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Investigating optimal capacity scalability scheduling 
in a reconfigurable manufacturing system 

Abstract Responsiveness to dynamic market changes in a 
cost-effective manner is becoming a key success factor for 
any manufacturing system in today’s global economy. 
Reconfigurable manufacturing systems (RMSs) have been 
introduced to react quickly and effectively to such 
competitive market demands through modular and scalable 
design of the manufacturing system on the system level, as 
well as on the machine components’ level. This paper 
investigates how RMSs can manage their capacity 
scalability on the system level in a cost-effective manner. 
An approach for modeling capacity scalability is proposed, 
which, unlike earlier approaches, does not assume that the 
capacity scalability is simply a function of fixed increments 
of capacity units. Based on the model, a computer tool that 
utilizes a genetic algorithm optimization technique is 
developed. The tool aids the systems’ designers in deciding 
when to reconfigure the system in order to scale the 
capacity and by how much to scale it in order to meet the 
market demand in a cost-effective way. The results showed 
that, in terms of cost, the optimal capacity scalability 
schedules in an RMS are superior to both the exact demand 
capacity scalability approach and the approach of supply­
ing all required capacity at the beginning of the planning 
period, which is adopted by flexible manufacturing 
systems (FMSs). The results also suggest that the cost-
effective implementation of an RMS can be realized 
through decreasing the cost of reconfiguration of these new 
systems. 
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1 Introduction 

Shorter product life-cycles, unpredictable demand, and 
customized products have forced manufacturing systems to 
operate more efficiently in order to adapt to changing 
requirements. Global competitive situations have led to 
increasing attention being paid to customer satisfaction, of 
which responsive and customized services are the key 
concepts. Traditional manufacturing systems like dedicated 
machine lines (DMLs) or cellular manufacturing systems 
(CMSs) cannot cope with these new market characteristics. 
Even flexible manufacturing systems (FMSs) cannot deal 
with these new requirements in a cost-effective manner. To 
meet these modern challenges, reconfigurable manufactur­
ing systems (RMSs) were proposed. RMSs aim at 
combining the high throughput of a DML with the 
flexibility of an FMS, maintaining the ability to deal with 
a variety of products and volumes in a cost-effective 
manner. This is achieved through rapid change in its 
structure, as well as its hardware and software components, 
in order to accommodate rapid adjustment of the exact 
capacity and functionality needed and when it is needed 
[1]. 

Shabaka and ElMaraghy [2] explain the dimensions of 
the reconfiguration of the manufacturing systems through 
classifying the reconfiguration process into its physical 
configuration and logical configuration. Examples of 
physical configurations include layout configuration, 
adding or removing of machines, adding or removing of 
machines’ tools or components, and material handling 
system reconfiguration. Examples of logical configurations 
include the re-programming of machines, re-planning, re­
scheduling, re-routing, and increasing or decreasing shifts 
or the number of workers. The key characteristics of RMSs 
are modularity, integrabilty, convertibility, customization, 
and diagnosability [3]. 

The previous characteristics enable RMSs to have 
unfixed capacity and functionality and, thus, they are 
assumed to be scalable systems. The modular structure of 
the system components is responsible for the physical 

e-mail: wem@uwindsor.ca scalability, while the modern open architecture controls 

mailto:wem@uwindsor.ca
mailto:deif@uwindsor.ca
lib-spc
Typewritten Text
Deif, ElMaraghy. Published in the International Journal of Advanced Manufacturing Technology 32(5-6):557-562. March 2007. 



techniques are the main tool for logical or software 
scalability. The focus of this paper is on the modeling of 
the physical capacity scalability in an RMS. 

2 Capacity scalability problem in manufacturing 
systems 

Capacity scalability is simply the ability to adapt to 
changing demand. A typical capacity scalability problem 
addresses when, where, and by how much should the 
capacity of the manufacturing system be scaled. Before 
RMSs, the scope of this problem was limited to capacity 
expansion. With RMSs, on the other hand, capacity 
scalability addresses the reduction of capacity besides the 
expansion. Another major difference between both trends 
is the enabling of an RMS to scale the capacity not only 
over the system level, but also over the machine level by 
virtue of its modular and open control structures. The cost 
of capacity expansion is traditionally justified by the 
economy of scale of the expanded capacity. In an RMS, it is 
assumed that capacity scalability is justified by reducing 
the shortage cost, since capacity is supplied when needed 
and it reduces the cost of the underutilized capacity, as the 
exact capacity is available where needed. The latter gives 
the RMS an advantage over FMSs. The cost-effectiveness 
of the capacity scalability, together with the functionality 
scalability, in the RMS is achieved through the concept of 
economy of scope. 

3 Review of earlier capacity scalability modeling 
approaches 

Extensive surveys in the literature about classical capacity 
expansion problem are found in Manne [4], Freidenfelds 
[5], and Luss [6]. Examples of some approaches to model 
the capacity in FMSs were proposed by Leachman and 
Carnon [7], Roundy et al. [8], and Liberopoulos [9]. 

As for RMSs, Son et al. [10] suggested station 
paralleling within a stage as a possible approach to scale 
the capacity within transfer line manufacturing systems, 
which he referred to as a homogeneous paralleling flow 
line (HPFL). Asl and Ulsoy [11] presented an approach to 
capacity scalability modeling in an RMS based on the use 
of feedback control theory to manage the capacity 
scalability problem. In their approach, they assumed that 
the capacity change in the RMS is a quantized set of equal 
capacity units. Based on this assumption, they developed a 
deterministic continuous time model of capacity scalability 
to generate a capacity policy in an RMS at minimum cost. 
Another approach for capacity management in an RMS 
with stochastic market demand was also presented by Asl 
and Ulsoy [12], where an optimal solution for the capacity 
scalability management based on Markov decision theory 
was presented. They also considered the time delay 
between the time that the capacity is ordered and the 
time at which it is delivered. The optimal policy in their 
work is presented as optimal boundaries representing the 

optimal capacity expansion and reduction levels. The 
effects of change in the cost function parameters and the 
delay time on the optimal boundaries were presented for a 
capacity management scenario. Their work is considered as 
an extension to Rocklin and Kashper’s method [13], where 
they integrated into it their previous dynamic model for 
capacity scalability. 

The previous approaches are the considered as the main 
approaches for capacity scalability modeling applicable to 
RMSs. The major shortcoming in the earlier models is the 
assumption of the capacity scalability as a function of fixed 
increments of capacity units. In a practical reconfigurable 
manufacturing environment, this is not the case, since there 
are different capacity modules on the system level, as well 
as the machine level, that can be used to scale the capacity. 
Also, some of these approaches didn’t address when 
exactly to scale the capacity and this is one of the major 
characteristics of RMSs. These shortcomings are addressed 
in the proposed model. 

This paper, therefore, represents a new approach to 
model the capacity scalability of an RMS. The focus is on 
the physical scalability of the systems’ capacity rather than 
considering the logical scaling of their capacity. The 
objective of the modeling is to develop an optimal capacity 
schedule which, based on the market demand variation, 
indicates when to scale the system’s capacity and by how 
much. These schedules are generated by a computer tool 
that is based on a genetic algorithm optimization technique. 

4 Proposed capacity scalability model 

The proposed model is based on the optimal plant size with 
arbitrary increasing time paths of demand approach, as 
presented by Manne and Veinott [14], where the model has 
been modified and adapted to address the problem of 
capacity scalability in RMSs. A basic mathematical 
foundation for the model is one of the concave/convex 
sets properties that states: 

If C(.) is a concave function on a closed bounded 
convex set V having finitely many extreme points, then 
C(.) achieves its minimum on V at an extreme point of V. 

4.1 Model assumptions 

The following are the assumptions for the model: 

1.	 Time (or capacity planning horizon) is idealized to be 
consisted of discrete periods 1, 2, ..., T. 

2.	 Demand in period t (the difference between demands in 
periods t and t−1) is known as Dt, where Dt≥0 and: 

T 

Dt > 0 (1) 
t¼1 

X 



3.	 Capacity scalability decision is a set of variables vt, 
where t=1, 2, T. 

4.	 Zt denotes the end of the period of excess capacity. In 
RMSs, Zt tends to be zero: 

t X( )
Zt ¼ vj - Dt ðt ¼ 1; 2; . . .  ; TÞ (2) 

j¼1 

A feasible capacity scalability plan or schedule is 
where: 

vt  0	 (3) 

Z0 ¼ 0 and ZT ¼ 0	 (4) 

Let V denote the set of feasible capacity schedules of the 
RMS. From Eqs. 2, 3, and 4, and since the set of solutions 
to a finite system of linear equalities and inequalities is a 
convex set and has finitely many extreme points, it could 
be said that V is a closed, bounded convex set. 

4.2 Cost function 

The function C(v) represents the cost of having the capacity 
level v. It is time-dependent and is expressed in terms of the 
present value of costs as of time 1. This cost function is 
composed of two components, the first reflects the cost of 
the physical capacity unit that the system will be scaled 
with, and the second represents the cost associated with this 
physical scaling or reconfiguration of the system. Thus, the 
cost for each period t is mainly the cost of having a capacity 
level v at that time period (which can be scaled up or down) 
to satisfy the demand. For example, this scaling can be 
achieved through adding/removing another spindle to a 
machine, adding/removing a machine, or even adding/ 
removing a group of machines. Thus, the first term of the 
cost function is an expression of the physical cost of this 
capacity unit. 

On the other hand, the term CR represents other costs of 
reconfiguration that is associated with this scaling, and 
basically includes other related cost parameters, such as the 
cost of downtime to rescale the system or to ramp up the 
new configuration with the new capacity, the labor cost 
involved and the effort required for that reconfiguration or 
scaling. It is important to note that the term CR varies based 
on the level of reconfiguration required. In this paper, for 
simplicity, this term is expressed as a linear function that is 
dependable on the capacity level. This assumption will be 
discussed in Sect. 6 of this paper. The cost function can be 
written as follows: 

n n 

C v Ctð Þ þ  CRi (5) 
X X 

ð Þ ¼  vt

t¼1 i¼1
 

where n is the number of capacity scalability points and 
n<T. 

This cost function is assumed to be concave. This 
assumption is supported by Manne [4], who showed that 
the cost function of capacity addition for different studied 
industries is expressed as a power function or as a power 
function pieced together with a linear function (as in this 
case) and both are concave functions. Also, Luss [6] stated 
that most of the capacity expansion (scalability) functions 
are concave, representing the economies of scale of the 
expansion sizes. The exact calculation of the cost function 
(with its two terms) for capacity scalability in an RMS with 
all of the parameters involved is a research area that needs a 
lot of enhancements; however, these calculations are 
beyond the scope of this paper and will not affect the 
validity of the model. 

4.3 Regeneration point (scalability point) 

A point of regeneration of a capacity scalability schedule or 
plan v is said to occur in period t if Zt (the end of period 
excess capacity)=0. In an RMS, the capacity planning is a 
series of regeneration or scalability points. This fact 
enables us to use the regeneration point theorem that states 
that “there is an optimal capacity schedule which has the 
regeneration point property” [14]. 

The theorem is based on the previous facts that the 
capacity schedules set is a closed, bounded convex set, and 
that the cost function is a concave function and manipulates 
the previously stated property. The extreme points where 
the cost of capacity policy is minimum, based on the 
regeneration point theorem, are the scalability points or 
the points at which the system capacity planner will scale 
the capacity up or down. Such an optimum schedule will be 
found using a genetic algorithm (GA) approach. 

5 Optimal capacity scalability scheduling tool 
formulation 

Let one scalability point occur at period i and the next 
scalability point occur at period k (with i<k). Then, 
necessarily, there is an integer i+1≤k, such that: 

k 

viþ1 ¼ Dt (6) 
t¼iþ1 

X 

It should also be recalled that the points t=0 and t=T are 
always regeneration points. 

5.1 Applying a genetic algorithm technique 
to capacity scalability scheduling in an RMS 

Genetic algorithms (GA) is a population-based model that 
uses selection and recombination operators to generate new 
sample points in the solution space. A GA encodes a 



 

 

potential solution to a specific problem on a chromosome-
like data structure, and applies recombination operators to 
these structures in a manner that preserves critical 
information. Reproduction opportunities are applied in 
such a way that those chromosomes representing a better 
solution to the target problem are given more chances to 
reproduce than chromosomes with poorer solutions. GA is 
a promising heuristic approach to locating near-optimal 
solutions in large search spaces problems, such as the 
problem of scheduling. For a complete discussion of GAs, 
the reader is referred to Gen and Cheng [15]. 

Typically, a GA is composed of two main components, 
which are problem-dependent: the encoding problem and 
the evaluation function. The encoding problem involves 
generating an encoding scheme to represent the possible 
solutions to the optimization problem. In this paper, a 
candidate solution (i.e., a chromosome) is encoded to 
represent valid schedules for all of the demand over the 
capacity scalability planning horizon T. The evaluation 
function measures the quality of a particular solution. Each 
chromosome is associated with a fitness value, which, in 
this case, is the cost of the corresponding schedule 
represented by the given chromosome. For this research, 
the lowest fitness value represents the best solution 
obtained. The “fitness” of a candidate schedule is 
calculated here based on the physical cost (Ct(vt)) of the 
capacity unit and the associated cost of reconfiguration 
(CRi). Figure 1 outlines the capacity scalability schedules 
generation using GAs. 

Population initialization 

Sorting the population

 Capacity scalability schedule cost evaluation 

Storing the best-obtained value 

Switching the population 

GA’s operator loop 

Renewal operation 

Reading data: 
Demand, Cost function 

& GA’s parameters 

Best solution 

5.2 Developing the capacity scalability scheduling 
tool 

The previous analysis was used to develop a computer tool 
that takes the following inputs: 

–	 Single period demand during the time Dt (t=1, 2,..., T), 
where T is the capacity planning horizon. It is assumed 
to be deterministic for simplicity. 

–	 Capacity scalability cost function C(v). 

The output is the optimal capacity scalability schedule for 
the RMS. Figure 2 is an IDEF0 representation of the 
proposed tool. 

To validate the tool, the results generated by the tool was 
compared to the optimal results of the case study presented 
by Manne and Veinott [14]. The data were as follows: for a 
period T=6, D1=0.5, D2=1.0, D3=1.5, D4=1.5, D5=1, and 
D6=0.5, and the cost function is: 

t-C v 1Þ x ð5 þ ð10 x	 (7)ð Þ ¼ 0:8ð	 vtÞÞ 
To be able to compare the results, the term representing the 
cost of reconfiguration (CR) in the cost function of the tool 
was omitted. The results generated by the tool are shown in 
Table 1. The results are exactly the same as the optimal 
results given by Manne and Veinott. 

6 Investigating capacity scalability scheduling 
in RMS 

In planning for the capacity of a manufacturing system, one 
can follow three approaches. The first approach is to 
construct a capacity at the beginning of the planning period 
(t1) which is equal to all anticipated demand over the 
planning period (i.e., fixed capacity). This is the case in 
FMSs. The second approach is that, at each point over the 
planning period, one supplies a capacity that is equal to the 
demand at that point (i.e., capacity on demand), assuming 
that we have extreme reconfiguration ability. The third 
approach is to have an optimal capacity schedule that 
balances between the previous two approaches in satisfying 
the market demand at a minimum cost, which is the case in 
the proposed model (adaptive capacity). 

The developed capacity scalability scheduling tool is 
used to illustrate the merit of this approach through 
calculating the cost associated with implementing each of 
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C(v) (capacity capacityCost 

scalability cost) scalability 

scheduleCapacity 
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Fig. 1 Capacity scalability schedules generation using GAs Fig. 2 Developed capacity scalability scheduling tool 



Table 1 Capacity scalability scheduling tool results 

Scalability points (t) Value of the scaled capacity Cost 

1 (time unit) 1.5 50.6 
3 (time unit) 3 
5 (time unit) 1.5 

the three scheduling policies. This will be achieved through 
comparing the cost of each scheduling approach at different 
random fluctuating demand profiles. Table 2 shows the 
different generated deterministic demand values for one 
year. 

As for the cost function, Eq. 7 will be adopted to 
represent the physical construction cost (Ct(vt)) and the cost 
of reconfiguration (CR) will be represented by a linear 
function that multiplies the capacity scalability change 
between each scalability point by a constant that should 
vary according to the application (in this example, the 
constant equals 2). The difference between capacity 
scalability levels can reflect the degree of the system’s 
physical reconfiguration carried out to meet the demand 
and, thus, it is used with a certain constant to express the 
term CR. For example, if the optimal capacity scalability 
schedule entitles that the capacity should be up-scaled by a 
small amount, an additional spindle to a machine can 
satisfy this need, while if the amount of scaling required is 
large, then an additional machine can be added. The cost of 
adding a spindle is much lower than adding a machine to 
the system. However, expressing the value of CR could be 
represented by other forms, and should be indicated by the 
capacity planner based on the industrial application. The 
cost function will be as follows: 

ð 1ÞC v x ð5 þ ð10 x ÞÞ þ jΔCtj x 2 (8)ð Þ ¼ 0:8 t- vt 

where |ΔCt| is the capacity scalability change at scalability 
point t. 

Figure 3 shows the cost of each capacity scheduling 
approach at each demand profile. 

It is clear that the optimal capacity scalability schedules 
generated by the developed tool showed better perfor­
mance in terms of cost in all demand scenarios over the 
other capacity scheduling policies. Also, as expected, 
the first policy that resembles the case of FMS is always the 
most costly policy, and this is one of the reasons for 
proposing the new RMSs. 

Table 2 The generated deterministic demand values for one year 

Fig. 3 Cost of different capacity schedules at different demand 
profiles 

Table 3 displays the output capacity scalability schedules 
generated using the scalability tool for the different demand 
profiles. One can recognize that the size of the capacity at 
each scalability point in these schedules is very close. This 
is because the cost of reconfiguration is expressed as a 
function of the difference between the capacity levels at 
each scalability point. Also, the number of scalability 
points is dependant on the constant used in the function of 
the cost of reconfiguration. This result shows that a cost-
effective capacity scalability schedule in RMSs could be 
realized through decreasing the cost of the reconfiguration 
of these manufacturing systems. 

7 Summary and conclusions 

This paper presented a new approach to model the capacity 
scalability scheduling in reconfigurable manufacturing 
systems (RMSs). The model uses a cost function that 
includes both the cost of the physical capacity unit and the 
cost of reconfiguration associated with the system 
reconfiguration. Based on the model, a computer tool 
that manipulates the genetic algorithm (GA) technique for 
generating an optimal capacity scalability schedule was 
developed. The generated schedule indicates the points of 
capacity scalability over time and the required size to be 
scaled with at minimum cost. 

The developed tool was used to explore three capacity 
scalability approaches with different demand profiles. The 
results showed the superiority of the optimal capacity 
scalability scheduling approach generated by the devel-

T (month) 1 2 3 4 5 6 7 8 9 10 11 12 

D1 10  5  3  12  8  9  4  6  11  5  3  10  
D2 20 46 18 63 5 50 36 36 70 39 62 14 
D3 50 41 66 19 33 77 26 15 38 49 60 55 
D4 16 30 46 25 50 73 62 41 14 29 36 18 
D5 37 44 22 58 39 66 71 53 47 18 29 70 



Table 3 Optimal 
demand profiles 

capacity scalability schedules for different 

Demand profile Scalability point Capacity level 

D1 1  
6  

38  
48  

D2 1 
8 

238 
221 

D3 1 
7 

286 
243 

D4 1 
7 

246 
200 

D5 1 
7 

266 
288 

oped tool over both the instantaneous capacity change 
approach and the approach of supplying all required 
capacity at the beginning of the planning period in terms of 
cost in all of the demand profiles considered. The generated 
capacity scalability schedules highlighted the fact that 
the level of the capacity to be scaled and the cost of the 
capacity scalability schedule in RMSs are related to the 
cost of reconfiguration of the system. Thus, the cost-
effective implementation of an RMS depends highly on 
decreasing the cost of reconfiguration of these systems. 

An extension of this work can include considering 
stochastic demand patterns and investigating the logical 
capacity scalability alternatives. In addition, the modeling 
of the cost of reconfiguration in an RMS is a potential topic 
that has to be tackled in order to prove the cost-
effectiveness of RMSs over other classical systems. 
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