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Stochastic differenrial equati ons often provide a convenient way to descrihe the dynamics of economic 
and financial data, and a great deal of effort has heen expended ~earching for e fficient ways to e~timat e 

models based on them. Maximum likelihood is typically the estimator of choice; however. since the 

rmns itinn density is gen~rally unknown, <lne is fon:ed to approximate it. The ~imulation-ha~ed approach 
suggeste.d by Pedersen ( 1995) ha.~ great theoretical appeal. but previously available implementations have 
been computationally costly. We examine a variety of numerical techniques designed to improve the 
pe rformance of this approach. Synthetic dam generated by a Cox-Ingersoll-Ross model w ith parameters 
(alibrutetl to mut(h rnunlhly observation' uf the U.S. short-Lema inlen,st ratt' are used us a te~L c.:ase. 
Sine~: Uu:• likelihood fum:!ion of tbi> process is known, the yuality uf U1e approximation> c.:an be e.as ily 
evaluated. On dat;l>ets with I ,000 observat ions. we are able to approx.illlate the maximum likdil1uutl 
estimator with neglig ihle errnr in we ll under I min. This r~·presents something on the order of a 10.000
fold reducti on in computational e ffort as compared to implementation~ withnul these enhancement ~. With 
other parameter settings designed to stress the methodology. performance remains strong. These idea~ 
are eas il y generali zed to multivariate settings and (with some additional work) to latent variable models. 
To illustrate. we estimate a simple swchastic volatility model of the U.S. short-term interest rate. 

  	  
 

Stochastic differential equations (SDE's) often provide a 
convenient way to model economic and financial data, and 
their use has become increasingly common in recent years. 
Although the process specified by a stochastic differential 
equation is defined in continuous time, lhe data which arc 
available arc typically sampled at discrete time intervals. The 
resulting esti mation problem turns out to be nontr ivial, and 
considerable energy has been expended in developing compu 
tationally (and statistically) efficient estimatio n schemes . 

In this article, we focus primarily on scalar, time
homogeneous processes. In particular, we consider lhe diffu
sion process generated by an SDE of the form 

dX = p.(X ; 0) dt -1 o-(X ; 0) dW 

X(10 ) = 	 ( I )X0 

with parameter vector 0. Suppose that the sample [X; = 
X(t;). i = 0.... , nJ is available for analysis. The observations 
need uot be equaUy spaced. 

Ideally, one would like to know lbt:: transition density, which 
would allow ont:: to t:ornputc the maximum likelihood estima
tor with its usual optimalily propertic~. Although e xact transi
tion densities are known in only a few isolated cases. several 
approaches toward approximating the transirion density have 
been proposed. 

Lo ( 1988) suggests numerically solving the Fokker- Planck 
partial differential equation for each observation_ Pedersen 

(1995b) suggests a simulation-based approach which involves 
integrating out unobserved stalt:s of the process al intermediate 
points beLwt::en eat:h pair of observations (see also Santa-Clara 
1995; Rrandt and Santa-Clara 2002). While this approach, 
commonly known as simulated maximum likelihood estima
tion (SMLE), is able to come arbitrarily close to lht:: trut: tran
sition density, pn:viously available implementations have been 
computationally burdensome. 

Other approaches have been proposed which are much less 
computationally costly. For exampk, the process described 
by ( I) has a first-order approximation given by the discrere
ume process 

E,"- N(O. J) . 	 (2) 

Under mild regularity conditions, the maximum likelihood 
estimator bascll on lhis approximation is known to con
vt::rgc lo lhc true maximum likelihood estimator as the sam
pling interval goes to zero (f.lorens-Zmirou I Y!N). While this 
approach is very appealing from a computational viewpoint. 
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the approximation may not be sufficient ly accurate for the 
sam pling frequencie s at which reliable data arc available. 

The re are various ways in which one might improve upon 
this idea. Elerian ( 199R) suggest~ replacing the Gauss ian 
density in (2) by a nonce ntral chi-squared density which is 
derived from the Mih.tcin scheme, an order 2.0 weak approx
imation to the true process . Sh~ji and Ozaki ( 1998) linearit.c 
the SDE, ohtaining a n approxima ting Ornstein Uhlenbeck 
process (the exact tran sitio n density of an Orn stein-Uhlenbeck 
process is known). Kess ler ( 1997) approximates the transi
tion function by a Gaussian dens ity with first and second 
moments obtained from higher order Ito-Taylor expans ions. 
Alt-Sahalia (200 I ) approximates the tmnsition densiry using a 
He rm ite function with coefficie nts obtained us ing higher orde r 
lto-Taylor expansions. Except for Ait-Sahalia (200 I). these 
methods still require the sampling interval to go to 7.ero to 
obtai n convergence tn the true transition de nsity. While this 
requirement also holds for Alt-Sahalia's approach wirh a Her
mite function and Ito- Taylor expansion of fixed order, AIL
Sahalia ' s a pproximati o n may he made arbitrarily accurate with 
fixed sampling fre que ncy by using a Hermitt: function and 
lto-Taylor expansion of suffic iently high order (given some 
reg ularity conditions). 

Various method-of-mome nts approaches have also been 
proposed. Chan, Karolyi. Longstaff, and Sande rs (1992) 
usc moments based on Equation (2). Duffie and Singlt:ton 
( 1993). Gallant and Tauchcn (1997), Aihhy and S~rensen 

( 1995). and Gourieroux. Monfort, and Re na ult ( 1993) com
pute expectations usin g s imulation-based methods. Hansen 
and Scheinkman ( 1995) and Duffie ami Glyn n ( 1996) use 
mome nt conditions ohtained from the infinitesimal ge nerator. 

The s imulation-based methods can he co mputationally 
costly, hut have the advantage of being ea ily adapted to dif
fusions with unobserved state varia bles. Stochastic volatility 
models and term struc ture models are importHnt applications 
where these techni4ucs have heen found useful. The effic ient 
me thod of moments proposed by Gallant and Tauchen ( 1996) 
approaches the efficiency o f maximum Likelihood asymptoti
cally. a nd provides a convenient set of diagno~;tic measures for 
model "pecificarion . 

Markov c hain Monte Carlo (MCM C) methods have been 
proposed by Erake r (200 I ), J ones ( 1999a), and Elcrian, Chi b, 
and Shephard (200 I). There is a close relation ship between 
MC MC methods and SMLE. For example, Elcrian e t al. point 
out that their importance sa mpler can also be used with the 
s imulat ion-based approach of Pedersen ( 1995b) to subs tan
tially reduce the computational effort required lO obtain rea
sonably accurate likelih ood approximations . 

ln this article, we focus on the SMLE approach. Tht: basic 
idea is quite simple. Suppose that one wishes to obtain the 
tra ns ition den sity p ( r,, r: x, , s ). The ti rst-order approximation 
p{ll(x,. t : x. , s) defin ed by (2) will he accu rate if the interval 
l~ . tJ is s ufficientl y s hort . Otherwise. one may partition the 
inte rval s = < · · · < T~o~ = r '>Uc h that 1he fi rst-orderr 1 < r2 

approxima tion is sufficie ntly accurate on each subinter val. The 
random variables X(r1}, ••• , X( rM _1) ar e, of course, unob
served , and must be integrated out. Becau:.c Lhc process is 

Markov ian. one obtains 

1p(x, t ; x,. s) ~ p 'H 1(x" 1: .l, . . 1) (J) 
M-1 

E f n p ( ll(um+ l ' Tm+ l ; u ,.. T,.) 
m=O 

(4) 

where A. de notes the Lebesgue measure, and we use the con 
vention 110 =-' ·' and uM - x1 to conserve notation . Monte Carl o 
integration is generally the only teasible way to evaluate this 
intcgra I. 

T he theore tical i:.sues invol vr.::d with this approach a re 
already reasonably well understood . Sufficie m conditions for 
the ap proximation in (3) to converge are known. While it i~ 

ccr1ainly of value to extend these condition~, we do not under
take this task here. The theories of Monte Carlo integrati on 
and maximum likdihood estimation have also been extr.::u
s ivcly studied . None theless. although the simulation-based 
approach is attractive from a theoretical poi111 of view. the 
computational burden associated with previous impleme nta
tions has hindered its widespread use. We have found that it 
can be quite costly to atlain even the degree of accuracy pro
vided by the :simple firs t-order approximation (2). It is this 
shortcoming which we see k to address. 

We artack the problem of computational efficiency from 
two directions. We first seck to improve the approximation in 
Equat ion (3). Thi~ allows one to attain a given level of accu
rac y with fewer ime rmedi ate points. We consider extrapola
lion techniques and tJ1e use of alternatives to the firs t-order 
(Euler) approximation nf the subtrans ition de ns ities. Secondly, 
we examine tec hniques to accelerate the convergence of the 
Monte Carlo integration. We consider -;everal importance sam
plers and random schemes. Finally, we consider transforming 
the model in suc h a way as to make the volatility fu nction 
constant. Working with the transformed rathe r than the origi 
nal mode l turns out to provide a usefu l improvement in both 
the accuracy uf Lhc approximation (3) as well as the perfor
fllanee of the Monte Carlo integrati o n u:.cd to compute (4). 

As a tes t case . we use the :.quare-root speci fication pro posed 
by Cox. l nger:.oll. and Ross ( 198 5) as a model for the short
term interes t rate. Parameter settings are ca libratr.::d to match 
monthly observations of the U.S. :.horl-lc rm interest rate. Th is 
mode l has the advautagc that the transition density is availab le 
in closed form , whic h allows us to easily evaluate the accuracy 
of our approximations. We also te!>tt::d our techniques using 
othe r parameter settin g" and models with similar results. 

On simulated datasets of 1.000 observations. we arc a hlc 
to obtain estimates in well under I min (running FORTRAN 
code on a 750 MHz PC) which diffe r negligibly from those 
obtained by maximi zing Lhc exact log-likelihood function. 
Achievi ng comparahl c accuracy without our acceleration tech
nique:> would require something on the order of a I 0,000-fnld 
increase in computat ional eff011. 

Muc h of the discussion in thi" art ic le may be readil y 
ada pted to the multi variate setting. With some additional work. 
the ideas can also be ex1ended to la te nt varia ble model s. We 
outline an approac h to approximati ng the transition dens ily of 
a continuous-time stochas tic volatility model, and illustrate by 



  

estimating a simple modd over weekly obse rvations of the 
U.S. treasury bill rate. We speculate that much carries over 
to the time-inhomogem:ous case as well: however, we have 
not examined such extensions carefully. A Ithough it should be 
possihle to apply lc\.:hniques similar to those considered here 
to jump diffusions . this is also beyond the s<.:opc of Lhi~ arlicle. 

A mon:: cxtensive application illustrating the techniques dis
cussed in this article may be found in Durham (2000). Further 
exploration of these and related techniques in multivariate and 
latent variable settings is underway. 

The s tructure of this article is as follows . Section I imro
duces rhe notation , and provides some theoretical results. 
Section 2 describes the benchmarks which we will use for 
evalua tion of our teehni4ues, Section 3 examines the perfor
mance of the simulation-based method withoul any of our 
acceleration t<.:chni4ues, Section 4 considers the issue of bias 
reduction. Section 5 considers the issue of variance reduc
tion , Section 6 discu:-.ses the results of our numerical experi 
ments. Section 7 extends these ideas to the stochastic volatil
ity model , Scclion R provides an app licati on, and Section 9 
concludes. 

1. BACKGROUND 


To begin, we define some notation, and provide a brief dis
cussion of the theoretical framework. Ld (!1, :7. P) be a prob
ability space, and let W be a Brownian motion define.d on 
it. Let {:~ . t > 0} he the filtration generated by W and aug
mented by the ? -null sets of :7. Let 8 be a compact s ubset 
of fRd. We are interested in Lhc panum:Lcrizcd family of scalar 
diffusion processes {X(r: 0), 0 E 0} generated by the time
homogeneous SDE 

dX = J.L(X; 8) d1 + u(X; 8) dW 

X(t0 ; fJ) = X0 . 

Assumption J. For eac h () E ®, (5) has a nonexploding, 
unique weak solu tion. 

By nonexploding , we mean that there is zero prohabiliry that 
the process diverges to infinity over any fixed time interval. 
Suffic ient conditions ensuring Assumption I are well known 
(e.g.. Karat zas and Shreve 1991, sec. 5.5 ). For example, it suf
fices that J.L and 0' s atis fy global Lipschitz and linear growth 
condi tion s. A variety of extensions is also available. Explo
siveness would preclude the exislence of a transition density, 
and is thus disallowed. Note that stationarity is not requ ired. 

For s < t, s uppose that X(t; O)IX(s: 0) has a trans ition den
s ity p(x1 , t; x., s , 8) , and let 

p11l(x, . t; x,. s, 0) 

= <P(x,; x, + p.(x, )(t- s) , (1' 
2{x,)( r - s)), (5) 

where <f>(x: J.L. u 2 ) is the Gaussian density. be its first-order 
approximation. Let s = T0 < ·-- < T ,11 = I be a partition of the 

interval [s, r]. and let 

. \MI(X I '" S n)p "/" '""S" , V 

M 

= .r n pl 1l (u T,; u,_ 1, 'T, 1, ()) dA(11 1, ···,liM 1) (6)111 , 

m=-1 

where u11 = x,, uM = x, , and A denotes the Lchcsguc measu re. 
Thi s will serve as our approximating density. foor clarity, we 
will of'tcn rcfer lU 1} 110 as a sublnmsition density (or occa
sionally si mply suhrlensity) when used in this context. 

Suppose that one has a se1 of ohscrvations [X, = 
X(t;; ()" ). i = 0, .... n} of the process generated by 
(5) wilh unknown parameter vector ()", and let P0,_ ,. 

denote the probability measure induced hy [X0 , . .. , X,.} . 
Let /,(fJ) = L.,;' 1 Jogp(X;.t;: X, _1.r;_ 1. 8) and tf,''fl( B) = 
"5:.,;' 

1 
logp(Ml(X; .I;: X;_ 1.1;_1• fJ) denote the log-likelihood 

functions associated with the exact and appro xi mate densities. 
respectively. 

Assumption 2. For all s < 1. x , in the support of X (s: 8"), 
fJ E 0. And M > 1, the densities p(-, r ; x.P s, R) and 
p(MJ ( . • t; x., s. (}) exist. 

Pederse n (I 995a) provides sufficient condi tions for 
Assumption (2) to hold. as well as regularity conditions ensur
ing rhat 

lim p (·"11 (-, t; x ,, s. fJ) = p(·. t ; x". s, B) in L 1 (A). (7)
M-oo 

We note that Pedersen 's results arc obtained for multi
variate processes. Pedersen' s Theorem 2 allows for time
inbomoge.neous processes. While tbis theorem requires a con 
stant diffusion function, we will see in Section 2 that. for 
scalar processes ar leasr, this does not impose a material con
straint. Pedersen's Theorem 3 allows for a variable diffu sion 
fu nction, but imposes other conditions. 

Although Pedersen 's res ults assume Lipschitz aod linear 
growth cond itions on J.L( ·) and 0'( ·) that a re not satisfied for 
many applications of economic interest (including notably the 
CIR square root process ). we speculate that suitable extensions 
should he possihlc using localiza tion arguments along the lines 
of. for example. Kara tzas and Shreve ( I 991. thm. 5.2.5). Sim
ilarly, we will exami ne subtrans ition dens ities other than the 
simple first-order approximation shown in {5) (sec Section 4) 
and a lternative random number schemes (see Section 5) which 
are not cove red by Pederse n's results. Again, these exten
sion::. see m plau!>ible. but formal justification is left for future 
work. The goal of this article is practical rathe r than the
oretical. and Pedersen's results will serve as a convenient 
starting point. In particular. we assume the following, which 
Pedersen's Theorem 4 shows to be an immediate consequence 
of (7). 

Assumption. 3. For each 8 E 0 , 

lim t !M\ (8) = f (B) in probability under ? fl" .n·
tJ IIM ~oc 

The difficulty is how to efficiently evaluate the integral in 
Equation (6). Monte Carlo integration is generally the only 
feasible approach . To perform Monte Carlo integration . one 



  

requires an importance ampler. Fix s < 1. x,. x, . 0. and M. 
and let q(u 1••••• 11\1 1) denote a probability density o n [RM-I . 

Thi s wi ll be our importa nce sampler. Somt: techniques for 
constructing cfficit:nt importance samplers a re discussed in 
Section 5. 

Let [u, = (uk 1•..•• 11 1 M 1) . k = I..... K J be imlepcn 
dent draws from q. and let 

where u1.0 = x_, and u1.M = r, for all k. Then. given Assu m p
tio n 4 below. the strong Jaw of large numbers implies that 

A somew hat s tronger co ndition provides .jii convergence fsee 
Gcwcke ( 1989)]. 

Assumption 4. Let U0 = x ,. V 11 = .l , . 8 E 0. a nd q be 
fixed. and let ( U 1• • ••• UM-I ) be a random vector with den
sity q. Then 

[n "" 111 (U ·uE m- 1 P m • Tm • m I • 7'111 

q(U,, . . . , UM - 1) 

Our goal is to a pproximate log/"( 19) for a given realization 
of the process. For this. it will suffice to be ahlc to approxi
mate p(x,. l; xr s. B) for arhitrary s < 1, x,. x,. and 0. If we 
cau uo this with arbitrary precis ion, and if the log-likelihood 
function is continuous and 0 is compact , then we can evalu 
ate rhe maximum likelih ood estimator at this rea lization with 
any desi red level of accuracy. We do not treat rhe estimator 
obtained by opt.imiLing the approximate log-likelihood with a 
fixed scrting of rhe tuning par ameters as an object of indepeu
dent interest. 

2. BENCHMARKS 


The specification 

( I 0) 

with 01, 8~, and 03 positive was proposed by Cox et al. ( 1985) 
to model short-term inte rest rates. Since this model has a 
known transition density and is frequently used in applica
tio ns. it provides a convenient means of evaluat ing the effec
tiveness of our numerical methods. Tf we let ~ = 1- s > 0. 
c=281/[8j( l- e-0=~)].and Y=2cX, then Y, IY, isdistributed 
aJ> noncenrral c hi-squared with 419219 1/0~ degrees of freedom 
and noncemrality parameter Y:.e ~j, or. equivalently, 

p(x,, r; x,. s) = ce-"-'(vfu )"l~ fq (2jUV) ( II ) 

where u = rx,e-11= ~ . v-ex,. q = 202 01/ (Jj - I. and 1"(.) iJ> 
the modified Besse l fun ction of the first kind of order q. 

For any experiments where sy nthetic data fro m the CJR 
model are required, we generate them directly using draws 
from the noncentraJ chi-squared . 

. 

Our base case uses the parameter l>Clling~ eo=(.06 . . s .. 15) 
and ~ = II 12. Thc"e setti ngs are ide ntica l to those used in 
AH-Sahalia (2001 ) for ease of compari son. and are said to be 
ca librate,d to match monthly observations of the U.S. treas ury 
bill rate . We also tes t the methods discussed in this article 
with orher mod els and parameter settings with s imilar result),. 

We have found that better res ult:. arc often obtained if the 
SDE is first tran sformed to make the di ffu"ion term of constant 
magni tude. With the CTR model , for exa mple. setting Y = JX 
and a pplying Ito's le mma gives 

2 J8 Y2 83 BdY= 2 (0 - )-- dt+2dw.[ 2Y I 8Y 2 

If p 1 (y,. t; y,. s) denotes the transition density of the trans
formed process. then the density of rhe original process i:; 
ohlai ned in the usual manner by 

py(.jx,. 1: .p;, s) ldv 
p(x, t; x,, s) = p y(.r,. t: y,. s) d~ 

2.jx, 

Tn general. the appropriate transformation is given by Y = 
Ci( X), where G satisfies G' (x) = l f rr(x). The constant o f 
integ ration i~ irrelevant. It o's lemma then implies 

dY = Ci'(X) dX + ~ G '' (X)<T2 (X) dl 

= [J.L(X) - ~<T' (X)J dt + dW 
<T( X ) 2 

= [ J.L(r, - I(Y)] -~<T' [G- 1 (Y)l] di +dW . 
(Ttc- 1(>' )] 2 

In many cases, C can he obtained analytically; otherwi se, it 
may require a numerical integration. This does not pose any 
seriou s difficulties. [f the parameter vector e nters into <T non
linearly. the trans formation will have to be recomputed for 
each candidate paramete r. which may be inconvenient. 

This trans formati o n goes back to at least Doss ( 1977 ). and 
is also used by Shoji and Ozaki ( 1998) a ncl A'lt-Sahalia (200 I ). 
( ln contrao;; t to those papers. our methodology does not requirP 
that the model be tra nsformed.) The reao.;on underlying its 
eiTectiveness appear), to he that it makes the process closer to 
Gau),sian. Thi s improves the performance of the ap proxima
tion p l M), as well as that of the importa nce samplers. 

We compare the effectiveness of the various approximation 
techniques using several differe nt measures. First , we look at 
some densi ty plot<> . We fix a value for .\ , . and cons ider a ra nge 
of values for x ,. For each value of x,, we approximate the 
dens ity p(x,. t ; x ,. s) a number of times using difle rent seeds 
for the random numbe r generator. We then compute lhc dir
fcrcncc betwee n the true and approximate log densities, and 
plot rhe median and interquartile range of the approximation 
e rrors for each "',. 

The figures in thic; article are obtai ned using the pro
cess defined by (10). with~= t -s = 1/ 12. x, = . 10, r, e: 
(.05, . 15]. and 1.024 repetitions. For refen:ncc. the exact tran
s ition density with these se uings is shown in Figure I. 

Since the objel.:t of ullimare interest is the log-likelihoou. 
it seems appropriate to examine the error in the log rathe r 
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Figura I . True Transition Density and Log Transit1on Density for the CIR Model Givan .l. = t - s = I 12, X, = .1D. and fl _ ( .5, .06 , .15). 

than the kvd uf the density. Suppose, for example, th:u 
p(x,. 1; x, . s) = 10, and we are ahlc to compute it with an error 
nf ±.1. Thi~ term would contribute an error of ±.0 I to the 
log-likelihood. On the other hand. it' p(x, .r: x, ..1) = .2, the 
contribution tu the log-likelihood or the same approximation 
error would be 111 the range of [-.7. A ). If the approximation 
error i~ greater than the level or the density. the computed 
density can be negative. This i~ clear!y calastrophi~ for the 
lug-likelihood. These distinctions al'e obscured if one exam
ines the approxinwtion error for the level of the density. 

The second measure \vhich we ex:uninc i)i the root mean 
o;quarcu cmJr (RMSE) of the log-density approximation. 
We approximate th1s by genenning n = 100.000 \illlulatct.l 
ob)oervatiun:. from the model, and computing a sample ana
log. that is. 

1
RMSE = { j (log t3(1'1.\) - log p(yl.\)) p(y ..\) dydx } 

I" 

( 12) 

( 13) 

where we have denoted the approximate transition density hy 
j). It is convenient to assume that the integral in (I?) exists. At 
any rate, the sum in (I J) certainly exists for a fixet.l rculit.alion 
{.\ 1, .....t n j. which is all we really need in order to compare 
across approximation tcchniqueloo. 

Finally, we are interested in the accuracy of the pamme
ter estimate~ obtained hy maximi;.ing the approximate rather 
than the exact log-likelihood. To measure this, we generme 

• 
J = 512 data lo.Cts of length n = 1.000. and compute B for 
each repetition using the exact log-likelihood and the variou<> 
approximation:.. We compute the RMSE of the exact maxi 
mum likelihood estimates with rel>pcet to the parameter vector 
used to actually generate the data. and the RMSE of the Slmu
latetl maximu111 likc.:lihood estjmate with respect to the exact 
maximum likelihood cstimare~. that is, 

A reasonahlc goal might he to obtain !:Ill approximation error 
on the order of I% of the en·or 111herent in rhe Ml .E itself. We 
arc able to ca~ily obtain this goal for our test case. 

Virtually any method which nne might reasonably con)o,iuer 
)ohould be able to approximate the log-likelihood function with 
arbitrary prcci,ion gi,·cn ~urricient ti111c. The key b:.ue is ho" 
quickly one is able to obtain c;ufficienrly accurate re<,ult,. Thus. 
we aho report compututional co:-.tf>. 

As a matter of implementation, varil:lncc in Lht: Monte Carlo 
integral can result in a great dent of jaggedne<><> in the likeli
ltoot.l surfuct:. which will severely degrade the pert'ormance of 
the optimi7er. llowever. thi~ i'suc is easily adt.lrcsl\et.l if. fur 
each e,·atuation of the likelihood function. one u cs the same 
~cell for the rant.lont number generator used to draw ~amples 
for the Monte C:trlo integration. This is co;pccially critical if 
one is computing numerical derivatives. At any rate. for many 
of rhe methods which we examine. it i~ relatively straightfor
ward to obtain analytical derivatives. 

3. SIMULATION METHOD WITHOUT 

ACCELERATION TECHNIQUES 


To establish a hasdim:. we hcg.in by examining the sim
ulation method as implemented by Pedersen (J995b). that 
is. without any of our acceleration techniques. The impor
tance ~ampler u<>cd hy Pedersen iloo constructed by simulating 
paths on each subdivided interval using the Euler <.cheme. 
Suppu!>c that ·' < r, x , = X(.1), and x, = X(l) are given. 
The importance sampler is defined by the mapping rw f : 

( WI..... w.lf - 1; 0) I ) (u l ..... liM . ) given by the recursion 

m = 0 ..... M ') ( 14)-
where u0 = r,, fi = (r- ~)/M . and W = (W1• • • • , W,, _ 1) is a 
multivariate standard normal. 

In this case. Equation (8) simplitie~ considerably. Since the 
density or the importance sampler lJ il\ identical to the firstI t ~ 

I
l J A 	 0 M - l factor' of the numerator. they cancel. and one is leftlUvtSE.II< Lt-MLt = - 2::(0.,111' - O"f 

withJ .1= I 

' . 1 ' .... ... ' !I'2 
P(M.K)( \ ' I'\' S 0) - J ~, nli J(,. r·RMSJ.::~ILI:-SMI.I! = IJ LJ 

(OM I.e - &SMLIO) · ,. •~ , , · - K L..,r ·'1~ '~~~ . M- 1' TM 1• 0) (] 5) 
/-1 	 <- 1 

http:lUvtSE.II
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Figure 2. ApproximatiOn Error, logp(X,,t;X.,s) -logp(X, t;X.,s), Using Pedersen 's Method Given a. = t -s - 1/ 12, x. = .10, and 8 = 
(.5, .06, .15). The median and mterquartile range over 1,024 repetitions are plotted. The untransformed model is used in panels (a)-(c), and the 
transformed model 	is used In panel (d). 

where the {u k ,M 1• k = I....• K} are drawn from the 
(M - l)st component of q. An a lternate interpretation of 
Equati on ( 15) is to consider the right-hand side as the sam
ple analog of Efp(l l (x,, I; uM- I• TM _ ,, B)J, whcrc the expecta
tion is over u and with respec t to thc <.li stri hution induced by 
X(TM-l )IX(s) = Xr 

Throughout this article , we use the method of antithetic 
variates when drawing random numbers. This is a commonly 
used variance-reduc tion tcchniquc in simulation-based meth
ods. To implement antithetic variates. one draws only K /2 
samples from the multivariate nonnal. and simulates two paths 
from each: r tM)(W) = T1M1( W) is ll'\ described above. and 
T~M1 ( W) = T1Ml (-W) is its "mirror image." While we have 
found antithetic variates to provide only marginal benefit. lhc 
cost is also negligible. 

Figurc 2 illustrates the approximation error which results 
fmm computin g the log density using this approach. The set
tings K = 256 and M - H or M = 32 are used (recall that K i!> 
the number of sample path s and M is the number of s ubinte r
vals). Panels (a)-(c) use the unlransformcd model. Panel (d) 
uses the transformed mmlcl, which appears to provide little 
bcncfit in this case. Increas ing M reduces bias, but at the cost 
of greater variance. Reducing the variance is costly since it is 
CJ(K - 112 ). 

Upon comparison with the Lahlcs and figures in Section 6, 
the reason why this approach has not seen widespread use is 

readily apparent. It would take a great deal of effort even to 
match the accuracy of lhc simple first-order approximation, at 
least for our test model. 

4. BIAS -REDUCTION TECHNIQUES 


T hcrc are two sources of approxima tion error which we 
wish to address: bias due to thc first-order approximation used 
in thc conl>truction of p(Ml , and variance resulting from the 
Monte Carlo integration. 

We begi.n wiLh the bias. While it is possible to drivc lhc bias 
to zero by partitioning the intervals betwecn ohservations suffi
cient ly fine ly. this can bc computationaJJy costly. We examinc 
two approaches toward reducing the numbt:r of subintervals 
required to obtain a given level of accuracy. The first is to 
replace the first-order approximation used i.n Equation (5) by 
a higher order method . There are several possibilities which 
one might try. 

Elerian ( 1998) s uggcsts usi ng a transition density dcrivcd 
from a ~~.:heme clue to Milstein ( 1978). If thc volatiliry function 
a(-) is co nstant, the dens ity is illcntica l to that of the first
order approximation; otherwise, it is given by 

- 1/ l ( 
. . - ~I • c + z.,

P1::1crian(x,. t, ~,. s) - .J21T cxp - )cosh( IG)lAl 27T 	 2 v t-z, 



  

where 


X I - 8 
z,- -'-- 

A 
ll=t-s 

u(x.)a-' (xJD.
A = ---'---'------'-'---

2 

_ a-(x, ) . (.) a-(x,)a-'(x, )ll
B-- ( ) +.~,+~-t .\, ll 

2a-' X I 2 

C= 1 
(a-' (x.)F~ 

Note that a-' ( ·) denotes the derivative of a-. 

Kessler ( 1997) suggests using a Gaussian transition deu sity. 
but rather than using the first-order approximations for the 
mean and variance, he proposes using higher order ito- Taylor 
approximations. We try a second-order implementation, that 
IS, 

where 

- [ , u2 (.t)~-t" (x.)J ~2 

IL = x , + ~-t(x, )ll + p.,(x.)p., (.r. ) + 2

2 


iT2 =x.: + {2,u.(x,, )x,,+ CT2 (x, )l~ 


+{2ft ( ..r,)[ft '(x.,)x, +,u.(x,) + cr(x,)cr' (x,.)] 

+ CT2(x,)l,u."(x, )x, + 2,u.' (X,)+ u ' (,\ s )a-'(x) 

+ tr(x.)tr" (xJJl ~-
> 

- jl2 
. 

Notice that, for some models and parameter settings, il is pos
sible to obtain &2 < 0. The code s hould inc lude a check to 
watch out for this. 

Shoji and Ozaki (1998) suggest a method which they refer 
to as local fineari zation . Their approach requires a model with 
constant volatility; however. as s hown in Section 3, this results 
in little loss of generality. Given 

dX =,u.(X)dt+trdW 

(u is constant) and fixed xs, one begins with an appl ication of 
Ito's lemma: 

d~-t-(X) = ~ tr2,u."(X) dt +~-t-' (X) dX. -
Using the first-order Taylor expansion, we define 

{L( x.,) = ~-t-(x.J + ~-t' (x,)(x, - xJ + ~<T2~-t-'' (xJ(t- s). 

The approximate llensity will be obtaincll from 

~ ~ 

dX ={L(X)dt+crdW. 

which is an Omstcin-Uhlenheck process. One ohrains 

where 

_ ~-t-(x,) , cr2 ~-t-'' (x , ) [ , ' ( ] 
IL = x. + , . 1<. + [ '(. )l) 1<. - ~-t- x,)ll1L (.\,) 2 1L .\ .. 

, 
ir' = rr- (e!'' <'· ' "' - 1)

2~-t-' (x.) 

K = e"''<x,)A - l. 

Nowman ( 1997) suggests a similar approach, hut simply 
treating the volatility as if it were constant on each sample 
interval rather than transforming the model so that it actually 
is constant. While he examines only the special case where 
the dlift function is linear, a plausible extension would be 
to use a first-order Taylor expansion for the drift function as 
described above. The res ulting approximation is analogous to 
that of Shoji and Ozaki, hut replacing rr hy rr (x..). 

While Elerian ( 1998) uses the Milstein de nsity in the con
text of a simulation-based approach. Kessler ( 1997). Shoji and 
Ozaki ( 199g), and Now man ( 1997) approximate the transi 
tion density between observations directly (i.e., without using 
intermediate points). 

Another approach to obtaining higher order methods is 
extrapolation. Given, for example, a first-order method, one 
may construct a second-order method as follows: 

rP!) = p + KA +0(tl2 
) 

rPMl = p+ K ~/2+ L?(t. ~ ) 

(2Mi _ ") (2:11) (M ) 
PE - ...p - p 

= p+0(-12) 

where K is some unknown constant. If the approximate likc
lihoods are stochastic (i.e., computed by simulation), extrapo
latio n rcduccs bias, but at Lhc cost of greater varia nce. Since it 
is possible to obtain a negative value for the extrapolated den 
s ity. any implementation of this technique should check for 
positivity, and fall back to the nonextrapolated value in case 
of troub I e. 

Extrapolation is a well-known bias-reduction te.clmique for 
computing expectations of diffus ion processe!> (sec Klocdcn 
and Platen 1992, scc. 15.3). That we are ahle to apply the 
technique in lhc present context is because our approach to 
approximating the transition density is essentially an expec
tation. !'or Pedersen's method, it IS easy to see from Equa
tion (15) that 

pU"1\ x" t; x., . s) = j p 111 (x,. t; u, 'TM 1 • ()) dP~M}1 (u) ( 16) 

where P~1 )1 is the measure juduccd by the Euler scheme at 
r,11 1• In general, one obtains 

Jl (Ml (v r· . s)"" t• ' ...\ ,\' ., 

• (II {)) ( 'H) l M ) )= } p (x,t;u,r.~~ 1, pM_1(u)c!Q.+!_1(u ( 17) 

where Q~~~ is the measure induced by the (M- 1)st com
ponent of the impo1tance. sampler and p~~~ is the Rallun
Nikouym derivative of P,~.~~~ with respect to Q~~~ 1• These 
expressions may also be derived directly from ( 6 ). 



   

5. VARIANCE-REDUCTION TECHNIQUES 


We examine two approaches to reducing the variance of the 
Monte Carlo integration shown in Equation (8): importance 
sampling and random number schemes. Some of the tech 
niques are illustrated in Figure 3. 

A basic principle of Mon te Carlo integration is that one 
should draw points with higher prohahility in regions where 
the integrand is larger. Figure 4 illustrates why Pedersen' s 
method performs so poorly. The paths in the figure are sam

pled using the Euler scheme with xs = .08, A= I - s= I / 12, 
and the SDE given in Section 2. The terminal point of each 
path represents a draw from P,~~>,. The curve represents the 
integrand of the righ t-hand side of ( 16) as a function of u with 
x, = . I I. It is clear that most of the samples are drawn from 
regions where the integrand has little mass. The importance 
samplers discussed in tlus section are designed to address thi s 
shortcoming. Elerian et al. (200 I) appear to have been the first 
to consider the idea of using efficient importance sampling in 
this context. 

Pedersen's sampler 
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Figure 3. Simulated Paths Drawn Using Various Importance Samplers and Random Schemes. 
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Figure 4. Illustration of Equation (16) . The terminal points of the 
sample paths represent draws from Pi:-r:,; the curve represents t11e inte
grand. 

The first importanct: sampler we consider i~ based on the 
Brownian bridge . A Brownian bridge is a Brownian motion 
sta1ted at x, at time s and conditioned to terminate at x, at time 
I. The sampler is constructed in a manner simi lar to the Euler 
scheme. Tn this case, rhe mapping TIM) : ( W 1, •• • , WM _ 1; 8) ~ 
(u 1, ••• , uM _ 1) is defined by the recurs ion 

where the drift is given by 

~ ( ) x, -x 
J.1.. X, T = . 

1-T 

This is a true Urownian bridge if and only if 0' is constant 
(which will be the case if we first transform the model as 
discussed in Section 2). 

Although it is certainly possible to compute the approximate 
density directly from (8), there is an interesting interprt:tation 
of this samp lt:r baseu on Girsanov's theorem. Consider the 
processes dX = f.L(X) dt + o-(X) dW and dX = p_(X) dt + 
O'(X) dW with initial condition X(~) =X ~ (s) = x ,. Girsanov ' s 
theorem tells us that the Radon-Nikodym derivative of the 
probability measure generated by X with respect to that gen

~ 

erated by X is given by 

- -dp = pk(X) dW ( 18) 

with initial condition p(s) = I and 

k( ) = J.L(x) - il(x) 
.X O'(.X) . 

We can thus obtain the continuous-time expression 

-where QM 1 is the probability measure induc.:cd by X(rM_
1

) . 

The imegral is computed by generming samples 
{(uu-t-l•rk.M-1),k = I , ... , K} from the joint process 
(X.~~ ~ , pc:/~ ) using the Euler scheme, and then computing 1 

1 K 

P!M.K)(\' (''' •·0) '\ 'p( l )( •· f'll 


· r , • ·"' .\', <} , = K ~ ""1 • .. k , ."-·' 
~ - 1 

It is easy to show by direct calculation of p~~~ 
1 

that this 
expression is equivalent to (8). We have found it to be more 
stable to base the Euler scheme for p on 

k~ 
d(logp) = - 2 dt+kdW 

with initial condition logp(s) =0 rather than ( 18). 
The second importance sampler which we consider draws 

um I I from a Gaussian density based on the first-order approx
imation conditional on u,., and x,. Thal i!>, Lrcaling u, and 
u,11 = x, as fixed , one draws um+l from the density 

P(IIm 1 I IU m ' U M) = P(U m+ I It1 m) P(U ,\f Ittm+ I ) / P(U M IU111} 

~ </>(u,+1; u, +[L8, 1728) 

X ¢(uM; Lim+ I f- p_l)• , Q-2o•) 

= ¢(u, 1 1; u, + jl,8, 0'~,8) 

where 8 = (r- s)jM, 8* = t - rm.,.l• ()+ = 1- r,, P- = J.L(Il
111 

) , 

if = <T(u,,), and 

- = ( u.M - um) ~ 2 -(M-m-1)_ 2
f.L, t . lfm - ()" . 

- Tm M-m 

Nmice that this importance sampler rums out to be iden
tical to the Brownian bridge sampler, except for lht: rac.:tor 
(M - m- 1)/(M- m) in the variance. While it is not entirely 
obvious that this should be the case, we wilJ see that this mod
ification results in much better pelfonuance. We will refer to 
this sampler as the modi!lt:d Brownian bridge. 

The lhiru importance samp ler wb.ich we consider was pro
posed by Elerian et al. (200 I). The idea is to approximate the 
target density by a multiva1iale normal with mean and vari
ance bast::d on a sec.:on<.l-ordcr Taylor expansion of the log tar
get dens ity about the mode. 

The log target density is given by 

M-1 

= L log P11 
) ( tl m~ l • Tm+l; U m • 1', ). 

m- 0 

One samples u = (u 1, u2 •... , uM _ 1) from N(J.L~, }.;*) ,where 

J.!..* = arg max., log p(u ix• . x,) 

;J2 J-1 
2:• =-[ iJu'iJu log p(J.L•Ix,, x,) 

In practice, one obtains f.L• by sta1ting with ~~ 

({i 1, •••• uM_ 1), where [im =x,. +m(x, - x, )/M, and Laking a 



 

single Newton step toward the maximum. The derivatives of 
log p(ulx, . x1 ) are straightforward. but tedious to compute. 

The key feature of this sampler is that it draws paths in 
one shot ntlhcr than recursively. lmpleme.nting this sampler 
requires so lving a system of M- I linear c4uations. and com
puting a Cholesky decomposition. To obtain reasonable per
formance. it is essential that one take advantage of the tridi
a!Zonal nature of the relevant matrices. 
~ 

As always with importam.:e sam pling , one should ensure 
that the tail s of the sampling density are not too thin; other
wise, it will no1 he possible to drive down the variance of tbe 
Monte Carlo integral despite using a large numbe r of sam
ple paths. One way to address this problcm is by using Stu
dent 1 rather than normal increments in the construction of the 
sample paths. One might also try the approach suggested by 
Geweke ( 1989). 

The second category of variance-reduction Lcchniqucs 
which we examine is random number schemes. The method 
of antithetic variates. as discussed in Section 4, i ~ one s uch 
scheme, although our results suggest that it provides only 
marginal benefits in this context. 

Recall from Equations (16) and ( 17) that the density 
approximation may be thought of as an expectation. Kloe
dcn ant.! Platen ( 1992, sec. 14.1) suggest that. for comput
ing expectations, the Gaussian increments ( W1 , ••• , W,14 _ 1) in 
Equation ( 14) (and s imilar expressions for the other impor
tance samplers) may be replaced by other random variables 
satisfy ing appropriate moment conditions. 

One possibility is the random variable which ta kes on the 
values I and -I, each with probability t. In addition to reduc
ing vatiance, this scheme gives a speed increase, since gen
c rati ng normal t.lcviatcs can be a signi ftcant fraction of the 
computational effort. Furthermore, if M is sufficiently small , 
it is possible to compute the Monlc Carlo integral by sum
ming over all possible branches of the binomial tree of length 
M - I. For example, setting M = R would require the com
putation of 27 = 128 sample paths, which is entirely feasible. 
Using the technique s di scussed in Section 4, it is possible ro 
achieve low bias with s mall M. In particular, since this ran
dom number scheme produces a method with no variance. it 
is ideally suited for use together with extrapolation. 

While expecta tion s computed using the hinomial tree 
scheme are known to converge under appropriate conditions , 
the properties of this scheme in the context of this article are 
uncertain. Therefore. we also consider a related scheme which 
provides much of the same benefit by less drastic means. The 
idea is to control the "jagged ness'' of tl1e sample paths by forc
ing each vector of increments ( W1 , ••• , WM- l) to have sample 
variance one. This may be accomplished s imply by us ing the 
vector 

and may be rhought of as a weakening of the two-point idea, 
which forces the sample variance of each individual increment 
to he equal to I. 

   

6. NUMERICAL EXPERIMENTS 


We first lest our various technique~ by approximating the 
transition density as described in Section 2. The settings used 
for the various approximations will be identified by "sampler
suhdensity-M-K ," for example, Lh~ Brownian bridge s ampler 
used together with the first-order (Euler) su btrans ition density, 
M = 8, and K = 25G will be identifi ed as "bridge-eu ler-8-256." 
The RMSE is also computed for these approximation schcmcs 
(as described in Section 2). The results are s ummarized in 
Table I . 

Figure 5 illustrates the performance of the various sub
density methods when used to compute the transition density 
directly (i.e., M = I , no simu lation). While the error associ
ated with the s imple first-order approximation is moderately 
severe, a factor of 10 improvement is obtained if the model 
is transformed before applying the first-order approximation . 
The scheme proposed by Elerian (1998) comes close ro obtain
ing tlus improvement without needing tl1e transfom1ation step. 
Whe n applied to the transformed models , the techniques pro
posed by Shoji and Ozaki (1998) and Kessler (1997) provide 
an additional order of magnitude improvement over the Euler 
scheme. Although not shown in the figures , we have found 
these schemes to be of little benefit when used on the unt:rans
formed model. The technique proposed by Nowman ( 1997) 
provides nearly no benefit whatsoever. 

Figure 6 illustrates the Brownian bridge and modified bridge 
samplers. The first-order approximation is used for the sub
transition densities. The transf01mation step is not used. Using 
the Brownian bridge largely solves the maio problem associ
ated with Pedersen'!'! method. The modified bridge provides a 
further dramatic reduction in variance. Notice that panels (c) 
and (d) of Figure 6 use only K = R sampk path s, as corn

pared to K = 256 for panels (a) and (b) and Figure 2(a)-(d) 
(Pedersen's method). We see that increasing the number of 
subintcrvals brings Lhe ~xpectcd reduction in bias. 

Figure 7(a) and (b) illustrates the use of extrapolation and 
Elerian's subtrans ition density scheme, respectively, to reduce 
bias. Panel (c) shows the variance reduction due to normal
ized variates. Pane.] (d) demonstrates that one still obtains the 
expected reductions in bias and variance from increasing M 
and K , respectively. All panels in this figure use the untrans
formed model. 

Figure 8 illustrates the Ekrian-Chib-Shcphard (ECS) sam
pler. This sampler seems t'o work weU for M relatively small , 
bur the variance goes up dramatically as the number of inter
mediate points increases. fl was nol pos~ible to compute the 
RMSE of the log density ap proximation with the ECS sampler 
and M = 32 becau se the sampler often chose points below zero 
(i.e., ouLsid~ th~ range of the model) . We follow Elerian et al. 
(200 I) by us ing rhe transformation Y = log X in this case. 

While it is possible to obtaiJl reasonably accurate results 
using the untransformed model. Figure 9 shows that ()rsl Lrans
fornung the model provides significant benefits, especial ly 
when used with the subde nsity scheme of Shoji and Ozaki 
(199~) and normalized variates. With these se ttings, we are 
able to obtain RMSE ~ .0006 with only M = R and K = R. 
The computational cost is about l6 s to approximate a like
lihood with n = 100.000 observations usjng FORTRAN code 



  

Table 1. RMSE of Log Density Approxunat1ons 

Sampler Subdensity M K NV" Extrap." RMS£ Time < 


Untransformed model 

None Euler 1 1 .13678 .2 
None Elenan 1 1 .03550 .2 
None Nowman 1 1 .14467 .2 
Pedersen Euler 8 256 .19353 539.5 
Pedersen Euler 8 256 .19353 538.3 
Pedersen Euler 32 256 .66310 2 ,169.8 
Bndge Euler 8 256 .05355 550.4 
Bridge Euler 32 256 .05570 2,211.2 
Mod bridge Euler 8 8 .03068 17.5 
Mod bridge Euler 8 8 X .06103 26.3 
Mod bridge Euler 8 8 X .02404 19.1 
Mod bridge Euler 32 32 X .01180 299.3 
Mod bridge Euler 32 128 X .00713 1, 227.1 
Mod bridge Elenan 8 8 .03562 24.6 
Mod bridge Elenan 8 8 X .01856 25.0 
Mod bridge Elerian 32 32 X .01206 401 .2 
Mod bridge Elerlan 32 128 X .00656 , ' 603.8 
ECS Elerlan 8 8 .07207 30.4 
ECS Elerian 8 8 X .05164 30.3 
ECSd Elerian 32 32 X .46920 403.6 
ecsn Elerlan 32 128 X .25973 1' 582.2 

Transformed model ,None Euler 1 .03790 .2 
None Shoji I 1 .01412 .3 
None Kessler 1 1 .00864 .2 
Pedersen Euler 8 256 .16500 338.2 
Pedersen Euler 32 256 .57507 1, 254.5 
Mod bndge Euler 8 8 .00812 10.8 
Mod bridge Euler 64 8 .00255 80.7 
Mod bridge Euler 8 8 X .01795 16.6 
Mod bridge Shoji 8 8 .00070 16.0 
Mod bridge Shoji 8 8 X .00057 16.4 
Mod bridge Shoji 32 32 X .00030 248.7 
ECS Shoji 8 8 X .00072 25.3 
ECS Shoji 32 32 X .00020 315.5 

• All · x· on thos column ondocates oormafued variates woro or.;OO otheiWISe, ent~het•c vonates 
bAn · x· on this column lnoocat&s &)(!Japolation was used. 
c Computing bme (rn sooonds) required to ohtain hkolohood f01 n- 100,000 observations using rORTRAN code on a 750 MHz PC 
d Wtth these settJng!. the sampler frequently chose po1nts x, < 0. thus. lollowong Elena" ~t al., we used tho tronslormatlo n Y- log X 

on a PC mnning at 750 MHz. It wouJJ be virlually impossihlc 
to obtain anywhere near this level of at:t:urat:y u:-,ing Peder
sen's method without our act:t:lt:ration tet:hni queo;. 

Tables 2 and 3 ~how the error'> which result from estimating 
parameters hy maximizi ng the approxima te rather than exact 
log-likelihood . Results are shown for :.even:tl diffen:ut sellings 
of the model parameters. The errors nrc estimated hy Monte 
Carlo simulation with 512 repetiti ons over synthetic d:uasets 
of n = 1.000 ohscrvationo;. The SMLE estimates are obtained 
using the modified bridge sampl er. Shoji and Ozaki's s ubdcn
siry. M = 16 and K = 16. For comparison, we a.lso compu1e 
parameter estimates using the fir~t-ordcr Euler sc heme approx 
imation. The transformed model is used for all of the experi
ments shown in these tables. It should he noted that the Euler 
scheme approximations thus obtained can he expected to be 
signi ficantly bt:ttcr than those typically obtained by practition
ers without implemenring the transformati on (see Fig. 5). 

Tahle 2(a) uses the baseline model settings. 8'' = 
(.06, .5. . 15) and ~ = 1/ 12. Recall that these are cal ibratcd to 
monrhly observations of the U.S. s hort-term interest rate. ror 
these model setti ngs, we also compute parameter estim ates 

usi ng Pedersen's method with M = 8 and K = 25o. Pcdcr
.o:en's method is unable to match even the Eult:r schc.:mt:. On 
the other hand. the approximation errors of the SMLE esti
mates obtained usi ng our tcchni~uc'> are negligible (compare 
with the sample distribution of 0\11 F - (;1"). 

Pane l (b) increases the volatility of tbe mudd . Not e thar 
computing the exact likeWwod re4uircs the evaluation of a 
Bessel function , whit:h in turn requires 28201/0i > 1. Setting 
()" = (.06, .5, .22) comes quite close to this boundary. For 
'\orne sam ples. the constraint appears to bind when rnaximi7
ing the Ukelihood. These sample:-. arc dist:arded. Thi model 
causes our methuJulogy some difficulry, apparen tly because 
the data oft en venture dose to lh c singularity at zero. The 
estimates are nonetht:lt:ss 4uitc good. 

Panel (c) reduces lhc model's volatility to ()~ = .03. 
Panel (d ) :.et:-. the mt:an reve rsion parameter to 1), =A. Again. 
the w nstraint 2 0! 01/ 0{ > I comes into play. Neither of the:-,c 
tesL<; present" nny difficulty to our methodology. 

Panel (e) increases the mean rever~ion parameter hy ~ factor 
o f 10 to (-)? = 5.0. Panel (I) U SC!\ the baseline setting for on. 
but s tretches the sampling interva l to two years. Both of these 
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Figure 5. Approximation Error, log p(X1,t; X,, s) - logp(X,,t; X, ,s), for Various Schemes Without Using Simulation (i.e.. M = 1, K = 1) Given A= 
t- s = 1(1 2, X,= .10, and(!= (.5, .06,.15). 

settings result in large biases for the first-order approximation. 	 and many other financial time series are well known to exhibit 
but pose little difficulty for the SMLE technjque. 	 properties such as fat-tails and persistent volatili ty patterns 

whkh are im.:onsistcnt with time-homogeneous scalar models 
(e.g., Ghyscls, Harvey, and Renault 1996). A variety of alter

7. STOCHASTIC VOLATILITY native models bas been proposed. To illustrate our methodo.l
ogy, we will exarrune stochastic volatility (SV) models of theWhile the previous seclions have focused on techniques 
fonndesigned ro efficiently approximate the likel ihood function for 

scalar models, most of these ideas are easily generalized to 
dX = JJ.x(X) dt + ax(X) exp(H) dW1the multivariate setting. With some work, they may also be 

applied lo latent variable models. The short-term interest rate dH = J.LH(X , H) dr +crH(X . ll ) dW2 • 
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Figure 6. Approximation Error, logp(X,.t; x•. s) -logp(X,.t; X,.s). for Various Simulated Likelihood Schemes Given A= I - s= 1/ 12, X,= .10, 
and (J = ( .5 ..06..15). The median and interquarrile range over 128 repetitions are plotted. The untransformed model is used. 

Such models have been exami ned by Gallant and Taul:hcn 
(199g)_ Andersen and Lund (1997), and Eraker (2001) among 
others. The second component, H, conesponds to an unob
served volatility factor. 

In order to obtain a likelihood, the unobserved factor must 
he inte1,rratcd out. Several ways of going about this have 
been proposed for discrete-time models, for example, Daniels
son and Richard (1993), Jacquier. Po lson. and Rossi (1994), 
Richard and Zhang (2000), Sandmann and Koopman ( 199R), 
Kim. Shephard. and Chib ( 1998). and Pitt and Shephard 
( 1999). In the continuous-time context, it is less straight
forward to integrate out the unobserved factor, and alterna
tive approaches are used. The efficient method of moments 
approach has been used by Gallant and Tauchen ( 1998) and 
others. Methods based on the empirical characteristic function 
have been proposed by Chacko and Viceira (199g) and Sin
gleton ( 1997). Markov chain Monte Carlo approaches have 
heen proposed by Eraker (2001). Jones (1999b), and Elerian 
( 1999). 

We now outline a technique to approximate the likelihood 
of continuous Lime SV models. Fur simplicity, we will assume 
that W1 and W2 are independent; this is not an essential part 
of the methodology. We provide a small Monte Carlo study 
which demonstrates that the procedure is effective and reason
ably fast. The methodology is used to estimate an SV model 
of the U.S. short-term interest rate in Section ~- Further refine

ments arc undoubtedly possible; a more detailed study is cur
renrly underway. 

The basic idea is relatively straightforward. We are inter
ested in the process (X(t). H(t)), where X is observed at 
times t0 ,t1••••• t, and His latent. Let X,= X(l;), H, = H (t,), 
and :!'; = rr(H0, X0, X1, ••• , X,) for i = I , ... , 11.. The goal is 
to obtain p(X;+1!:F;). Tf we knew the distribution of H;l:r;, we 
could use 

We will approximate H;l:f;. Given the distribution of 
H,_ 11:7;_1• it can be propagated forward using 

(JI. IY·) = p(X,I.T,- 1. H;- l)p(H;-tl::f';_ ,) 
p t - 1 I p(X;l:F, I) 

p(H,l::T;) = Ip(H;lX, ,h;_l)dPH,_d:.r, (h;-1)

It remains only to find H0 • The approach we take is to estimate 
H0 as an unknown parameter, although one could equally well 
iutegrale it out using an appropriate importance sampler. This 
is the basic idea of a particle filter (sec, e.g., Pitt and Shephard 
1999 and the references therein). 

To implement this idea, we use the following procedure. 
Consider the model 

dZ =J-l-(2) dt + rr(Z) dW 
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Figure 7. Approximation Error. log p(X,.t: x •. s) -log p(X, ,t: x •. s). for Various Simulated Likelihood Schemes Given A = t -s = 1/ 12, X,= .10, 

and 0 = ( .5, .06, .15 ). The median and interquartile range over 128 repetitions are plotted. The untransformed model is used. 


where 


The problem is to determine the densi ty p(X; H 1.1";. 0) , where 
Y; = u(H0 , X0 , X1, ••• , X1). 

The first-order approximation is given by 

p ( 11 
( z, . f; z, 5, (-)) = ¢ ( ?.1 ; Z, +Jk( Zs ) ( f - S), k( z., )(I - s)) 

where ¢ is the multivariate Gaussian density and 2: = uur . 
Also, let s = r 0 < r 1 < · · · < rM = t be a partition of the inter
valls. tJ, ami lcl 

M 

= f n p (ll(w,. , 7,; W 111 _ 1, 7 111_ 1, 0) dA(w1, • • , , WM- I ) 

m = l 

where w, E ~2 for m = 0....• M . A is the Lebesgue measure 
in IR21M- I l , and we use the convention Wn = z .• and w ,11 = z,. 

Since H is unobserved, it must be integrated oul as wdl. One 
obtains 

As in lhe scalar case, the integrals are 
Monte Carlo integration. Let q(v0 • (:;) . (~) 
be an imporlam:c sampler on ~2M, and let 

evaluated using 
..... C.::-;). u,11) 

k = l, 2.. .. . K 

be draws from q. Then one defines 

P( M . K ) (X - I'r. ())t+ 1 J, 

with the convention uu1 =X; and u k. M = X;+1 for all k. 
The theoretical framework is essentially uncbangell from 

the scalar case. ln particular, sufficient conditions for 

lim p(MJ(·,t; z.• •s,8)=p(-.t; z,.s, O) in L1(A) 
,11 -t-OC 

may be found in Pedersen ( J995b). For a fixed realiz<tLion 
(x0 , x 1, ••.• X;+ 1) . one obtains (with standard regularity condi
tions) 

)jm p(M ,Kl (r ''F 0)-+ p (.+I) (X · · cr 8),, .. 1 + 1~ ... ,, Jl l ,.;.ri, 
"~00 

from U1e strong law of large numbers in the usual way. 
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The issue of how to constmct rhe importance sampler 
remains ro be addressed. The approach taken in this article is 
as follows. Suppose that the di stribution of H;I:Ji is known. 
We need a way LO sampll: 

First. draw v0 from H1i:Ji. and let 110 =X;. Now, proceed recur

sively form= 0.... , M - 2: given (tt,, v,), draw u,+1 using 

the modified Brownian bridge samplt:r JescribcJ in Scction ."i: 


(M-m-l)<T.~.m = <7.~(11,.,, v,) M - m 

and draw v,-r 1 '"blinuly," 

ll,+l "'"'N(vm + fLH ..,8. Uh _,8) 

fL11 . m = J.LH(u,, t>111 ) 

., 2
<TiJ..,, = cru(u.,. v,.) 

Now. we need to propagate the distribution of H;I:Ji for
ward. Consider the K draws [t>k.M•k = l , ... , K} from the 
sampler, together with the corresponding wcights 

-
Let [A~, k = I, ... , K} dcnotc the weights after normalizing so 
that U1ey sum to I. The collection {(v~ . M· Ak), k = l. .... K} 
uf points and weights may be thought of as representing a 
Jisc rele approximation to the density H ;+ l ~f; , 1 •1 

Various techniques are avai lable to form a di stribution func
tion from this approximation and draw points from it. While 
one could sim ply use the approximation 

pH •r (hi:F,+ 1) """ lt J "I•J 

the resulting likelihooJ function is discontinuous in 0. and 
will cause diffkullics for the optimizer. Therefore, we use a 
He rm ite function to approximate the density, and draw points 
from il instead. 

We rcpcat the Monte Carlo experiment of Eraker (2001) 
using Lhe rncthodology described above. Synthetic datasets of 
length n = 500 are generated from the model 

dX = (171 --1 82X) d.t +exp(H /2)X 112 dW1where l5 =(1;.,.. 1 -1;)/M. Am.l finally. draw v,,.1 using the same 
procedure a'> for m = I , ... , M - l. (19) 
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Figure 9. Approximation Error. fog p(X, , I; X, .s) - logp(X,, t ; x •. s), tor Various Simulated Likelihood Schemes Gtven ol = t- s = 1 J12. x. = .10, 
and 8 = (.5 ..06, .15). The median and intarquartile range over 128 repetitions are plotted. The transformed mode/Is used. 

with parameter vector fJ" = (.0002, -.002, -.3, - .03, .3). 
This model is said to be calibrated to the U.S. short-term inter
est rate with time measured in days. IJata are generated using 
the Euler scheme with 50 subintervals. Estimates are obtained 
using K = 12g sample paths and M = g subintervals. Little is 
lost by reducing the number of sample paths to K = 64. We 
do not recommend using Jess than this. Increasing the number 
of subintervals does not improve the precision of the estimates 
significantly. The mean. standard error, and RMSE of param
eter cstitnates uvcr 512 Munte Carlo repeliliuns are shown 
in Table 4. For comparison, we reproduce Erakcr's results as 
well. Our re~ults are very similar. T he computational cost is 

ahouL 1.2 s per cvaluaLion of the likelihood function on a 
750 Mllz PC. 

Note that the estimates of 01 and 01 appear to be quite 
imprecise. This is due to the parametric fom1 of the model. 
In contrast. the estimates of tJ, j fJ, and tJ1 / tJ4 are quite good. 
While we have maintained the model in the form used by 
Eraker, it might be better to instead use 

dX = 01(X- p.) eli + lft:xp(H )X 112 dW
1 

d H = fJ4 H d1 + fJ5dW2 

where J.L = -81f82 and cr = exp(- O.If04 ). 



  

Table 2. Approximation Errors for Parameter Estimates 


o, 	 o, IJ:1 log L 


(a) 	 0° - (.06, .5, .15), A = 1/ 12, df" = 5.33 

MLE-TRUE : 	 Mean .00061 .04890 .00020 1.54137 
Std. err. .00796 .12532 .00340 1.24511 
RMSE .00797 .13442 .00341 1.98074 

MLE-EULER : 	 Mean .00026 .01781 .00374 . 19031 
Std. err. .00003 .01103 .00076 .54499 
RMSE .00026 .02095 .00382 .57700 

MLE-SMLEn: Mean - .00062 - .00801 - .00223 8.07971 
(Pedersen) Std . err. 00256 .03681 .00175 4.76355 

RMSE .00264 .03765 .00284 9.37802 

MLE-SMLEc: 	 Mean .00000 -.00005 - .00000 - .00469 
Std. err. .00000 .00073 .00001 .01340 
RMSE .00000 .00073 .00001 .01419 

(b) 	 8° = (.06, .5, .22), D.= 1/ 12, dt• = 2.48 

MLE-TRUE: 	 Mean - .00031 .05973 .00012 1.55119 
Std. err. .01136 .12808 00535 1.25344 
RMSE .01136 .14126 .00535 1.99386 

MLE-EULER: 	 Mean .00069 .04941 .00701 3.01730 
Std. err. .00014 .03111 .00136 1.90071 
RMSE .00070 .05838 00714 3.56548 

MLE-SMLE0 : 	 Mean .00001 - .00357 .00018 .03479 
Sid. err. .00014 .01678 .00119 93214 
RMSE .00014 .01714 .00120 .93187 

(c) 	 If' = (.06, .5, .03), A = 1/ 12, dt• - 133.33 

MLE-TRUE: 	 Mean .00005 .04378 .00001 1.57035 
Std. err. .00162 .12239 .00070 1.29601 
RMSE .00162 . 12992 .00070 2.03567 

MLE-EULER : 	 Mean .00001 .01287 .00067 .00428 
Std. err. .00000 .00595 .00015 .05930 
RMSE .00001 .01418 .00069 .05942 

MLE-SMLE": 	 Mean .00000 -.00011 -.00000 - .00227 
Std . err. .00000 .00005 .00000 .00107 
RMSE .00000 .00013 .00000 .00251 

NOTE: Results of Monte Carlo study assessing the quality of parameter estimates obtained using various techniques. Each expert
ment uses 512 replications. each over synthetrc datasets of n = 1.000 observations. The goal is for the distance from the appro•ima
lions to the exact ML£ to be a small fraction of the distance from the exact MLE to the data·generellng parameter. 

• Degrees of freedom of the exact noncentral chi-square transition density. 

b Sampler- Pedersen, subdenslty- Euler. M - 8, K - 256, transformed model. 

c Sampler= modified bridge. subdensity ~ Shoji and Ozaki, M = t6, K = 18, nomlalized variates, transformed model. 


Note that our meLhodology can be easily Ul>ed to estimate 
discrete time SV models hy setting M = I. We have rested the 
methodology using some of the model s examined by Jacquier 
et aL ( 1994) and others with similar results. 

8. APPLI CATION 


To illustrate the methodologies proposed in this article, 
we estimate so me simple models of the short-term interest 
rate. We use the dataset previously examined by Gallant and 
Tauchen ( I Y9~). which consists of l~09 weekly observations 
of the three-month treasury bill rate (January 5, 1962-August 
30, 1996). Rates are annual ized and quoted on a di:;coum 
basis. The data are plotted i11 Figure I 0. 

We first fit a sim ple scalar model, dX = (81 +82 X) dt + 
03 X

9• t!W, commonly referred lo as the constant elasticity of 
volatility (CEV) model. lt ha~ heen studied previously (usi.ng 
other estimators and data) by Chan et al. (1992). Tauchen 

( 1995), Alt-Sahalia (I 996), Conley, H ansen, Lunmer, and 
Scheinkman ( 1997), and others. 

We also fit the stochastic volatility model given by 

(21) 

w ith W1 and W2 independent. Similar model s have been exam
ined by Gallant and Tauchen (1998), Andersen am.l Lund 
( 1997), and Erakcr (200 I). Time is mea-;ured in years. 

Maximum likelihood estimates and log likelihoods are given 
in Table 5. For the scalar model, we have used M = 16 and 
K = 16 with the modi.tled bridge sampler, transformed model , 
normalized variance random scheme, and Shoji and Ozaki's 
subdensity. For the SV model, we use M = g and K = 256 
with the techniques described in the preceding sel:Lion. Sinl:c 
the scalar model is nested within the SV model, the res tric tion 



    

Table 3. Appro)(/matlon Errors for Parameter Estimates. Con(jnued 


o, 	 Jog L 


(d) 	 ff' = (.06 , .4, 15), ~ = 1/ 12, dt• = 4.27 


MLE-TRUE: 	 Mean .00077 .04589 .00008 1.55436 
Std. err. .01019 .11201 .00347 1.28351 
RMSE .01022 .12099 .00347 2.01539 

MLE-EULER: 	 Mean .00027 .01459 .00320 .27005 
Std . err. .00005 .01066 .00072 .60164 
RMSE .00027 .01807 .00328 .65920 

MLE-SMLE' : 	 Mean - .00000 -.00011 .00001 .01275 
Std. err. .00002 .00109 .00004 .03611 
RMSE .00002 .00109 .00004 .03827 

(e) 	 o• = (.06, .s . .15) • .l 1112. dt" = 53.33 

MLE-TRUE: 	 M ean .00007 .01506 .00000 1.59353 
Std. err. .00082 .46302 .00427 1.39263 
RMSE .00082 .46300 .00427 2.11592 

MLE-EULER : 	 Mean .00019 .93515 .00266 .31509 
Std. err. .00001 .16274 .00257 .73929 
RMSE .00019 .94919 .02679 .80325 

MLE-SMLE' : 	 Mean .00000 - .00734 - .00005 - 14917 
Std. err. .00000 .00423 .00002 .04223 
RMSE .00000 .00847 .00005 .15502 

(f) 	 ff' = (.06, .5 , .15), .l = 2 , df' = 5 .33 

MLE-TRUE · 	 Mean .00036 .00126 .00038 1.52724 
Std . err. .00173 .04305 .00564 1.24582 
RMSE .00176 .04302 .00564 1.97013 

MLE-EULER: 	 Mean .00367 .2 1218 .05275 21.19312 
Std . err. .00020 .02967 .00458 5.66304 
RMSE .00367 .21424 .05295 21 .93523 

MLE-SMLE' : 	 Mean .00006 .00712 .00041 - 2.63215 
Std. err. .00004 .00778 .00091 .95334 
RMSE .00007 .01054 .00100 2.79916 

• Degrees ol lreudorn ol tho oxi1C1 noncentral chi-square transition densl1y. 

0 Sampler - Pedersen, subden11ty ~ Euler, M = 8. K = 256, trar\Sio rrned m odo! 

c Sampler = modified brl~ga, sulxl(tnsay = Shoji and Ozaki, M - 16. K 16. normalized varia1es, transformed mOdel. 


can be tested using, for example, the likelihood ratio stati sti c. SV model results in a huge improvement in the log likelihood. 

Although setting ()6 = 0 causes {}~ to become unidentified, this The scalar model does not appear to be plausible. 

issue may be addressed along Ihe lines of. for example, Gallant Norice that the estimates for 01 and 82 are insignificantly 

( 1997) or Andrews and Ploberger ( 1994). In any event, the different from zero in both models . T n a more exhaustive s tudy. 


Table 4. Monte Carlo Study tor SV Model 

o, 82 IJ,/IJ2 0,, 	 o. Os f O. Os 


True .00020 - .00200 -.10000 .30000 - .03000 .10000 .30000 

SMLE 

Mean .00089 -.00886 - .10319 -.43425 .04350 .10040 .31734 
RMSE .00102 .00986 .05523 .27931 .02802 .00493 .06888 

Eraker (2001) 

Mean .00127 - .01271 -.38174 .03873 .24297 
RMSE .00154 .01468 .21844 .02209 .07173 

NOTE: Mean e.nd root mean squared error ot parameters estimateu 011 synthollc dato (n = 500) genera1ed from (19). The sampling 
frequency IS ll.l ~ 1. Tl1e paromolors nro calibrated 10 ma1ch U.S. shon·term 1nterest rates Wllh lime measwud in dnyN The Monte 
Cnrto exparimem WM run for 5 12 repetl11ons. Monte Carlo results lrom Etakot (200 1) oro Included for comparison 
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Figure 10. Weekly Observations of the Three-Mont/J Treasury Bill Rate, 1/5/1962-8/3011996, n -= 1809. 

Durham (2000) linus that the constant term in the urifl is 
needed to avoid having an attracting boundary ar zero, bur rhat 
the benefits of including additional terms are negligible. This 
is true for both the scalar and stochastic volatility models. 

Notice also that the estimates for /J1 and /J4 are similar 
for both models (the unconditional mean of H is 0, and 
thus exp(H) vacillates around I). The estjmates are slightly 
lower in the SV mouel since this mout:l gcncratcs conuitional 
densities with thicker tails, which helps to carch the extreme 
events. These. parameters are estimated quite precisely in the 
scalar model. Including the unobserved component reduces the 
precision of these estimates. but not to an unacceptable degree. 
There is a great deal of covariance hclwccn 0

~ 

4 and 0
~ 

5 in the 
SV model. Volatility rends to be high when inrerests rares are 
high: the estimator has difficulty distinguishing whether this 
is due to persistence or a level effec t. Much of the lack of 
precision in these estimates appears to be due to tllis. 

The volatility component is an Ornstein-Uh lenbeck pro
cess. Jts unconditional distribution is Gaussian with m<::an Lcru 
and variance BV(-285)::::: .34. The mean reversio n parame
ter is about -4. which corresponds to a half-life of abour two 
months. 

9. CONCLUSIONS 


Despite the theoretical advantages of maximum likeli hood 
estimation, it has been seldom used in estimating continuous
time d iffusion models. The transition densities are not known 
for most models of interest, anrl previously available approx
imation techniques have either been of questionable accuracy 
or computationally intensive. 

The si mula! ion-hased approach suggested by Pedersen 
( l995b) and Santa-Clara ( 1995) is appealing from a thcon:t
ical and intuitive viewpoint: however. we find th at it can be 
prohibitively costly to attain even the accuracy of the simple 
first-order approximation. Eraker (200 l ). Jones ( l999a), and 
Elerian ct aJ. (200 I) propose interesting MCMC approaches 
to estimating diffusion models. Elerian et al. suggest the idea 
of improved importance sam pling to accelerate the conver
gence of the Monte Carlo integration at the heart of the 
simulated likelihood approach. However, computational cost 
remains high. 

We build upon this work, examining other importance sam
plers. alternate random schemes, higher order sublransition 
densities, extrapolation, and a variance-stabilizing transforma
tion of the model. Combining these ideas results in highly 
efficient approximations. When app lied to synthetic data (n = 
1 ,000) generated by a CTR model with parameters calibrated 
to march monthly observations of the U.S. short-term inter
est rate, we are ahle to obtain maximum likelihood estimates 

with a negligible approximation error in well under 1 min. The 
log-likelihood function itself can be approximated with great 
accuracy iu about .I s. 

Our results suggest that the best pt::rformance is obtained 
using the modified bridge sampler with the subtransition den
sity of Shoji and Ozaki applied to the transformed model. The 
number of subintervals M and sample palhs K must he deter
mined by experimentation. 

Future work will undoubtedly uncover further refinements 
in these techlliques, as well as point to situations where one 

Table 5. CEV and SV Models Fitted to Weekly Observations of the Three-Month Treasury Bill Rate, 

Jan. 5, 1962-Aug. 30, 1996 


Model log L 9, 91 93 e. lis 06 


CEV 512.32 .8277 -.1049 .1 032 i 4502 
(.5004) (.1167) (.0038) (.021 0} 

sv 913.95 .176 .01 9 .1 05 i .. 247 4. 104 1.682 
(.291) (.066) (.028} (.154} (.747) (.1 44} 

NOTE: Parameter estimates for CEV model and the SV model in Equation (20) . Standard erroos rue i11 parentheses below the 
parameter estimates. Time is measured in years 



   

or the other particular variant may be preferred. Wllile the 
main fm:us of lhis article is on scalar models, an approach 
ro applying some of the ideas to estimate a two-factor, latent 
variable model is also proposed. Extending these techniques 
LO models with jump components would also be of interest. 
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