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Stochastic differential equations often provide a convenient way to describe the dynamics of economic
and financial data, and a great deal of effort has been expended searching for ethcient ways 1o estimate
madels hased on them. Maximum likelihood is typically the estimator of choice; however, since the
transition density is generally unknown, one is forced to approximate it. The stimulation-based approach
sugeested by Pedersen (1995) has great theoretical appeal, but previously available implementations have
been computationally costly. We examine a variety of numencal techmgques designed 1o improve the
performance of this approach. Synthetic data gencrated by a Cox-Ingersoll-Ross model with parameters
calibrated o mutch monthly observations of the US. short-tlerm interest rate are used as o lesl cuse.
Since the hkelithood function of this process is known, the gquality of the approxunutions can be eusily
evaluated. On datasets with 1,000 observations, we are able lo approxumate the maxunum likelihood
estimator with negligible error in well under 1 min. This represents something on the order of a 10,000-
fold reduction in computational effort as compared to implementations without these enhancements. With
other parameter settings designed to stress the methodology, performance remains stronp. These ideas
are easily generalized to multivariate settings and (with some additional work) to latent variable models.

To illustrate, we estimate a simple stochastce volatility model of the U.S. short-term interest rate.

Stochastic differential equations (SDE’s) often provide a
convenient way to model economic and financial data, and
their use has become increasingly common 1n recent years.
Although the process specified by a stochastic differential
equation 15 defined in continuous tme, the data which arc
available are typically sampled at discrete time intervals, The
resulting estimation problem furns out to be nonirivial, and
considerable energy has been expended in developing compu-
tationally (and statistically) efficient estimation schemes.

In this article, we focus primarily on scalar, time-
homogeneous processes. In particular, we consider the diffu-
sion process generated by an SDE of the form

dX =p(X.0)dt+o(X;0)dW
X“n}::{i: “]

with parameter vector ¢#. Suppose that the sample |X, =
X(4,),i=0,...,n] is available for analysis. The observations
need not be equally spaced.

[deally, one would like to know the transition density, which
would allow one to compute the maximum likelithood estima-
tor with its usual optimality properties. Although exact transi-
tion densities are known in only a few isolated cases, several
approaches toward approximating the transition density have
been proposed.

Lo (1988) suggests numerically solving the Fokker-Planck
partial differential equation for each observation. Pedersen

(1995b) suggests a simulation-based approach which involves
integrating out unobserved states ol the process at intermediate
points between cach pair of observations (see also Santa-Clara
1995; Brandt and Santa-Clara 2002). While this approach,
commonly known as simulated maximum likelihood estima-
tion (SMLE), is able to come arbitrarily close to the true tran-
sition density, previously available implementations have been
computationally burdensome.

Other approaches have been proposed which are much less
computationally costly. For example, the process described
by (1) has a first-order approximation given by the discrerte-
(Ime process

-

X, = ,ii + p{'j?,-; A, + (X, 9)A) e,

= hy— 1 €~ N(D ). (2)

Under mild regularity conditions, the maximum likelihood
estimator based on this approximation is known to con-
verge Lo the true maximum hkelihood estimator as the sam-
pling mterval goes to zero (Florens-Zmirou 1989), While this
approach 1s very appealing from a computational viewpoint,
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the approximation may not be suthciently accurate for the
sampling frequencies at which reliable data are available.

There are various ways in which one might improve upon
this idea. Elerian (1998) suggests replacing the Gaussian
density in (2) by a noncentral chi-squared density which is
derived from the Milstein scheme, an order 2.0 weak approx-
imation to the true process. Shoji and Ozaki (1998) lincarize
the SDE, obtaining an approximating Ornstein- Uhlenbeck
process (the exact transition density of an Ormsiein-Uhlenbeck
process 1s known). Kessler (1997) approximates the transi-
tion function by a Gaussian density with first and second
moments obtained from higher order Ito-Taylor expansions.
Ait-Sahalia (2001) approximates the transition density using a
Hermite function with coefficients obtained using higher order
Ito-Taylor expansions. Except for Ait-Sahalia (2001), these
methods still require the sampling interval o go o zero to
obtain convergence to the true transition density. While this
requirement also holds for Ait-Sahalia’s approach with a Her-
mite function and Ito-"Taylor expansion of fixed order, Ail-
Sahalia’s approximation may be made arbitrarily accurate with
fixed sampling frequency by using a Hermile function and
lto=Taylor expansion of sufficiently high order (given some
regularity conditions).

Various method-of-moments approaches have also been
proposed. Chan, Karolyi, Longstaff, and Sanders (1992)
us¢ momenis based on Lquation (2). Duffie and Singleton
(1993). Gallant and Tauchen (1997), Bibby and Serensen
(1995), and Gouriéroux, Monfort, and Renault (1993) com-
pute expectations using simulation-based methods. Hansen
and Scheinkman (1995) and Duffie and Glynn (1996) use
moment conditions obtained from the infinitesimal generator.

The simulation-based methods can be computationally
costly, but have the advantage of being easily adapted o dif-
fusions with unobserved state variables. Stochastic volatility
maodels and term structure models are umportant applications
where these techniques have been found usetul. The efficient
method of moments proposed by Gallant and Tauchen (1996)
approaches the efficiency of maximum likelihood asymptoti-
cally, and provides a convenient set of diagnostic measures for
model specification.

Markov chain Monte Carlo (MCMC) methods have been
proposed by Eraker (2001), Jones (1999a), and Elcrian, Chib,
and Shephard (2001). There is a close relationship between
MCMC methods and SMLE. For example, Elernian et al. point
out that their importance sampler can also be used with the
simulation-based approach of Pedersen (1995b) to substan-
tially reduce the computational effort required 1o obtain rea-
sonably accurate likelihood approximations.

In this article, we focus on the SMLE approach. The basic
idea is quite simple. Suppose that one wishes to obtain the
transition density p(x,, r; x . 5). The first-order approximation
p'Vx,, t: x.,5) defined by (2) will be accurate if the interval
|5, t] is sufficiently short. Otherwise. one may partition the
interval s =7, < 7, < --- < 7, =1 such that the first-order
approximation is sufficiently accurate on each subinterval. The
random variables X(7,).....,X(7,_,) are, of course, unob-
served, and must be integrated out. Becausc the process i1s

Markovian. onc obtains

WMHx, ;X0 8) (3)

p(x,, 15X, 8) = p
|H_|
=t (1) "
- P "I”mhl‘Tmn*.!Jf-I"”rr:"1-1'1'1'1|
=Ll

xd\u,.... Wpii) (4)

where A denotes the Lebesgue measure, and we use the con-
vention u, = x, and u,, = x, Lo conserve notation, Monte Carlo
integration is generally the only feasible way to evaluate this
integral.

The theoretical issues involved with this approach are
alreadv reasonably well understood. Sufficient conditions for
the approximation in (3) to converge are known, While it is
certainly of value to extend these conditions, we do not under-
take this task here. The theories of Monte Carlo integration
and maximum likehhood estimation have also been exten-
sively studied. Nonetheless, although the simulation-based
approach is attractive from a theoretical point of view, the
computational burden associated with previous implementa-
tions has hindered 1ts widespread use. We have found that it
can be quite costly to attain even the degree of accuracy pro-
vided by the simple first-order approximation (2). It is this
shortcoming which we seek to address.

We attack the problem of computational efficiency from
two directions. We first seck to improve the approximation in
Equation (3). This allows one to attain a given level of accu-
racy with fewer intermediate points. We consider extrapola-
tion techniques and the use of allernatives to the first-order
(Euler) approximation of the subtransition densities. Secondly,
we examine techniques to accelerate the convergence of the
Monte Carlo integration. We consider several importance sam-
plers and random schemes. Finally, we consider transforming
the model in such a way as to make the volatility function
constant. Working with the transformed rather than the origi-
nal model turns out to provide a useful improvement in both
the accuracy ol the approximation (3) as well as the perfor-
mance of the Monte Carlo integration used o compute (4).

As a test case, we use the square-root specification proposed
by Cox, Ingersoll, and Ross (1985) as a model for the short-
term interest rate. Parameter settings are calibrated to match
monthly observations of the U.S. short-term interest rate. This
model has the advantage that the transition density is available
in closed form, which allows us to easily evaluate the accuracy
of our approximations. We also tested our techniques using
other parameter settings and models with similar results.

On simulated datasets of 1,000 observations, we arc able
o obtain estimates in well under | min (running FORTRAN
code on a 750 MHz PC) which differ neghgibly from those
obtained by maximizing the exact log-likelihood function.
Achieving comparable accuracy without our acceleration Lech-
niques would require something on the order of a 10,000-fold
increase in computational effort,

Much of the discussion in this article may be readily
adapted to the multivaniate setting. With some additional work,
the ideas can also be extended to latent variable models. We
outline an approach to approximating the transition density of
a continuous-time stochastic volatility model, and illustrate by



estimating a simple model over weekly observations of the
U.S. treasury bill rate. We speculate that much carries over
to the time-inhomogencous case as well, however, we have
not examined such extensions carefully. Although 1t should be
possihle to apply techniques similar to those considered here
to jump ditfusions, this is also beyond the scope of this article.

A more exlensive application illustrating the techniques dis-
cussed in this article may be found in Durham (2000). Further
exploration of these and related techniques in multivanate and
latent variable setungs 1S underway.

The structure of this article is as tollows. Sectuon 1 intro-
duces the notation, and provides some theoretical results,
Section 2 describes the benchmarks which we will use for
evaluation of our lechnigues, Section 3 examines the pertor-
mance of the simulation-based method without any of our
acceleration technigues, Section 4 considers the issue of bias
reduction., Section 5 considers the issue of varance reduc-
tion, Scction 6 discusses the results of our numerical experi-
ments, Section 7 extends these ideas 1o the stochastic volatil-
ity model, Section 8 provides an application, and Section 9
concludes.

1. BACKGROUND

To begin, we define some notation, and provide a brief dis-
cussion of the theoretical framework. Let (2, F, P) be a prob-
ability space, and let W be a Brownian motuon defined on
it. Let {#,,r = 0} be the filtration gencrated by W and aug-
mented by the P-null sets of . Let ®& be a compact subset
of R¥. We are intercsted in the parameterized family ol scalar
diffusion processes {X(1:0),0 € ©} generated by the time-
homogeneous SDE

dX = p(X:0)dr+o(X:0)dW
X(1,: 8) = X,,.

Assumption 1. For each 0 € ®, (5) has a nonexploding,

umque weadk solution.

By nonexploding, we mean that there 18 zero probabihity that
the process diverges to infinity over any fixed time interval.
Sufficient conditions ensuring Assumption | are well known
(e.g.. Karatzas and Shreve 1991, sec. 3.3). For example, it suf-
fices that w and o satisfy global Lipschitz and linear growth
conditions. A variety of extensions 15 also available. Explo-
siveness would preclude the existence of a transition density,
and 1s thus disallowed, Note that stationarity 15 not required.

For s < t, suppose that X(f; #)| X (s: #) has a transition den-
sity plx,.t; x,, 5, @), and let

p"Nx,, t;x,,5.6)
= ¢(x,; x, +plx )t —75), rrj{._rh (1 —15)), (5)

where ¢ (x: e, ) is the Gaussian density, be its first-order

approximation. Let y =71, < --- < 7, = { be a partition of the

interval [s, r]. and let

{ﬂfﬁ{
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u
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m=|

where u, = v, u,, = x,, and A denotes the Lebesgue measure.
This will serve as our approximating density. or clarity, we
will often refer w p'''(-) as a subtransition density (or occa-
sionally simply subdensitv) when used n this context.

Suppose that one has a set of observations [X, =
X(1568%):0 = Qpeas n) of the process generated by
(5) with unknown parameter vector #°, and let P, ,
denote the probahility measure induced by {X,.....X, ]

Let [, (0) = 3" logp(X;.t: X, 1.1_,.0) and [M(8) =
o log pM(X 1 X, 1. ) denote the log-likelihood

functions associated with the exacl and approximate densities,
respectively.

Assumption 2. For all s < t, x, in the support of X (s: /),
e And M > |,

the densities p(-,r: x5, 6) and
pMi(s, 1 x., 5, 8) exist,

Pedersen (1995a) provides sutficient conditions for
Assumption (2) to hold, as well as regularity conditions ensur-
ing that

lim p™(., 1y x5, 0)=p(- t:x,.,5,8  inL'Y(A). (7)

M —s oo
We note that Pedersen’s results are obtained f{or multi-
variate processes. Pedersen’s Theorem 2 allows for time-
inhomogeneous processes. While this theorem requires a con-
stant diffusion function, we will see 1n Section 2 that, for
scalar processes at least, this does not impose a matenal con-
straint. Pedersen’s Theorem 3 allows for a vanable diffusion
tunction. but imposes other conditions.

Although Pedersen’s results assume Lipschitz and linear
growth conditions on gu(-) and o (-) that are not satished for
many applications of economic interest (including notably the
CIR square root process), we speculate that suitable extensions
should be possible using localization arguments along the hines
of, for example, Karatzas and Shreve (1991, thm. 5.2.5). Sim-
tlarly, we will examine subtransition densities other than the
simple lirst-order approximation shown 1n (5) (see Section 4)
and alternative random number schemes (see Section 3) which
are not covered by Pedersen’s results. Again, these exten-
stons seem plausible, but formal justification s left for [uture
work. The goal of this article 1s practical rather than the-
oretical, and Pedersen’s results will serve as a convenient
starting point. In particular, we assume the following, which

Pedersen’s Theorem 4 shows to be an immediate consequence
of (7).

Assumprion 3. For each # € (),

m!rimxf:;”*[ﬁj =1.(6) in probability under P, .
The difficulty is how to efficiently evaluate the integral n
Equation (6). Monte Cuarlo integration 1s generally the only

fcasible approach. To perform Monte Carlo integration, one



requires an importance sampler. Fix s <r, x, x,, 0, and M,
and let g(u,, . ... ty, ) denote a probability density on R ',
This will be our importance sampler. Some technigues for
constructing efficient importance samplers are discussed in
Section 5.

Lat oy = (aey g INETIE Y e e K] be indepen-
dent draws from g, and let

MBIt x..5,0)

| o

M ] .
- Z | I”-]- i |- p‘ ‘I{Ii‘:1"1- T"rq. !l‘”r”_]i T-"'—I‘ H:i [ﬂ}
X k=1 q['til.i ..... ”i--“-'—|1'| :

where u, , = x, and u; ,, = x, for all k. Then, given Assump-
rion 4 below, the strong law of large numbers implies that

Jiﬂ‘p‘”'“[.t,. Gx 80 —pM(x, 1 x,.50)|=0as (9)

A somewhat stronger condition provides /n convergence [see
Geweke (1989)].

Assumption 4. Let Uy=x., Uy, =x,, 0 € ©, and ¢ be
fixed, and let (U,....,U,_,) be a random vector with den-
sity ¢. Then

E[”ﬂ=|ﬂ“]{Um.Tm:Um 1*Tm r~”)] < 60

Our goal is to approximate log/,(#) for a given realization
of the process. For this, it will suffice to be able to approxi-
mate p(x,, £ x,.5,8) for arbitrary s < 1, x,. v,, and @. If we
can do this with arhitrary precision, and if the log-likelihood
function is continuous and ® is compact, then we can evalu-
ate the maximum likelihood estimator at this realization with
any desired level of accuracy. We do not treat the estimator
obtained by optimizing the approximate log-likelihood with a
lixed setiing of the tuning parameters as an object of indepen-
dent interest.

2. BENCHMARKS

The specification

dX = 0,(0, — X)dt + 0,V X dW (10)

with 6,, #,, and #, positive was proposed by Cox et al. (1985)
to model short-term interest rates. Since this model has a
known transition density and is frequently used in apphca-
tions, it provides a convenient means ol evaluating the effec-
tiveness of our numerical methods. If we let A =r—5 > 0,
¢ =26,/|0;(1—e"3)], and ¥ =2cX, then Y,|Y, is distributed
as noncentral chi-squared with 46,0, /6, degrees of freedom
and noncentrality parameter Y.e ** or, equivalently,

plx: b 8) = ce™ ! (v,"u]“’-’flfq[EM] (11)

where u = ex,e™™2, v =cx,. ¢ =20,0,/6; — 1, and I(-) is
the modified Bessel function of the first kind of order g.

For any experiments where synthetic data from the CIR
model are required, we generate them directly using draws
from the noncentral chi-squared.

Our base case uses the parameter settings 87 = (.06, .5, .15)
and A = 1/12. These settings are identical to those used in
Ait-Sahalia (2001) for ease of comparison, and are said o be
calibrated to match monthly observations of the 11.8. treasury
bill rate. We also test the methods discussed in this article
with other models and parameter settings with similar results.

We have found that better results are often obtained if the
SDE is first transformed (o make the diffusion term of constant
magnitude. With the CIR model, for example, setting ¥ = X
and applying Ito's lemma gives

)
i

8Y

2 ;
dY = [W{H, =L

—

o,
]d:+7'dw.

If py(y,.r: v, 5) denotes the transition densily of the trans-
formed process, then the density of the original process is
obtained in the usual manner by

dy N/ s B3 af&ge §
PLX 1 X B) = Pk ¥ 1Y 5) L {\/__}J;/_ )

dx|
In general. the appropriate transformation is given by ¥V =
G(X)., where G satisfies G'(x) = 1/ao(x). The constant of
integration is irrelevant. Tto's lemma then implies

dY =G(X)dX + %G”{X]U'J{X]dl
=[#{X1

|
#(X) ;cr’{!f}] dt+dW

[tloe

I —
=TEITG) - |G {F}]] dt +dW.

In many cases, (G can be obtained analytically; otherwise, it
may require a numerical integration. This does not pose any
serious difficulties. If the parameter vector enters into ¢ non-
linearly, the transformation will have to be recomputed for
cach candidate parameter, which may be inconvenient.

This transformation goes back (o al least Doss (1977), and
is also used by Shoji and Ozaki (1998) and Alt-Sahalia (2001).
(In contrast to those papers, our methodology does nol require
that the model be transformed.) The reason underlying its
effectiveness appeuars o be that it makes the process closer to
Gaussian. This improves the performance of the approxima-
tion p'™, as well as that of the importance samplers.

We compare the effectiveness of the various approximation
techniques using scveral different measures. First, we look at
some density plots. We fix a value for x,, and consider a range
of values for x,. For each value ol x,, we approximate the
density p(x,, f; x,, 5) a number of umes using different seeds
for the random number generator. We then compute the dif-
ference between the true and approximate log densities, and
plot the median and interquartile range of the approximation
errors for each x,.

The figures in this arficle are obtained using the pro-
cess defined by (10), with A=t —s=1/12, x, = .10, x, &
[.05,.15]. and 1,024 repetitions. For reference, the exact tran-
sition density with these settings is shown in Figure 1.

Since the object of ulumate interest is the log-likelihood,
it seems appropriate to examine the error in the log rather
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than the level of the density, Suppose, for example, that
plx,. 1 x., s)= 10, and we are able to compute it with an error
of +.1. This term would contribute an error of 4+.01 to the
log-likelihood, On the other hand, if p(x,,r x,.5) = .2, the
contribution to the log-likelihood of the same approximation
error would be in the range of [=.7, .4]. Il the approximation
error is greater than the level of the density. the computed
density can be negative. This is clearly catastrophic for the
log-likelihood. These distinctions are obscured if one exam-
ines the approximation error for the level of the density.

The second measure which we examine is the rool mean
squared error (RMSE) of the log-density approximation.
We approximate this by generating n = 100,000 simulated
observations from the model, and computing a sample ana-
log. that 1s,

i

|
RMSE = {f{lng plvix) —log p( vl.t}l):p{_n.ﬂdy d.tl (12)

L > i
~= ;Z{ I“g P'('T:-i-’pi‘[l}_r]ug rj{"'f-rll'tr'}) ' {13}
f=|

where we have denoted the approximate transition densily by
p. It is convenient to assume that the integral in (12) exists. At
any rate, the sum in (13) certainly exists for a lixed realization
{x;.....x,]. which is all we really need in order to compare
across approximation technigues.

Finally, we are interested in the accuracy of the parame-
ter estimates obtained by maximizing the approximate rather
than the exact log-likelihood. To measure this, we generate
J =512 data sets of length 7 = |.000, and compute A for
each repetition using the exact log-likelthood and the various
approximations, We compute the RMSE of the exact maxi
mum likelthood estimates with respeet o the parameter vector
used to actually generate the data, and the RMSL of the simu-
lated maximum likelihood estimates with respect to the exact
maximum likelithood estimates, that is,

i
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i ) "2
RMSE, E=MLE — | T Z(H‘-H.h - ) ‘
J - =l

¢ 1 /2

L ] I J * 3 1 ‘.
RMSEy p-smie = 7 L(”Ml.tz ~ Ogpis:)

=1

log transition density

na

%)
Qo

log p(X
®

s &

0.06 0.08 0.1

A

0.12 0.14

True Transition Densily and Log Transition Density for the CIR Model Given A =1—-8= 1,12, X, = .10, and # — (.5, .08, .15),

A reasonable goal might be 1o obtain an approximation error
on the order ot 1% of the error inherent in the MLE itself. We
arc able 1o casily obtain this goal for our test case.

Virtwally any method which one might reasonubly consider
should be able to approximate the log-likelihood function with
arbitrary precision given suflicient time. The key issue is how
quickly one 15 able to obtain sufhciently accurate results. Thus,
we also report computationul costs.,

As a matter of implementation, variunce in the Monte Carlo
integral can result in a great deal of jaggedness in the likeli-
hood surtace, which will severely degrade the performance of
the optimizer. However, this issue is easily addressed if, for
each evaluation of the likelihood function, one uses the same
sced Tor the random number generator used to draw samples
for the Monte Carlo integration, This is especially critical i
one is computing numerical derivatives. At any rate, for many
of the methods which we examine, it is relatively straightfor-
ward to obtain analytical derivatives.

3. SIMULATION METHOD WITHOUT
ACCELERATION TECHNIQUES

To establish a bascline. we begin by examining the sim-
ulation method as implemented by Pedersen (1995b). rhar
s, without any of our acceleration techniques. The impor-
tance sampler used by Pedersen s constructed by simulating
paths on each subdivided interval using the Luler scheme.
Supposc that § < 1, x, = X(y), and x, = X(f) are given.
The importance sampler is defined by the mapping 7'M
(Wioo oo oWy i 8) 1> (uy, ...,y ) given by the recursion

Uy = Wy + il D)+ ar(u,; )8 W

m+| -

m=0,....M-2 (14)
where u, = x,, d = (r—s5)/M, and W = (W, .
multivariate standard normal.

In this case. Equation (8) simplifies considerably. Since the
density of the importance sampler ¢ is identical to the first
M — 1 factors of the numerator, they cancel, and one is left
with
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Figure 2. Approximation Error, logp(X,.t;X,,s) —logp(X,.t;X,,s), Using Pedersen's Method Given A =t —s — 1/12, X, = .10, and 6 =
(.5,.06,.15). The median and interquartile range over 1,024 repetitions are plotted. The untransformed model is used in panels (a)-(c), and the

transformed model is used in panel (d).

where the {uw, 4 .k = 1,....K] are drawn from the
(M — 1)st component ol ¢. An alternate interpretation of
Equation (15) is to consider the right-hand side as the sam-
ple analog of E[p'" (x,, £; y_,, Tay—;. #)]. where the expecta-
tion is over u and with respect to the distribution induced by
X{Taa NX ) =X

Throughout this article, we use the method of antithetic
variates when drawing random numbers. This is a commonly
used variance-reduction lechnigque in simulation-based meth-
ods. To implement antithetic variates, one draws only K /2
samples from the multivanate normal, and simulates two paths
from each: T\ (W) = T"™M(W) is as described above, and
T'MY(W)=T"™M(=W) is its “mirror image.” While we have
found antithetic variates to provide only marginal benefit, the
cost is also negligible.

Figure 2 illustrates the approximation error which results
from computing the log density using this approach. The sel-
tings K =256 and M = 8 or M = 32 are used (recall that K is
the number of sample paths and M is the number of subinter-
vals). Panels (a)-(c) use the untransformed model. Panel (d)
uses the transformed maodel, which appears to provide little
benefit in this case. Increasing M reduces bias, but at the cost
of greater variance. Reducing the variance is costly since it is
CJUL - H'IL

Upon comparison with the tables and figures in Section 6,
the reason why this approach has not seen widespread use is

readily apparent. It would take a great deal of effort even to
match the accuracy of the simple first-order approximation, at
least for our test model,

4. BIAS-REDUCTION TECHNIQUES

There are two sources of approximation error which we
wish to address: bias due to the first-order approximation used
in the construction of p™ and variance resulting from the
Monte Carlo integration,

We begin with the bias. While it is possible to drive the bias
to zero by partitioning the intervals between observations suffi-
ciently finely, this can be computationally costly. We examine
two approaches toward reducing the number of subintervals
required to obtain a given level of accuracy. The first is 1o
replace the first-order approximation used in Equation (5) by
a higher order method. There are severaul possibilities which
one might try.

Elerian (1998) suggests using a transition density derived
from a scheme due 1o Milstein (1978). If the volatility function
r(-) 1s constant, the density is identical to that of the firsi-
order approximation; otherwise, it is given by

Diterun{Xys B2 X 8) =

w C"_:r)
expl - h(y/ Cz,
A2 P( Jeoshily €z,)
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Note that o'(-) denotes the derivative of or.

Kessler (1997) suggests using a Gaussian transition density,
but rather than using the first-order approximations for the
mean and variance, he proposes using higher order Ito-Taylor
approximations. We try a second-order implementation, that
1S,
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Notice that, for some models and parameter settings, 11 1s pos-
sible to obtain ¢* < (. The code should include a check to
watch out for this.

Shoji and Ozaki (1998) suggest a method which they refer
to as local linearization. Their approach requires a model with
constant volatility; however, as shown in Section 3, this results
in little loss of generality. Given

dX = u(X)dt +odW

(o 1s constant) and fixed x ., one begins with an application of

Ito’s lemma:
l- 1 ] LA -
dp(X) = S0 (X)dt+pu(X)dX.

Using the first-order Taylor expansion, we define

5 Y ¢ o i
mix)=plx )+ (x)x, —x, )+ S p (x, )(r—18).
The approximale density will be obtained from
dX = (X dt+adW.

which is an Omstein—U/hlenbeck process. One obtains
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Nowman (1997) suggests a similar approach, but simply
treating the volatulity as 1f 1t were constant on each sample
interval rather than transtorming the model so that it actually
1s constant. While he examines only the special case where
the drift function 1s linear, a plausible extension would be
to use a first-order Taylor expansion for the drift function as
described above, The resulting approximation s analogous (o
that of Shop and Ozaki, but replacing by a(x, ).

While Elertan ( 1998) uses the Milstein density in the con-
text of a simulaton-based approach, Kessler (1997), Shoji and
Ozaki (1998), and Nowman (1997) approximate the transi-
tion density between observations directly (i.e.. without using
intermediate points).

Another approach to obtaining higher order methods is
extrapolation. Given, for example, a first-order method, one
may construct a second-order method as ftollows:

,U"'m = pn+ KA+ ff»‘[ﬂi:}
p!™ = 4 KA/24+0O(AY)

ﬁ'iE”” a0 EI?IMH . IHI.'HI
— p+O(A)

where K is some unknown constant, If the approximate like-
lihoods are stochastic (i.¢., compuled by simulation), extrapo-
lation reduces bias, but at the cost of greater vanance. Since it
is possible to obtain a negative value for the extrapolated den-
sity, any implementation of this technique should check for
positivity, and fall back to the nonextrapolated value in case
of trouble.

Extrapolation is a well-known bias-reduction technique for
computing expectations of diffusion processes (sce Kloeden
and Platen 1992, sec. 15.3). That we are able to apply the
lcchnique in the present context is because our approach to
approximating the transition density is essentially an expec-
tation. Por Pedersen’s method, it is easy to see from Equa-
tion (15) that

[.‘lri']{ (M)

p _r,.r:_r_\.sj_-Ilp'“[ Ty ) AP (w) (16)

) A :
| Is the measure induced by the Euler scheme at
Ty 1. In general, one obtains

M
where P},

l“‘{r 1 %.5)
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() dOY (u) (17)
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where QL_,_]l 18 the measure induced by the (M — 1)st com-
ponent of the importance sampler and p.l‘:f_’l is the Radon-
Nikodym derivative of Ff'..,j:'{]] with respect to QL’:’”I, These
cxpressions may also be derived directly from (6).



5. VARIANCE-REDUCTION TECHNIQUES

We examine two approaches to reducing the variance of the
Monte Carlo integration shown in Equation (8): importance
sampling and random number schemes. Some of the tech-
niques are illustrated in Figure 3.

A basic principle of Monte Carlo integration 1s that one
should draw points with higher probability in regions where
the integrand is larger. Figure 4 illustrates why Pedersen’s
method performs so poorly. The paths in the figure are sam-

Pedersen's sampler

011}

frz il

time

Madified bridge with binomial tree

0.1

time

pled using the Euler scheme with x, = .08, A=+1-s=1/12,
and the SDE given in Section 2. The terminal point of each
path represents a draw from P;.:'_ﬁw The curve represents the
integrand of the right-hand side of (16) as a function of u with
x, = .11. It is clear that most of the samples are drawn from
regions where the integrand has lhittle mass. The importance
samplers discussed in this section are designed to address this
shortcoming. Elerian ef al. (2001 ) appear to have heen the frst
to consider the 1dea of using efficient importance sampling in
this context.

Brownian bridge

time

lime

Figure 3. Simulated Paths Drawn Using Various Importance Samplers and Random Schemes.



p{x‘. Lu, tM_1}

time

Figure 4, llustration of Equation (16). The terminal points of the
sample paths represent draws from Pl the curve represents the inte-
grand.

The first importance sampler we consider 18 based on the
Brownian bridge. A Brownian bridge 18 a Brownian maotion

started at x, at ime s and conditioned to terminate at x, at ime
{. The sampler 1s constructed 1n a manner stimilar to the Euler
scheme. In this case, the mapping 7'M (W,, ... W, i 0)—
(ty,...,uy_y) 1s defined by the recursion

“m- I =5 ”rh‘ —I_IL_"{”HJ"' Trrr.]ﬁ —I_G-{HI‘H' H}Stj lll.Fl!'l']

where the drift is given by

e

fi(x, r)= :
{—T

This 1s a true Brownian bridge it and only it o is constant
(which will be the case if we first transform the model as
discussed in Section 2).

Although 1t 1s certainly possible to compute the approximate
density directly from (8), there is an interesting interpretation
of this sampler based on Girsanov's theorem. Consider the
processes dX = p(X)dr+ o(X)dW and dX = ,ﬁ[f}d: +
a(X)dW with initial condition X(s) = X(s) = x,. Girsanov’s
theorem tells us that the Radon-Nikodym dernvative of the
probability measure generated by X with respect to that gen-
erated by X is given by

dp = pk(X)dW (18)

with initial condition p(y) = 1 and

- #(r}—ﬁ{.r}_
o(x)

We can thus obtain the continuous-time expression

P[-"r-“-"mh"'];[P{-’fw“ o Ty )Py () dQyy (1)

where Q,, | 1s the probability measure induccd by ,i’*{r,,,_l ).

The integral is computed by generaling samples
(g 1a T pp—y)s &k = 1,...,K} from the joint process

{X::{ll , p:{:f_'lj using the Euler scheme, and then computing

A

M. K ! T . h | : . ;
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k=1

It 18 easy to show by direct calculation of pﬁ“l that this

expression is equivalent to (8). We have found it to be more
stable to base the Euler scheme [or p on

g ]

k- o3
d(logp) = ~% dr+k dW

with imitial condition log p(s) = 0 rather than (18).

The second 1mportance sampler which we consider draws
i, from a Gaussian density based on the first-order approx-
imation conditional on u, and x,. That is, treating u,, and
iy, = x, 45 hxed, one draws w,,  , from the density

Pty |ty ttyg) = Pty | ) (g [ ) it |1,
~dd(u,, i u,+mnd, as)
X Uy iy, + 0", 0°8")
= Uy u, +@d*,a’s™)

1
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where 6 = (¢t —5)/M, &* =1t
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Notice that this importance sampler turns out to be iden-
tical to the Brownian bridge sampler, except for the factor
(M —m—1)/(M —m) in the variance. While it is not entirely
obvious that this should be the case, we will see that this mod-
ification results in much better performance. We will refer to
this sampler as the modilied Brownian bridge.

The third importance sampler which we consider was pro-
posed by Elerian et al. (2001). The idea is to approximate the
target density by a multivanate normal with mean and vari-
ance based on a seccond-order Taylor expansion of the log tar-
get density about the mode.

The log target density is given by

(M) s B
il --.“M_1|-1.-.1-11]

log p

Uy Uy, ..

M—|
. i1 ; -
— E g P Ll a0 Tott Wiss il

=1}

One samples w = (u), 15, ..., 1y ) trom N(p=, 2*°), where
(" =argmax, log p(ul|x,. x,)
a i
& =—| —logplulx.. 5. )| .
du'du

In practice, one obtains p* by starting with & =
(i), ... .ty ), Where it,, = x +m(x, —x,)/M, and tuking a



single Newton step toward the maximum. The derivatives of

log p(ulx,. x,) are straighttorward, but tedious to compute.

The key feature of this sampler is that it draws paths in
one shot rather than recursively. Implementing this sampler
requires solving a system of M — | linear equations, and com-
puting a Cholesky decomposition. To obtain reasonable per-
formance, it is essential that one take advantage of the tridi-
agonal nature of the relevant matrices.

As always with importance sampling, one should ensure
that the tails of the sampling density are not too thin; other-
wise, it will not he possible o drive down the variance of the
Monte Carlo integral despite using a large number of sam-
ple paths. One way to address this problem is by using Stu-
dent ¢ rather than normal increments in the construction of the
sample paths, One might also try the approach suggested by
Geweke (1989).

The second category of lechniques
which we examine is random number schemes. The method
of antithetic variates, as discussed in Section 4, 1s one such
scheme, although our results suggest that it provides only
marginal benefits n this context.

Recall from Equatons (16) and (17) that the density
approximation may be thought of as an expectation. Kloe-
den and Platen (1992, sec. 14.1) sugeest that, for comput-
ing expectations, the Gaussian increments (W,, ..., Wi ) in
Equation (14) (and similar expressions for the other impor-
tance samplers) may be replaced by other random variables
satisfying appropriate moment conditions.

One possibility 1s the random variable which takes on the
values 1 and —1, cach with probability 5. In addition to reduc-
ing variance, this scheme gives a speed increase, since gen-
crating normal deviates can be a significant fraction of the
computational effort. Furthermore, if M is sufficiently small,
1l 15 possible to compute the Monte Carlo integral by sum-
ming over all possible branches of the binomial tree ot length
M — 1. For example, setting M = 8 would require the com-
putation of 27 = 128 sample paths, which is entirely feasible.
Using the techniques discussed in Section 4, it 18 possible to
achieve low bias with small M. In particular, since this ran-
dom number scheme produces a method with no variance, it
is ideally suited for use together with extrapolation.

While expectations computed using the binomal tree
scheme are known to converge under appropriate conditions,
the properties of this scheme 1n the context of this article are
uncertain. Therefore, we also consider a related scheme which
provides much of the same benefit by less drastic means. The
idea is to control the “jaggedness™ of the sample paths by forc-
ing each vector of increments (W,,.... W,,_,) to have sample
variance one. This may be accomplished simply by using the
vector

variance-reduction

1 /2

- : W, ..
'rJ'—E} {M—] m I:l |

M=

5 WI'H'_ | ..] 1

and may be thought of as a weakening of the two-point idea,
which forces the sample variance of each individual increment
1o he equal to |,

6. NUMERICAL EXPERIMENTS

We first test our various technigques by approximating the
transition density as described in Section 2. The settings used
[or the various approximations will be |d-:nnhed by “sampler-
subdensity-M-K," [or example, the Brownian bridge sampler
used together with the first-order (Euler) subtransition densirty,
M =8, and K = 2506 will be identified as “bridge-euler-8-236."
The RMSE is also computed for these approximation schemes
(as described in Section 2). The results are summarized in
Table 1.

Figure 5 illustrates the performance of the varnous sub-
density methods when used to compute the transition density
directly (1.e., M = 1, no simulation). While the error associ-
ated with the simple first-order approximation is moderately
severe, a factor of 10 improvement is obtained if the model
1s transformed before applying the first-order approximation.
The scheme proposed by Elerian (1998) comes close to obtain-
ing this improvement without needing the transformation step.
When apphed to the transformed models, the techmques pro-
posed by Shoj and Ozaki (1998) and Kessler (1997) provide
an additional order of magnitude improvement over the Euler
scheme. Although not shown in the figures, we have found
these schemes to be of little benefit when used on the untrans-
formed model. The technique proposed by Nowman (1997)
provides nearly no benefit whatsoever.

Figure 6 tllustrates the Brownian bridge and modified bridge
samplers. The first-order approximation is used for the sub-
transition densities. The transtformation step is not used. Using
the Brownian bridge largely solves the main problem associ-
ated with Pedersen’s method. The modified bridge provides a
turther dramatic reduction in variance. Notice that panels (¢)
and (d) of Figure 6 use only K = § sample paths, as com-
pared to K = 256 for panels (a) and (b) and Figure 2(a)—(d)
(Pedersen’s method). We see that increasing the number of
subintervals brings the expected reducton n bias.

Figure 7(a) and (b) illustrates the use of extrapolaton and
Elerian’s subtransition density scheme, respectively, to reduce
bias. Panel (¢) shows the variance reduction due to normal-
ized variates. Panel (d) demonstrates that one still obtains the
expected reductions in bias and variance [rom increasing M
and K, respectively. All panels m this hgure use the untrans-
tormed model.

Figure 8 illustrates the Eleriun—Chib—Shephard (ECS) sam-
pler. This sampler seems to work well for M relatively small,
but the variance goes up dramatically as the number of inter-
mediate points increases. It was not possible to compute the
RMSE of the log density approximation with the ECS sampler
and M = 32 because the sampler often chose points below zero
(i.e., outside the range of the model). We follow Elerian et al.
(2001) by using the transformation ¥ = log X in this case.

While 1t 1s possible to obtain reasonably accurate results
using the untranstformed model, Figure 9 shows thal first lrans-
forming the model provides significant benefits, especially
when used with the subdensity scheme of Shoji and Ozaki
(1998) and normalized variates. With these settings, we are
able to obtain RMSE =~ 0006 with only M =8 and K = §.
The computational cost 1s about 16 s to approximate a like-
lthood with n = 100,000 observations using FORTRAN code



Table 1. RMSE of Log Densily Approximalions

Sampler Subdensity M K NV® Extrap.” RMSE Time*
Untransformed mode
None Euler 1 1 13678 2
Noneg Elenan 1 1 03550 2
MNone Nowman 1 1 14467 2
Padarsen Euler 3] 256 19353 539.5
Pedersen Euler 8 256 19353 538.3
Pedersen Euler 32 256 66310 2,169.8
Bridge Euler 8 256 053565 550.4
Bridge Euler 32 256 05570 2,211.2
Mod bridge Euler 8 8 03068 17.5
Mod bridge Euler 8 8 X 06103 26.3
Mod bridge Euler 8 a X 02404 191
Mod bridge Euler 32 32 X 01180 299.3
Mod bridge Euler 32 128 X 00713 1,227.1
Mod bridge Elenan 8 8 03562 24.6
Mod bridge Elerian 8 8 X 01856 25.0
Mod bridge Elerian 32 32 X 01206 401.2
Mod bridge Elerian 32 128 X 00656 1,603.8
ECS Elerian A 8 07207 30.4
ECS Elerian 8 8 X 05164 0.3
ECSH Elerian 32 32 X 46920 403 .6
ECS” Elerian 32 128 X 29973 1,582.2
Transformed model

None Euler 1 1 03790 2
None Shoji | 1 01412 3
Nona Kessler 1 1 00864 e
Pedersen Euler a 256 16500 338.2
Pedersen Euler 32 256 57507 1,254.5
Mod bridge Euler 8 8 00812 10.8
Mod bridge Euler 64 3] 00255 80.7
Mod bridge Euler B 8 x 01795 16.6
Mod bridge Shoji 8 8 00070 16.0
Mod bridge Shoji 8 8 1 00057 16.4
Mod bridge Shoji 32 32 X 00030 248.7
ECS Shoji 3 3 X 00072 25.3
ECS Sholji 3z 32 X 315.5

00020

" AN "y in thes column indicates nonmahsed vanatos wora sl oimananse, antithetic varnates

U An “x” in this column indicates exirapolation was used.

 Compuling time (in séconds) reguired 1o chiain likelihood for n — 100,000 observations using FORTRAN code on a 750 MHz PC
9 With these settings, the sampler frequently chose points x, < 0, thus, following Elerian l al, we wusad tho transformation ¥ — leg X

on a PC running at 750 MHz. It would be virtually impossible
to obtain anywhere near this level ol accuracy using Peder-
sen's method without our acceleration lechmques.

Tables 2 and 3 show the errors which result from estimating
parameters by maximizing the approximate rather than exact
log-likelithood. Results are shown for several different settings
of the model parameters. The errors are estimated by Monte
Carlo simulation with 512 repetitions over synthetic datasets
of n = 1.000 observanions. The SMLE estimates are obtained
using the modified bndge sampler, Shoji and Ozaki's subden-
sity, M = 16 and K = 16. For comparison, we also compute
parameter estimates using the first-order Euler scheme approx-
imation. The transformed model is used for all of the experi-
ments shown in these tables. It should be noted that the Luler
scheme approximations thus obtained can be expected to be
significantly better than those typically obtained by practition-
ers without implementing the transformation (see Fig. 5).

Table 2(a) uses the baseline model settings, #° =
(.06,.5..15) and A = 1/12. Recall that these are calibrated to
monthly observations of the U.S. short-tcrm interest rate. For
these model settings, we also compute parameter estimates

using Pedersen’s method with M =8 and K = 256. Peder-
sen's method 1s unable to match even the Euler scheme. On
the other hand. the approximation errors of the SMLE esu-
mates obtained using our techniques are negligible (compare
with the sample distribution of Oy, » — "),

Panel (b) increases the volatility of the model. Note that
computing the exact likelihood requires the evaluation of a
Bessel function, which in turn requires 26,8, /07 > 1. Setting
8" = (.06, .5,.22) comes quite close to this boundary. For
some samples, the constraint appears to bind when maximiz-
ing the likelihood. These samples arc discarded. This model
causes our methodology some difficulry, apparently because
the data often venture close to the singularity at zero. The
estimates are nonetheless quite good.

Panel (¢) reduces the model's volatility to 0, = .03.
Panel (d) sets the mean reversion parameter to ¢, = 4. Again,
the constraint 26,6, /6; > 1 comes into play. Neither ol thesc
tests presents any difficulty to our methodology.

Panel (e) increases the mean reversion parameter by a factor
of 10 to ¢, = 5.0. Panel () uscs the baseline setting for 67,
but stretches the sampling interval 1o two years, Both of these
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Figure 5. Approximation Error, log p( X, . t; X,.8) =logp( X, .t, X, ,s), for Various Schemes Without Using Simulation (ie, M=1, K=1) Given A =

t—s=1/12, X, =.10, and # = (.5, .06, .15).

settings result in large biases for the first-order approximation,
but pose little difficulty for the SMLE technique.

7. STOCHASTIC VOLATILITY

While the previous sections have focused on techniques
designed to efficiently approximate the likelihood function for
scalar models, most of these i1deas are easily generalized to
the multivariate setting. With some work, they may also be
apphed to latent vanable models. The short-term nterest rate

and many other financial time series are well known o exhibit
properties such as fat-lails and persistent volatlity patterns
which are inconsistent with time-homogeneous scalar models
(c.g., Ghysels, Harvey, and Renault 1996). A variety of alter-
native models has been proposed. To illustrate our methodol-

ogy, we will examine stochastic volatility (SV) models of the
form

dX = pux(X)dt +oy(X)exp(H)dW,
dH = p (X, H)dr+o,(X, H)dW,.
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and A= (.5, .06, .15). The median and interquartile range over 128 repetitions are plotted. The untransformed mode! is used.

Such models have been examined by Gallant and Tauchen
(1998). Andersen and Lund (1997), and Eraker (2001) among
others. The second component, H, corresponds 1o an unob-
served volanlity factor.

In order to obtain a likelihood, the unobserved factor must
hbe integrated ount. Several ways of going about this have
been proposed for discrete-time models, for example, Daniels-
son and Richard (1993), Jacquier. Polson, and Rossi (1994),
Richard and Zhang (2000), Sandmann and Koopman (1998),
Kim, Shephard, and Chib (1998). and Pitt and Shephard
(1999), In the contnuous-time context, it is less straight-
forward to integrate out the unobserved factor, and alterna-
tive approaches are used. The efficient method of moments
approach has been used by Gallant and Tauchen (1998) and
others, Merthods hased on the empirical characteristic function
have been proposed by Chacko and Viceira (1998) and Sin-
gleton (1997). Markov chain Monte Carlo approaches have
been proposed by Eraker (2001), Jones (1999b), and Elerian
(1999),

We now outline a techmique to approximate the likelihood
of continuous time SV models. For simplicity, we will assume
that W, and W, are independent; this is not an essential part
of the methodology. We provide a small Monte Carlo study
which demonstrates that the procedure is effective and reason-
ably last. The methodology is used to estimate an SV model
of the LS. short-term interest rate in Section 8. Further refine-

ments are undoubtedly possible; a more detailed study is cur-
rently underway.

The basic 1dea 15 relauvely straightforward. We are inter-
ested in the process (X(¢), H(r)), where X 1s observed at
times 4, f,, ..., 4, and H is latent. Let X, = X(¢,), H. = H(t,),
and Fo=0(Hp, Kgi XpsoonaXp) PO T= 1,058 The goal 18
to obtain p( X, |F,). If we knew the distribution of I |7, we
could use

p(X

Ty = [ POy X h) dPy 7 ().

i+l

We will approximate H,|F. Given the distribution of
H._,|#,_,, 1t can be propagated forward using
Xl F H_ |F._
JI'J{_IIJ' llj.-ll}: FI: r| f=] i Ir”']( i I| .l_I_1j
P(X.'Lr.' 1,}

p(H|F) = | p(H|X, b )dPy_ 5 (hi_).

[t remains only to find H,. The approach we take is to estimate
H, as an unknown paramecter, although one could equally well
integrale il oul using an appropriate importance sampler. This
s the basic idea of a particle filter (see, e.g., Pitt and Shephard
1999 and the references therein).

To mmplement this 1dea, we use the following procedure.
Consider the model

dZ = u(Z)dt+o(Z) dW
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Figure 7. Approximation Error, log p(X,.t; X,.s)—logp(X,.t; X,,s), for Various Simulated Likelihood Schemes Given A —=t—s=1/12, X, = .10,
and 8= (.5, 06,.15). The median and interquartile range over 128 repetitions are plotted. The untransformed mode! is used.

where

X (2N o fo(ZY 0 (W,
Z‘(H)‘”_(HH{Z})‘”“( 0 ou(2)) "V =\my)
The problem is to determine the density p(X,, |7, ¢). where

3-,- —_ U(Hﬂ, Xﬂ, X], oy X."}‘
The first-order approximation is given by

p'Nz,, b s, ) =@z 2, + (2 ) —s5), 2zt —5))

where ¢ is the multvariate Gaussian density and 2 = oo’

Also, let s=1, <1, <+ < T, =1 be a partition of the inter-
val |s, ¢]. and let
5, (1)

M)y o
P [mr*fﬂﬂ*

M
:f .l_l Pnlfxu“lm'fm; l'*'.*In-r-l'Tﬂl—l'E”d‘}"{'."‘:'lr'''

= |

"o H.-"Lr_l }

where w, &€ R for m=0,..., M, A is the Lebesgue measure
in R*'Y=1 and we use the convention w, =z, and w,, = z,.
Since H 1s unobserved, it must be integrated oul as well. One
obtains

PN <o 6

X, X
=fﬁ’1'”'((h_'+l)- fivrs (h:)‘ fis H) APy, 1o (his higy).
i+l

As 1n the scalar case, the integrals are evaluated using
Monte Carlo integration. Let g(vy. ("), ("), ... ("), vy)

' ' Uni

be an importance sampler on R*Y and let
i ' ",
, k. M-
Wi =\ %.o» 37 W oy e R, Veom |
' I
k1 Ve M1,

be draws from ¢, Then one defines
P'M'H[XH: 7, @)

g T () i () 100)
K [ LI(UI;_I!J‘ (:::}* {:':;) ..... (T:-:‘l']., 'I',lk.”")

with the convention u, , = X; and u, ,, = X, for all k.
The theoretical framework is essentially unchanged from
the scalar case. In particular, sufficient conditions for

lim p" (57,680 = pl.t: 2,.5.8) in L'(A)

M —ac

may be found in Pedersen (1995b). For a fixed realization

T S X, 1), one obtains (with standard regularity condi-
tions)

lim p™ K (x,, 1 F.0) = pM(x,,,: F,. 0)

K—oo

from the strong law of large numbers in the usual way.
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The 1ssue of how to construct the importance sampler
remains to be addressed. The approach taken in this article is
as follows. Suppose that the distribution of H, |7, i1s known.
We need a way to sample

= (LJ'] . ( ! ) ‘ ( . ) lllll ( ). ll]kf ) l
. . L | I"E Ear—1
First. draw v, from H,| .. and let 1, = X,;. Now, proceed recui-
sively for m=0.,..., M — 2: given (u,, v, ), draw u,, , using

the modified Brownian bridge sampler described 1in Section 5:

- |
“m-—l T ‘h"r': ”m +-r"'"l""h mﬁ* (T; rrra}

X —u

- +1

#‘J{,nr = ( f = )
'rr'—l-E Tm

3 - fM—=—m—|
{T.’l:'. Hi == ’“T.’\'{“Jrr' Uun]

M—m

and draw v “blindly,”

i+ |

l”.l.r|+| o N{ I'jJ'.f.l + iu"ﬁ'.mﬁ' ﬂ'.;a‘ ruﬁ}

#’H. mo— H’H { “m . l:HI }

- ] i |
IIT.’.F. " == UH(”HN ["m}

where 6 = (1, —(,)/M. And finally, draw v,, using the same
procedure as form=1,... M—1.

Now, we need to propagate the distribution of H.|7F. for-
wird, Consider the X draws {v, .k = 1,..., K} from the
sampler, together with the corresponding weights

1§ o ) I B ol B SRR

EL. m n—1
P= i g My 3 My ar— :
g(vg o5 (1=L|)' (u.i)‘ s (u..u '), Y ar)
Let {L ce=1a s K} denote the weights after normalizing so
that they sum Lo |. The collection {(v, . A ) k=1..... K}

of puints and weights may be thought of as representing a
discrele approximation to the density H, |7, .

Various techniques are available to form a distribution func-
tion from this approximation and draw points from it. While
one could simply use the approximation

FHI'-I :'F||i{-h|: H‘-l) ~= X ;’J."

-‘.Z:i'J'_.” < fy

the resulting likelihood function is discontinuous in ). and
will cause difficulties for the optimizer. Therefore, we use a
Hermite function to approximate the density, and draw points
from 11 instead.

We repeat the Monte Carlo experiment of Eraker (2001)
using the methodology described above. Synthetic datasets of
length n = 500 are generated from the model

dX = (0, + 0,X)dt +exp(H/2)X'? dW,

dH = (0, + 8,H) dt + 0,d W, (19)
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Figure 9. Approximalion Error, logp(X,.t; X,,s) —logp(X,.t; X;.s), for Various Simulated Likelihood Schemes Given A=t—-s=1/12, X, = .10,
and # = (.5,.06,.15). The median and interquartile range over 128 repetitions are plotted. The transformed model is used.

with parameter vector #° = (.0002, —.002, —.3, —.03, .3).
This model 1s said to be calibrated to the U.S. short-term inter-
est rate with time measured in days. Data are generated using
the Euler scheme with 50 subintervals. Estimates are obtained
using K = 128 sample paths and M = ¥ subintervals. Little is
lost by reducing the number of sample paths to K = 64. We
do not recommend using less than this. Increasing the number
of subintervals does not improve the precision of the estimates
sigmiicantly, The mean, standard error, and RMSE of param-
eler estimates over 512 Monte Carlo repelitions are shown
in Table 4. For comparison, we reproduce Eraker's results as
well. Our results are very similar. The computational cost is

about 1.2 s per evaluation of the likelihood function on a
750 MHz PC.

Note that the estimates of #, and (), appear to be quite
imprecise. This i1s due to the parametric form of the model.
In contrast, the estimates of #, /6, and #,/#, are quite good.
While we have maintained the model in the form used by
Eraker, it might be better to instead use

dX = 0,(X — ) dt+ oexp(H)X'" dW,
ﬂ'H = H4H dI+H5dW_1

where i = —#8, /6, and o = exp(—0.,/0,),



Table 2. Approximation Errors for Parameter Estimales

f, i, log L

(a) #2 — (.06, .5,.78), A=1;712,dF = 5:33
MLE-TRUE: Mean 00061 04890 00020 1.541237
Std. err. 00796 12532 00340 1.24511
AMSE 00797 13442 00341 1.98074
MLE-EULER: Mean 00026 01781 00374 .19031
Std. err .00003 01103 00076 54499
RMSE 00026 02095 00382 B7700
MLE-SMLE": Mean —.00062 — 00801 —.00223 8.07971
(Pedersen) Stel. err. 00256 03681 00175 4. 76355
RMSE 00264 03765 00284 9.37802
MLE-SMLE"; Mean 00000 —.00005 —.00000 —.00469
Std. err. 00000 .00073 .00001 01340
RMSE 00000 00073 .00001 01419

(b) @ = (.06, .5, .22), A=1/12, df* =248
MLE-TRUE: Mean —.00031 05973 00012 1.55119
Std. arr. 01136 12808 00535 1.25344
RMSE 01136 14126 D0535 1.99386
MLE-EULER: Mean 00069 04941 L0701 3.01730
Std. err, 00014 03111 00136 1.90071
RMSE 00070 05838 00714 3.56548
MLE-SMLE": Mean 0000 —.00357 00018 03479
sld. e 00014 D1678 00119 93214
RMSE 00014 01714 00120 93187

(c) =06, .5 03, A=1/12,d"= 13333

MLE-TRUE: Mean 00005 04378 .00001 1.57035
Std. err. 00162 12239 00070 1.29601
RMSE 00162 12992 00070 2 03567
MLE-EULER: Mean 00001 01287 00087 00428
Std. err. 00000 .00595 00015 05930
RMSE .00001 01418 00069 05942
MLE-SMLE": Mean 00000 —.00011 — 00000 —.00227
Std. err. 00000 00005 .00000 00107
RMSE .00000 00013 00000 00251

NOTE: Results of Monta Carlo study assessing the quality of parametar estimates obtained using various technigues. Each experi-
ment uses 212 rephcations, each gver synthetic datasets of 7 = 1,000 cbservations. The goal is for the distance from the apgrosima-
tions to the exact MLE to be a small fraction of the distance from the exact MLE 10 the data-generating parameter.

A Degrees of freedom of the exact noncentral chi-square transition density.

U Samplar — Pedarsen, subdensity — Euler, M — 8, K — 256, transtormed model,

~ Sampler = modified brnidge, subdensity = Shoji and Ozaki, M = 16, K = 18, normallzed varales, transformed model

Note that our methodology can be easily used to esumate
discrere ime SV maodels hy serting M = |. We have tested the
methodology using some of the models examined by Jacquier
et al. (1994) and others with similar results,

8. APPLICATION

To 1llustrate the methodologies proposed in this article,
we estimate some simple models of the short-term interest
rate. We use the dataset previously examined by Gallant and
Tauchen (1998), which consists of 1809 weekly observations
of the three-month treasury bill rate (January 5. 1962-August
30, 1996). Rates are annualized and quoted on a discount
basis. The data are plotted in Figure 10,

We first fit a sunple scalar model, dX = (6, + 6, X ) dt +
B, X% dW. commonly referred (0 as the constant elasticity of
volatility (CEV) maodel. It has been studied previously (using
other esumators and data) by Chan et al. (1992), Tauchen

(1995), Ait-Sahalia (1996), Conley, Hansen, Luttmer, and
Scheinkman (1997). and others.
We also fit the stochastic volatility model given by
dX =(0,4+0,X)dt+ 0 X" e" dW,
dH = 0:H dit + 8, dW,

(20)
(21)

with W, and W, independent. Similar models have been exam-
ined by Gallant and Tauchen (1998), Andersen and Lund
(1997), and Eraker (2001). Time is measured in years.
Maximum likelihood estimates and log likelihoods are given
in Table 5. For the scalar model, we have used M = 16 and
K = 16 with the modified bridge sampler, transformed maodel,
normalized varance random scheme, and Shoji and Ozaki's
subdensity. For the SV model, we use M =8 and K = 256
with the techniques described in the preceding section. Since
the scalar model 18 nested within the SV model, the restriction



Table 3. Approximation Errors for Parameter Estimates, Continued

0,

o

(d)
MLE-TRUE:

MLE-EULER:

MLE-SMLE":

e
MLE-TRUE:

MLE-EULER:

MLE-SMLE®:

)]
MLE-TRUE:

MLE-EULER:

MLE-SMLE":

# = (.08, 4, 15}, A=1/12, df* =427

Mean
Std. err.
RMSE

Mean
Std. err.
RMSE

Mean
Std. err.
RMSE

00077
01019
01022

00027
00005
.00027

—.00000

.00002
00002

g°=(.06, .5, .18), &

Mean
Std. err.
RMSE

Mean
Std, err,
RMSE

Mean
Std. ermr.
RMSE

7 ={.06, .

Mean
Std. err.
RMSE

Mean
Std. err,
RMSE

Mean
Std. err.
RMSE

00007
00082
ooos2

00018
00001
00019

00000
.00000

00000

00036
00173
00176

00367
.00020
00367

00006
00004
00007

1/12, di* =53.33

04589
11201
12099

01459
01066
01807

—.00011
00109
00109

01506
46302
486300

B3515
16274
84919

-.00734
00423
00847

5,.18), A=2, d* =533

00126
04305
04302

21218
02967
21424

00712
00778
01054

B,

00008
00347
00347

00320

00072
00328

00001

00000

00427
00427

00266
00257
02679

00002
00005

00038
00564
00564

05275
00458
05295

00041
00091
00100

1.55436
1.28351
201539

27005
60164
65920

01275
03611
03827

1 508353
1.39283
211592

31509
73929
80325

—-.14917
04223
15502

1.52724
1.24582
1.87013

2119312
5.66304
21.83523

—-2.63215
95334
2.79916

£ Degrees ol freedom ol the exact nonoentral chi-square transition density.
% Sampler — Pedersen, subdensity = Euler, M = B. K = 256, transformed moael

- Sampler = modified bridge, subdensity = Shoji and Ozaki, M = 16, K - 16, normalized vanates, transformed model,

can be tested using, for example, the likelihood ratio statistic.
Although setting ¢, = 0 causes f; to become unidentified, this
issue may be addressed along the lines of, for example, Gallant
(1997) or Andrews and Ploberger (1994). In any event, the

SV model results in a huge improvement in the log likelihood.
The scalar model does not appear to be plausible.

Notice that the estimates for #, and 6, are insignificantly
difterent from zero in both models. In a more exhaustive study,

Table 4. Monte Carlo Study for SV Model

o, i, f, /8, i, fl, ty/8, #,
True 00020 ~.00200 —.10000 30000 —.03000 10000 30000
SMLE
Mean .00089 - .00886 -.10319 —.43425 04350 10040 31734
RMSE 00102 00986 05523 27931 02802 .00493 .06888
Eraker (2001)
Mean 00127 -.01271 —-.38174 03873 24297
RMSE .00154 01468 21844 02209 07173

NOTE: Mean and root mean squared error of parameters estimated on synthalic data (n = 500) generated from (19). The sampling
frequency is Al = 1. The pararmeters are callbrated to match U.S. shor-term interest rates with time measured in doys The Monte
Carlo exparimeant was run for 512 repetitions. Monte Carlo results fram Eraker (2001) are included for comparison



] L L

Q 200 400 600 800

L Ll
1000 1200 1800

|

1400 1600

Figure 10. Weekly Observations of the Three-Month Treasury Bill Rate, 1/5/1962-8/30/1996, n — 1809,

Durham (2000)) finds that the constant term in the drift s
needed to avoid having an artracting boundary at zero, but rhat
the benefits of including additional terms are neghgible. This
is true for both the scalar and stochastc volatulity models.

Notice also that the esumates for ¢, and ¢, are similar
for both models (the unconditional mean of H 1s 0, and
thus exp(H) vacillates around 1). The estimates are shightly
lower in the SV model since this model generates conditional
densities with thicker tails, which helps to catch the extreme
events. These parameters are estimated quite precisely in the
scalar model, Including the unobserved component reduces the
precision of these estimates, but not to an unacceptable degree.
There is a great deal of covariance between #, and 65 in the
SV model. Volatility tends to be high when interests rates are
high: the estimator has difficulty distinguishing whether this
18 due to persistence or a level effect. Much of the lack of
precision in these estimates appears to be due to this.

The volatility component 1s an Ornstein—Uhlenbeck pro-
cess, Its unconditional distribution 1s Gaussian with mean zero
and variance #7/(—265) =~ .34, The mean reversion parame-
ter 18 about —4, which corresponds to a half-life of about two
months.

9. CONCLUSIONS

Despite the theoretical advantages of maximum hkelihood
estimation, 1t has been seldom used in estimating continuous-
time diffusion models. The transition densities are not known
for most models of interest, and previously available approx-
imation techniques have either been of questionable accuracy
or computanonally intensive,

The simulation-based approach suggested by Pedersen
(1995b) and Santa-Clara (1995) 1s appealing {rom a theorel-
ical and intuitive viewpoint; however, we find that it can be
prohibitively costly to attain even the accuracy ol the simple
first-order approximation. Eraker (2001), Jones (1999a), and
Elerian ct al. (2001) propose mieresting MCMC approaches
to estimating diffusion models. Elerian et al. suggest the idea
of improved importance sampling to accelerate the conver-
gence ol the Monte Carlo integration at the heart of the
simulated likelihood approach. However, computational cost
remains high.

We build upon this work, examining other importance sam-
plers, alternate random schemes, higher order sublransition
densities, extrapolation, and a variance-stabilizing transtorma-
tion of the model. Combining these ideas results in highly
cfficient approximations. When applied to synthetic data (n =
1,000) generated by a CIR model with parameters calibrated
to match monthly observations of the U.S. short-term inter-
est rate, we are able to obtain maximum likelihood estimates
with a negligible approximation error in well under | min. The
log-likelihood function itself can be approximated with great
accuracy in about .| s,

Our results suggest that the best performance is obtained
using the modified bridge sampler with the subtransition den-
sily of Shoji and Ozaki applied to the transtormed model. The
number of subintervals M and sample paths K must be deter-
mined by experimentation.

Future work will undoubtedly uncover further refinements
in these techniques, as well as point to situations where one

Table 5. CEV and SV Models Fitted to Weekly Observations of the Three-Month Treasury Bill Rate,
Jan. 5, 1962-Aug. 30, 1996

Maodel log L i, f, H, B, te i
CEV 512.32 B277 —.1049 1032 1.4502
(.5004) (.1167) (.0038) (.0210)
SV 913.95 176 019 105 1.247 4.104 1.682
(.291) (.066) (.028) (.154) (.747) (.144)

NOTE: Parameter astimates for CEV model and the SV model in Equation (20), Standard errors are in parentheses below the

parameter estimates. Time 15 measured in years



or the other particular vanant may be preferred. While the
main focus of ts article i1s on scalar models, an approach
to applying some of the ideas to estimate a two-factor, latent
variable model is also proposed. Extending these techniques
lo models with jump components would also be of interest.
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