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Abstract 
Several issues need to be better understood before breast tissue engineering becomes a clinically viable 
option. One of the most important aspects is the interaction between cells and the microtopography of 
the implant surface. The aim of this study was to evaluate the efficacy of D1 cells, multipotent mouse bone 
marrow stromal precursors, in differentiating to adipocytes and to characterize their metabolic activity (lactic 
acid released and glucose consumed), leptin secretion and lipid production when cultured on patterned 
poly(L-lactide) (PLLA) films. It was determined that, by appropriate stimulation, the D1 cells displayed 
morphological characteristics of adipocytes and produced lipid. The results showed that a patterned surface 
did affect the rate of lipid production. Polynomial models were proposed to predict the amount of leptin 
secreted by the cells over a period of time. 
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1. Introduction 

The need for soft-tissue reconstruction or augmentation has increased continu- 
ously over the years. Breast cancer is the most common form of cancer affecting 
women [1]. The treatment options for breast cancer include lumpectomy, mastec- 
tomy and/or therapeutic treatments. Soft-tissue reconstruction is also crucial for the 
treatment of post-traumatic repair and congenital deformities. Current reconstruc- 
tion procedures include implants, tissue flaps and tissue transplantation. Inherent 
problems exist with each option. The survival of grafted fat is low; generally graft- 
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ing results in necrosis due to insufficient vascularization and results in resorption of 
the graft over time [2]. Additionally, the volume of fat available for grafting may be 
limited. Longevity and leaching of the constituent particles in synthetic replacement 
devices such as silicone implants is of the utmost concern, as is immune response 
to the bulk and degradant materials. 

Tissue-engineering holds considerable promise as an alternative to existing op- 
tions and provides a biologically-based solution. However, for any medical implant 
to be successful in the long-term, it must be successfully integrated into the body. 
Many strategies have been formulated to influence tissue-biomaterial interactions. 
The results of several studies detailed in the literature suggest that surfaces with 
microgrooves affect the orientation and migration of cells [3, 4]. Wan et al. [5] 
used microtopography to study the adhesion behavior of cells and found that cell 
adhesion was enhanced on poly(L-lactide) (PLLA) and polystyrene (PS) surfaces 
with nano-scale and micro-scale roughness compared to the smooth surfaces of 
the PLLA and PS. Parker et al. [6] evaluated tissue reaction around implants with 
different surface topographies and found that the application of microgrooves or 
random surface roughness to polymer implants did not have beneficial effects on 
peri-implant tissue healing in vivo. Thus, the role of microtopography in the heal- 
ing response is not clear. Microtopography may, therefore, play an important role 
in guiding adipocyte function in a tissue-engineered device. 

Adipocytes act as more than just energy reservoirs; they also exert significant 
regulatory influence on the brain in controlling body weight. The protein secreted 
by the adipocytes which plays a key role in this regulatory process is leptin. Lep- 
tin, discovered in 1994 by Zhang et al., is the product of the ob gene coding for 
a 167-amino-acid protein and 21-amino-acid signal peptide [7] and acts via the 
hypothalamus region of the brain [8]. Leptin is also secreted by bone marrow 
adipocytes and stimulates myeloid and erythroid development [9]. 

Leptin provides the brain with information about the amount of fat present in the 
body and thereby acts as part of a feedback mechanism to control the amount of fat 
present. The majority of leptin circulates in the bound form in lean individuals and 
in the free form in obese subjects [10]. When the size and number of adipocytes 
increase, the cells produce leptin which is then released into plasma. Studies have 
demonstrated that plasma leptin concentration correlates with the amount of body 
fat present [11]. Insulin has been shown to increase the in vitro leptin produc- 
tion of rat and human adipocytes [12]. Leptin also counteracts insulin-mediated 
activation of glucose transport, glucose synthesis and lipogenesis in isolated rat 
adipocytes [13]. Both in vivo and in vitro studies in rodents and humans have shown 
that glucocorticoids enhance leptin gene transcription and leptin levels [14]. Leptin 
levels are also elevated in rats treated with dexamethasone [14]. Hence, the amount 
of leptin present in the cell culture medium was used in this study as an indicator 
to assess the functionality of the bone-marrow derived, differentiated adipocytes 
present on different PLLA films. 
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This proof-of-concept study evaluated the effect of surface topography on the 
differentiation of D1 cells, evaluating changes in lipid production and leptin levels 
in response to topographical feature changes. We propose that by controlling the 
level of cellular differentiation in a cell-based device, one can more efficiently con- 
trol the device’s fate in vivo. Thus, the bone marrow-derived mesenchymal stem 
cells used in this study provide an example of a ready source of proliferating cells 
whose timing and level of differentiation can be controlled by design. 

2. Materials and Methods 

2.1. Substrate Fabrication 

Photolithography was employed (Microelectronics Division, Department of Electri- 
cal and Computer Engineering, Clemson University) to etch micro-grooved patterns 
on a silicon wafer. Various other textures were evaluated before selecting this partic- 
ular pattern, which allows easy, highly repeatable manufacturing. The manufactured 
wafer had horizontal surface grooves of 3 μm width over its surface and 100 μm sep- 
aration (pitch). The depth of each groove was 1.5 μm and the diameter of the wafer 
was 7.6 cm. These dimensions were selected to provide a surface texture sufficient 
to allow a large fraction of fully differentiated adipocytes to span grooves, thus en- 
suring cellular interaction with the texture. The wafer was used as a template for 
patterned film fabrication. 

Polymer films were solvent-cast, using a silicon wafer template. Specifically, 1 g 
PLLA (Boehringer Ingelheim, molecular weight 140 kg/mol) was mixed with 10 ml 
dichloromethane (VWR) to make a 10% polymer solution. The template was then 
covered with 10 ml of the polymer solution. The solvent was allowed to evaporate 
slowly and, after the solvent evaporation was complete, the PLLA film was removed 
from the substrate. Unpatterned, control PLLA films were similarly made using 
a Petri dish as a template; select specimens were examined by scanning electron 
microscope (SEM). Round discs (2 cm diameter) were punched from both the pat- 
terned and the plain films. These discs were placed in tissue-culture-treated multi- 
well plates (Corning) which were coated with agarose (Sigma) to prevent the cells 
from preferentially adhering to the well surface. A Teflon ring (Fluoro-Plastics) was 
placed on each disc to prevent disc flotation. The tissue-culture-treated polystyrene 
(PS) surface in the multi-well plate was used to demonstrate viability and prolifer- 
ation of the cells in standard culture. The textured PLLA control was cast from a 
glass Petri dish, thus eliminating the potential for dissolution of the mold and subse- 
quent contamination of the films by leachables. These samples were used simply to 
demonstrate that the addition of surface texture (in the absence of substrate chemi- 
cal differences) would cause differences in cellular differentiation. For consistency, 
each control well was also fitted with a Teflon ring. The multi-well plates with discs 
and Teflon rings were sterilized using ethylene oxide (Andersen Sterilizers). 



2.2. Cell Culture Conditions 

All parameters chosen for this study were based on previous experiments, con- 
ducted to ensure that confluence was achieved in all systems in a similar time 
frame. D1 cells (ATCC) of passage 29 were seeded on all the surfaces (textured 
films, plain films and PS surfaces) at a density of 3.4 x 104 cells/well (20% conflu- 
ence). The cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM; 
ATCC) supplemented with fetal bovine serum (Mediatech), fungizone (Invitrogen) 
and antibiotic-antimicotic (Invitrogen); the supplemented medium hereafter will 
be referred to as DMEM-C. Cells were incubated at 37°C and 5% CO2. The cells 
reached confluence in two days under these conditions; adipogenesis was induced 
by adding a differentiation induction cocktail of 0.5 μM dexamethasone (Sigma), 
1 μg/ml insulin (Sigma) and 0.5 mM 1-methyl-3-isobutylmethylxanthene (IBMX, 
Sigma) to DMEM-C. 

Eight 12-well plates were used in this experiment, seven for histological staining 
using Oil Red O and one for measuring lactic acid released/glucose consumed and 
leptin released by the cells. Each well plate contained six samples, one per well, 
including three PLLA patterned films and three plain PLLA films. Three additional 
wells per plate served as polystyrene controls. 

2.3. Oil Red O Staining 

To determine the increase in the percent area covered by lipid over a two week 
span, Oil Red O was used to stain the cytoplasmic lipid droplets. This analysis was 
performed at seven different time-points, i.e., on days 2, 4, 6, 8, 10, 12 and 14. 
Image Pro® image analysis software was used to quantify the amount of lipid. Six 
images of each sample surface were taken at each time-point using Image Pro® and 
a Zeiss inverted microscope. A total of 18 images per surface-type per time-point 
were taken. All images were taken at a total magnification of 320 x. One well-plate 
was used for each individual time-point. Each well-plate contained six samples, 
one per well, including three PLLA patterned films and three plain PLLA films. 
Three additional wells per plate served as polystyrene controls. All the surfaces in 
a well-plate were stained with Oil Red O. The resulting red staining of cytoplasmic 
lipid was used to identify differentiated cells. The total area of the stained lipid 
was measured using Image Pro®. The total area represents the total cell population, 
because the cells were confluent in monolayer. 

2.4. Lactic Acid/Glucose Analysis 

Medium (100 μl) was removed from each of the experimental and control wells 
every day, and the medium was changed every other day. The amounts of lactic acid 
and glucose present in the extracted culture medium were subsequently measured 
using a biochemistry analyzer (YSI). 
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2.5. Leptin Measurement 

The leptin ELISA was performed according to the manufacturer’s instructions 
(R&D Systems). Medium was isolated daily from all the samples and the con- 
trols and stored (at -20°C) until the end of the experiment, after which the ELISA 
was performed. Values are expressed as pg leptin/construct (scaffold). Aliquots of 
medium from undifferentiated cells on each surface were used as the leptin ELISA 
control samples for the corresponding surfaces. 

2.6. Statistical Analysis 

Standard statistical analyses were performed to compare amounts of lipid formation 
on the three materials, and confidence intervals were provided for their pairwise 
differences, at each of the time-points for which Oil Red O staining was conducted. 
Leptin secretion was modeled by appropriate regression analysis, and differences 
between these measurements for the three scaffold materials were tested by analysis 
of variance methods. Detailed methodology will be described subsequently. 

3. Results 

Scanning electron microscopy (SEM) was used to image the surface of the patterned 
and plain PLLA films following fabrication. Representative images of the surfaces 
and cells cultured on the surfaces are shown in Fig. 1. Upon viewing samples un- 
der higher magnification, lipid droplets are seen accumulating within the cells. Oil 
Red O staining was performed on cells seeded on the patterned and plain PLLA 
films and on the PS surface over seven different time-points (days 2, 4, 6, 8, 10, 
12 and 14) in order to quantify the increase in the percent area occupied by lipid 
droplets over the two-week period on all the surfaces. 

Statistical analysis revealed an overall significant difference in the lipid accumu- 
lated between the three scaffold types. Also, the amount of lipid accumulated by 
the cells on plain and patterned films was significantly different on days 6, 8, 10, 12 
and 14 (P < 0.01). Figure 2 shows the percent area occupied by the lipid droplets 
on all the surfaces over the period of two weeks. The cells on the patterned surface 
accumulated the highest amount of lipid and the cells on the plain PLLA surface 
had the lowest amount of lipid. 

3.1. Lactic Acid Released and Glucose Consumed 

Lactic acid is a product of cellular anaerobic metabolism, and glucose is the pri- 
mary energy source for cellular metabolism. Metabolic activity was assessed to 
investigate if indeed any surface-induced differences existed. No significant differ- 
ence (P > 0.05) was found between the amounts of lactic acid released by the cells 
on any of the surfaces (Fig. 3) or between the amounts of glucose consumed by the 
cells on any of the surfaces (Fig. 4). 



 

 

β Figure 1. (A) Representative SEM image displaying the surface of a patterned PLLA film. The mea- 
sured pitch between the microgrooves was approx. 97 μm. (B) D1 cells attached to patterned PLLA 
film and proliferating on the surface following 1 day of culture. (C) Lipid droplets accumulated within 
differentiated cells following 21 days of culture. (D) Lipid droplets stained with Oil Red O following 
culture on a patterned PLLA film for 21 days. Magnifications on images represent total magnification. 
This figure is published in colour in the online edition that can be accessed via http://www.brill.nl/jbs 

 

Figure 2. Percent area occupied by lipid on all the three surfaces. Each data point represents a mean 
of three values and the error bars denote standard error of the mean (SEM). 

3.2. Leptin Release 
The amount of leptin released from D1s was measured over a period of twenty 
days. Measurement of leptin concentration in the culture medium of the constructs 

http://www.brill.nl/jbs
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Figure 3. Cumulative lactic acid released by the cells on the different surfaces over the 14-day study. 
Error bars denote SEM. 

 

Figure 4. Cumulative glucose consumed by the cells on different surfaces over the 14-day study. Error 
bars denote SEM. 

revealed that the cells on the polystyrene surface released significantly higher 
amounts of leptin (P < 0.05) as compared to cells on the patterned and plain sur- 
faces; however, no significant difference was found in the leptin released by the 
cells on plain surfaces versus leptin released by those on patterned surfaces. The 
amount of leptin released by the D1 cells was 3.92 ng leptin/plain film, 4.07 ng 
leptin/patterned film and 4.56 ng leptin/polystyrene surface, respectively. Figure 5 
shows the progression of daily leptin values with time. 

Figure 5 shows the leptin released by the cells on the different surfaces. Cells 
on the PS scaffolds generally exhibit the highest level of leptin secretion, while the 
levels for cells on the Plain and Patterned scaffolds are similar. Cells on the PS 
scaffolds also exhibit a somewhat higher level of variability than those on the other 
two scaffolds. Leptin secretion increases linearly over time. 

Analysis of covariance was performed to test for differences in the time trend 
due to the scaffold. Table 1 summarizes the results. After accounting for a lin- 
ear time trend, a significant difference in the overall mean leptin values across 
the different scaffolds exists, which can be incorporated in the model by adjust- 
ing the intercept of the linear trend. However, after accounting for the difference 



 

Figure 5. Leptin concentration in the three culture conditions over time. 

Table 1. 
ANOVA: differences in time trend for released leptin due to the scaffold type 

Source Degrees of freedom Sum of squares P 

Day 1 6422510 <0.0001 
Scaffold 2 104 194 0.0002 
Day x scaffold 2 4 273 0.6896 

Table 2. 
Linear time trend for leptin released 

 Parameter estimate SE P 

Intercept 125.05 10.18 <0.0001 
Patterned -8.88 10.09 0.3802 
Plain 0.00 N/A N/A 
PS 19.36 10.39 0.0644 
Day 34.99 0.73 <0.0001 

in mean due to scaffold, allowing for the different slopes in the time trend does 
not significantly contribute to the model. Table 2 summarizes the parameter esti- 
mates. 
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Table 3. 
Outlier values for leptin released for the different scaffolds 

Scaffold Observations removed (days) 
Plain 11, 18 
Patterned 2,3, 11 
PS 2,4, 11, 15, 16 

Table 4. 
ANOVA for leptin released after discounting the outlier values 

Source Degrees of freedom Sum of squares P 

Day 1 6012738 <0.0001 
Scaffold 2 9 856 0.0241 
Day x scaffold 2 7 351 0.0609 

To estimate the parameters uniquely, the coefficient for the plain scaffold was 
set to 0. The coefficients for patterned and PS represent the adjustment to the in- 
tercept of the trend from the baseline plain values. Note that the coefficient for the 
patterned scaffold is not statistically significant; that is, there is no significant differ- 
ence between the intercept of the linear trend of the plain and that of the patterned 
scaffolds. These parameter estimates translate into the following model: 

Plain: Leptin secreted (day) = 125.05 + 34.99 day; 

Patterned: Leptin secreted (day) = 116.17 + 34.99 day; 

PS: Leptin secreted (day) = 144.41 + 34.99 day. 
The above model is based on all data observations. However, several observa- 

tions (see Table 3) were identified as either outliers or influential contributors in this 
analysis. The analysis of covariance was performed again with these observations 
excluded and Table 4 summarizes the results. There is still a significant contribution 
due to the overall mean for each scaffold. Yet now there is also some evidence of 
a significant difference in the slope of the time trend due to differences across the 
scaffold. Inclusion or exclusion of the observations in Table 3 significantly affects 
the resulting model. Table 5 summarizes the parameter estimates for the revised 
model. 

Again, the coefficients for the plain scaffold were set to 0. The coefficients for 
patterned and PS above represent the adjustments to the slope and intercept from 
the baseline plain values. Note that the coefficients for the patterned scaffold are not 
statistically significant and, thus, there is no significant difference in the linear trend 
(slope and intercept) between the plain and patterned scaffolds. These parameter 



Table 5. 
Linear time trend for leptin released after discounting the outlier values 

 
Parameter estimate SE P 

Intercept 118.54 13.83 <0.0001 
Patterned -21.39 21.36 0.3181 
Plain 0 N/A N/A 
PS 53.22 21.20 0.0132 
Day 35.64 1.19 <0.0001 
Day x patterned 1.02 1.75 0.5612 
Day x plain 0 N/A N/A 
Day x PS -3.18 1.77 0.0750 

estimates translate into the following model: 

Plain: Leptin secreted (day) = 118.54 + 35.64 day; 
Patterned: Leptin secreted (day) = 97.14 + 36.66 day; 
PS: Leptin secreted (day) = 171.76 + 32.46 day. 

Figure 6 displays the estimated model along with the daily mean leptin values. 
Figure 7 displays the corresponding residuals. The main feature of the residual plot 
is the ‘within day’ correlation between the residuals. Figure 8 shows the cumulative 
amount of leptin released for all scaffolds. 

4. Discussion 

The aim of this study was to examine the differentiation of D1 cells into adipocytes 
and to assess their functionality, i.e., the cellular response, in terms of lipid produc- 
tion, leptin secretion and metabolism (lactic acid released and glucose consumed) 
when cultured on PLLA films with defined surface topographies. Surface topog- 
raphy considerably affects the proliferation and differentiation of cells and, hence, 
microtopography is a useful tool to better understand the cell-material interaction in 
a carefully designed system. The size of an adipocyte typically ranges from around 
20 pm to 120 pm; hence, grooves which were separated by 100 pm were assessed. 

Oil Red O staining was conducted to determine the amount of lipid accumulated 
by the cells and the trend of lipid production by the cells on the different surfaces 
over a two week period. The D1 cells accumulated lipid droplets on all surfaces, 
the amount of which increased significantly over the period of 2 weeks. The area 
covered by lipid was significantly different on each surface. The results indicated 
that the patterned surface contributed to the differentiation of D1s, as the cells cul- 
tured on the patterned surface accumulated significantly higher amounts of lipid 
from day 6 to the end of the last time-point (day 14). No difference in accumulated 
lipid was noted on days 2 and 4, which is not surprising as the cells do not start dif- 
ferentiating until after a few days of treatment with the cocktail. Also, a more linear 
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Figure 6. Linear trend of leptin released, based on the model proposed. 

trend of lipid accumulation by the cells cultured on patterned PLLA films was ob- 
served throughout the period of the study, as compared to the cells cultured on the 
other two surfaces. This trend might be attributed to a more controlled and gradual 
differentiation (and, hence, lipid accumulation) due to the surface microtexture. 

Studies in the literature [4, 15] suggest that microgrooves influence cell align- 
ment, where two critical factors are groove width and depth. Clark et al. [16] 
have shown that cell alignment is significantly affected by differences in groove 
depth, but that differences in groove width are not very critical in influencing cell 
alignment. There is no clear consensus regarding the optimum groove width or 
depth, as this value depends on several factors, such as the cell-type or the in vitro 
conditions of the experiments conducted. Results from preliminary studies in our 
laboratory have shown that groove width does affect the rate of differentiation of 
D1s to adipocytes. In the current experiment, however, one combination of groove 
width and depth was used; further studies with various groove sizes are needed to 
better understand and quantify the significance of these parameters. Many studies 
have employed microtopography as a tool to study alignment of cells of osteoblas- 
tic lineage [17, 18]; however, there are very few studies that investigate the effect 
of microtopography on soft-tissue differentiation and functionality. In this study a 
hormone differentiation inducer was used in all cases; thus, differences in cellular 



 

 

Figure 8. Cumulative leptin released by D1 cells on different surfaces. Error bars denote standard 
error of mean (SEM). 

behavior were attributed to surface microtopography. However, the role of the sub- 
strate and its surface texture on the differentiation of cells also needs further study. 
It has been reported [19] that bone cell differentiation and proliferation is affected 
by the interaction between hormones, growth factors and surface microtopgraphy. 

A very linear trend (and significantly higher amount of lipid) was observed in 
the lipid accumulation by the cells on patterned PLLA films as compared with cells 
cultured on other surfaces. As all the parameters were same for the cells seeded 
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on the three surfaces, it can be inferred that the patterning of the PLLA films does 
have an effect on the cellular behavior. Although the results indicate that this par- 
ticular patterned surface is capable of influencing the differentiation, further work 
must be completed to pinpoint the exact mechanism by which this linear trend is 
orchestrated. 

Cellular metabolism, as a function of lactic acid released and glucose consumed, 
was also analyzed. There was no significant difference in either of the parame- 
ters between the cells cultured on PLLA films and those on tissue-culture-treated 
polystyrene surface, suggesting that PLLA can serve as a good scaffold material. 
However, literature reports [20] state that cells are more proliferative on a natural 
material like gelatin than PLLA. Studies in the literature have focused on adipocytes 
seeded on gelatin microcarriers; hence, the findings could be due to differences be- 
tween surface chemistry or roughness. Another reason for the difference in results 
could be due to the fact that cells cultured on three-dimensional scaffolds (beads) 
tend to proliferate and differentiate differently than on two-dimensional surfaces 
(films). Further investigation is required to better quantify and compare cell behav- 
ior on natural and synthetic polymers. 

In the past decade, since its discovery in 1994, leptin has received tremendous at- 
tention in the field of obesity research. Leptin is a key protein secreted by adipocytes 
and is also a marker used to assess the functionality of adipocytes. To the best of 
our knowledge, this study is the first to characterize the leptin secretion profile 
of D1s that have differentiated into adipocytes. The results show that D1s cul- 
tured on all the surfaces visually display the adipocyte phenotype. Several studies 
have examined the process of adult stem cell commitment and differentiation to 
osteogenic lineage; however, much less is known about the conditions favoring adi- 
pogenic differentiation. The results further highlight the adipogenic potential of 
multipotent mouse bone marrow stromal precursor (D1) cells. The cells seeded on 
tissue-culture-treated polystyrene surface released the highest amount of leptin into 
the culture medium as compared to the cells seeded on the polymer films. This re- 
sult suggests that PLLA has an inhibitory influence on the leptin secretion ability 
of D1s. More work is needed to better elucidate the leptin secretion ability of these 
cells on different polymeric materials (for example, synthetic versus natural) and to 
determine whether or not the leptin release values cited in Table 3 are outliers and, 
if so, the cause for the outlying behavior, i.e., chance variation versus experimental 
error. 

Once the cells became confluent, they were consistently maintained in the adi- 
pogenic cocktail; however, results from the literature [21] suggest that extended 
‘resting periods’ in the absence of adipogenesis inducers (after the onset of dif- 
ferentiation) enhances the differentiation process and increases the leptin mRNA 
levels of human mesenchymal stem cells. It is of interest to investigate if there is a 
similar pattern observed in D1 cells. Two key transcription factors in adipocyte dif- 
ferentiation, PPARγ and C/EBPα, affect leptin gene expression in opposite ways. 
While PPARγ decreases leptin expression [21-23], C/EBPα induces leptin gene 



expression [21-26]. The presence of multiple mechanisms suggests that the level 
of circulating leptin is controlled by a complex set of signals. Also, cAMP has been 
shown to decrease the leptin level in rodents [27]. A hormonal cocktail, including 
IBMX, was employed to induce differentiation. IBMX increases the production of 
cAMP and, hence, should serve to decrease the production of leptin. Leptin has 
also been implicated in regulating body weight, in fetomaternal signaling [28] and 
in hematopoiesis [29]. 

In a recent study it was shown that physiological concentrations of leptin 
(25-100 ng/ml) can stimulate the proliferation of both normal and malignant breast 
epithelial cells [30]. Leptin enhanced anchorage-independent growth of select 
breast cancer cell lines but did not similarly enhance the growth of normal cell 
lines. It has also been shown that leptin might play a role in the development of 
mammary tumors [31]. Elevated serum protein levels associated with obesity may 
also promote breast cancer development. To better design tissue-engineered con- 
structs for breast reconstruction, it will be necessary to address more fully the role 
of leptin, which is a key regulatory adipocyte protein. 

Preadipocytes comprise the standard, current model system for studying adipo- 
genesis. However, the inherent disadvantages posed, such as the limited number of 
cells that can be obtained from an individual and limited life cycle, necessitate fur- 
ther research with marrow stromal cells, which do not have these limitations. There 
is a growing interest in natural polymers as well as the evaluation of D1 cell behav- 
ior on natural polymers like collagen. Our study offers a functional characterization 
of D1 cells and investigates their behavior (differentiation and metabolism) when 
cultured on polymers with a defined topography. This study offers a starting plat- 
form toward a better understanding of the interaction between synthetic scaffold 
and the cellular component of a tissue-engineered device. 

5. Conclusions 
Patterned PLLA films were used to compare the behavior of D1 cells on plain 
PLLA films and tissue-culture-treated PS surface by assessment of lipid production, 
metabolism and leptin secretion. Lipid accumulation was significantly different for 
cells on the patterned scaffolds when compared to plain scaffolds. No differences 
were detected in the metabolism of the cells on any of the scaffolds, as measured 
by lactic acid released and glucose consumed. Polynomial models were proposed 
to predict the amount of leptin released by the cells as a function of time. 
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