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Introduction 

Demand uncertainty, global economic competition and rapid social and technological 
changes have forced manufacturing to face a new economic objective: manufacturing 
responsiveness, i.e., the ability of a manufacturing system to respond to disturbances 
which impact upon production goals and consequently, its ability to adapt to changing 
market conditions. In the early 1990s the idea of agile production systems was pursued, 
enabling short changeover times between manufacturing different products. Since the end 
of the 1990s a new Reconfigurable Manufacturing System (RMS) paradigm has emerged; 
these systems are capable of being quickly adapted to changing market requirements 
by providing the needed functionality and capacity when needed and where needed 
(Koren et al., 1999). RMS aims to enhance manufacturing responsiveness in the 
production of low-cost and high-quality products. The key characteristics of RMS, which 
enable these systems to achieve their goals, are modularity, integrabilty, convertibility, 
customisation and diagnosability (Mehrabi et al., 2000). Other enablers include 
reconfigurable process planning and changeable production planning and control systems 
(ElMaraghy, 2005; Wiendahl et al., 2007). 

Dynamic capacity planning in these RMSs is becoming a more challenging problem. 
The technological advancement on the operational level, which enabled the ease of 
capacity scalability, is not sufficient to guarantee high level of overall enterprise 
performance. Recent literature has often advocated the need for stronger inter-functional 
integration in manufacturing operations. This is highly recognised when considering the 
interface between marketing and operational or production strategies (Ulsoy and Yazgac, 
1995). Kotha and Swamidass (2000) found that a fit between certain dimensions of 
market strategy and advanced manufacturing technology was associated with superior 
performance. Shapiro (1977) pioneered the discussion of the production/marketing 
co-ordination and proposed a framework identifying eight areas of necessary 
co-operation but potential conflict within the marketing/production interface. Among the 
different cooperation areas is the interface between market and capacity management 
policies. 

Both strategic and tactical problem areas are becoming extremely important in 
today’s competitive environment. Managing dynamic capacity (as a tactical activity) 
cannot be done in isolation from the market plan (as a strategic activity). Deciding on the 
best capacity scaling policy is another challenge that faces the capacity planner for these 
modern systems. Classically, cost and time were the typical performance measures used 



   

 

   

   
 

   

   

 

   

        
 

    
 
 

   

   
 

   

   

 

   

       
 

 
 

 
   

 

  

   

  
  

  

 

   
 

 

 

  
  

  

 
   

  

  
 

 

to evaluate different capacity scalability policies. However, in today’s dynamic 
environment with the need to maintain high performance at both the production as well as 
the market fronts, multiple performance measures are needed. 

This paper investigates the impact of different capacity scaling policies (as an 
important tactical decision) together with different responsiveness levels (as a key 
marketing strategy decision) on the system overall performance. Performance refers to 
the WIP level, capacity level and backlog level as multiple measures for both production 
as well as market performance. In addition, the analysis goes beyond the impact of the 
previous indigenous parameters to examine also the impact of demand uncertainty as the 
major exogenous factor that affects the manufacturing system’s performance.  

The presented approach is built on the model developed by Deif and ElMaraghy 
(2007) for modelling the dynamics of the capacity in an RMS for a Make-to-Order 
(MTO) facility using system dynamics. The model is modified to include stochastic 
demand rather than deterministic demand. Factorial Design of Experiment (DOE) 
analyses are conducted for the identified indigenous and exogenous parameters to gain a 
thorough understanding of their impact on the performance measures as well as their 
interaction. In addition, the best capacity-marketing policy to be adopted for different 
demand scenarios is examined. 

2 Literature review 

The capacity scalability problem is classically addressed from a static view point 
as the problem of capacity expansion to meet increasing demand at a minimum cost. 
Manne Alan (1967) conducted the first study of the capacity expansion problem. 
Extensive review of the classical capacity expansion problem can be found in Luss 
(1982). However, in today’s market, manufacturing systems are typically faced with a 
rapidly changing and uncertain demand together with continuous advancement of 
technology; thus, the need to address the capacity scalability problem from a dynamic 
view point is becoming more obvious. System Dynamics (SD) developed by Forrester 
(1961) is among the dynamic approaches that has been used to model and analyse 
dynamic systems and applied to the dynamic capacity management problem. SD aims at 
understanding the interaction among the physical process, the information and the 
managerial policies of capacity scalability. 

Examples of manipulating SD models to tackle the capacity planning needs include 
an attempt by Evans and Naim (1994) that aimed at developing an SD model for supply 
chains with capacity constraints and studying the effect of capacity constraints on the 
system’s performance and overall cost.  

Tomlin (1999) analysed capacity investments in single-product supply chains in 
which the participants make investments decisions to maximise their individual profits. 
Multi-products were also investigated, but the proposed solution only considered demand 
patterns that assure an upper bound on stock out. 

Helo (2000) suggested a capacity-based supply chain model that includes a 
mechanism for handling the trade-off between lead-time and capacity utilisation. It was 
shown that this capacity analysis, including surge effects, in supply chains would 
improve their responsiveness.  

Higuchi and Troutt (2004) developed an SD model that linked product diffusion with 
product availability. They showed that capacity planning is crucial for market success of 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

  
    

   
  

   

  
  

  
   

 
  

 

 
 

 
  

    

 
      

 
  

 

  
  

 
  

 
   

an innovative product that is characterised by a short life cycle. Kamath and Roy (2007) 
proposed another system dynamic model to study capacity augmentation also in short life 
cycle products. They studied how to obtain the right structure, by changing the system 
elements and their interactions to increase profit and investigated the effect different 
forecasting models on system performance. 

Goncalves et al. (2005) highlighted the issue of capacity variation in their push-pull 
manufacturing SD model through the effect of capacity utilisation on the production start 
rate and demonstrated the effects of sales and production interaction on destabilising the 
system and degrading its performance. 

Anderson et al. (2005) considered logical capacity scalability in supply chains 
for service and custom manufacturing. They showed the effect of reducing lead-time 
and sharing the demand information on improving the system performance. 
In addition, they proposed some polices to handle and reduce backlog in these 
systems.  

Vlachos et al. (2007) proposed a model to study the long-term behaviour of reverse 
supply chains applied to remanufacturing. For that purpose, they examined efficient 
remanufacturing and collection capacity expansion policies that maintain profit while 
considering direct and indirect factors. 

Deif and ElMaraghy (2007) proposed an SD model for capacity scalability in MTO 
manufacturing. They used various performance measures to examine the best scaling 
policy under different demand scenarios. They showed that the best scalability policy 
would be based on both the marketing strategy as well as the operational production 
objectives. 

Deif and ElMaraghy (2009) developed a multi-stage production system model based 
on SD to examine the impact of operational complexity sources on the capacity 
management problem. They referred to operational complexity as the uncertainty 
associated with demand, lead time and Scalability Delay Time (SDT) managing 
dynamic capacity. The presented results illustrated the direct relation between 
operational complexity and uncertainty especially that associated with the internal-stage 
lead time. 

The presented work modifies the model developed by Deif and ElMaraghy (2007) 
and proposes a generalised understanding of integrating market and capacity scalability 
policies. The presented work differs from the previous related dynamic capacity 
management research by focusing on multiple performance measures rather than 
the typical single performance measure to study the best capacity scalability policy. 
In addition, a detailed analysis for the interaction and the impact of some indigenous and 
exogenous parameters on market-capacity policies in MTO reconfigurable systems is 
presented for the first time. 

3 Model description 

The development of an appropriate model for dynamic capacity scalability, which 
integrates the marketing demand and marketing policies, is an essential step for the 
intended analysis. Figure 1 shows a system dynamic model for dynamic capacity 
scalability in MTO reconfigurable systems. The model expresses the capacity as a stock 
level (following SD terminology) controlled by scaling rate. This dynamic representation 
of the scaling process is suitable for capturing the ability of RMS to adjust their 



   

 

   

   
 

   

   

 

   

        
 

    
 
 

   

   
 

   

   

 

   

       
 

 
 

  
 

 
 

    

 

   
  

  
 

  
  

  

capacity and, hence, makes the model a valid representation for these systems. 
In addition, the model incorporates the WIP, inventory and backlog levels of the system 
as other performance measures that are involved in the scalability process as well as 
being used to evaluate the overall system performance. Finally, the model captures 
the stochastic nature of today’s demand and the marketing responsiveness policy 
represented in the Target Responsiveness Time (TRT). It is important to note that the 
developed model is designed for the MTO industries. The model logic is explained 
in the following section while more details can be found in Deif and ElMaraghy 
(2007). 

Figure 1 Model structure for capacity scalability in RMS (see online version for colours) 

In this paper, a continuous-time model is used because it provides an acceptable 
approximation of the continuous capacity scalability process in RMS at that level of 
abstraction and aggregation. Both the operations management and SD literature 
support the use of continuous models for capacity planning (e.g., Anderson et al., 2005; 
Sethi and Thompson, 2000; Holt et al., 1960). Finally, similar dynamic characteristics 
can be obtained using discrete-time models (John et al., 1994). Deterministic data is used 
in the analysis to provide a simple yet effective comparison between the various 
scenarios. 

3.1 Model nomenclature 

Let 

Ci(t) = capacity level at time t 
B(t) = backlog level at time t 
I(t) = inventory level at time t 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

   
  
    

  

  
 
 

 
  
 

 

 

 

 
  

 
  

   

 
 

 
 

WIP(t) = WIP level at time t 
PR(t) = production rate at time t 
PSR(t) = production start rate at time t 
AD(t) = average demand at time t 
CT = correlation time. This constant captures the degree of inertia (dependence) in 

noise process 
SD = standard deviation for the normal demand distribution 
DT = time step 
Seed = the seed for randomly generated varieties of the stochastic demand data 
OR(t) = the order rate at time t. Note that OR(t) equals customer order at time t 
ShR(t) = shipment rate at time t. It is the rate of physical product leaving the system 
OFR(t) = the order fulfilment rate at time t. This rate presents the information flow of 

the products leaving the system 
TRT = the target responsiveness time. It represents the manufacturer’s goal for the 

interval between placement and receipt of orders 
DSR(t) = the desired shipment rate at time t 
MSR(t) = the maximum shipment rate at time t. It depends on the system’s current 

inventory 
MOPT = the minimum order processing time. It represents the minimum time required 

to process and ship an order 
SSC = the safety stock coverage time. It is the time required to cover unexpected 

variation in demand (the higher this value, the greater the service level) 
DIC = the desired inventory coverage time. It is the time required to cover shipments 

during the expected rate 
IAT = the inventory adjustment time. It is the time required to react for inventory 

discrepancy between the current inventory level and the desired level 
DI(t) = the desired inventory level at time t. It is based on customer demand 
AI(t) = the adjustment for inventory rate at time t 
U = the utilisation level of the available capacity 
RC(t) = required capacity at time t at stage I 
SDT = scalability delay time 
SR(t) = scalability rate at time t 
MLT = manufacturing lead time. It is the time required to process products 
MUT = manufacturing unit time 
Wi = the relative weight of inventory consideration in capacity scalability decision 
Wp = the relative weight of demand consideration in capacity scalability decision 

3.2 Model logic 

3.2.1 Stochastic demand modelling 

The demand in this model is assumed to have a continuous cumulative Normal 
Distribution Function. Huh et al. (2006) state that demand should have a continuous 
distribution because demand is inherently continuous; the variance in demand is often 



   

 

   

   
 

   

   

 

   

        
 

    
 
 

   

   
 

   

   

 

   

       
 

 
 

   

 

 

  

 
 

   
 

  
 

 
  

  
 

  
 

  

 

high and finally, because continuous demand distribution may generate a more robust 
capacity plan than finite number of discrete scenarios. Equation (1) formulates the 
demand as white noise with a normal distribution.  

 ( − DT / CT ) 0.5
2 (  )  

White Noise( ) t = AD  t  ( ) + SD  2 *  * Normal(0,1, Seed). (1)
(DT / CT ) 

Equations (2) and (3) display the values for the demand pink noise and the change in 
demand pink noise, respectively 

Pink noise (t) = Change in pink noise – pink noise0. (2) 

3.2.2 Capacity scalability planning and control 

Capacity scalability decisions are controlled through the scaling rate (equation (3)).  
• 

C t( )  = S  R  t  ( ).  (3) 

The equation for the scaling rate is determined by the required capacity together with the 
scalability delay (equation (4)).  

C t( )  − RC  t  ( )SR t ( )  = . (4)
SDT 

The required capacity (equation (5)) has three components and each component reflects a 
planning and control policy. 

 * *  WIP t ( )  RC t ( )  = W PSR t ( )  + W AI t ( )  + (1  −W −W )  *  *  MUT ( p )  (  i )  p i 
  MLT  (5) 

where 0 ≤ W ≤ 1  and W +W ≤ 1.p p i 

The RC(t) is defined in this manner to allow change and adaptation to the capacity 
scalability policy based on various marketing and operational objectives through 
manipulating Wp and Wi. One policy can be based on just chasing the demand. This is 
achieved by setting Wp equal to zero so that production is dedicated only to chase the 
demand. Another policy can be inventory-based where the required capacity is controlled 
by inventory adjustments. Inventory adjustment refers to the filling rate used to 
compensate for the discrepancy between the current inventory level and the required 
inventory level (the later is usually determined based on the service level set by the 
marketing strategy). This can be achieved by setting Wi equal to zero. A third policy is 
WIP-based where the capacity is changed to keep WIP at a constant level. The change in 
the WIP level is based on little’s law (WIP = Production Rate × MLT, Sterman 2000) 
where RC replaces the production rate. This can be achieved by setting Wi equal Wp equal 
to zero. Integrating the three main parameters (demand, inventory and WIP levels) and 
manipulating their interaction through the values of the different weights involved in this 
equation, captures the dynamics of capacity scalability of RMS in a MTO environment 
and referred to as the hybrid policy. The analysis in this paper focuses on the hybrid 
policy. 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

 
 

 

 
 

  
 

  
 

     
  

  

3.2.3 Inventory control 

The inventory control mechanism in the developed model follows the same one 
introduced by Sterman (2000). The inventory adjustment is controlled by the inventory 
gap between desired and current inventory levels (equation (6)). 

DI t ( )  − I t ( )AI t ( )  = . (6)
IAT 

The desired inventory level is calculated using equations (7) and (8) to ensure enough 
coverage of products for the anticipated demand.  

DI t ( )  = CO t ( )  *  DIC (7) 

DIC = MOPT + SSC . (8) 

The desired inventory coverage includes two components: First, the manufacturer should 
maintain enough coverage to ship at the expected rate requiring a base coverage level 
equal to MOPT. Second, to ensure an adequate level of service, the manufacturer adds 
Safety Stock Coverage (SSC). 

The current inventory level is controlled by equation (9). 
• 
I ( )t = PR  t  ( )  − ShR  t  ( ).  (9) 

3.2.4 Production control 

The WIP level is determined by the difference between the production start rate and the 
actual production rate (equation (10)) 

• 
WIP t ( )  = PSR t ( )  − PR t ( ).  (10) 

The production start rate is set to be equal to the stochastic demand (equation (11)). 
The production rate is controlled by the capacity scalability level, as this is the 
typical case in RMS where recent technological solutions allow frequent capacity 
changes. Such a characteristic was the reason behind modelling the logic of the 
production control to be dependent on capacity scaling and then directly relating that 
scaled level of capacity to the production level. However, for practical considerations, 
the capacity is factored by the real system utilisation level (equation (12)) to 
account for variations between the two levels. It should be noted that the 
calculation of the utilisation level is beyond the scope of this paper and is taken as an 
input. 

PSR t ( )  = CO t( )  (11) 

C t( )  *  UPR t ( )  = . (12)
MUT 

3.2.5 Customer orders fulfilment 

The customer orders are fulfilled by the order fulfilment rate, which is controlled by the 
shipment rate (equation (13)). The shipment rate is given by the minimum of either the 



   

 

   

   
 

   

   

 

   

        
 

    
 
 

   

   
 

   

   

 

   

       
 

 
 

 
 

 
 

 

 

 
  

  

 

 

   

 
 

desired shipment rate or the maximum shipment rate (equation (14)). This is the case for 
MTO industries considered in this work; however, make-to-stock industries can adopt the 
same model by maximising rather than minimising equation (14) 

OFR t ( )  = ShR t( )  (13) 

ShR t ( ) = Min DSR t ( ( ), MSR t ( )). (14) 

The desired shipment rate is calculated as a function of the current backlog and the TRT 
(equation (15)). In the RMS paradigm, the responsiveness time is a major performance 
measure of these responsive systems and tends to be low. 

B t( )DSR t ( )  = . (15)
TRT 

The backlog level is calculated as the difference between the order rate (which is exactly 
equal to the customer orders as in equation (16)) and the order fulfilment rate 
(equation (17)). In RMS systems, backlog is supposed to be at a low level; practically 
however, it cannot be zero. 

OR t ( )  = CO t( )  (16) 

• 
B t( )  = OR  t  ( )  − OFR  t  ( ).  (17) 

The maximum shipment rate is determined by the available inventory level and the 
minimum order processing time (equation (18)) 

I ( )tMSR t ( )  = . (18)
MOPT 

4 Numerical experiments and application 

The developed model as investigated by Deif and ElMaraghy (2007) showed that the 
hybrid capacity scaling policy, where the demand, inventory and WIP are considered 
simultaneously when adjusting the capacity scalability level, is the best policy to use 
with fluctuating demand. This is achieved by setting Wi and Wp to have different values 
reflecting the relative importance of different performance measures. However, setting 
the best values of these weights requires a clear understanding of their impact on the 
performance measures as well as how they interact with other parameters, in particular 
the parameters that reflect the demand nature and marketing policy. Thus, to gain insights 
about the impact of marketing policy together with the capacity scaling policy on the 
system performance, a DOE approach is employed in this analysis.  

The DOE consists of simulating two levels for the parameters shown in Table 1. 
The parameters are chosen to reflect the capacity scaling policy (Wi and Wp) and the 
marketing policy (TRT) because their impact on the overall performance is of interest. 
In addition, the SDT and the demand variation (Standard Deviation (SD)) are included in 
the experimental design because they have the potential to interact with the previous 
parameters. The performance measures used for the assessment are: 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

 

   
 

 

 
 

 

    

 

  
   

 

 
 

  

 

1 the capacity level since this level with its filling rate reflects the scaling effort and 
cost 

2 WIP level to reflect manufacturing stability 

3 backlog level to reflect responsiveness of the system. 

The inventory is not included as it is not a critical performance measure for a make to 
order manufacturing environment. 

Table 1 DOE parameters and their values 

Factor 
Level Wp  Wi TRT SDT SD 

Low 0.25 0.25 1 1 1000 


High 0.5 0.5 3 2 5000 


The parameter levels for the weights provide a broad range, which represents various 
capacity scaling policies. The SD of the stochastic demand has a lower value of 10% of 
the mean value reflecting a less variable demand and a high value of 50% of the mean 
value representing a high demand variation. The SDT varies to reflect the different 
scaling options on both the machine as well as the system level. Finally, the TRT varies 
to reflect high responsiveness marketing policy (1 week) and a lower one (3 weeks). 

The values of the other parameters used in are shown in Table 2. The selected values 
for the different time parameters are based on a case study of MTO furniture 
manufacturing company. The company, which adopts a RMS and located in the USA, 
manufactures sofas and chairs to order. It receives average orders of 10,000 per week and 
has a delivery spectrum from 1 to 3 weeks (TRT). The model is initialised at equilibrium 
(i.e., the initial values of the WIP, capacity, inventory and backlog levels are set to the 
target values (Sterman, 2000) and simulated for 50 weeks in each run.  

Table 2 Values of the base case parameters 

Parameter Value Unit 
Demand mean 10000 Parts 
Time step 0.125 Weeks 
Manufacturing Lead Time (MLT) 1 Weeks 
Inventory Adjustment Time (IAT) 2 Weeks 
Minimum Order Processing Time (MOPT) 1 Weeks 
Safety Stock Coverage (SSC) 1 Weeks 
Utilisation level (U) 100% N/A 
Manufacturing Unit Time (MUT) 1 Weeks 

A half factorial DOE analysis is conducted (16 runs). This experimental design is 
justified since in the majority of manufacturing applications (including this case study) 
the assumption of having the third and upper interaction parameters as insignificant is 
highly valid. Thus, a half factorial analysis will result in a fifth resolution experiment, 
which guarantees that no confounding will occur between main parameters and 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

  
  

 

  

 
  

 

  
  

 
 

  
 

 

  

second-order interaction parameters. The half factorial runs and the measured results of 
the average capacity, WIP and backlog levels are listed in Table 3. 

Table 3 Measured results of the average capacity, WIP and backlog levels 

Wp  Wi SD TRT SDT Cap WIP Backlog 
1 0.25 0.25 0.1 1 2 9757.213922 23801.8098 23560.52941 
2 0.5 0.25 0.1 1 1 9656.097255 26617.21373 26274.42157 
3 0.25 0.5 0.1 1 1 9460.630392 34320.24314 33781.85098 
4 0.5 0.5 0.1 1 2 8093.935686 57560.5 55695.00196 
5 0.25 0.25 0.5 1 1 9953.988627 24304.16667 24264.45686 
6 0.5 0.25 0.5 1 2 9856.66 27212.73529 27075.70588 
7 0.25 0.5 0.5 1 2 9655.281373 35078.42745 34739.01961 
8 0.5 0.5 0.5 1 1 8213.58451 60104.84118 58362.87843 
9 0.25 0.25 0.1 3 1 9722.794314 25520.03333 28975.18039 
10 0.5 0.25 0.1 3 2 9657.46 28096.50392 29234.61373 
11 0.25 0.5 0.1 3 2 9460.573725 36293.83137 36747.03922 
12 0.5 0.5 0.1 3 1 7875.687647 67670.43529 66515.6549 
13 0.25 0.25 0.5 3 2 9926.580588 25971.22157 29581.78235 
14 0.5 0.25 0.5 3 1 9846.167059 28562.17451 29796.00588 
15 0.25 0.5 0.5 3 1 9647.239608 36544.38824 36943.81765 
16 0.5 0.5 0.5 3 2 8013.971569 69362.42353 68602.76863 

The DOE was constructed and analysed using the Minitab statistical software. After 
elimination the non-significant interactions using the normal plots, the factorial fit 
of every performance measure level was generated. The full results are displayed in the 
Appendix. The residual plots together with the R2 and the adjusted R2 values confirm the 
validity of the analysis in terms of the normality assumption of errors and the significance 
of the selected parameters. 

5 Results and discussion 

In this section, the impact of the capacity scaling policy on the system performance will 
be explored by investigating the impact of the weights and their interaction on the 
capacity, WIP and backlog. Next, the impact of the marketing policy will be examined by 
investigating the impact of the TRT on system performance and its interaction with some 
of the system’s parameters. Finally, on the capacity investment decisions in a variable 
demand environment will be examined by studying the relation between the SDT and the 
demand SD. The main effect plots and the interaction plots are analysed, but plots for 
independent parameters were excluded in this analysis. 

5.1 Deciding on the capacity scaling policy 

Figure 2 indicates that with a low value of WP the capacity scaling level is high and as the 
value of WP rises, the capacity scaling level decreases. This means that the more 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

  
  

 

 

  

   

   

  

  

emphasis is placed on the capacity scaling policy on the demand (given a capable 
system), the less scaling effort will be required to meet the demand. This is because most 
of the capacity will be dedicated to the demand while limited capacity portion will be 
dedicated to other system internal measures. Figure 3 also shows that Wi has the same 
impact on the capacity scaling level.  

Figure 2 Effect plot, factor Wp response capacity (see online version for colours) 

Figure 3 Effect plot, factor Wi response capacity (see online version for colours) 

Figure 4 illustrates a scenario where both weights interact to affect the capacity scaling 
level. It shows that the drop in the capacity scaling level is maximised when both weights 
are set to 0.5. Referring to equation (5), this scenario sets the weight of accounting for the 
WIP level in the capacity scaling policy equal to zero. Therefore, it can be concluded that 
the scaling effort and hence cost in a MTO manufacturing is minimal when the hybrid 
capacity scaling policy accounts only for demand and inventory levels. This conclusion 
also means that the more emphasise a capacity scaling policy places on accounting for 
internal stability (reflected in the WIP level), the higher the scaling effort and cost that 
would be encountered. 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

 

 
 

 

 

 

 
  

 
   

 
  

 

  

Figure 4 	 Interaction plot, factors WP and WI and response capacity scaling level (see online 
version for colours) 

Figure 5 shows the scenario where both weights interact to impact the WIP level. 
This interaction confirms the previous conclusion as it shows that the higher the emphasis 
on fulfilling the demand or decreasing the inventory level in the capacity scaling policy, 
the more negative the impact on the WIP level will be. The highest negative impact, as 
shown in the figure, occurs when both weights are at their maximum value leaving no 
consideration of WIP level in the hybrid capacity scalability policy. 

Figure 5 	 Interaction plot, factors WP and WI and response WIP level (see online version  
for colours) 

The final performance measure considered is the backlog level and Figure 6 reveals that 
both weights exhibit similar behaviour regarding their impact on the backlog level as to 
the WIP level. It is interesting to note the unexpected result that increasing the emphasis 
on fulfilling the demand (i.e., when WP have a high value) also increases the backlog 
level in a MOR environment. This highlights that ignoring the WIP level in any capacity 
scaling policy will deteriorate the responsiveness level no matter how much the focus is 
on fulfilling the demand. As for the inventory level, the results shows that emphasising 
the low inventory level in the capacity scalability policy will be at the expense of the 
WIP level in the system, which will in turn affect the backlog level and increase its 
value.  



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

 

 

 
    

    

 

   

 

    
  

 

 

  

Figure 6 	 Interaction plot, factors WP and WI and response backlog level (see online version  
for colours) 

The previous discussion of how the weights of the hybrid capacity scalability policy 
interact with the different performance measures emphasises the importance of 
determining the best setting for these weights. A trade-off is clear in this manufacturing 
setup between two scenarios: 

• 	 reducing the capacity scaling level and its associated cost 

• 	 considering both the internal stability by reducing the WIP level as well as the 
responsiveness level by reducing the backlog. 

However, the conducted DOE analysis proposes a method for selecting the best weights 
using the generated models shown in the appendix. The capacity scalability planner can 
set the target levels for every performance measure, and then the models are used to offer 
different feasible combinations of parametric settings that the planner can select from 
given the available resources. 

5.2 Deciding on the marketing policy 

In this analysis, the TRT is used as an indicator since responsiveness is a typical market 
objective for a MTO manufacturer. Figure 7(a)–(c) describes the effect of TRT on the 
selected performance measures. As expected, if a high responsiveness time (i.e., low TRT 
value) is desired, a higher capacity scaling level should be expected to maintain that 
responsiveness (Figure 7(a)). The low responsiveness level works in favour of reducing 
both the WIP level as well as the backlog level (Figure 7(b) and (c)). This presents the 
market planner with another trade-off decision to be made. 

When high responsiveness is considered as a market policy, it is expected that any 
delay within the system would affect it negatively. The same is true for the capacity SDT. 
However, Figure 8 reveals an interesting interaction between the TRT and the SDT. 
As expected, at high TRT the backlog level increases as the SDT increases leading to a 
less responsiveness performance. However, at low TRT value, as SDT increase (which 
means slower scaling of capacity) the backlog level decreases leading to higher 
responsiveness. This is due to the dynamics of the capacity feedback loop as will be 
explained in Section 5.3. 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

 

 

 

  
  

 

  

Figure 7	 Effect plot, factor TRT, responses: (a) capacity; (b) backlog and (c) WIP levels  
(see online version for colours) 

Figure 8 Interaction plot, factors TRT and SDT, response backlog level (see online version  
for colours) 

5.3 Investigating relation between demand variation and capacity SDT 

Finally, the relation between an important parameter in capacity scaling policy (which is 
SDT) and the demand variation (reflected in SD) will be examined. In other words, how 
can the capacity planner, based on the understanding of the demand variability, decide on 
the timing of capacity scaling? The earlier discussion and findings about the value of 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

 

 
  

 
 

  
  

 
 

 

 

  

weights guides the capacity planner regarding the magnitude of capacity scaling. 
The analysis in this section provides guidelines regarding its timing. 

Figures 9–11 show the interaction plot between SDT and SD. The figures reveal 
various important observations about the dynamics of capacity scaling systems that seem 
opposite to the traditional wisdom of planning capacity scalability. 

From Figures 9–11, it is clear that when the demand variation is high, then decreasing 
capacity level variation to maximise the scaling delay time is favoured (Figure 9). 
However, the opposite is true for WIP and backlog levels where higher SDT level 
increases both levels (Figures 10 and 11, respectively). This is due to the fact that higher 
SDT values means less capacity to be added to the system (i.e., lower capacity scaling 
level) but this will decrease the ability of the production system to eliminate both the 
internal WIP level as well as the backlog level. This will again present the capacity 
planner with the same trade-off question to consider. 

Figure 9 	 Interaction plot, factors SD and SDT, response capacity level (see online version  
for colours) 

Figure 10 Interaction plot, factors SD and SDT, response WIP level (see online version  
for colours) 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

 

 

 

   
 

  
    

  
  

 

  
 

   

 
  

  

Figure 11 	Interaction plot, factors SD and SDT, response backlog level (see online version  
for colours) 

However, when the demand variability is low, the results show a unique behaviour. 
The capacity scaling becomes lower with low SDT value (Figure 9) although this means 
that a higher portion of the required capacity is added to the system. In addition, the WIP 
and the backlog will have lower levels with high SDT value although this means that less 
capacity is added to the system (Figures 10 and 11, respectively).  

A thorough understanding the dynamics of these scalable systems, which include 
multiple system parameters, offers an explanation for this behaviour and its reasons. 
The capacity level changes based on a feedback mechanism as explained earlier 
in Section 3. The gain of this feedback is controlled mainly by the SDT, which decides on 
the portion of the required capacity to be removed or added. However, this is not the only 
feedback loop in the system, as there is the inventory compensating feedback that in this 
example has an adjustment time of 2 weeks. When the SDT is less than Inventory 
Adjustment Time (IAT), as in this case study, the system will experience two feedbacks 
with delay and thus more oscillation would occur and higher WIP and backlog levels 
(Sterman, 2000). Once the delay of the capacity scalability feedback loop equals that 
of the IAT, the system will practically have one dominant delay time of the capacity 
scalability feedback loop and thus lower WIP and backlog levels. It is important to note 
that these oscillations appear when the system is subjected to high variability. This is why 
at low demand variation (within the selected setup of this application) high scaling 
capacity decisions generate unfavourable SD that would negatively affect the overall 
performance of the system. Such behaviour and conclusion would have never been 
understood without exploring and modelling the dynamic interaction between the SDT 
and the demand variation. 

Summary and conclusion 

DOE techniques were used for evaluating the performance of capacity scalability system 
in a reconfigurable MTO system. A mathematical model is formulated using SD to 

6 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

  
  

 

 

 

 
 

 
 

 
 

  

capture both the market as well as the operational dynamics. The hybrid capacity scaling 
policy that mutually considers multiple system parameters (demand, WIP and inventory) 
is at the core of the proposed model and analysis. A real case study of a MTO furniture 
manufacturer was simulated and used to apply the proposed model. The developed model 
and case study simulation analysis were used to:  

• 	 Gain deeper insights into the relative importance of the multiple system parameters 
in the hybrid capacity scalability policy. This was achieved through investigating the 
impact of different capacity scaling weights over three performance measures 
(capacity level, WIP level and backlog level). 

• 	 Determine the impact of the different marketing policies on the selected performance 
measures. This was achieved through investigating the impact of different 
responsiveness target times. 

• 	 Study the effect of synchronising both capacity and marketing policies to achieve the 
best performance in similar MTO systems. 

• 	 Investigate the relation between demand variation and capacity SDT to provide the 
planner with knowledge and guidelines to help determine the magnitude and timing 
of the required capacity increments/reduction for different demand scenarios. 

The main conclusions of the conducted analysis are: 

1 	 Policies aiming only at minimising the investment in capacity scaling should 
minimise the effort to reduce WIP level while focusing mainly on fulfilling demand 
and minimising inventory. 

2 	 If the MTO manufacturer would like to decrease backlog and have higher 
responsiveness, the capacity scaling policy should place more emphasis on 
accounting for internal stability and reducing the WIP level. It was shown that  
this would happen at the expense of dedicating more capacity to fulfilling the 
demand. 

3 	 The marketing policy should consider the operational goals when deciding on the 
desired responsiveness level. It has been shown that deciding on the TRT is a trade 
off between the cost of investing in the system capacity and reducing the backlog 
level to increase responsiveness. 

4 	 Determining the capacity SDT is a critical decision for capacity scalability planners 
as it highly affects the dynamics of MTO systems that account for various systems 
parameters in their capacity policies. Results indicated that some settings of the 
system parameters (specifically IAT) would make SDT, unexpectedly, act in favour 
of system responsiveness. The analysis showed that at lower TRT, higher values of 
SDT would decrease the backlog level. In addition, at lower demand variation 
scenarios, higher values of SDT also decrease both backlog as well as WIP levels. 
Thus, it is important for the capacity planner to realise that SDT selection does not 
only affect system parameters but also can not be set in isolation from the inventory 
feedback delay. 

The general abstraction of the proposed model’s parameters together with the presented 
parametric approach analysis makes the previous conclusions relevant and applicable to 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

  

 
 

  

  
 

 
  

 

 

 

 
 

  

similar dynamic capacity systems in MTO environments through adjusting the demand 
(SD) and the other system’s parameters to reflect other MTO applications.  

In summary, today’s dynamic environment, where both the demand as well 
as the manufacturing system structure continuously changes, successful enterprises 
should fully understand the dynamic interaction between the various system parameters. 
A clear insight into the relationship between the decision parameters of different policies 
and system performance measures would help optimise these policies and inform 
efficient trade-off decisions. Finally, in a dynamic MTO environment, marketing polices 
cannot be designed in isolation form capacity scaling policies. Inter-functional integration 
between capacity and marketing policies will guarantee an overall efficient system’s 
performance. Future work would focus on investigating more interactions between 
parameters and include more system performance measures for the overall system 
assessment. 
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Appendix 

Normal plots before eliminating insignificant parameters (see online version 
for colours) 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

 

 

 

 
 

Normal plots after eliminating insignificant parameters (see online version 
for colours) 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

 

 

 

 
 
 
 
 
 

 
 
 
 

  

Factorial fit, P values, R2 and the adjusted R2 values 

Factorial fit: cap vs. Wp, Wi, SD, TRT, SDT 
Estimated effects and coefficients for cap (coded units) 

Term Effect Coef. SE coef. T P 

Constant  9299.9 5.913 1572.68 0.000 
Wp –796.3 –398.2 5.913 –67.33 0.000 
Wi –994.5 –497.3 5.913 –84.09 0.000 
SD 178.6 89.3 5.913 15.10 0.000 
TRT –62.1 –31.1 5.913 –5.25 0.002 
SDT 5.7 2.8 5.913 0.48 0.648 
Wp *Wi –710.3 –355.1 5.913 –60.06 0.000 
Wp *TRT –44.6 –22.3 5.913 –3.77 0.009 
Wi*TRT –44.4 –22.2 5.913 –3.75 0.009 
SD*SDT –57.8 –28.9 5.913 –4.89 0.003 

S = 23.6535 PRESS = 23871.5 
R-Sq = 99.96% R-Sq(pred) = 99.73% R-Sq(adj) = 99.90%. 



   

 

   

   
 

   

   

 

   

       
 

    
 
 

   

   
 

   

   

 

   

       
 

 
 

  
 
 
 
 

 
 
 
 

 

 
  
 
 
 
 

 
 
 
 

 

  

Factorial fit: backlog vs. Wp, Wi, SD, TRT, SDT 
Estimated effects and coefficients for backlog (coded units) 

Term Effect Coef. SE coef. T P 
Constant  38134.4 161.9 235.61 0.000 
Wp 14120.4 7060.2 161.9 43.62 0.000 
Wi 21578.2 10789.1 161.9 66.66 0.000 
SD 1072.8 536.4 161.9 3.31 0.016 
TRT 5330.4 2665.2 161.9 16.47 0.000 
SDT 40.3 20.1 161.9 0.12 0.905 
Wp *Wi 12620.7 6310.4 161.9 38.99 0.000 
Wp*TRT 1354.9 677.4 161.9 4.19 0.006 
Wi*TRT 1227.3 613.6 161.9 3.79 0.009 
SD*SDT 2617.8 1308.9 161.9 8.09 0.000 

S = 647.404 PRESS = 17882936 

R-Sq = 99.93% R-Sq(pred) = 99.48% R-Sq(adj) = 99.82% 


Factorial Fit: WIP vs. Wp, Wi, SD, TRT, SDT 
Estimated effects and coefficients for WIP (coded units) 

Term Effect Coef. SE coef. T P 

Constant  37938.8 151.5 250.48 0.000 
Wp 15419.1 7709.5 151.5 50.90 0.000 
Wi 23356.2 11678.1 151.5 77.10 0.000 
SD 907.5 453.7 151.5 3.00 0.024 
TRT 3627.6 1813.8 151.5 11.98 0.000 
SDT –33.3 –16.6 151.5 –0.11 0.916 
Wp *Wi 12696.2 6348.1 151.5 41.91 0.000 
Wp*TRT 1921.4 960.7 151.5 6.34 0.001 
Wi*TRT 2074.1 1037.1 151.5 6.85` 0.009 
SD*SDT 2060.6 1030.3 151.5 6.80 0.000 

S = 605.846 PRESS = 15660793 

R-Sq = 99.94% R-Sq(pred) = 99.60% R-Sq(adj) = 99.86%. 


Residual plots (see online version for colours) 



   

 

   

   
 

   

   

 

   

      
 

    
 
 

   

   
 

   

   

 

   

       
 

 

 

  




