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EXISTENCE OF OPTIMAL CONTROLS FOR SINGULAR
 
CONTROL PROBLEMS WITH STATE CONSTRAINTS1
 

BY AMARJIT BUDHIRAJA AND KEVIN ROSS 

University of North Carolina at Chapel Hill 

We establish the existence of an optimal control for a general class of 
singular control problems with state constraints. The proof uses weak con­
vergence arguments and a time rescaling technique. The existence of optimal 
controls for Brownian control problems [14], associated with a broad family 
of stochastic networks, follows as a consequence. 

1. Introduction. This paper is concerned with a class of singular control 
problems with state constraints. The presence of state constraints, a key feature 
of the problem, refers to the requirement that the controlled diffusion process take 
values in a closed convex cone at all times [see (3)]. We consider an infinite hori­
zon discounted cost of the form (4). The main objective of the paper is to establish 
the existence of an optimal control. 

Singular control is a well-studied but rather challenging class of stochastic con­
trol problems. We refer the reader to [7], especially the sections at the end of 
each chapter, for a thorough survey of the literature. Classical compactness argu­
ments that are used for establishing the existence of optimal controls for prob­
lems with absolutely continuous control terms (cf. [8]) do not naturally extend 
to singular control problems. For one-dimensional models, one can typically es­
tablish existence constructively, by characterizing an optimally controlled process 
as a reflected diffusion (cf. [2, 3, 15]). In higher dimensions, one approach is to 
study the regularity of solutions of variational inequalities associated with singular 
control problems and the smoothness of the corresponding free boundary. Such 
smoothness results are the starting points in the characterization of the optimally 
controlled process as a constrained diffusion with reflection at the free boundary. 
Excepting specific models (cf. [30, 31]), this approach encounters substantial dif­
ficulties, even for linear dynamics (cf. [32]); a key difficulty is that little is known 
about the regularity of the free boundary in higher dimensions. Alternative ap­
proaches for establishing the existence of optimal controls based on compactness 
arguments are developed in [12, 17, 25]. The first of these papers considers linear 
dynamics, while the last two consider models with nonlinear coefficients. In all 
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three papers, the state space is all of Rd , that is, there are no state constraints. It 
is important to note that in the current paper, although the drift and diffusion co­
efficients are constant, the state constraint requirement introduces a (nonstandard) 
nonlinearity into the dynamics. To the best of our knowledge, the current paper is 
the first to address the existence of an optimal control for a general multidimen­
sional singular control problem with state constraints. While our method does not 
provide any characterization of the optimal control, it is quite general and should 
be applicable to other families of singular control problems (with or without state 
constraints). 

State constraints are a natural feature in many practical applications of singular 
control. A primary motivation for the problems considered in this paper arises from 
applications in controlled queueing systems. Under “heavy traffic conditions”, for­
mal diffusion approximations of a broad family of queuing networks with schedul­
ing control lead to the so-called Brownian control problems (BCP’s) (cf. [14]). The 
BCP can in turn be transformed, by applying techniques introduced by Harrison 
and Van Mieghem [16] to a singular control problem with state constraints. We re­
fer the reader to [1] for a concise description of the connections between Brownian 
control problems and the class of singular control problems studied in [1] and  the  
current paper. In the Appendix, we indicate how the results of the current paper 
lead to the existence of optimal controls for BCP’s. State constraints arise in nu­
merous other applications: see Davis and Norman [10] and Duffie, Fleming, Soner 
and Zariphopoulou [11] (and references therein) for control problems with state 
constraints in mathematical finance. 

In Section 2, we define the singular control problem of interest. The main result 
of this paper (Theorem 2.3) establishes the existence of an optimal control. An 
important application of such a result lies in establishing connections between sin­
gular control problems and certain optimal stopping/obstacle problems (see [29]). 
Such a connection was first observed by Bather and Chernoff [2] and has subse­
quently been studied by several authors [4, 18, 19, 30, 31] in one-dimensional and 
certain multidimensional models. The main result of the current paper is a key 
technical step (cf. [18]) in establishing equivalence with optimal stopping prob­
lems for a general class of singular control problems with state constraints. Such 
equivalence results will be a subject of our future work. Connections between sin­
gular control and optimal stopping, in addition to being of intrinsic mathematical 
interest, have important practical implications. Singular control problems rarely 
admit closed form solutions and, therefore, numerical approximation methods are 
necessary. Although numerical schemes for singular control problems are notori­
ously hard, optimal stopping problems have many well-studied numerical schemes 
(cf. [22]). Exploiting connections between singular control and optimal stopping 
is expected to lead to simpler and more efficient numerical solution methods. In­
deed, in [6], we study a numerical scheme for a scheduling control problem for 
a two-dimensional queuing network by exploiting such connections. 
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We now sketch the basic idea in the proof of Theorem 2.3. For a given ini­
tial condition w, we choose a sequence of controls {Un} such that the corre­
sponding cost sequence {J (w,  Un)} converges to the value function V (w). The  
main step in the proof is to show that there is an admissible control U such 
that lim inf J (w,  Un) ≥ J (w,  U  ). For problems with absolutely continuous con­
trols with a bounded control set, such a step follows from standard compactness 
arguments (cf. [8]); one argues that the sequence {Un} is tight in a suitable topol­
ogy, picks a weak limit point U and establishes the above inequality for this U 
using straightforward weak convergence arguments. The key difficulty in singu­
lar control problems is proving compactness of the control sequence in a suitable 
topology; the usual Skorohod topology on D([0,∞)) is unsuitable, as is suggested 
by the main result (Proposition 3.3) of Section 3. This result shows that for a typ­
ical discontinuous control U , one can construct a sequence of continuous controls 
{Un} such that the costs for Un converge to that for U ; clearly, however, Un cannot 
converge to U in the usual Skorohod topology on D([0,∞)). A powerful tech­
nique for bypassing this tightness issue, based on a suitable stretching of time 
scale, was introduced in [23]. Although such time transformation ideas go back 
to the work of Meyer and Zheng [27] (see also Kurtz [21]), the papers [23, 24] 
were the first to use such ideas in stochastic control problems. A similar technique 
was also used recently in [5]. This “time stretching” technique is at the heart of 
our proof. Time transformation for the nth control Un is defined in such a way 
that, viewed in the new time scale, the process Un is Lipschitz continuous with 
Lipschitz constant 1. Tightness in D([0,∞)) (with the usual Skorohod topology) 
of the time-transformed control sequence is then immediate. Finally, in order to 
obtain the candidate U for the above inequality, one must revert, in the limit, to 
the original time scale. This crucial step is achieved through Lemmas 4.2 and 4.3. 
The proof of the main result then follows via standard martingale characterization 
arguments and the optional sampling theorem. 

The proof of Theorem 2.3 is facilitated by the result (Proposition 3.3) that the 
infimum of the cost over all admissible controls is the same as that over all admissi­
ble controls with continuous sample paths a.s. Although it may be possible to prove 
Theorem 2.3 without appealing to such a result, we believe that the result is of in­
dependent interest, and it simplifies the proof of the main result considerably. The 
main difficulty in the proof of Proposition 3.3 is that if one approximates an arbi­
trary RCLL admissible control by a standard continuous approximation (cf. [26]), 
state constraints may be violated. Ensuring that the continuous approximation is 
chosen in a manner that state constraints are satisfied is the key idea in the proof. 

The paper is organized as follows. We define the control problem and state the 
main result in Section 2. In Section 3, we characterize the value function as the 
infimum of the cost over all continuous controls. Section 4 is devoted to the proof 
of the main result. Finally, in the Appendix, we briefly describe connections with 
Brownian control problems and stochastic networks. 
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We will use the following notation and terminology. The set of nonnegative 
real numbers is denoted by R+. For  x ∈ R

d , |x| denotes the Euclidean norm. All 
vectors are column vectors and vector inequalities are to be interpreted compo­

.nentwise. If X ⊂ R
d and A is an n × d matrix, then AX = {Ax : x ∈ X}. A set 

C ⊂ R
d is a cone of Rd if c ∈ C implies that ac ∈ C for all a ≥ 0. A function 

f : [0,∞) → R
d is said to have increments in X if f (0) ∈ X and f (t)  −f (s)  ∈ X 

for all 0 ≤ s ≤ t . A stochastic process is said to have increments in X if, with prob­
ability one, its sample paths have increments in X. Given a metric space E, a func­
tion f : [0,∞) → E is said to be RCLL if it is right continuous on [0,∞) and has 
left limits on (0,∞). We define the class of all such functions by D([0,∞) : E). 
The subset of D([0,∞) : E) consisting of all continuous functions will be de­
noted by C([0,∞) : E). A process is RCLL if its sample paths lie in D([0,∞) : E) 

∗ . a.s. For T ≥ 0 and φ ∈ D([0,∞) : E), let |φ| = sup0≤ |φ(t)|. We will denote T t≤T 
generic constants in (0,∞) by c, c1, c2, . . .; their values may change from one 
theorem (lemma, proposition) to the next. 

2. Setting and main result. The basic setup is the same as in [1]. Let W 
(resp. U) be a closed convex cone of Rk (resp. Rp) with nonempty interior. We 
consider a control problem in which a p-dimensional control process U , whose 

.increments take values in U, keeps a k-dimensional state process W(t)  = w + 
B(t)+GU (t) in W , where G is a fixed  k×p matrix of rank k (k ≤ p) and  B is a k-
dimensional Brownian motion with drift b and covariance matrix 2 given on some  

.filtered probability space (Q, F , {Ft },P). We will refer to < = (Q, F , {Ft },P,B)  
as a system. We assume that GU ∩ Wo  ∅. Fix a unit vector v0 ∈ (GU)o ∩ Wo= . 
Select u0 ∈ U for which Gu0 = v0. We also require that there exist v̂1 ∈ R

k , û1 ∈ 
R

p and a0 ∈ (0,∞) such that 

v · v̂1 ≥ a0|v|, v ∈ GU, w · v̂1 ≥ a0|w|, w ∈ W , 
(1) 

u · û1 ≥ a0|u|, u ∈ U. 

The vectors u0, v0, û1 and v̂1 will be fixed for the rest of the paper. 

DEFINITION 2.1 (Admissible control). An {Ft }-adapted p-dimensional RCLL 
process U is an admissible control for the system < and initial data w ∈ W if the 
following two conditions hold P-a.s.: 

(2) U has increments in U, 

.(3) W(t)  = w + B(t) + GU (t) ∈ W , t ≥ 0. 

By convention, U(0−) = 0 and  W(0−) = w. The process W is referred to as 
the controlled process associated with U and the pair (W, U ) is referred to as an 
admissible pair for < and w. Let  A(w, <) denote the class of all such admissible 
controls. 
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The cost associated with system <, initial data w ∈ W and admissible pair 
(W , U ), U ∈ A(w, <), is given  by  ( ∞ ( 

. −γ t(4)	 J (w,  U  )  = E e −γ t  e(W (t )) d t + E e h · d U (t ), 
0 [0,∞) 

where γ ∈ (0, ∞), h ∈ R
p and e : W → [0, ∞) is a continuous function for which 

there exist constants ce,1, ce,2, ce,3 ∈ (0, ∞) and αe ∈ [0, ∞), depending only on e, 
such that 

(5) ce,1|w|αe − ce,2 ≤ e(w) ≤ ce,3(|w|αe + 1), w ∈ W . 

We remark that the assumption on e made above is weaker than that made in [1]. 
.We also assume that h · U = {h · u : u ∈ U} ⊂ R+. 

The value function of the control problem for initial data w ∈ W is given by 

(6)	 V (w)  = inf inf J (w,  U  ),  
< U∈A(w,<) 

where the outside infimum is taken over all probability systems <. Lemma 4.4 
of [1] shows that V is finite everywhere. The following assumption will be needed 
for the main result of the paper: 

ASSUMPTION 2.2. (i) Either αe > 0 or there exists a1 ∈ (0, ∞) such that 
h · u ≥ a1|u| for all u ∈ U. 

(ii) There exists cG ∈ (0, ∞) such that |Gu| ≥ cG|u| for all u ∈ U. 

The following theorem, which guarantees the existence of an optimal control for 
the above control problem, is the main result of this paper. The proof is postponed 
until Section 4. 

THEOREM 2.3. Suppose that Assumption 2.2 holds. For all w ∈ W , there ex­
ists a system < ∗ and a control U ∗ ∈ A(w, < ∗ ) such that V (w)  = J (w,  U  ∗ ). 

3. Restriction to continuous controls. The main result of this section is 
Proposition 3.3, in which we show that in (6), it is enough to consider the in­
fimum over the class of admissible controls with continuous paths. The use of 
continuous controls will play an important role in the time rescaling ideas used in 
the convergence proofs of Section 4. 

The proof of Proposition 3.3 involves choosing an arbitrary control and con­
structing continuous approximations to it. We show that the cost functions asso­
ciated with the approximating controls approach the cost function of the chosen 
control as the approximation parameter approaches its limit. The main difficulty 
of the proof lies in constructing approximating controls so that state constraints 
are satisfied. Such a construction is achieved by means of the Skorohod map, 
which is made precise in the following lemma. We refer the reader to Lemma 4.1 

∗of [1] for a proof. We recall that for T ≥ 0 and φ ∈ D([0, ∞) : Rk), |φ| denotesT 
sup0≤t≤T |φ(t)|. 
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LEMMA 3.1. There exist maps r : D([0,∞) : Rk) → D([0,∞) : Rk) and 
r̂ : D([0,∞) : Rk) → D([0,∞) : R+) with the following properties. For any φ ∈ 

. .
D([0,∞) : Rk) with φ(0) ∈ W , define η = ˆ = r(φ).r(φ) and ψ Then for all 
t ≥ 0: 

1. η(t) ∈ R+ and η is nondecreasing and RCLL; 
2. ψ(t)  ∈ W and ψ(t)  = φ(t)  + v0η(t); 
3. If φ(t)  ∈ W for all t ≥ 0, then r(φ) = φ and ˆ = 0.r(φ) 

Furthermore, the maps r and r̂ are Lipschitz continuous in the following 
sense. There exists κ ∈ (0,∞) such that for all φ1, φ2 ∈ D([0,∞) : Rk) with 
φ1(0), φ2(0) ∈ W and all T ≥ 0, 

(7) |r(φ1) − r(φ2)|∗ + |  ̂ r(φ2)|∗ 
T .r(φ1) − ˆ ≤ κ|φ1 − φ2|∗ 

T T 

Before stating the main result of this section, we present the following lemma 
which states that we can further restrict our attention to controls satisfying certain 
properties. The proof is contained in that of Lemma 4.7 of [1] and is therefore 
omitted. 

LEMMA 3.2. For w ∈ W and a system <, let  
−γ tA'(w, <) = U ∈ A(w, <) : ∀ r >  0, lim e E|W(t)|r = 0 

t→∞ ( ∞ 
and E e −γ t |W(t)|r dt < ∞, 

0 

where W is the controlled process associated with U . 

Then V (w)  = inf< infU∈A'(w,<) J (w,  U). 

PROPOSITION 3.3. Let < be a system and w ∈ W . Denote by Ac(w, <) the 
class of all controls U ∈ A(w, <) such that for a.e. ω, t  → Ut(ω) is a continuous 
map. Then 

(8) V (w)  = inf inf J (w,  U).  
< U∈Ac(w,<) 

PROOF. Fix  w ∈ W and a system <. Let U ∈ A'(w, <) be such that 
. L

J (w,  U)  <  ∞. Define Ud(t) = 0≤s≤t !U(s), where !U(s) = U(s)  − U(s−) 
.and Uc(t) = U(t)  − Ud(t). That is, Uc is the continuous part and Ud is the pure 

jump part of the control U . Note that both processes are RCLL with increments 
in U. We construct a sequence of continuous processes to approximate Ud as 
follows. For each integer k ≥ 1 and  t ∈ R+, set  ( t . 

Uc(t) = k Ud(s) ds + k(1/k  − t)+Ud(0).k 
(t−1/k)+ 
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Note that for each k, Uc is continuous with increments in U, and as k → ∞,k 

Uc(9) (t ) → Ud (t ) a.e. t ∈ [0, ∞), a.s.k 

Also, from (1), it follows that for any function f with increments in U, t → 
f (t  )  · û1 and t → (Gf (t )) · v̂1 are nondecreasing functions. This observation im­
plies that for all T ≥ 0 and  0  ≤ t ≤ T , 

(10) a0|Uc(t )| ≤ Uc(t ) · û1 ≤ Ud (t ) · û1 ≤ Ud (T ) · û1 ≤ |Ud (T )|,k k 

(11) a0|GUc(t )| ≤ |GUd (T )|, a0|GUd (t )| ≤ |GUd (T )|.k 

Thus, by (9) and the dominated convergence theorem, for all p >  0, 
( T 

p|Uc(t ) − Ud (t )| dt → 0 a.s. as k → ∞.k
0 

This suggests that a natural choice for the approximating control sequence is 
{Uc + Uc}. However, this control may not be admissible, since the corresponding k 

.state process W̃k , defined as  W̃k(t ) = w + B(t ) + GUc(t ) + GUc(t ), t ≥ 0, may k 
violate state constraints. We now use the Skorohod map introduced in Lemma 3.1 

. ˆto construct an admissible continuous control. Define, for t ≥ 0, ηk(t ) = r(W̃k)(t ) 
and 

.(12) Wk(t ) = r(W̃k)(t ) = w + B(t ) + GUc(t ) + GUc(t ) + Gu0ηk(t ). k 
.Consider Uk = Uc + Uc + u0ηk . It is easily checked that Uk is continuous, k {Ft }-adapted and has increments in U. Also, by Lemma 3.1, Wk(t ) ∈ W for all 

t ≥ 0. Thus, Uk is an admissible control according to Definition 2.1. We will now 
turn our attention to the corresponding cost functions. We begin by proving that 
Wk(t ) → W(t  )  a.s. as k → ∞. The main idea is to appeal to the Lipschitz prop­
erty (7); however, (9) establishes only pointwise convergence of W̃k to W and so a  
direct application of (7) is not useful. Define, for each k ≥ 1, ( t . +¯ Wk(t ) = k W(s  )  d  s  + k(1/k  − t) W(0). 

(t−1/k)+ 

.¯Since W(t  )  ∈ W for all t ≥ 0, it follows that Wk(t ) ∈ W for all t ≥ 0 and thus η̄k = 
r̂(W̄ 

k) = 0. Recalling the definition of Uc and using the Lipschitz property (7), we k 
have, for T ≥ 0 and 0 ≤ t ≤ T ,   

|Wk(t ) − ¯ Wk(t )| ≤ κ sup 
0≤t≤T

   B(t ) − k 
( t 

(t−1/k)+ 
B(s ) d s

   

+ |G|
    Uc(t ) − k 

( t 

(t−1/k)+ 
Uc(s ) d s

    . 

From the sample path continuity of B and Uc, the right-hand side of the inequality 
¯approaches 0 almost surely as k → ∞. Next, since W has RCLL paths, Wk(t ) → 
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W(t  −) a.s. for every t >  0. Combining the above observations, we have that as 
k → ∞, 

(13) Wk(t ) → W(t  )  as k → ∞ for almost every t ∈ [0, ∞), a.s. 

We now show that the costs associated with controls Uk converge to the cost corre­
sponding to control U . We first consider the component of the cost arising from e. 
Using (1), we have, along the lines of equations (4.10)–(4.12) of [1], that there 
exists c1 ∈ (0, ∞) such that for 0 ≤ t ≤ T <  ∞, 

∗(14) |GUc(t )| + |GUd (t )| + |W(t  )| ≤ c1
(|w| + |W(T  )| + |B| ).T 

Writing Wk = Wk − W + W and using Lemma 3.1, we have,  for all  k ≥ 1 and 
0 ≤ t ≤ T <  ∞, 

(	 )∗ ∗	 ∗(15) |Wk(t )| ≤ κ(|GUc| + |GUd | ) + |W(t  )| ≤ c2 |w| + |W(T  )| + |B| ,k T	 T T 

where the second inequality follows from combining (14) and (11). Recalling (5), 
we obtain, for some c3 ∈ (0, ∞), 

(	 )∗ e(Wk(t )) ≤ c3 |w|αe + |W(t  )|αe + (|B| )αe + 1 .t 

Finally, since U ∈ A ' (w, <), we have, from the above estimate, (13) and the dom­
inated convergence theorem, that as k → ∞, 

( ∞ ( ∞ −γ t  −γ t(16)	 E e e(Wk(t )) d t → E e e(W (t )) d t . 
0 0 

We now consider the component of the cost function associated with h. Note  f
that since E	 [0,∞) e −γ t  h · dU (t ) ≤ J (w,  U  )  <  ∞, we have that 

(	 ( ( )−γ t 	  −γ t(17)	 E e h · dU (t ) = γ e E h · U(t  ) dt < ∞. 
[0,∞) [0,∞) 

Next, for t ≥ 0, 

|Gu0ηk(t )| ≤ c4
(|w| + |Wk(t )| + |B(t )| + |GUc(t )| + |GUd (t )|) (	 )∗≤ c5 |w| + |Wk(t )| + |W(t  )| + |B|t (	 )∗≤ c6 |w| + |W(t  )| + |B| ,t 

where the first inequality follows from (12) and (11), the second from (14) and the 
∗third from (15). Since ηk is nondecreasing, the above display implies that |ηk| ≤t ∗ c7(|w| + |W(t  )| + |B| ). Thus, since U ∈ A ' (w, <), we have that t (	 (

−γ t 	  −γ t(18)	 γ E e (h · u0)ηk(t ) d t = E e h · u0 dηk(t ) < ∞. 
[0,∞) [0,∞) 

http:4.10)�(4.12
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Next, 

E 
(
[0,∞) 

e −γ t  h · dUk(t ) 

= E

((
[0,∞) 

e −γ t  h · dUc(t ) +
(
[0,∞) 

e −γ t  h · dUc 
k (t ) 

(19) +
(

e −γ t  h · u0 dηk(t )
)

[0,∞) ( (	 (
−γ t 	  −γ t= γ E e	 h · Uc(t ) d t + e h · Uc(t )d t k[0,∞)	 [0,∞) (	 ) 

−γ t+ e h · u0ηk(t ) d t , 
[0,∞) 

where the last line follows from using (18), noting that E(h · (Uc(t ) + Uc(t ))) ≤k 
E(h · U(t  ))  and recalling that J (w,  U  )  <  ∞. From (17), (18) and (19), it now f	 f−γ t  h	 −γ t  hfollows that E [0,∞) e · dUk(t ) is finite and equals γ E [0,∞) e ·Uk(t ) d t . 

From (9) and (13), we get that as k → ∞, 

(20) (h · u0)ηk(t ) → 0	 and h · Uk 
c(t ) → h · Ud (t ), a.e. t,  a.s. 

∗	 ∗Recalling that |ηk| ≤ c7(|w| + |W(t  )| + |B| ) and that U ∈ A ' (w, <), equations t	 t 
(20) and (18) imply that as k → ∞, (
(21)	 E e −γ t  h · u0 dηk(t ) → 0. 

[0,∞) f 
Since h ·Uk 

c(t ) ≤ h ·Ud (t ) and E [0,∞) e −γ t  h ·Ud (t ) d t ≤ J (w,  U  )  <  ∞, we get, 
from (20), that as k → ∞, (	 (

−γ t 	  −γ t(22) E e h · dUc(t ) → E e h · Ud (t ) d t . k[0,∞)	 [0,∞) 

Finally, taking limits as k → ∞ in (19) yields (	 (
−γ t 	  −γ t(23)	 E e h · dUk(t ) → E e h · d U (t ). 

[0,∞) [0,∞) 

Combining (16) and (23), we have J (w,  Uk) → J (w,  U  )  as k → ∞. This proves 
the result. D 

4. Existence of an optimal control. In this section, we prove our main result 
(Theorem 2.3) which guarantees the existence of an optimal control for the control 
problem of Section 2. Fix  w ∈ W . From Proposition 3.3, we can find a sequence 
of systems {<n} with <n = (Qn, Fn, {Fn(t )}, Pn,Bn) and a sequence of controls 
{Un} with Un ∈ Ac(w, <n), n ≥ 1, such that J (w,  Un) <  ∞ for each n and 

(24)	 V (w)  = lim J (w,  Un), 
n→∞
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where ( ∞	 (
γ t 	  γ t(25)	 J (w,  Un) =. En e − e(Wn(t )) d t + En e − h · dUn(t ) 

0 [0,∞) 

and En denotes expectation with respect to Pn. Let Wn be the state process corre­
sponding to Un, that is, 

.(26)	 Wn(t ) = w + Bn(t ) + GUn(t ), 

with Wn(t ) ∈ W for all t ≥ 0. 

Time rescaling. For each n ≥ 1 and  t ≥ 0, define
 
.
(27)	 τn(t ) = t + Un(t ) · û1. 

Since û1 · Un is continuous and nondecreasing, τn is continuous and strictly in­
creasing. Also, for 0 ≤ s ≤ t , 

(28)	 τn(t ) − τn(s ) ≥ t − s, τn(t ) − τn(s ) ≥ a0|Un(t ) − Un(s )|. 
.The time-rescaled process is given by τ̂n(t ) = inf{s ≥ 0 :  τn(s ) > t }. Note that τ̂n 

is continuous and strictly increasing. Also, t = τ̂n(τn(t )) = τn(τ̂n(t )), τ̂n(t ) ≤ t ≤ 
τn(t ), and τ̂n(s ) < t if and only if τn(t  ) > s  . 

.	 .We define the time-rescaled processes via B̂n(t ) = Bn(τ̂n(t )), Ûn(t ) = 
. 

Un(τ̂n(t )) and Ŵn(t ) = Wn(τ̂n(t )). From (26), for t ≥ 0, 

Ŵn(t ) = Wn(τ̂n(t )) = w + Bn(τ̂n(t )) + GUn(τ̂n(t )) 
(29) 

= w + B̂n(t ) + GÛn(t ). 

Also, from (28), for 0 ≤ s ≤ t , 

(30) τ̂n(t ) − τ̂n(s ) ≤ t − s, a0|Ûn(t ) − Ûn(s )| ≤ t − s. 

Let E denote the space of continuous functions from [0, ∞) to Rk × [0, ∞) × 
R

k × U × W , endowed with the usual topology of uniform convergence on 
compact sets. Note that for each n ≥ 1, (Bn, τ̂n, B̂n, Ûn, Ŵn) is a random vari­
able with values in the Polish space E . We next consider tightness of the family 

ˆ ˆ ˆ{(Bn, τ̂n, Bn, Un, Wn), n ≥ 1}. 
ˆ ˆ ˆLEMMA 4.1. The family {(Bn, τ̂n, Bn, Un, Wn), n ≥ 1} is tight. 

ˆPROOF. Clearly, {Bn} is tight. Tightness of {(τ̂n, Un)} follows from (30). Since 
B̂n(t ) is the composition of Bn(·) and τ̂n(·), tightness of {B̂n} follows from tight­
ness of {(Bn, τ̂n)}. Finally, tightness of {Ŵn} follows from (29) and tightness of 

ˆ ˆ{(τ̂n, Un, Bn)}. D 

ˆ ˆ ˆChoose a convergent subsequence of {(Bn, τ̂n, Bn, Un, Wn), n ≥ 1} (also in­
dexed by n) with limit (B ' τ ,  ˆ U,  ˆ on probability space. , ˆ B, ˆ W)  defined some 
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Clearly, B ' is a (b, 2)-Brownian motion with respect to its own filtration. By the 
Skorohod representation theorem, there exists a probability space (Q ∗ , F ∗ , P ∗ ) 

' B̂ ' ˆ ' ˆ ' on which are defined a sequence of processes {(B ' , τ̂ , , U , W ), n ≥ 1} and n n n n n

' ˆ ˆ ' ˆ ' d ˆa process (B '' , τ̂ , B ' , Û ' , W	 ), such that (B ' , τ̂ ' , B ' , Û , Ŵ ' ) = (Bn, τ̂n, Bn, Ûn,n n n n n
d' ' '	 ' ' ' ' Ŵn), (B '' , τ̂ , B ' , ˆ , ˆ ) = (B ' , ˆ B, ˆ W)  and (B ' τ , B ' , ˆ , Ŵ , ˆˆ U W τ ,  ˆ U,  ˆ , ˆ ˆ U ) → (B '' τ ,n n n n n

B̂ ' ˆ ' ˆ ' , U , W ) almost surely as n → ∞. To simplify notation, we will assume (with­
out loss of generality) that 

' (Bn, τ̂n, ˆ Ûn, ˆ ) → (B	 τ ,  ˆ U,  ˆ P ∗-almost surely as n → ∞.(31) Bn,	 Wn , ˆ B, ˆ W)  

The following lemma plays a central role in the time rescaling ideas used in this 
section: 

LEMMA 4.2. Suppose that Assumption 2.2 holds. Then there exists α ∗ ∈ 
(0, ∞) such that for all t ≥ 0, 

(32)	 lim sup En|Un(t )|α ∗ 
< ∞. 

n→∞ 

PROOF. Recall that limn→∞ J (w,  Un) = V (w)  <  ∞. From Assumption 2.2, 
we have that either αe > 0 or there exists a1 ∈ (0, ∞) such that h ·u ≥ a1|u| for all 
u ∈ U. Suppose first that the latter condition holds. Then for all t ≥ 0, ( ∞	 ( )−γ t 	  −γ (t  +1)J (w,  Un) ≥ γ En e h · Un(t ) d t ≥ γ e En h · Un(t )

0 

−γ (t  +1)≥ γ a1e En|Un(t )|. 
Thus, in this case, (32) holds with α ∗ = 1. Next, suppose that αe > 0. From As­
sumption 2.2 and (26), we have 

cG|Un(t )| ≤ |GUn(t )| ≤ |Wn(t )| + |Bn(t )| + |w|, 
which implies that for some c1 ∈ (0, ∞), (	 )|Un(t )|αe ≤ c1 |Wn(t )|αe + |Bn(t )|αe + |w|αe . 

Therefore, using moment properties of Bn, we have,  for some  c2 ∈ (0, ∞), (	 )αe(33)	 En|Un(t )|αe ≤ c2 En|Wn(t )|αe + t + 1 . 

Combining the above estimate with (5), we get ( ∞ −γ s(34)	 lim sup e En|Un(s )|αe ds < ∞. 
n→∞ 0 

Finally, ( ∞ (	 ∞ (−γ t 	  −γ t  e En|Un(t )|αe dt ≥ e En û1 · Un(t )
)αe dt 

0	 0 

−γ (t  +1) αe αe≥ e a En|Un(t )| .0 
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Inequality (32) now follows, with α ∗ = αe, by combining the above inequality with 
(34). D 

The following lemma, a consequence of Lemma 4.2, gives a critical property 
of τ̂ : 

LEMMA 4.3. Suppose that Assumption 2.2 holds. Then 

∗(35) τ(t)  ˆ → ∞ as t → ∞, P -a.s. 

PROOF. Fix  M > 0 and consider t ∈ (M,∞). Since τ̂n(t) < M if and only if 
τn(M) > t , we have,  by  (27), 

{τ̂n(t) < M} = {M + Un(M) · û1 > t} ⊂ {|Un(M)| > (t  − M)}. 
Recall the constant α ∗ in Lemma 4.2. The above relation and an application of 
Markov’s inequality yield, for all t >  M , 

∗[ 1 
P ∗[τ̂n(t) < M] ≤ P |Un(M)|α ∗ 

> (t  − M)α ∗ ] ≤ ∗|Un(M)|α ∗ 
. 

(t − M)α ∗ E 

Thus, by the weak convergence τ̂n ⇒ τ̂ ,   
∗

P lim τ(t) < M ≤ lim lim sup P ∗[ ˆ (t) < M]ˆ τn
t→∞ t→∞ n→∞ 

1 ≤ lim 
(t − M)α ∗ lim sup E ∗|Un(M)|α ∗ 

. 
t→∞ n→∞ 

The right-hand side of the last inequality is 0, by Lemma 4.2. Since M >  0 is  
arbitrary, the result follows. D 

We now introduce an inverse time transformation which allows us to revert back 
.to the original time scale. For t ≥ 0, define τ(t)  = inf{s ≥ 0 :  ̂τ(s)  >  t}. The fol­

lowing properties are easily checked: 

• τ(t)  <  ∞ a.s. for all t ≥ 0 (this follows from Lemma 4.3); 
• τ is strictly increasing and right continuous; 
• τ(t)  ≥ t ≥ τ̂ (t)  and in particular, τ(t)  → ∞ a.s. as t → ∞; 
• 0 ≤ τ̂ (s)  ≤ t ⇔ 0 ≤ s ≤ τ(t), and ˆ = t , τ( ˆτ(τ (t))  τ(t))  ≥ t . 

. .The time-transformed processes are defined as B ∗ (t) = ˆ = ˆB(τ(t)), U ∗ (t) U(τ(t)), 
. 

W ∗ (t) = W(τ(t)), t ≥ 0. By (31) and (29), we have W(t)  B(t) + G ˆˆ ˆ = w + ˆ U(t)  
for all t ≥ 0, a.s., which implies that 

∗ ∗ ∗ W (t) W(τ(t))  B(τ(t)) + G ˆ = w + B (t) + GU (t). = ˆ = w + ˆ U(τ(t))  

Note that U ∗ is RCLL with increments in U and W ∗ (t) ∈ W for all t ≥ 0. 
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We next introduce a suitable filtration on (Q ∗ , F ∗ , P ∗ ). For  t ≥ 0, define the 
.	 .

F̂ ' σ -fields (t )	 B(s), ˆ W(s),  ̂ ≤ t} and ≡ F̂ (t ) = σ {( ˆ U(s),  ˆ τ (s)), 0 ≤ s F̂ 
t = 

F̂ ' (t+) ∨ N , where N denotes the family of P ∗-null sets. Then {F̂ 
t } is a right-

continuous, complete filtration. For any s, t ≥ 0, {τ(s)  <  t  } = {τ̂ (t  )  >  s} ∈ F̂ (t ). 
Therefore, since {F̂ 

t } is right continuous, τ(s)  is an {F̂ 
t }-stopping time for any 

. 
s ≥ 0. For each t ≥ 0, define the σ -field F ∗ ≡ F ∗ (t ) = F̂ (τ (t )). Since τ ist ˆ ˆnondecreasing, {F ∗} is a filtration. Clearly, B and U are {F̂ 

t }-adapted; there-t 
fore, B ∗ and U ∗ are {F ∗}-adapted (cf. Proposition 1.2.18 of [20]). We show in t 
Lemma 4.6 below that B ∗ is an {F ∗}-Brownian motion with drift b and covariance t 
matrix 2. Before stating this result, we present the following change of variables 
formula which we will use in the convergence analysis. We refer the reader to 
Theorem IV.4.5 of [28] for a proof. 

LEMMA 4.4. Let a	 be an R+-valued, right-continuous function on [0, ∞) 
.

such that a(0) = 0. Let c be its right inverse, that is, c(t ) = inf{s ≥ 0 :  a(s) > t }, 
t ≥ 0. Assume that c(t ) < ∞ for all t ≥ 0. Let f be a nonnegative Borel measur­
able function on [0, ∞) and let F be an R+-valued, right-continuous, nondecreas­
ing function on [0, ∞). Then (	 (
(36)	 f (s) dF (a(s)) = f (c(s−)) d F (s), 

[0,∞) [0,∞) 

with the convention that the contribution to the integrals above at 0 is f (0)F (0). 
In particular, taking F(s)  = s, s ≥ 0, we have (	 (
(37)	 f (s)  d  a(s)  = f (c(s))  ds.  

[0,∞) [0,∞) 

REMARK 4.5. Recall that B̂n(t ) = Bn(τ̂n(t )). It follows from continuity 
and almost sure convergence of (Bn, τ̂n, Bn) → (B ' , ˆ B) that B(t ) = B ' τ(t  ))  ˆ τ ,  ˆ	 ˆ ( ̂

. a.s. Thus, B ∗ (t ) = B(τ (t )) = ( ̂ = (t ) a.s. In particular, isˆ B ' τ(τ (t  )))  B ' B ∗ 

a (b, 2)-Brownian motion with respect to its own filtration. The following lemma 
shows that, in fact, B ∗ is a Brownian motion with respect to the larger filtration 
{F ∗}:t 

LEMMA 4.6. B ∗ is an {F ∗}-Brownian motion with drift b and covariance t 
matrix 2. 

PROOF. For any infinitely differentiable function f : Rk → R with compact 
support, define 

k k	 k
.  ∂ 1   ∂2 

(38) Af (x) = bi f (x)  + σij f (x),  
∂xi 2 ∂xi ∂xji=1	 i=1 j=1 



 

 � 

  �  
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where the entries of b are denoted bi and those of 2 are denoted σij . First, suppose 
that 

( )∗ 
E g ˆ ), ˆ ), ˆ ), ˆ ), smB(sm U(sm W(sm τ(sm ≤ t,  m  = 1, . . . , q  

(39) 
t+s ( ) (

× f B(t + s) B(t )) − B (u)) d ˆ = 0ˆ − f (  ̂ Af ( ˆ τ(u)  
t 

for all s, t ≥ 0, continuous bounded functions g (on a suitable domain), positive 
integers q ≥ 1 and sequences {sm}. Define, for t ≥ 0, 

( t . 
B(t )) − B(u)) d  ̂Ŷf (t ) = f (  ̂ Af ( ˆ τ(u).  

0 

Then by equation (39), Ŷf is an {F̂ ' }-martingale and, therefore, Ŷf is also an t 

{F̂ 
t }-martingale. Recall that τ(s  )  is an {F̂ 

t }-stopping time such that τ(s  )  <  ∞ a.s. 
for all s ≥ 0. Since f and Af are bounded (by some c >  0), 

( τ(t  )  ∗
E ∗|Ŷf (τ (t ))| ≤ E ∗|f (  ̂ B(u))|d ˆB (τ (t )))| + E |Af ( ˆ τ(u)  

0 

≤ c + cE ∗|τ̂ (τ (t  ))| = c(1 + t).  

In addition, we have, for any T ∈ (0, ∞), 

∗[ ] ∗[ ]

E |Ŷf (T )|1{τ(t  )>T  } ≤ E |Ŷf (T )|1{τ̂ (T  )≤t}
( T ∗≤ E |f (  ̂ |Af ( ˆ τ(u)  1{τ̂ (T  )≤t}B(T ))| + B(u))|d ˆ

0 

∗[( ) ]≤ cE 1 + τ̂ (T  ) 1{τ̂ (T  )≤t}
≤ c(1 + t)P ∗[τ̂ (T  )  ≤ t]. 

The last term above approaches 0 as T → ∞, by Lemma 4.3. Therefore, by the 
optional sampling theorem (cf. Theorem 2.2.13 in [13]), we have, for s ≤ t , 

E ∗[Ŷf (τ (t ))|F ∗ (s )] = E ∗[Ŷf (τ (t ))|F̂ (τ (s ))] = Ŷf (τ (s )), 

that is, Ŷf (τ (t )) is an {F ∗}-martingale. Now, t ( ∞
 
Ŷf (τ (t )) = f (  ̂ Af ( ˆ
B (τ (t ))) − τ(u)  B(u))1{0≤u<τ (t )} d ˆ

0 ( ∞ ∗ = f (B  (t )) − Af ( B̂ (τ (u)))1{0≤τ (u)<τ (t )} du 
0 ( t ∗ ∗ = f (B  (t )) − Af (B (u)) d u, 
0 
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where we have used Lemma  4.4 and the fact that τ is strictly increasing. Thus, 

t+s ( ) ( ) (∗ ∗ ∗ ∗ 
E f B (t + s) − f B (t ) − Af (B (u)) d u F ∗ (t ) 

t 

∗[ ( ) ( ) ]= E Ŷf τ(t  + s) − Ŷf τ(t  ) |F ∗ (t ) , 

which is 0 for any s, t ≥ 0, since Ŷf (τ (t )) is an {F ∗}-martingale. Therefore, B ∗ ist 
an {F ∗}-Brownian motion with drift b and covariance 2. Hence, in order to prove t 
the lemma, it suffices to prove (39). 

Recall that Bn is an {Fn(t )}-Brownian motion with drift b and covariance 2. f. tLet f be as above and define Yf,n(t ) = f (Bn(t )) − 0 Af (Bn(u)) d u. Then Yf,n is 
an {Fn(t )}-martingale for each n ≥ 1. 

Fix t ≥ 0 and note that {τ̂n(s ) ≤ t} = {τn(t ) ≥ s} = {t + Un(t ) · û1 ≥ s} ∈ Fn(t ) 
for all s ≥ 0, n ≥ 1. Thus, for each s ≥ 0, τ̂n(s ) is an {Fn(t )}-stopping time. Define 

.
Ŷf,n(t ) = Yf,n(τ̂n(t )) for t ≥ 0. Since τ̂n(t ) is an {Fn(t )}-stopping time bounded 
by t , we have, by the optional sampling theorem (see Problem 1.3.24 in [20]) that 
for any s ≥ 0, 

[ ( ) ]
En[Ŷf,n(t + s)|Fn(τ̂n(t ))] = En Yf,n τ̂n(t + s) |Fn(τ̂n(t ))

= Yf,n(τ̂n(t )) = Ŷf,n(t ). 

This implies that for any bounded Fn(τ̂n(t ))-measurable function ξn, 

(40) En[ξn{Ŷf,n(t + s) − Ŷf,n(t )}] = 0. 

Now, for any s ≤ t , the random variables Bn(τ̂n(s )), Un(τ̂n(s )) and Wn(τ̂n(s )) are 
Fn(τ̂n(s ))-measurable (cf. Proposition 1.2.18 in [20]). Also, τ̂n(s ) is 
Fn(τ̂n(s ))-measurable (cf. Problem 1.2.13 in [20]). Since τ̂n(s ) ≤ τ̂n(t ) for s ≤ t , 
we have Fn(τ̂n(s )) ⊂ Fn(τ̂n(t )). Thus, 
( )

g Bn(τ̂n(sm)), Un(τ̂n(sm)), Wn(τ̂n(sm)), τ̂n(sm), 0 ≤ sm ≤ t,  m  = 1, . . . , q  , 

is Fn(τ̂n(t ))-measurable for all bounded continuous functions g (defined on an  
appropriate domain), positive integers q ≥ 1 and sequences {sm}. Therefore, using 
(40) and recalling our use of the Skorohod representation theorem above (31), we 
have 

∗[ ( )
E g B̂n(sm), Ûn(sm), Ŵn(sm), τ̂n(sm), 0 ≤ sm ≤ t,  m  = 1, . . . , q  

(41) ]×{Ŷf,n (t + s) − Ŷf,n(t )} = 0. 

Another application of Lemma 4.4 shows that 
( (t τ̂n(t ) 

Af ( B̂n(u)) d τ̂n(u) = Af (Bn(u)) d u. 
0 0 



 

 � 
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This implies that 

Ŷf,n(t ) = Yf,n(τ̂n(t )) ( τ̂n(t ) 
(42)	 = f (Bn(τ̂n(t ))) − Af (Bn(u)) d u 

0 ( t 
= f (B̂n(t )) − Af ( B̂n(u)) d τ̂n(u). 

0 

Combining (41) and (42), we have 

(	 )∗ 
E g B̂n(sm), Ûn(sm), Ŵn(sm), τ̂n(sm), 0 ≤ sm ≤ t,  m  = 1, . . . , q  

(43) 
t+s ( )	 (

× f B̂n(t + s) − f (B̂n(t )) − Af ( B̂n(u)) d τ̂n(u) = 0. 
t 

Finally, recall that (Bn, τ̂n, B̂n, Un, Ŵn) → (B ' , ˆ B, ˆ W)  P ∗ -a.s. as n → ∞.ˆ	 τ ,  ˆ U,  ˆf t+sThus, in particular, as n → ∞, Af ( B̂n(u)) d τ̂n(u) converges almost surely t f t+sto Af ( ˆ τ(u)  (cf. Lemma 2.4 of [9]). An application of the bounded B(u)) d  ̂t 
convergence theorem now yields (39) on taking n → ∞ in (43). This completes 
the proof. D 

As an immediate consequence we have the following: 

∗ .COROLLARY 4.7. Let < = (Q ∗ , F ∗ , P ∗ , {F ∗},B  ∗ ). Then U ∗ ∈ A(w, < ∗ ).t 

We now show that U ∗ is an optimal control by studying convergence of the cost 
functions J (w,  Un), thus completing the proof of the main result. 

PROOF OF THEOREM 2.3. Let {Un} and U ∗ be as above. By Lemma 4.4, we  
have that the cost corresponding to the admissible pair (Wn,Un) is given by 

( ∞	 ( ∞ . −γ t 	  −γ tJ (w,  Un) = En e e(Wn(t )) d t + γ En e h · Un(t ) d t 
0	 0 ( ∞ −γ τ̂n(t )= En e e(Wn(τ̂n(t ))) d τ̂n(t ) 
0 ( ∞ −γ ˆ (t )(44)	 + γ En e τn h · Un(τ̂n(t )) d τ̂n(t ) 

0 ( ∞ ∗ −γ ˆ (t ) = E e τn e(Ŵn(t )) d τ̂n(t ) 
0 ( ∞ ∗ −γ ˆ (t )+ γ E e τn h · Ûn(t ) d τ̂n(t ). 

0 
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Since (τ̂n, ˆ Ŵn τ ,  ˆ W)  P ∗-a.s., we have (cf. Lemma 2.4 of [9]), for all Un, ) → ( ̂ U,  ˆ
u ≥ 0 and N ≥ 1, ( [	 ]−γ τ̂n(t )N ∧ e e(Ŵn(t )) dτ̂n(t )
 [0,u)
 ( [	 ]−γ ˆ	 ∗τ (t  )→ N ∧ e W(t  )) τ (t  ),  P -a.s.e( ˆ d ˆ

[0,u)

as n → ∞. Thus, we have, P ∗-almost surely, ( ∞ −γ τ̂n(t )lim inf e e(Ŵn(t )) d τ̂n(t ) 
n→∞ 0 

u( [	 ]τ (t  )≥ N ∧ e −γ ˆ W(t  )) τ (t  ).  e( ˆ d ˆ
0 

Taking limits as N → ∞  and u → ∞  in the above inequality yields ( ∞ −γ ˆ (t ) lim inf e τn e(Ŵn(t )) d τ̂n(t ) 
n→∞ 

(45)	 ( 0 
∞ −γ ˆ ∗τ (t  )≥ e W(t  ))  d  ̂ P -a.s.e( ˆ τ(t  ),  

0 

Similarly, (
−γ τ̂n(t ) lim inf γ e h · Ûn(t ) d τ̂n(t ) 

n→∞ [0,∞) (
−γ ˆ	 ∗τ(t  ) ˆ≥ γ e h · U(t  )  d  ̂ Pτ(t  ),  -a.s. 

[0,∞) 

Combining (24), (44), (45) and (46), we have 

V (w)  = lim inf J (w,  Un) 
n→∞ ( ∞ ∗ −γ τ̂n(t ) = lim inf E e e(Ŵn(t )) d τ̂n(t ) 
n→∞ 0 ( ∞ ∗ −γ ˆ (t )+ γ E e τn h · Ûn(t ) d τ̂n(t ) 

0 ( ∞ −γ τ̂n(t ) ≥ E ∗ lim inf e e(Ŵn(t )) d τ̂n(t ) 
n→∞ 0 ( ∞ −γ ˆ (t ) + γ E ∗ lim inf e τn h · Ûn(t ) d τ̂n(t ) 

n→∞ 0 ( ∞ ∗ −γ τ̂ (t  )≥ E e W(t  ))  d  ̂e( ˆ τ(t  )  
0 ( ∞ ∗ −γ τ̂ (t  ) ˆ+ γ E e U(t  )  d  ̂h · τ(t  ).  

0 
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ˆApplying Lemma 4.4 to the last line above and recalling that W ∗ (t) = W(τ(t))  
and U ∗ (t) = Û (τ  (t))  yields ( ∞ ( ∞ ∗ −γ t  ∗ ∗ −γ t  ∗ V (w)  ≥ E e e(W (t)) dt + γ E e h · U (t) dt. 

0 0 

The quantity on the right-hand side above defines the cost function J (w,  U  ∗ ) for 
the admissible (by Corollary 4.7) pair (W ∗ ,U  ∗ ). Thus, we have V (w)  = J (w,  U  ∗ ) 
and, hence, U ∗ is an optimal control. D 

APPENDIX 

In this section, as an application of Theorem 2.3, we prove the existence of an 
optimal control for a family of Brownian control problems. Such control problems 
(cf. [14]) arise from formal diffusion approximations of multiclass queuing net­
works with scheduling control. Here, we do not describe the underlying queuing 
problem, but merely refer the reader to [5], where details on connections between a 
broad family of queuing network control problems and Brownian control problems 
can be found. Our presentation of BCP’s is adapted from [16]. 

. ˜Let <̃ = (Q, F , {Ft },P,B) be a system, where B̃ is an m-dimensional Brown­
ian motion with drift b̃ and nondegenerate covariance matrix 2̃. The problem data 
of the BCP consists of an m × n matrix R, a  p × n matrix K (referred to, respec­
tively, as the input–output matrix and the capacity consumption matrix) and an 
initial condition q ∈ R

m. The matrix K is  assumed to have rank  p (p ≤ n).+

DEFINITION A.1 (Admissible control for the BCP). An {Ft }-adapted n-di­
mensional RCLL process Y is an admissible control for the BCP associated with 
the system <̃ and initial data q ∈ R

m + if the following two conditions hold P-a.s.: 
. 

U(t)  = KY  (t)  is nondecreasing with U(0) ≥ 0, 
. 

Q(t) = q + ˜ t ≥ 0.B(t) + RY (t) ≥ 0, 

Denote by ˜ <) the class of all admissible controls for the BCP associated A(q, ˜
with <̃ and q . The goal of the BCP is to minimize the cost function ( ∞ (

. −γ t  ˜ −γ tJ̃ (q,  Y)  = E e e(Q(t)) dt + E e h · dU (t), 
0 [0,∞) 

p 
e : Rmwhere γ ∈ (0,∞), h ∈ R+ and ˜ + → [0,∞) is continuous. The value function 

for the BCP is ˜ = inf ̃ J (q,Y ).V (q)  inf ˜
< Y∈ ˜ <)A(q, ˜

Under a continuous selection condition (see [16] or equation (3.3) of [1]), the 
BCP introduced above can be reduced to an equivalent control problem of the sin­
gular type (with state constraints). This reduction, referred to as the “Equivalent 
Workload Formulation” (EWF), is the main result of [16]. Subject to further condi­
tions, this singular control problem with state constraints is of the form studied in 
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the current paper. Such sufficient conditions are presented in Section 3 of [1]; how­
ever, we list them here for the reader’s convenience. Let ẽ be linear and nonnegative 

.on Rm = {x ∈ R
n : Kx  = 0}. Let + and assume that it vanishes only at zero. Define B 

. .
R = RB ⊂ R

m and denote the dimension of R by r . The dimension of M = R⊥ 
.is then k = m− r . Let M be any k ×m matrix whose rows span M. By Proposition 

2 of [16], there exists a k × p matrix G which satisfies MR  = GK . In general, the 
choice of G is not unique. We assume that the matrices M and G are of full rank 
and have nonnegative entries. We further assume that each column of G has at 
least one strictly positive entry. These assumptions are satisfied for a broad family 
of controlled queuing networks (see Section 3 of [1] and [5] for examples). Under 
these assumptions, Theorem 2.3 leads to the following result: 

THEOREM A.2. For every q ∈ R
m < and Y ∈ ˜ <)+, there exists a system ˜ A(q, ˜

such that ˜ V (q).J (q,Y )  = ˜

REMARKS ON THE PROOF. The proof is an immediate consequence of Theo­
rem 2.3 and Proposition 3 of [16]. The latter proposition shows that for any admis­
sible control for the EWF, there exists a control for the BCP (and vice versa) such 
that the costs coincide. Since an EWF under the above assumptions is a control 
problem of the form formulated in Section 2, the existence of an optimal control 
for the EWF follows from Theorem 2.3. Using the equivalence result in Proposi­
tion 3 of [16], one then obtains an optimal control for the BCP. 
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