 63

B: NOMINAL CUBESAT RANGES

Name Parameter Value
 'daughter_aTmpSensor [C]' 1
 'daughter_bTmpSensor [C]' 2
 'threeV_plTmpSensor [C]' 3
 'rf_ampTmpSensor [C]' 4
 'tempNz [C]' 5
 'tempPz [C]' 6
 'tempNx [C]' 7
 'tempPx [C]' 8
 'tempNy [C]' 9
 'tempPy [C]' 10
 'atmelPwrSensor [V]' 11
 'atmelPwrSensor [A]' 12
 'threeVPwrSensor [V]' 13
 'threeVPwrSensor [A]' 14
 'threeV_plPwrSensor [V]' 15
 'threeV_plPwrSensor [A]' 16
 'fiveV_plPwrSensor [V]' 17
 'fiveV_plPwrSensor [A]' 18
 'daughter_aPwrSensor [V]' 19
 'daughter_aPwrSensor [A]' 20
 'daughter_bPwrSensor [V]' 21
 'daughter_bPwrSensor [A]' 22
 'fuelGaugeOne [V]' 23
 'fuelGaugeOne [A]' 24
 'fuelGaugeOne [A]' 25
 'fuelGaugeTwo [V]' 26
 'fuelGaugeTwo [A]' 27
 'fuelGaugeTwo [A]' 28
 'sidePanel3v3 [V]' 29
 'sidePanel3v3 [A]' 30
 'sidePanel5v0 [V]' 31
 'sidePanel5v0 [A]' 32
 'solar2PwrNz [V]' 33
 'solar2PwrNz [A]' 34
 'solar2PwrPz [V]' 35
 'solar2PwrPz [A]' 36
 'solar2PwrNx [V]' 37
 'solar2PwrNx [A]' 38
 'solar2PwrPx [V]' 39
 'solar2PwrPx [A]' 40

 64

 'solar2PwrNy [V]' 41
 'solar2PwrNy [A]' 42
 'solar2PwrPy [V]' 43
 'solar2PwrPy [A]' 44
 'solar1PwrNz [V]' 45
 'solar1PwrNz [A]' 46
 'solar1PwrPz [V]' 47
 'solar1PwrPz [A]' 48
 'solar1PwrNx [V]' 49
 'solar1PwrNx [A]' 50
 'solar1PwrPx [V]' 51
 'solar1PwrPx [A]' 52
 'solar1PwrNy [V]' 53
 'solar1PwrNy [A]' 54
 'solar1PwrPy [V]' 55
 'solar1PwrPy [A]' 56
 'Curr_Accum' 57
 'Max_Accum' 58
 'UTC Epoch time' 59

Param
Value

State 1 State 2 State 3 State 4 State 5 State 6
Min Max Min Max Min Max Min Max Min Max Min Max

1 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 31.0 33.0
2 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 31.0 33.0
3 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 26.0 28.0 31.0 33.0
4 27.0 29.0 27.0 29.0 27.0 29.0 27.0 29.0 27.0 29.0 27.0 29.0
5 23.0 29.0 23.0 29.0 26.0 29.0 23.0 29.0 23.0 26.1 23.0 29.0
6 23.0 29.0 23.0 29.0 23.0 29.0 23.0 29.0 23.0 29.0 23.0 29.0
7 23.0 29.0 23.0 29.0 18.0 22.0 23.0 29.0 18.0 22.0 23.0 29.0
8 24.8 29.0 24.8 29.0 18.0 22.0 23.0 27.3 18.0 22.0 23.0 29.0
9 23.0 29.0 23.0 29.0 18.0 22.0 23.0 29.0 18.0 22.0 23.0 29.0
10 23.0 29.0 23.0 29.0 18.0 22.0 23.0 29.0 18.0 22.0 23.0 29.0
11 3.80 4.19 3.80 4.19 3.80 4.19 3.80 4.19 3.80 4.19 3.80 4.19
12 0.01 0.50 0.01 0.50 0.01 0.11 0.01 0.50 0.01 0.11 0.01 0.11
13 2.80 3.20 2.80 3.20 2.80 3.20 2.80 3.20 2.80 3.20 2.80 3.20
14 0.01 0.50 0.01 0.50 0.01 0.11 0.01 0.50 0.01 0.11 0.01 0.11
15 1.11 1.80 1.11 1.80 1.11 1.80 1.11 1.80 1.11 1.80 1.11 1.80
16 0.01 0.50 0.01 0.50 0.01 0.50 0.01 0.50 0.01 0.11 0.01 0.11
17 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11
18 0.01 0.50 0.01 0.50 0.01 0.11 0.01 0.50 0.01 0.11 0.01 0.11
19 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80
20 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11
21 0.20 0.30 0.20 0.30 0.20 0.30 0.20 0.30 0.20 0.30 0.20 0.30
22 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11
23 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
24 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11
25 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50

 65

26 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
27 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11
28 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50 6.50 7.50
29 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25
30 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
31 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25 2.75 3.25
32 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
33 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
34 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
35 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
36 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
37 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
38 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
39 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
40 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
41 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
42 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
43 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
44 0.20 1.20 0.20 1.20 0.00 0.20 0.20 1.20 0.00 0.20 0.00 0.20
45 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
46 0.20 1.20 0.20 1.20 0.00 0.20 0.20 1.20 0.00 0.20 0.00 0.20
47 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
48 0.20 1.20 0.20 1.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
49 3.50 4.50 3.50 4.50 4.50 5.50 3.50 4.50 3.50 4.50 3.50 4.50
50 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
51 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
52 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
53 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
54 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
55 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50 3.50 4.50
56 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20

 66

C: USER GUIDE FOR THE GROUND-BASED PROTOTYPE

The IMS algorithms explained above were implemented into

MATLAB and a graphical user interface (GUI) was created for ease of use.

When the script, CubeSatHealthMonitoring.m, is executed, the

screen shown in Figure 14 appears.

Figure 14: Initialization Screen of CubeSat Health Monitoring GUI

This screen is the beginning of the learning algorithm. First, a

nominal data set must be selected and can be done in two ways. If

known, the data path can be manually entered in the edit box where it

currently says ‘Data Path’. The other option is to click the ‘Browse’

button, which brings up the directory to the computer in which the IMS

 67

program is being run. Here, the user can click through the computer’s

directory in order to find the nominal data file. Once the user finds and

selects the data file, the program uses the path to the file and imports the

data from that location to the current workspace. The file selected must

have been previously formatted to match the data vector presented in

Figure 2.

 The data needs to be grouped into clusters after being selected

and imported. There are two options for doing this and once the data has

been selected the GUI allows for the choice to be made.

Figure 15: Clustering Options

The two options for clustering depend on the knowledge of data

that the user has. If the user knows from prior knowledge how many

 68

clusters there are, then the user would choose to ‘Input K’. If the user has

no prior knowledge of the dataset being imported, then they would

choose to have K calculated by clicking the ‘Calculate K’ button.

Both of the ‘Cluster’ buttons shown in the Figure 16 and 17 have

the same end goal, to group the imported data into clusters and build the

nominal knowledge base. They both use the K-means++ and K-means

algorithm to obtain the centroids. However, the difference between the

two buttons is that the ‘Cluster’ for ‘Calculate K’ uses the gap statistic

algorithm to find the optimal K value to use. While the choice may be

obvious to always let the software decide on K, the option to input K is

available because the gap statistic takes a substantial amount of extra

Figure 17: Response to 'Input K' Figure 16: Response to 'Calculate K'

 69

time to run. If the user does know the appropriate K value, the program

allows for the option to skip the unnecessary step.

 When the program has converged on a solution to the K-means

algorithm, the program demonstrates this by displaying the centroids to

the right, shown in Figure 18. The centroids are shown to indicate that the

algorithm is complete and the program is ready to move on. The user can

view them at this point to better understand how the system is

quantitatively describing the nominal states of the CubeSat. If the

centroids are longer than the 2-dimensions shown in Figure 18, the user

can scroll to see all the dimensions.

Figure 18: Response to Clustering Being Complete

 70

Once the centroids have been determined for the nominal data set,

the program stores those centroid values for later use in the monitoring

algorithm.

In order to start the monitoring algorithm, the user must first switch

to the appropriate screen via the drop down list at the upper left of the

window, which currently says ‘Learning Algorithm’ in Figure 13. By

selecting ‘Monitoring Algorithm’ from the drop down list, the program

switches the GUI to the screen shown in Figure 19.

Figure 19: Monitoring Algorithm

The screen in Figure 19 is the gateway into the health monitoring

algorithm. First, the user inputs the IP address that is associated with the

CubeSat that will be monitored.

 71

Once the IP address has been added, the user then chooses the

sample rate that they would like the program to conduct. This sampling

rate indicates how often the program should query the CubeSat for data

and check the telemetry values for nominal or off-nominal operation. The

sampling rate can be increased or decreased; however, it is limited by the

internal rate of the CubeSat. If the sampling rate exceeds the internal rate,

the algorithm will still perform but will have stagnant data until the internal

data updates.

The ‘Monitor Size’ input allows the user to choose how many

previous data points they would like to have visible on the screen at all

times. The monitor size is currently set at 10 data points; coupled with the

1 Hz sampling rate, the user would be able to monitor the past 10

seconds of deviation values. This ‘Monitor Size’ can be increased or

decreased during testing, and the view graph will reflect the update.

The final two buttons on this screen are ‘Begin Monitoring’ and

‘Stop Monitoring’. When the ‘Begin Monitoring’ button is pushed, the

system queries the CubeSat through the sys-util program installed on the

monitoring computer. The current state of the CubeSat is requested with

the sys-util program. In response, the CubeSat responds with a packet of

telemetry and housekeeping data. An example of this response is laid out

in Appendix A. Once the response is received, the program then parses

and formats the data to match the data vector presented in Figure 2.

Once this data is formatted correctly, the program performs a nearest

 72

neighbor search. In the nearest neighbor search, the formatted response

from the CubeSat is the query point and the centroids that were

calculated in the learning algorithm are the data set.

 Once a nearest neighbor is found, the system determines if each

parameter value of the new telemetry data is within the bounds of the

cluster. This deviation from nominal is presented to the user in the view

graph on the screen. The view graph shows deviation and the correlated

time of the query in local 24-hour clock time. The local 24-hour clock time

allows the user to easily see when an error occurred.

The view graph notifies the user of an off-nominal condition by

turning red when one occurs. As the system updates, the error

progresses to the left in the view graph and a large red asterisk marks

that an error occurred at that time. In addition to showing the errors

graphically on the screen, the GUI also includes the most recent error in

the bottom left-hand corner. If a test conductor gets distracted for more

time than is visual on the screen, then they can quickly determine if any

off-nominal conditions have occurred in that time. Figures 20 and 21

demonstrate an error occurring in the system and the monitoring

algorithm’s response.

 73

Figure 20: Initial Response to an Error

Figure 21: Previous Error Indication

 74

Figure 20 shows what happens when the error initially occurs. The

user is notified of an error occurring by the view graph flashing red for 1

second. Figure 21 shows how the error is still visible to the user as time

passes, even if the state of the CubeSat returns to normal.

The final aspect to the ‘Monitoring Algorithm’ panel is the ‘Stop

Monitoring’ button. When this button is pressed, the monitoring algorithm

stops querying the spacecraft for new data and stops updating the view

graph. The user is then given the option to save the data. If the user

selects ‘yes,’ he or she is prompted for a file name. A suggestion of

‘Monitoring_Test_Data_DD-MMM-YYYY’ is given where the DD-MM-

YYYY is automatically filled in with the current date. If the user selects a

file name that has already been used, then the program notifies the user

and asks if the user would like to replace the existing file or change the

file name. When saving the data, the program saves the deviation from

nominal values and the CubeSat UTC times. This is so that the times can

be easily cross-referenced with any other testing files to investigate the

anomaly and have equivalent time frames.

