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We present a graphical approach to understanding the degeneracy, density of states, and

cumulative state number for some simple quantum systems. By taking advantage of basic

computing operations, we define a straightforward procedure for determining the relationship

between discrete quantum energy levels and the corresponding density of states and cumulative

level number. The density of states for a particle in a rigid box of various shapes and dimensions

is examined and graphed. It is seen that the dimension of the box, rather than its shape, is the

most important feature. In addition, we look at the density of states for a multi-particle system

of identical bosons built on the single-particle spectra of those boxes. A simple model is used

to explain how the N-particle density of states arises from the single particle system it is based

on. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4867489]

I. INTRODUCTION

The concept of the density of states (DOS) is used in
many areas of physics. For example, it is important for reac-
tion rates in nuclear physics, the calculation of specific heat
capacities, black-body radiation, phonon spectra, and so
on.1–6 The DOS arises naturally and early in statistical
physics. To calculate average quantities in statistical physics,
one could do an integral over phase space, but this is typi-
cally very complex. The alternative is to express the variable
of interest in terms of the energy of the system. The volume
element in phase space is replaced by a weighting factor in
an energy integral, which is often much easier to work with.
This weighting factor is the density of states and is the sub-
ject of this paper.

Consider the problem of calculating hf i, the expected out-
come of a measurement of some physical quantity f. If you
know the allowed quantum states of the system and can cal-
culate fi, the value of f in the ith state, then hf i ¼

P
i fi Pi,

where Pi is the probability of the system being in the ith
state. This is sometimes referred to as a sum over micro-
states. It is often easier to write f as a function of energy and
perform a sum over the allowed energies. We then have
hf i ¼

P
i f ð�iÞPð�iÞ, where the probability of the system

being on the energy level � is given by Pð�Þ ¼ d� e�b�=Z.
Here Z ¼

P
j e�b�j is the partition function, b¼ 1/kT, and d�

is the degeneracy of the level or number of states with
energy �. If the system has an energy �, then each of these d�
states is equally likely. Now, for our expected value of f we
have

X
i

fi Pi !
X
�

d� f ð�ÞPð�Þ: (1)

In a system where � is continuous (or effectively so), the
sum becomes an integral and d� is replaced by g(�)—the
DOS—a measure of how many states there are in a small
range d� around �. The DOS g(�) is no longer an absolute
number of states; it is now a weighting factor in an integral
over energy. We must be careful here because g(�) is often

confused with the level density; indeed, the terms are often
used interchangeably. We use the term “level” to mean an
allowed value of energy and the DOS is the level density
multiplied by a degeneracy factor.

In this paper, we present a procedural approach to obtain
the DOS for systems that arise in modern physics and statisti-
cal mechanics courses. In Sec. II, we apply the procedure to a
single particle in a rigid box. In Sec. III, the procedure for vis-
ualizing the DOS is summarized and the effect of the shape of
the box on the DOS is examined. Section IV addresses sys-
tems of N noninteracting bosons, where N-particle spectra are
calculated and the dependence of their DOS on N is compared
with a simple model.

II. VISUALIZING THE DENSITY OF STATES FOR A

PARTICLE IN A BOX

The particle in a box is one of the first examples students
encounter in quantum mechanics. It is simple enough to
solve from scratch by hand and exhibits much of the salient
nonclassical behavior. Furthermore, it serves as a basic tem-
plate for a host of interesting topics: scattering, double-well
potentials, and perturbation theory to name a few. We will
discuss the DOS in the context of a particle in a box of vari-
ous dimensions. First, we introduce the concept of degener-
acy via numerical results for the spectrum. This leads
naturally to the idea of a cumulative state number from
which the DOS naturally follows. Then an analytic approach
to obtaining the DOS is presented.

We start with a (nonrelativistic) particle of mass M inside
a box. We assume the box is rigid, by which we mean that
the potential energy is infinite outside the box and zero
inside the box. In a one-dimensional box of length L the
energy levels are given by7 �n ¼ �0n2, where �0 ¼ p2�h2=
ð2ML2Þ and the quantum number n is an integer. In a two-
dimensional square box with sides of length L, the energy
levels are given by �n ¼ �0ðn2

x þ n2
yÞ, where nx and ny are the

quantum numbers corresponding to the two spatial dimen-
sions. In the three-dimensional case of a cubical box of side
length L, we have �n ¼ �0ðn2

x þ n2
y þ n2

z Þ.
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It is natural to associate each quantum number with a
number line and each integer value with a point along this
line. In two dimensions the pair of quantum numbers defines
a plane or two-dimensional space called n-space.8 This space
could also be called momentum space by using the identity
px ¼ �hkx ¼ nxp�h=L. The energy depends on the sum of the
squares of nx and ny. One way of thinking about the distribu-
tion of these energies is to locate them in n-space. Using the
horizontal axis for nx and the vertical axis for ny, we can
write all energy values at their corresponding grid points.
This is done in Fig. 1, where at each pair of quantum num-
bers (nx, ny) the energy is written (in units of �0); for exam-
ple, at grid points (nx, ny)¼ (1, 3) and (3, 1) we see a “10.”
Suppose n is the radius of a circle in n-space such that
n2 ¼ n2

x þ n2
y . Rewriting the energy as �n¼ �0n2 we see that

in n-space a given energy (in units of �0) corresponds to a
circle of radius

ffiffiffiffiffiffiffiffiffi
�=�0

p
. (The radius n is related to the magni-

tude of the momentum vector by j~pj ¼ np�h=L). In Fig. 1, the
circles corresponding to energies “36” and “65” are shown
as dotted curves with radii

ffiffiffiffiffi
36
p

¼ 6 and
ffiffiffiffiffi
65
p

� 8,
respectively.

When energies correspond to more than one independent
state we say they are “degenerate.” If we make a list of all
energies corresponding to the various quantum numbers (nx,
ny) and order them by energy, we can make a plot of the
“number of states with energy �” vs �. This quantity is d�, the
degeneracy of the energy �, and for discrete spectra it is an
integer. A plot of d� is a series of spikes, of height d�, at each
allowed �.

To further illustrate this idea, imagine a hypothetical
single-particle spectrum where the lowest nine energies are
{�}¼ {2, 2, 3, 3, 3, 3, 5, 5, 5}. We have plotted d� vs � for
this system in Fig. 2 (upper left panel). At this point, it is
helpful to introduce the cumulative state number Nð�Þ,
defined as the number of states with energy less than or equal
to �; its graph is a staircase where each step has a height d�
and a width determined by the gap to the next energy (lower

left panel of Fig. 2). In other words, given an ordered list of
energies {�i} we have Nð�Þ ¼ i for �i<�< �iþ1.

A plot of the spikes d� gives a visual measure of the
degeneracies of the energies. These degeneracies are quite
delicate in the sense that most perturbations to the potential
will break them and the picture for d� will change dramati-
cally. Each d�-high spike will turn into a cluster of d� sepa-
rate spikes, each one unit high. The spacing of the spikes
will be determined by the strength of the perturbation. The
corresponding change in Nð�Þ is that each step in the unper-
turbed system that was d� high will now become a series of
short steps, each one unit high (upper and lower right panels
of Fig. 2). It is hoped that Figs. 1 and 2 will be a useful start-
ing point for student discussion.

A smooth DOS function g(�) is useful because at higher
energies one is interested in the number of states in an inter-
val, or the density of spikes along the �-axis. The DOS and
cumulative state number are related by gð�Þd� ¼ dNð�Þ, so
the DOS is recognized as the slope of Nð�Þ. We must be
careful here because the slope of a staircase is infinite at
each step, so we mean “slope” in an averaging sense.

To get g(�) from Nð�Þ, we can take a numerical derivative
using a finite difference scheme:

gð�Þ ¼ dNð�Þ
d�

¼ Nð�þ d�=2Þ � N ð�� d�=2Þ
d�

: (2)

It is worth saying explicitly that if the energies are put into
bins of width d�, with center �, then g(�)¼ (number of states
in bin)/(width of bin).

Now that we have a numerical representation for g(�), we
would like to get an analytic expression for g(�) that is valid
for the statistical region where the DOS is large and well
approximated by a smooth function. We will do this for the
rigid box potentials where �¼ n2 (in units of �0). In n-space,
the states with energy in an interval d� centered on � corre-
spond to a set of points in a spherical shell of thickness dn
with all-positive coordinates. In Fig. 1, the number of states
between the quarter circles of radius n and nþ dn is propor-
tional to the area of the curved band. This result is an

Fig. 1. The energies for different combinations of nx and ny for a particle in

a 2-D square box. The numbers at the grid sites are n2
x þ n2

y . The quarter

circles represent constant n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
; here we show n ¼

ffiffiffiffiffi
36
p

and

n ¼
ffiffiffiffiffi
65
p

. Certain values of n give circles that intersect with the grid points.

These correspond to the allowed energies �¼ n2�0. Notice that n¼ 6 does

not intersect any grid point, while n ¼
ffiffiffiffiffi
65
p

� 8 intersects four grid points,

corresponding to the degeneracy of that energy level.

Fig. 2. The degeneracy d� (upper panels) and corresponding cumulative state

number Nð�Þ (lower panels) for the lowest nine levels of a simple, discrete

system. On the left the degeneracy of the system is intact while on the right

the degeneracy has been lifted. The effect on d� is dramatic; less so for

Nð�Þ.
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approximation, because nx and ny are discrete and there are
fluctuations, but we will see that this is a good approximation
nevertheless. The number of states is the “volume” of this
shell but by definition it is also g(�) d�, so in 2-D we have
gð�Þ d� ¼ ð1=2Þpn dn. If n(�) is a smooth function we can
write gð�Þ ¼ ð1=2Þpnð�Þ dn=d�, and using nð�Þ ¼

ffiffi
�
p

and
dn=d� ¼ 1=ð2

ffiffi
�
p
Þ we see that the DOS is constant:

g(�)¼ p/4. Since the DOS is the slope of Nð�Þ, the function
Nð�Þ should be well approximated by the straight line
Nð�Þ ¼ ðp=4Þ�, as shown in Fig. 3. The numerical results
are convincing, particularly where the energy range increases
and the fluctuations about the smooth functions get smaller
(see Fig. 4).

For a particle in a 3-D rigid box with side lengths Lx, Ly,
and Lz, we will be working with a 3-D n-space and again
each point (nx, ny, nz) corresponds to an allowed value of
energy where � ¼ ðp2�h2Þ½ðnx=LxÞ2 þ ðny=LyÞ2 þ ðnz=LzÞ2�=
ð2MÞ. For a cube of side length L we have �¼ �0n2 with �0

¼ ðp2�h2Þ=ð2ML2Þ and n2 ¼ ðn2
x þ n2

y þ n2
z Þ. Now the appro-

priate construction to get the DOS is a shell of thickness dn
and radius n in the positive octant of a sphere, which leads to
gð�Þ ¼ ð1=2Þpn2 dn=d�. Again, using nð�Þ ¼

ffiffi
�
p

and dn=d�
¼ 1=ð2

ffiffi
�
p
Þ, we see that the DOS now has the form gð�Þ

¼ ðp=4Þ
ffiffi
�
p

and Nð�Þ ¼ ðp=6Þ�3=2. In Figs. 5 and 6, we com-
pare the numerical results with these smooth functions for

different energy ranges. Again as the energy increases, the
numerical fluctuations get smaller.

We remark here that if we have N non-interacting inde-
pendent particles in a rigid cube, then the total energy would
be the sum of the individual energies, and this sum could be
related to the surface of a D¼ 3N-dimensional hypersphere.
This problem is similar to the case of a single particle in a
rigid box in a D-dimensional space. We would need to dis-
cuss the volume of a sphere of radius R in D-dimensions,
denoted by VD and given by9

VD ¼
pD=2

CðD=2þ 1Þ RD ¼ CD RD: (3)

Here, CðDþ 1Þ ¼ D!, giving C2¼ p and C3¼ 4p/3 as
expected. The surface area of this D-sphere is given by
SD ¼ D CD RD�1. Where before we were concerned with the
length of a quarter circle of radius n (D¼ 2) and the area of
an octant of a sphere of radius n (D¼ 3), we now have the
area of the positive portion of the D-dimensional sphere,
given by (1/2D)SD (the need for nx, ny… to be positive gives
a factor of 1/2 for each dimension). The cumulative state
number is given by the volume of phase space enclosed by
the boundary n ¼

ffiffi
�
p

:

Nð�Þ ¼ 1

2D

pD=2

CðD=2þ 1Þ �
D=2; (4)

Fig. 3. Top: Degeneracy d� of the allowed energies � (in units of �0) of a sin-

gle particle in a 2-D square box, up to nx¼ ny¼ 10. Middle: The correspond-

ing Nð�Þ. Theory (smooth line) gives Nð�Þ ¼ ðp=4Þ�. Bottom: A plot of

g(�) obtained using the derivative scheme in Eq. (2) with a window width of

10. Theory (smooth line) gives g(�)¼p/4.

Fig. 4. Top: Degeneracy d� of the allowed energies � (in units of �0) of a sin-

gle particle in a 2-D square box, up to nx¼ ny¼ 40. Middle: The correspond-

ing Nð�Þ. Theory (smooth line) gives Nð�Þ ¼ ðp=4Þ�. Bottom: A plot of

g(�) obtained using the derivative scheme in Eq. (2) with a window width of

60. Theory (smooth line) gives g(�)¼p/4.
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and differentiation gives

gð�Þ ¼ 1

2Dþ1
D

pD=2

CðD=2þ 1Þ �
ðD=2Þ�1: (5)

The forms of Nð�Þ and g(�) for some representative D are
given in Table I. Later we will see that the DOS for one parti-
cle in D dimensions is proportional to the DOS of D particles
in one dimension, so long as the particles do not interact.

III. PROCEDURE FOR CALCULATING AND

VISUALIZING THE DENSITY OF STATES

For any quantum-mechanical system we can determine
the cumulative state number and the corresponding density
of states using the following procedure:

1. Solve the relevant quantum-mechanical problem to get a
list of the energies of the system. (This can be an analyti-
cal expression or a list of energies obtained numerically.)

2. Sort the list of energies to get a set f�1; �2; �3; …; �ng up
to some maximum energy �max.

3. Create the cumulative state number Nð�Þ by making the
set f�1; 1g; f�2; 2g; f�3; 3g; …f�n; ng.

4. Find the DOS by taking the numerical derivative of the
cumulative state number, as in Eq. (2). Choose a window
size and locate the window so that its center is at �. The

value of g(�) is the number of energies that are within that
window divided by the window size. Evaluate this for all
locations of the window, and you now have a list of or-
dered pairs {�, g(�)}.

As supplementary materials10 we include a MATLAB
11 pro-

gram used to obtain Figs. 5 and 6; with appropriate modifica-
tions the program can be used to produce Figs. 3 and 4.

We now apply this procedure to calculate and visualize
the DOS for particles in rigid boxes with various geometries.

A. Cubical box

We first will consider a cube of side length L.

Fig. 5. Top: Degeneracy d� of the allowed energies � (in units of �0) of a sin-

gle particle in a 3-D rigid cubic box, up to nx¼ ny¼ nz¼ 10. Middle: The

corresponding Nð�Þ is compared to the theoretical result (smooth line)

Nð�Þ ¼ ðp=6Þ�3=2. Bottom: A plot of g(�) obtained using the derivative

scheme in Eq. (2) with a window width of 10. Theory (smooth line) gives

gð�Þ ¼ ðp=4Þ�1=2.

Fig. 6. Top: Degeneracy d� of the allowed energies � (in units of �0) of a sin-

gle particle in a 3-D cubical box, up to nx¼ ny¼ nz¼ 40. Middle: The corre-

sponding Nð�Þ (lower curve) is compared to the theoretical result (smooth

line, upper) Nð�Þ ¼ ðp=6Þ�3=2. Bottom: A plot of g(�) obtained using the de-

rivative scheme in Eq. (2) with a window width of 50. Theory (smooth line)

gives gð�Þ ¼ ðp=4Þ�1=2.

Table I. The DOS for a particle in a rigid box of D dimensions. The energy �

is in units of the lowest single particle energy �0.

D Nð�Þ gð�Þ ¼ dN =d�

1 �1/2 1
2
��1=2

2 p
4
� p

4

3 p
6
�3=2 p

4
�1=2

4 p2

32
�2 p2

16
�

5 p2

60
�5=2 p2

24
�3=2

6 p3

384
�3 p3

128
�2
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Step 1: The energies are � ¼ ðp2�h2Þðn2
x þ n2

y þ n2
z Þ=

ð2MV2=3), where we have used L2¼V2=3 with V the volume
of the box. If we set ðp2�h2Þ=ð2MÞ ¼ 1 and V¼ 1, then the
energies are all integers.

Step 2: Using MATHEMATICA
12 we determined the lowest

15,954 energy levels. To calculate the energies we need all
the triplets {nx, ny, nz} within the sphere of radius nmax in

n-space. We make a list of n2
x þ n2

y þ n2
z with 1 � nx � nmax;

1 � ny �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

max � n2
x

p
, and 1 � nz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

max � n2
x � n2

y

q
; this

list has all energies with � � n2
max (we chose nmax¼ 32). This

is a very degenerate system—of the 15,954 energy levels
only 818 are distinct and the average degeneracy is 19.50.
As seen in Fig. 6, for �� 1000 we have d�� 60. Specifically,
the energies from 933–954, along with their degeneracies,
are given by: {�, g(�)}¼ {933, 24}, {934, 39}, {936, 24},
{937, 27}, {938, 24}, {}, {940, 6}, {941, 66}, {942, 18},
{944, 9}, {945, 48}, {946, 24}, {947, 15}, {948, 18}, {949,
12}, {950, 63}, {952, 12}, {953, 45}, {954, 42}.

Step 3: Plot Nð�Þ. It is instructive to construct the set of
points for the plot explicitly using the list of energies. There
are only 818 steps, one for each value of �. The height of the
step at some energy � is d�, the degeneracy, so this staircase
has steps that get higher with energy (e.g., the step at �¼ 950
has a height of 63).

Step 4: While calculating the DOS, the window size needs
to be adjusted to give a reasonable-looking graph. If the win-
dow is too small, the graph will look noisy; if it is too big,
the graph may appear too coarse. We use trial and error to
select an appropriate window size. We have included code in
the online supplement10 in which the reader can select the
maximum energy and window size and generate plots like
Figs. 5 and 6.

Figures 5 and 6 display d(�), Nð�Þ, and g(�) for this sys-
tem. Again, it is evident that the agreement between the ana-
lytic result and the explicit counting of energies improves as
the energy interval increases.

B. Rectangular box

The rigid rectangular box is a straightforward adjustment
to the cubical case and gives us a look at a non-degenerate
spectrum. In order to remove the degeneracies from the
single-particle spectrum that exist in the cubical case, we
will make the sides of the box have incommensurate lengths.
The choice Lx 6¼ Ly 6¼ Lz with Lx¼ 1, Ly¼ 2/e, and Lz¼ e/2
gives us a box of unit volume and a non-degenerate
spectrum.

Step 1: The energies are � ¼ ðp2�h2Þ½ðnx=LxÞ2 þ ðny=LyÞ2
þðnz=LzÞ2�=ð2MÞ. Again, the obvious choice for our energy
scale is to set p2�h2=ð2MÞ ¼ 1.

Step 2: This time we use a different method than in the cu-
bical case. The sphere in n-space corresponds to an ellipse in
phase space. This is a nice illustration of the difference
between these abstract spaces. The method used was an ex-
haustive calculation of all energies corresponding to the points
1� nx� nmax, 1� ny� nmax, and 1� nz� nmax, after which
we select �� (2nmax =e)2. The fact that ny and nz are multi-
plied by a factor of 0.74 and 1.36, respectively, ensures that
the sphere radius of

ffiffiffiffiffiffiffi
2=e

p
nmax is enclosed in the ellipse in

phase space, and we had a complete set of energies. Although
the method is inefficient, it has the advantage of transparency.

All the energies in this system are unique. In order to have
degeneracies, we would need two sets of integers, {nx, ny, nz}

and {mx, my, mz}, such that nx
2 þ e2n2

y=4þ 4n2
z=e2 ¼ mx

2

þ e2my
2=4þ 4mz

2=e2, which is impossible as e is transcen-
dental. The lowest 62,440 energies of the system are
calculated.

Step 3: The cumulative state number Nð�Þ consists of
steps of unit height, though the widths of the steps (level
spacings) vary. For our rectangular box there are 41,435
steps, one for each energy. A plot of d� vs � is a series of hor-
izontal spikes of height 1.

Step 4: In Fig. 7, we show g(�) and Nð�Þ for this system.

C. Spherical box

The energies for a rigid sphere of radius R are �ln ¼ �h2k2
ln=

ð2MR2Þ, where kln is the nth zero of jl(r), the lth spherical
Bessel function.13 Each �ln has a degeneracy of 2 lþ 1. It is
easy to confuse jl(r) with Jl(r), the ordinary Bessel function,
also known as the Bessel function of the first kind; the two

are related by13 jlðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2rÞ

p
Jlþ1=2ðrÞ. Note that the nth

zero of Jl(r) is written Kln. MATHEMATICA has a useful add-on
called NumericalMath‘BesselZeros’ that lists the zeros of
the various Bessel functions. In Sec. VI we define the prob-
lem of the rigid cylindrical box, where the energies are pro-

portional to K2
ln, so to avoid confusion we provide the

following check: the first three zeros of J0(r) are {2.4048,
5.5201, 8.6537}, and the first three zeros of j0(r) are
{3.9374, 7.8748, 11.8122}. Actually, the distinction between
Kln and kln is not important as far as g(�) goes for the sphere
and the cylinder, as the two sets of zeros are interspersed.14

Step 1: The role of p in the energies of the rectangular
wells is taken over by the kln. In the rectangular box, the

Fig. 7. The upper panel shows the cumulative state number for the spectra

for a single particle in cubical, rectangular, and spherical boxes. The spectra

have been normalized so that �h2p2=ð2MÞ ¼ 1 and the volume of each box is

1. The three curves are essentially indistinguishable. The lower panel is a

histogram of the energies for each box. The bins are 40 units wide.
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zeros of the sine function are multiples of p. This allowed us
to factor it out and choose the energy scale to be in units of

�h2p2=ð2MÞ for the rectangular boxes. Now, we have

� ¼ �h2ðkln=RÞ2=ð2MÞ. To compare with the square wells we

use an energy scale with �h2p2=ð2MÞ ¼ 1; in these units

�ln ¼ ½kln=ðpRÞ�2. Also, if the volume of the box is to be

unity, then R ¼ ½3=ð4pÞ�1=3
, so finally we have �ln ¼ k2

ln=

ð3p2=4Þ2=3
. This is the spectrum we will compare to those of

the rectangular and cubical boxes.
Step 2: We calculate all energies with kln< 95. To ensure

a complete set, we use the brute force method and calculate
all the triplets {kln, l, n} with 0� l� 95 and 1� n� 95, sort
these 9,120 numbers, and select the first 95. Sorting triplets
as opposed to just the list of kln makes it easy to accommo-
date the 2 lþ 1 degeneracy when making the final spectrum.

Steps 3 and 4: See Fig. 7.

D. Weyl’s theorem

It is clear from Sec. II and Fig. 7 that the general trend for
the three boxes we examined is Nð�Þ ¼ a �b. The energy
exponent does not vary much with the shape of the box. A
plot of lnNð�Þ vs ln � illustrates this nicely, as shown in
Fig. 8. The deviation from the straight line occurs only at
low energies, where the shape of the box matters. Using
MATHEMATICA, we perform linear fits to the logarithmic plots
and obtain the results shown in Table II.

If the box is sufficiently large, a particle in a rigid box
should not be aware of the particular shape of the box,
so long as kD � V, where V is the volume of the box. Here,
k ¼ 2p=j~kj is the deBroglie wavelength (j~pj ¼ �hj~kj) and D is
the dimension of the space. A slow particle will know about
the edge, as it has a long wavelength, and a fast particle or
high-energy state will not be sensitive to the shape because
its wavelength is small. This is the content of Weyl’s theo-
rem,15 which can be paraphrased as “high energy eigenval-
ues of the wave equation are insensitive to the shape of the
boundary.” A nice account of the origin of the theorem is
given by Kac16 and an explicit proof at the level of this paper
for the case of the cylinder and sphere is given by
Lambert.17

IV. N PARTICLES: STATISTICAL MECHANICS

Statistical mechanics can be introduced by analyzing a
model system of N non-interacting particles on a single-
particle spectrum, often chosen as a set of equally spaced
levels.7 This is a valuable pedagogical tool for exploring the
statistical distributions for classical particles, identical
bosons, and identical fermions. This type of model is rich
with subtleties—the particles not only don’t see each other
beyond obeying the Pauli exclusion principle if they are
identical fermions, but their presence has no influence on the
energies of the levels they fill.18 Real particles, on the other
hand, have interactions, so how does this model give useful
results? One can think of the effect of all the other particles
as being a smooth mean field that can be modeled as a poten-
tial for that single particle. Another subtlety is the robustness
of the spectra of these N-body systems—they are very insen-
sitive to the details of the single-particle spectrum upon
which they are built, depending only on its DOS.

We made a simple model of the N-particle system to serve
as a starting point for students to explore what happens to
the DOS as N increases, and to illustrate that the DOS of
many-body systems like this are insensitive to the details of
the single-particle spectra they are based on. In this section,
E is used for the total energy of the system, reserving � for
the single-particle energy. Subscripts will be used on g and
N to indicate the number of particles in the system, so g7(E)
is the DOS for a system of seven particles. We compare
N-particle systems built on four distinct single-particle spec-
tra: the square, rectangular, and spherical 3-D boxes, and a
spectrum with a specified DOS but random levels. A simple
analytical model for the DOS is presented and compared
with the numerical results. The focus is on the relationship
between the original single-particle energies that the N par-
ticles populate and the resulting gN(E). The model demon-
strates that gN(E) depends on the density of the
single-particle spectrum, as opposed to the details of the
energies themselves; this is why we can replace the exact
single-particle energies (zeros of Bessel functions, etc.) with
any set of numbers as long as they have the same range and
density.

Using a simple algorithm, the spectrum of N identical
bosons on a set of single-particle energies {�i} is calculated.
The range of energies is 0 ! Emax, with Emax limited only
by computational power and user patience. The choice of
bosons avoids the subtleties of Fermi statistics. The algo-
rithm is best illustrated with an example. Let’s look at identi-
cal bosons on the single-particle energies of the rigid cube in
three dimensions. First we make a list of the single-parti-
cle-state energies: f�ig ¼ f3; 6; 6; 6; 9; 9; 9; 11; 11; 11; 12; 14;
14;…g. We choose Emax¼ 53 so the list includes the first
140 states. This means that we are guaranteed to have a com-
plete list of energies up to E¼ 53. For our purposes an
N-particle state is a list of occupied single-particle states, so

Fig. 8. A logarithmic plot of the cumulative state number for the single-

particle spectra of cubical, rectangular, and spherical boxes. The energies

are in units of �h2p2=ð2MÞ and the volume of each box is 1.

Table II. Parameters for Nð�Þ ¼ a�b for the three different 3-D “boxes.”

The theory gives a¼p/6� 0.524 and b¼ 3/2; see Table I.

a b

Cube (theory) p/6� 0.524 3/2¼ 1.5

Cube (numerical) 0.29 1.58

Rectangular box 0.32 1.56

Spherical box 0.46 1.51
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(4, 5, 5, 27) is a four-particle state with a particle in state 4,
two particles in state 5, and a particle in state 27. Now list
the indices of all possible one-particle states: fðiÞg ¼ fð1Þ;
ð2Þ; ð3Þ;…; ð140Þg; the energy of state (i) is �i. Next list the
index pairs of all possible two-particle states:
fði; jÞg ¼ fð1; 1Þ; ð1; 2Þ; ð1; 3Þ;…; ð140; 140Þg, sort them
and drop duplicates; the energy of the state (i,j) is �iþ �j.
Drop all states with E> 53 as you are only guaranteed a
complete set of energies for E� 53. In general, list all possi-
ble N-particle states, sort them, drop duplicates, and sum the
corresponding single-particle energies. Once you have these
spectra you can use the procedure in Sec. III to get gN(E) and
N NðEÞ.

Systems based on a random single-particle spectrum are
included for comparison with those based on the rigid boxes
because this removes the role of geometry. The distribution
of the random numbers is such that the DOS is gð�Þ
¼ ðp=4Þ�1=2; this is accomplished by taking a set {xi} of 500
random numbers uniformly distributed on the interval [0, 1],
sorting them, raising them to the power of 2/3, and multiply-

ing them by ½ð6=pÞ500�2=3
. The logic behind this is worth

mentioning. Given a set of numbers {x} with distribution
f(x), we can make a function y(x) such that the set {y(x)} has

a distribution a yb by noting that f ðxÞ dx ¼ a yb dy. In our

case f(x)¼ 1, and we have dy=dx ¼ ð1=aÞy�b so that

yðxÞ ¼ ½ðbþ 1Þ=a�1=ðbþ1Þx1=ðbþ1Þ.
All of these systems have a cumulative state number of

the form N NðEÞ ¼ aEb, with both b and lna being linear in
N. In Fig. 9, we show N NðEÞ vs E for N particles on the
single-particle energies of a spherical well, while Figs. 10
and 11 show graphs of b and lna as functions of N for the
various systems we examined. The values of a and b for the
random spectra are based on 100 separate single-particle
spectra.

Given a single-particle spectrum with a one-particle DOS
g1(E), we can obtain a naive expression for the N-body den-
sity of states gN(E) iteratively. The density of N-body states
with energy E is a product of the density of (N – 1)-body
states with energy E0 and one-body states with energy
E� E0, or

gNðEÞ ¼
ðE

0

gN�1ðE0Þg1ðE� E0Þ dE0: (6)

This expression double-counts some states. Suppose we add
to the three-particle state {n1, n2, n3}¼ {3, 17, 17} a fourth
particle in state 24; then E¼ �3þ 2�17þ �24, and there is a
contribution to the integral in Eq. (6) from
g1(�24)g3(�3þ 2�17). However, we can get to the same state
by adding a particle in state 17 to the three-particle state {n1,
n2, n3}¼ {3, 17, 24}, and this gives a contribution to the in-
tegral in Eq. (6) from g1(�17)g3(�3þ �17þ �24). This is the or-
igin of the double counting and its effect is to increase the
number of states by a number close to N at high energies,
where the occupancies of the single-particle states are low.
We did not fix this problem.

When iterating Eq. (6) we need the following result for in-
teger n and m:

Fig. 9. A logarithmic plot of the cumulative state number for N-particle sys-

tems (N ¼ 1; 2;…; 5) on the single-particle spectrum of the sphere. The

steeper curves correspond to higher values of N, and different line types

have been used for clarity. The slopes follow N(bþ 1) [see Eq. (9)].

Fig. 10. The exponent of E in NðEÞ ¼ aEb for systems of various particle

number. Each system is constructed by placing non-interacting particles on

the corresponding single-particle spectrum described in the text. The dashed

line is a theoretical value derived using the values a¼ 0.4 and b¼ 1/2 in Eq.

(8). These results are obtained using a linear fit to the lnNðEÞ data. The error

bars represent the standard deviation of the average values from the 100

random spectra. (The lines are a guide for the eye.)

Fig. 11. A graph of ln a vs N for the same systems as in Fig. 10. Again, these

results are obtained using a linear fit to the lnNðEÞ data. The error bars rep-

resent the standard deviations of the average values from the 100 random

spectra. (The lines are a guide for the eye.)
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ðE

0

ðE0Þn ðE� E0Þm dE0 ¼ n!m!

ðnþ mþ 1Þ! Enþmþ1: (7)

Table III gives several examples of the DOS for N bosons
based on single-particle spectra with level density
g1(E)¼Eb, for b¼�1/2, 0, 1/2, and 1, corresponding to a
box in 1, 2, 3, and 4 dimensions [see Eq. (5)]. In general, af-
ter iterating Eq. (6) for N bosons on a single-particle spec-
trum with g1(E)¼ aEb, we get

gNðEÞ ¼
b!N

ðNbþ N � 1Þ! aNENbþN�1; (8)

N NðEÞ ¼
b!N

ðNbþ NÞ! aNENbþN ¼ aEb: (9)

This simple expression matches the numerical results for
the behavior of a and b. In Figs. 9 and 10, we see that b is
linear in N. The systems built on the single particle levels of
both the sphere and random system are close to the theoreti-
cal expression with a¼ 0.4 and b¼ 0.5 (we chose those val-
ues based on Table II). In Fig. 11, we see that lnðaÞ is
approximately linear in N; however, we cannot account for
the relative sizes of lnðaÞ. Intuitively one would expect a
smaller a to give a smaller a, so the values in Table II would
suggest that the sphere systems would be higher than the
cube systems in Fig. 11, which is not the case.

V. CONCLUSIONS

We have provided a graphical approach to introduce stu-
dents to the density of states (DOS) for simple quantum sys-
tems. In Sec. I, we introduced the concepts of degeneracy,
cumulative state number Nð�Þ, and DOS g(�) for these sys-
tems. In Sec. III, we gave a procedure for visualizing the
DOS and used it to get the DOS for a particle in rigid boxes
of various shapes. We found that the shape of the box had lit-
tle effect on the DOS, a demonstration of Weyl’s theorem.
We then built N-particle systems on the single-particle spec-
tra of Sec. III and found that the DOS was insensitive to the
specific energies of the single-particle spectra, the single-
particle DOS (g1(�)) being the important factor. Finally, we
compared our numerical results for N NðEÞ with an expres-
sion based on iterating the single-particle density of states

and saw how the DOS for N-particle systems was simply
related to g1(�).

VI. ADDITIONAL PROBLEMS

The following problems provide additional practice with
the procedure used in Sec. III. The programs available in
Ref. 10 may be a helpful starting point.

1. Examine changes to the density of states if we continu-
ously change one of the dimensions of the rigid rectangu-
lar box. We expect the density of states to exhibit
different behavior as we change continuously from a “2-
D” system (Lz � Lx, Ly), to a “3-D” system (Lz� Lx, Ly)
to a “1-D” system (Lz� Lx, Ly). Let Lx¼ Ly¼L0¼ 1, and
then let Lz vary over the range 0.01L0�Lz� 100L0.

2. The energy levels for a particle in a rigid cylindrical box

of height H and radius R are given by13 �qln ¼ �h2

ðq2p2=H2 þ K2
ln=R2Þ=ð2MÞ, where the Kln are zeroes of

the (regular) Bessel functions. Vary the height-to-radius
ratio for the cylindrical box. As H / R goes from near 0 to
1, you should expect a transition from “2-D” behavior to
“3-D” behavior. What does this look like in terms of g(�)?

3. Redo the treatment of Sec. II for a relativistic particle in
the 2-D rigid square box. The important difference is that
relativistically we have � ¼ pc ¼ �hkc, where k is the wave
number and c is the speed of light.
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Geissler Tube Set 

"Geissler Tube" is a generic name for any discharge tube: an evacuated glass enclosure with two or more metallic 
electrodes passing through the walls. Some of the tubes are utilitarian, and some are just for enjoyment. Johann Hein
rich Wilhelm Geissler (1815-1879) came from a glass-blowing family. About 1852 he became a maker of scientific 
instruments in Bonn, and inl855 he constructed a vacuum pump that used droplets of mercury falling through a tube 
as a method of producing relatively high vacua. This pump was used to evacuate the discharge tubes that he made a 
few years later for Julius PlUcker. These tubes contained rarified gases, and the discharge was obtained in a narrow 
channel between the electrodes at either end of a straight tube. We still use discharge tubes in undergraduate laboratory 
work on spectra of gases. This set of fanciful Geissler tubes was shown to me at Dartmouth College in 1979 by Prof. 
Allen King, who was responsible for the preservation of the historical physics apparatus at his institution. (Notes and 
photograph by Thomas B. Greenslade, Jr., Kenyon College) 
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