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a b s t r a c t 

Increasing complexity and interdependency in manufacturing enterprises require an agile manufacturing 
paradigm. This paper considers a dynamic control approach for linking manufacturing strategy with 
market strategy through a reconfigurable manufacturing planning and control (MPC) system to support 
agility in this context. A comprehensive MPC model capable of adopting different MPC strategies through 
distributed controllers of inventory, capacity, and WIP is presented. A hierarchical supervisory controller 
(referred to as decision logic unit, DLU) that intakes the high-level strategic market decisions and 
constraints together with feedback of the current manufacturing system state (WIP, production, and 
inventory levels) and optimally manages the distributed controllers is introduced. The DLU architecture 
with its three layers and their different functionalities is discussed showing how they link the higher 
management level to the operational level to satisfy the required demand. A case study for an automatic 
PCB assembly factory is implemented to demonstrate the applicability of the whole approach. In addition, 
a comparative cost analysis study is carried out to compare between the developed agile MPC system and 
classical-inventory- and capacity-based MPC policies in response to different demand patterns. Results 
showed that the developed agile MPC policy is as cost effective as the inventory-based MPC policy 
in demand patterns with steady trends, as cost effective as capacity-based MPC in turbulent demand 
patterns, and far superior than both classical MPC polices in mixed-demand patterns. 
1. Introduction 

The need for alignment between market strategy and man
ufacturing strategy is well established in the literature. Kotha 
and Swamidass [16] found that a fit between certain dimensions 
of market strategy and advanced manufacturing technology was 
associated with superior performance. Hayes and Wheelwright 
[11] argued that the alignment between manufacturing strategy 
and market strategy is one dimension of consistency for man
ufacturing strategy. Hayes and Schmenner [10] contended that 
‘‘manufacturing functions best when its facilities, technology, and 
policies are consistent with recognized priorities of corporate 
strategy’’. Anderson et al. [1] have stated that proper strategic po
sitioning or aligning of operations capabilities can significantly 
impact the competitive strength and business performance of an 
enterprise. Likewise, Skinner [23], using several case studies, has 
demonstrated that in enterprises where functional (like manufac
turing) strategies are in consonance with market strategy, perfor
mance is superior to organizations where functional strategies and 
the market strategy are not aligned. Agile enterprises should thus 
demonstrate a clear link between both strategies. 
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The consistency of the market and manufacturing strategies is 
important to the role of the manufacturing planning and control 
(MPC) system within an agile enterprise, as the MPC system is 
recognized as one of the pivotal infrastructures that firmly support 
the organization’s manufacturing to align with its higher-level 
market strategy [26]. Today’s MPC strategies can be generally 
classified into two main categories. The first category is the 
inventory-based MPC system where the inventory and the work
in-process (WIP) levels are the main parameters considered for 
planning and control. The second category is the capacity-based 
MPC system where the capacity and WIP levels are the main 
considered parameters. Each MPC strategy has its own merits 
to buffer against demand uncertainties, with particular demand 
patterns depending on the business strategy of the enterprise. 
However, there does not exist an MPC model that manages to adopt 
both policies to guarantee an effective response to any demand 
pattern and full alliance with the market strategy, which are major 
requirements for an enterprise to achieve agility. 

This paper presents a dynamic MPC model using distributed 
controllers that have the ability to control the three parameters (in
ventory, capacity, and WIP) and thus adopt different manufactur
ing strategies based on the market strategy of the enterprise. This 
is achieved through a supervisory controller that controls these 
distributed controllers for each of the three parameters. The su
pervisory controller (referred to as the decision logic unit) intakes 
the high-level market strategy and constraints together with a 
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feedback of the current manufacturing system state and optimally 
adapts the manufacturing system to the optimal suitable operation 
policy at these conditions. 

2. Literature review 

The application of control-theoretic approaches in manufactur
ing systems have been excessively researched on the operational 
and machine levels but not as much on the system and enterprise 
levels. These approaches are important in the agile manufactur
ing paradigm because agile manufacturing systems need to be dy
namic and controllable to achieve agility objectives. Distributed 
control is one of the control theory approaches that have the poten
tial to model, analyze, and control agile manufacturing through a 
network of interconnected controllers. Previous work showed the 
application of a distributed control approach to traditional manu
facturing systems on both an operational level as well as a system 
level. 

Examples of distributed control applications on the operational 
level include Duffie, Prabhu, and Kaltjob [7], where they solved 
the problem of controlling arrival times in heterarchical manufac
turing systems by modeling and developing a system where the 
dynamics of autonomous controllers and the physical interac
tions between entities in the system combine to create system 
behavior that is seemingly chaotic, but favorable. In similar heter
archical manufacturing systems, Prabhu [21] developed a model of 
distributed cooperative control that was generic and characterized 
dynamics of job shops with multiple processing steps and parallel 
dissimilar machines. Global stability conditions for such nonlin
ear control systems have been established using results from the 
Lyapunov theory. Wysk and Smith [31] developed a formal func
tional characterization of the general shop floor control problem 
in discrete manufacturing that incorporates different distributed 
controllers for workstations and their equipment on the shop floor. 
The control approach attempts to control the planning, scheduling, 
and execution activities on the shop floor based on process plan
ning. The previous approach was modified and applied with the aid 
of simulation to control hybrid manufacturing systems in Moreno-
Lizaeanzu et al. [17]. A distributed control approach has been also 
used for a manufacturing systems scheduling problem Ioannidis 
et al. [12]. A set of fuzzy controllers has been derived to reduce WIP 
and synchronize the production system’s operation. Tsourveloudis, 
and Valavanis et al. [25] extended the previous work and 
developed a two-level control architecture with a supervisory con
troller at the higher level of production used to tune the oper
ation of the lower-level distributed fuzzy controllers. Bruccoleri, 
Amico and Perrone [2] proposed a distributed intelligent control 
approach, which is an agent-based system, to deal with ‘‘out of 
the ordinary’’ events in the production process in reconfigurable 
manufacturing systems. The approach relied on the reconfigura
tion ability of the system to maintain the production flow in such 
events. The previous approach was extended to include other pro
duction scenarios in [3]. 

Various researches attempted to manipulate a distributed 
control approach on a system level to control inventory, WIP, 
and capacity (the main manufacturing control parameters) in 
manufacturing systems through modeling controllers for each of 
these parameters. Examples include the APIOBPCS (Automatic 
Pipeline, Inventory and Order-Based Production Control System) 
model developed by John, Towill, and Naim [13] used to control 
supply chain management as in [6], inventory control as in [24], 
and aggregate planning as in [5]. Also, the funnel model of 
manufacturing systems developed by Wiendahl [27] is another 
model that adopted the same control approach with the help of 
logistic operating curves developed by Nyhuis [20] to control WIP 
and backlog in manufacturing systems in [28,29]. Another single-
workstation model developed by Duffie and Falu [8] for closed-
loop PPC was used to control WIP and backlog in discrete and 
continuous time domains in [22] and [14], respectively, and was 
extended to multiple workstations in [15]. 

The reviewed literatures show that the previous distributed 
control approaches focused only on events occurring on the shop 
floor (from an operational or system perspective) and how to 
control them; thus, in an agile enterprise context there is a need 
to link this manufacturing level with the high marketing level in 
a seamless way. Such a link will maintain the alignment between 
the strategies in both levels, as discussed earlier. In addition, it 
is shown from an MPC standpoint that these approaches were 
able only to focus on either one strategy (like capacity-based, 
WIP-based, or inventory-based strategy) or managed to combine 
two of them together, but none managed to deal with all three 
strategies simultaneously. To deal with different market strategies 
and various demand patterns, there is a need to have an MPC 
model that is able to control the three parameters and in turn adopt 
different MPC strategies based on the market need. In this paper, a 
dynamic MPC model is presented to address these two needs in an 
agile enterprise. 

3. Agile MPC model 

The dynamic modeling of the agile MPC system aims at 
constructing a model in which different planning and control 
configurations can be realized with respect to a higher-level 
market strategy. The system model shown in Fig. 1 includes the 
three main controlled variables that can work individually or two 
at a time based on the decision of the decision logic unit to 
determine the desired production rate (DPR). The variables are 
work in process (WIP), capacity rate of the system, and finished 
inventory level. 

The proposed general structure of the agile MPC system can be 
described as being composed of two main operational layers in 
addition to a decision logic unit that links these two layers with the 
higher management layer. The first operation layer is the default 
(or servo control) layer where the control of the manufacturing 
system is only based on controlling the WIP level by observing 
the current level with the target level (based on Little’s law). The 
other layer (intelligent control layer) involves two controllers, the 
first being an inventory controller that compares the inventory 
level with the required level based on the service level offered 
to the customers, and the second being a capacity controller 
that ensures that the production rate matches the demand (or 
the order rate). Either can work with the servo control layer or 
by itself, creating five different MPC configurations or strategies: 
WIP-based policy, capacity-based policy, inventory-based policy, 
capacity/WIP-based policy, and inventory/WIP-based policy. 

The selection between these strategies is decided by the DLU 
through engaging and disengaging the controllers of each policy. 
Furthermore, the DLU provides the system with the reference 
control points and the updates of the order rate (OR) and shipment 
time (TST) based on demand data from the higher management 
level, and at the same time collects all of the data of the current 
system to help in deciding the optimal MPC configuration. 

The production process is modeled as a pipeline where the 
outflow is lagged by the production lead time, TLT. Simulation 
results of similar production systems showed an exponential 
pipeline lag used in this model to be an appropriate compromise 
between complexity and accuracy [30]. In addition, an exponential 
delay is also assumed for capacity installation/uninstallation time, 
TD, because capacity scalability cannot be assumed to happen 
instantaneously. 

The main purpose of any manufacturing planning and control 
system is to set plans and to group control actions to adjust 



Fig. 1. Agile MPC system model. 
the desired production rate (DPR) to meet the demand patterns 
specified by marketing. In the proposed model, DPR is the sum of 
the expected losses (which in this case are the expected order rates, 
OR) plus adjustments in the production-rate level. The adjustments 
can be in the WIP level, in the actual production-rate (PR) level, in 
the finished inventory level, or any combination of the previous 
parameters based on the MPC policy selected by the DLU. The 
adjustments to the DPR are actually the values of the different 
controllers’ gains in each policy. 

It is important also to note that the proposed approach has 
a continuous time model while its control is a discrete-action 
one. The continuous time modeling is justified due to the level of 
abstraction of the model that deals with the tactical rather than the 
operational level. 

Eqs. (1)–(4) list the transfer functions derived for the developed 
agile MPC system configurations. Without losing the generality, 
two basic assumptions were made. First, the expected lead time 
is assumed to be equal to the actual one (TLT = TLT∗). Second, 
the shipment rate is set to be equal to the order rate (SR = OR). 
These assumptions are made only for a better understanding of the 
problem. The proposed model does not have any limitations with 
respect to considering the case of any linear or nonlinear relation 
between the variables. More details of the model and its analysis 
can be found in [4]. 
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Fig. 2. Architecture of proposed decision logic unit (DLU). 

4. Architecture for the DLU 

Fig. 2 shows the architecture of the DLU of the developed agile 
MPC system. The figure shows how the DLU unit links the higher 
management level with the operational level (manufacturing 
system), which is a basic requirement to realize agility in any 
manufacturing corporation. Such a detailed link was always 
missing in previous MPC research work. The architecture of the 
DLU is composed of three hierarchical layers. The first two layers 
function off-line, and the third layer is an on-line control layer. 
The units in each of the three layers are explained in the following 
sections. 

5. MPC policy selection unit 

This unit is responsible for analyzing the anticipated demand 
profile by the higher management level and its marketing strategy. 
Based on the analysis of the demand profile, the unit decides which 
policy (or MPC strategy) is to be adopted over which interval 
of time of that expected demand. In other words, the output 
would be a plan that indicates which MPC policy (inventory/WIP, 
capacity/WIP, capacity, or inventory) is to be applied during 
which months of the year (if the demand profile was anticipated 
monthly). It is important to note that this unit can deal with 
sudden changes in the anticipated demand. Such an ability is 
very important in agile manufacturing environments. From a 
control perspective, this selection process can be considered to 
be the switching protocol that governs the engagement and 



Table 1 
Natural frequency and damping ratio of the different agile MPC systems policies 

MPC system policy Natural frequency Damping ratio 
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disengagement of the distributed controllers involved in the 
developed MPC system. 

The switching algorithm (based on segmentation) receives the 
set of anticipated demand data from the higher management level 
and starts with the first three points (or months) and tests the 
absolute error of these points with their calculated regression line. 
If the error is relatively small, this means that the demand within 
this range is of a steady trend, and thus an inventory-based policy 
is selected. On the other hand if this error shows high values, this 
means that the demand experiences great variations and, thus, a 
capacity-based policy is better to hedge against these variations in 
this demand period. It is important to note that the value of the 
error in this algorithm depends on the degree of market sensitivity 
the enterprise would like to have in its marketing strategy. 

After the decision is taken for the first three demand data, the 
algorithm will check the next two data with the last point of the 
previously tested three points, and the same regression analysis 
is carried out. The analysis will keep on exploring the demand 
data until the whole planning period (all anticipated demands) is 
covered and divided into different regions, where a specific MPC 
policy is applied to each region. 

6. MPC controllers’ gains setting unit 

This can be considered the heart of the developed DLU. This unit 
is responsible for deciding on the optimal values of the distributed 
controllers’ gains in the developed MPC system. By ‘‘optimal’’ it is 
meant the value of the gains that will satisfy the competing agility 
objectives of responsiveness and cost effectiveness. 

From a dynamic analysis standpoint, the responsiveness of the 
developed dynamic system can be expressed by the rise time 
[Eq. (5)]. By definition, this is the time it takes the system to rise 
from 10% to 90% of its target value [19]. This measure can be used 
as an indicator of how fast the system can respond to 90% of the 
required demand and, therefore, the degree of its responsiveness. 

0.8 + 2.5ξ 
tΓ ,10,90∼ = 0 ≤ ξ ≤ 1. (5)= 

ωn 

In addition, one of the cost aspects of production can be 
reflected in the value of the production overshoot measure [Eq. 
(6)]. The maximum overshoot, or sometimes called the percent 
overshoot, is the amount that the waveform overshoots the steady-
state, or final, value of the time required to reach maximum 
peak, expressed as a percentage of the steady-state value [19]. 
This measure directly describes the maximum amount of excess 
production the system will encounter to respond to a sudden 
change in demand. 

√ 
−(ξ π / %OS = e 1−ξ2) 

∗ 100. (6) 

The objective function (7) thus will aim to minimize the rise 
time and at the same time minimize the production overshoot. 
Each objective will take a specific weight, a, based on the strategy 
of the higher-level management as mentioned before. This unit is 
responsible for that multi-objective optimization activity. As for 
the constraints, they are mainly the stability constraints and the 
manufacturing system’s constraints on capacity and input rate.    √  0.8 + 2.5ξ 

−(ξ π / Min : α + (1 − α) e 1−ξ2) 
∗ 100 . (7)

ωn

To calculate the values of the parameters of Eq. (7), Table 1 
shows the natural frequency and damping ratio of different 
MPC strategies or policies. From the table, one can realize that 
the optimization process is a function of the manufacturing 
time-based parameters (lead time, scalability delay time, and 
shipment time), and thus it can be altered (or changed) based on 
strategic decisions from the higher marketing level to invest in the 
manufacturing system or change market policy in order to change 
these parameters and, in turn, change the values of the controllers’ 
gains. 

The MPC system controllers’ gains optimal setting unit receives 
from the MPC policy selection unit the plan with the selected MPC 
policies, and based on each policy (or strategy) it calls the model 
(or the transfer function) of that configuration and manipulates it 
in the optimization process. The output is the controllers’ gains 
for each strategy based on the given manufacturing system’s 
parameters and aligned with the market strategy. 

7. MPC demand satisfaction check unit 

This layer is actually responsible for checking that the current 
production-rate or inventory level satisfies the required demand— 
and this is why it takes place on-line. The check is based on 
comparing the current production level with the required capacity 
rate, the current WIP level with the ideal WIP level, and the current 
inventory level with the target inventory level based on which MPC 
policy is being adopted. These reference levels are calculated based 
on the anticipated demand, and thus, meeting these levels means 
satisfying the market demand. 

Based on the discrepancy between the compared levels, a 
decision is made to compensate for that discrepancy through the 
previously calculated control gain values. The decision indicates 
which gain is to be implemented and for how long in order to meet 
the required level. This process is carried out on an interactive basis 
with the operational level. The manufacturing system updates this 
unit in the DLU with the current status of the system, and based on 
the previously fed data of the demand, a control action is decided. 
Thus, this unit is mainly responsible for what is known in the 
literature of MPC as production control. Sudden changes in demand 
are accounted for through this unit through the continuous update 
of the required inventory, WIP, and capacity levels based on the 
current demand. The flowchart for the algorithms of the different 
units in the DLU architecture is shown in Appendix A. 

8. Application and analysis of the developed agile control 
approach 

8.1. Application to automatic PCB assembly factory 

Next, application of the agile MPC system that has been 
developed will be illustrated using a real industrial case study 



Fig. 3. (a) Quasi-stable demand pattern (b) Cost of different MPC policies with quasi-stable demand pattern. 
Fig. 4. (a) Fluctuating demand pattern (b) Cost of different MPC policies with fluctuating demand pattern. 
in an automatic PCB assembly factory. The objective of this case 
study is to highlight the use of the developed approach in a very 
turbulent market that can resemble the agile environment, which 
is the electronics market, and in a manufacturing system that is 
an ideal candidate for agile manufacturing, which is the automatic 
PCB assembly line. The product in this case is the random access 
memory (RAM) module. The full data for the case study are 
provided in Appendix B. 

Table 2 displays a summary of all of the deliverables of the 
designed DLU or the supervisory control. The first two rows 
show the monthly demand data, while the third row shows the 
different MPC policies applied during these months with the 
optimal controllers’ gains for each policy (calculated off-line). The 
rest of the table shows the on-line production control carried out 
by the third layer to meet these monthly demands. 

8.2. Comparative cost analysis 

A cost analysis comparison between different policies is 
conducted to show how each policy, including the agile MPC 
developed, can handle different demand scenarios for the same 
discussed industrial case. The objective of this comparison is to 
highlight the efficiency of the developed agile MPC approach and 
its superiority in dealing with mixed-demand patterns. 

The policies considered are inventory-based MPC policy, 
capacity-based MPC policy, and finally, the agile MPC policy 
(that can adopt both policies when needed). The demand 
patterns investigated are quasi-stable demand (demand with small 
fluctuations), fluctuating demand, and demand patterns that are a 
combination of these two types of demands. 

The cost calculations in this paper are roughly estimated based 
on real data from the same case study to give indication about the 
efficiency of each policy. However, full management accounting is 
beyond the scope of this paper. The cost data for the each policy are 
provided in Appendix C. Based on the given data for both policies, 
the following cost parameters are calculated to be used later in the 
analysis for each policy with different demands: 

For the capacity-based MPC policy, the costs encountered are: 

• Monthly cost for capacity scalability (cost of added machines). 
•	 Monthly cost of underutilized capacity. 

For the inventory-based MPC policy, the costs encountered are: 

•	 The holding cost (CH ), which will be calculated by first calcu
lating the quantity of unsold RAM/month (QH ) and then mul
tiplying this quantity by the holding cost using the following 
equations: 

QH = Production − Demand (8) 
CH = QH ∗ i ∗ Pr. (9) 

•	 The backlog cost (CB) will be calculated for each month first by 
calculating the backlog quantity (QB) and then multiplying this 
quantity by the backlog penalty (PB) and the cost of loss of good 
will (CLGW), as shown in the following equations: 

QB = Demand − (Production + QH ) (10) 
CB = QB ∗ (PB + CLGW) ∗ PS . (11) 

For the agile MPC policy, the costs encountered are: 
The developed agile MPC approach has the ability to deal with 

all demand patterns through combining the previous two policies 
and applying each one to its suitable demand pattern. Thus, in 
this analysis, in quasi-stable demand patterns the agile MPC policy 
will adopt the inventory-based MPC policy. In fluctuating demand, 
the capacity-based MPC policy will be adopted. Finally, in mixed 
demand, a mix between the two policies will be used in accordance 
with the demand segmentation approach discussed earlier. 

The demand patterns considered and their values are shown in 
Figs. 3(a), 4(a), and 5(a). It is important to note that the mixed-
demand patterns in Fig. 5 will be divided by the first layer in the 
DLU in the agile MPC policy into three zones. The first zone is from 
months 1 to 3 and will adopt the inventory-based policy because 
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Fig. 5. (a) Mixed-demand pattern (b) Cost of different MPC policies with mixed-demand pattern. 
it has a quasi-stable trend. The second zone will be from months 
4 to 9 and will adopt a capacity-based policy due to demand 
fluctuations. The last zone will be from months 10 to 12 and will 
again adopt an inventory-based policy for the same reasons as for 
the first zone. Figs. 3(b), 4(b), and 5(b) plot the overall costs over the 
12 months for each MPC policy with the three considered demand 
patterns. 

Analysis of these figures leads to the following observations: 

• With quasi-stable demand, inventory-based MPC policy shows 
a better performance in terms of cost because the variations of 
demand from the target inventory level are limited, and thus 
the holding cost as well as the backlog cost is minimal. As 
for the capacity-based policy, the cost to handle that demand 
pattern is quite a bit higher because the capacity is usually 
scaled to high values that need high-demand variation to avoid 
paying for underutilized capacity or capacity loss, as in this 
case. 

• With fluctuating demand, the opposite scenario was found, 
where the capacity-based MPC policy showed a better cost 
performance in handling this kind of demand. The reason for 
that is the huge variation in demand values, which justifies 
the use of extra capacity (capacity scalability) in cases of 
demand increase. At the same time, these demand variations 
lead to high levels of accumulated inventory (holding cost) 
and sometimes a shortage in the level of available inventory 
(backlog cost), leading to higher cost for the inventory-based 
policy. 

• With fluctuating demand, the opposite scenario was found, 
where the capacity-based MPC policy showed a better cost 
performance in handling this kind of demand. The reason for 
that is the huge variation in demand values, which justifies the 
use of extra capacity (capacity scalability) in cases of demand 
increase. At the same time, these demand variations lead to high 
levels of accumulated inventory (holding cost) and sometimes 
a shortage in the level of available inventory (backlog cost), 
leading to higher cost for the inventory-based policy. 

• The developed agile MPC approach showed the best perfor
mance of the three considered demand patterns. In a quasi-
stable demand pattern, the agile MPC approach adopted an 
inventory-based policy by engaging the inventory controller, 
and this is why it was as cost efficient as the classical inventory-
based policy. In fluctuating demand, the DLU disengaged the in
ventory control and switched to the capacity controller to have 
the same cost-effective performance as the typical capacity-
based MPC policy. However, in the mixed-demand pattern, the 
agile MPC approach was far superior to the other two policies 
due to its ability to handle each period in the demand pattern 
with the suitable policy, manipulating its switching ability be
tween different distributed controllers. 
9. Conclusions 

A new approach was proposed for how enterprises can maintain 
their agility through enabling manufacturing planning and control 
(MPC) systems to adopt different policies and align with the 
current market strategy. A dynamic model for the agile MPC 
system was presented, where different MPC policies can be 
adopted through distributed controllers for each policy and a 
supervisory controller responsible to handle these controllers 
through a decision logic unit (DLU). A multi-layer architecture 
for this DLU was developed. The first layer in the DLU is 
responsible for managing the switching protocol among the 
distributed controllers based on the market strategy. The optimal 
settings of these controllers’ gains require a trade-off between 
the responsiveness level and the cost of deviating from the target 
production based on the market competitiveness plan adopted by 
the higher management level. This decision is carried out through 
a multi-objective optimization technique in the second layer of 
the DLU. The last layer works on-line with the operational level to 
control production, WIP, and inventory levels in accordance with 
the marketing strategy using MPC policy and settings indicated by 
the previous two layers. 

To demonstrate the applicability of the developed approach, it 
was applied to an industrial case study for automatic PCB assembly. 
The output of the DLU unit showed how the developed agile MPC 
system was able to control the assembly line to align with the 
marketing strategy and meet the required demand. Furthermore, 
the comparative cost analysis conducted verified the fundamental 
philosophy of the agile MPC system proposed in this paper by 
showing that, in a typical dynamic market environment, the 
MPC system can maintain its agility by the ability to efficiently 
react to different anticipated demand patterns through different 
distributed controllers for the main manufacturing parameters. 

The presented work offers a starting point for more investiga
tion about the need to close the gap between the marketing level 
and the operational level in agile enterprises. Further work is re
quired to explore other dynamical approaches to achieve that in
tegration in this dynamic environment. 

Appendix A. DLU algorithm 

The flowchart for the architecture algorithm of the developed 
DLU is shown in Fig. A.1. Each of the three layers of the DLU 
is represented by one of the three columns, respectively. The 
variables in Fig. A.1 are given as follows: 

n = number of months in the anticipated demand 
MS = market sensitivity 
α = weights assigned by management 
ωn = natural frequency 
ζ = damping ratio 
tr = rise time 
%OS = percentage overshoot. 



Fig. A.1. Flowchart for the architecture algorithm of the developed DLU. 
Appendix B. Data for the case study 

Market data 
See Table B.1. 
2—Marketing strategy for each MPC policy (weights for the 

MOO): 

MPC policy	 Responsiveness Cost 
objective objective 

Inventory/WIP (αI ) 0.3 
Capacity/WIP (αC ) 0.7 

0.7 
0.3 

3—Market Sensitivity (regression error): 10%. 
System data 

1—Time Parameters: 

• Production lead time TLT: 2 days 
• Capacity scalability delay time TD: 3 days 
• Shipment time TSR: 5 days. 

2—System Throughput: 400K RAM/month (20K RAM/day) 
3—System Limits: 

• Capacity: The shop floor of the factory is composed of two lines; 
each line contains four pick-and-place machines. The pick-and
place machines are of two types (two of each per line): one type 
is a chip shooter type (high capacity) with average production 
rate of 3.2K/day and another type (medium capacity) with 
average production rate of 1.8K/day. Due to space limitations of 
the shop floor, only one pick-and-place machine of the medium 
capacity type can be added for each of the assembly lines. Thus, 
the maximum capacity rate that can be added to the factory is 
3.6K/day. 

• Maximum input rate increase: 6K RAM/day 
• Maximum WIP rate increase: 1K RAM/day. 
  

Appendix C. Data for comparative cost study 

Capacity-based MPC case cost calculations 
The monthly cost for capacity scalability is calculated using 

Capital Recovery Analysis [9]. The input data for this analysis are 
as follows: 

• The capital cost (P) for the smaller m/c (1.8K capacity) is 
$100,000. 

• The interest rate (i) is 1% accumulated monthly. 
• Depreciation period (N) is 8 years. 
• Salvage value (D) will be equal to 10% of the capital cost and the 

declining balance method will be used to calculate the salvage 
value. 

The monthly cost (A) for having the smaller pick-and-place 
(1.8 K capacity) machine will be calculated through adding the 
capital recovery cost minus the sinking found factor as shown in 
Eq. (C.1):  	      

i(1 + i)N	 i 
A = P	 − P(1 − D)N . (C.1)

(1 + i)N − 1	 (1 + i)N − 1

From the previous data and using Eq. (C.1), the monthly cost of 
this machine will be A = $1300. 

The other cost parameter that should be considered in the 
capacity scalability cost analysis is the underutilized capacity cost, 
or sometimes referred to as capacity loss cost. Although there is 
no well-accredited or standard formula for that cost, an accepted 
assumption would be treating the underutilized capacity cost as 
a holding cost where the unused capacity portion is paid for as 
a function of the overall cost of the capacity unit. For example, 
in this case, if the monthly capacity scalability cost of adding a 
pick-and-place machine is $1300, and the utilized capacity of this 
machine is only 75% of the overall capacity, then the monthly cost 
of underutilized capacity would be: (1300/4) = $325. 



Table B.1 
1—RAM Monthly Demand 

Month 1 2 3 4 5 6 7 8 9 10 11 12
 
Demand (in 1000) 400 425 390 410 460 380 300 410 470 400 420 430
 
Inventory-based MPC case cost calculations 
In any inventory cost analysis, there are two important cost 

parameters that should be considered. First is the holding cost and 
second is the stock-out cost or backlog cost. Each of these cost 
parameters will be calculated using the following data: 

• Monthly interest rate for held inventory items (i) is 0.2% (typical 
value in low-interest inventory cases) [18]. It is important to 
note here that this interest value plays a very important role in 
such cost analyses. Thus, the analysis can be highly altered if this 
value changes. However, the effect of interest-rate variation is 
a wide research area in the field of economics and beyond the 
scope of this paper. 

• Price of the RAM (Pr) is equal to the manufacturing cost plus 
the components. The manufacturing cost can be calculated by 
dividing the monthly production with monthly cost: Mfg. Cost 
(the latter is calculated using Eq. (C.1)) = 400, 000/15, 200 = 
$26/RAM. The component cost based on the priced bill of 
materials (BOM) is approximately $4/RAM. Thus, the cost of the 
RAM, Pr = $30. 

• The average selling price (PS ) of the considered RAM module is 
$100. 

• Based on the market strategy and customer contracts, the 
penalty for instantaneous unmet demand or backlog (PB) for 
each RAM module is 0.01% of the selling price. 

• Based on the market competitiveness estimations, the esti
mated cost for loss of good will (CLGW) for unmet demand is 
also 0.01% of the selling price. 

• The reference inventory level will be calculated using the 
classical approach of summing all of the anticipated demands 
over the year and then dividing the total by 12 to have the n 

Demandmonthly inventory level: I∗ 
= .12 
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