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ABSTRACT 

Mathematical Model Validation of a Center of Gravity Measuring Platform Using 

Experimental Tests and FEA 

Michael Lashore 

This thesis sets out to derive an analytical model for a center of gravity (CG) measuring 

platform and examines its validity through experimental testing and Finite Element Modeling. 

The method uses a two-stage platform tilting process to first locate the planar CG coordinates and 

then find the third CG coordinate normal to the platform. An uncertainty model of the measuring 

platform was also developed, both CG and uncertainty models were implemented in the form of a 

MATLAB code. A load cell sizing task was also added to the code to assist the Integration 

Engineers at Jet Propulsion Laboratory in selecting load cells to design their own version of the 

CG Platform. The constructed CG Platform for this project used an array of six strain gauges, 

four C2A-06-062LT-120 Tee Rosettes and two C2A-06-031WW-120 Stacked Rosettes. They 

were bonded onto the legs of three truss shaped bipods. Results from the Platform Tilting Tests 

could not be used to validate the CG model as the measured CG and weight values found from 

the experimental tests contained a considerable amount of error. The errors in the Platform Tilting 

Tests are believed to stem from the initial errors observed during the bipod rod and strain gauge 

calibration tests. As an alternative, an FE model of the CG measuring platform was created as 

another means of validation. The math model of the CG measuring platform was successfully 

validated by showing that there was less than a 0.01% different between the bipod loads predicted 

from the MATLAB code and the FE model. Using the FEM generated loads as inputs into the CG 

code to calculate a CG matched the initial point mass or CG created in the FE model within a 

0.01% difference. To validate the CG model even further, another test should be performed using 
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a CG Platform prototype instrumented with load cells to generate new experimental data and 

compare them with the results from the FE model. 
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vi 

 

ACKNOWLEDGMENTS 

I would first like to give thanks to God because with him all things are possible. Working on this 

thesis project has been a fulfilling learning experience in which I was blessed with the 

opportunity to work with two outstanding industry mentors. Sergio Valdez and Blair Frandeen, I 

would like to thank both of you for initially proposing this project and for always providing me 

with insightful guidance. I owe a special thanks to Dr. Schuster, I would not have been able to 

complete this thesis without your help. I appreciate how you helped me establish the good habit 

of documenting my work after every milestone. This is something  I will always practice. Thank 

you to my committee members Dr. Kirk and Dr. Ridgely. I would also like to thank my family for 

supporting me from the beginning. Mom, Dad, Kemi, Shade and Roxanna, this accomplishment 

is as much yours as it is mine. Thank you to everyone in MEP, MESA and the entire Mechanical 

Engineering Department.  

 

  



 

 

vii 

 

TABLE OF CONTENTS  

Page 

LIST OF TABLES………………………………………………………………………………… x 

LIST OF FIGURES……………………………………………………………………………… xii 

NOMENCLATURE…………………………………………………………………………….. xvi 

CHAPTER 

1. INTRODUCTION…………………………………………………………………………….. 1 

1.1 Objective .......................................................................................................................... 2 

1.2 Literature Review ............................................................................................................ 3 

1.2.1 Plumb Blob ....................................................................................................... 3 

1.2.2 Tilting Method .................................................................................................. 4 

1.2.3 Uncertainty Methods ......................................................................................... 7 

1.3 Selected Method: Platform Tilting .................................................................................. 8 

2. CENTER OF GRAVITY MATHEMATICAL MODEL……………………………………. 12 

2.1 Reverse Method ............................................................................................................. 20 

2.2 Forward Method ............................................................................................................ 21 

2.3 Uncertainty in Center of Gravity Algorithm ................................................................. 22 

2.3.1 Measurement Uncertainty ............................................................................... 23 

2.3.2 Repeatability Uncertainty ............................................................................... 24 

2.3.3 Observed Heuristic Uncertainty ...................................................................... 25 

2.3.4 Combined Uncertainty .................................................................................... 26 

3. MODEL IMPLEMENTATION IN MATLAB……………………………………………… 27 

3.1 Forward Direction.......................................................................................................... 31 

3.1.1 Inputs from Excel: CG Platform Constants & Load Data............................... 31 

3.1.2 Operation: Forward Method ........................................................................... 33 

3.2 Reverse Direction .......................................................................................................... 36 

3.2.1 Inputs for Excel: CG Platform Constants ....................................................... 36 

3.2.2 Operation: Reverse Method ............................................................................ 37 



 

 

viii 

 

4. PLATFORM PROTOTYPE………………………………………………………………….39 

4.1 Force Transducer ........................................................................................................... 39 

4.1.1 Strain Gauge Selection .................................................................................... 40 

4.2 Center of Gravity Platform ............................................................................................ 45 

4.3 Center of Gravity Structure ........................................................................................... 47 

4.4 Tilt Table ....................................................................................................................... 49 

4.5 Hardware/Software ........................................................................................................ 51 

4.5.1 Quad Bridge Amplifier and USB DAQ .......................................................... 51 

4.5.2 P3 Strain Indicator and Switch Terminal ........................................................ 52 

5. BIPOD ROD CALIBRATION……………………………………………………………… 54 

5.1 Weight Hanging Trial Test ............................................................................................ 54 

5.2 Calibration Using the Instron ........................................................................................ 56 

5.2.1 Results ............................................................................................................. 58 

6. PLATFORM LOADING TEST……………………………………………………………... 67 

6.1 Platform Tilting Results ................................................................................................. 71 

6.2 Discussion ...................................................................................................................... 79 

7. VALIDATING MATH MODEL USING FEA……………………………………………... 82 

7.1 FE Model Construction ................................................................................................. 83 

7.2 FE Model and CG Math Model Comparison ................................................................ 86 

7.2.1 Platform Loading Results Revisited ............................................................... 89 

8. CONCLUSIONS AND RECOMMENTATIONS…………………………………………... 92 

8.1 Conclusions ................................................................................................................... 92 

8.2 Recommendations ......................................................................................................... 93 

REFERENCES…………………………………………………………………………………... 95 

APPENDICES 

Appendix A. Half Bridge Voltage to Strain Derivation………………………………………. 97 

Appendix B. Strain Gauge Selection Calculations…………………………………………...101 

B. 1 Minimum and Maximum Strain Calcs ........................................................................ 101 

B. 2 Load Limit for DAQ System ....................................................................................... 102 



 

 

ix 

 

Appendix C. Proposed Robust Methods…………………………………………………….. 103 

C. 1 Least Squares Method and Normal Equation .............................................................. 103 

C. 2 Singular Value Decomposition .................................................................................... 103 

Appendix D. MATLAB Code……………………………………………………………….. 104 

D. 1 Main CG Code ............................................................................................................. 104 

D. 2 Force2cgShell .............................................................................................................. 106 

D. 3 Force2cg ...................................................................................................................... 108 

D. 4 LoadConstants ............................................................................................................. 112 

D. 5 BipodNodes ................................................................................................................. 114 

D. 6 WeightMagUnc ........................................................................................................... 116 

D. 7 Unc4cg ......................................................................................................................... 117 

D. 8 SizeLoadCells .............................................................................................................. 119 

D. 9 Cg2force ...................................................................................................................... 121 

D. 10 V_Rot .......................................................................................................................... 125 

Appendix E. Tilt Table Calculations…………………………………………………………126 

 Sizing Front Member Length ...................................................................................... 126 E. 1

 Weld Calculations........................................................................................................ 128 E. 2

 Weld Strength MATLAB Script .................................................................................. 132 E. 3

Appendix F. Plots and Tables from Instron Testing………………………………………… 133 

Appendix G. Platform Testing Test Combinations and Results…………………………….. 140 

G. 1 Test Combination Tables ............................................................................................. 140 

G. 2 Platform Tilting Test Results ....................................................................................... 143 

Appendix H. FEA Validation Plots………………………………………………………….. 148 

Appendix I. Bipod Rod Loads and Strain Comparison…………………………………….. 150 

 

  



 

 

x 

 

LIST OF TABLES 

Table  Page 

Table 1: Input combinations of the force2cg function and their results. ....................................... 35 

Table 2: Rod cross-sectional area (A) and strain magnification number (N). ............................... 46 

Table 3: Shelf hole and planar CG locations ................................................................................. 48 

Table 4: Shelf height (zshelf) settings. ............................................................................................. 48 

Table 5: Strain and load values for strain gauge no. 1 before and after nonlinearity 

corrections were made. ........................................................................................ 62 

Table 6: Strain and load values for strain gauge no. 4 before and after nonlinearity 

corrections are made. ........................................................................................... 63 

Table 7: Actual and measured results for the planar CG components for zshelf = 

10.875 in .............................................................................................................. 72 

Table 8: Difference between the measured and the actual planar CG results for zshelf 

= 10.875in. ........................................................................................................... 73 

Table 9: Platform tilting test results for zmeas at different planar payload locations and 

α’s at zshelf = 10.875 in. ......................................................................................... 76 

Table 10: Simulated cases for FE model. ...................................................................................... 87 

Table 11: ABAQUS and MATLAB Bipod Rod load comparison with a payload on 

the top right corner of the shelf (TR). .................................................................. 88 

Table 12: Forward results comparison between the actual values and the results 

using loads generated by FEM as inputs to the CG code. Payload set 

to the top right corner of the shelf (TR). .............................................................. 88 

Table 13: Load and strain results for the expected and measured cases. Parameters: α 

= 0
o
, Payload at BR and zact = 12.72 in ................................................................ 90 

Table 14: Load and strain results for the expected and measured cases. Parameters: α 

= 90
o
, Payload at BR and zact = 12.72 in .............................................................. 91 

Table 15:  Numerical results of the expected and measure data gathered from endrod 

assembly 1. ........................................................................................................ 133 

Table 16: Numerical results of the expected and measure data gathered from endrod 

assembly 2. ........................................................................................................ 134 



 

 

xi 

 

Table 17: Numerical results of the theoretical and experimental data gathered from 

endrod assembly 3. ............................................................................................ 135 

Table 18: Numerical results of the expected and measured data gathered from 

endrod assembly 4 before nonlinearity correction. ............................................ 136 

Table 19: Numerical results of the expected and measured data gathered from 

endrod assembly 5. ............................................................................................ 137 

Table 20: Numerical results of the expected and measured data gathered from 

endrod assembly 6. ............................................................................................ 138 

Table 21: Strain and load values for the new strain gauge on endrod assembly 6 

before and after nonlinearity corrections are made. ........................................... 139 

Table 22: Test combinations 1-28 for zshelf = 5.5 in ...................................................................... 140 

Table 23: Test combinations 28-44 for zshelf = 5.5 in. .................................................................. 141 

Table 24: Test combinations 45-56 for zshelf = 10.875 in. ............................................................. 141 

Table 25: Test combinations 57-56 for zshelf = 10.875 in. ............................................................. 142 

Table 26: Actual and measured results for the planar CG components for zshelf = 5.5 

in. ....................................................................................................................... 143 

Table 27: Difference between the measured and the actual planar CG results for 

zshelf=5.5 in. ........................................................................................................ 144 

Table 28: Platform tilting test results for zmeas at different planar payload locations 

and α’s at zshelf  = 5.378 in. ................................................................................. 145 

Table 29: ABAQUS and MATLAB Bipod Rod load comparison with a payload on 

the bottom left corner of the shelf (BL). ............................................................ 148 

Table 30: Forward results comparison between the actual values and the results 

generated using loads generated by FEM as inputs to the CG code. 

Payload set to the bottom left corner of the shelf (BL). ..................................... 148 

Table 31: ABAQUS and MATLAB Bipod Rod load comparison with a payload on 

the bottom left corner of the shelf (BL) and α = -60 , β = 0. ............................. 149 

Table 32: Forward results comparison with the payload set to the bottom left corner 

of the shelf (BL) and α = -60 , β = 0. ................................................................. 149 

Table 33: Load and strain results for the expected and measured cases. Parameters: α 

= 30
o
, Payload at BR and zact = 12.72 in. ........................................................... 150 

Table 34: Load and strain results for the expected and measured cases. Parameters: α 

= 60
o
, Payload at BR and zact = 12.72 in. ........................................................... 151 



 

 

xii 

 

LIST OF FIGURES 

Figure  Page 

Figure 1: Plumb Blob method for locating the planar CG [2]. ........................................................ 4 

Figure 2: GM’s method tilting method for measuring CG height [3]. ............................................. 4 

Figure 3:  Average measured CG height comparison [3]. ............................................................... 5 

Figure 4: Pivot design for the WCGT1000. ..................................................................................... 6 

Figure 5: Tilted WCGT1000 ............................................................................................................ 7 

Figure 6: Initial CAD rendering of the LCP. ................................................................................... 9 

Figure 7: Proposed CAD model of a single bipod. .......................................................................... 9 

Figure 8: CAD concept rendering of a rover resting on a  LCP in two different 

orientations [6]. .................................................................................................... 10 

Figure 9: CAD model of CG Platform and CG Testing Structure being tilted by the 

Tilting Table. ....................................................................................................... 11 

Figure 10: CAD drawing in an isometric view with the BCS at the center of the 

platform. The top plate is made transparent in this image. .................................. 12 

Figure 11: Top view of the CG Platform illustrating the Bipod naming convention. .................... 13 

Figure 12: FBD of the top section of the CG Platform with the payload force 

omitted. ................................................................................................................ 14 

Figure 13: Isometric view of the tilted CG Platform rotated about the y-axis by an 

angle α. ................................................................................................................. 16 

Figure 14: Top view of the platform about the y-axis in the BCS. ................................................ 16 

Figure 15: (Left) 0
o
<β<90

o
, Rotation of the platform about z.  (Right) 0

o
<β<90

o
, 

Rotation of the weight vector about zLocal. ........................................................... 17 

Figure 16: (Left)  β =90
o
, Rotation of the platform about z. (Right) 90

o
  Rotation of 

the weight vector about zLocal ............................................................................... 17 

Figure 17:  (Left)  Defines R2 in BCS . (Right)  Shows rod angles, lower bracket 

nodes distance and |rrel|2 in temporary coordinate frame. ................................. 19 

Figure 18: (Left)  CAD Model right view of bipod 1. (Right)  Exaggerated right 

view of bipod 1 showing δ for rod 1 and 2. ......................................................... 26 

Figure 19: Map/pseudo-task diagram of CG code. ........................................................................ 28 



 

 

xiii 

 

Figure 20: Table of parameters screen shot of the measured_const sheet in the 

CG_platform_constants  excel workbook. ........................................................... 29 

Figure 21: Visual legend screen shot of the measured_const sheet in the 

CG_platform_constants  excel workbook. ........................................................... 30 

Figure 22: LoadData file excel snapshot for the Forward Method. ............................................... 32 

Figure 23: Screen shot of the uncertainty parameters in uncertainty_const. ................................. 33 

Figure 24: MATLAB command window screen shot of the outputs from the 

Forward Method. ................................................................................................. 36 

Figure 25: MATLAB command window snapshot of the result from the Reverse 

direction. .............................................................................................................. 38 

Figure 26: Free body diagram of a single bipod assembly with W/3 applied. ............................... 41 

Figure 27: Section cut FBD of the bipod assembly. ...................................................................... 41 

Figure 28: Desired strain gauge configuration and placement. Gauge 1 will be placed 

axially and Gauge 2 placed transversely. ............................................................. 43 

Figure 29: Tee Rosette to the left and a Wheatstone bridge diagram to the right. ......................... 43 

Figure 30: Two bipod rods during the strain gauges bonding process. ......................................... 45 

Figure 31: CG Platform with bipod instrumented with strain gauges. .......................................... 46 

Figure 32: CG Structure with a payload. ....................................................................................... 47 

Figure 33: (Left) Rear view of the tilt table at 30
o
. (Right) Front view of the tilt table 

at 0
o
. ..................................................................................................................... 50 

Figure 34: (Left) Quad Bridge Amplifier . (Right) Two wheatstone bridge circuits. .................... 52 

Figure 35: P3 Box and Switch Terminal. ....................................................................................... 53 

Figure 36: Hanging weights set up. ............................................................................................... 54 

Figure 37: Endrod assembly no. 5 loaded with a 10 lb preload and 10 lb payload 

weight. ................................................................................................................. 56 

Figure 38: (Left) Wide view of the endrod assembly installed into the Instron. 

(Right) Plastic spacers were placed in both sides of the endrods to 

minimize the movements of the assembly along the bolts................................... 58 

Figure 39: Expected error in rectangular rosette strain gauges as the gauge 

misalignment increases [12]. ............................................................................... 59 

Figure 40: Measured strain nonlinearity correction for strain gauge no. 1. ................................... 63 

Figure 41: Nonlinearity correction for strain gauge no. 4. ............................................................. 64 

Figure 42: Nonlinearity correction check for strain gauge no. 6. .................................................. 65 



 

 

xiv 

 

Figure 43: Test set up using the P3 strain indicator (Blue box) and the Switch 

Terminal (Yellow box) as a DAQ. ....................................................................... 67 

Figure 44: (Left) Data recording structure in excel. (Right) Desired test locations on 

shelf. ..................................................................................................................... 68 

Figure 45: No load Test with α = 30
o
 tilt. ...................................................................................... 69 

Figure 46: Test at α = 60
0
 with 35 lbs payload (nominal) and the self-height set to 

5.5in. .................................................................................................................... 70 

Figure 47: Test at α = 90
o

  with a 43.77 lb payload and a zshelf set to 10.875 in. ........................... 71 

Figure 48: Measured payload weights at various CG locations for 35.77 and 43.47 lb 

test weights. ......................................................................................................... 74 

Figure 49: X and Y CG location accuracy plots. ........................................................................... 75 

Figure 50: Scatter plot of the zmeas versus the zact for different α. .................................................. 77 

Figure 51: Boxplot of zmeas at various tilt angles when zact was is 12.72 in and 7.22 in 

using a 43.47 lb payload. ..................................................................................... 78 

Figure 52: Compares zmeas with the payload planar location using a 43.47 lb payload. ................. 78 

Figure 53: Top view of portioned Adaptor Plate. .......................................................................... 84 

Figure 54: (Top) Bipod rod in physical model. (Bottom) FE model. ............................................ 85 

Figure 55: Simplified CG Platform Assembly in ABAQUS. ........................................................ 86 

Figure 56: (Left) Platform Tilted at α = 90
o
. (Right) Simulation Contour of Platform 

at α = 90
o
 and a payload weight of 43.47 lbs at BR. ............................................ 87 

Figure 57: Measured and expected bipod rod strains at α = 0
o
 while the actual 

payload is at the BR corner of the shelf. .............................................................. 89 

Figure 58: Measured and expected bipod rod strains at α = 90
o
 while the actual 

payload is at the BR corner of the shelf. .............................................................. 90 

Figure 59: Wheatstone bridge diagram. ......................................................................................... 99 

Figure 60: Illustration showing the orthogonal projection of b into the column space 

of A, Projcol(Acg)b = b
*
. ........................................................................................ 103 

Figure 61: Free body diagram the CGA/Tilt Table assembly. ..................................................... 126 

Figure 62: Equivalent FBD of CGA/Tilt Table assembly ........................................................... 126 

Figure 63: Shear and moment translated at the post. ................................................................... 128 

Figure 64: Illustration of the all-around weld joint of the pin connected on the posts. ............... 128 

Figure 65: Illustration of the welds on the bottom of the posts. .................................................. 130 



 

 

xv 

 

Figure 66: Applied Instron load versus the expected and measured strains for Endrod 

Assembly No. 1.................................................................................................. 133 

Figure 67: Applied Instron load versus the expected and measured strains for Endrod 

Assembly No. 2.................................................................................................. 134 

Figure 68: Applied Instron load versus the expected and measured strains for Endrod 

Assembly No. 3.................................................................................................. 135 

Figure 69: Applied Instron load versus the expected and measured strains for Endrod 

Assembly No. 4.................................................................................................. 136 

Figure 70: Applied Instron load versus the expected and measured strains for Endrod 

Assembly No. 5.................................................................................................. 137 

Figure 71: Applied Instron load versus the expected and measured strains for Endrod 

Assembly No. 6.................................................................................................. 138 

Figure 72: Nonlinearity correction plot for endrod assembly 6 with a new gauge. ..................... 139 

Figure 73: Scatter plot of the zmeas versus the zact for a 35.77 lb payload. .................................... 144 

Figure 74: Boxplot of zmeas at various tilt angles using a 43.47 lb payload.................................. 146 

Figure 75: Compares zmeas with the payload planar location using a 35.77 lb payload. ............... 146 

Figure 76: Compares zmeas with the payload planar location using a 43.47 lb payload 

at α=30
o
and shows the uncertainty range........................................................... 147 

Figure 77: Measured and expected bipod rod strains at α = 30
o
 while the actual 

payload is at the BR corner of the shelf. ............................................................ 150 

Figure 78: Measured and expected bipod rod strains at α = 60
o
 while the actual 

payload is at the BR corner of the shelf. ............................................................ 151 



 

 

xvi 

 

NOMENCLATURE 

A = Cross sectional area ……………………………....... in
2 

Θi = Bipod rod angle …………………………………….. degs 

W = Weight of payload ………………………………….. lbs 

εμ = Microstrain …………………………………………. - 

α = Platform tilt angle ………………………………….. degs 

β = Platform rotation angle …………………………….. degs 

γ = Bipod offset angle ………………………………….. degs 

κ = Arbitrary function with q dependent variables …….. - 

Fi = Load in bipod rod …………………………………... lbs 

FBPi = Loads at each bipod ………………………………... lbs 

δ = Bipod out of plane error ……………………………. degs 

σ = Uncertainty ………………………………………… - 
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Gamp = Amplifier gain ……………………………………… v/v 

𝑅𝑠 = Shunt resistances …………………………………… Ω 
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zmeas = Measured z-component of the CG …………………. in 
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zact = Actual z-component of the CG …………………….. in 

ξ = Stain gauge misalignment ………………………….. degs 

zshelf = Shelf height relative to the adaptor plate…………… in 
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1. INTRODUCTION 

In the aerospace field, it is critical that the center of mass and gravity (COM and CG) of a 

particular structure be well understood. Having knowledge of both of these properties allow 

engineers to calculate trajectory paths for satellites and other spacecraft. The COM is the average 

position of a body’s mass. CG refers to a specific point on the body were the mean gravitational 

forces are acting. For objects near the surface of the earth or at altitudes that are much smaller 

than the radius of the earth, the CG and the COM coincide with each other. This assumption will 

be maintained throughout the rest of this paper and the term CG will be used to describe this 

location. 

A small deviation of the calculated CG from their actual locations can lead to systematic 

errors that can result in a spacecraft missing its estimated landing target or worse, not making it 

into orbit. In rockets, the line of action of the thrust must be directed toward the CG to avoid 

induced moments. In rotary devices like turbines, the CG of the turbine blade/rod assembly must 

be coincident with the axis of rotation to minimize imbalances that can create unwanted loading 

or vibrations.  

 𝒓𝐶𝐺 =
∫ 𝒓 ∗ 𝑑𝑚

∫ 𝑑𝑚
 ≈

∑ 𝒓𝑖 ∗ 𝑚𝑖
𝑁
𝑖=1 

∑ 𝑚𝑖
𝑁
𝑖=1

 (1) 

For simple objects and shapes, the analytical solution for the CG is relatively easy to 

ascertain. This can be done using the equation above [1]. Common Computer Aided Design 

(CAD) software packages such as SolidWorks and PTC Creo Parametric (formally known as 

Pro/ENGINEER) can be used to approximate the CG for a CAD assembly model with complex 

geometries. Any variations in the CAD model from the actual model can result in finite 

differences between the CG estimated using CAD and the actual CG. If the CG is critical to the 
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design or application, it is often considered good engineering practice to validate the CG 

predicted from CAD software by some other means.   

1.1 Objective 

Jet Propulsion Laboratory (JPL) has requested a validated analytical model of a CG 

measuring platform which should be implemented in the form of a MATLAB code. A scaled 

down prototype of the CG measuring platform should be designed and built to test the validity of 

the CG math model. A model of the uncertainty for the CG is also needed to demonstrate how the 

range of the predicted CG is affected by measurement errors. The written code will help to 

corroborate the selected approach for determining CG’s. Additionally, the code must have the 

ability to compare expected LCP loads from known payload CG’s and platform orientations to 

estimate the percent capacities of the load cells during testing. This portion of the code would aid 

in the load cell selection process. The user should have the ability to input capacities and error 

specifications provided by load cell manufactures to assure that the loads being measured by each 

load cell are operating within their capabilities. This thesis project acts as a proof of concept for 

JPL to test the validity of the CG model by comparing experimental results gather from load cell 

platform (LCP) tests to the actual CG measurements.  

The proposed code would be used to develop a larger LCP that would serve as an adaptor 

base for spacecrafts during the assembly phase at JPL. With the code in place, integration 

engineers will be able to make quick sanity checks, with confidence, on the CG location of the 

spacecraft as new components are added or subtracted. A system like this would aid in detecting 

local assembly errors such as large components installed in incorrect locations. It may even help 

to find systemic design flaws before the spacecraft  is approved to move on to the next phase. The 

following sections in this chapter discusses existing methods for locating CG’s as well as the 

method chosen in this project to measure CG.   
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1.2 Literature Review 

Before a CG model can be derived or a prototype built, research on the existing methods for 

measuring CG must first be investigated. Doing so provides a better understanding of the work 

that has already be done in this area of study. The following sections highlight a few selected 

methods for measuring CG and review how they work. 

1.2.1 Plumb Blob  

The Plumb Line Method is a quick and crude method for locating the CG of rigid objects 

experimentally. It uses the idea that the gravity vector is always pointing downwards, towards the 

center of the earth. All that is required is a small plumb blob, a few pieces of string and an 

anchoring system for suspending the object. To locate the CG, the object must first be suspended 

from a single point on the object. Next, the plumb blob should be attached to a piece of string and 

hung at the anchoring point of the suspended object. The string should then be tapped to the 

object in its current hanging location and the plumb blob detached at the opposite end of the 

anchoring point. This process can be repeated for different orientations of the suspended object 

until a clear intersection point of the strings is visible. The intersection point for the strings is the 

effective CG of the object. This relatively crude method works well for locating two planar CG 

coordinates but its elegance suffers when trying to locate the last CG component relative to the 

third principal axis. More work would be required to establish a 3-dimensional grid to project the 

intersection point of the planar CG location onto the third principal axis. The figure below shows 

a sequence of how this can be done to find a 2-dimensional CG location.   
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Figure 1: Plumb Blob method for locating the planar CG [2].  

1.2.2 Tilting Method 

Another commonly used method utilizes equilibrium concepts to determine CG. If an object 

is placed on the ground, one can use the reactional forces to calculate the CG using Newton’s 

second law. The first step in using this method is finding the reaction forces. This can be done by 

using force transducers or load cells at the base of the object to measure the reaction loads at 

strategic points. 

 

Figure 2: GM’s method tilting method for measuring CG height [3]. 

A sponsored study by the Motor Vehicle Manufacturers Association sought out to assess the 

current practices for measuring the CG height of light truck vehicles [3]. Chrysler, Ford, General 

Motors (GM) and the National Highway Traffic Safety Administrations (NHTSA) all participated 
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in the study by conducting their own CG height tests on the same vehicles. Both Chrysler and 

GM utilized a tilting method to measure the CG height while Ford used a swing method. The 

NHTSA facilities had a special system which enabled them to measure the three principal inertia 

tensor as well as the CG height. More information on this design and its capabilities can be found 

in [3]. The study concluded that the results from the measured CG heights produced by GM’s 

tilting tests were the closest to the true CG heights of the vehicles. 

 

Figure 3:  Average measured CG height comparison [3]. 

The report highlights the fact that measuring the CG height is not a simple matter. As it can 

be view in Figure 3, the different techniques used by the laboratories resulted in different CG 

height predictions. One key concept that can be taken way from this report was GM’s care to 

keep the measured car as rigidity as possible. The paper noted that the other laboratories did not 

do that quite as well which could be one of the underlining causes for the difference between the 

CG results. 

A technical paper written by Richard Boynton from Space Electronics [4] discusses a new 

method (Model: WCGT1000) for measuring the CG of a payload which minimizes the error seen 

in the CG results. Specifically, the error in the CG prediction is reduced by using a pivot point at 
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the center of the base while the load cells are place on the outer edge of one side of the base. 

Rather than using standard strain gauge based load cells, which rely on deflection, the 

WCGT1000 uses solenoid based load cells that prevent the load cells from deflecting. A closed 

loop system controlling the load cells applies current to restore the load cells to its unloaded 

position. This process is referred to as force restoration.  

 

Figure 4: Pivot design for the WCGT1000. 

In traditional CG platforms, CG prediction abilities are limited by the dynamic range of the 

strain based load cells. This range tends to have a large effect on the error in the CG prediction. 

When using standard load cells in this applications, each load cell must be capable of handling 

the entire weight of the payload. However, the required range of the load cell can be reduced by 

increasing the distance between the load cells and the center of the base. This lamentably 

decreases the accuracy of the CG outputs. The force restoration transducers tend to have much 

larger dynamic ranges with an excitation voltage of about 20 V. Standard strain gauge load cells 

have excitation voltages around 5V with poor noise to signal ratios in comparison. 
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Figure 5: Tilted WCGT1000. 

 

It was found that this system can reduce the total CG error by a factor of 30 [4]. The 

difference in this method is its geometric approach to calculating the vertical CG. For taller and 

softer payload, the CG also moves due to deflection of the payload. The force restoration method 

coupled with the pivot point work to compensate for CG movement due to the deflection of the 

payload body. 

1.2.3 Uncertainty Methods 

 It is often considered good engineering practice to accompany a measured nominal value 

with its range of uncertainty. In actuality, the “true value” of a measurement is merely just a 

concept or a range in which the true value is believed to reside within. The width of the 

uncertainty range establishes what type of precision is needed for the measurement. The form in 

which the uncertainty is displayed usually depends on how the data was taken.  Uncertainty can 

be divided into two groups. The first group, or group A, considers the uncertainty from data 

sampling. This group can be thought of as the uncertainty due to repeatability or random error. 

The second category, or groups B, are uncertainty quantifies based on measurement error or 

errors that can be recalled based on sound engineering knowledge. Group B can be referred as 
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Heuristic estimates. Operator bias, display resolution, computation and environmental factors are 

different forms of group B uncertainties [5]. More detail on how these types of uncertainties are 

calculated can be found in section 2.2. 

1.3 Selected Method: Platform Tilting  

The original design proposed by JPL for the CG measuring platform consisted of three 

bipods equally spaced apart, sandwiched between a payload adapter and base plate. Each bipod is 

comprised of two inline load cells that form a truss configuration. This particular design is refer 

to as the Load Cell Platform (LCP). The truss configuration was selected so that applied moments 

on the load cells could be avoided. Furthermore, each load cell would be anchored to the bipods 

using two ball endrods, one endrod at each end of the load cell. The ball endrods maintain a rigid 

connection between the load cells while the ball and socket portion of the endrods are connected 

to the bipods using shoulder screws. The three degree of freedom nature of the ball endrods aid in 

the assembly of the bipods and help widen the tolerance range during manufacturing. Once the 

platform is fully assembled the adapter plate cannot move without triggering the inline load cells. 

Figure 6 and Figure 7 show a CAD rendering of the proposed LCP and a single bipod, 

respectively. 
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Figure 6: Initial CAD rendering of the LCP. 

 

 

 

Figure 7: Proposed CAD model of a single bipod. 

To effectively measure CG, the loads in the bipods can be recorded while the platform 

remains parallel to the horizontal to determine the planar CG coordinates. The platform can then 

be tilted to find the third CG coordinate along the vertical principal axis. Doing this would require 

a structure to rotate the platform and its payload around one axis. In both cases, statics can be 
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used to convert the bipod loads to a CG value. The CAD rendering below demonstrates this 

concept used on a rover. 

 

 

Figure 8: CAD concept rendering of a rover resting on a  LCP in two different 

orientations [6]. 

The platform that was design for this project consisted of three bipods that were all 10.941 

in away from the center of the platform and spaced 120
o 

away from  each other. A solid 

hexagonal Base and Adaptor Plate was chosen instead of the proposed circular plate with a 

hollowed center. This decision was made to minimize the weight of the plates as much as 

possible without sacrificing its rigidity. 

Rather than using load cells in the bipod legs to measure the loads in the platform, strain 

gauges can be used in their place to reduce the total cost of the prototype. The designed prototype 

utilizes strain gauges instrumented onto the bipod legs to measure the applied strain in the 

platform. The strain values can then be converted to loads to calculate the CG of a payload. A 

discussion of the uses of strain gauges and there selection can be reviewed in Chapter 4. 
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Figure 9: CAD model of CG Platform and CG Testing Structure being tilted by the 

Tilting Table. 

A CG Testing Structure was designed to hold a payload in a fixed position while the 

platform is tilted at different angles. The main objective for this structure was to have the ability 

to accommodate various payload positions in order to mimic different CG locations. A shelf with 

an array of holes was used to change the position of the payloads to a finite number of discrete 

locations. Similarly, holes in the vertical members of the structure allow the shelf to be adjusted 

in the vertical direction. This was done by first constraining the vertical payload height to be no 

larger than 24 in and confining the payload to stay within a 15x14.5 in
2
 area. The area constraint 

was derived from the fact that the payload CG must stay between the bipods to obtain viable load 

measurements to calculate CG [4]. The 15x14.5 in
2

 area was the largest rectangular area that 

could fit within the bipod area constraint. Figure 9 shows the CAD model of the designed CG 

Platform with the CG Structure being tilted by Tilting Table.  

 

 

 

CG Structure 
CG Platform 

Tilting Table 
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2. CENTER OF GRAVITY MATHEMATICAL MODEL 

This chapter relates the forces in the bipod rods to the CG of a payload resting on top the 

CG Platform. The process for determining the CG location and payload magnitude given the 

loads in the bipod rods and the orientation of the CG Platform will be referred to as the Forward 

Method. The process for calculating the loads in the bipod rods from a known CG location, 

payload magnitude and CG Platform orientation will be referred to as the Reverse direction. 

Please refer to the CAD model images as a visual aid in the derivations for both methods. 

A model of the uncertainty in the Forward Method will be developed in section 2.3. Both 

models including the uncertainty in the Forward Method were then translated into a MATLAB 

algorithm as it will be described in Chapter 3.  First, a body fixed coordinate system (BFCS or 

BCS for short) was chosen along with a naming convention for the bipods and bipod rods/forces.  

Figure 10 - Figure 12 show this respectively. 

 

 

Figure 10: CAD drawing in an isometric view with the BCS at the center of the 

platform. The top plate is made transparent in this image.  



 

 

13 

 

 

Figure 11: Top view of the CG Platform illustrating the Bipod naming convention. 

Both bipods 1 and 3 have offset angles measured from an axis that is parallel to the y-axis 

and runs through their respective centers. The offset angle (γ) for bipod 1 (Bp 1) is positive since 

its rotation vector is in the positive z-direction.  For Bp 3, γ is negative since the rotation vector 

points in the negative z-direction. By taking a sectional cut of the CG Platform and only looking 

at the top half of the platform, the naming convention for the bipod loads (Fi) can be defined. 

Figure 12 shows the sectional free body diagram with the weight of the platform neglected; 

tension loads were define as positive in this model. It is important to note that θi is the angle of 

elevation between each bipod rod and the Adaptor Plate. For these equations, the platform’s 

bipods and bipod rods were all assumed to be one rigid body.  The Fi,BPCS terms below are the 

force vectors with no offset or when γ is zero, in the bipod coordinate system (BPCS).  
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Figure 12: FBD of the top section of the CG Platform with the payload force omitted. 

 𝑭𝟏,𝑩𝑷𝑪𝑺 = |𝐹1| [

0

− cos(𝜃1)

− sin(𝜃1)
] (2) 

 

𝑭𝟐,𝑩𝑷𝑪𝑺 = |𝐹2| [

0

cos(𝜃2)

− sin(𝜃2)
] (3) 

 

𝑭𝟑 = |𝐹3| [
− cos(𝜃3)

0

− sin(𝜃3)
] (4) 

 

𝑭𝟒 = |𝐹4| [
cos(𝜃4)

0

− sin(𝜃4)
] (5) 

 

𝑭𝟓,𝑩𝑷𝑪𝑺 = |𝐹5| [

0

− cos(𝜃5)

− sin(𝜃5)
] (6) 

 𝑭𝟔,𝑩𝑷𝑪𝑺 = |𝐹6| [

0

cos(𝜃6)

− sin(𝜃6)
] (7) 

θ1 

θ2 θ3 

θ6 θ5 

θ4 

W 
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The forces in the BPCS can be transformed to the BCS using a rotation transformation matrix, 

Rz, which rotates any vector an angle of ϕ about the z-axis. These transformations are 

applied to the F1, F2, F5 and F6 to compensate for their bipod offsets where ϕ = γ.  F3 and F4 are 

parallel with the x-axis and do not need to be transformed. (note: the bolded terms are 

vector quantities while the un-bolded are scalars) 

 Rz(ϕ) = [
cos(ϕ) − sin(ϕ) 0

sin(ϕ) cos(ϕ) 0

0 0 1

] (8) 

 

 

𝑭𝟏 = Rz(γ) ∗ 𝑭𝟐,𝑩𝑷𝑪𝑺       ;        𝑭𝟐 = Rz(γ) ∗  𝑭𝟐,𝑩𝑷𝑪𝑺 

𝑭𝟏 = |𝐹1| [

− cos(𝜃1) sin(γ)

cos(𝜃1) cos(γ)

− sin(𝜃1)
]          ;         𝑭𝟐  = |𝐹2| [

cos(𝜃2) sin(γ)

−cos(𝜃2) cos(γ)

− sin(𝜃2)
] 

(9) 

 

 

𝑭𝟓 = Rz(−γ) ∗ 𝑭𝟓,𝑩𝑷𝑪𝑺         ;      𝑭𝟔 = Rz(−γ) ∗ 𝑭𝟔,𝑩𝑷𝑪𝑺 

 

𝑭𝟓 = |𝐹5| [

cos(𝜃5) sin(γ)

cos(𝜃5) cos(γ)

− sin(𝜃5)
]         ;      𝑭𝟔  = |𝐹6| [

− cos(𝜃6) sin(γ)

−cos(𝜃6) cos(γ)

− sin(𝜃6)
] 

 

(10) 

Next, the weight vector is examined to model how its values change as the table is tilted and 

then rotated to different orientations. As it was stated in the previous chapter, the CG Platform is 

assumed to only function on the surface of the earth. A new approach would be needed to 

consider how the gravity vector changes as the CG Platform and the payload move to altitudes 

close to the magnitude of the radius of the earth. With the initial assumption of the COM of the 

payload being coincident with its CG, the weight vector will always point downwards in any 

platform orientation. Equation 11 below defines the weight vector as the table is tilted about the 
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y-axis a positive angle of α. Figure 13 shows the payload’s weight vector components above the 

tilted CG Platform in the BCS. 

 

Figure 13: Isometric view of the tilted CG Platform rotated about the y-axis by an 

angle α. 

 

 𝑾𝒕𝒊𝒍𝒕 = |𝑊| [
sin(α)

0

− cos(α)
] (11) 

 

Figure 14: Top view of the platform about the y-axis in the BCS. 
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Any rotation of the platform about the z-axis of the BCS will be defined as β. A fixed local 

coordinate system (LCS) can placed at the CG of the payload where the z-axis of the LCS (zLocal) 

is normal to the platform and the y-axis of the LCS points in the same direction as the y-axis of 

the BCS. Any β rotation of the platform in the BCS is equivalent to a negative β rotation of the 

weight vector relative to the LCS. Figure 15 and Figure 16 shows a top view of the CG Platform 

with rotation applied to the platform in the BCS and rotation applied the weight vector in the 

LCS. 

 

Figure 15: (Left) 0
o
<β<90

o
, Rotation of the platform about z.  (Right) 0

o
<β<90

o
, 

Rotation of the weight vector about zLocal. 

 

 

Figure 16: (Left)  β =90
o
, Rotation of the platform about z. (Right) 90

o
  Rotation of 

the weight vector about zLocal. 
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The same rotation transformation matrix can be applied to the payload to define its weight 

vector after the platform has experienced a rotation about zLOCAL. To do this a negative β angle 

must be used to evaluate the transformation matrix. Applying this transformation matrix to the 

weight vector alone bypasses the need to transform all the bipod loads.  

 𝑾𝒕𝒊𝒍𝒕,𝒓𝒐𝒕 = Rz(−𝛽) ∗ 𝑾𝒕𝒊𝒍𝒕 (12) 

Before either the Forward or Reverse Method can be discussed, the intersection point of the 

load path of the forces in the three pairs of bipod rods must be defined in order to evaluate the 

moments created by the bipods. An expression for these intersection points relative to the center 

of the top of the Adaptor Plate or the origin of the BCS is defined as the following: 

 

 𝑹𝒃𝟏 = [𝑥𝑏1, 𝑦
𝑏1

, 𝑧𝑏1]         𝑹𝒃𝟐 = [𝑥𝑏2, 𝑦
𝑏2

, 𝑧𝑏2]        𝑹𝒃𝟏 = [𝑥𝑏3, 𝑦
𝑏3

, 𝑧𝑏3] (13) 

 

In the following example, the intersection point relative to the origin of the BCS for Bp 1 or 

Rb1, will be considered. The same approach can be used for the other two bipod rod intersection 

points. R2 is defined in the BCS as the distance from the origin to the center of rotation of the 

endrod holding bipod rod 2 in the lower bracket. Again, Rb1 is the desired intersection point for 

Bp1. It is important to distinguish the difference between the two quantitates. Assuming that both 

the elevation angles of Bp rods 1 and 2 ( θ1 , θ2) are known, as well as the distance between the 

two adjacent bottom bracket nodes (C1), the Law of Sines can be used to find the length from the 

bottom bracket node 2 to the intersection point of two bipod rods. This term is referred to as 

|�̂�
𝑟𝑒𝑙

|
2
 .  
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Figure 17:  (Left)  Defines R2 in BCS . (Right)  Shows rod angles, lower bracket 

nodes distance and |�̂�
𝒓𝒆𝒍

|
𝟐
 in temporary coordinate frame. 

A new temporary coordinate frame (TCF)  is placed at bottom bracket node 2, at the tip of 

R2. Noticing that the bipod rods form a triangle, the last interior angle (φ) of the bipod can be 

found by subtracting both θ1 and θ2 from 180
o
. |�̂�𝑟𝑒𝑙|2 can be found using one of the rod angles 

and φ  using equation (14). This magnitude can be written as a vector in the TCF, �̂�𝒓𝒆𝒍𝟐
.  

 

 
|�̂�𝑟𝑒𝑙|2

sin(𝜃1)
=  

|�̂�𝑟𝑒𝑙|1

sin(𝜃2)
=

𝐶1

sin(𝜙)
 (14) 

 �̂�𝒓𝒆𝒍𝟐
= 𝐶1 ∗

sin(𝜃1)

sin(𝜙)
∗ [

0

−cos (𝜃2)

sin (𝜃2)
] (15) 

Care must be taken in selecting values for the bipod angles and the distance between the 

nodes of the bottom bracket. Some combinations can result in an intersection point that does not 

fall on the Adaptor Plate or an intersection point that does not exist. The latter scenario is possible 

if the bipod rods do not reside on the same plane. Out of plane error will be examined in more 

detail in the section 2.3.3. In this example, it is assumed that the bipod rods are coplanar. 

Similar to the load vectors, �̂�𝒓𝒆𝒍𝟐
 can be written relative to the local coordinate system by 

multiplying the vector in the temporary coordinate frame by the z-rotation transformation matrix 
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Rz evaluated at the bipods offset angle γ. Now both �̂�𝒓𝒆𝒍𝟐
 and R2 can be summed together to find 

the intersection point of bipod 1 relative to the LCS. 

  𝐫rel,2 = Rz(𝛾) ∗ �̂�𝒓𝒆𝒍,𝟐 (16) 

 𝑹𝒃𝟏 = 𝑹𝟐 +   𝐫𝐫𝐞𝐥,𝟐 (17) 

2.1 Reverse Method 

If the CG location and weight magnitude is known, a set of six linear equations can be 

derived using static equilibrium laws. The sum of the moments can be taken about the platform’s 

origin where each bipod force is a summation of its two bipod rod forces and Mw is the moment 

induced by the payload’s weight vector. Again summing the bipod loads at each individual bipod 

is only possible if the bipod rods are in the same plane. These moments can be used to generate 

three linear equations. The sum of all the bipod forces (FBpi)  and the payloads weight vector can 

also be evaluated in an equilibrium state. The i in the equations below represents the bipod index.  

More moments and platform loads can be introduced to increase the overall sensitivity of the 

system by implementing more bipods, although, this was not investigated in this project. 

 𝛴𝑭 = ∑ 𝑭𝑩𝑷𝒊 +  𝑾𝒕𝒊𝒍𝒕,𝒓𝒐𝒕

𝟑

𝒊=𝟏

= 0 (18) 

 𝛴𝑴𝒐 = ∑ 𝑴𝒃𝒊 + 𝑴𝒘

𝟑

𝒊=𝟏

= 0 (19) 

The moments created by each bipod as well as the moment produced by the weight vector 

are defined as follows: 

 𝑴𝒃𝒊 = 𝑹𝒃𝒊 × 𝑭𝑩𝑷𝒊 (20) 
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 𝑴𝒘 = [𝑥𝑐𝑔, 𝑦
𝑐𝑔

, 𝑧𝑐𝑔] × 𝑾𝒕𝒊𝒍𝒕,𝒓𝒐𝒕 (21) 

A matrix filled with coefficients from the bipod loads and moments can be rearranged to 

form [A]bp.  The load and moment components of the weight form a column vector [B]load  while 

the unknown bipod forces can be factored to formed the column vector Xforce. These bipod forces 

can be found by using matrix inversion or Gaussian elimination techniques. In this case, the 

unknown bipod force column vector will be found using Gaussian elimination in MATLAB.   

 [𝐴]𝑏𝑝𝑿𝒇𝒐𝒓𝒄𝒆 = [𝐵]𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (22) 

2.2 Forward Method 

The previous procedure can be modified to find the CG coordinates when the bipod forces 

are known. In this case, the equilibrium matrix equation can be re-grouped in such a way that the 

matrix of coefficients, [A]bp, becomes filled with the coefficients from the moment vectors 

produced by the payload weight, [A]paylod. The solution vector, Xforce, then becomes a column 

vector of the CG coordinates (xcg; ycg; zcg). All the known or measured forces are used to evaluate 

the moments of each bipod and are lumped in [B]bp. Each row corresponds to a moment 

equilibrium equation along one of the three orthogonal axes, about the origin. 

 [𝐴]𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑿𝒄𝒈 = [𝐵]𝑏𝑝 (23) 

𝑚𝑔 ∗ [

0 −𝑐𝑜𝑠(α) 𝑠𝑖𝑛(α) ∗ 𝑠𝑖𝑛(𝛽)

𝑐𝑜𝑠(α) 0 −sin(α) ∗ cos(𝛽)

−𝑠𝑖𝑛(𝜃𝑦) ∗ 𝑠𝑖𝑛(𝛽) sin(𝜃𝑦) ∗ cos(𝛽) 0

] [

𝑥𝑐𝑔

𝑦𝑐𝑔

𝑧𝑐𝑔

] =  [

𝛴𝑀𝑥

𝛴𝑀𝑦

𝛴𝑀𝑧

] (24) 
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The [A]payload matrix is singular and not positive definite. This characteristic causes 

conventional Gaussian or inversion methods to fail. One way to find the solution vector, Xcg, and 

circumvent the singularity properties of [A]payload  is to take a more systematic approach. The size 

of [A]payload and Xcg can be reduced by evaluating the moments about the origin when there is no 

tilt angle present in the platform (α = 0). Doing this condenses [A]payload to only the upper left 

portion of the matrix and causes the off diagonal cosine terms to be 1 and -1. The two planar CG 

coordinates (xcg,ycg) can be easily calculated when the platform is parallel to the horizontal. Once 

the two planar coordinates are found the platform can then be tilted to introduce moments about 

the third principal axis, with respect to the origin, so that zcg can be evaluated.  

An alternative method requires techniques for dealing with singular matrices. One way this 

can be done is to use the Least Squares Approximation to establish the normal equation and then 

use Singular Matrix Decomposition (SVD) to create a new invertible matrix. Details for this more 

robust method can be found in Appendix C. The code written for this project uses the two step 

systematic approach to calculate the full CG vector.  

2.3 Uncertainty in Center of Gravity Algorithm 

As it was mentioned in section 1.2.3, strict standards or an accepted range for which the true 

value should exist can be established. Four categories of error sources are considered in the 

development of the uncertainty model for the CG algorithm: measurement, repeatability, 

observed heuristic and actual errors. Each independent variable or constant parameter needed to 

calculate the CG vector contributes to the resulting measurement uncertainty. The measurement 

uncertainty was calculated using the uncertainty propagation technique.  Along with the 

measurement uncertainty, the repeatability error was also examined by finding the standard 

deviation for a sample of results. Observed Heuristic uncertainty was formulated and focused on 

uncertainty discovered by observations. The combined uncertainty is then compared to the actual 
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error which is defined here as the difference between the measured values and the values that 

were expected. For example, the actual error in the payload weight would be the difference 

between the experimentally measured payload value using the CG Platform  and  the expected 

value of the payload using a digital scale. The uncertainty model was only developed for the 

Forward Method.  

2.3.1 Measurement Uncertainty 

One must first consider the resolution or margin of error of the measurement equipment to 

approximate how the measurement uncertainty builds after successive calculations. The 

resolution is defined as half of the precision capability of the measurement system. For example, 

if a load cell has the ability to measure loads to a precision of 0.001 lbs, then the resolution for 

this particular load cell is 0.0005 lbs. Four primary variable measurements were required in order 

to determine the values of the load and CG. These primary variables were angle, length, area and 

strain. Each variable’s relative effect on the total uncertainty is captured in its sensitivity values. 

The sensitivity of a particular variable (Sqi), in a function, can be found by taking the partial 

derivative of the function (κ), with respect to the variable in question (qi). Evaluating the result 

will produce a sensitivity value that can be compared with the sensitivities of the remaining 

variables. 

 𝑆𝑞𝑖
=   |

𝜕𝜅

𝜕𝑞𝑖
| 

 

(25) 

To compute the uncertainty (σk), the squared product of the sensitivity and the resolution 

error (ψ) for all the variables must be summed together to determine the covariance of κ. The 

square root of the covariance function can then be taken to find the uncertainty in κ due to the 

propagated errors in the variables [5]. This procedure will be used to find the measurement 
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uncertainty of the load values, the payload magnitude and the CG vector. This type of uncertainty 

is categorized as a B-Type uncertainty. However, an explicit expression for κ is needed in order 

to use the propagation of uncertainty method. An expression for each CG component is generated 

in the MATLAB code using the CGsymbExpression function so that the propagation method 

could be used. More information on how the function works will be discussed in Chapter 3. 

Equation (26) shows the expression that can be used to calculate the propagated uncertainty. 

 𝜎𝐹 =   √∑(𝑆𝑞𝑖
)

2
𝑛

𝑖=1

𝜓𝑖
2 (26) 

2.3.2 Repeatability Uncertainty  

It is often natural to assume that the repeatability error for a given population is normally 

distributed. Therefore, the uncertainty range due to repeatability error can be represented as the 

standard deviation away from the mean of a given sample [5]. The repeatability uncertainty 

becomes relevant during the testing of the CG Platform since multiple measurements are taken. 

The equation below shows the sample standard deviation; it is an A-type uncertainty estimate and 

it comes from the square root of the sample variance of the error distribution [5]. It is important to 

note that the sample variance of the error distribution is not the same as the variance from the 

measurement uncertainty. In this case, the sample variance refers to the sum of the squared 

difference between each sample and the sample mean divided by the degrees of freedom of the 

sample (n-1). 

 

 𝑠𝑑𝑥 =  √
1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1   (27) 



 

 

25 

 

 

2.3.3 Observed Heuristic Uncertainty 

The Observed Heuristic uncertainty refers to the inherent errors present in the CG model or 

the physical prototype which are discovered from observations. As it was mentioned earlier in 

this chapter, the steps demonstrated for locating the bipod load path intersection points, Rbi, is 

only valid if the bipod rods in a single bipod are coplanar. Small offset angles between two 

adjacent bipod rods result in a violation of the assumption created to calculate Rbi. To capture this 

heuristic uncertainty, the out of plane angle for a single set of bipod rods must be examined.  

First, one must realize that all the bipods are 120
o
 away from each other and that the 

magnitude of Rbi in the x-y-plane of the BCS can be slightly larger or smaller depending on the 

direction of the offset angle (δi) of the bipod planes. Each δ is measured relative to the vertical 

plane that runs through the center of the bipod; an image of this can be view below. If δ1= δ2 = 0 

then the rods are coplanar and no additional heuristic uncertainty is needed. Although, if an offset 

angle does exist then only the worst case scenario needs to be considered. This occurs where the 

offset angles have the same magnitude. If a clearance between the endrods and brackets are small 

then a small angle approximation for δ is appropriate and bipod out of plane uncertainty can be 

modeled as the following: 

 

 𝜎𝛿 =  ±|�̂�𝑟𝑒𝑙2
| sin(𝛿)  ≈  ±|�̂�𝑟𝑒𝑙2

|𝛿 (28) 
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Figure 18: (Left)  CAD Model right view of bipod 1. (Right)  Exaggerated right view 

of bipod 1 showing δ for rod 1 and 2. 

 

2.3.4 Combined Uncertainty 

With all the individual sources of uncertainty defined, a combination of all the uncertainties 

can be found by taking the root-sum-squared (RMS) of the quantities. Any additional errors that 

can be identified can be accounted for in the total uncertainty by adding more terms in the RMS 

equation. 

 𝜎𝑡𝑜𝑡 =  √𝜎𝑟𝑒𝑝
2 + 𝜎𝑚𝑒𝑎𝑠

2 + 𝜎𝐻
2   (29) 

The implementation of the CG math model into a MATLAB code will be discussed in the next 

chapter. The methods used for coding the uncertainty analysis into MATLAB will also reviewed. 
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3. MODEL IMPLEMENTATION IN MATLAB 

This section maps out the functionality and implementation of the CG model in MATLAB. 

The various inputs, outputs and coding concepts of the MATLAB code will be discussed in 

detail. The code has the ability to convert the bipod loads of six load cells into a CG location 

along with its uncertainty (Forward direction). This method also requires a platform tilt angle and 

the bipod loads at the corresponding angle to calculate all three CG components. The code can 

also work in the opposite direction, or in Reverse, to determine the values of the said load cells 

given the platforms orientation, CG location and weight of the payload. Since strain gauges were 

the transducer of choice in this project, extra functions were created to convert the measured 

strains into loads before they could be used as inputs to the main script file. The map/pseudo task 

diagram in Figure 19 should be reviewed before continuing.  

Using the MainCGscript code, the user has the ability to switch between a CG measuring 

task and a load cell sizing task. Before running the main script file the user must first upload their 

inputs into the appropriate excel files. One file named CG_platform_constants contains the 

constants needed to run both the Forward and Reverse Method. In the second file, ForceData, the 

values of the bipod loads from each load cell are stored and used to generate outputs for the 

Forward Method.  

The CG_platform_constants excel book contains two sheets in which the parameters for 

the platform and the resolution errors can be stored. The first sheet, measured_const, is divided 

into two halves. On the left side are the various tables of parameters and on the right is a visual 

aid or legend for the parameter variables. A screen shot of the two halve can be seen in 

Figure 20 and Figure 21. Both the Forward and Reverse Methods require that the values for 

the Bottom Bracket Parameters and Angles Input tables be filled out. The Angle Input table on 
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the left only needs to be filled out for the Forward method while either the left alone or both the 

left and right Angle tables can be filled for the Reverse Method. More information about the latter 

option will be reviewed in section 3.2.1. MATLAB calls on the Bottom Bracket Parameter cells 

to calculate the load path intersection point (Rbi) for each bipod in the bipodNodes function. Rbi is 

calculated using the bottom bracket node locations with the bipod offset angle (γ) and rod angles 

(θi) rather than using the bottom and top bracket node locations to calculate Rbi. This change can 

be done by reserving space for the top bracket node locations in CG_platform_constants and 

updating the Rbi calculation in the bipodNodes function. The added calculation in bipodNods 

would need to calculate θi  from the top and bottom bracket nodes locations.  

 

Figure 19: Map/pseudo-task diagram of CG code. 
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Bottom Bracket Parameters 

  
r1 r2 r3 r4 r5 r6 

x  

[in] 

-6.2 -11.375 -4.375 4.5 11.438 6.25 

y -9.375 -1.75 10.125 10 -1.125 -9.3125 

z -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 

θ [degs] 30 30 33 28 32 35 

c [in] 8.750 8.813 8.827 

        
Angle Inputs 

 
Angle Inputs After Tare 

 
Rotation angle 

β 
[degs] 

0  
Rotation 
angle β 

[degs] 
0 

Tilt angle  α 30 
 

Tilt angle  α 0 

γ 30 
 

γ 30 

        
Load Cell Sizing Inputs 

 
Load Cell After Tare 

 

Load Cell Error [%] 2 
 Payload CG 

Location[x;y;z] 
[in] 

-4.5 

Capacity [lbs] 300 
 

-1.14 

Payload CG 
Location[x;y;z] 

[in] 

4.27 
 

12.91 

-1.41  
payload 

magnitude 
[lbs] 43.42 

12.72 
     

payload 
magnitude 

[lbs] 43.47 
     

        

        
Note: Save file before running the MATLAB to 

accept any new changes 
  

   
 

Figure 20: Table of parameters screen shot of the measured_const sheet in the 

CG_platform_constants  excel workbook. 

 

  



 

 

30 

 

 

 

 

 

Figure 21: Visual legend screen shot of the measured_const sheet in the 

CG_platform_constants  excel workbook. 
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The main code is comprised of two main functions, the Force2cgShell function that 

evaluates the Forward Method and the SizeLoadCell function that evaluates the Reverse Method. 

The following sections will be divided in a manner that discusses the Forward and Reverse 

Methods separately. Again, the pseudo-task diagram or map of the CG code in Figure 19 can be 

used as a reference. 

3.1 Forward Direction 

3.1.1 Inputs from Excel: CG Platform Constants & Load Data 

In a second excel book, ForceData, the user is provided with two tables to enter the load 

values from six load cells. These values represent the load experienced by the bipod rods at some 

loading scenario. The first table is meant for loads (Fi) at  α = 0
o
 while the second table is for 

loads (F’i), at user defined α and β angles. Each table contains three columns; the first is for the 

bipod rod index and does not need to be changed. This column is not used in the MATLAB code, 

it is merely there to serve as a reference for the use. If the numbering is changed then the user 

must make the appropriate changes in the Force2cgShell function so that the loads being loaded 

into MATLAB match the numbering scheme in excel. Failure to do so may cause the code to 

output inaccurate results. The second and third columns are for the load values without a payload 

(Fo) and with a payload (Fload) respectively. These second column is needed to compensate for 

any preloads induced by the Adaptor Plate and CG structure to calculate the tare baseline for the 

load values. The table on the right serves as a legend for the user. 
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α =  0 
    

Load Cell 
Index 

Fo   Fload 
 

Legend Description 

1 0 3.9840996 
 

Fo   Initial Load cell reading at α = 0 

2 0 3.9840996 
 

Fload Load cell readings at α = 0 

3 0 -26.16952 
 

F'o   Initial Load cell reading at α ≠ 0 

4 0 -26.16952 
 

F'load Load cell readings at α ≠ 0 

5 0 -15.70516 
   

6 0 -15.70516 
   

      
α = 90 β =  60 

  
Load Cell 

Index 
F'o   F'load 

   

1 0 -36.00945 
   

2 0 -20.47501 
   

3 0 20.474563 
   

4 0 36.009002 
   

5 0 18.764228 
   

6 0 -18.76339 
   

 

Figure 22: LoadData file excel snapshot for the Forward Method. 

The second sheet named uncertainty_const in CG_uncertainty_constants holds the 

measurement resolution uncertainties for all the inputs.  The cells in this sheet are used to 

evaluate the uncertainty range and maximum sensitives for the CG and payload magnitude. 

Empty cells in this sheet could result in incorrect uncertainty values or create an error in 

MATLAB. The image in Figure 23 shows a snapshot of the uncertainty table in 

uncertainty_const. 
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Figure 23: Screen shot of the uncertainty parameters in uncertainty_const. 

 

3.1.2 Operation: Forward Method 

One commonly used subroutine in the Forward Method is the PropError function. This 

function executes the uncertainty propagation method on a given symbolic expression. The user 

defined function was created by Brad Ridder to accept the following inputs: a symbolic 

expression, array of variables, array of variable values and an array of errors for each variable. 

With these inputs, the function could output a nominal value for the evaluated function as well as 

its uncertainty range and percent [7]. This subroutine was modified to give the user the option to 
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display and store the maximum sensitivity parameter. Below is the syntax of the modified 

function.   

[FNOMINAL, dF, F%ERROR, SMAX] = PropError( f(x1,…xn), VarArray, Values, Errors, Option) 

 

From the MainCGscript, the user can use the inputs previously discussed to calculate CG by 

selecting the “Measure CG” option after running the script file. Before continuing, the code 

reminds the user to update the appropriate excel files and save them. Next, the user is asked to 

determine whether they wish to calculate the planar CG ([cgx; cgy]) or all three CG components 

([cgx; cgy; cgz]) at once. Only six load values are needed for the former but a total of 12 loads and 

a tilt angle, α, are needed to calculate the latter. A β angle is not necessary to find the full CG but 

can still be used. In both cases the initial load values of the load cells can also be recoreded. 

After either a partial or full CG is requested, the code enters the Force2cgShell function 

where the user’s CG decision modifies the inputs to the force2cg subroutine to calculate the CG 

and weight, along with their uncertainties. The syntax for the function is as follows:  

[cgval, dcg, mg, dmg] = force2cg( F0 , F1 , α , UNCF0 , UNCF1 , β) 

F0 and F1 correspond to the bipod loads at α = 0 and α ≠ 0 respectively. The force2cg 

function was designed to accept different combinations of inputs by using a technique analogous 

to Bit Masking used in embedded systems [8]. An ”isempty” command was used to convert the 

input array of force2cg into a bit array of ones and zeros.  A (1) is returned if the entry is empty 

([]) otherwise the entry is set to (0). Next, the subroutine defines a series of combinations that 

prompt the code to calculate either partial or full CG using logical if-statements. For example, if 

the first five of the six inputs of  force2cg is non empty then the input checking Bit array would 

read [ 0 0 0 0 0 1]. This combination initiates the code to calculate the full CG. The table below 

summarizes the input combinations and their results.  
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Table 1: Input combinations of the force2cg function and their results. 

Inputs Bit Array Result 

All input are non-empty [0 0 0 0 0 0] full CG and uncertainty. 

Only β is excluded [0 0 0 0 0 1] 
assumes β = 0, calculate full CG 

and uncertainty. 

12 included load values 

but α is empty 
[0 0 1 0 0 1] Error message, Include α 

6 load values and their 

uncertainties 
[0 1 1 0 1 0] partial CG (i.e [xCG; yCG] ) 

 

Once the Bit array has been evaluated,  force2cg calls on three other subroutines to generate 

an output for the CG and payload magnitude. Below is the sequence of steps in which in the 

function takes to output  the results for the Forward Method (Refer to Figure 19 as an aid to 

visualize the nested function hierarchy): 

 Inside force2cg, the following nested functions are evaluated: The outputs of bipodNodes, 

weightMagUnc, and CGsymbExpression are all feed into the unc4cg function. All this 

happens inside force2cg. Unc4cg receives the outputs from the previously name functions to 

evaluate the CG and its uncertainty. 

o bipodNodes - outputs Rbi and dRbi from uncertainty propagation 

o weightMagUnc - outputs the payload magnitude (mg) and it’s uncertainty (dmg) 

o CGsymbExpression - outputs a symbolic expression for the individual CG 

components using the symbolic toolbox in MATLAB. 

 Next, the CG vector, payload magnitude and their uncertainties are displayed in the command 

window from force2cg while the outputs are feed through to the MainCGscript. The angle 
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parameters from CG_platform_constants are also displayed. The screen shot in Figure 24 

shows the MATLAB inputs and results in the command window. 

 

Figure 24: MATLAB command window screen shot of the outputs from the Forward 

Method. 

Here are the steps require to run the MainCGcode to output the Forward results: 

1. Updated the tables in the following excel files and sheets, then save them: 

a. Bottom Bracket and Angles Input tables in measured_const 

b. Uncertainty table in uncertainty_const 

c. Either the bipod load table for Fi  or both the Fi  and Fi’ tables in LoadData 

2. Run MainCGcode 

3. Enter (1) to select the ”Measure CG task” and enter again to verify that the excel 

tables are saved 

4. Choose whether a full or partial CG is to be calculated 

3.2 Reverse Direction 

3.2.1 Inputs for Excel: CG Platform Constants 

Similar to the “Measure CG” option, the Reverse Method uses the 

CG_Platform_Constants excel file to summon the needed inputs. The same Bottom Bracket and 
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Angle Input tables need to be filled in order for the Reverse direction to work. Additionally, 

payload information such as the CG location and weight should be entered in the Load Cell 

Sizing table. Cells for the capacity and error for the load cells are available in this table. This code 

assumes that the load cells used in the CG Platform will all be the same model and as a result, 

they all share the same capacity and error. The excel file also reserves space to input new 

platform angles and payload parameters for a single case when the load cells are to be tared. 

3.2.2 Operation: Reverse Method 

The Reverse direction is initiated by choosing the ”Size Load Cell” option in 

MainCGscript. Once the sizing path is chosen, the user is asked whether they wish to calculate 

absolute bipod loads or tared loads. This decision is then fed into the SizeLoadCells subroutine 

where it determines the inputs used for the cg2force function. The cg2force function calculates 

the bipod load outputs based on the inputs entered in the excel file. In this subroutine, bipodNodes 

is again called upon to generate the intersection points of the bipod rods of each bipod, Rbi. The 

load outputs are then processed in SizeLoadCells to calculate the absolute percent capacity and 

absolute error for each load reading. It should be noted that this function does not distinguish the 

difference between the various forms of load cell error such as non-linearity or hysteresis. The 

code simply accepts an error percentage and determines the corresponding absolute error ranges 

of the particular load values. It is up to the user to decide the type of error that is to be uploaded. 

The load values generated from cg2force are equivalent to the absolute loads of each test. 

The term “absolute loads” in this context refers to the estimated reading from each load cell. To 

determine the tare loads, the second set of CG parameters is called upon to calculate a new set of 

absolute loads. The differences between the initial and new absolute loads are the tare load 

values. Again, the absolute error and percent capacities for the tare loads are calculated and 

displayed in the command window.  
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Figure 25: MATLAB command window snapshot of the result from the Reverse 

direction. 

Below, the steps needed to run the MainCGcode to generate the results for the Reverse 

Method are outlined. 

1. Updated the tables in the following excel files and sheets, then save them: 

a. Bottom Bracket, Angles Input and Load Cell Sizing Input tables in 

measured_const. If tared values  are desired then the Angle and Load Cell 

After Tare tables should be completed. 

2. Run MainCGcode 

3. Enter (2) to select the ”Size Load Cell Task” 

4. Choose whether the Absolute or Tare loads are to be calculated 
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4. PLATFORM PROTOTYPE 

Now that the code has been established, its validity can be tested by building a prototype of 

the CG Platform and preforming a series of test on the platform. The constructed prototype for 

the CG Platform Assembly (CGA) consists of two major components, the CG Platform 

containing the bipods instrumented with strain gauges and the adjustable CG Structure. A Tilt 

Table was also built to hold the CGA fixed at specified α angles during platform tilting tests. 

Together these components were used to conduct the CG measuring experiment to verify the 

math model.  

4.1 Force Transducer 

The original proposed design from JPL included load cells in the bipods of the platform. 

The estimated unit price of one inline load cell is roughly $350. This would mean that the total 

estimated cost for the six load cells is $2100. With a budget of $3000, the cost of the load cells 

would take up nearly 70% of the budget.  Strain gauges instrumented to axial threaded rods could 

be used in place of the load cells as a low cost alternative. Instead of measuring load directly, the 

gauges would be used to record the strain in the bipod legs, these strains would then be converted 

to loads. Using strain gauges rather than loads cells free up space in the budget to purchase 

material needed to construct the Tilting Table, CG Structure and DAQ system. The constructed 

CG Platform Assembly for this project utilizes an array of strain gauges to perform the load 

measuring tasks. 
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4.1.1 Strain Gauge Selection 

The following section reviews the process taken to select the strain gauges that were used in 

place of the load cells. Axial rods were used to provide a boding surface for the gauges while 

maintaining the truss configuration of the bipods.  

Preliminary calculations to determine the expected strain in the bipod rods at both a 

maximum and minimum loading scenarios were needed to provide insight on reasonable 

operating ranges for the strain gauges. Only one rod (or bipod rod) needs to be considered to 

derive an expression for the strain in the bipod rod. First, a conservative minimum and maximum 

payload of 10 and 150 lbs was defined. For this analysis the weight of the Adaptor Plate and CG 

Structure were neglected. 

To simplify these initial calculations, the platform is assumed to have a zero degrees tilt 

angle while the payload is placed at the center of the platform. Only bipod rod 1 on Bp 1 will be 

considered for this analysis. The cross sectional areas of all the rods are assumed to be the same 

and θ1 = θ2 = θi is established to model ideal conditions. The material of the axial rods are 

assumed to be aluminum, meaning that the rod exhibits isotropic characteristics. The free body 

diagram (FBD) in Figure 26 illustrates the symmetric loading on the two bipod rods. Since the 

payload is place at the center of the platform, each bipod holds a third of the actual payload 

weight (W/3). Due to symmetry, the reactional forces on each bottom bracket are a sixth of the 

applied load (W/6). Next, a cut of Bp 1 can be made and a new FBD is drawn to derive an 

expression for the strain the bipod rod 1. The sectional FBD is shown in Figure 27. 
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Figure 26: Free body diagram of a single bipod assembly with W/3 applied. 

 

 

Figure 27: Section cut FBD of the bipod assembly. 

 

Summing the forces in the vertical direction where up is positive leads to: 

 ∑𝐹𝑦 = 𝐹1𝑠𝑖𝑛𝜃 +
𝑊𝑚𝑎𝑥 

6
= 0 (30) 

 

The stress in the rod can be found by the dividing the bipod rod load, F1, by A 

 𝜎1 =
𝐹1

𝐴
=

𝑊𝑚𝑎𝑥  

6 ∗ 𝑠𝑖𝑛𝜃 ∗ 𝐴
  (31) 
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Now the strain can be extracted by dividing the stress by the Modulus of Elasticity. 

 휀1 =
𝜎1

𝐸
=  

𝑊1

6 ∗ 𝑠𝑖𝑛𝜃 ∗ 𝐴 ∗ 𝐸
 (32) 

 

Using a combination of static and linear elastic stress-strain relationships, the approximate 

strain in a single axial rod can be computed using equation (32). Measuring axial strains in an 

object experiencing uniaxial loading requires gauges to be bonded along the maximum and 

minimum principal axes. Since it was assumed that the rod is isotropic and will only undergo 

axial loading, the principal axes are coincident with the axial and transverse directions of the rod. 

Vishay Micro-Measurements (a leading strain gage manufacturer)  states that Tee Rosettes 

should be used when the principal directions of the specimen is well known [9]. Doing so will 

minimize errors due to gauge misalignment by eliminating the need to align an extra gauge. 

Using Tee Rosettes does not guarantee that there will be no error caused by misalignment, the 

Rosettes must still be aligned with one principal axis; alignment error can still arise.  Conversely, 

when the direction of the principal strains are unknown it is recommended that three element 

rectangular or delta rosettes be used [9]. Errors caused by misaligned gauges will be discussed 

further in Chapter 5. For now, it is assumed that the gauges are perfectly aligned 90
o
 from each 

other, along the longitudinal and transverse axes. Together, the two gauges use Poisson’s effect to 

track the axial strains in the rod. 
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Figure 28: Desired strain gauge configuration and placement. Gauge 1 will be placed 

axially and Gauge 2 placed transversely. 

To correctly measure strain from the Rosette gauges, the two strain gauges terminals must 

be wired to a wheatstone bridge to create a voltage differential between the gauge elements and 

dummy resistors. A circuit diagram of the wheatstone bridge can be viewed in Figure 29. Arms 

(1) and (2) in the bridge will be strain gauges while arms (4) and (3) are dummy gauges with the 

same nominal resistance of the strain gauges. Any transverse strains measured by the transverse 

gauge will be subtracted from the signal while only the axial strain will produce positive voltages. 

This configuration is called a half bridge circuit and knowledge of this is necessary to convert the 

voltage output of the bridge to strain. 

 

      

Figure 29: Tee Rosette to the left and a Wheatstone bridge diagram to the right.  
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Now that the Rosette gauge configuration has been established, the footprint of the gauge 

must be sized so that the gauges fit on the bipod rods. A 3 in long, partially threaded aluminum 

rod, with a 3/8 in diameter was chosen as the rod element in the bipods. The threaded portions of 

the rods only extend 1
3

16
 in from both ends of the rod to the center leaving roughly 0.625 in of 

space along the length of a strain gauge. To make the strain gauge bonding process less strenuous, 

the middle portion of the rods were machined to a rectangular area. Bonding gauges to arched 

objects is possible but bonding them to flat surfaces is much easier. Machining the rod requires 

removing material so the available bonding area decreases. A nominal rectangular bonding area 

of 1/4 x 3/8 in
2
 was selected and used to determine the maximum length and width of the gauge 

while a nominal cross sectional area of 1/4 x 1/4 in
2
 was used to carry out the maximum and 

minimum strain calculations. 

Details for this calculation can be found in Appendix B. These calculations together with 

the bonding area constraints were used in selecting the strain gauges that will be used on the 

bipods. Results from the analysis show that the minimum and maximum loads of 10 and 100 lbs 

produce strains of 46.5 and 464.9µε respectively. This correlates to a minimum voltage of 0.0773 

mV and a maximum voltage of 0.051 mV. The results from these calculations show that caution 

should be used when using light weights on the platform as the resulting voltage may be close to 

the resolution limits of the instrument and my not be measurable.  

Gauges C2A-06-062LT-120 and C2A-06-031WW-120 from Vishay Micro-Measurements 

have strain ranges of 3%,  gauge widths of 0.062 in or less and overall lengths smaller than 0.206 

in. There should be no concern about the maximum limits of the strain gauges, instead small 

loads may prove to be difficult to read depending on the precision and resolution of the DAQ 

system [9]. All the other the parameters for these gauges fall within the established constraints. 

More information on the chosen strain gauges can be found in [10] and [11].  
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4.2 Center of Gravity Platform 

The CG Platform houses three bipods, each of which contain two 3 in long, 3/8-24 threaded 

male end, 6061-T6 aluminum rods. As it was previously mentioned in the Strain Gauge Selection 

section, each rod was machined down to have a rectangular cross section to provide a flat surface 

for the strain gauges to be bonded to. Looking at the strain-load relationship, one will notice that 

the strain is inversely proportional to the cross sectional area of the rod. Therefore, a reduction in 

the cross section acts to increase the rod’s strain. 

 휀𝑟𝑜𝑑 =
𝐹

𝐸𝐴
 (33) 

A nominal cross-section of 0.065 in
2
 was chosen for the bipod rods. A strain magnification 

number (N) can be found by taking a ratio of the original circular cross section of 0.110 in
2
 to the 

new cross section. The N for the nominal cross section is approximately 1.7, meaning that the 

strain magnitude using the new cross section is 1.7 times larger than the strain using the original 

cross section. The width and height of the cross section of each rod was measured using digital 

calipers with a 5.0E-4 in resolution. These dimensions were then used to determine the cross 

sectional area for all the rods after machining. Table 2 contains the cross sectional areas and 

magnification numbers for all the rods.  

 

Figure 30: Two bipod rods during the strain gauges bonding process. 
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Six C2A-06-062LT-120 Tee Rosettes had initially been installed on the bipod rods, 

however, the gauges on rods 4 and 6 were damaged during calibration and were replaced with 

two C2A-06-031WW-120 Stacked Rosettes. The effect of using different strain gauges will be 

discussed in Chapter 5: Bipod Rode Calibrations. 

Table 2: Rod cross-sectional area (A) and strain magnification number (N). 

 

A N 

Rod Index [in2] - 

1 0.0644 1.715 

2 0.0687 1.608 

3 0.0599 1.844 

4 0.0694 1.592 

5 0.0627 1.761 

6 0.0645 1.712 

 

Aluminum was selected as the material of choice due to its weight to strength ratio and ease 

of machinability. The nine brackets that make up the three bipods were individually machined 

from aluminum bar stock. The adaptor and base plates were also made of aluminum. Both plates 

were originally 27x24x1/4 in
3
 in volume but were trimmed to octahedral shapes to reduce the net 

weight of the platform without sacrificing the rigidity.  

 

Figure 31: CG Platform with bipod instrumented with strain gauges. 

After the CG Platform was completely assembled, the locations of each bottom bracket 

node were measured relative to the origin of the BCS using a tape measure with a 1/32 in 
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resolution. The θi angles of each bipod rod along with the γ angles were measured using a 

protractor with a 5
o
 resolution. These measurements and their instrument resolutions were 

recorded in the CG_Platform_constants spreadsheet. 

4.3 Center of Gravity Structure 

 

Figure 32: CG Structure with a payload. 

The CG structure was constructed using aluminum T-slot framing. It provides rigid support 

for the shelf and payload assembly. The structure has a 17 3/8 x 15 7/8 in
2 
footprint and stands 26 

3/8 in tall. Four sets of holes were drilled along the vertical T-slot frames about 5 1/2 in apart, 

beginning at 5 3/8 in from the base of the framing. These holes were made so the payloads 

vertical position could be changed to four different discrete locations by adjusting the shelf 

height. 
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Nine 1 in diameter holes were drilled in a 1/4 in plate of aluminum so that the planar 

position of the payload could be adjusted to discrete locations relative to the x-y axes of the 

platforms BCS. This plate acted as a shelf which could slide vertically along the T-slot framing 

structure. A threaded portion of a 1 in diameter dumbbell bar was cut and used to keep weights at 

desired hole locations. The cut dumbbell bar, together with two dumbbell nuts, was used to secure 

the weights to the shelf during testing.  

  

Table 3: Shelf hole and planar CG locations. 

` Left Middle Right 

 
X y  x y X y 

 

[in] [in] [in] [in] [in] [in] 

Top -4.23 5.091 0.02 5.091 4.27 5.091 

Center -4.23 1.841 0.02 1.841 4.27 1.841 

Bottom -4.23 -1.409 0.02 -1.409 4.27 -1.409 

 

Table 4: Shelf height (zshelf) settings. 

 Setting 1 Setting 2 Setting 3 Setting 4 

z  [in] 5 3/8 10 7/8 16 7/16 22 
 

The nine hole locations on the aluminum shelf in the BCS of the CG Platform was found by 

first measuring the hole locations relative to the bottom left corner of the CG Structure. These 

values were then added to the corner’s measured position in the BCS. The vertical location of the 

top of the shelf at the four height settings were also measured relative to the BCS. Since the same 

tape measure used to measure the bracket nodes was used to measure the hole and shelf heights, 

the resolution of these parameters are all the same. Tables 3 and 4 show the measured planar hole 

locations and shelf height settings for the CG Structure. If weight is fastened to a certain hole, the 

weights planar CG coincides with the centers of the hole. However, the vertical CG of the 
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weights deviates away from the top of the shelf as more weights are stacked on top of each other 

while resting on the shelf.  The actual CG of the payload can be found by adding the height of the 

shelf with the weighted average location of the payload’s CG relative to the shelf; the actual CG 

can be expressed as: 

 

 𝑍𝑐𝑔 = 𝑍𝑠ℎ𝑒𝑙𝑓  + 
∑ 𝑤𝑖𝑧𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

  (34) 

 

where wi is the magnitude of an individual weight and zi is the vertical CG of the corresponding 

weight relative to the surface of the shelf. Further discussion on the assumptions made in order to 

use the above expression can reviewed in the Chapter 6: Platform Loading Test section. 

4.4 Tilt Table 

The Tilt Table was manufactured out of steel rectangular tubes and plates; it is comprised of 

a rectangular base frame and a tabletop. A piece of angle iron that runs across the width of the 

tabletop prevents the CGA from sliding off the tabletop while it is set to α angles other than zero 

degrees. Two C-clamps on the posterior end of the Tilt Table fixes the CGA to the tabletop. A 

small bushing was created by boring out a 3/16 in hole in a 1/2 in piece of steel bar stock and 

cutting it into four pieces. Two of the bored out pieces of steel were welded onto each vertical 

post, near the base. The other two were welded underneath the tabletop, near one of the edges. 

Two 3/16 in bolts were used to form pinned joints between the posts of the base frame and the 

tabletop. A factor of safety (F.S.) for the bushing welds was calculated before any payload tilt 

tests were performed to assure that the welds possessed ample strength and would not fail; a 

similar study was done for the welds at the base of the post. Using the Minimum Weld-Metal 
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Properties tables in Shigley’s Mechanical Design book [9], a yield and tensile strength of 50 and 

62 ksi  for a E6010 AWS electrode was used to evaluate the Factor of Safety. A F.S. of 5.7 and 

4.1 was calculated for the pinned joints on the post and at the base, respectively. These 

calculations can be found in Appendix E. 

  

Figure 33: (Left) Rear view of the tilt table at 30
o
. (Right) Front view of the tilt table 

at 0
o
. 

The overall length of the frame was determined by calculating the maximum moment that 

would be applied to the Tilt Table if the CGA, including the payload, was tilted to 90
o
. A 

maximum net weight of 140 lbs and maximum shelf height (zH) of 24 in was used in this study. 

The estimated maximum net weight refers to the sum of maximum payload of 100 lbs and the 

tabletop which weighs approximately 40 lbs. The goal of this study was to size the front member 

of the Tilt Table in such way that the CGA could be set to 90
o
 and not cause the entire system to 

topple over. Results from the calculation showed that the member must be at least 31 in long to 

not tip over in the extreme moment case. By observation, one can realize that a counter moment 

will prevent tipping if the front member is made longer than the zcg. Due to a shortage of material, 

the front member was made 25.5 in long. At this length, a note was made to not set zcg higher 

than 15 in to avoid tipping if a maximum payload of 100 lbs was used.  
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In the original design, the thin quarter circular plates on the base frame was intended to 

support the tabletop at 30
o
 and 60

o
. However, misalignment between the holes on the bottom of 

the tabletop and the holes on the quarter circular plates prevented this from being done. As an 

alternative, two 14 and 24 in T-slot members were attached to the back end of the base frame by a 

pin connection. The two sizes correspond to the sine of 30 and 60 degrees multiplied by the 

distance between the post and the rear perpendicular member.  

4.5 Hardware/Software 

A DAQ system was designed to take semi-continuous measurements of the strain gauges 

during the platform loading tests. The DAQ system includes six bread-boarded wheatstone 

bridges, two Bridge Amplifiers, two NI USB A/D converters and a Strain Gauge Measuring VI 

file created in LabView. Data was also taken using a P3 Strain Indicator box from Micro-

Measurements coupled with a Switch Terminal to produce test benchmarks for the proposed 

DAQ system. The preceding section discusses the function and usage of both DAQ methods. 

4.5.1 Quad Bridge Amplifier and USB DAQ 

Each wheatstone bridge services two strain gauges and uses two 120 Ω completion resistors 

to make a single half bridge circuit. The lateral nodes from each wheatstone bridge were wired to 

open input terminals on the Quad Bridge Amplifiers (QBA). A 3.3 v excitation voltage is 

supplied to each wheatstone by the QBA. The circuit diagram on the right in Figure 34 illustrates 

how the gauges are wired to the wheatstone bridge. The QBA receives the small differential 

voltage from two opposite nodes of the wheatstone bridge and amplifies the signal by a factor of 

105. More details on the set up of the QBA can be found in Quad Bridge Amplifier: Quick Setup 

Guide [9]. 
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Figure 34: (Left) Quad Bridge Amplifier . (Right) Two wheatstone bridge circuits. 

Outputs from each bridge was then feed into the NI USB A/D converter so that the digitized 

data could be read using the LabView software on a laptop. A VI program in LabView was 

created to convert the voltage output from the gauges, to strain and write relevant data to an excel 

file at the push of a button. Since all the planned CG test were static, any relatively large 

frequencies in the strain signal was assumed to be noise and a low pass filter with a cutoff 

frequency of 5 hz was applied to the signal. An initial sampling rate of 50 hz was selected but a 

much larger sampling rate could be used since the maximum sampling rate of the A/D is 10khz. 

4.5.2 P3 Strain Indicator and Switch Terminal 

The P3 Strain Indicator and Switch Terminal was the first method used for data acquisition 

in the CG Platform loading tests. Using the portable, battery powered, precision instrument prior 

to using the designed DAQ system was done to first generate benchmark results to compare the 

operation of the DAQ system. The P3 model contains built in noise rejection, proprietary scaling 

and nonlinearity algorithms [14]. It is also capable of taking measurement from other strain-gauge 

based transduces such as load cells and linear actuators. 
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Figure 35: P3 Box and Switch Terminal. 

The P3 box only has the ability to read strain from four different bridges simultaneously and 

cannot be used to measure the six half bridge arrangements that the platform possessed by itself. 

To accommodate for all six half bridges, three bridges were wired normally to three channels on 

the P3. The remaining three bridges were then wired to a Strain Gauge Switch Terminal. Using 

spare leads, the output of the Switch Terminal was then wired to the last open channel on the P3. 

The P3 was adjusted to a half bridge setting and the gauge factor for the Tee Rosettes, 2.055, was 

input for the first three strain gauges. The last three gauges on the last P3 channel were set to 

2.175.  It was important to note that the bipod strains measured from gauges 4 and 6 will have 

slightly lower strains since the correct gauge factor is 2.055. This is true since ε ∝ 1/[gauge 

factor]. In the following chapter, the process taken to calibrate the strain gauges and the bipod 

rods is expanded. 
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5. BIPOD ROD CALIBRATION 

Before any tests could be run on the CGA, the precision and accuracy of the bipod rod’s 

ability to measure loads had to be investigated. A qualitative loading study was conducted by 

hanging a series of weights from the bipod/endrod assemblies to test out the designed DAQ 

system. Results from this study were used to formulate parameters needed to conduct a more 

comprehensive loading study using an Instron machine.  

5.1 Weight Hanging Trial Test 

Endrod assemblies 1-6 were removed from the CG Platform and wired to the designed 

DAQ system. A single endrod assembly includes the bipod rod and the strain gauge bonded to its 

surface along with the two endrods screwed onto both ends of the bipod rod. All six assemblies 

were then hung from a wooden frame using steel welding filler rods as hooks. Zip-ties were tied 

around the dangling end of the assemblies and the individual weights. Another hook was used to 

hang the weights on the assemblies. Figure 36 shows all six assemblies hanging from the wooden 

frame. 

 

Figure 36: Hanging weights set up. 
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Combinations of two 7.5 lb and two 10 lb weights were used to load the individual endrod 

assemblies in tension while the LabView VI program read and recorded the desired data to 

comma-separated text files. At smaller loads, the measured voltages from the endrod assemblies 

showed large differences from the expected voltages. This trend was true for all the assemblies 

and occurred for loads equal to or less than 10 lbs. One possible explanation for the error is that 

moment induced bending appears when the rod goes from no load to 10 lbs and as a result, 

corrupts the axial load readings. Another plausible explanation is that loads under 10 lbs are 

exciting strain voltages that are too small for the DAQ system to measure. The NI DAQ has a 12-

bit analog input resolution and a 5 V range. This translates into a voltage resolution of roughly 

1.22 mV 

 𝑉𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑉𝑟𝑎𝑛𝑔𝑒

2𝑛 − 1
 (35) 

According to the theoretical calculations in B. 2 of the Appendix, the voltages in the endrods 

become too small to measure at applied smaller than 3.3 lbs. To avoid this small range of loads, a 

feature was added in the VI program which stores a reference voltage. In the VI program, the 

reference voltage is subtracted from preceding voltage measurements and acts as a new datum. 

As an effect, the endrod assemblies could be calibrated to read zero volts, or zero strain, at any 

starting applied load. This is analogous to the tare feature in load cell DAQ systems. The image in 

Figure 37 shows endrod assembly no. 5 loaded with a 10 lb preload weight and a 10 lb payload 

weight. 



 

 

56 

 

 

Figure 37: Endrod assembly no. 5 loaded with a 10 lb preload and 10 lb payload 

weight. 

The weight hanging trial tests conducted on the endrod assemblies helped to shed light on 

large errors that could arise in low load scenarios. These tests also helped verify that the designed 

DAQ system was functioning properly. Some downsides to the weight hanging test was its 

inability to inflict compressional loads to the rods and the limited amount of available weights. A 

more comprehensive and analytical approach to calibrating the bipod rods was taken using data 

generated using an Instron. 

5.2 Calibration Using the Instron 

The Instron machine was utilized to apply a larger range of loads onto the endrod 

assemblies. A custom fixture was welded together so that a pin-pin loading condition could be 

simulated while the assembly was installed in the Instron. Using position control on the Instron, a 

total of about 10-12 different load magnitudes in both tension and compression were applied to 

the six endrod assemblies. The lab coordinator recommended that the position control feature on 
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the Instron be used rather than the load control feature. In this mode, small displacements on 

bottom clamp of the Instron were controlled to elicit loads on the endrod assembly. After each 

desired load was achieved, the load value from the digital read out (DRO) on the controller of the 

Instron was recorded while the voltage output from the strain gauge was recorded using 

LabView. If the position of the Instron actuator remained fixed while applying a load to the 

endrod assembly, the measured load magnitude from the DRO seemed to drop at what appeared 

to be a slow constant rate, as time elapsed. It was thought that the load cell of the Instron might be 

detecting small amounts of relaxation in the assemblies. Logging the data immediately after each 

loading scenario helped to avoid recording drifted load values from the DRO. The data was then 

post processed in Excel and MATLAB. Figure 38 shows the test set up for one of the endrod 

assemblies. 

Prior to taking any strain measurements from the strain gauges, the wheatstone bridge arms 

were first balanced to read 0 V between the opposite nodes. Next, the initial output voltages of 

the QBA were adjusted to approximately half the excitation voltage (1.65 V). This was done to 

avoid any systematic errors that could arise if the output voltage were to drift to a negative value 

[9]. If a negative voltage is used as an input to the QBA while the initial unstrained QBA voltage 

is set to 0 V then the resulting output will also be 0 V. Any preceding strains calculations will be 

incorrect. On the other hand, changing the initial output voltage of the QBA unknowingly 

introduced nonlinearity errors into the system since the initial output voltage was changed by 

unbalancing the wheatstone bridge [10]. As it was mention in the section Weight Hanging Trial 

Test section, a gain was also added to the Labview VI file to bring the no-load output voltage 

down to 0 V. Doing this unfortunately helped to mask potential nonlinearity error rather than fix 

it. A solution for dealing with nonlinearity errors will be discussed shortly. 
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Figure 38: (Left) Wide view of the endrod assembly installed into the Instron. (Right) 

Plastic spacers were placed in both sides of the endrods to minimize the movements 

of the assembly along the bolts. 

5.2.1 Results 

The voltages gathered from the Instron test were converted into microstrain using equation 

(36), the derivation for the microstrain equation can be view in Appendix B. Next, these 

microstrains were changed to load values by utilizing the stress-strain relationship for materials 

(i.e. E=σ/ε). The microstrains produced from the loads applied by the Instron were multiplied by 

the corresponding cross sectional area of the rod and Elastic Modulus for aluminum. Typically, 

the Elastic Modulus is about 2% greater in compression than it is in tension for aluminum, 

however, in for these test the Modulus was assumed constant in both tension and compression 

[11]. 
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 휀𝜇 =
4 (

𝑣𝑖
𝑣𝑒𝑥𝑐

)

(1 + 𝜈)𝐺𝐹
∗ 106 (36) 

 𝐹𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  (1.02)𝐸𝐴휀𝜇 ∗ 10−6 (37) 

Misalignment between the strain gauges and the longitudinal axis of the rods does exist and 

can create error in the strain readings. Figure 39 shows how the percent error in the strain values 

for a half bridge set up varies as the angle of gauge misalignment (ξ) increases. The plot was 

generated using the following equation:  

 𝑛𝜎𝑝
=

(𝑅𝜀−1)(1−𝜈)(1−cos 2𝜉)

2(1+𝜈𝑅𝜀)
    (38) 

where Rε is the ratio of principle strains and ν is the Poisson’s ratio [12].  All the gauges have 

misalignments smaller than 3
o
 except for gauge no. 5 which has a misalignment of about 4

o
. From  

Figure 39, a 4
o
 gauge misalignment only produces  a -0.5% error in the strain values. It appears 

that gauge misalignment only has a small contribution to the total error seen in the strain gauges. 

The bipod rods with gauge misalignments equal to 4
o
 or small will be neglected since the actual 

strain error observed from the Instron testing results were a few magnitudes larger. (The figure is 

only valid for compressional loads, however, tension loads have similar error magnitudes).

 

Figure 39: Expected error in rectangular rosette strain gauges as the gauge 

misalignment increases [12]. 
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The plots and tables for the results from the Instron testing can be viewed in Appendix F, 

the plots show that errors exist in the endrod assemblies. Assemblies 1-5 show that the strain seen 

in the gauges do, in fact, increase linearly with an increase in load magnitudes, however, the 

difference between the measured and expected strain vary between ±23.2 % for applied loads 

magnitudes larger than 10 lbs. In most cases the endrod assemblies showed the smallest 

differences at the higher tested load magnitudes and the largest differences at smaller load 

magnitudes. This same trend was observed in the preliminary weight hanging loading tests. 

Endrod assemblies 2, 3 and 5 illustrated this trend best. Assembly 6 on the other hand showed 

slightly opposite results with the strain difference increasing at higher load magnitudes. Both 

assemblies 1 and 4 appear to overestimate the strain. Two primary methods can be used to reduce 

the errors seen in the endrod assemblies but the method that is to be implemented depends on the 

type of error that is present in the assemblies. These methods include: 

o Shunt Calibrations 

o Nonlinearity correction 

Ideally, shunt calibration should done before any strain measurements are recorded to 

minimize the presents of nonlinearity error seen in strain gauges readings [13].  Nonetheless, in 

these particular tests, shunting did not reduce the errors as was expected. One shunt resistor was 

placed in parallel with the terminals of a single strain gauge on the breadboard to simulate a strain 

across the gauge by modifying its resistance. The potentiometer of the QBA was then adjusted to 

achieve the proper voltage that corresponds to the shunted strain gauge. A 599 kΩ resistor and a 

119 kΩ resistor were used separately as shunts on the bridges. These resistances were selected to 

simulate 73.18 and 365.88 εμ respectively. The proper amplified voltages for the two resistors are 

0.0173 V and 0.0867 V, they were calculated using the equations below. 
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 휀𝜇 =
120𝛺

(120 + 𝑅𝑠)(1 + 𝜈)𝐺𝐹
∗ 106 (39) 

 𝑉𝑠 =
(𝐺𝐹)휀𝜇

[4 + 2𝐺𝐹 ∗ 휀𝜇(1 − 𝜈)]
∗ 𝐺𝑎𝑚𝑝 ∗ 10−6 (40) 

The downside to this method was that the starting output voltage after shunt was too close 

to the voltage floor of the QBA and therefore shortened the range of relative negative voltages 

that could be read. If compressive loads larger than 50 lbs were applied after shunting, the 

magnitude of the negative bridge voltage would be larger than the allowable negative voltage 

range of the QBA; the QBA would then read an output voltage of 0 V [9]. To accommodate for a 

wider of negative voltages or compressive loads, the initial output voltage was adjusted to 0.2 V 

instead of the small initial shunting voltages.  

In the case of endrod assemblies 1 and 4, a nonlinearity correction was applied to decrease 

the magnitudes of the strain readings from the gauges. From Figure 40 and Figure 41, the 

measured strain magnitudes recorded from the gauges are larger than the expected or theoretical 

strains making the slopes of the measured data steeper than that of the theoretical slops. Using the 

wheatstone bridge nonlinearity relationships provided by Vishay [10], the error was minimized.  

This was done by applying the nonlinearity expression to the sum of the initial and loading 

strains. The correction was then applied to the initial strain and then the difference between the 

summed correction and the initial corrected is taken to find that relative nonlinearity corrected 

relative strains.  The correction equations are listed below where εnonlin,cor  is the correction 

expression , εi,cor  is the corrected initial strain, εload,cor  is the corrected total strain and εcorrected  is the 

nonlinearity corrected relative strain. 
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 휀𝑛𝑜𝑛𝑙𝑖𝑛,𝑐𝑜𝑟 =
2휀

[2(1 + 𝜈) − 2𝐺𝐹휀(1 − 𝜈) ∗ 10−6]
 (41) 

 휀𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  휀𝑙𝑜𝑎𝑑,𝑐𝑜𝑟 − 휀𝑖,𝑐𝑜𝑟 (42) 

Doing this produces corrected strain values relative to the initial strains. After applying the 

corrections, a drop in the strain differences for the measured strain readings from endrod 

assemblies 1 and 4 was observed. These steps were coded into a MATLAB function to accept 

initial measured strains and correct the loaded strains. This function can be viewed in Appendix D 

with the rest of the CG code. 

Table 5: Strain and load values for strain gauge no. 1 before and after nonlinearity 

corrections were made. 

  

Before Correction After correction 

Instron 
Load 

εactual εmeas εDIFF Fmeas εcorrected εDIFF Fcor 

[lbs] [με] [με] [με] [lbs] [με] [με] [lbs] 

5.0 7.8 17.4 9.6 11.2 2.4 -5.3 1.6 

13.6 21.1 23.4 2.2 15.0 24.4 3.3 15.7 

35.8 55.6 82.2 26.6 52.9 48.7 -6.9 31.4 

80.0 124.2 168.2 44.0 108.3 120.9 -3.4 77.8 

106.6 165.5 209.2 43.7 134.7 172.1 6.6 110.9 

-11.7 -17.9 -18.1 -0.2 -11.9 -22.2 -4.3 -14.3 

-20.4 -31.0 -42.6 -11.6 -28.0 -30.4 0.6 -19.6 

-34.6 -52.7 -52.3 0.4 -34.3 -66.5 -13.9 -42.8 

-65.2 -99.3 -128.7 -29.4 -84.6 -102.8 -3.5 -66.2 

-101.1 -153.9 -171.6 -17.7 -112.7 -180.1 -26.2 -116.0 
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Figure 40: Measured strain nonlinearity correction for strain gauge no. 1. 

 

Table 6: Strain and load values for strain gauge no. 4 before and after nonlinearity 

corrections are made. 

  

Before Correction After correction 

Instron 
Load 

εactual εmeas εDIFF Fmeas εcorrected εDIFF Fcorrected 

[lbs] [με] [με] [με] [lbs] [με] [με] [lbs] 

2.8 4.0 0.0 -4.0 -69.2 8.1 4.0 5.6 

18.5 26.7 39.3 12.6 32.8 24.0 -2.6 16.7 

49.5 71.3 81.1 9.7 9.5 82.2 10.8 57.0 

50.5 72.8 81.1 8.3 7.9 85.1 12.3 59.0 

66 95.1 121.6 26.5 19.3 99.5 4.4 69.0 

92 132.6 162.5 29.9 15.6 143.9 11.3 99.8 

115 165.7 203.1 37.4 15.7 180.0 14.3 124.9 

0.3 0.4 0.0 -0.4 -69.4 0.9 0.4 0.6 

-4 -5.8 -5.5 0.2 -2.7 -7.5 -1.7 -5.2 

-19.47 -28.1 -41.9 -13.8 34.2 -25.0 3.1 -17.3 

-69.5 -100.2 -151.9 -51.7 35.8 -87.2 12.9 -60.5 
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Figure 41: Nonlinearity correction for strain gauge no. 4. 

This method was also applied on strain readings from assembly 6; however, it did not work 

as well as it did for assemblies 1 and 4. In Figure 42, notice how the measured strain values 

appear to deviate from the expected (theoretical) values as the magnitude of the applied Instron 

load increases. Implementing the correction only benefited endrod assembly 6 when it was loaded 

in compression. While in tension, the corrected strains were under estimated with strain values 

smaller than the original measured strains and the theoretical values. This large nonlinearity in  

gauge no. 6 was thought to be a sign showing that the gauge is damaged. Strain gauge no. 6 was 

then replaced and retest to verify that it’s strain-load curve was indeed linear. The plots and table 

of results for the new gauge on endrod assembly 6 can be view in Table 21 and Figure 72 in 

Appendix F. 
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Figure 42: Nonlinearity correction check for strain gauge no. 6.  

With the measured weight of the entire CG Structure being roughly 42 lbs, the endrod 

assemblies will be preloaded with a net weight of 42 lbs in compression. This is true when the tilt 

table has no tilt angle (i.e. α = 0
o
) and is parallel with the horizontal. This means that the endrod 

assemblies will initially be in compression before any payload is applied. Strain gauges 2, 3 and 5 

all show less than 15 % difference in measured strain when compared to their theoretical counter 

parts if compressive loads greater than 75 lbs are applied. Using equation (1) in the Strain Gauge 

Selection section, the minimum net weight applied to a single bipod rod can be calculated. In this 

case the minimum net applied weight is 258 lbs. Therefore, to maintain strain errors smaller than 

or equal to 15 % error, payloads larger than 215 lbs must be used (Note: The minimum payload 

weight is the difference between the net weight and the preload weight of the CG Structure). 

Applying this amount of weight to achieve the desired error ranges is not possible for this project. 

A decision was made to use weights smaller than 100 lbs to conduct the platform loading test 

safely. The CGA and Tilting Table would need to designed in order to  accommodate for such 
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large loads.  Errors larger than 15% are expected in the CG measurements if payloads smaller 215 

lbs are used. It is important to note that the CGA can still be used to validate the CG math model. 

The math model could be considered semi validated if the uncertainty range in the CG 

measurements include the actual CG data points. 

Strain gauges 1, 4 and 6 work slightly better at smaller loads after the nonlinearity 

correction is applied. The average error observed in the calibration tests for each endrod assembly 

was catalogued in the uncertainty_const sheet of the CG_platform_contants excel book as an 

heuristic error. The MainCGcode uses these error values to evaluate more approximate 

uncertainty ranges for the measured CG vector. With a better understanding of the functionality 

of the bipod rods and the Designed DAQ system, the CG Platform and Structure were 

reassembled to perform The Platform Loading experiments to investigate if CG mathematical 

model could be validated.  
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6. PLATFORM LOADING TEST 

 

Figure 43: Test set up using the P3 strain indicator (Blue box) and the Switch 

Terminal (Yellow box) as a DAQ. 

The effectiveness of the MATLAB algorithm to calculate a CG was tested using the CG 

Assembly (CGA) and Tilting Table. A series of weights were placed on the CG shelf at various 

locations and shelf heights.  Strain data from the bipod rods at these weight locations (or CG’s) 

were then recorded at different platform tilt angles (α). The P3 Strain Indicator box coupled with 

the Switch Terminal was used first to display the strain outputs from the strain gauges during 

testing. CG results obtained from strain gauge data recorded by the P3 box will serve as a 

benchmark for the designed DAQ system to validate the CG model. If the results from the 

benchmark tests show poor results then the tests using the designed DAQ system will be 

abandoned and a FE model will be needed for code validation.  A total of 88 data points were 

recorded from the platform loading tests. Each data point included the following entries: 
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 All six strain readings from each bipod rod 

 Payload location on the shelf 

 Platform tilt angle (α) 

 Payload weight magnitude 

 Shelf height (zshelf) 

Five different planar shelf locations, two shelf heights and four α angles were tested for two 

weight magnitudes. The in Figure 44 shows the tested planar CG locations relative to the BCS. 

Both 35 and 42.5 lb payloads were tested at 0, 30, 60 and 90 α angles for a zshelf of 5.5 in. These 

test were then repeated with the shelf height set at 10.875 in. The payloads or weights were 

measured on a digital scale with a 0.005 lb resolution; the approximate magnitudes for each 

weight were 35.77 and 43.47 lb. A table showing all the test combinations can be found in G. 1 in 

Appendix G. 

 

Figure 44: (Left) Data recording structure in excel. (Right) Desired test locations on 

shelf. 

The initial strain or no-load readings of the strain gauges were recorded when the CG 

Assembly (CGA) was set at the four different α angles. This was done before any payloads were 

placed on the shelf. The no load strain readings were used to compensate for the preload in the 
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bipod rods created by the CG Structure and Adaptor Plate. This was done by calculating the 

nonlinearity corrected relative strains, εcorrected. Figure 45 shows the no load tests for the CGA at  

α = 30
o
. 

 

Figure 45: No load Test with α = 30
o
 tilt. 

After the no load strains were recorded, payload weights were added to the shelf and the resulting 

strains in the bipod rods were measured.  The bipod rod strains at a particular shelf location were 

measured with 35.77 lbs of weight and then with 43.47 lbs of weight at α = 0
o
. The 35.77 lbs of 

weight were fastened to the shelf using the dumbbell bar and nut. Rather than unfastening the 

nuts to add the extra 7.5 lb (nominal) to achieve a 43.47 lb payload, the extra weight was stacked 

on top of the already fastened weights. This was done to help speed up the testing process so 

more combinations can be tested. Figure 47 illustrates this as a 7.5 lb weight rests above the nut 

and weights while the platform is tilted to 90
o
. The actual vertical CG (zact) was calculated using 

the zcg expression in equation (43). This equation accounts for the distance of each weight relative 

to the surface of the platform (zi). In all cases, the weight of the aluminum shelf, dumbbell rod 

and nuts were neglected.  
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 𝑍𝑐𝑔 = 𝑍𝑠ℎ𝑒𝑙𝑓  +  
∑ 𝑤𝑖𝑧𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

  (43) 

 

This process was then repeated for α = 30, 60 and 90 degrees at the same shelf location. Once all 

the stain data for the different α angles and payload magnitudes at was recorded, the entire 

process was repeated for a different payload shelf location. Again, a table of the test combinations 

can be found in G. 1 in Appendix G. 

 

 

Figure 46: Test at α = 60
0
 with 35 lbs payload (nominal) and the self-height set to 

5.5in. 
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Figure 47: Test at α = 90
o
  with a 43.77 lb payload and a zshelf set to 10.875 in. 

 

6.1 Platform Tilting Results 

The next two tables contain the planar CG and weight results from the Platform Loading 

Test when α = 0
o
.  Table 7 displays the actual weight magnitudes and planar CG coordinates (xact 

and yact) for the different tested payload locations. The actual weight magnitudes (wact) refer to the 

values of the weights recorded from measuring the weights on a digital scale. The uncertainty of 

the scale was used for the uncertainty in the uncertainty of the actual weight magnitude, (σw,a).  

The actual planar CG coordinates refer to the tested hole locations on the shelf. These were 

measured directly using a tape measure. The resolution of the ruler was used for the uncertainty 

in the actual planar CG locations, (σx,a and σy,a). The right half of the table contains the measured 

planar CG coordinates and weight values along their uncertainties. Table 9 compares the actual 

and measured results for the planar CG coordinates and weight magnitudes for the different 

payload locations on the shelf. The right half of the table shows the actual values while the left 

half displays the differences between the between the measured and actual values. 
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Table 7: Actual and measured results for the planar CG components for zshelf = 10.875 in. 

 
Actual Measured 

Payload 
Shelf 

Location 

Wact σW,a xact σx,a yact σy,a Wmeas σW,m xmeas σx,m ymeas σy,m 

[lb] [in] [lb] [in] 

Center 
35.77 0.005 

0.02 0.0313 1.841 0.0313 
31.539 5.517 0.279 0.998 2.889 1.649 

43.47 0.005 38.871 6.761 0.387 1.020 2.938 1.630 

Bottom 
left 

35.77 0.005 
-4.23 0.0313 -1.409 0.0313 

30.053 4.628 -2.923 1.260 -0.751 1.220 

43.47 0.005 37.175 5.529 -3.425 1.261 -0.762 1.158 

Top Left 
35.77 0.005 

-4.23 0.0313 5.091 0.0313 
29.614 5.572 -3.756 1.118 4.200 1.989 

43.47 0.005 37.481 6.897 -3.472 1.051 4.183 1.945 

Top 
Right 

35.77 0.005 
4.27 0.0313 5.091 0.0313 

33.956 7.315 3.213 1.330 6.488 2.463 

43.47 0.005 39.722 8.498 3.259 1.273 6.618 2.486 

Bottom 
Right 

35.77 0.005 
4.27 0.0313 -1.409 0.0313 

25.678 4.715 3.457 1.734 0.286 1.259 

43.47 0.005 29.160 5.146 3.405 1.648 0.009 1.204 
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Table 8: Difference between the measured and the actual planar CG results for zshelf 

= 10.875in. 

 
Actual Difference 

Payload 
Shelf 

Location 

Wact xact yact ΔW Δx Δy 

[lb] [in] [lb] [in] 

Center 
35.77 

0.02 1.841 
-4.23 0.26 1.05 

43.47 -4.60 0.37 1.10 

Bottom 
left 

35.77 
-4.23 -1.41 

-5.72 1.31 0.66 

43.47 -6.30 0.81 0.65 

Top Left 
35.77 

-4.23 5.091 
-6.16 0.47 -0.89 

43.47 -5.99 0.76 -0.91 

Top 
Right 

35.77 
4.27 5.091 

-1.81 -1.06 1.40 

43.47 -3.75 -1.83 1.53 

Bottom 
Right 

35.77 
4.27 -1.41 

-10.09 -0.81 1.69 

43.47 -14.31 -0.87 1.42 

 

Figure 48 plots the measured weight results versus the location of the test weights relative 

to the shelf. The plot in Figure 48 shows the measured weight values using a 35.77 lb test weight 

while the lower plot shows results using a 43.47 lb test weight. A reference line is plotted in both 

figures so that the measured weight values can be compared to the actual weight. Each point on 

the plot contains an error bar associated with it. Each error bar has a width that is twice the size of 

the uncertainty of the measured weight (EBw), at a particular shelf location and is plotted 

symmetrically about the corresponding measured weight value. 

 

 𝐸𝐵𝑤 =  2𝜎𝑤 (44) 
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Figure 48: Measured payload weights at various CG locations for 35.77 and 43.47 lb 

test weights. 

The top plot in Figure 49 plots the average of all the xmeas values when the payloads are on 

the left, center or right hand side of the shelf, versus the actual x-coordinates of xact = {-4.23, 

0.02, 4.27}in. The left and right most data points are averages of four samples comprised of data 

generated from two y-locations and two payload magnitudes. An average of their associated 

propagated uncertainty ( σx̅̅ ̅ ) was combined with the standard deviation of the nominal CG 

coordinates using equation (27)  in section 2.3.2 to create error bars for the left and right most 

data points. The width of the symmetric errorbars (EBx) were calculated using equation (45). 

 𝐸𝐵𝑥,𝑦 = 2√𝜎𝑥,𝑦̅̅ ̅̅ ̅2 + 𝑆𝑑𝑥,𝑦
2
 (45) 

The center data point at xact = 0.02 in is an average of two samples of xmeas when the payloads 

were at the center of the shelf using two different payload magnitudes. A similar process was 

used to create the lower plot in Figure 49. The average of all the ymeas values when the payloads 
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are on the lower, center and top side of the shelf were plotted versus the actual y-coordinates of 

yact = {-1.409, 1.841, 5.091}in. Equation (45) was also used to calculated EBy. 

 

Figure 49: X and Y CG location accuracy plots. 

Tabulated results for the measured vertical CG coordinates (zmeas) for different test weight 

locations are displayed in Table 9. The results for zmeas at α = 30, 60 and 90 degrees are also 

presented in the table, all the result where generated with zshelf  = 10.875in. The actual vertical CG 

(zact) changes as more weight is added onto the shelf. It should be noted that zmeas  is calculated 

using the bipod strain data at α≠0
o
 and the planar CG coordinates (xmeas and ymeas )  when α=0

o
. The 

uncertainty propagated values of the vertical CG coordinates (σz,α) at different α angles are also 

tabulated in the table below. The difference between the measured and actual vertical CG 

coordinates for different α angles (Δzα)  are shown on the right of the table. 
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Table 9: Platform tilting test results for zmeas at different planar payload locations and α’s at zshelf = 10.875 in. 

 
Actual Measured Difference 

Payload 
Shelf 

Location 

Wact zact σzact z30 σz30 z60 σz60 z90 σz90 Δz30 Δz60 Δz90 

[lb] [in] [in] [in] 

Center 
35.77 11.96 0.035 15.78 5.50 20.65 5.83 20.46 5.19 3.16 8.03 7.81 

43.47 12.72 0.036 14.72 5.20 20.09 5.69 19.71 4.99 2.10 7.47 7.06 

Bottom 
left 

35.77 11.96 0.035 17.43 5.31 21.78 5.38 21.55 5.10 4.81 9.16 8.90 

43.47 12.72 0.036 17.40 5.25 21.13 5.15 21.13 4.91 4.78 8.51 8.48 

Top Left 
35.77 11.96 0.035 15.19 4.40 19.86 4.88 22.43 5.83 2.57 7.24 9.78 

43.47 12.72 0.036 15.63 4.36 21.00 4.91 21.24 5.51 3.01 8.38 8.59 

Top Right 
35.77 11.96 0.035 26.06 11.46 18.17 6.15 19.90 5.68 13.44 5.55 7.25 

43.47 12.72 0.036 24.93 10.71 18.94 6.39 19.83 5.73 12.31 6.32 7.18 

Bottom 
Right 

35.77 11.96 0.035 32.08 13.20 28.24 9.36 24.58 6.19 19.46 15.62 11.93 

43.47 12.72 0.036 33.86 13.83 28.94 9.41 25.73 6.38 21.24 16.32 13.08 
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The figure below plots 30 samples of the zmeas vs zact  for all the tested weight locations, α 

angles and both shelf heights for a 43.47 lb test weight. The purpose of this plot is to show the 

spread of the  zmeas results. 

 

 

Figure 50: Scatter plot of the zmeas versus the zact for different α. 

The next two plots in Figure 51 and Figure 52 show α’s influence on zmeas  when a 43.47 lb 

test weight is used. Figure 51 shows a box plots of zmeas for the three tested α values at both zact = 

12.72 and 7.22 in. The zmeas values for top and lower plots in Figure 51 of was generated using 

zshelf of 5.5 and 10.875 in respectively. Tabulated results for zshelf = 5.5 in can be found in G. 1 in 

Appendix G. Figure 52 plot the zmeas values for the test weight at different shelf location for 

varying α’s. 
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Figure 51: Boxplot of zmeas at various tilt angles when zact was is 12.72 in and 7.22 in 

using a 43.47 lb payload.   

 

 

Figure 52: Compares zmeas with the payload planar location using a 43.47 lb payload. 
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6.2 Discussion 

After examining the plots, we see that large differences between the actual CG and the 

measured CG exist. This result was expected since a sizable amount of heuristic error was 

observed from the bipod calibration tests. However, the errorbars failing to encompass all actual 

CG and payload values was not expected. It is very likely that another source of error in the 

experimental set up is not being accounted for, resulting in errorbar widths that do not capture the 

actual data points.  

From Figure 48, all of the measured payload values undershot the actual payload weights. A 

large drop in the measured weights is observed when the actual payloads are moved to positions 

on the right side of the shelf. The predicted uncertainty range using a 43.47 lb payload at the 

center and left half of the shelf encompassed the actual magnitudes for the weight. However, 

using a lighter 35.77 lb payload, the predicted uncertainty range only includes the actual weight 

magnitude when the payload was at the center and top half of the shelf. 

The largest error in the measured planar CG locations occurred when the payloads were 

placed on the right half of the shelf; this can be observed by looking at the bottom right (BR) and 

top right (TR) Δy columns in Table 8. In particular, the ymeas values when the test weight was 

placed in the BR location on the shelf, are nearly zero. These discrepancies in the measured CG 

of the y-component propagate through the system causing errors in the measured vertical CG 

coordinate, zmeas. This happens because zmeas is calculated using the measured planar CG values 

(xmeas and ymeas).  

With large errors observed in the measured CG components, for payloads placed on the 

right half of the shelf, one would expect there to be large errors in zmeas as well. The net spread of 

the zmeas results for the two tested zact cases, using 43.47 lbs of weight were both large and 

approximately the same. This trend can be viewed in Figure 50 . Results examining how the tilt 



 

 

80 

 

angles (α) influence zmeas are plotted in the Box plots in Figure 51. They show that the range of 

the zmeas decreases as α increases if zact is 12.72 in and a test payload of 43.47 lbs is used.  

Looking at the top plot in the same figure, at α = 60
o
, one outlier appears at zmeas = 28.94 in. 

Using the smaller shelf height and with zact = 7.22 in, the range between the 25
th
 and 75

th
 

percentile remains relatively unchanged for different α values. The median lines for zmeas in all the 

Box plots were closer to the 25
th
 percentile range for the plots at 30 and 60 degree tilt angles. This 

trend was true for both heights. Both of the plots in Figure 52 show a spike in zmeas for payloads 

placed at the top and bottom right corners of the shelf. Generally speaking, zmeas always over 

estimated zact. More results for the platform tests can be found in Appendix G. After examining 

these plots it is clear that theses experimental results cannot be used to validate the CG math 

model.  

It is very likely that the heuristic errors observed in the bipod rods caused the large 

differences between the actual and measured CG vector as well as in the measured payload 

weights. The fact, the discussion at the end of Chapter 5 pointed out that payloads of about 200 

lbs would be needed to achieve bipod load errors smaller than 15%. By using loads much smaller 

than 200 lbs, errors larger than 15% is expected in the CG measurements. A more interesting 

observation is noticing that the uncertainty ranges for the measured values were not large enough 

to include the actual values. It is possible that some other sources of error in the experimental set 

up are not being accounted.  

Results from the Platform Loading Tests alone are not enough to validate the mathematical 

model of the CG measuring platform. If sufficient time was granted to rectify this issue, more 

Instron calibration tests would be conducted to investigate different endrod assembly error 

identification hypotheses. If the hidden errors in the endrod assemblies can be identified then the 

new errors can be incorporated into the CG uncertainty model. This would ultimately widen the 

width of the uncertainty range include the actual data points. 
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 Another approach is needed to test the MATLAB code’s ability to predict the location of a 

CG vector given the loads in the bipod rods. To investigate whether the code works correctly, an 

FE model of the CG Platform assembly was created to generate the expected bipod loads at a 

number of different loading scenarios. The following chapter outlines this task and the results.  
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7. VALIDATING MATH MODEL USING FEA 

Since the results from the Platform Tilting Test produced CG uncertainty ranges that did not 

encompass the actual CG locations entirely, another independent method for validating the CG 

math model was needed. The Finite Element Method (FEM) was selected to perform this task for 

its ability to obtain numerical solutions for stress analysis problems. The FE method works by 

first discretizing a body into an equivalent system of smaller finite elements, also referred to as a 

mesh. Each element is assigned a displacement function along with compatibility 

strain/displacement laws and constitutive stress/strain relationships. Next, the elemental stiffness 

matrices can then be generated and used to calculate the strain and stress in the elements. More 

detail on the FEM theory can be found in [19]. 

FEM can be used as a means to validate the CG model because it directly expresses the 

strain and stress quantities in terms of the generalized displacements. These displacements can be 

calculated using iterative methods such as Gauss-Seidel or Gaussian matrix elimination. The 

method implement into the CG code for measuring CG uses a force or flexibility method to 

determine the internal forces in the bipod rods [19]. 

In this chapter, the process of developing and using a simplified FE model is described.  

The simplified model was created in ABAQUS 6.12 rather than exporting the complete CAD 

model from SOLIDWORKS. Once the Platform model was created, a point mass was placed at 

various locations relative to the BCS of the platform.  Care was taken to assure that point mass 

locations matched locations inputted to the CG code. Simulations for a few cases were run to 

generate the expected loads in each bipod rod. 

To validate the model, the bipod loads from ABAQUS were compared to the loads 

generated from the CG code set to solve the Reverse Method. The load values generated from 
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ABAQUS were aslo as inputs to the CG code to compute the CG using loads from ABAQUS. 

The same CG parameters that were used for the code were used to construct the Platform 

assembly in ABAQUS. The following sections will review how the FE model was created and 

how well it substantiates the CG model. 

7.1 FE Model Construction 

Only the components that have the most influence in the prediction of the CG needed to be 

modeled in ABAQUS: 

 The bipod rods along with their load path intersection points 

 Adaptor Plate of the platform 

 The payload  

The Adaptor Plate was modeled as a 3-D shell object and its original hexagonal geometry 

was simplified to a rectangular shape. A shell type element was chosen since the loading 

experienced by the plate was not the main focus. In particular, the shell element works best for 

structures in which the stress in the thickness direction is negligible or when one dimension is 

significantly smaller than the others [14]. Ideally, the Adaptor Plate should be as rigid as possible 

so that the most significant areas of stress occur in the bipod rods. The Elastic Modulus and 

density of 10E6 lb/in
2
 and 0.098 lb/in

3
 for aluminum was used for the plate in this FE model. A 

total of 288 linear quadrilateral elements were used to mesh the plate. A more refined mesh of the 

platform was not needed since stress within the platform was not the focus. The Adaptor Plate 

was portioned so that the bipod rods could be assembled to the proper location on the plate. 
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Figure 53: Top view of portioned Adaptor Plate. 

The bipod rods were modeled as 1-D wire objects containing only one element. This was 

done to ensure that the rods would only resist axial loads. A truss section was assigned to the 

bipod rods to provide axial strength but no bending stiffness [15]. This is intended to model the 

combination of brackets and endrods in the physical system. For the bipod rod FE model, a cross 

sectional area of 0.0644 in
2
 was used as well as the Elastic Modulus and density of aluminum. 

The CG code was modified to assign the same cross sectional area to all the bipod rods, to be 

compatible with the FE model. Each bipod rod spans the distance between the bottom nodes on 

the brackets bolted to the base plate of the platform to the load path intersection point of their 

respective bipods.  
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Figure 54: (Top) Bipod rod in physical model. (Bottom) FE model. 

A tie constraint was used to constrain the upper nodes of the two bipod rods in a bipod set 

to the load path intersection point beneath the Adaptor Plate. Displacement boundary conditions 

were placed on the lower nodes of each bipod rod to model the revolute joints of the physical 

model. 

The point mass of a payload was created as an inertial mass at a reference point above the 

platform. A payload weight of 43.47 lb and a zcg of 12.91 in was used for all the simulations in 

ABAQUS. Different CG locations were tested by modifying the location of the reference point. 

To mimic the rigidity of the CG Structure, the reference point of the point mass was constrained 

to the Adaptor Plate using a coupling kinematic constraint. This feature constraints the motion of 

the point to the surface of the plate. Figure 55 shows the point mass constrained to the Adaptor 

Plate. 

Bipod Rod 

Bipod Rod 
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Figure 55: Simplified CG Platform Assembly in ABAQUS. 

 

7.2 FE Model and CG Math Model Comparison 

Five different loading cases were simulated in the FE model to generate the loads in each 

bipod rod. This process is equivalent to the Forward Method in the CG code which calculate the 

bipod rod load given the CG vector and platform tilt angle (α). Table 10 contains a list of all the 

simulated cases, these cases where chosen randomly. The image in Figure 56 shows a separate 

simulate so illustrate the Adaptor Plats and bipod rod deflections when α = 900.  (Note: - α simply 

refers a platform tilt angle who’s rotation vector is point in the negative y-direction.) The bipod 

loads from the FE model were then used as inputs to the CG code set to solve the Forward 

Method to calculate the CG vector. The CG vector using the FEM loads were then compared to 

the expected CG or the point mass location used in ABAQUS. 
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Table 10: Simulated cases for FE model. 

Case Number 
Payload Shelf 

Location 
Tilt Angle (α) 

Platform 
Rotation (β) 

[Degs] 

1 Bottom Left  0 0 

2 Bottom Left  -60 0 

3 Top Right 0 0 

4 Top Right 30 0 

5 Top Right -90 60 
 

 

    

Figure 56: (Left) Platform Tilted at α = 90
o
. (Right) Simulation Contour of Platform 

at α = 90
o
 and a payload weight of 43.47 lbs at BR. 

Results from the FEA simulations generated bipod loads that matched extremely well with 

the loads calculated from the CG Code while it was set in the Reverse Direction. Table 11 shows 

that the percent difference between the bipod loads using the two methods are on the order of 

0.01%. This was true for case 5 when α and β were set to -90 and 60 degrees respectively with the 

payload placed at the top right (TR) location of the shelf. These parameter we selected at random. 

Using the bipod rod loads generated from the FE model as inputs into the CG Code produced a 

measured CG and payload that were very close point mass location and weight used in ABAQUS. 
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Table 12 contains the results from using the bipod loads generated from the FE model as inputs to 

run the Forward Direction in the CG Code. Similar to the Forward comparison, the results show 

that both the predicted CG vector and the payload are approximately 0.01% different from the 

actual CG and payload. 

Table 11: ABAQUS and MATLAB Bipod Rod load comparison with a payload on 

the top right corner of the shelf (TR). 

 
Reverse Comparison (TR) 

 
σABAQUS FFEM FMATLAB Diff 

Bipod 
Rod Index 

[lb/in2] [lb] [lb] [%] 

1 -559.153 -36.009 -36.012 -0.006 

2 -317.935 -20.475 -20.476 -0.002 

3 317.928 20.475 20.476 -0.008 

4 559.146 36.009 36.012 -0.009 

5 291.37 18.764 18.765 -0.003 

6 -291.357 -18.763 -18.766 -0.014 

α = -90 , β = 60 
  

  
 

 

Table 12: Forward results comparison between the actual values and the results 

using loads generated by FEM as inputs to the CG code. Payload set to the top right 

corner of the shelf (TR). 

 
Forward Comparison (TR) 

α = -90 , β = 60 x Y z mg 

Units [in] [in] [in] [lbs] 

Actual Values 4.50 5.36 12.91 43.470 

Using FEM  4.501 5.360 12.911 43.466 

Percent Diff -0.011 0.004 -0.001 0.009 
 

Additional simulations with the FEM were performed with the payload at the bottom left 

(BL) shelf setting to confirm the small percent difference between the FEM and CG Code. 

Similar results were observed and the tables of results from these comparisons can be found in 
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Appendix H. The agreement of the CG Code with the FEM suggests that the derived Math model 

for the CG measuring platform is indeed valid 

7.2.1 Platform Loading Results Revisited  

The Reverse direction of the CG Code was then used to generate the expected bipod rod 

loads and their corresponding strains to determine how far off the measured experimental strains 

are from their expected values. Figure 57-58 and Table 13-13 compare the results of both of these 

cases when the actual payload of 43.47 lbs is on the BR corner of the platform and the zact is 

12.72in. This payload and CG location was selected for the comparison here since the measured 

values at this particular position showed the largest difference from the actual CG and the 

expected. CG. The corrected measured strains (εcorrected) refers to the measures strain from the 

Platform Loading  Tests which has been corrected for nonlinearity errors. The expected strains 

refer to the strain values that were generated using the CG verified MATLAB code. 

 

Figure 57: Measured and expected bipod rod strains at α = 0
o
 while the actual 

payload is at the BR corner of the shelf. 
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Table 13: Load and strain results for the expected and measured cases. Parameters: 

α = 0
o
, Payload at BR and zact = 12.72 in. 

BPR 
Index 

Fexpect Fmeas FDIFF εexpect εCM εDiff 

[lb] [με] 

1 -6.51 -0.48 6.02 -10.10 -0.75 9.35 

2 -6.51 -7.75 -1.24 -9.47 -11.28 -1.81 

3 -9.88 -7.21 2.68 -16.50 -12.03 4.47 

4 -9.57 -13.04 -3.47 -13.80 -18.80 -5.00 

5 -23.67 -17.92 5.75 -37.74 -28.57 9.17 

6 -24.51 -10.18 14.32 -37.99 -15.79 22.20 

     ||εDIFF|| 52.00 
 

 

 

Figure 58: Measured and expected bipod rod strains at α = 90
o
 while the actual 

payload is at the BR corner of the shelf. 
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Table 14: Load and strain results for the expected and measured cases. Parameters: 

α = 90
o
, Payload at BR and zact = 12.72 in. 

BPR 
Index 

Fexpect Fmeas FDIFF εexpect εcor,meas εDiff 

[lb] [με] 

1 20.47 42.13 21.66 31.79 65.42 33.63 

2 39.02 61.99 22.97 56.80 90.24 33.44 

3 17.37 42.79 25.42 28.99 71.44 42.44 

4 -15.02 -13.04 1.98 -21.65 -18.80 2.85 

5 -38.91 -40.08 -1.17 -62.04 -63.91 -1.87 

6 -20.87 -19.88 0.99 -32.36 -30.83 1.53 

     ||εDIFF|| 115.76 
 

Looking at Figure 57 and Table 13, the results for the payload at BR with α = 0
o
, it can be 

noticed that the largest difference between the measured and expected strains occur in BPR 6.  

However, when the platform is tilted to 90
o
 the largest difference appears in BPR 3 while the 

smallest difference is at BPR 6. The results also show that when the platform is flat with the 

horizontal BPR 1 registers very little strain, in fact the strain is practically zero.  

Although a sizable difference is observed between the measured and expected loads in the 

bipod rods, attention must not be everted from the fact that the CG model used to write the 

MATLAB code agrees with the FEM model in ABAQUS. Instead, the challenges experienced  in 

the tests conducted for this project can be used to support the premise that better transducers will 

be needed to accurately measure CG. Using strain gauges to perform this task proved to be more 

difficult than expected. Now knowing that the CG model is indeed correct, it can be hypothesized 

that the observed errors in the Platform Tilting Test can either stem from the endrod assemblies 

and there strain gauges or the experimental set up. Judging from the original heuristic errors 

witnessed from the calibrations of the bipod rod in Chapter 5, it seems more likely that the 

measured CG errors come from the endrod assemblies.  
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8. CONCLUSIONS AND RECOMMENTATIONS 

The focus of this thesis was to derive a mathematical model of a center of gravity 

measuring platform and to confirm its validity. This project was proposed by Jet  Propulsion 

Laboratory (JPL).  JPL requested that the center of gravity math model be implemented into a 

MATLAB code. The code would be utilized to perform quick center of gravity sanity checks for 

Integration Engineers while assembling satellites or other spacecraft. Measurement uncertainty 

was asked to be included in the model as it would provide a range in which the true center of 

gravity and payload values would reside. JPL expressed a need for the code to also function in the 

Reverse direction to back calculate the expected bipod loads given a CG vector and payload 

magnitude. The aim in doing this was to provide a tool that would assist Engineers in selecting 

load cells with sufficient capacity and error ranges to design their own CG Platform. A scaled 

down prototype of a CG Platform using relatively inexpensive strain gauge transducers was 

designed to conduct a series of loading experiments to test the validity of the math model and 

MATLAB code. In addition to the experimental tests, an Finite Element model was developed to 

serve as a secondary tool for validating the CG code. 

8.1 Conclusions 

Empirical results from the platform loading experiment were not accurate enough to 

validate the CG code, and as a result, the FE model became the primary source for validating the 

CG code. Looking back at section 5.2.1, results from the Bipod Rod Calibration Tests showed 

that heuristic errors observed in the rods were as large as 23.2%  if load magnitudes larger than 

10 lbs were applied to the endrod assemblies. With these error ranges in the bipod rods, it is easy 

to see why the nominal values of the measured CG and payload values from the Platform Loading 

Tests did not match well with the expected values.  



 

 

93 

 

The individual uncertainty of the measured parameters needed to model the CG measuring 

platform were recorded and used to develop a measurement uncertainty model using the 

uncertainty propagation principle. Combining the measurement uncertainty with the observed 

heuristic errors led to a wider uncertainty range for each measured/calculated CG and payload 

values.  

It was somewhat surprising to see that only a few of the results from the measured CG and 

payload values possessed uncertainty ranges that were wide enough to encompass their actual CG 

and payload magnitude counterparts. The results from the Platform Loading Test in section 6.2 

and Appendix G show that an inherent error exist in the experimental set up.  Again, this result 

was traced back to the initial errors observed in the bipod rods after the CG math model was 

validated from the FEM.  Results from the FEM and CG Model comparison show that there is 

less than a 0.01% difference between the loads predicted from the CG code to the loads generated 

from the FE model. These results accomplish the original goal to validate the math model for the 

CG measuring platform. Using the bipod loads from the FE model as inputs the CG code resulted 

in calculated CG vectors that matched the point mass coordinates used to create a payload in the 

FE model. The difference between these two results was also with a 0.01% difference.  

8.2 Recommendations 

Based on the conclusions presented, the following recommendations should be considered 

for future work: 

 Run another set of tests to experimentally validate the CG model using precision 

load cells rather than strain gauges. 
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 A wider variety of payload locations should be tested as the tests conducted for this 

project was confined to a  17 3/8 x 15 7/8 x 26 3/8 in
3
 volume. A wider range of 

payload magnitude should also be used. 

 If strain gauges are to be used again as the transducers in a future CG platform, 

further bipod rod calibration loading tests should be conducted to identify the 

additional sources of error in the endrod assemblies.  

 Modify the Code to receive the top bracket node locations to calculate Rbi. The 

current code uses the location of the bottom bracket nodes and θi to determine Rbi. 

 Investigate the Singular Value Decomposition (SVD) method as a way to derive a 

more robust CG model to eliminate the need to have bipod load measurements at 

two α angles. The SVD method has the potential to extract CG solution vector 

using only one α. 
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APPENDICES 

APPENDIX A. HALF BRIDGE VOLTAGE TO STRAIN DERIVATION 

ρ  is the resistivity and R is the resistance of the wire 

𝑅 =
𝜌𝐿

𝐴
           

 

A is a function of some constant C times the diameter squared 

 

𝐴 =
𝜋

4
∗ 𝐷2  = 𝐶𝐷2 

 

Taking the derivative of the resistance with    𝑅 =
𝜌𝐿

𝐶𝐷2 

 

𝑑𝑅 =
𝐶𝐷2(𝜌 ∗ 𝑑𝐿 + 𝐿𝑑𝜌) −  𝜌𝐿(2𝐶𝐷 ∗ 𝑑𝐷)

(𝐶𝐷2)2
 

 

 

𝑑𝑅

𝑅
=

𝑑𝐿

𝐿
− 2 ∗

𝑑𝐷

𝐷
+

𝑑𝜌

𝜌
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Divide by 

𝑑𝑅

𝑅
𝑑𝐿

𝐿

 

𝑑𝑅
𝑅

𝑑𝐿
𝐿

= 1 − 2
(

𝑑𝐷
𝐷

)

𝑑𝐿
𝐿

+

𝑑𝜌
𝜌

𝑑𝐿
𝐿

 

 

Where the following is true 

𝑑𝐿

𝐿
= 휀𝑎               

𝑑𝐷

𝐷
= 휀𝐿          

𝑑𝐷
𝐷
𝑑𝐿
𝐿

=  −𝜈    

 

Making substitutions 

 

  

𝑑𝑅
𝑅
휀𝑎

 = 1 + 2𝜈 + 

𝑑𝜌
𝜌

𝑑𝐿
𝐿

 

 

Where GF is the Gauge factor for the strain gauge 

 

𝐹𝑔 =

𝑑𝑅
𝑅
휀𝑎

  

 

휀𝑎 =
1

𝐺𝐹

𝛥𝑅

𝑅
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It is easier to measure changes in voltage than it is to measure changes in resistances 

𝛥𝑉

𝑉𝑒𝑥𝑐
=

𝑉𝑜𝑢𝑡

𝑉𝑒𝑥𝑐
=

𝐾

4

𝛥𝑅

𝑅
=

𝐾𝐺𝐹휀𝑎

4
 

 

Where K is the bridge factor and depends on the amount of gauges used in the system and 

there orientation (k=1, 2 , [1+ν] or 4) 

 

Figure 59: Wheatstone bridge diagram. 

 

휀𝑎 =
4(𝑉𝑖/𝑉𝑒𝑥𝑝)

K(𝐺𝐹)
 

 

For a half bridge arrangement to measure axial load, the bridge is equal to one plus the 

Possions ratio of the material. 

휀𝑎 =
4(𝑉𝑖/𝑉𝑒𝑥𝑝)

(1 + ν)(𝐺𝐹)
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The strain equation can then be rearranged to determine the voltage for the applied strain: 

𝑉𝑖 =
(1 + ν)

4
𝐺𝐹 ∗ 휀𝑖 ∗ 𝑉𝑒𝑥𝑐 
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APPENDIX B. STRAIN GAUGE SELECTION CALCULATIONS 

B. 1 Minimum and Maximum Strain Calcs 

The maximum and minimum strains are calculated to see how large of a strain produce 

from the maximum and minimum payload constraint. Equation (33) is used to evaluate both 

strains 

 
Given Values: 

Wmax = 150 lbs 

Wmin  = 10 lbs 

θ = 35
o 

 

 

휀𝑚𝑎𝑥 =  
150/6 𝑙𝑏𝑠

𝑠𝑖𝑛35 ∗ (0.25 ∗ 0.25)𝑖𝑛2 ∗ 10𝐸6𝑙𝑏/𝑖𝑛2
= 464.9µ휀 

 

휀𝑚𝑖𝑛 =  
10/6 𝑙𝑏𝑠

𝑠𝑖𝑛35 ∗ (0.25 ∗ 0.25)𝑖𝑛2 ∗ 10𝐸6𝑙𝑏/𝑖𝑛2
= 46.5µ휀 

 

 

 

The minimum voltage can be calculated using the voltage to strain equation derived in 

Appendix A. 

 

Given Values: 

K = 1.33  bridge factor  

GF =2.095 Gauge factor of the strain gauge 

Vexc= 3.3v  Excitation voltage of Wheatstone bridge 

 

 

   

 𝑉𝑚𝑖𝑛 =
(1 + ν)

4
𝐺𝐹 ∗ 휀𝑚𝑖𝑛 ∗ 𝑉𝑒𝑥𝑐  

 

𝑉𝑚𝑖𝑛 =
1.33

4
∗ 2.092 ∗ 46.5µ휀 ∗ 3.3𝑣 

𝑉𝑚𝑖𝑛 = 0.051 𝑚𝑉 
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B. 2  Load Limit for DAQ System 

The smallest measurable load that can be applied to the endrod can be found be setting the 

voltage resolution of the DAQ System equal to the voltage expression for the strain gauge. 

From equation (33) the strain in the endrod is all follows 

휀𝑙𝑖𝑚𝑖𝑡 =
𝐹𝑙𝑖𝑚

𝐸𝐴
 

 

Next the strain can be plugged into the voltage equation and set equal the voltage resolution  

𝑉𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
(1 + ν)

4
𝐺𝐹 (

𝐹𝑙𝑖𝑚

𝐸𝐴
) ∗ 𝑉𝑒𝑥𝑐 ∗ 𝐺𝑎𝑚𝑝 

 

Now the Flim  can be isolated and evaluated 

𝐹𝑙𝑖𝑚 =
4

𝐺𝐹(1 + ν)Gamp
(

𝑉𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑉𝑒𝑥𝑐
) ∗ 𝐸𝐴 
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APPENDIX C. PROPOSED ROBUST METHODS 

C. 1 Least Squares Method and Normal Equation 

 

Figure 60: Illustration showing the orthogonal projection of b into the column space 

of A, Projcol(Acg)b = b
*
. 

 

 ‖𝐴𝒙∗ − 𝒃‖ ≤ ‖𝐴𝒙 − 𝒃‖  

 𝐴𝑇𝐴𝒙∗ = 𝐴𝑇𝒃  

C. 2 Singular Value Decomposition 

A singular matrix A 

 𝐴 = 𝑈𝛴𝑉𝑇
  

Where V is filled with the eigenvectors of A
T
A, U is filled with the eigenvectors of 

AA
T
 and Σ is a diagonal matrix of the eigenvalues of A

T
A.  
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APPENDIX D. MATLAB CODE 

D. 1 Main CG Code 

%% Main CG Code 

%% +++++++++++++++++++++++++++++++++ %% 

%%%=================================%%% 

%%% CENTER OF GRAVITY PLATFORM CODE %%% 

%%%=================================%%% 

%%%+++++++++++++++++++++++++++++++++%%% 

  

clc;clear all 

  

% prompt user to select Measuring CG or Sizing Load Cell path 

opt = '(1)Measure CG or (2)Size Load Cells. \n Enter either (1) 

or (2) \n\n'; 

useropt = input(opt); 

  

  

switch useropt 

  case 1 % Measure CG 

    disp('Calculate CG') 

    disp('Is the LoadData.xlsx file updated?') 

    disp('Press Enter if file is updated') 

    disp(' ') 

    pause 

         

    opt2 = '(1)Find planar payload location: CG[x;y] or 

(2)complete payload location: CG[x;y;z] \n Enter either (1) or 

(2) \n\n'; 

    useropt2 = input(opt2); 

     

    % evaluate payload location 

    [cg,dcg,mg,dmg] = Force2cgShell(useropt2); 

    

  case 2 % Size Load Cells 

    disp('Size Load Cells') 

    % Absolut readings or tare readings    

    opt = ' Enter (1) for Tare measurements or (return) for 

Absolute measurements of one test case \n Enter either (1) or 

return\n'; 

    option = input(opt); 

     

        if option == 1 

            [F,Fcap,Fabs1,Fcap1,F_at,Fatcap] = 

SizeLoadCells(option); 

        else 

            [F,Fcap,~,~,~,~] = SizeLoadCells(option); 
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        end 

  

  otherwise 

    warning('invalid input; Re-run and enter either (1) or (2)') 

end 

  

beep 

pause(1) 

beep 
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D. 2 Force2cgShell 

function [cg,dcg,mg,dmg] = Force2cgShell(opt) 

%% User Requested Variables  

format 

%% 

% clc;clear all 

% opt = 1 

%% Inputs 

filename = char('LoadData');    % load data from excel workbook, 

filename indicates shelf height 

LCindx0  = char('A2:D8');       % data range for platform at 0deg 

tilt  

LCindx1  = char('B12:D17');     % data range for platform at 0deg 

tilt  

  

% Store load cell data at alpha = 0 from excel to MATLAB 

variables 

LCData = xlsread(filename,1,LCindx0); 

F0 = LCData(:,2);      % unloaded load cell data at alpha = 0 

Fload = LCData(:,3);   % loaded load cell data at alpha = 0 

  

% Store load cell data at alpha from excel to MATLAB variables 

LCData1 = xlsread(filename,1,LCindx1); 

F0_p = LCData1(:,1);              % unloaded load cell data at 

alpha  

Fload_p = LCData1(:,2);           % loaded load cell data at 

alpha 

alph = xlsread(filename,1,'B10'); % platform tilt angle 

beta1 = xlsread(filename,1,'D10'); % platform rotation angle 

%% Load cell error 

dF_all = xlsread('CG_platform_constants',2,'B15:B20'); 

  

% error in force readings at alpha = 0 

   dF0 = F0.*dF_all/100; 

dFload = Fload.*dF_all/100; 

  

% error in force readings at alpha ~= 0 

   dF0_p = F0_p.*dF_all/100; 

dFload_p = Fload_p.*dF_all/100; 

  

%% Find CG     

Fload = Fload - F0; 

Fload_p = Fload_p - F0_p; 

  

if  opt == 1 
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% calculate CG coordinates: cg_ang =[x,y,z], dcg_ang =[dx,dy,dz] 

and mg_ang = [wt_0deg, wt_ang] 

    [cg,dcg,mg,dmg] = force2cg(Fload,[],[],dFload,[],0);         

elseif opt == 2 

% calculate CG coordinates: cg_ang =[x,y,z], dcg_ang =[dx,dy,dz] 

and mg_ang = [wt_0deg, wt_ang] 

    [cg,dcg,mg,dmg] = 

force2cg(Fload,Fload_p,alph,dF0,dF0_p,beta1);  

else 

    warning('Enter either (1)for CG[x;y] at alpha = 0 or (2)for 

CG[x;y;z] at alpha ~= 0') 

end 

% end 
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D. 3 Force2cg  

function [cg_val,dcg,mg_mag,dmg] = 

force2cg(F0vec,F1vec,ang,dF0,dFi,thetaz_deg) 

% - 

['filename.xlsx','filename.xlsx',tiltangle,uncertainty,platform 

rotation] -> [CG,wt,uncertainty]  

% - The first file is load data at zero tilt (file0) and the 

second file is load data  

%   at the specified tilt angle (file1). The code will store the 

CG coordinates in a  

%   matrix or array. 

% - dF0 and dFi are the uncertainty for the loads at 0 degs and 

alpha repectively  

% - ang is the tilt angle and thetaz_deg is the rotation angle, 

both in 

%   degree 

% 

% Example:  

% [cg_val,dcg,mg_mag,dmg] = 

force2cg(F_0deg.xlsx,F_60deg.xlsx,55,dF0,dFi,258) 

  

%% Load inputs %%    

  

% check for empty inputs, and empty input results in a 1 value. 

Full input 

% result in a 0 value 

inputchk = [isempty(F0vec),isempty(F1vec),isempty(ang),... 

            isempty(dF0),isempty(dFi),isempty(thetaz_deg)]; 

  

if  inputchk == [0 0 0 0 0 0]    % All inputs are accounted for 

    F_measure(:,:,1) = F0vec; 

    F_measure(:,:,2) = F1vec; 

elseif inputchk == [0 0 0 0 0 1] % either F0,F1,ang and F_err are 

known with empty beta 

    F_measure(:,:,1) = F0vec; 

    F_measure(:,:,2) = F1vec; 

    thetaz_deg = 0;              % assumes  

elseif inputchk == [0 0 1 0 0 1] % if only data at 0 deg tilt is 

provided and or rotation angle 

    error(message('Include platform tilt angle, alpha')) 

elseif inputchk == [0 1 1 0 1 0] % Force at 0 tilt angle, load 

errors and beta are non empty  

    F_measure(:,:,1) = F0vec;    % data at 0 deg tilt angle 

    F_measure(:,:,2) = zeros(size(F_measure(:,:,1))); % zero out 

entries for load at tilt angle 

    ang = 0; 

    %warning('With three inputs, the tilt angle is assumed to be 

0 degs')     

else 
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    error(message('Invalid inputs, check excel file and make sure 

the correct cell have values. Save File')) 

end  

  

%% Constants %% 

% load angle constants and there uncertainty 

[theta_deg,thetaz_deg,~,thetazb_deg,~,~,~,~,~,~,~,~,~,dtheta_deg,

~] = LoadConstants; 

  

% bipod rod angle measure from the horizontal 6 angles for 6 

bipod rods 

% theta is [1,6] 

theta = theta_deg*pi/180;                % angle in [rads] 

dtheta = dtheta_deg(1)*ones(1,6)*pi/180; % 6 dtheta's for the 6 

theta's 

  

% bipod offset angle (see derivation for image) 

thetazb = thetazb_deg*pi/180;  % angle in [rads] 

dthetazb = dtheta_deg(4)*pi/180; 

  

% Platform rotation about z-axis (vertical rotation) angle 

thetaz = thetaz_deg*pi/180;    % angle in [rads]  

dthetaz = dtheta_deg(3)*pi/180; 

  

% Platform tilt angle. Rotation about the y-axis 

thetay_deg = [0 ang];          % angle in [degs] 

 thetay = thetay_deg*pi/180;    % angle in [rads] 

dthetay = dtheta_deg(2)*pi/180; 

  

% angle array for wt and cg calculations 

angles0 = [theta thetay(1) thetaz thetazb]; 

angles1 = [theta thetay(2) thetaz thetazb]; 

dangles = [dtheta dthetay dthetaz dthetazb]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% load line intersection point for each bipod  

[r1, r2, r3, dr1, dr2, dr3] = bipodNodes; 

  

%% Calculations 

syms xcg ycg zcg; 

cg = [xcg; ycg; zcg];          

  

for j=1:size(F_measure,2)       % weight location index  

    for m = 1:size(F_measure,3) % index between 0 deg tilt and 

some arbitrary angle 

        F(:,j,m) = 

[F_measure(1,j,m);F_measure(2,j,m);F_measure(3,j,m);... 

                    

F_measure(4,j,m);F_measure(5,j,m);F_measure(6,j,m)]; 

  

%% calculate wt magnitude and cg coordinate 
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       [mg_mag(1,j),dmg(1,j)] = WeightMagUnc([F(:,j,1)', 

theta],[dF0(:,1,j)', dtheta]); 

       [cgx(j),xerr(j),cgy(1,j),yerr(1,j)] = 

unc4cg(F(:,j,1),dF0(:,1,j),mg_mag(1,j)',dmg(1,j)',... 

                                                     

angles0,dangles,r1,r2,r3,dr1,dr2,dr3); 

    end 

end 

com = double([ mg_mag.' dmg.' cgx.' xerr.' cgy.' yerr.']); 

  

% only data with 0 tilt is available 

if (inputchk == [0 1 1 0 1 0])                     

%% Store Calculated X-Y coordinates into COM array to be 

displayed 

    cg_val = [cgx' cgy']; % x and y cg coordinates for output 

       dcg = [xerr' yerr']; % x and y cg uncertainty for output 

    disp(['  mg      dmg        x_cg     dxcg       y_cg     dycg   

|@ thetay = ',num2str(ang),' & @ thetaz = 

',num2str(thetaz_deg),'|']); 

    disp(['------------------------------------------------------

-']); 

    disp([num2str(com,3)]); 

     

% if load data and error at alpha = 0 & alpha for an empty beta 

and user defined beta     

elseif (inputchk == [0 0 0 0 0 0]) | (inputchk == [0 0 0 0 0 1]) 

% all 4 inputs are available 

    ones_row=ones(1,size(com',2)); 

    com = [com';zcg*ones_row]; 

     

    for j=1:size(F_measure,2)    % weight location index  

    %% calculate vertical cg 

   [~,~,~,~,cgz(j),zerr(j)] = 

unc4cg(F(:,j,2),dFi(:,1,j),mg_mag(1,j)',dmg(1,j)',angles1,dangles

,... 

                                     

r1,r2,r3,dr1,dr2,dr3,cgx(j),xerr(j),cgy(1,j),yerr(1,j)); 

    end  

    %% Display CG Location 

    disp(['      mg        dmg      x_cg     dxcg      y_cg     

dycg        z_cg     dzcg   |@ thetay = ',num2str(ang),' & @ 

thetaz = ',num2str(thetaz_deg),'|']); 

    disp(['------------------------------------------------------

--------------------------']); 

    xx = double([com(1:6,:); cgz; zerr])'; 

    disp(xx);     

     

    cg_val = [cgx' cgy' cgz']; % x and y cg coordinates for 

output 
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       dcg = [xerr' yerr' zerr']; % x and y cg uncertainty for 

output 

end 

end 

 

 

  



 

 

112 

 

D. 4 LoadConstants 

function [theta, thetaz, thetay, thetazb, c1, c2, c3, phi1, phi2, 

phi3,... 

          rb2, rb4, rb6, dang, dr] = LoadConstants 

% Extracts all the inputs from the CG_platform_constants.xlsx 

excel file.  

% The excel file must first be saved for any changes made in the 

document 

% to be loaded into MATLAB. 

% 

%  Procedure 

%      1) change inputs in excel 

%      2) save excel document 

%      3) Run matlab scripte 

% 

%  Note: 

% The first sheet are the constant parameters while the second 

sheet are 

% the resolution/measurement errors. 

filename1 = char('CG_platform_constants'); 

%% Measured Parameters 

  

thetaz  = xlsread(filename1,1,'C12'); % Rotation angle thetaz 

thetay  = xlsread(filename1,1,'C13');  % tilt angle thetay  

thetazb = xlsread(filename1,1,'C14'); % tilt angle thetazb 

  

% all the bottom bracket vectors and angles   

   rb  = xlsread(filename1,1,'C3:H5');  % Bottom bipod bracket 

nodes at brackets    

theta  = xlsread(filename1,1,'C6:H6'); % rode angles 

    ci = xlsread(filename1,1,'C9:H9');  % horizontal node 

distance 

  

% Storing excel bracket parameters to appropriate variables 

% for bipod 1 

rb2 = rb(:,2); 

phi1 = 180 - theta(1) - theta(2);  

c1 = ci(1); 

  

% from bipod 2 

rb4 = rb(:,4); 

phi2 = 180 - theta(3) - theta(4); 

c2 = ci(3); 

  

% for bipod 3 

rb6 = rb(:,5); 

phi3 = 180 - theta(5) - theta(6); 

c3 = ci(5); 
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%% Load cell sizing inputs  

cap   = xlsread(filename1,1,'C17');  % load cell capacity               

lcErr  = xlsread(filename1,1,'C18'); % Load Cell Error 

CGinput  = xlsread(filename1,1,'C19:C21'); % Payload Locations 

mg  = xlsread(filename1,1,'C22'); % Payload Magnitude 

  

  

%% Uncertaninties 

% retrieve dtheta [4x1] uncertainty from Excel          

dang  = xlsread(filename1,2,'B2:B5'); 

  

% retrieve dR uncertainty from Excel. dR = [dr1;dr2;dr3] 

% where r = [rix; riy; riz]. dR is a 9x1 column vector           

dr  = xlsread(filename1,2,'B6:B14'); 

end 
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D. 5 BipodNodes 

function [R1, R2, R3, dR1, dR2, dR3] = bipodNodes 

% Calculates the load intersection of the bipod rods for each 

bipod (Rbi) 

% as well as there uncertainty. The location of the bottom node 

of each 

% endrod are inputs (Ri) as column vectors in the 

CG_platform_constants.xlsx  

% - The outputs are all column vectors. 

%% Load bipod constants 

[theta,~,~,zeta,c1,c2,c3,phi1,phi2,phi3,rb2,rb4,rb6,dang,dr] = 

LoadConstants; 

clr = 0.075; % clearence between endrod and bipod brackets 

syms A B C r ang rx ry rz     % symbolic variables 

var = [A B C r ang rx ry rz]; % variable array 

%% Bipod 1 node intersection using bottom bracket node 2 

val = [theta(2)*pi/180 theta(1)*pi/180 phi1*pi/180 c1 zeta*pi/180 

rb2(1) rb2(2) rb2(3)]; 

errs = [dang(1)*pi/180 dang(1)*pi/180 dang(1)*pi/180 dr(1) 

dang(4)*pi/180 dr(1:3,1)']; 

  

% symbolic expression for Rb1 

rnrel = r*sin(B)/sin(C)*[0;-cos(A);sin(A)]; %  r_rel2 vector in 

local coord 

rpx2 = V_Rot(3,ang)*rnrel;                  %  r_rel2 vector in 

global coord 

Rex = [rx;ry;rz] + rpx2;                    %  Rb1 symbolic 

expression 

  

% calculates [Rb1x, Rb1y, Rb1z] 

for i = 1:3 

    [R1(i,1),dR1(i,1),~] = PropError(Rex(i),var,val,errs); 

              rnrel1(i,1) = 

double(subs(rnrel(i),var(1:4),val(1:4))); 

end 

%% Bipod 1 node intersection using bottom bracket node 4      

 val = [theta(4)*pi/180 theta(3)*pi/180 phi2*pi/180 c2 

zeta*pi/180 rb4(1) rb4(2) rb4(3)]; 

errs = [dang(1)*pi/180 dang(1)*pi/180 dang(1)*pi/180 dr(1) 

dang(4)*pi/180 dr(1:3,1)']; 

  

% symbolic expression for Rb2 

rnrel = r*sin(B)/sin(C)*[-cos(A);0;sin(A)]; %  r_rel4 vector in 

global coord 

Rex = [rx;ry;rz] + rnrel;                   %  Rb2 symbolic 

expression 

  

% calculates [Rb2x; Rb2y; Rb2z] 

for i = 1:3 
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    [R2(i,1),dR2(i,1),~] = PropError(Rex(i),var,val,errs); 

             rnrel2(i,1) = 

double(subs(rnrel(i),var(1:4),val(1:4))); 

end 

%% bottom bipod node/bracket info for rod 6    

 val = [theta(6)*pi/180 theta(5)*pi/180 phi3*pi/180 c3 -

zeta*pi/180 rb6(1) rb6(2) rb6(3)]; 

errs = [dang(1)*pi/180 dang(1)*pi/180 dang(1)*pi/180 dr(1) 

dang(4)*pi/180 dr(1:3,1)']; 

  

% symbolic expression for Rb3 

rnrel = r*sin(B)/sin(C)*[0;-cos(A);sin(A)]; % r_rel6 vector in 

local coord 

rpx2 = V_Rot(3,ang)*rnrel;                  % r_rel6 vector in 

global coord  

Rex = [rx;ry;rz] + rpx2;                    % Rb3 symbolic 

expression 

  

% calculates [Rb3x; Rb3y; Rb3z] 

for i = 1:3 

    [R3(i,1),dR3(i,1),~] = PropError(Rex(i),var,val,errs); 

             rnrel3(i,1) = 

double(subs(rnrel(i),var(1:4),val(1:4))); 

end 

  

% combined error in bipod intersection points 

dR1 = ((R1*clr/2).^2+dR1.^2).^.5; 

dR2 = ((R2*clr/2).^2+dR2.^2).^.5; 

dR3 = ((R3*clr/2).^2+dR3.^2).^.5; 

  

%% Ideal load line intersection point for each bipod 

% R1=[-8.66; -5; 0];     % Intersection point for bipod 1 

% R2=[0; 10; 0];         % Intersection point for bipod 2     

% R3=[8.66; -5; 0];      % Intersection point for bipod 3 

end 
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D. 6 WeightMagUnc 

function [wt_val,error,percent_err,Smax_wt] = 

WeightMagUnc(ValVec,ErrVec) 

% Accepts nominal bipod forces and there error/uncertainty 

values. 

% The bipod loads (ValVec) and there errors (ErrVec) must be a  

% row vectors of the same length 

% 

% Example: 

%    - Nominal array of bipod loads and the bipod angle 

%      ValVec = [F1 F2 F3 F4 F5 F6...  

%                theta1 theta2 theta3 theta4 theta5 theta6]; 

%    - Nominal error of bipod loads and bipod angle error 

%      ErrVec = [dF1 dF2 dF3 dF4 dF5 dF6 dtheta*ones(1,6)]; 

%  

% function [wt_val,error,percent_err] = 

WeightMagUnc(ValVec,ErrVec)       

  

% Symbolic Variables 

syms F0_1 F0_2 F0_3 F0_4 F0_5 F0_6 theta1 theta2 theta3 theta4 

theta5 theta6 

  

% weight expression 

wt = -sin(theta1)*F0_1 -sin(theta2)*F0_2 -sin(theta3)*F0_3... 

     -sin(theta4)*F0_4 -sin(theta1)*F0_5 -sin(theta1)*F0_6;    

  

% row vector of variables 

varlist = [F0_1 F0_2 F0_3 F0_4 F0_5 F0_6 ... 

           theta1 theta2 theta3 theta4 theta5 theta6];   

     

% output nominal weight and uncertainty 

[wt_val,error,percent_err,Smax_wt] = 

PropError(wt,varlist,ValVec,ErrVec); 

end 
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D. 7 Unc4cg 

function 

[x_val,x_err,Smax_x,y_val,y_err,Smax_y,z_val,z_err,Smax_z] = 

unc4cg(F_bi,dF_bi,mg,dmg,ang,dang,... 

                                                                      

r1,r2,r3,dr1,dr2,dr3,xi,dxcg,yi,dycg) 

% Calculates the CG and the uncertainty  

% ------------------------------------- 

% Accepts the following inputs: 

%   - nominal bipod forces [F_bi] is 6x1 and there 

error/uncertainties [dF_bi] is also 6x1 

%   - nominl weight(mg) and its error (dmg) 

%   - all the nominal angles: 

%       + [theta1:theta6, alpha, beta, gamma] 1x9 

%   - the angle error are the same length as the nominal angles. 

%       + Note: angle error is updated and saved in the excel 

document:  

%         'CG_platform_constants' on the 2nd sheet 

%   - nominal intersection nodes for bipods 1,2 and 3 where 

%     r1,r2 and r3 are all 3x1 

%  

%% initializing outputs 

x_val = 0;      y_val = 0;      z_val = 0; 

x_err = 0;      y_err = 0;      z_err = 0; 

per_err_x = 0; per_err_y = 0;  per_err_z = 0; 

Smax_x = 0;     Smax_y =0;      Smax_z = 0; 

  

% Symbolic Variables 

syms F0_1 F0_2 F0_3 F0_4 F0_5 F0_6 mg_mag  

syms theta1 theta2 theta3 theta4 theta5 theta6 

syms alpha0 beta0 gam 

syms r1x r1y r1z   r2x r2y r2z   r3x r3y r3z  

  

% cg coordinate expressions 

[mg_exps, cgx, cgy, cgz] = CGsymbExpression; 

  

% Nominal values for bipod loads, weight, angles and nodal 

intersection  

% length relative to the origin (ri) 

Val = [F_bi' mg ang r1' r2' r3'];     

  

% Error array of the bipod loads, weight and angles 

Err = [dF_bi' dmg dang dr1' dr2' dr3']; 

  

% row vector of variables 

varlist = [F0_1 F0_2 F0_3 F0_4 F0_5 F0_6 mg_mag... 

           theta1 theta2 theta3 theta4 theta5 theta6... 

           alpha0 beta0 gam r1x r1y r1z r2x r2y r2z r3x r3y r3z];  

%% Evalute CG using PropError 
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if nargin == 12      % If tilt angle is 0 degs: xcg and ycg can 

be calculated 

    [x_val,x_err,per_err_x,Smax_x] = 

PropError(cgx,varlist,Val,Err); 

    [y_val,y_err,per_err_y,Smax_y] = 

PropError(cgy,varlist,Val,Err); 

     

elseif nargin == 16  % If tilt angle is NOT 0 degs: zcg can be 

calculated from xcg and ycg 

    if Val(14) ~= 0  % if the tilt angle is not 0 degs the zcg 

can be evaluted 

        syms xcg ycg 

        varlist = [varlist xcg ycg]; 

        Val = [Val xi yi]; 

        Err = [Err dxcg dycg]; 

        [z_val,z_err,per_err_z,Smax_z] = 

PropError(cgz,varlist,Val,Err);        

    else 

       error(message('tilt angle alpha must NOT be 0 degs')) 

    end 

end 

end 
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D. 8 SizeLoadCells 

function 

[Fabs1,dFabs1,Fcap,Fabs2,dFabs2,Fcap2,Ftare,dFtare,Ftare_cap] = 

SizeLoadCells(option) 

% This function can be used to examine load cell preformance 

% relative to different CG location, payload magnitudes and  

% platform orientations 

  

%% Initialize Parameters 

Fabs1 = zeros(6,1);       Fcap = zeros(6,1);    dFabs1 = Fcap; 

Fabs2 = zeros(6,1);      Fcap2 = zeros(6,1);    dFabs2 = Fcap; 

Ftare = zeros(6,1);  Ftare_cap = zeros(6,1);    dFtare = Fcap; 

  

%% Absolute Reading with one sample 

filename1 = char('CG_platform_constants'); 

    CG = xlsread(filename1,1,'C19:C21'); % cg  

    mg = xlsread(filename1,1,'C22'); % payload magnitude 

 alpha = xlsread(filename1,1,'C13'); % alpha angle 

  beta = xlsread(filename1,1,'C12'); % beta angle 

   cap = xlsread(filename1,1,'C18'); % load cell capacity 

lc_err = xlsread(filename1,1,'C17'); % load cell error 

  

% inital bipod load ouputs before Tare 

[Fabs1,~,~,~,Fcap] = cg2force(CG,mg,alpha,beta,cap); 

dFabs1 = Fabs1*lc_err/100; % error range of load cell 

dFabs1 = abs(dFabs1);      % absolute error 

  Fcap = abs(Fcap);        % absolute percent capacity 

   

% displaying loads and percent load 

    disp(['At a tilt angle of ',num2str(alpha)... 

         ,' degs, a rotation angle of ',num2str(beta),' deg']) 

    disp('  [ F_abs, +/-|dF_abs|, |%F_abs|] =')  

    disp([Fabs1,dFabs1,Fcap]) 

  

%% Tare Load Cell 

if option == 1; 

    % Tare Excel Parameters    

     CG1   = xlsread(filename1,1,'H17:H19'); 

     mg1   = xlsread(filename1,1,'H20'); % node location 

    alpha1 = xlsread(filename1,1,'H13'); % node location 

    beta1  = xlsread(filename1,1,'H12'); % node location 

  

    % Second bipod load ouputs 

    [Fabs2,~,~,~,Fcap2] = cg2force(CG1,mg1,alpha1,beta1,cap);  

    dFabs2 = Fabs2*lc_err/100; % LC error for 2nd set up 

     

    dFabs2 = abs(dFabs2)       % load error for 2nd set up 

     Fcap2 = abs(Fcap2)        % abolute percent capacity for 2nd 

set up 
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 %% Tare values (Relative) 

    Ftare = Fabs2 - Fabs1;     % Tare load values 

    dFtare = Ftare*lc_err/100; % Error range in tare loads 

    Ftare_cap = Ftare/cap*100; % percent capacity for tare loads 

    

    dFtare = abs(dFtare)       % absolute tare error 

    Ftare = abs(Ftare_cap)     % absolute tare capacity 

     

        disp(['After Tare: At a tilt angle of ',num2str(alpha)... 

         ,' degs  and a rotation angle of ',num2str(beta),' 

deg']) 

        disp('  [ F_abs2, +/-|dF_abs2| , |%F_abs2| =') 

        disp([Fabs2,dFabs2,Fcap2]) 

         

        disp('  [ F_tare, +/-|dF_tare| , |%F_tare] =') 

        disp([Ftare,dFtare,Ftare_cap]) 

end 

end 

 

 

  



 

 

121 

 

D. 9 Cg2force 

function [forces,eps,sum_M,sum_F,Fcap_per] = 

cg2force(cg,mg_mag,thetay,thetaz,cap) 

% [CG,wt,tiltangle,platform rotation] -> 

[load,strain,voltage,uncertainty] 

% The CG is input as a column vector as a single vector or a 

matrix. All 

% angles must be in degrees. 

% Outputs 

%   - Bipod forces [F1;F2...,F6] {lbs} 

%   -   "   strain [e1;e2...,e6] {me} 

% 

% Example:  

% [F,eps,~,~] = cg2force([2;5;3],75,60,0) 

% 

% F =  -11.6337     eps = -18.0648 

%      -22.4535           -32.6834 

%      -53.3429           -89.0532 

%       2.9168              4.2040 

%       10.1665            16.2094 

%       -0.6533            -1.0128 

% 

%% Constants %% %%     

% Array of cross sectional area of axial rods <A1,A2...,A6> 

[in^2] 

A_xx = [.0644; .0687; .0599; .06938; .06272; .0645]; 

  

%%%%%%%%%% 

% angles % 

%%%%%%%%%% 

% load angles from excel file 

[theta,~,~,thetazb,~,~,~,~,~,~,~,~,~,~,~]= LoadConstants; 

  

% bipod rod angle measure from the horizontal 

theta = theta*pi/180;     % angle in [rads] 

  

% bipod offset angle (see derivation for image)  

thetazb = thetazb*pi/180; % angle in [rads] 

  

% Platform tilt angle. Rotation about the y-axis 

thetay = thetay*pi/180;   % angle in [rads] 

  

% Platform rotation about z-axis (vertical rotation) angle 

thetaz = thetaz*pi/180;   % angle in [rads]    

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[r1, r2, r3, dR1, dR2, dR3] = bipodNodes; 

  

E = 1.00E+07; % Modulus of Elasticity [psi] 
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%% Calculations 

% CG and axial force variables 

syms F_a_1 F_a_2 F_a_3 F_a_4 F_a_5 F_a_6 

syms xcg ycg zcg 

%% Force transformations 

F = [F_a_1 F_a_2 F_a_3 F_a_4 F_a_5 F_a_6]; 

varCG = [xcg ycg zcg]; 

  

%% Forces and Moment created from Bipod 1 

F1 = F_a_1*[0;-cos(theta(1));-sin(theta(1))];  % Force in Rod 1 

without bipod offset  

F_1 = V_Rot(3,thetazb)*F1;               % Force in Rod 1 after 

the applied bipod offset 

  

F2 = F_a_2*[0; cos(theta(2));-sin(theta(2))];  % Force in Rod 2 

without bipod offset 

F_2 = V_Rot(3,thetazb)*F2;               % Force in Rod 2 after 

the applied bipod offset 

  

FB1 = vpa(F_1 + F_2,5);                  % sum of the force 

vectors from bipod 1 5th decimal place 

MF1 =  vpa(cross(r1,FB1),5);             % Moment vector from 

bipod 1 to the 5th decimal place   

  

%% Force and moments from Bipod 2 

F3 = F_a_3*[-cos(theta(3));0;-sin(theta(3))];   % Force in Rod 3  

F_3 = F3;                                 % Force in Rod 3 with 

consistant naming convention 

  

F4 = F_a_4*[cos(theta(4));0;-sin(theta(4))];    % Force in Rod 4     

F_4 = F4;                                 % Force in Rod 4 with 

consistant naming convention  

  

FB2 = vpa(F_3 + F_4,5);                   % sum of the force 

vectors from bipod 2 5th decimal place 

MF2 =  vpa(cross(r2,FB2),5);              % Moment vector from 

bipod 2 to the 5th decimal place   

  

%% Force and Moment from Bipod 3 

F5 = F_a_5*[0; cos(theta(5)); -sin(theta(5))];   % Force in Rod 5 

without bipod offset  

F_5 = V_Rot(3,-thetazb)*F5;                % Force in Rod 5 after 

the applied bipod offset 

  

F6 = F_a_6*[0; -cos(theta(6)); -sin(theta(6))];  % Force in Rod 6 

without bipod offset  

F_6 = V_Rot(3,-thetazb)*F6;                % Force in Rod 6 after 

the applied bipod offset 
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FB3 = vpa(F_5 + F_6,5);       % sum of the force vectors from 

bipod 3 5th decimal place 

MF3 = vpa(cross(r3,FB3),5);   % sum of the force vectors from 

bipod 3 5th decimal place 

  

sum_M = MF1 + MF2 + MF3;      % sum of the moment in the bipods 

[sum_MF1x;sum_MF1y;sum_MF1z]  

sum_F = FB1 + FB2 + FB3;      % net forces in bipods 

[sum_Fx;sum_Fy;sum_Fz]         

  

%% Initializing Matrices 

A_f = zeros(3,6,5,4); 

b_f = zeros(3,1,5,4); 

A_M = zeros(3,6,5,4);       % Initializing the Moment coefficient 

matrix with zeros 

b_M = zeros(3,1,5,4);       % Initializing the B matrix with 

zeros 

  

for j = 1:size(cg,2)              % CG position index 

    for k = 1:length(cg(1,:))     % indexing needed to store 

equation of motion matrices 

        for m = 1:size(thetay,2)  % tilt angle index 

           

% Weight force and moment created by weight and CG 

    mg(:,m) = mg_mag*[sin(thetay(m));0;-cos(thetay(m))];  % 

weight vector after tilting the platform 

     W(:,m) = V_Rot(3,thetaz)*mg(:,m);                     % 

weight vector after applying a rotation about z-axis 

 M_w(:,j,m) = cross(cg(:,j),W(:,m));                       % 

moment created by weight vector and CG location 

  

%%  EOM into Matrix form (i.e. Ax=b) 

% stores the coefficients of the three bipod forces and weight 

vector into Matrix  

    [A_f(:,:,m),b_f(:,:,m)] = 

equationsToMatrix(FB1+FB2+FB3+W(:,m),F);   % varying tilt angle 

     

% stores the coefficients of the three bipod moment and weight 

vector into Matrix 

    [A_M(:,:,j,m),b_M(:,:,j,m)] = 

equationsToMatrix(MF1+MF2+MF3+M_w(:,j,m),F);  

     A(:,:,j,m) = [A_f(:,:,m);A_M(:,:,j,m)];      % Forms 

coeffiecent matrix from sum of the forces and moments Eqs    

     b(:,:,j,m) = [b_f(:,:,m);b_M(:,:,j,m)];      % Forms B 

matrix from sum of the forces and moment Eqs 

  

     forces(:,j,m) =  A(:,:,j,m)\b(:,:,j,m);       % Calculates 

the 6 Forces from the system of eqs 

     eps(:,j,m) = forces(:,j,m)./(E*A_xx)*10^6;    % Calculates 

the 6 Strain values in microstrains      
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        end 

    end 

end   

Fcap_per = forces./cap*100; % percent capacity 

end 
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D. 10 V_Rot 

function Rotation = V_Rot(axis_num,angle) 

%rotation matrix 

%   choose 1 for rotation about the x-axis 

%   choose 2 for rotation about the y-axis 

%   choose 3 for rotation about the z-axis 

%  

%   Note: angle must be in radians 

%   Example: 

%       syms ang 

%       RotVec = V_Rot(3,pi/3) 

%  

%       RotVec = 

%         [0.5000   -0.8660         0 

%          0.8660    0.5000         0 

%               0         0    1.0000] 

  

%% x axis 

if axis_num == 1 

Rotation = [1    ,   0,   0;... 

            0, cos(angle),-sin(angle);...  

            0,sin(angle),cos(angle)];...  

  

%Rotation = double(Rotation) 

  

%% y axis 

elseif axis_num == 2 

Rotation = [cos(angle) 0 sin(angle);... 

            0,      1,        0;... 

            -sin(angle) 0 cos(angle)]; 

    

%Rotation = double(Rotation) 

    

%% z axis 

elseif axis_num == 3 

Rotation = [cos(angle), -sin(angle),0;... 

            sin(angle), cos(angle),0;... 

            0,            0,     1]; 

  

%Rotation = double(Rotation) 

end 

end 
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APPENDIX E. TILT TABLE CALCULATIONS 

 Sizing Front Member Length E. 1

 

 

Figure 61: Free body diagram the CGA/Tilt Table assembly. 

 

 

Figure 62: Equivalent FBD of CGA/Tilt Table assembly. 
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The location of the average reactional force can be calculated by 

summing the moments about point O. 

𝛴𝑀𝑜 = 0 

𝑅 ∗ 𝑥 = (𝑧𝑐𝑔𝑤𝑝) 

𝑥 =
𝑧𝑐𝑔𝑤𝑝

(𝑤𝑝 + 𝑃)
 

 

The length of the front member L can be found by relating the location 

of the average distributed reactional force (x) to its location relative to point 

O. 

𝑥 =
(𝐿 + 𝐿𝑜)

2
− 𝐿𝑜 = 𝐿 −

𝐿𝑜

2
 

𝐿 −
𝐿𝑜

2
=  

𝑧𝑐𝑔𝑤

(𝑤𝑝 + 𝑃)
 

𝐿 =  
𝑧𝑐𝑔𝑤

(𝑤𝑝 + 𝑃)
+

𝐿𝑜

2
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 Weld Calculations E. 2

 

Figure 63: Shear and moment translated at the post. 

 

 

Figure 64: Illustration of the all-around weld joint of the pin connected on the posts. 

Note: The following equations were pulled from [12]. 

Primary shear stress: 

𝜏′ =
𝑉

𝐴𝑝
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Throat area of the pin joint where b and d are the height and width of the welded area respectively 

𝐴𝑝 = 1.414ℎ(𝑏 + ℎ) 

 

Unit Second moment of area of the pin joint 

      𝐼𝑢 =
𝑑2

6
(3𝑏 + 𝑑) 

 

I is the second moment of area for the pin 

   𝐼 = 0.707ℎ𝐼𝑢 

 

Secondary shear for the base 

   𝜏′′ =
𝑀𝑟

𝐼
 

 

Shear magnitude from Pythagorean combination 

𝜏 = ( 𝜏′2 + 𝜏′′2 )
1

2  
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Figure 65: Illustration of the welds on the bottom of the posts. 

The Primary shear is again defined by 

𝜏′ =
𝑉

𝐴𝑏
       

 

Where Ab is the throat area of the weld at the base. 

𝐴𝑏 = 0.707ℎ(𝑏 + 2𝑑) 

 

And Iu is the Unit second moment of area  

   𝐼𝑢 =
𝑑2

6
(3𝑏 + 𝑑) 

I is the second moment of area 

   𝐼 = 0.707ℎ𝐼𝑢 

Secondary shear stress: 

   𝜏′′ =
𝑀𝑟

𝐼
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Combined stress: 

𝜏 = ( 𝜏′2 + 𝜏′′2 )
1

2  

 

Both welding calculations were translated into a MATLAB script file. The script is included on 

the next page. 

 

The Factor of Safety for both joint is defined below: 

𝑛 =
𝑆𝑠𝑦

𝜏
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  Weld Strength MATLAB Script E. 3

%% weld strength calcs 

F = 100; 

Sy = 50e3; 

Sut = 62e3; 

  

% weld geometry of pin joint 

b = 1; 

h = 1/4; 

d = .9; 

  

A = 1.414*h*(b+d);  % area of fillet on pin join 

Iu = d^2*(3*b+d)/6; % unit 2nd moment of inertia 

I = 0.707*h*Iu;     % 2nd moment of inerita 

  

% weld geometry of fixed base fillet joints 

b1 = 1+1/8; 

d1 = 1+1/8; 

ybar = d1^2/(b1 + 2*d1); 

  

A1 = 0.707*h*(b1 + 2*d1);    % area of fillet on fixed base 

Iu1 = 2*d1^3/3 - 2*d1^2*ybar + (b1 + 2*d1)*ybar^2 

I1 = 0.707*h*Iu1; 

  

AA = [A A1]; 

dd = [d d1]; 

II = [I I1]; 

  

tou1 = F./AA;                   % primary shear 

tou2 = (F*21).*(dd/2)./(II);    % secondary shear 

tou = sqrt(tou1.^2 + tou2.^2);  % shear magnitude 

  

n = .577*Sy./(tou.*.5)      % factor of safety 

nut = .3*Sut./(tou.*.5)     % FOS using ultimate tensile strength 
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APPENDIX F. PLOTS AND TABLES FROM INSTRON TESTING 

Table 15:  Numerical results of the expected and measure data gathered from endrod 

assembly 1. 

Expected Measured 

Instron 
Load 

Vout εexpect Vout εmeas Fmeas εDIFF 

[lbs] [mv] [με] [mv] [με] [lbs] [με] 

5.0 0.018 7.8 0.039 17.4 11.2 9.6 

13.6 0.048 21.1 0.053 23.4 15.0 2.2 

35.8 0.126 55.6 0.186 82.2 52.9 26.6 

80.0 0.281 124.2 0.380 168.2 108.3 44.0 

106.6 0.374 165.5 0.473 209.2 134.7 43.7 

-11.7 -0.041 -17.9 -0.041 -18.1 -11.9 -0.2 

-20.4 -0.071 -31.0 -0.096 -42.6 -28.0 -11.6 

-34.6 -0.121 -52.7 -0.118 -52.3 -34.3 0.4 

-65.2 -0.229 -99.3 -0.291 -128.7 -84.6 -29.4 

-101.1 -0.355 -153.9 -0.388 -171.6 -112.7 -17.7 

 

 

Figure 66: Applied Instron load versus the expected and measured strains for 

Endrod Assembly No. 1. 
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Table 16: Numerical results of the expected and measure data gathered from endrod 

assembly 2. 

 
Expected Measured 

Instron 
Load 

Vout εexpect Vout εexpec Vout εDIFF 

[lbs] [mv] [με] [mv] [με] [lbs] [με] 

9.5 0.031 13.8 0.000 0.0 0.0 -13.8 

37.6 0.124 54.7 0.097 43.0 29.5 -11.8 

52.1 0.171 75.8 0.097 43.0 29.5 -32.8 

72.5 0.238 105.5 0.194 85.8 59.0 -19.6 

90.3 0.297 131.4 0.272 120.3 82.6 -11.2 

111.4 0.367 162.2 0.319 141.1 96.9 -21.0 

-10.5 -0.035 -15.0 -0.098 -43.2 -30.3 -28.2 

-50.9 -0.168 -72.7 -0.126 -55.9 -39.2 16.8 

-73.0 -0.240 -104.1 -0.201 -88.8 -62.2 15.4 

-96.0 -0.316 -137.0 -0.292 -129.2 -90.5 7.8 

-123.4 -0.406 -176.1 -0.370 -163.6 -114.7 12.5 

     
 

 

Figure 67: Applied Instron load versus the expected and measured strains for 

Endrod Assembly No. 2. 
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Table 17: Numerical results of the theoretical and experimental data gathered from 

endrod assembly 3.  

 

Expected Measured 

Instron 
Load 

Vout εexpect Vout εmeas Fmeas εDIFF 

[lbs] [mv] [με] [mv] [με] [lbs] [με] 

0.0 0.000 0.00 -0.084 -37.29 -22.3 -37.29 

6.5 0.025 10.85 -0.038 -16.61 -10.0 -27.46 

19.0 0.072 31.72 0.013 5.71 3.4 -26.01 

35.0 0.132 58.43 0.097 42.74 25.6 -15.69 

39 0.147 65.10 0.101 44.60 26.7 -20.51 

60.0 0.226 100.16 0.185 82.03 49.1 -18.13 

80.0 0.302 133.55 0.209 92.64 55.5 -40.90 

-10.0 -0.038 -16.69 -0.084 -37.29 -22.8 -20.59 

-23.0 -0.087 -38.39 -0.084 -37.17 -22.7 1.23 

-39 -0.147 -65.10 -0.119 -52.62 -31.5 12.49 

-42.0 -0.158 -70.11 -0.181 -80.28 -49.1 -10.17 

-70.0 -0.264 -116.85 -0.247 -109.05 -66.6 7.80 

-85 -0.321 -141.89 -0.285 -126.08 -75.5 15.82 

-96.0 -0.362 -160.26 -0.313 -138.67 -84.7 21.59 

-114 -0.430 -190.30 -0.383 -169.43 -101.5 20.87 

 

 

Figure 68: Applied Instron load versus the expected and measured strains for 

Endrod Assembly No. 3. 
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Table 18: Numerical results of the expected and measured data gathered from 

endrod assembly 4 before nonlinearity correction. 

 

Expected Measured 

Instron 
Load 

Vout Εexpect Vout Εmeas Fmeas εDIFF 

[lbs] [mv] [με] [mv] [με] [lbs] [με] 

2.8 0.010 4.0 0.000 0.01 0.0 -4.0 

18.5 0.064 26.7 0.094 39.26 27.2 12.6 

49.5 0.171 71.3 0.194 81.09 56.3 9.7 

50.5 0.174 72.8 0.194 81.09 56.3 8.3 

66.0 0.228 95.1 0.291 121.63 84.4 26.5 

92.0 0.317 132.6 0.389 162.48 112.7 29.9 

115.0 0.397 165.7 0.486 203.13 140.9 37.4 

0.3 0.001 0.4 0.000 0.00 0.0 -0.4 

-4.0 -0.014 -5.7 -0.013 -5.54 -3.9 0.2 

-19.5 -0.067 -27.5 -0.100 -41.90 -29.7 -13.8 

-69.5 -0.240 -98.2 -0.363 -151.91 -107.5 -51.7 

 
          

 

 

Figure 69: Applied Instron load versus the expected and measured strains for 

Endrod Assembly No. 4. 
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Table 19: Numerical results of the expected and measured data gathered from 

endrod assembly 5. 

 

Theoretical Experimental 

Instron 
Load 

Vout Εexpect Vout Εmeas Fmeas εDIFF 

[lbs] [mv] [με] [mv] [με] [lbs] [με] 

0.4 0.001 0.6 0.007 3.0 1.9 2.4 

16.5 0.059 26.3 0.092 40.6 25.5 14.3 

52.5 0.189 83.7 0.194 85.6 53.7 1.9 

74.5 0.269 118.8 0.308 136.1 85.4 17.3 

99.5 0.359 158.6 0.393 174.0 109.1 15.3 

128.5 0.463 204.9 0.505 223.2 140.0 18.3 

-14.5 -0.052 -22.7 -0.017 -7.6 -4.9 15.5 

-50.5 -0.182 -78.9 -0.167 -73.8 -47.2 6.8 

-70.0 -0.252 -109.4 -0.207 -91.5 -58.6 20.1 

-65.0 -0.234 -101.6 -0.188 -83.2 -53.3 20.4 

-92.5 -0.333 -144.6 -0.304 -134.3 -85.9 13.2 

-113.5 -0.409 -177.4 -0.399 -176.5 -112.9 4.5 

          
 

 

Figure 70: Applied Instron load versus the expected and measured strains for 

Endrod Assembly No. 5. 

-300

-200

-100

0

100

200

300

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160St
ra

in
 [

μ
ε]

 

Load [lbs] 

Strain Gauge No. 5 
ε_meas ε_expect ε±15% 



 

 

138 

 

 

Table 20: Numerical results of the expected and measured data gathered from 

endrod assembly 6. 

Expected Measured 

Instron 
Load 

Vout Εexpect Vout Εmeas Fmeas εDIFF 

[lbs] [mv] [με] [mv] [με] [lbs] [με] 

25.0 0.093 38.7 0.072 30.23 19.508 -8.51 

44.0 0.163 68.2 0.104 43.51 28.077 -24.68 

68.0 0.252 105.4 0.194 81.31 52.471 -24.07 

94.0 0.348 145.7 0.248 103.70 66.914 -41.98 

117.0 0.433 181.3 0.292 122.16 78.828 -59.16 

-34.0 -0.126 -52.7 -0.097 -40.66 -26.238 12.03 

-63.0 -0.233 -97.6 -0.255 -106.58 -68.776 -8.95 

-94.0 -0.348 -145.7 -0.403 -168.68 -108.847 -23.01 

-131.0 -0.485 -203.0 -0.577 -241.22 -155.658 -38.21 

     
 

 

Figure 71: Applied Instron load versus the expected and measured strains for 

Endrod Assembly No. 6. 
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Table 21: Strain and load values for the new strain gauge on endrod assembly 6 

before and after nonlinearity corrections are made. 

  

Before Correction After correction 

Instron 
Load 

εactual εmeas εDIFF Fmeas εcor εDIFF Fcor 

[lbs] [με] [με] [με] [lbs] [με] [με] [lbs] 

0.13 0.2 27.6 27.4 17.8 20.8 20.6 13.43 

-21.5 -33.3 -79.5 -46.2 -51.3 -59.9 -26.6 -38.66 

-53.5 -82.9 -175.7 -92.8 -113.4 -132.5 -49.6 -85.45 

-86 -133.3 -256.9 -123.6 -165.8 -193.6 -60.4 -124.90 

-159 -246.4 -338.5 -92.0 -218.4 -255.1 -8.7 -164.55 

-0.3 -0.5 13.4 13.9 8.7 10.1 10.6 6.51 

9.5 14.7 27.6 12.9 17.8 20.8 6.1 13.43 

29 44.9 66.9 22.0 43.2 50.5 5.5 32.56 

68.5 106.2 133.0 26.9 85.8 100.3 -5.8 64.72 

91 141.0 185.8 44.7 119.9 140.1 -0.9 90.37 

91 141.0 189.1 48.1 122.0 142.6 1.6 92.00 

134 207.7 270.7 63.0 174.7 204.2 -3.5 131.70 
 

 

Figure 72: Nonlinearity correction plot for endrod assembly 6 with a new gauge. 
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APPENDIX G. PLATFORM TESTING TEST COMBINATIONS AND RESULTS 

G. 1  Test Combination Tables 

Table 22: Test combinations 1-28 for zshelf = 5.5 in 

data points with Zshelf = 5.5 in 

Test 
No 

CG shelf 
Location 

Tilt Angle (α) Weight 

[Degs] [lbs] 

1 - 0 0 

2 - 30 0 

3 - 60 0 

4 - 90 0 

5 CC 0 35.77 

6 CC 0 43.47 

7 CC 30 35.77 

8 CC 30 43.47 

9 CC 60 35.77 

10 CC 60 43.47 

11 CC 90 35.77 

12 CC 90 43.47 

13 BL 0 35.77 

14 BL 0 43.47 

15 BL 30 35.77 

16 BL 30 43.47 

17 BL 60 35.77 

18 BL 60 43.47 

19 BL 90 35.77 

20 BL 90 43.47 

21 TL 0 35.77 

22 TL 0 43.47 

23 TL 30 35.77 

24 TL 30 43.47 

25 TL 60 35.77 

26 TL 60 43.47 

27 TL 90 35.77 

28 TL 90 43.47 
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Table 23: Test combinations 28-44 for zshelf = 5.5 in. 

data points with Zshelf = 5.5 in 

Test 
No 

CG shelf 
Location 

Tilt Angle (α) Weight 

[Degs] [lbs] 

29 TR 0 35.77 

30 TR 0 43.47 

31 TR 30 35.77 

32 TR 30 43.47 

33 TR 60 35.77 

34 TR 60 43.47 

35 TR 90 35.77 

36 TR 90 43.47 

37 BR 0 35.77 

38 BR 0 43.47 

39 BR 30 35.77 

40 BR 30 43.47 

41 BR 60 35.77 

42 BR 60 43.47 

43 BR 90 35.77 

44 BR 90 43.47 

 

Table 24: Test combinations 45-56 for zshelf = 10.875 in. 

data points with Zshelf = 10.875 in 

Test 
No 

CG shelf 
Location 

Tilt Angle (α) Weight 

[Degs] [lbs] 

45 - 0 0 

46 - 30 0 

47 - 60 0 

48 - 90 0 

49 CC 0 35.77 

50 CC 0 43.47 

51 CC 30 35.77 

52 CC 30 43.47 

53 CC 60 35.77 

54 CC 60 43.47 

55 CC 90 35.77 

56 CC 90 43.47 
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Table 25: Test combinations 57-56 for zshelf = 10.875 in. 

data points with Zshelf = 10.875 in 

Test 
No 

CG shelf 
Location 

Tilt Angle (α) Weight 

[Degs] [lbs] 

57 BL 0 35.77 

58 BL 0 43.47 

59 BL 30 35.77 

60 BL 30 43.47 

61 BL 60 35.77 

62 BL 60 43.47 

63 BL 90 35.77 

64 BL 90 43.47 

65 TL 0 35.77 

66 TL 0 43.47 

67 TL 30 35.77 

68 TL 30 43.47 

69 TL 60 35.77 

70 TL 60 43.47 

71 TL 90 35.77 

72 TL 90 43.47 

73 TR 0 35.77 

74 TR 0 43.47 

75 TR 30 35.77 

76 TR 30 43.47 

77 TR 60 35.77 

78 TR 60 43.47 

79 TR 90 35.77 

80 TR 90 43.47 

81 BR 0 35.77 

82 BR 0 43.47 

83 BR 30 35.77 

84 BR 30 43.47 

85 BR 60 35.77 

86 BR 60 43.47 

87 BR 90 35.77 

88 BR 90 43.47 
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G. 2 Platform Tilting Test Results 

 

Table 26: Actual and measured results for the planar CG components for zshelf = 5.5 in. 

 
Actual Experimental 

Payload 
Shelf 

Location 

Wact σW,a xact σx,a yact σy,a Wmeas σW,m xmeas σx,m ymeas σy,m 

[lb] [in] [lb] [in] 

Center 
35.77 0.005 

0.02 
0.0313 

1.841 
0.0313 

36.007 5.581 1.255 0.339 1.723 0.454 

43.47 0.005 37.969 5.885 0.544 0.224 2.533 0.638 

Bottom 
left 

35.77 0.005 
-4.23 

0.0313 
-1.409 

0.0313 

27.639 4.327 -4.180 0.956 -1.358 0.391 

43.47 0.005 39.059 6.052 -3.335 0.773 -1.387 0.373 

Top Left 
35.77 0.005 

-4.23 0.0313 
5.091 

0.0313 

32.969 5.146 -2.341 0.614 3.665 0.858 

43.47 0.005 40.293 6.271 -3.449 0.783 4.249 0.971 

Top 
Right 

35.77 0.005 

4.27 0.0313 
5.091 

0.0313 

27.889 4.406 3.788 0.917 5.858 1.351 

43.47 0.005 20.015 3.233 4.049 1.034 7.239 1.700 

Bottom 
Right 

35.77 0.005 

4.27 0.0313 
-1.409 

0.0313 

21.810 3.450 1.335 0.504 -0.769 0.360 

43.47 0.005 21.010 3.334 2.840 0.766 -0.953 0.385 
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Table 27: Difference between the measured and the actual planar CG results for 

zshelf=5.5 in. 

 
Actual Difference 

Payload 
Shelf 

Location 

Wact ΔW Δx Δy 

[lb] [lb] [in] 

Center 
35.77 0.237 1.235 -0.387 

43.47 -5.501 0.524 0.423 

Bottom 
left 

35.77 -8.131 0.050 -0.218 

43.47 -4.411 0.896 -0.247 

Top Left 
35.77 -2.802 1.889 -1.695 

43.47 -3.177 0.781 -1.111 

Top 
Right 

35.77 -7.881 -0.482 0.498 

43.47 -23.455 -1.043 1.879 

Bottom 
Right 

35.77 -13.960 -2.935 -1.909 

43.47 -22.460 -1.430 -2.093 

 

 

 

 

Figure 73: Scatter plot of the zmeas versus the zact for a 35.77 lb payload. 
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Table 28: Platform tilting test results for zmeas at different planar payload locations and α’s at zshelf  = 5.378 in. 

 
Actual Measured Difference 

Payload 
Shelf 

Location 

Wact zact σzact z30 σz30 z60 σz60 z90 σz30 Δz30 Δz60 Δz90 

[lb] [in] [in] [in] 

Center 
35.77 6.59 0.035 7.862 2.759 7.253 2.162 7.350 1.850 1.272 0.663 0.760 

43.47 7.41 0.034 10.359 3.199 8.905 2.458 8.026 2.013 2.949 1.495 0.616 

Bottom 
left 

35.77 6.59 0.035 12.689 3.308 13.305 2.900 11.259 2.847 6.099 6.715 4.669 

43.47 7.41 0.034 10.629 2.741 9.395 2.103 10.023 2.496 3.219 1.985 2.613 

Top Left 
35.77 6.59 0.035 6.194 1.803 8.118 1.924 9.630 2.441 -0.396 1.528 3.040 

43.47 7.41 0.034 8.618 2.306 8.441 1.934 9.637 2.428 1.208 1.031 2.227 

Top 
Right 

35.77 6.59 0.035 13.058 5.100 9.815 3.122 13.959 3.069 6.468 3.225 7.369 

43.47 7.41 0.034 25.459 8.711 17.998 5.212 20.675 4.543 18.049 10.588 13.265 

Bottom 
Right 

35.77 6.59 0.035 21.309 6.522 16.908 4.369 14.920 3.743 14.719 10.318 8.330 

43.47 7.41 0.034 24.574 8.037 20.908 5.542 18.174 4.546 17.164 13.498 10.764 
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Figure 74: Boxplot of zmeas at various tilt angles using a 43.47 lb payload.   

 

 

Figure 75: Compares zmeas with the payload planar location using a 35.77 lb payload. 
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Figure 76: Compares zmeas with the payload planar location using a 43.47 lb payload 

at α=30
o
and shows the uncertainty range. 
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APPENDIX H. FEA VALIDATION PLOTS 

 

Table 29: ABAQUS and MATLAB Bipod Rod load comparison with a payload on 

the bottom left corner of the shelf (BL). 

 
Reverse Comparison (BL) 

 
σABAQUS FABAQUS FMATLAB Diff 

Bipod 
Rod Index 

[lb/in2] [lb] [lb] [%] 

1 -371.314 -23.913 -23.917 -0.017 

2 -371.314 -23.913 -23.917 -0.017 

3 -151.404 -9.750 -9.751 -0.009 

4 -151.404 -9.750 -9.751 -0.009 

5 -65.6125 -4.225 -4.226 -0.008 

6 -65.6125 -4.225 -4.226 -0.008 

α = 0 , β = 0 
  

  
 

 

 

Table 30: Forward results comparison between the actual values and the results 

generated using loads generated by FEM as inputs to the CG code. Payload set to the 

bottom left corner of the shelf (BL). 

 
Forward Comparison (BL) 

α = 0 , β = 0 x y mg 

units [in] [in] [lbs] 

Actual Values -4.50 -1.140 43.470 

From ABAQUS 
Loads -4.50 -1.139 43.464 

Percent diff 0.004 0.088 0.014 
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Table 31: ABAQUS and MATLAB Bipod Rod load comparison with a payload on 

the bottom left corner of the shelf (BL) and α = -60 , β = 0. 

 
Reverse Comparison (BL) 

 
σABAQUS FABAQUS FMATLAB Diff 

Bipod 
Rod Index 

[lb/in2] [lb] [lb] [%] 

1 -432.98 -27.884 -27.887 -0.010 

2 -697.952 -44.948 -44.952 -0.010 

3 -299.995 -19.320 -19.322 -0.009 

4 148.591 9.569 9.570 -0.010 

5 479.475 30.878 30.881 -0.009 

6 214.504 13.814 13.815 -0.007 

α = -60 , β = 0 
  

  
 

 

 

Table 32: Forward results comparison with the payload set to the bottom left corner 

of the shelf (BL) and α = -60 , β = 0. 

 
Forward Comparison (BL) 

α = -60 , β = 0 x y Z mg 

units [in] [in] [in] [lbs] 

Actual Values -4.5 -1.14 12.91 43.47 

From ABAQUS Loads -4.4998 -1.1398 12.9108 43.4639 

Percent diff 0.0044 0.0175 -0.0062 0.0140 
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APPENDIX I. BIPOD ROD LOADS AND STRAIN COMPARISON 

 

Figure 77: Measured and expected bipod rod strains at α = 30
o
 while the actual 

payload is at the BR corner of the shelf. 

 

Table 33: Load and strain results for the expected and measured cases. Parameters: 

α = 30
o
, Payload at BR and zact = 12.72 in. 

BPR 
Index 

Fexpect Fmeas FDIFF εexpect εCM εDiff 

[lb] [με] 

1 4.60 14.04 9.44 7.14 21.81 14.66 

2 13.88 22.21 8.34 20.20 32.33 12.14 

3 0.12 4.95 4.83 0.21 8.27 8.06 

4 -15.80 -22.95 -7.15 -22.77 -33.08 -10.31 

5 -39.95 -46.68 -6.73 -63.70 -74.43 -10.73 

6 -31.66 -37.83 -6.17 -49.08 -58.64 -9.56 

  
  

 
||εDIFF|| 65.46 
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Figure 78: Measured and expected bipod rod strains at α = 60
o
 while the actual 

payload is at the BR corner of the shelf. 

 

 

Table 34: Load and strain results for the expected and measured cases. Parameters: 

α = 60
o
, Payload at BR and zact = 12.72 in. 

BPR 
Index 

Fexpect Fmeas FDIFF εexpect εCM εDiff 

[lb] [με] 

1 14.48 30.51 16.03 22.48 47.37 24.89 

2 30.54 44.43 13.89 44.45 64.67 20.21 

3 10.10 18.47 8.37 16.86 30.83 13.97 

4 -17.79 -20.87 -3.07 -25.64 -30.07 -4.43 

5 -45.53 -42.44 3.09 -72.59 -67.66 4.93 

6 -30.33 -46.07 -15.74 -47.02 -71.43 -24.40 

   
 

 
||εDIFF|| 92.84 
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