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Abstract High-frequency measurements of stratified turbulence throughout the water column were col-
lected over a 2 week period in the nearshore environment of southern Monterey Bay, CA, using a cabled
observatory system and an underwater turbulence flux tower. The tower contained a vertical array of acous-
tic Doppler velocimeters and fast-response conductivity-temperature sensors, providing a nearly continuous
data set of turbulent velocity and density fluctuations and a unique look into the stratified turbulence field.
The evolution of various turbulence quantities and direct measurements of the vertical turbulent diffusivity
is examined in the presence of nearshore internal bores, both in the near-bed region and in the stratified
interior. We show that individual bores can drive substantial changes in local turbulence and mixing dynam-
ics, with considerable differences between the leading and trailing edges of the bores. Using direct observa-
tions of the flux Richardson number, our measurements confirm previous observations that show the
highest mixing efficiencies (C) occurring in regions of buoyancy-controlled turbulence. Parameterizations of
the flux Richardson number as a function of the turbulence activity number are also presented. Finally, we
demonstrate that the commonly used assumption of a constant mixing efficiency (C 5 0.2) for calculating
turbulent diffusivities leads to significant overestimates compared to diffusivity values calculated using the
directly measured mixing efficiency. Implications of the results are discussed.

1. Introduction

Continental shelves are thought to be an important, yet highly variable, contributor to mixing and the dissi-
pation of turbulent kinetic energy in the oceans [Munk and Wunsch, 1998; Carter et al., 2005]. Furthermore,
estimates of turbulent mixing in coastal zones are important for understanding the vertical mixing of trac-
ers, with significant biological and ecological implications [e.g., Boehm et al., 2002; Leichter et al., 1996;
Pineda, 1994]. Specifically, diapycnal mixing affects many ecologically important processes such as nutrient
cycling, primary production, hypoxia development, and the mixing of tracers such as pollutants from sew-
age outfalls [e.g., Wolanski and Pickard, 1983; Leichter et al., 1996; Boehm et al., 2002; Chan et al., 2008]. The
dynamics of stratified turbulence have been investigated widely in both the laboratory [cf. Itsweire et al.,
1986; Ivey and Imberger, 1991] and numerical simulations [cf. Holt et al., 1992; Shih et al., 2005]; however,
extensive time series measurements of stratified turbulence on the shelf are somewhat limited [see Davis
and Monismith, 2011, and the references therein]. While microstructure profiler measurements have pro-
vided significant insight into oceanic turbulence, turbulence on the shelf is highly intermittent in time and
extremely patchy in space [e.g., Moum and Rippeth, 2009]. Indeed, the combined effects of boundary layers
(bottom and surface), variable stratification, vertical velocity shear, internal waves, and a host of other physi-
cal processes in the coastal environment contribute to the complex spatiotemporal variability of turbulence,
making it difficult to obtain comprehensive measurements using discrete profiles. Turbulence measure-
ments have expanded to moored platforms in recent years in order to capture extended time series of
high-frequency events and provide a closer examination of turbulence in highly dynamic systems [cf. Shaw
et al., 2001; Davis and Monismith, 2011; Bluteau et al., 2013].

In order to represent the energetics of turbulent velocity fluctuations, and also provide a means for evaluat-
ing and understanding turbulence measurements, the turbulent kinetic energy (TKE) equation is employed
[e.g., Tennekes and Lumley, 1972]:
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Here xj 5 [x, y, z] is the spatial coordinate with z positive upward, ui 5 [u, v, w] represents the velocity vector,
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is the fluctuating strain rate tensor, e is the TKE dissipation rate,

and an overbar represents an appropriate Reynolds average. The first two terms on the left-hand side (LHS)
represent the time rate of change of TKE and rate of change of TKE due to advection by the mean flow,
respectively. The next term on the LHS represents energy flux divergences, and specifically spatial transport
due to pressure fluctuations, the turbulence itself, and viscous stresses, respectively. The final term on the
LHS is the shear production (P) of TKE from the mean flow through the interaction of the Reynolds stress
with the mean velocity shear field. The first term on the right-hand side (RHS) denotes the buoyancy flux
(B). A positive B signifies an irreversible loss of TKE to potential energy in a stably stratified fluid, while a
negative B implies buoyant production of TKE (i.e., counter-gradient flux) and typically occurs in an unstably
stratified fluid. The last term on the RHS represents the loss, or dissipation (e), of TKE to internal energy by
viscosity and small-scale strains.

Despite its importance for understanding turbulence measurements, there exists a paucity of the literature
examining the TKE budget in marine bottom boundary layers. The assumption of equilibrium turbulence,
whereby the shear production of TKE balances the dissipation of TKE (P 5 e), has been tested in several
strong tidal flows. Gross and Nowell [1983], Trowbridge et al. [1999], and Sanford and Lien [1999] all found
that close to the bed, there was a local balance of production and dissipation. However, Sanford and Lien
[1999] found that away from the bed, dissipation exceeded production. Likewise, Walter et al. [2011] sur-
mised that the advection of nonlocal TKE was likely responsible for dissipation exceeding production near
the bed in a shallow tidal flow, possibly due to inhomogeneous bathymetry and bottom roughness (i.e.,
vegetation). While valuable, the above studies were limited to measurements near the bed in strong tidal
flows with little, or no, density stratification present.

Shaw et al. [2001] examined the TKE budget on the continental shelf in a stratified environment and found
that near the bed buoyancy fluxes were negligible so that there was a local balance between production
and dissipation. Further up in the water column (4.35 m above the bottom in �70 m of water), stratification
and buoyancy fluxes were important; however, the local TKE budget (i.e., P 5 B 1 e) did not close. Feddersen
et al. [2007] collected nearshore measurements close to the surf zone (�3.2 m depth) and found that shear
production was much less than dissipation, concluding that nonlocal transport of turbulence was important.
Reidenbach et al. [2006] found a local balance of production and dissipation over a coral reef and sandy bot-
toms near the bed (1 m above the bottom); however, these measurements were limited to the bottom
mixed layer and were likely not influenced by stratification and other processes further up in the water col-
umn (water depths of 8–24 m at different sites). Davis and Monismith [2011] studied internal waves shoaling
on the inner shelf (19 m depth) using high-frequency turbulence measurements near the bed (3 m above
the bed maximum instrument height). TKE balances in this complex stratified shear-flow environment
revealed that dissipation greatly exceeded production by nearly an order of magnitude, while buoyancy
fluxes were generally negligible. The authors suggested that the horizontal transport of nonlocal TKE by
internal wave-driven flows was responsible for the imbalance. Most recently, Bluteau et al. [2013] examined
turbulence at several vertical locations within 30 m of the bed at a deep (�400 m) shelf site. The authors
used TKE dissipation rate estimates to infer the thermal variance dissipation rate and used scaling argu-
ments to conclude that the shear production of temperature variance was balanced by the dissipation of
thermal variance. However, the TKE and thermal variance production terms were not measured so the
assumed balanced could not be tested.

The aforementioned studies offer a glimpse into the knowledge gap that exists in analyzing and under-
standing the TKE budget in the stratified coastal environment. In particular, previous studies have been lim-
ited to near-bed measurements (i.e., within a few meters of the bed or instrument heights above the bed
less than �15% of the total water depth). Indeed, the standard conceptual model of a bottom mixed layer
(i.e., vertical variations in density are much smaller than the variations across the layer boundary) under a
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stratified interior is that the presence of stratification acts to dampen vertical velocity fluctuations and limits
vertical penetration of the bottom-generated TKE. However, recent observations of nearshore internal bores
reveal that the dissipation of turbulent kinetic energy in the stratified interior, estimated using isopycnal
slope spectra, is comparable, and in some cases, greater than the dissipation of TKE associated with
bottom-generated turbulence [Walter et al., 2012]. Additionally, there have been an increased number of
observations documenting the generation of TKE by nonlinear internal waves in the stratified interior [e.g.,
Moum et al., 2003; Woodson et al., 2011]. It is clear that the turbulence structure in the presence of nonlinear
internal waves and bores may be substantially different than that expected from the standard model of a
bottom mixed layer under a stratified interior. Questions arise as to how the TKE budget will evolve
throughout the water column in the presence of stratified shear flows such as those seen with nonlinear
internal waves and bores, and in particular the importance of the first three terms on the LHS of equation
(1), with important implications for vertical mixing processes.

This study looks at high-frequency turbulence measurements throughout the water column in the near-
shore coastal environment, both in the stratified interior and near the bed. We take advantage of a cabled
observatory system at Hopkins Marine Station of Stanford University in southern Monterey Bay, CA, which
allows for nearly continuous measurements in time. Nearshore internal bores are a common feature that
produce transient stratification and mixing events, and represent the dominant source of variability, in this
ecologically important region [Walter et al., 2012] (see Walter et al. [2014] for a description of how regional-
scale upwelling and changing offshore (shelf) conditions influence the observed bores). Internal bores at
this site are marked by an upslope surging flow of subthermocline water that tends to stratify the water col-
umn (leading edge of the bore, or the ‘‘bore period’’ from Walter et al. [2012]). This period is followed by a
strongly sheared downslope flow in the form of a warm-front, high-frequency temperature oscillations, and
elevated levels of turbulent dissipation, as the bore features relax back downslope (trailing edge of the
bore, or the ‘‘mixing period’’ from Walter et al. [2012]). However, it is important to note that the isopycnal
slope spectra method used to calculate turbulent dissipation was only appropriate during the ‘‘mixing
period,’’ and the TKE dissipation represented a time-averaged value over the mixing period (�several hours)
[see Walter et al., 2012]. A more detailed examination of how the nearshore internal bores affect TKE dissipa-
tion, as well as other turbulence quantities, across the various periods, or phases, of the bores is warranted.

The main objective of this work is to better characterize the dynamics of stratified turbulence in the near-
shore coastal environment. We also seek to better understand the evolution of turbulence in the presence
of nearshore internal bores. Not only do these measurements provide a better understanding of the modifi-
cation to the turbulence dynamics by internal bores, but they also comprise one of the most comprehen-
sive sets of stratified turbulence data collected in the coastal environment. In section 2, we introduce the
field site, the experimental setup and underwater turbulence flux tower, and data processing methods. Sec-
tion 3 describes the evolution of the turbulence dynamics at various heights throughout the water column,
including the strongly stratified interior, during various conditions and in the presence of nonlinear internal
bores. Section 4 highlights and describes the various stratified turbulence regimes observed, as well as tur-
bulent mixing dynamics. Finally, we summarize the findings and discuss implications in section 5.

2. Site Description, Experimental Setup, and Methods

2.1. Site Description and Experimental Setup
Monterey Bay is located along the central coast of California within the highly productive California Current
Large Marine Ecosystem (CCLME) (Figure 1a). It is a semienclosed embayment that features one of the larg-
est submarine canyons on the west coast of the United States. Monterey Bay also contains a narrow conti-
nental shelf with about 80% of the bay shallower than 100 m [Breaker and Broenkow, 1994]. Additionally, it
is home to large commercial fisheries, as well as some of the west coast’s largest kelp (Macrocystis pyrifera)
forests, the latter of which are a critical habitat and nursery for nearshore biological communities.

Tides in Monterey Bay are mixed semidiurnal, with currents dominated by the M2 (�12.42 h period) tidal
component [cf. Rosenfeld et al., 2009; Carter, 2010]. Moreover, large amplitude internal waves are a well-
documented feature along the continental margin in and around Monterey Submarine Canyon, where iso-
pycnal displacements can reach hundreds of meters [e.g., Breaker and Broenkow, 1994; Petruncio et al., 1998;
Kunze et al., 2002]. The current study was conducted in southern Monterey Bay at Hopkins Marine Station of
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Stanford University (HMS—Figure 1), the location of previous observations of nearshore internal bores [Wal-
ter et al., 2012, 2014]. This study utilizes a cabled observatory system at HMS, the Kelp Forest Array (KFA)
[Walter, 2014, Appendix B]. The KFA is composed of a cable from shore that contains fiber optic cables for
Ethernet and copper wires carrying 300 VDC. This cable connects to an underwater ‘‘node’’ located several
hundred meters offshore near the 15 m isobath (Figure 1b). This underwater ‘‘node’’ distributes 24/48 VDC
and Ethernet to various ‘‘subnodes,’’ which are used to interface with oceanographic instruments. The subn-
odes also power the instruments and convert data streams from serial to Ethernet. Data are then acquired
using virtual serial ports on a remote computer on shore.

The current study was part of a larger project (Monterey Tower Node—MOTOWN) aimed at understanding
how nearshore internal bores affect circulation dynamics and turbulent mixing in the nearshore coastal
environment. Here, we focus on the stratified turbulence dynamics, as well as the evolution of the turbu-
lence in the presence of nearshore internal bores. Various budgets (e.g., energy, momentum, etc.), will be
investigated in future contributions. As such, only the relevant instrumentation and data used in this study
will be described in detail [cf. Walter, 2014, Appendix B].

The centerpiece of this experiment was an 8 m tall underwater turbulence flux tower that was deployed
near the 15 m isobath next to the underwater subnodes (Figures 1b–1e). On the submerged tower, we
attached six Nortek acoustic Doppler velocimeters (ADVs) at 0.3, 1, 2, 4, 6, and 8 m above the bed (mab)
fixed to arms that protruded approximately 1 m away from the tower (Figures 1c–1e). The ADVs were lev-
eled by divers to within 1� using a bubble level, and the arms were positioned so that they were extending
out from the tower (60� from true north). Each of the ADVs was equipped and synched with a Precision
Measurement Engineering, Inc. (PME) fast-response thermistor (FP07) and conductivity (ceramic plate) sen-
sor (fast CT). The fast CTs were positioned to sample approximately 1 cm away from the ADV sampling vol-
ume [i.e., <10lk, where lk is the Kolmogorov length scale defined by equation (16)] so that colocated
measurements of velocity (ADVs) and density (fast CTs) were obtained. All of the ADV/fast CT combos were
synched together to ensure a common time base and then connected to the KFA cabled observatory
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system. This allowed continuous, colocated measurements of turbulent velocity and density fluctuations at
64 Hz for nearly 2 weeks (14:00 on 8 August 2012 to 08:00 on 21 August 2012). This configuration also
enabled us to measure turbulent fluxes of momentum and density.

Surrounding the tower, we deployed an array of densely instrumented moorings that collected velocity and
temperature (density) measurements throughout the water column (Figure 1b). Findings from these sur-
rounding moorings will be discussed in a future contribution, and hence the detailed mooring configura-
tions are not included here. In addition to the ADV/fast CT vertical array, the tower was also equipped with
22 SBE56 temperature loggers throughout the water column [0–9 m above the bed (mab) in 0.5 m incre-
ments, 10, 11, 12 mab], all of which sampled at 0.5 s periods [see Walter et al., 2014]. There was also a SBE39
temperature logger at the surface location, sampling at 10 s intervals. In addition, the tower included SBE37
conductivity-temperature-depth (CTD) loggers at 0 (24 s), 2 (6 s), 4 (6 s), 6 (6 s), and 8 (24 s) mab, where the
sampling period is denoted in parentheses for each vertical location. In order to measure vertical profiles of
velocity throughout the water column, a RDI 1200 kHz Workhorse acoustic Doppler current profiler (ADCP)
was deployed at the tower location. The ADCP sampled in fast-ping Mode 12 (six subpings per 1 s ensem-
ble) with 0.5 m vertical bin spacing. This sampling scheme results in a small error standard deviation of
0.12 cm/s for 10 min averages. The ADCP was also leveled by divers to within 1� of the horizontal using a
bubble level in order to minimize instrument tilt errors.

2.2. Methods
2.2.1. Data Processing
Velocity measurements from the ADCP and ADVs were rotated into cross-shore (u), alongshore (v), and ver-
tical velocity (w) components using the principal axes obtained from a long-term ADCP near the site (Figure
1b). The principal axes of the long-term record were within 2� of those calculated from the ADCP in the cur-
rent study. During the summer upwelling season in Monterey Bay, salinity variations are sufficiently small
such that density is mainly controlled by temperature [e.g., Woodson et al., 2009, 2011; Walter et al., 2012,
2014]. Analysis of the tower CTD data showed that small changes in salinity varied linearly with temperature
throughout the water column (e.g., R2 5 0.91, p value< 0.001 for the 2 mab CTD) with nearly identical linear
regression coefficients between different depths. Consequently, densities were calculated at all tower
thermistor locations using the observed temperature and derived linear relationship from the CTD measure-
ments for salinity as a function of temperature. All times referenced in the text and figures are in local time,
Pacific Daylight Time, unless otherwise noted.

Spectral and coherence calculations were performed using the fast Fourier transform (FFT), using standard
methods [e.g., Walter et al., 2011]. Hamming windows with 50% overlap between adjacent segments were
used. The window length, and hence the number of windows in each 10 min segment, was chosen by tak-
ing into account the number of degrees of freedom (DOF) for confidence intervals, frequency resolution,
and length of the original record. A chi-square variable analysis and the equivalent number of DOF (EDOF)
were used to calculate confidence intervals for the spectra. For the coherence analysis, confidence limits
were quantified using the EDOF [Emery and Thomson, 2004].

2.2.2. Turbulence Analysis and Quantities
For the turbulence analysis, ADV and fast CT data were processed using 10 min intervals with 50% overlap.
This standard averaging interval represents a trade-off between capturing an appropriate number of realiza-
tions of the desired turbulent length scales and maintaining quasi-stationary statistics [e.g., Soulsby, 1980;
Davis and Monismith, 2011; Walter et al., 2011]. Quality control (QC) of the ADV and fast CT data was per-
formed by removing ADV data points with correlations less than 70% and temporal derivatives (i.e., acceler-
ations) greater than the acceleration due to gravity. Following this, the phase-space threshold filtering
method of Goring and Nikora [2002], which utilizes first-order and second-order differencing and a Universal
criterion, was used to identify data spikes. When ADV velocity data points were removed based on the
above criterion, the corresponding fast CT data points were also removed so that buoyancy flux calculations
would not be biased. Following removal, individual erroneous data spikes were replaced using a linear inter-
polation between neighboring points. Longer sections of bad data were replaced with white noise scaled
by the velocity variance in the particular 10 min segment. The scaled white noise contained a flat spectral
signature and did not affect statistics and turbulence quantities. Ten minute segments with more than 15%
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removed data were not used for further analysis. These initial QC criteria resulted in �39.8% of the 10 min
segments being rejected.

Another important consideration for the data quality control is wake effects from the tower and supporting
legs. Analysis of velocity spectrograms [Walter, 2014, Appendix B] reveals varying degrees of wake interfer-
ence for velocities with mean horizontal directions oriented such that the velocity vector passes through
the tower and legs (i.e., 30�–90� from true north). Hence, 10 min segments with this mean directionality
(�8.3% of QC data) were removed from further analysis.

In order to accurately calculate various turbulence statistics and quantities, such as momentum/buoyancy
fluxes and dissipation, it is necessary to account for the effects of surface waves (i.e., wave-turbulence
decomposition). Previous studies [e.g., Shaw et al., 2001; Davis and Monismith, 2011, see reference below]
have successfully removed surface wave contamination of the turbulence signal by using a differencing
method between vertically separated sensors, which was originally developed by Trowbridge [1998], and
later updated by Shaw and Trowbridge [2001] and Feddersen and Williams [2007] to include adaptive filter-
ing. Briefly, this method assumes that turbulence is uncorrelated between adjacent sensors, or that the ver-
tical separation between sensors is greater than the largest turbulent length scale, so that motions that are
correlated between the sensors are due to waves. Thus, by differencing the two velocity signals, only the
turbulence component remains. Unfortunately, the adaptive filtering method was not successful in separat-
ing waves and turbulence in the current data set based on inspection of the velocity spectra and cospectra
in the wave band frequencies (not shown). This technique also proved unsuccessful in the surface layer
observations of Gerbi et al. [2008], and the near-bed observations of MacVean and Lacy [2014]; the authors
attributed the failure of the differencing method to multidirectional waves and decorrelated motions at
higher frequencies, respectively. Analysis of velocity spectrograms [Walter, 2014, Appendix B] in the current
study reveals that sensors at different heights measured wave energy at different frequencies. For instance,
while increased energy was often seen in the lower frequencies associated with longer period surface
waves (�10 s periods) at most vertical locations, the shorter period waves were mainly seen in the spectra
of the upper tower instruments. Various differencing combinations of the vertical locations were explored
unsuccessfully.

Thus, to separate waves and turbulence, we employ the spectral ‘‘phase’’ decomposition method of
Bricker and Monismith [2007]. This method has been successfully used in previous field studies in a vari-
ety of coastal and estuarine locations [e.g., Hansen and Reidenbach, 2012; Wilson et al., 2013; MacVean
and Lacy, 2014]. Briefly, this method utilizes the phase lag between the velocity components (e.g., u and
w) of surface waves to interpolate the magnitude of the turbulence under the wave peak. When consid-
ering the two-sided cross-spectral density (CSD) of u and w, the turbulence spectrum can be expressed
as the difference between the spectrum of raw velocities and that of the wave-induced velocities. Inte-
grating under the spectrum of each component, leads to an expression for the turbulent Reynolds
stress,

u’w’5uw2~u ~w ; (2)

where primes and tildes denote fluctuating and wave components, respectively.

By writing the Fourier coefficients (Uj, Wj) in phasor notation (e.g., Uj5jUjjei/Uj , where /Uj is the phase) and
utilizing the Euler relation, the wave stress (i.e., last term in equation (2)) can be determined from the data
series by summing over the two-sided spectral domain, where the odd (imaginary) component gives no
contribution:

~u ~w 5
X

j5wave2peak

j~Uj jj ~W j jcos ð/Wj2/UjÞ; (3)

here the magnitude of ~Uj ( ~W j) is the difference between the raw Uj (Wj) and the turbulence U’
j (W ’

j ), which
is found by interpolating the autospectral density (PSD) of u (w) below the wave peak using a least squares
fit to the data to the left and right of the identified wave band (e.g., Figure 2b). The turbulent Reynolds
stress is then found by subtracting the wave stress, which is found by integrating the wave component of
the CSD over the wave peak (equation (3)), from the integral of the total stress over the full frequency
domain using equation (2). We refer the reader to Bricker and Monismith [2007] for further details.
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The aforementioned approach
relies on an accurate delinea-
tion of the frequency range of
the waves for interpolation of
the PSD. For each 10 min seg-
ment, we calculated the coher-
ence between the vertical
velocity component and the
ADV pressure signal and identi-
fied the wave band by those
frequency components that
showed a statistically signifi-
cant coherence within the fre-
quency range 0.05–0.4 Hz,
which encompasses the range
of wave frequencies observed
in the spectra over the experi-
ment (e.g., Figure 2a). Upon
inspection of the velocity spec-
tra and cospectra, this method
proved robust in accurately
capturing the wave band (e.g.,
Figure 2b). Moreover, the
cumulative integral of the
wave-filtered cospectra (Ogive
curves) resembled the
expected forms, at least to the

degree generally reported in the literature [cf. Kaimal et al., 1972; Walter et al., 2011; Walter, 2014, Appendix
B]. The same methodology was employed to calculate the alongshore component of the Reynolds stress
(v 0w0 ), turbulent density fluxes (q0w0 ), and each TKE component k5 1

2 u0u01v 0v 01w0w0
� �h i

.

Using a data set from a similar turbulence tower setup at the Kilo Nalu Observatory in Mamala Bay, HI,
where the Feddersen and Williams [2007] differencing method proved successful, the Bricker and Monismith
[2007] performed equally well in the wave-turbulence decomposition and calculation of momentum and
density fluxes (M. E. Squibb et al., personal communication, 2014). Finally, in order to limit the effects of
unsteady advection of turbulence by the waves, we restricted further analysis to periods when rUh=Uh < 2
(�10.2% of QC data); rUh is an estimate of the surface wave orbital velocities, and is calculated as the stand-
ard deviation of the horizontal velocity components in each 10 min window (i.e., uh5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u21v2
p

), while Uh is
the mean horizontal flow speed. This limitation is comparable to that used in similar studies of turbulence
estimates in the presence of surface wave forcing [e.g., Gerbi et al., 2008; Davis and Monismith, 2011].

Using the wave-removed momentum fluxes, the shear production (P) of TKE was calculated from equation
(1) as,

P52u0w 0 @U
@z

2v0w 0 @V
@z
; (4)

where the vertical gradients of the mean horizontal velocities (U and V) were calculated from the ADVs. Sim-
ilar shear production results were achieved using the velocity gradients estimated from the ADCP at the
tower, as well as various spline fits to the ADV and ADCP velocity data. The buoyancy flux (B) term in the
TKE equation (equation (1)) was calculated using the wave-removed density flux,

B5
g
qo

q0w 0 : (5)

Dissipation of TKE was estimated using Kolmogorov’s 25/3 law and an inertial subrange fit following the
method outlined in Feddersen et al. [2007]. This method uses the high-frequency portion of the vertical
velocity spectrum together with the Lumley and Terray [1983] model for the effect of the surface waves on
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the turbulent wave number spectrum to calculate dissipation, since waves act to advect turbulent eddies
past the instrument sensor and alias wave energy into higher frequencies than the wave band frequencies.
Dissipation was calculated at various radian frequencies (x),

eðxÞ5
"

Sw0w0 ðxÞ2ð2pÞ3=2

aMw0w0 ðxÞ

#3=2

; (6)

where a 5 1.5 is Kolmogorov’s constant, Sw0w0 is the vertical velocity spectrum, and Mw0w0 is an integral over
three-dimensional wave number space that depends on the wave-orbital velocities and mean flow [Lumley
and Terray, 1983; Feddersen et al., 2007]. The spectrum of vertical velocities was used since this velocity com-
ponent is the least noisy [e.g., Voulgaris and Trowbridge, 1998].

Dissipation was calculated at various cyclic frequencies (0.8, 1.0, 1.2, 1.4, and 1.6 Hz) within the inertial
subrange. This particular range of frequencies encompasses a region that is higher than the dominant
wave band, lower than the noise floor, and consistently produced a 25/3 power law fit (e.g., Figure 2).
Dissipation estimates at the various cyclic frequencies produced consistent results, indicating that the
Lumley and Terray [1983] model for the wave advection of frozen turbulence is reasonable [cf. Feddersen
et al., 2007]. Following Feddersen et al. [2007], a frequency-averaged dissipation value (hereafter referred
to as e) is obtained for every 10 min segment using a log-mean of the dissipation values at the various
cyclic frequencies.

Furthermore, we restricted the dissipation estimates to 10 min segments that satisfied the condition,
u
0

h;rms

Uh

< 0:3 (�9.2% of QC data), where u
0
h;rms is the root-mean-square of the turbulent velocity fluctuations along

the mean horizontal flow direction. This criterion ensures that Taylor’s frozen turbulence hypothesis, which
is used to convert measurements from frequency to wave number space, is valid [see Bluteau et al., 2011,
and the references therein]. Additionally, dissipation estimates that did not yield a 25/3 power law fit in the
inertial subrange were rejected (�16.5% of QC data). This was implemented by computing the least squares
power law fit to the spectra in the inertial subrange and discarding estimates in each 10 min window where
the coefficient of regression (R2) between the power law fit and the Feddersen et al. [2007] fit (i.e., 25/3
power law) was less than 0.7 [cf. Bluteau et al., 2011]. This particular cutoff effectively eliminated periods
where a 25/3 fit was not achieved, ensuring the existence of an inertial subrange. As discussed later in the
manuscript, turbulence activity numbers, e/mN2, where N252

g
qo

@q
@z is the buoyancy frequency squared and

is a measure of the strength of stratification, were generally well above 100, further ensuring a well-defined
inertial subrange with minimal anisotropic effects [see Gargett et al., 1984; Bluteau et al., 2011, and the refer-
ences therein]. Uncertainty in the dissipation estimates was quantified by calculating dissipation with equa-
tion (6) using the upper and lower confidence intervals (90%) of the vertical velocity spectra, and the
method outlined above. The minimum (maximum) uncertainty bound on the dissipation estimates was a
decrease (increase) by a factor of 0.49 (1.49), which does not significantly alter any of the results or
conclusions.

The traditional approach of estimating the vertical turbulent diffusivity of density (jq) is to utilize the Osborn
[1980] steady state formulation,

jq5C
e

N2
; (7)

where C is the mixing coefficient. The mixing coefficient (C) is related to the flux Richardson number (Rf)
[e.g., Ivey and Imberger, 1991],

Rf 5
B

B1e
; (8)

by the following relation,

C5
Rf

12Rf
: (9)

In equation (1), the RHS represents TKE sink terms; TKE is transferred to internal energy through viscous dis-
sipation at a rate e, and in a stably stratified fluid, to potential energy through the buoyancy flux. Thus, the
flux Richardson number, which is related to the mixing coefficient by equation (9), represents the ratio of
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the amount of TKE lost to potential energy for a stably stratified fluid to the net mechanical energy available
to sustain turbulent motions (i.e., LHS of equation (1), which is equal to B 1 e) [cf. Ivey and Imberger, 1991;
Davis and Monismith, 2011; Dunckley et al., 2012]. Whereas the conventional approach is to estimate jq

using a constant mixing coefficient, C 5 0.2 (Rf 5 0.17), in equation (7), here we are able to directly calculate
the mixing coefficient using equations (8) and (9), and hence the vertical diffusivity,

jq5
Rf

12Rf

e
N2
: (10)

Clearly from the definition in equation (8), equation (10) for calculating jq is identical to, jq5 B
N2, obtained

from the eddy diffusivity model formulation [cf. Osborn, 1980],

2q0w0
5jq

@�q
@z
: (11)

3. Results

3.1. General Observations
We summarize briefly here the mean temperature and velocity dynamics during the experiment to pro-
vide a basis for the interpretation of the turbulence measurements, which is the focus and new contribu-
tion of this manuscript. For a more detailed examination of the mean dynamics during the experiment,
we refer the reader to Walter et al. [2014]. The detailed temperature structure over the entire study
period reveals episodic cold water intrusions that propagate in (onshore/upslope flow) and out (off-
shore/downslope flow) of the nearshore (Figure 3). These intrusions are typical of nearshore internal
bores that act to drive transient stratification and mixing events [e.g., Walter et al., 2012]. The record is
also characterized by several distinct regimes that change the nearshore temperature structure and
stratification. From approximately 7 to 14 August and starting again on about 21 August, the nearshore
is marked by a low-frequency ‘‘pooling’’ of cold water throughout the bottom portions of the water col-
umn (Figure 3a). This increases the stratification in the nearshore, causing the bores to perturb the pre-
existing thermocline. This is in contrast to periods where the nearshore is well mixed (i.e., uniform
temperature throughout the water column). In this case, the bores propagate into the well-mixed waters
and act to stratify the water column.

Walter et al. [2014] show that the two nearshore regimes are related to the regional wind-driven upwelling
cycles and offshore stratification. During weak upwelling conditions, the offshore thermocline is deeper,
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and the nearshore internal bores
propagate into well-mixed waters.
During upwelling-favorable condi-
tions, the offshore thermocline
shoals toward the surface, near-
shore ‘‘pooling’’ develops as sub-
thermocline waters inundate the
nearshore, and nearshore internal
bores perturb the preexisting strati-
fication. Noteworthy is the fact that
the bores stratify the water column
at higher frequencies (approxi-
mately semidiurnal period) than the
upwelling cycles (�7–10 day period)
that drive the nearshore pooling,
and they also drive the major per-
turbations to the preexisting
stratification.

Examination of the velocity struc-
ture reveals that the bore events
contribute to the majority of the
variance in the cross-shelf velocity
field. This is confirmed using an
empirical orthogonal function
(EOF) analysis [see Walter et al.,
2014]. We refer the reader to Walter
et al. [2012, 2014] for a more

detailed examination of the cross-shore and alongshore velocity and shear fields in the presence of the
nearshore internal bores.

3.2. TKE Budget
Figure 4, which shows a scatterplot of e versus P at the various instrument heights, highlights the relative
magnitude of these two terms at these various elevations. Clearly, classical boundary layer equilibrium tur-
bulence, whereby shear production of TKE is locally balanced by the dissipation of TKE (i.e., P 5 e), does not
hold everywhere throughout the water column. As will be discussed later, this is probably due to the pres-
ence of stratification and nonlinear internal bores. Near the bed (0.3 mab), the production balances dissipa-
tion and the assumption of equilibrium turbulence appears valid. This is consistent with previous
observations of near-bed turbulence in strong tidal flows and coastal environments [Gross and Nowell, 1983;
Trowbridge et al., 1999; Sanford and Lien, 1999; Shaw et al., 2001; Reidenbach et al., 2006]. However, Figure 4
also reveals that further away from the bed, the local balance begins to break down.

Specifically, the dissipation of TKE is much greater than the local shear production of TKE, by roughly an
order of magnitude. Including the buoyancy flux term (B), as well as the TKE vertical transport term [i.e.,
@
@z kw 0
� �

] from equation (1), does not improve the imbalance; these terms are typically one to several orders

of magnitude smaller than the shear production and dissipation terms, consistent with previous studies
[e.g., Shaw et al., 2001; Davis and Monismith, 2011]. Such nonequilibrium turbulence (P 6¼ e), especially away
from the bed, has been previously observed in strong tidal flows [Sanford and Lien, 1999; Walter et al.,
2011], as well as coastal environments [Shaw et al., 2001; Feddersen et al., 2007; Davis and Monismith, 2011]
(M. E. Squibb et al., personal communication, 2014).

Furthermore, even when calculating the shear production using the total stress values (e.g., no wave
removal, or uw and vw ), dissipation is still greater than production. We note that the comparison of produc-
tion versus dissipation appears to be independent of the strength of surface wave forcing (i.e., rUh=Uh).
Also, TKE dissipation values calculated with the Feddersen et al. [2007] method during periods of low wave
forcing (rUh=Uh � 1) were similar to those obtained using an inertial subrange method that does not take
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into account the effect of the waves
on the high-frequency portion of the
spectrum [e.g., Shaw et al., 2001,
equation (7); Davis and Monismith,
2011, equation (A(1))] when
comparing dissipation values above
1026.5 m2/s3.

These results indicate that the contri-
bution from the first three terms on
the LHS of equation (1) cannot be
neglected. We surmise that the ele-
vated levels of dissipation are par-
tially due to the horizontal transport
of TKE, whereby turbulence is gener-
ated and advected to the measure-
ment site where it is locally
dissipated. This hypothesis seems
plausible at the current study site
given the energetic nonlinear internal
waves that may be breaking and
advecting remotely generated turbu-
lence to the tower location [cf. Davis
and Monismith, 2011] (Arthur and
Fringer, personal communication,
2014). While we are not able to test
this hypothesis with the available
data, the examination of local turbu-
lent dissipation and mixing by break-
ing internal waves (bores) at various
locations along a sloping shelf is the

subject of ongoing numerical work (Arthur and Fringer, 2014; see also Becherer and Umlauf [2011] and Lorrai
et al. [2011] for a discussion on shear-induced stratification, convection, and mixing on sloping boundaries in
lakes). Therefore, the assumption of equilibrium turbulence in the presence of nonlinear internal waves, especially
away from the bed, is likely not appropriate in all such environments.

We also test the applicability of the classic law of the wall scaling for dissipation,

e5
u3
�

jz
; (12)

where j 5 0.41 is the Von K�arm�an constant, z is the height above the bed, and u� is the friction velocity
[Pope, 2000]. The friction velocity is estimated using the magnitude of the near-bed Reynolds stresses,

u2
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u0w0
� �2

1 2v0w 0
� �2

r
: (13)

Figure 5 highlights the boundary layer scaling for dissipation at the various instrument heights. Closer to
the bed (0.3, 1, and 2 mab), the law of the wall scaling for dissipation typically matches the order of magni-
tude of the observed dissipation values. Further up in the water column, however, the scaling begins to
break down with the law of the wall scaling underpredicting the observed dissipation values. This result is
expected and likely due to the presence of stratification that acts to modify the logarithmic region and the
applicable turbulent length scales (i.e., the turbulent eddies outside of the constant-stress wall region no
longer scale as the distance from the wall) [e.g., Perlin et al., 2005].

3.3. Evolution of Turbulence and Mixing in the Presence of Bores
Figure 6 highlights the density and velocity structure, turbulence shear production and dissipation, and
measured vertical diffusivity over the entire record during which the turbulence tower collected
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measurements. Also shown is the vertical structure of the time derivative of density (Figure 6b), which is
meant to highlight the leading (positive derivative; ‘‘bore period’’ from Walter et al. [2012]) and trailing (neg-
ative derivative; ‘‘mixing period’’ from Walter et al. [2012]) edges of the bores. The derivative was low-pass
filtered (3 h half-amplitude period) in order to better delineate the bore interface and reduce some of the
higher-frequency variability. Examination of the turbulence shear production and dissipation (Figures 6e
and 6f) reveals large fluctuations (changes of several orders of magnitude) that appear to be coherent with
the bore events. The measured vertical diffusivity also shows large variations that are seemingly linked to
the bore events, with many of the values well above the canonical value of �1025 m2/s for the ocean inte-
rior [Gregg, 1989; Waterhouse et al., 2014]. We examine these trends in further detail below by first examin-
ing individual bore events in each of the two previously mentioned nearshore regimes: a well-mixed
nearshore, and a stratified nearshore (nearshore ‘‘pooling’’).

Figure 7 highlights nearshore internal bores propagating into well-mixed waters. The arrival of the initial
bore (�00:00, leading edge) is characterized by a dense mass of water that tends to stratify the water col-
umn, as well as a strong onshore (upslope) flow near the bottom in the cross-shore direction. There is a cor-
responding increase in the density time gradient along the bore interface, highlighted by the isopycnals in
Figures 7a–7d. The arrival of the bore is also marked by a decrease in the dissipation throughout the water
column, except for the near-bottom sensors (0.3 and 1 mab), which display an order of magnitude larger
dissipation values compared to the stratified interior. Examination of the turbulence shear production
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Figure 6. Time series over the entire study period at the tower location of the (a) vertical density structure, (b) low-pass filtered, time deriv-
ative of density, (c) vertical structure of the cross-shore velocity field (10 min averages, positive onshore), (d) vertical structure of the along-
shore velocity field (10 min averages, positive into the bay), (e) dissipation (e) of TKE at various heights above the bed, (f) shear production
(P) of TKE at various heights above the bed, and (g) vertical turbulent diffusivity, jq5 B

N2 5 Rf
12Rf

e
N2 , at various heights above the bed. The

location of the sea surface (blue line) is also shown in Figures 6a–6d. Missing values in Figures 6e–6g correspond to periods that did not fit
the quality control criteria for each respective variable (see section 2).
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reveals slightly smaller values during the bore arrival, except for several small peaks (e.g., �02:30) that corre-
spond to times of elevated velocity shear. The vertical diffusivities demonstrate slightly lower values further
up in the water column during the arrival of the bore.

During the relaxation of the bore (see Walter et al. [2012] for a discussion on the dynamics of the bore struc-
ture) in Figure 7 (�08:00, trailing edge), the water column structure quickly changes as the bore advects
back offshore (downslope). There is a corresponding sharp decrease and change in sign of the density time
derivative. Turbulence dissipation in the stratified interior peaks by nearly 2 orders of magnitude during the
trailing edge of the bore, and is comparable to the near-bed dissipation values seen during the bore. This
facet is consistent with the observations of Walter et al. [2012] (i.e., dissipation in the stratified interior com-
parable to near-bed dissipation during the ‘‘mixing period’’), but the current data set provides a more com-
plete description of the temporal and spatial evolution. There is also a sharp increase in the turbulence
shear production, which is due to the large increase in shear. Careful examination reveals that the vertical
diffusivity peaks slightly further up in the water column following the trailing edge of the bore. The second
bore event shown in Figure 7 (�12:00 to 18:00) more clearly shows the peaks in dissipation, production,
and vertical diffusivity during the trailing edge of the bore in comparison to the leading edge.
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Figure 7. Example nearshore internal bore event (16 August 2012) propagating into well-mixed waters at the tower location. (a) Vertical
density structure, (b) low-pass filtered, time derivative of density, (c) vertical structure of the cross-shore velocity field (10 min averages,
positive onshore), (d) vertical structure of the alongshore velocity field (10 min averages, positive into the bay), (e) dissipation (e) of TKE at
various heights above the bed, (f) shear production (P) of TKE at various heights above the bed, and (g) vertical turbulent diffusivity,
jq5 B

N2 5 Rf
12Rf

e
N2 , at various heights above the bed. Isopycnals (gray lines: 1025.5, 1025.4, 1025.2, 1025.0, and 1024.8 kg/m3), as well as the

location of the sea surface (blue line), are also shown in Figures 7a–7d. Missing values in Figures 7e–7g correspond to periods that did not
fit the quality control criteria for each respective variable (see section 2).
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We also examine the detailed structure of an individual bore propagating into a preexisting stratification in
Figure 8. In this case, the bore perturbs the nearshore pycnocline region, as seen in the density time gradi-
ent and cross-shelf velocity fields. While there is a large gap of discarded turbulence data from the quantity
control restrictions, the turbulence structure seems to follow the same trends observed earlier. That is, the
arrival of the bore coincides with decreases in the turbulence dissipation, shear production, and vertical dif-
fusivity, while there appears to be increases in these parameters during the trailing edge.

We expand on the individual bore event findings and consider the evolution of various turbulence terms
averaged across all bore events. Here, we focus on the bore interface and assess how the various phases of
the bore (e.g., leading versus trailing edge) affect the stratified turbulence dynamics. The bore interface can
be thought of as the nearshore pycnocline since it coincides with the region of the strongest stratification
in the nearshore and separates the nearshore waters from the denser offshore waters. Figure 9 shows how
various turbulence quantities, bin-averaged across all measurements at all instrument heights, vary as a
function of the low-pass filtered time derivative of density. The density time derivative captures the phases
of the bore (e.g., positive values, leading edge; negative values, trailing edge). Calculations were also
restricted to regions of strong density stratification where N2> 1023.5 1/s2, which effectively isolates the
bore interface.
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Figure 8. Example nearshore internal bore event (10 August 2012) propagating into stratified waters at the tower location. (a) Vertical den-
sity structure, (b) low-pass filtered, time derivative of density, (c) vertical structure of the cross-shore velocity field (10 min averages, posi-
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various heights above the bed, (f) shear production (P) of TKE at various heights above the bed, and (g) vertical turbulent diffusivity,
jq5 B

N2 5 Rf
12Rf

e
N2 , at various heights above the bed. Isopycnals (gray lines: 1025.9, 1025.8, 1025.6, 1025.4, and 1025.2 kg/m3), as well as the

location of the sea surface (blue line), are also shown in Figures 8a–8d. Missing values in Figures 8e–8g correspond to periods that did not
fit the quality control criteria for each respective variable (see section 2).
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Figure 9a reveals that the density
stratification peaks slightly in the
leading and trailing edges of the
bore. Furthermore, in accord with the
individual bore observations pre-
sented above, the dissipation (Figure
9b) and shear production (Figure 9c)
of TKE increase in the trailing edge of
the bore by almost an order of mag-
nitude compared to the other phases.
In order to assess the evolution of the
stratified turbulence and turbulent
mixing, the buoyancy flux (Figure 9d)
and the flux Richardson number (Fig-
ure 9e) were computed. As expected
based on the density stratification,
the buoyancy flux shows maximum
values in the leading and trailing
edges of the bore. On the other hand,
the flux Richardson number, which is
related to the mixing efficiency by
equation (9), illustrates a minimum in
the trailing edge of the bore, whereas
the leading edge of the bore shows
much larger values. Also shown is the
often assumed constant value of
Rf 5 0.17, which corresponds to a
constant mixing efficiency of C 5 0.2.
It is clear that the mixing efficiencies
calculated along the bore interface
are much smaller than this constant
value, with significant variation with
respect to the bore phase. While the
trailing edge of the bore is more tur-

bulent than other phases, the efficiency of mixing is smaller. This leads to measured turbulent diffusivities (Fig-
ure 9f) that are not as large as expected under the assumption of a constant mixing efficiency, but that are
still slightly higher than the other phases of the bore. Indeed, employing the traditional approach of estimat-
ing turbulent diffusivity by assuming a constant mixing efficiency leads to large overestimates of the diffusiv-
ity (shown in gray in Figure 9f), particularly in the trailing edge.

4. Discussion

4.1. Stratified Turbulence Regimes and Mixing Efficiency
The nature of stratified turbulence, and the influence of buoyancy, is often evaluated in a turbulent Reyn-
olds number (Ret) and turbulent Froude number (Frt) parameter space [e.g., Ivey and Imberger, 1991; Davis
and Monismith, 2011; Dunckley et al., 2012]. Before defining these quantities, several important length scales
are first introduced [cf. Itsweire et al., 1986; Shih et al., 2005]. In the absence of buoyancy effects, the Prandtl
mixing-length scale characterizes the size of the energy-containing turbulent eddies,

lm5
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Figure 9. (a) Buoyancy frequency squared (N2), (b) dissipation of TKE (e), (c) shear
production (P) of TKE, (d), buoyancy flux (B), (e) flux Richardson number (Rf), and (f)
vertical turbulent diffusivity calculated using the measured Rf, jq5 B

N2 5 Rf
12Rf

e
N2 (black

circles), and a constant Rf 5 0.17 (gray line, Figure 9e), jq50:2 e
N2 (gray circles), all as a

function of the low-pass filtered, time derivative of density. Black circles represent
bin-averaged values using measurements at all instrument heights, while the error
bars signify the standard deviation of the bin-averaged results. Calculations were
restricted to regions of strong density gradients (N2> 1023.5 1/s2) to isolate the bore
interface (see text for details).
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where S25 @U
@z

	 
2
1 @V

@z

	 
2
. However, the presence of density stratification and buoyancy limits the size of the

largest turbulent eddies. The Ozmidov scale represents the length scale at which buoyancy forces are equal
to inertial forces, and is the largest turbulent scale allowed by buoyancy forces,

lo5
e

N3

� �1=2
: (15)

The turbulent eddies at the largest scales transfer energy through the inertial subrange to smaller and
smaller scales until molecular viscosity acts to dissipate TKE into internal energy. The scale at which turbu-
lent motions are damped by viscous forces, or the scale at which TKE is dissipated by viscosity and small-
scale strains, is defined as the Kolmogorov length scale,

lk5
m3

e

� �1=4

: (16)

In a density stratified medium, the range of possible turbulent length scales is bounded by the Kolmogorov
scale at the smallest end and the Ozmidov scale at the largest end. The turbulent overturning length scale,
and the largest turbulent length scale in a statistical sense [cf. Itsweire et al., 1986], is defined using the Elli-
son length scale,

le5
q
0
rms

@q=@z
: (17)

where q
0
rms denotes the root-mean-square of the turbulent density fluctuations. However, the Ellison length

scale is difficult to measure in the field and is affected by internal waves [Itsweire et al., 1986; Davis and
Monismith, 2011]. DNS simulations of a stratified shear flow indicate that in the energetic regime (i.e., e/
mN2> 100), which is the case for nearly all measurements here, a constant relationship between the Ellison
and Prandtl mixing-length scale exists (le � 2:5lm) [Shih et al., 2005]. This relationship will be used for calcu-
lations of the Ellison length scale in what follows [cf. Davis and Monismith, 2011].

Using these length scale definitions, the turbulent Reynolds number, which is the ratio of the inertial to vis-
cous forces in the energy-bearing eddies, is defined as follows,

Re t5
le

lk

� �4=3

: (18)

The turbulent Froude number represents the ratio of the inertial forces to the buoyant forces in the energy-
bearing eddies,

Frt5
lo

le

� �2=3

: (19)

Figure 10 shows all of the measurements at each vertical location in the Ret-Frt parameter space. The param-
eter space has been divided into three regions that classify the nature of the stratified turbulence: the
buoyancy-affected region (Region 1), the buoyancy-controlled region (Region 2), and a region where the
combination of buoyancy and viscosity completely suppress turbulent motions (Region 3) [e.g., Luketina
and Imberger, 1987; Ivey and Imberger, 1991]. Measurements at the current study site are confined to
Regions 1 and 2, with most of the observations occurring in the buoyancy-controlled region (Region 2, Fig-
ure 10a). Figure 10b displays the percentage of points at each vertical location in each of the three regions.
The near-bed measurements (0.3 mab) are predominately in Region 1, while further up in the water column,
the majority of the points lie in Region 2.

Figure 11 highlights the distribution of several parameters in the Ret-Frt space. The turbulence activity num-

ber, which can also be recast in terms of the Ozmidov and Kolmogorov length scales, e
mN2 5 lo

lk

� �4=3
, is shown

in Figure 11a. Nearly all of the measurements fall into the energetic regime (i.e., e/mN2> 100 [Shih et al.,
2005]), with values as large as 106. Examination of the flux Richardson number (Figure 11b) reveals that the
largest values occur in the buoyancy-controlled region, with the majority of the observations falling below
the ‘‘critical,’’ or commonly used, value of 0.17. These results seem to suggest that the largest values of Rf do
not occur near Frt 5 1 [see Ivey and Imberger, 1991], but that the most efficient mixing occurs when the
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eddy overturning scale (le) is greater than the Ozmidov scale (lo). Davis and Monismith [2011] (direct estimates
of C, field measurements) and Dunckley et al. [2012] (parameterized estimates of C, field measurements) find
a similar trend (i.e., maximum efficiency in Region 2), with the former noting that it is likely due to internal
wave forcing and the nonlocal advection of TKE. Furthermore, the finding that the most efficient mixing
occurs near Frt 5 1 was based on parameterizations from laboratory results with an average Ret of approxi-
mately 40, which is several orders of magnitude smaller than the observations here (e.g., Figures 10a and 11).

In many oceanic applications, the mixing efficiency is often taken to be a constant, C 5 0.2; however, as dis-
cussed in recent review by Ivey et al. [2008], a host of laboratory experiments and DNS simulations over the
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Figure 10. (a) Turbulent Froude number (Frt) versus turbulent Reynolds number (Ret) diagrams for all measurements. The color circles rep-
resent measurements at the various vertical tower locations. The solid black lines denote the three regions identified by Ivey and Imberger
[1991] (see text for details). The dashed black line indicates e/mN2 5 100. (b) Histogram indicating the percentage of points in each of the
three regions in Figure 10a for each vertical location. Note that Region 3 was largely absent from the data set.
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lines denote the three regions identified by Ivey and Imberger [1991] (see text for details). The dashed black line indicates e/mN2 5 100.
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last two decades suggest that
the mixing efficiency is not a
universal constant. Indeed,
there is a clear consensus that
the mixing efficiency is highly
variable (i.e., not constant) and
depends on various parame-
ters including the age of the
turbulent patch, the origin of
the turbulence, the strength of
the stratification, the turbu-
lence activity number, the loca-
tion in the domain, etc. [e.g.,
Rohr et al., 1984; Itsweire et al.,
1986; Ivey and Imberger, 1991,
and the references therein;
Barry et al., 2001; Barry, 2002;
Smyth et al., 2001; Peltier and
Caulfield, 2003; Rehmann, 2004;
Rehmann and Koseff, 2004; Shih
et al., 2005; Ivey et al., 2008,
and the references therein,
Stretch et al., 2010; Hult et al.,
2011a, b; Dunckley et al., 2012;
Lozovatsky and Fernando, 2012;
Bluteau et al., 2013; Bouffard
and Boegman, 2013]. More

recently, field measurements of the flux Richardson number confirm a strong dependence on the turbu-
lence activity number [Davis and Monismith, 2011; Lozovatsky and Fernando, 2012; Bluteau et al., 2013; Bouf-

fard and Boegman, 2013], in accordance with previous DNS results [e.g., Shih et al., 2005]. Indeed, estimates
of turbulent diffusivities are extremely sensitive to the choice of mixing efficiency used [cf. Dunckley et al.,
2012]. Figure 11c highlights the turbulent diffusivity calculated using the measured mixing efficiency (equa-
tion (10)). This is contrasted with Figure 11d, where the diffusivity is calculated from an assumed C 5 0.2.
There are substantial differences in the estimated diffusivities. Notably, the constant mixing efficiency for-
mulation leads to overestimates of several orders of magnitude compared to the values calculated using
the directly measured mixing efficiency.

The turbulence activity number is a common measure for characterizing turbulence in stratified environ-
ments, and several studies have noted the dependence of the flux Richardson number on the activity num-
ber [e.g., Barry et al., 2001; Barry, 2002, and the references therein; Shih et al., 2005, and the references
therein; Davis and Monismith, 2011; Lozovatsky and Fernando, 2012; Bluteau et al., 2013; Bouffard and Boeg-
man, 2013]. The DNS simulations of Shih et al. [2005] show that in the intermediate range (7< e/mN2< 100),
the constant flux Richardson number formulation (Rf 5 0.17, C 5 0.2) is valid; however, as the turbulence
transitions into the energetic regime (e/mN2> 100), the flux Richardson number displays a power law
dependence on the activity number, Rf � (e/mN2)21/2. A power law dependence on the activity number was
also found in the field observations of Davis and Monismith [2011], Lozovatsky and Fernando [2012], Bluteau
et al. [2013], and Bouffard and Boegman [2013].

Figure 12 displays the flux Richardson number as a function of the turbulence activity number for the cur-
rent data set, as well as the least squares power law fit to the data [i.e., Rf � (e/mN2)21/2]. The power law fit is
much closer to the DNS measurements of Shih et al. [2005], compared to the field measurements of Davis
and Monismith [2011]. This may be due to the fact that Davis and Monismith [2011] were inferring density
fluxes from temperature fluctuations and salinity, the latter of which was determined from an empirical rela-
tionship between temperature and salinity. Barry [2002] compiled data from six laboratory studies [see
Barry, 2002, and the references therein]) and suggested a best fit of, Rf � 1= 110:4 e=mN2ð Þ2=3

h i
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Figure 12. The flux Richardson number (Rf) as a function of the turbulence activity number
(e/mN2). The black dots represent binned median values, while the error bars signify the
standard error for the current data set. The solid black line is the least squares power law fit
to the current data set (see text for details). Also shown for comparison are the power law
fits from the field observations of Davis and Monismith [2011] (solid light gray line and light
gray dots), the DNS simulations of Shih et al. [2005] (dashed light gray line), and the com-
piled laboratory data in Barry [2002] (dotted light gray line).
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Bluteau et al., 2013, equation (4)]. This power law fit (Figure 12) slightly underpredicts the mixing efficiency
at a given activity number compared to the field observations in this study, but still suggests that Rf should
decrease with increasing activity number. Finally, Lozovatsky and Fernando [2012] used observations from
the stratified atmospheric boundary layer to derive a power law fit of Rf � 50(e/mN2)21/2, suggesting that
the trend of decreasing mixing efficiency is shifted toward higher activity numbers (not shown). Nonethe-
less, the observations from this experiment (MOTOWN) confirm the general trend that for increasing turbu-
lence activity numbers, the flux Richardson number decreases and approaches values much less than the
constant value of 0.17 (C 5 0.2). We note that the current observations reach turbulence activity numbers
several orders of magnitude larger than previous DNS results and oceanic field observations [Shih et al.,
2005; Davis and Monismith, 2011; Bluteau et al., 2013], which is of particular importance for oceanic field
observations in energetic and highly turbulent environments. This particular parameterization is attractive
for field-based oceanic observations since the turbulence activity number is composed of variables readily
measured using vertical profiling instruments.

Several studies have examined the dependence of the flux Richardson number on other parameters such
as the gradient Richardson number, Ri 5 N2/S2 [Rohr et al., 1984; Holt et al., 1992; Rehmann and Koseff, 2004;
Stretch et al., 2010; Davis and Monismith, 2011], with variable outcomes. The current data set indicates that
Rf increases for increasing Ri, but with considerable scatter [Walter, 2014, Appendix B]. The turbulence activ-
ity number can also be cast in terms of other nondimensional parameters, e=mN2 � Ret=Ri � Ret Fr2

t , making
other parameterizations of Rf possible (see discussion in Shih et al. [2005], Bluteau et al. [2013], Mater and
Venayagamoorthy [2014], and Walter [2014, Appendix B]). Moreover, the atmospheric boundary layer field
observations of Lozovatsky and Fernando [2012] do not support the idea of an unambiguous description of
mixing efficiency as a function the activity number, given the disparity between their observations and DNS
results/oceanic field observations. Furthermore, Mater and Venayagamoorthy [2014] suggest a multipara-
meter description of the mixing efficiency. This is the subject on ongoing work and will be reported else-
where. We do note, however, that what is evident from this work, and the other studies discussed here, is
that the mixing efficiency is highly variable (i.e., not constant) and strongly dependent on the turbulence
activity number. Likewise, future oceanic observations and models need to adopt a variable mixing effi-
ciency to accurately capture and quantify diapycnal mixing.

5. Summary and Implications

We collected high-frequency measurements of stratified turbulence throughout the water column in the
nearshore environment of Monterey Bay, CA, using a cabled observatory system and an underwater turbu-
lence flux tower. The measurements collected offer a unique look into the dynamics of stratified turbulence
in the coastal environment for several reasons: (1) nearly 2 weeks of continuous measurements of collo-
cated velocity and density fluctuations at 64 Hz were collected allowing direct estimates of momentum and
density fluxes, as well as mixing efficiencies; (2) the observations are not confined to the near-bed region,
similar to previous studies, but they extend into the stratified interior providing insight into the vertical evo-
lution of the stratified turbulence and mixing dynamics in various stratified turbulence regimes; and (3) the
measurements captured transient stratification and mixing events associated with nearshore internal bores,
thus providing a unique look into the evolution of stratified turbulence in the presence of nearshore inter-
nal bores with high spatial and temporal coverage.

Measurements at the tower location confirm previous observations of nonlinear internal bores that drive intru-
sions of dense, offshore waters [e.g., Walter et al., 2012, 2014]. We show that individual bores can drive substantial
changes to local turbulence and mixing dynamics, with considerable differences between the leading and trailing
edges of the bores. The trailing edge of the bore is characterized by elevated TKE dissipation and shear production
values by almost an order of magnitude compared to the leading edge; however, lower mixing efficiencies lead
to measured turbulent diffusivities that are not as large as expected under the assumption of a constant mixing
efficiency, but that are still higher than the leading edge. These aspects are likely due to a combination of the
‘‘non-canonical’’ structure of the bore and the local internal Iribarren number [cf. Walter et al., 2012], as well as the
mixing efficiency dependence on various parameters such as the turbulence activity number.

Finally, we present direct measurements of the flux Richardson number, and hence the mixing efficiency,
over a variety of forcing regimes. Our results suggest that the most efficient mixing occurs in regions of
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buoyancy-controlled turbulence (Frt< 1), consistent with previous field observations [Davis and Monismith,
2011; Dunckley et al., 2012]. Notably, this work adds to a growing body of the literature that suggests the
mixing efficiency is not a universal constant (see the recent review by Ivey et al. [2008] and the references
therein). Specifically, the findings also confirm, and extend, previous DNS [Shih et al., 2005], laboratory [Barry
et al., 2001; Barry, 2002, and the references therein], and field [Davis and Monismith, 2011; Lozovatsky and
Fernando, 2012; Bluteau et al., 2013; Bouffard and Boegman, 2013] parameterizations of the flux Richardson
number, and hence the mixing efficiency, as a function of the turbulence activity number and confirm a
power law dependence on the activity number. We also found that the widely used assumption of a con-
stant mixing efficiency, C 5 0.2, leads to significant overestimates of the vertical turbulent diffusivity com-
pared to values calculated using the directly measured mixing efficiency in the current data set, with
important implications for both regional and local mixing processes such as heat and energy budgets, larval
connectivity, nutrient cycling, hypoxia development, and primary production [e.g., Wolanski and Pickard,
1983; Leichter et al., 1996; Chan et al., 2008].

It is clear that the turbulence structure in the presence of nearshore internal bores is substantially different
than that expected from the traditional model of a bottom mixed layer under a stratified interior. The ele-
vated levels of turbulent mixing within the stratified interior are an important source of mixing that affect
many physical and biological processes. Currently, large-scale models, such as the Regional Ocean Modeling
System (ROMS), along the CCLME do not accurately capture the physics of nearshore internal bores. It is crit-
ical that fine-scale mixing and transport due to shoaling internal waves and bores in the nearshore coastal
environment be better resolved (with careful consideration of the nonhydrostatic nature of these features),
or accurately parameterized, to avoid errors in assessing nearshore dynamics. Furthermore, internal bores
are a mechanism by which deeper, offshore Pacific waters with low dissolved oxygen (DO) and pH levels
[e.g., Checkley and Barth, 2009] are supplied to the nearshore [Walter et al., 2012, 2014]. Understanding how
the mixing evolves throughout the stratified interior is crucial to assessing nearshore DO/pH variability, the
potential development of hypoxia, and ocean acidification in this region [e.g., Booth et al., 2012]. Indeed, we
surmise that the strength and intensity of nearshore bores, and in particular the trailing edge of the bore,
may be important factors governing water column DO and pH levels in this region [see Walter et al., 2014,
for results and discussion of oxygen variability during this experiment].
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