VIBRATION-BASED HEALTH MONITORING OF ROTATING SYSTEMS
WITH GYROSCOPIC EFFECT

A Thesis
presented to
the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical Engineering

by
Nenad Gavrilovic
December 2014



© 2014
Nenad Gavrilovic
ALL RIGHTS RESERVED



TITLE:

AUTHOR:

DATE SUBMITTED:

COMMITTEE CHAIR:

COMMITTEE MEMBER:

COMMITTEE MEMBER:

COMMITTEE MEMBERSHIP

Vibration-Based Health Monitoring of Rotating
Systems with Gyroscopic Effect

Nenad Gavrilovic

December 2014

Xi (Julia) Wu, PhD
Associate Professor of Mechanical Engineering

Frank Owen, PhD
Professor of Mechanical Engineering

Frank Poehler, PhD
University of Applied Sciences Karlsruhe



ABSTRACT
Vibration-Based Health Monitoring of Rotating Systems with Gyroscopic Effect

Nenad Gavrilovic

This thesis focuses on the simulation of the gyroscopic effect using the
software MSC Adams. A simple shaft-disk system was created and parameter of
the system were changed in order to study the influence of the gyroscopic effect.
It was shown that an increasing bearing stiffness reduces the precession motion.
Furthermore, it was shown that the gyroscopic effect vanishes if the disk of sys-
tem is placed symmetrically on the shaft, which reduces the system to a Jeffcott-
Rotor. The second objective of this study was to analyze different defects in a
simple fixed axis gear set. In particular, a cracked shaft, a cracked pinion and a
chipped pinion as well as a healthy gear system were created and tested in Ad-
ams. The contact force between the two gears was monitored and the 2D and 3D
frequency spectrum, as well as the Wavelet Transform, were plotted in order to
compare the individual defects. It was shown that the Wavelet Transform is a
powerful tool, capable of identifying a cracked gear with a non-constant speed.
The last part of this study included fault detection with statistical methods as well
as with the Sideband Energy Ratio (SER). The time domain signal of the individ-
ual faults were used to compare the mean, the standard deviation and the root
mean square. Furthermore, the noise profile in the frequency spectrum was
tracked with statistical methods using the mean and the standard deviation. It
was demonstrated that it is possible to identify a cracked gear, as well as a
chipped gear, with statistical methods. However, a cracked shaft could not be
identified. The results also show that SER was only capable to identify major de-
fects in a gear system such as a chipped tooth.

Keywords: Health monitoring, Condition monitoring, Fixed axis gear, Fault detec-
tion, Fast Fourier Transform, FFT, Short-Time Fourier Transform, Short-Term
Fourier Transform, STFT, 3D FFT, SER, Side Band Energy Ratio, Statistical
methods, Wavelet Transform
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English Letters

NOMENCLATURE

kgm?

kgm?

m/s?

m/s?

Distance to disk (left)

Distance to disk (right)

Diameter of disk

Diameter of shaft

Modulus of Elasticity

Force

Second Moment of Area

Moment of inertia of the disk (around x and y)
Moment of inertia of the disk (around z)
Complex number

Length of disk

Length of shaft

Time

Horizontal displacement of the disk
Horizontal acceleration of the disk
Vertical displacement of the disk

Vertical displacement of the disk



Greek Letters

Ox rad Euler Angle around (horizontal) x-axis
P rad/s  Velocity around (horizontal) x-axis

Py rad/s> Acceleration around (horizontal) x-axis
®y rad Euler Angle around (vertical) y-axis

@y rad/s  Velocity around (vertical) y-axis

Py rad/s?  Acceleration around (vertical) y-axis

Q rad/s  Spinning motion

) rad/s  Whirling motion

Abbreviations

DOF Degree of Freedom
FFT Fast Fourier Transform
GE Gyroscopic Effect
MNF Modal Neutral File
RMS Root Mean Square
SER Sideband Energy Ratio
STFT Short-Time Fourier Transform
WT Wavelet Transform

Xi



1 The Gyroscopic Effect in Shaft-Disk Systems

1.1 Introduction

The gyroscopic effect is the most interesting phenomenon in rotor dynamics and oc-
curs whenever an object with an additional body, such as shaft-disk system, is sub-
jected to a rotational motion. Due to inertia effects, the flexibility and the asymmetry of
a shaft-disk system, a motion perpendicular to the spinning rotation can occur in the
system. This means that the gyroscopic motion is present, when the other axis of the

rotor is spinning, which also referred as the procession motion. See Figure 1.1 for de-

tails.
Precession axis
VY
(Py N
ﬁm
Spn 22 z

Figure 1.1. Precession motion of the disk

The gyroscopic motion has been in focus of extensive research [1] and can be even
considered in fault detection [2]. Therefore, the gyroscopic effect is very important in
rotor dynamics and vibrations, since it has a significant influence on the critical speeds
of a system, which will be explained in more detail later in this chapter. Thus, it cannot
be neglected and must always be taken into account whenever a shaft-disk system is

placed on flexible supports.



Figure 1.1 shows a shaft-disk system with its coordinate system, as well as the spin-
ning axis and the precession axis, caused by the gyroscopic effect. The angles around
the x- axis ¢, and the y-axis ¢, are called the Euler Angles and are a result of the
gyroscopic effect. If translational displacements (x and y) are included, as well as the
angular displacements (¢, and ¢,) around the disk, the shaft disk system can be re-

duced to a fourth degree of freedom model [3].

The gyroscopic effect can occur in many practical applications. One of the most im-
portant example that represents the gyroscopic effect is the gyroscope. Another exam-
ple were precession effects occur are in aeronautics. The most common example is
the helicopter, where the gyroscopic precession is used to control the pitching of a

helicopter [4] .

1.2 The Effect on Critical Speeds

1.2.1 Equation of Motion

The gyroscopic effect can be described by following equation of motions, which de-
scribe the resulting forces and the moments acting on the disk [5]. Where k describes
the stiffness, J, describes the moment of inertia around the x- or y- axis and J, around

the z-axis. If free vibration is introduced the moments and forces are zero.

mx + kppx — ko3, = F (1.1)
my + koY — Kooy = F, (1.2)
JaPx + JpQ@y + kozy + ks = M, (1.3)
JaPy = JpQ¢x — kozx + k33, = M, (1.4)
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It is also possible to introduce complex coordinates j for the above equations, which

are shown below [3].
zZ=Xx+jy (1.5)

V=0 = Jjox (1.6)

Substituting these complex numbers in equation (1.1) to (1.4) the equations of motion

can be written in a convenient and neat form:
mzZ + ky,z — ky;3¥W =0 (1.7)
]dl‘.i’—j]pﬂl‘i’—k23z+k33l1’ = O (18)

These complex equations of motion can be solved by introducing the homogenous

solution in order to solve these differential equations:
z(t) = relt (1.9)

Y(t) = ael®t (1.10)
By substituting the homogenous solutions, equations (1.7) and (1.8) can be pre-

sented in a matrix form:

—mw? + k —k
mfk% 22 —]da)2+]p2£3lw+k33“;]= [8] (1.11)

The characteristic equation of this equation can be obtained if the determinant of the

matrix in equation (1.11) is performed.



—ma)2 + kzz —k23 (1 12)

det =0
l —k33 —Jaw?® + JpQw + k33

The characteristic equation is presented in equation (1.13).

w4_/_vgws_(@+@)wz+@ﬂw+w=0 (1.13)
Ja Ja. m mjq mjq

This equation represents the whirling motion of the system. The whirling motion can
occur in the positive direction w, as well as in the negative direction —w (forward and
backward whirling). When substituting w in (1.13) the natural frequency can be calcu-

lated with equation (1.14).

w4(1_’£)_(@+@_’vk22)wz+w=0 (1.14)
Id Id m mld m[d

If the negative whirling —w is substituted for spinning speed Q another equation can
be obtained with which the natural speeds for the backward whirling can be calculated.

I Lk — k2
a d d d

1.2.2 The Stiffness Matrix

The stiffness components of the shaft can be presented in a matrix form. To obtain the
individual components, the rotor system has to be assume as a flexible body first,
which is shown in Figure 1.2 a. The stiffness components of this matrix can be obtained
using the displacement influence coefficients, which are described in [6]. Next, the flex-
ible influence coefficient method of the flexible bearings and rigid shaft model, shown
in Figure 1.2 b, has to be used in order to obtain the stiffness components for this

4



matrix. Lastly, the two stiffness matrixes of both cases have to be superimposed in

order to create the model with flexible bearings and flexible shaft, Figure 1.2 c.

z y z
> b) TWWAY )
0 '\ N
-1 - ]l \C
0 X
Q X
\
SKEAMAMAWWWWWAR A

Figure 1.2. Flexibility of the rotor system [3]

1.3 The Campbell Diagram for Displaying the Critical Speeds

Vibrational systems can be characterized by critical frequencies, which are important
parameter for any rotor system. Reaching critical speeds can result in resonance,
which is highly to avoid since it can cause failures to machines. ldentifying theses crit-
ical speeds is necessary for every engineer in order to reduce danger and harm to the
environment and the machine itself. However, in many cases resonance frequencies
are not easy to determine. Critical speeds do not always have to be at a constant value.
In fact, they can change during the operation in several applications. For instance,

resonance frequencies can vary with the spinning speed.

This speed dependence of critical speeds can be caused by the properties of a system.
The stiffness of some bearing system, like fluid film bearings, has the ability to vary
with the operational speed or to change with temperature [7]. In addition, the stiffness

of some systems can change, the higher the operation speed is. Typically, this effect
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occurs in turbines. Turbo-blade resonance frequencies increase with the rotor speed.
This phenomenon is called blade stress stiffening, which occurs with increasing rotor
speed [8]. On the other hand, the counterpart to stress-stiffness is spin-softening. Spin-
softening enables a reduction of the natural frequencies, when the rotational speed of

a system increases [9].

Nevertheless, not only spin-softening and stress-stiffening have a significant influence
on the critical speeds, the gyroscopic effect influences the critical speeds as well. The
illustration of critical speeds in terms of rotor speeds are called Campbell Diagrams [8].

A Campbell Diagram is presented in the upper part of Figure 1.3.

Mode-!
Mode-
Mode-:
Mode-:
Mode-

oW s

—

-
o = Rotor speed

Q,- = fth mode frequency

;= i thcritical speed

X = Vibration amplitude

|
|
|
|
|
|

0 — T w

0 (l)l (!)_. (0 (')-l (!)5

Figure 1.3. Campbell Diagram and amplitude-frequency diagram [8]

The horizontal axis represents the rotor turning speed, while the vertical axis repre-
sents the natural frequencies. The lower part of the Campbell Diagram is used as a
reference to describe the resonance frequencies in terms of the amplitude and the
frequency and to visualize the natural frequencies. The graphs for the different modes,
which are the natural frequencies of the system, can be obtained by calculating the

imaginary roots of equation 1.13 and plotting them in terms of the operational speed.
6



The exciting frequency of the system be can represented as a straight line w = Q in the
Campbell Diagram. Since the relationship between the natural frequency and the ex-
citing speed is in many cases linear, it can be drawn as a line starting from the origin

of the plot [10].

The critical speeds can be identified when the line of the exciting frequency hits the
lines of the natural frequencies. Every intersections of these two lines can lead to res-
onance and is strongly to avoid. Once the critical speeds are identified at these inter-
sections, they can be avoided by operating the machine above or below the critical

speeds.

Although the Campbell Diagram is a powerful tool for mapping and localizing reso-
nance frequencies it can only provide the location of the critical speeds, but not the
corresponding amplitude. Nevertheless, the Campbell Diagram is also suitable for dis-

playing resonance frequencies by considering forward and backward whirling modes.

However, not all identified critical frequencies are equally dangerous. It is likely that
some higher modes of the natural frequencies do not appear as significant vibrational
peaks in an actual system. It can happen that more critical speeds are found in the
Campbell Diagram but do not appear in an actual system. The reason for that might
be that some modes are significantly damped and therefore the amplitudes at these
resonance modes are not highly developed [8], [10]. Nevertheless, the Campbell Dia-
gram provides engineers the prediction of critical speeds and can be very useful espe-

cially in the designing phase of a project.



In order to demonstrate the meaning and the importance of the Campbell Diagram
different example problems will be used. For this, the equation 1.13, which was derived

in the previous section, will be used to plot the Campbell Diagram.

First, a system with a rigid body but with a flexible shaft will be used. Next, a disk-shaft
system with a rigid shaft but with flexible bearings is going to be used for the analysis
scope. Lastly, a system with a flexible shaft and flexible bearings will be used. For all

three cases, the critical speeds will be determined using the Campbell Diagram.

In order to display the Campbell Diagram with the natural frequencies the parameter
of the single disk model, which is shown in Figure 1.4, needs to be defined. The chosen

parameters for the following analysis are presented in Table 1.1.

a | b
i
) s |
L

Figure 1.4. Simple drawing of the single disk-shaft model



Table 1.1. Parameter and properties of the shaft-disk model

Symbol Parameter name Value Unit
a Disk location 0.125 m
D Diameter of disk 0.150 m
d Diameter of shaft 0.01 m
E Modulus of Elasticity 2.07E+11 N/m?
L Disk length 0.02 m
l Shaft length 0.5 m
kq Stiffness of Bearing 1 1.0E+07 N/m
k, Stiffness of Bearing 2 1.0E+07 N/m
p Density 7,800 kg/m3
v Poisson ratio 0.29 -

First, the Campbell Diagram of the rigid-shaft and flexible-bearings of the single disk-
shaft system will be plotted and analyzed. This means that this model consist of a rigid
shaft, which has non-flexible and non-bending characteristics. The stiffness of the
bearings are assumed to have a value 1.0 E+07 N/m for each bearing component. This

setting makes the bearing to act as a spring and therefore to act as a flexible bearing.
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Figure 1.5. Campbell Diagram with flexible bearings and a rigid shaft

The Campbell Diagram for this setup is shown in Figure 1.5. The black lines represent
the natural frequencies that vary over time and can be obtained from equating (1.13).
The blue lines represent the forcing (exciting) speeds. If the whirling rotation, respec-
tively the whirling speed, of the shaft is in the same direction as the rotation of the shaft
(spinning speed) the upper blue line, which lies in the positive direction of the whirling
axis, comes into consideration. This determination is valid when forward whirling oc-

Ccurs.

On the other hand, if the whirling of the shatft is in the opposite direction than the move-
ment of the shaft, backward whirling occurs. If this happens, the lower blue line of the
forcing speed, which is drawn in the negative axis of the whirling speed, comes into

consideration.
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With this method, three different critical speeds can be obtained at every intersection
of the forcing speed line and the lines of the natural frequencies (379.6 rad/s, -220.5
rad/s and -427.3 rad/s). Since it is not known if backward or forward whirling occurs in
the system, it is strongly to avoid running this setup at these speeds in order to avoid
resonance.

120

100

80

60

n

40

Whirling speed @ _ (rad/s)

20 ....... : ‘“_ e ....... e R |

50 ‘ | i | | |
0 5 10 15 20 25 30 35 40 45 50
Spin speed O (rad/s)

Figure 1.6. Campbell Diagram with rigid bearings and a flexible shaft

Next, the system is assumed to consist a flexible shaft and rigid bearings. The Camp-
bell plot for this configuration is shown in Figure 1.6. Note that for this case compared
to the previous example, where the system included a rigid shaft with flexible bearings,
the obtained critical speeds reduce significantly. The values of the critical speeds are
33.4 rad/s, -7.5 rad/s and -37.4 rad/s and again, it is recommend strongly to avoid

these specific speed values for this setup.
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In the last configuration, the bearing, as well as the shaft, are assumed to be flexible.
For this model, the superposition method must be applied in order to calculate the

stiffness of the system. The result is shown in Figure 1.7.
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Figure 1.7. Campbell Diagram with rigid bearings and a flexible shaft

Surprisingly, a system with flexible bearings and a flexible shaft has lower critical
speeds than a system with a rigid shaft and flexible bearings. The individual critical

speeds are -7.5 rad/s, -37.2 rad/s and 33.1 rad/s.

The critical speeds are summarized for all three configuration in Table 1.2. The differ-
ent configuration are flexible bearings and flexible shaft (FBFS) model, the flexible
shatft rigid bearings (FSRB) and the rigid shaft and flexible bearings (RSFB) model. As
previously mentioned, the highest critical speeds appear if the shaft is assumed to be
rigid but the bearings flexible. It can be seen that the flexibility of the shaft has a greater
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influence on the critical speeds than the flexibility of the bearings. This fact is only valid
for this model and can be different with another model or other properties. However,
the values of the critical speeds of the two last cases are very close. In a real system,

these speeds must be avoided in order to reduce the possibility of resonance.

Table 1.2. Comparison of the critical speeds with different flexibilities

RSFB FSRB FSFB

379.60 rad/s 33.35rad/s 33.12 rad/s
-220.52 rad/s -7.55 rad/s -7.55 rad/s
-427.33 rad/s -37.49 rad/s -37.21 rad/s
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2 Introduction to Wavelet Analysis

This chapter provides an introduction to Wavelet Transform. In order to understand the
importance of its application and the advantage of analyzing non-periodic signals, clas-
sical vibrational analysis methods will be explained first. These include the Fast Fourier
Transform (FFT), as well as the Short Time Fourier Transform (STFT). The term “fast”
is included to the Fourier Transform since the development of a computational algo-

rithm, which is used to process the Fourier Transform more quickly [11].

2.1 Fourier Transform for Periodic Signals

Most periodic signals that appear in practical applications or in nature are time domain
signals. That means that a variable e.g. a displacement of a shaft is a time dependent
variable. However, in many cases it is very important to plot the frequency domain in
order to gain more insight of a periodic signal. One way to obtain this information and
to transform a signal from its time domain to its frequency domain is to apply the Fourier

Transform.

Jean-Baptiste Joseph Fourier! discovered that every periodic signal could be approxi-
mated with an infinitive sum of sine and cosine function, which are known as the Fou-
rier series. The Fourier series contains the frequency f, which is equivalent to the in-
verse of the period T. Furthermore, the Fourier series includes the coefficients a,, and
b,, which describe the weight of the individual sine and cosine functions. The Fourier

series is presented in equation (2.1).

fs(®) =ag+ i a,cos (27;1115) + i b,,sin (Z;nt) (2.1)
n=1 n=1

1 French mathematician and physicist (1768-1830)
14



To illustrate this summing function, a square wave is approximated by the Fourier se-
ries in dependence on the number of terms n, that are used to carry on and to calculate
the summing function. To illustrate that an approximation of a square function is per-
formed in Figure 2.1.Note, the higher the terms of the function are, the better the ap-
proximation to the real square function is. A term of n = 1 shows a simple sine wave.
By increasing the number of terms, the square function can almost completely be ap-
proximated by the Fourier series. In this example, the error between the real square
function and the approximated function is vanishing small when 49 terms are taken to

approximate the square function.
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Figure 2.1. Approximation of a square function with a Fourier series [12]

This knowledge reveals that the Fourier series can approximate any periodic function.

On the other hand, in many cases it is also important to display the frequency and the
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amplitude of a signal in the frequency domain in order to gain more insight of a function.

This can be done using the Fourier transform.

To illustrate this method, a simple sine function with a frequency of 20 Hz and an am-

plitude of 0.2 is used as an example. The signal in the time domain is plotted in the

upper part of Figure 2.2. Applying the Fast Fourier Transform results in the frequency

domain, revealing the correct frequency and the corresponding amplitude.
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Figure 2.2. Time and frequency domain of a simple sine function

Nevertheless, not only the information of a single sine function can be revealed, nor it

is possible to transform any imaginable periodic function from the time domain to its

frequency domain. As an example, three different sine functions, each with a different

frequency and amplitude, are superimposed and plotted in Figure 2.3. The first sine

function has an amplitude of 0.2 and a frequency of 20 Hz, the second superimposed
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sine function contains an amplitude of 0.5 and a frequency of 50 Hz, while the third
superimposed function consist of an amplitude of 1 and a frequency of 100 Hz. As you
can see, the frequency domain shows the correct frequencies and amplitudes for each
superimposed function.
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Figure 2.3. Time and frequency domain of a superimposed function

FFT is a powerful tool to determine the frequency and the amplitude of a signal but not
suitable for non-periodic functions though. To explain this in detail, the superimposed
periodic function from the last example is re-ranged to a non-periodic signal. Rather
than being superimposed, the individual function are appearing in different periods of

time, shown in Figure 2.4.
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If the FFT is applied to this non-periodic signal, the frequencies still can be somehow
identified. However, a clear determination of the amplitude cannot be guaranteed since
the frequency domain does not reveal the correct magnitude values. Thus, applying
the FFT to a non-periodic signal can result in information losses and should never be
used to analyze a non-periodic signal. The phenomenon of information losses is called
Leakage and it appears when the signals’ energy is reducing over a wide frequency

span in the FFT when it should be in a smaller one instead [13].
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Figure 2.4. Time and frequency domain of a non-periodic function

The fact that FFT does not reveal how a signal is changing over time leads to the
consideration of a better method to analyze a non-periodic signal. The Short-Time Fou-
rier Transform, for instance, is a better method to analyze non-periodic functions, which

is the subject of the next section.
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2.2 The Short Time Fourier Transform (STFT)

A better solution to overcome the drawback of the FFT is to introduce a method, which

divides the signal into thin slices and performs a Fourier Transform for each slice.

This means that tiny time slices (windows) of the signal are taken and the FFT of every
slice is performed in order to create FFT plot over the signals’ time range. The fre-

guency spectrum appears now as a three-dimensional plot with an additional time-axis.

The method of the STFT performs for each time slice a Fourier Transform. Thus, a
constant window is used for each time slice and then shifted to the next time slice along

the time line axis, where again another Fourier Transform is performed [14].

However, there are plenty of window functions available to perform the FT. A sample
of windows is presented in Figure 2.5. Each window function has its own characteris-
tics, coming along with its own disadvantages and advantages. Thus, the window func-

tion strongly depends on the signal that is to analyze.
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Window Best for these Frequency Spectral Amplitude
Signal Types Resolution Leakage Accuracy
Barlett Random Good Fair Fair
Blackman Random or Poor Best Good
mixed
Flat top Sinusoids Poor Good Best
Hanning Random Good Good Fair
Hamming Random Good Fair Fair
Kaiser-Bessel Random Fair Good Good
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Sampling
Tukey Random Good Poor Poor
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Figure 2.5. Different window functions and their properties [13]

The selection of a window cannot be arbitrary chosen and therefore depends on the
type of signal that is analyzed. Furthermore, several disadvantages have to be taken
into account when a window function is considered for a frequency analysis. Wide win-
dows, for instance, can result in an excellent frequency resolution but the time resolu-
tion can get worse. On the other hand, if a narrow window size is chosen, the time

resolution can get better but the frequency resolution will worsen instead [15].

The problem is a result of choosing a window function that is suitable for the entire
signal range and that has a compromise for both — a good time resolution and a good
frequency resolution [15]. However, this can be very difficult, especially when frequen-

cies are changing over time.
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This example means that it is not always easy, especially if the exact form of the signal
is unknown, to find the right window size in order to get all necessary information from
the 3D FFT plot. This drawback, as well as the exact determination of an appropriate
overlapping size, which is not further explained in this report, can lead to information
losses and arises the need of a more suitable and better method. This is where Wave-

let Transform comes into consideration and is explained in the next section.

2.3 The Wavelet Transform (WT)

The Wavelet Transform was created as another option in order to solve the resolution
problem that occurs when applying the STFT. The Wavelet analysis is done in the
similar way to the STFT, but major differences between these two methods exist. In
contrast to the STFT, where the window size is fixed and therefore cannot be changed,
the Wavelet Transform allows the window size to be variable. This fact leads to a de-
tection of different frequencies over the whole signals’ time range. Furthermore, it fixes

the resolution problem.

This is realized with a special set of scaling functions that every Wavelet function in-
cludes and enables a scaling and shifting of the window over the time range. Only with

this method, it is possible to detect all necessary information of a signal.

The Wavelet formulation is presented in equation (2.2). Where s stands for the scale
and is related to the actual frequency of a signal. Furthermore, the mother wavelet i
which is the transforming function depends on the time shift ¢ and the time t of the

signal x(t).

= %f x(0w (t;_T> a (2.2)
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The parameter scale enables a detailed analysis of a non-periodic signal. In this case,
low frequencies correspondent to high scales. Vice versa, high frequencies corre-
spondent to low scales. Thus, Wavelet analysis allows a high-resolution detection of

low and high frequencies.

Similar to FFT or STFT with windows, the Wavelet Transform has a variety of Wavelet
functions available, each containing a corresponding scaling function. A Wavelet func-

tion with its scaling function from the Daubechies family is presented in Figure 2.6.
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Figure 2.6. Wavelet function and the corresponding scaling function [16]

In order to demonstrate the effectiveness of the Wavelet Transform several example
will be used. The first example shows simple sine wave function, with an amplitude of
0.2 and a frequency of 20 Hz, which is the same function as the previous example

plotted in Figure 2.2.

Applying the Wavelet Transform of this sine signal leads to the scalogram in Figure
2.7. The result is presented in terms of scales and time or space. The term space
stands for the number of samples of a signal. The 1D Continuous Wavelet Transform
requires only one variable of a signal (e.g. the displacement) and takes its number of

samples to process the WT. The number of samples is related to the time and therefore
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named space or time. In this specific example, the number of samples matches with

the time in ms.

The scales of the WT are plotted on the vertical axis, which are related to the frequen-
cies. The correspondence of the frequencies and the scales will be explained in more

detail later in this chapter.

Another important parameter in the scalogram is the percentage of energy wavelet
coefficient. This parameter reveals the maxima of energy in the scalogram, which is
similar to the peaks in a 3D FFT plot.

Scalogram
Percentage of energy for each wavelet coefficient
0.014

0.012
F10.01
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Figure 2.7. Wavelet plot of a simple sine wave function (created with [17])

In Figure 2.7, the sine wave shows an energy maximum at a scale of about 25. In order
to obtain the frequency value at this specific scale, the scales have to be transferred
back to the corresponding frequencies. This is realized in Figure 2.8 where the corre-
sponding values of the scales and frequencies are plotted. As you can see, a scale of
25 corresponds to a frequency of 20 Hz. This is exactly the frequency of the sine wave

that is used in this example.
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Figure 2.8. Corresponding scales and frequencies of the WT (created with [17])

Similar to the FFT, WT can also detect the frequencies of a superimposed function.
The superimposed function consist of two sine waves, each with a different frequency

(20 Hz and 200 Hz). This function is presented in equation (2.3).

x(t) = sin(2m20t) + sin(27100t) (2.3)

The corresponding Wavelet Transform of this function is plotted in Figure 2.9. As you
can see, two energy maxima appear in the scalogram, which describe the frequencies
of the system. These energy maxima appear at a scale of around 6 and 25. Using the

corresponding frequency and scale graph in Figure 2.8, the frequencies of 100 Hz for

a scale of 6 and of 20 Hz for the scale of 25 can be revealed.
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Figure 2.9. Wavelet plot of a superimposed sine function (created with [17])

However, the presented example is still a periodic superimposed function and could
be analyzed using the FFT or STFT to obtain the frequencies. In order to demonstrate
a meaningful advantage of the WT, the sine function of the last example will be re-
ranged to a non-periodic signal. Now, the sine wave with a frequency of 20 Hz appears
in the time range between 0 and 250 ms and again between 750 and 1000 ms. The

other 100 Hz-sine function is present in the time range between 250 — 750 ms.

The analyzed signal, as well as the Wavelet result, is presented in Figure 2.10. As you
can see, the energy maxima appear at a scale of 25 between 0 and 250 ms and again
between 750 and 1000 ms. In addition, energy maxima are present at a scale of six
between 250 and 750 ms. Thus, Wavelet is a suitable method to analyze non-periodic

and non-stationary signals with a high resolution for both, the frequency and the time.
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The Wavelet Transform does not only allows the analysis of a pure signal; it also en-
ables the study of any signal, even if noise is present. Signals obtained in practice
usually contain noise. In order to perform a vibrational analysis, noise can be an inter-
ference factor and can lead to difficulties when performing a vibrational analysis. In
many cases, filters are used in order to reduce the presence of the noise and to clarify
the signal. However, another example will be used to demonstrate that it is possible to

get the right frequencies with Wavelet Transform, even if a signal contains a lot of

The same superimposed sine function, which was used in equation (2.3), will be the

objective for the next analysis. Furthermore, a random noise function will be added to
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Figure 2.10. Wavelet plot of a non-periodic function (created with [17])



this function to get a more realistic signal that can occur in any practical application.

Figure 2.11 shows the Wavelet plot of the new signal.

Even the signal is noisy and the energy maxima are not clearly formed, the scales and
respectively the frequencies of the signal can be identified. Again, the Wavelet plot
reveals that the energy maxima occur at a scale of 25 and 6. These two values corre-
spond to the frequency of 20 Hz and 100 Hz. Therefore, it is demonstrated that a sig-

nals’ frequencies can be revealed even if noise is present using WT.
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Figure 2.11. Wavelet plot of a superimposed sine function with noise (created with

[17])
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2.4 Summary

The Wavelet Transform was demonstrated starting from explaining the Fourier Trans-
form. The FFT is a suitable tool to perform vibration studies of periodic signals. How-
ever, performing a FFT to non-periodic signals can lead to leakage, which can turn into
information losses. A solution can be the Short-Time Fourier Transform (STFT), with
which the frequency spectrum can be presented as a 3D frequency plot, where an
additional time axis is added to the frequency spectrum. Even STFT is a powerful tool
to analyze non-periodic signals, the settings of the window and the determination of
the window itself is very important, since it can lead to the resolution problem. To over-
come this drawback the Wavelet Transform was introduced to perform vibrational anal-
ysis. It is shown that the WT is suitable to analyze a non-periodic signal and to obtain
simultaneously a multi-resolution result, which makes the WT a highly powerful tool.

Furthermore, it was demonstrated that even a noisy signal can be analyzed using WT.
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3 Simulation of the Gyroscopic Effect in Adams

3.1 Introduction

This chapter contains the analysis of the gyroscopic effect using the multibody dynam-
ics software MSC Adams. The research and analysis of the gyroscopic effect of a sin-

gle shaft-disk system is split up into several sections.

Several parameters like the bearing stiffness and the location of the disk are changed
and the systems’ response is measured. The shaft of the rotor system is modeled using
the FEA software Abaqus. In order to create an exportable MNF model, a script file is
used to convert the FEA model into a Modal Neutral File, which is then imported in
Adams. The bearings of the system are modeled using the features bushings. This
bushing model allows a convenient change of parameters such as the bearing stiff-

ness. Furthermore, it allows the reduction of the simulation time.

The output of the system is measured in terms of the Euler Angle that represent the
angular displacement at the location of the disk. The Euler Angle are a clear and unique
method to determine the presence of the gyroscopic effect in a rotating system. In

addition, the orbit plot of the disk is plotted and analyzed.

Another analysis includes the effect of eccentricities in a shaft-disk system. In order to
create the eccentricities, different masses are placed onto the rotor disk. The FFT —

analysis is used to compare the effect of the vibration with different eccentricities.

Furthermore, an anisotropic bearing system will be created and the orbit plot of the

shaft will be drawn.
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3.2 Variation of the Bearing Stiffness

3.2.1 Model Setup

The first simulation includes the analysis of the Euler Angle in dependence of the bear-
ing stiffness. To model the gyroscopic effect, a single shaft-disk model needs to be
created in Adams. A sketch of the rotor model is presented in Figure 3.1. The dimen-
sion and the properties of this system are shown in Table 3.1. Except for the bearing
stiffness, which is a variable parameter in this study, all other parameters remain un-

changed during each simulation.

N NN

L

Figure 3.1. Single shaft-disk model

The shaft of the model has a length of 0.5 m and a diameter of 0.01 m. The disk is
mounted at 0.125 m measuring from the left end of the shaft and has a diameter of
0.15 m. The properties of both, the disk and the shaft, are assigned with the material
properties of steel. While the disk is modeled as a rigid body, the shaft is created as a

flexible body.
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Table 3.1. Parameter and properties of the shaft-disk model

Symbol Parameter name Value Unit
a Disk location 0.125 m
D Diameter of disk 0.150 m
d Diameter of shaft 0.01 m
E Modulus of elasticity 2.07E+11 N/m?
L Disk length 0.02 m
l Shaft length 0.5 m
k4 Stiffness of Bearing 1 variable N/m
k, Stiffness of Bearing 2 variable N/m
p Density 7,800 kg/m?3
v Poisson ratio 0.29 -

The values that are used are chosen arbitrarily and will be used as standard values for

other experiments in this paper. The stiffness components of the bearings, which are

varied during the tests, are shown in Table 3.2. In total, for this study, seven different

simulation experiments are performed, each with an individual stiffness value. The stiff-

ness is reduced in every experiment by a factor of 10, starting from a value from

10,000,000,000 N/m. Note that the stiffness value of 10,000,000 N/m in test procedure

number 4 is used as a standard stiffness value for other analyses.

Table 3.2. Stiffness values for each simulation

Simulation number

Stiffness (N/m)

1

~N o 0o B~ WN

10,000,000,000
1,000,000,000
100,000,000
10,000,000
1,000,000
100,000
10,000
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3.2.2 Model in Adams
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Figure 3.2. Adams model of the single shaft-disk system

Figure 3.2 shows the Adams model of the shaft-disk system. It consist of a rigid rotor
disk mounted on a flexible shaft. The shaft is supported by bushings on each ends.
The shatft, as previously mentioned, is a flexible body with a mesh size of 1 mm. See

the appendix how to create a flexible body in Abaqus and how to import it in Adams.

Furthermore, instead of using the bearings option in Adams, bushings are used. The
reason for that is that the bearings in Adams do not support any changes of the prop-
erties like the stiffness or the damping. It is also difficult to verify and evaluate how

accurate the bearing option in Adams is and therefore bushings are used.

With the bushings option it is possible to analyze the system, depending on different
dynamic properties such as the stiffness or the damping. Therefore, the bushing option
is a convenient tool to create pseudo-bearings. Figure 3.3 shows the available bush-

ings option with the option to specify different bearing properties.

Besides changing the stiffness components, it is also possible to change the damping
components. Moreover, the property manager contains rotational and translational pa-

rameter of these properties.
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This available set up makes the bushing option a powerful tool for dynamic studies.
However, they do not represent a real bearing system, since the stiffness of bearings

can include a speed dependency.

However, with the use of bushing the simulation time can significantly be reduced. For
instance, in this research, the simulation time was reduced up to 98%, when bushings
were used instead of bearings. In particular, the simulation was carried out with a total
number of 150,000 steps and a simulation time of 15 seconds. The simulation took
about two minutes, while with the usage of the bearing option the simulation duration

exceeded two hours.

B Modify Bushing .. 23

Name | BUSHING_1

Action Bndy| Dummy_1

Reaction Bndy| Busingpart_1
Translational Properties (x,y.z components):

Stiffness | (1.0E+007(newton/meter}),(1.0E+007(newton/meter}).(1.0E+007(newton/meter))

Damping | (Dinewton-sec/meter)).(0(newton-sec/meter)),(O(newton-sec/meter)}

Preload| 0.0,0.0.0.0

Rotational Properties (x,y.z components):

Stiffness | (Dinewton-meter/deg)).(0(newton-meter/deg)),(0(newton-meter/deg)}

Damping | (0(newton-meter-sec/deg)).(0{newton-meter-sec/deg)),(0(newton-meter-sec/deg))

Preload| 0.0,0.0.0.0
Force Display| On Action Body j

1 |

Ok ‘ Apply ‘ Cancel ‘

Figure 3.3. Bushing property manager in MSC Adams

Furthermore, a constant speed is applied to the shaft of the system. The speed is hold

constant at a value of 15 Hz (900 rpm).
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3.2.3 Results

The result of the gyroscopic effect is presented in terms of the yawing and pitching
motion of the disk. The yawing, as well as the pitching, can be described by the Euler

Angles of rotation, which are a result of the integrated motion around the disk.

The Euler Angle around the (horizontal) x-axis describes the pitching motion of the
disk, while the Euler Angle around the (vertical) y-axis describes the yawing motion of
the disk. Figure 3.4, as well as Figure 3.5, shows the simulation results of the pitching

and yawing motion with different stiffness values.
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Figure 3.4. Euler Angle (pitching) with different bearing stiffness values

As you can see, several graphs of the pitching angle exist, each representing a differ-
ent bearing stiffness. The form of the graphs show a linear function, which is due to
the integrated constant motion around the disk. In this example, a constant speed

around the z-axis is applied to the shaft, which creates a constant precession motion
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around the disk. The integration of this motion results in a linear angular displacement

function.

Figure 3.5 shows that once the stiffness exceeds a value of 1.0E+06 N/m, the influence
on the pitching becomes less important, which means that the differences between the
individual graphs are small and the changes are minimal. This can be seen in detail in
Figure 3.5 where the graphs of the pitching motion are shown in a range between
1.0E+06 N/m and 1.0E+10 N/m as a close-up image. As you can see, the individual

graphs are slightly apart and show only a small difference in the Euler Angle.

Notice that the graph with the lowest stiffness value of 1.0E+04 N/m is present in the
opposite direction than the other graphs, which means that for this particular stiffness,
the pitching appears in the opposite direction. The bearing stiffness of 1.0E+04 N/m

shows some instabilities since the pitching motion does not reach steady state.
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Figure 3.5. Euler Angle (pitching) with different bearing stiffness values (zoom)
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It is also important to analyze the yawing motion of the disk, since the yawing and
pitching results in the presence of the gyroscopic effect. Therefore, the yawing motion
is described by the Euler Angle ¢, around the vertical axis. Figure 3.6 shows the sim-

ulation result of this angle in dependence of different stiffness values.

Some similarities exist if the yawing and pitching are compared. For instance, the yaw-
ing motion increases with the bearing stiffness. In addition, once the stiffness exceeds
a value of 1.0E+07 N/m the differences between the individual graphs become very
small and the bearing stiffness becomes less important to the influence of the gyro-

scopic effect, since the bearings become rigid and the flexibility of the shaft accounts

for the GE.
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Figure 3.6. Euler Angle (yawing) with different bearing stiffness values
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Notice that the yawing motion is in general higher than the pitching motion. For in-

stance at the end of the simulation time, the yawing angle reaches a value between 18

and 19 deg for high stiffness values. The pitching, on the contrary, reaches a value of

about -0.3 deg for high stiffness values.

T T T T T
18.95F ]
8.9 1.0E+04Nim 1
1.0E+05 N/m
1.0E+06 N/m
. —— 1.0E+07 N/m
© 18.85| - ——— 1.0E+08 N/m | .
I 1.0E+09 N/m
g 1.0E+10 N/m
o
2
< 188t _
18.75 ]
187 ] | 1 | | 1 1 ]
14.993 14.994 14.995 14.996 14.997 14.998 14.999
Time t (s)

Figure 3.7. Euler Angle (yawing) with different stiffness values (zoom in)

However, not only the Euler Angles are significant parameter to analyze the behavior

of system; it is also important to have a closer look at the orbit of the shaft. Thus, the

orbit plot of the rotor system with different stiffness settings is plotted in Figure 3.8. The

orbit plots describe the displacement in the x and y-axis of the disk during the rotation.

Due to instability of the system the orbit plot does not reach a circular movement at a

stiffness of 1.0E04 N/m. Also note that with an increasing stiffness the displacement,
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as well as the orbit plot itself becomes smaller. Since there is no significant change in
the system with a stiffness above 1.0E07 N/m the orbit of the system is not plotted for

higher stiffness values.
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Figure 3.8. Orbit plot of the disk with different stiffness values
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3.3 Variation of the Disk Location

3.3.1 Model Setup

The next analysis is about the influence on the gyroscopic motion when the location of
the disk is changed. For this purpose, several models, each with a different disk loca-
tion are created. The disk location ratio is used as a reference parameter in this anal-
ysis. The disk location ratio is measured by dividing the disk location a, which is meas-
ured from the left end of the disk, by the total length of the shaft [. All other model

properties remain the same as in the previous analysis. See Table 3.3 for details.

Table 3.3. Parameter and properties of the model

Symbol Parameter name Value Unit
a Disk location variable m
D Diameter of disk 0.150 m
d Diameter of shaft 0.01 m
E Modulus of Elasticity 2.07E+11 N/m?
L Disk length 0.02 m
l Shaft length 0.5 m
k4 Stiffness of Bearing 1 1.0E+07 N/m
k, Stiffness of Bearing 2 1.0E+07 N/m
p Density 7,800 kg/m?3
v Poisson ratio 0.29 -

In total four different simulation models, each with a different disk location, are created
and shown in Table 3.4. Note that only the disk location is a variable parameter, while
the length of the shaft remains constant. The output parameter and therefore the meas-

ured response is the Euler Angle around the disk.
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Table 3.4. Disk location ratios for each model

Model number Disk location ratio a/l
1 1/8
2 1/4
3 3/8
4 1/2

3.3.2 Results

The measured response of the GE is the pitching, as well as the yawing angle of the

disk, which is presented in Figure 3.9 and Figure 3.10.

Angle ¢, (deg)

Note that the Euler Angle varies with the disk location ratio. For example, the pitching

angle shows the highest values at a location of 1/8, if the disk location ratio is increased

Time t (sec)

Figure 3.9. Euler Angles (pitching) with different disk locations
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to 1/4 the pitching will be smaller. If the disk location is increased again, the gyroscopic

effect will increase again.

Note that if the disk is placed at the center of the shaft (1/2), the pitching, as well as
the yawing, will become zero. In other words, the gyroscopic effect will disappear, when
the disk is placed at the center of the shaft. This is an important observation, since the
rotor system reduces to a so called Jeffcott-Rotor system then. The Jeffcott-Rotor does
not include any gyroscopic effects, since the inertia of the system does not contribute

to the gyroscopic effect.
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Figure 3.10. Euler angles (yawing) with different disk locations

Similarities exist if the yawing motion of the disk is analyzed. The yawing increases
with the off-centered rotor disk, except for a value of ¥4. Furthermore, the yawing re-

duces to zero if the disk location ratio is Y2, which confirms the observation that no
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gyroscopic motion is present when a Jeffcott-rotor is used. It is also worthwhile to ob-
serve that the yawing motion is in general greater than the pitching motion and is pre-

sent in the opposite direction.

Furthermore, the orbit plot of the shaft-disk system is shown in Figure 3.11. As you can

see the smallest orbit plot exist at a disk location ratio of %a.
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Figure 3.11. Orbit plots with different disk positions
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3.4 Influence of Eccentricities

The objective of this section is to observe the influence of the shaft-disk system if the
disk is unbalanced. Therefore, several different masses will be placed on the disk in
order to create an unbalanced rotor. Figure 3.12 shows the single disk system in Ad-
ams. The disk of the rotor system is located at 1/4 of the shafts length. All other prop-
erties, as well as dimension of the disk, remain the same as in the previous models. In
order to create an unbalanced rotor, a mass is added to the disk, which is placed at
the outer diameter of the disk. The mass is created using a spherical body in Adams
with the properties of steel. The radius of the sphere is varied in order to create different
weights, which are shown in Table 3.5. The motion is constant and has a value of 15

Hz.

Addedtnass~ah‘
'

Figure 3.12. Unbalanced shaft-disk system in Adams

Table 3.5. Radius and mass of the eccentricities

Radius of sphere Mass
5.35 mm 509
6.74 mm 1049
8.49 mm 209
10.7 mm 40 g
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Figure 3.13 shows the result in form of the orbit plot. Note that once the weight of the
eccentricity increases, the orbit plot will increase too. This is reasonable since the un-
balanced system will create a higher excitation of the rotor, resulting in an increase of

the displacement.
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Figure 3.13. Orbit plots at 15 Hz with different eccentricities

To demonstrate that there is an effect on the vibrations, the FFT plot with different
masses are shown in Figure 3.14. As you can see, with a mass of 0 g there is almost
no peak in the vibration spectrum. Once the mass increases, the amplitude of the vi-
brational response becomes proportional larger. Therefore, it is very important to pay
attention to the eccentricity and try to unbalance a rotor in order to reduce the vibration

response.
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Figure 3.14. Frequency response at 15 Hz with different eccentricities

3.5 Analysis of an Anisotropic Bearing System

Furthermore, it is significant to analyze the shaft-disk system if anisotropic bearings are used.
Anisotropic bearings are bearings that have different properties in each direction. To create an
anisotropic bearing system in Adams, the bushing stiffness will be changed. For instance, in
this example the bearing stiffness in the (vertical) y direction remains constant at 1.0E7 N/m,
while the stiffness in the horizontal direction (x-direction) is reduced to 1.0E06 N/m. The orbit
plot of this analysis is presented in Figure 3.15. Note the orbit of the anisotropic bearing does
not show an elliptical shape. This is due to the reduced stiffness in the x direction. Note also,

that the orbit increases if anisotropic bearings are used.
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Figure 3.15. Orbit plot with anisotropic bearings
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4 Health Monitoring with a Simple Pair of Gears

4.1 General Model Setup

This simulation consist of a simple pair of gears, mounted on flexible shafts that repre-
sents a fixed axis gear system. Each shaft is supported by bearings, which are mod-
eled using the bushing option and ensures that the setup is modeled as realistic as
possible. Figure 4.1 shows the general model setup in Adams. Furthermore, a rota-
tional speed, as well as a torque, is applied to the pinion and a resistant torque is
applied to the output shaft. The speed profile, as well as the torque profile, will be

explained in more detail in this chapter.

Bearing (Bushing) ——» _

f

Flexible Shaft

\

Pinion

Figure 4.1. Simple pair of gears system in Adams

Figure 4.1 shows the general properties of the gearing system. The properties of the

shaft are shown in Table 4.1 and the properties of the flexible shaft are presented in
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Table 4.2. Again, the flexible bodies are created in Abaqus and imported in Adams.
Although the gearing system is small, it can be used to represent a real system and

scaled if necessary for further studies.

Table 4.1. Properties of the gears

PINION GEAR
NUMBER OF THEETH 23 31
MODULE 2 mm 2 mm
PRESSURE ANGLE 20° 20°
BORE DIAMETER 10 mm 10 mm
WIDTH 10 mm 10 mm
MATERIAL steel? steel

Table 4.2. Properties of the shaft

Symbol Parameter Value Unit
d Diameter of shaft 0.01 m
E Modulus of Elasticity 2.07E+11 N/m?2
l Shaft length 0.2 m
k Bearingstiffness 1.0E+07 N/m
p Density 7,800 kg/m?3
v Poisson ratio 0.29 -

2 This default material definition for rigid bodies is chosen in Adams.
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4.2 Modeling the Speed and Torque Profile

Realistic simulation models can only be achieved if the inputs are as realistic as pos-
sible. To ensure a practical gear model, the input torque will represent an AC-motor
curve, which is dependent on the input speed. However, the values of the curve are
chosen arbitrary, but the shape of the function resembles a practical motor curve. The

torque profile, which is specified in Adams is shown in Figure 4.2.
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Figure 4.2. Input torque profile

It is also reasonable to define different speed profiles. In a real system, any imaginable
speed profile could be possible and present. For this purpose, three different speed

profiles are defined and used for the dynamic analysis, shown in Figure 4.3.

The first speed profile represents a constant speed, at which the shaft is rotating con-
stantly at 1200 rpm during the whole simulation time. In addition, an exponential speed
curve is modeled where the speed value of 1200 rpm is reached without overshooting.
Lastly, a liner increasing speed profile is applied to the system in which the whole range

of the torque curve is exploited (0-4000 rpm).
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Figure 4.3. Input speed profiles

This input setup will be used to perform the simulation experiments. Although the de-
fined speed profiles and the torque curve are only a tiny fraction of different possible
practical setups, they are important for this study in order to design a realistic Adams

model.

As mentioned before, a resisted torque is also present in the system in order to ensure
that a resistance exists in this system. The resistance torque is a function of the input
and output torque, as well as the input and output speeds. Furthermore, an efficiency
factor for the gearing system n, of 0.98 is included. A realistic range of the gear effi-

ciency varies between 94-98% [18].

T w;
Tres = = mnG (41)

Woyt
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4.3 Faults and Defects in the Gear System

To ensure proper health monitoring and fault detection, several defects are included in
the gear system. The first defect is a damaged tooth that is located at the pinion. The
chipped tooth can be the result of material faults or caused by fatigue. The chipped

tooth is presented in Figure 4.4.

9

4

Figure 4.4. Chipped pinion

The next gear defect includes a cracked tooth located at the driving gear (pinion). In
order to create this tooth defect, the gear must be created as a flexible body, which is
realized with Abaqus, too. The same material properties that are defined for the flexible
shafts applies for the gear. The crack is 0.01 mm thick and has a length of about 50%

of the tooth width, shown in Figure 4.5.
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Figure 4.5. Cracked pinion

Not only a crack in the gear can be present in a gear box, it is also imaginable that a
crack in the shaft can exist. Therefore, another fault will be included in the system,
which is a cracked shaft. The crack in the shaft is 0.2 mm thick and has a depth of 5
mm, which is the half of the shafts’ cross section. It occurs at the center (half length)
of the shaft and is placed at the driving shaft. The crack in the shaft is shown in Figure

4.6.

Figure 4.6. Cracked shaft
52



4.4 Simulation Procedure and Analysis Scope
An effective analysis presupposes a well-planned experimental method, as well as
well-organized simulation procedure. This includes the definition of the inputs and out-

puts, as well as the analysis scope, which are described below.

The inputs of the system are:
e Torque, defined by the torque-speed curve
e Speed profile:
- Constant speed (10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz)
- Exponential
- Linearly increasing
While the output of the system is:
e Contact force between the two gears
In addition, the simulation setups are:
e Healthy/Perfect Gear
e Chipped tooth
e Cracked tooth
e Cracked Shaft
The analysis is performed by:
e FFT
e 3DFFT
e Wavelet

e Statistical methods
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4.5 Analysis of the Flexibility of the Shaft and the Bearings

Before the actual simulation is completed, an analysis of the different possible flexibility
modes in Adams is carried out. Therefore, a healthy simple pair of gear system is
modeled with different flexibilities of the shaft and bearings. These different possible
types of flexibilities can contain a rigid-shaft and rigid-bearing (RSRB)-system, a rigid-
shaft and flexible-bearings system (RSFB) and a flexible-shaft and flexible-bearings
(FSFB) system. A simulation in Adams is performed with each model at a constant
speed of 1200 rpm (20Hz). The contact force between the two gears is measured and
FFT is used to display the gear mesh frequencies (GMF) of the system. The result is

shown in Figure 4.7 and the values are presented in Table 4.3.
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Figure 4.7. GMF comparison with different flexibilities
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Note, once the model becomes more flexible, the magnitude of the harmonics de-
creases. Thus, a system with a flexible body and flexible bearings shows the lowest
value of almost all GMF-peaks. The reason for that is that the flexibility of the model
enables to absorb the force. A flexible FEA body acts as a spring, stores more energy
and therefore shows a lower magnitude in the FFT-spectrum. On the other hand, a
rigid body does not have the capability of storing the energy and reveals higher mag-

nitudes for the GMFs.

Table 4.3. Numerical values of the GMFs with different flexibilities

GMF RSRB RSFB FSFB
460 Hz 42.65 N 52.36 N 19.00 N
920 Hz 17.28 N 22.08 N 419N
1380 Hz 37.13N 452 N 17.24 N
1840 Hz 51.92 N 15.24 N 15.16 N
2300 Hz 37.02 N 14.16 N 247N
2760 Hz 17.87 N 5.23 N 11.23 N
3220 Hz 38.32 N 15.28 N 1431 N
3680 Hz 38.76 N 15.80 N 5.75 N
4140 Hz 38.20 N 13.64 N 8.02 N
4600 Hz 11.81 N 478 N 14.28 N
5060 Hz 25.81N 13.47 N 8.18 N
5520 Hz 38.07 N 17.16 N 437N
5980 Hz 26.56 N 12.68 N 10.95N
6440 Hz 4.46 N 5.21N 10.17 N
6900 Hz 24.36 N 11.80N 1.08 N
7360 Hz 35.46 N 18.26 N 9.22 N
7820 Hz 15.27 N 7.30 N 9.71 N
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4.6 Health Monitoring with FFT and 3D FFT

4.6.1 FFT and Time Domain Analysis

The first study includes the analysis of the frequency domain and the time domain of
the contact force between the gears. Therefore, the frequency spectrum and the time
domain of the contact force will be plotted. The FFT signal includes the gear mesh
frequencies, which appear as peaks in the FFT plot. The individual faults such as the
chipped pinion, the cracked pinion and the cracked pinion will be compared to a perfect

gear set.

4.6.1.1 Chipped Pinion

The signal of the contact force of a healthy and a chipped pinion in the time domain is
shown in Figure 3.8. As you can see, even the time domain signal allows the possibility
of condition monitoring. While the response of the healthy pinion shows a constantly
oscillating signal, the chipped pinion shows additional high contact force peaks in every
interval of 0.05 s (20Hz) that reaches values up to 2200 N. Since this system creates
every rotation high impact forces at a single location, it can be revealed that a fault in
the gearing system is present. Even the location of the fault can be located if the start-

ing position of the gearing system is known.

However, it is not always guaranteed that a fault can be detected from the time domain
signal. Moreover, the meshing forces that create high peaks in the system might be an
exception and could also be much lower and therefore not always be visible. For this
purpose, it is more suitable to analyze the frequency spectrum of the signal, since it
reveals more information of a signal. The frequency spectrum of the above signal is

shown in Figure 4.9.
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Healthy Pinion
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Figure 4.8. Contact force in the time domain of the healthy and chipped pinion

The peaks in the vibration spectrum represent the gear mesh frequencies and are cre-
ated during the meshing process of the teeth. While the FFT of the healthy signal has
a neat and clear form, the FFT of the chipped pinion contains a heavy noise profile.
The noise of the vibration is due to the defect in the pinion and is present in form of
sidebands on each side of each gear mesh frequency peaks. Note that for the second
gear mesh frequency the sideband are even higher that the magnitude of the peak.
This information can be used to create an automated health monitoring system. One
method is the Side Band Energy Ratio, which will be explained in more detail later in

this chapter, and which allows the possibility of fault detection using an algorithm.
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Figure 4.9. GMF of the gearing system at a constant speed of 20 Hz

4.6.1.2 Cracked Pinion

The contact force of a cracked pinion is plotted in the time domain in Figure 4.10. The
time domain plot of the cracked pinion contains more noise than the original one, which
includes a healthy gear set. To emphasize this, the peaks of the cracked gear are
denser. In that case, the time domain signal reveals some information and shows some
differences if the contact force of the perfect gearing set is compared. However, a clear
identification of a fault in the system cannot be made if the time domain of the contact
force is compared only. Thus, once again, the FFT spectrum of this signal is plotted in

Figure 4.11.
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Figure 4.10. Contact force in the time domain of a cracked pinion

As shown above, the gear mesh frequencies show up as peaks in the FFT plot. How-
ever, the frequency spectrum contains less noise than the FFT of the chipped gear
system. It is difficult to tell if any noise is present in the vibration spectrum due to the
cracked gear and therefore it makes a fault detection difficult, especially if the presence
of noise in a practical system is higher. Thus, a comparison between the noise at dif-
ferent speeds and setups is necessary in order to fully reveal and identify a crack in

the system.
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Figure 4.11. Contact force in the frequency domain of a cracked pinion
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4.6.1.3 Cracked Shaft

Lastly, the response of the system with a cracked shaft is documented and presented
in Figure 4.12. As can be seen, the vibration response is similar to the other plots. The
amplitude of the contact force in the time domain function has approximately the same
value as the previous graphs. However, the structure of the signal is different. It shows
some irregularities with a structure that appears as a waveform. The reason for that is
the cracked in the shaft that increases the oscillating motion of the shaft. If the FFT
spectrum is analyzed, you will notice that 20 Hz-modulated sidebands are present on
each side of the gear mesh frequency peaks. Therefore, the appearing sidebands in
the FFT plot can be an indicator for a crack in the shaft. It is important to emphasize
that the contact force in this study is taken to measure to response and that the contact
force reveals the irregularities of the shaft. Thus, the contact force can reveal infor-

mation of bodies that are not in direct contact with gears, such as the shatft.
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Figure 4.12. Response of the system with a cracked shaft
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The result and summary of the individual faults is shown in Figure 4.13. Note the pres-

ence of the sidebands in the individual systems that occur as noise in the FFT.
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Figure 4.13. Comparison of the faults in the frequency spectrum
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4.6.2 3D FFT Analysis with a Constant Speed

4.6.2.1 Chipped Pinion

As mentioned before, 2D FFT has its limitations and cannot fully reveal the time infor-
mation of a signal. However, in many cases it is also important to plot the 3D FFT
frequency response, especially if the signal is not constant over time. For this purpose,
the fault detection method is applied using the 3D FFT. First with a constant speed of

20 Hz and then with a linear increasing speed.

Figure 4.14 shows the 3D FFT of a perfect gearing system with a constant speed at
20 Hz. As can be seen, the gear mesh frequencies appear as constant peaks along
the time axis. This is due to the fact, that the rotation speed of the shaft is constant and
does not vary over time. Note also that almost no noise is present in the entire plot,

which indicates that the system is healthy.

Healthy Pinion

Force F (N)

Frequency f (Hz)

Figure 4.14. 3D FFT of a healthy pinion with a constant speed at 20 Hz
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To have a comparison to a damaged gear system, the 3D FFT response of a chipped
gear is plotted in Figure 4.15. The system contains the same inputs, such as a constant

speed at 20 Hz and the torque profile.
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Figure 4.15. 3D FFT of a chipped pinion with a constant speed at 20 Hz

Compared to the perfect pinion, the chipped pinion contains a lot of noise, which is
present over the whole time range. Moreover, the magnitude of the gear mesh fre-
guency peaks do not show a constant distribution over the time axis. In particular, the
peaks are oscillating slightly, which means that at certain intervals (0.05 s) the peaks
reach a slightly higher magnitude. This fact, as well as the heavy presence of noise in
this plot, is an indicator that the system has a damaged tooth. Therefore, 3D FFT is a

suitable method to detect chipped gears in a gearing system.
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4.6.2.2 Cracked Shaft

The next analysis includes the 3D FFT plot of a cracked shaft. The response of this

damaged system is presented in Figure 4.16.

Cracked Shaft
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Figure 4.16. 3D FFT of a cracked shaft with a constant speed at 20 Hz

Surprisingly, the response shows similarities to that one of a healthy gear. A clear noise
present is non-existing and it is difficult to tell if there is any fault in the system. Even

the noise appearance is similar to the healthy gear system.

4.6.2.3 Cracked Pinion

Finally, the three-dimensional frequency spectrum of the cracked pinion with a con-
stant speed at 20 Hz is shown in Figure 4.17. Note that the plot is similar to the plots

with the healthy gear and the cracked shaft. As you can see, the frequencies as well
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as the amplitude are almost the same. There are not many visible difference between

the individual plots and a clear identification of a crack in the pinion cannot be made.
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Figure 4.17. 3D FFT of a cracked pinion with a constant speed at 20 Hz

65



4.6.3 Linearly Increasing Speed Analysis

The next research objective is the analysis of the time domain and 3D FFT of the sys-
tem with a linearly increasing speed profile. The model is subjected to a driving speed
at the input shaft with a linearly increasing function (0 - 400 rpm). As the speed in-
creases, the contact force increases as well, which is shown in Figure 4.18. Further-
more, the time domain signal shows high vibration peaks that appears whenever the

damaged gear is in contact.
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Figure 4.18. Time domain of a healthy and a chipped pinion with an increasing
speed

As expected, the FFT does not show any reasonable results for both, the chipped pin-
ion and the healthy pinion, since the input speed does not create any periodic contact

force between the two gears. Nevertheless, it shows some differences that can be
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noticed by the noisy form of the FFT plot in Figure 4.19. However, it is not a reliable

method for fault detection and should not be used to analyze the systems’ response.
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Figure 4.19. Frequency domain of a healthy and a chipped pinion
A better alternative is to focus on the 3D FFT for non-constant speeds in order to gain
a better understanding of the response, which is shown in Figure 4.20. As you can see,
the gear mesh frequencies are present as a “waterfall plot” in form of waves. As the
speed increases, the gear mesh frequencies shift along the frequency axis and create
such a unique plot. However, the chipped pinion shows a higher noise profile in the 3D
FFT plot than the 3D FFT of a healthy pinion. Furthermore, the peaks of the wave show
irregularities over the time. Refer to the appendix to see the results for the exponential

speed profile.
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Figure 4.20. 3D FFT of chipped and healthy gear subjected to an increasing speed

It is also possible to analyze the 3D frequency domain plot of a cracked shaft subjected
to a linearly increasing speed. Note that the differences lie at the end of the GMFs

peaks that appear as increasing lines. The GMFs show a different waveform at the at
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the end of the time. Thus, 3D FFT is a suitable method to detect a cracked shaft for

his model.
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Figure 4.21. 3D FFT of cracked shaft and a healthy gear with an increasing speed
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Figure 4.22. 3D FFT of cracked pinion and a healthy gear set with an increasing
speed

Finally, the 3D FFT plot of a cracked pinion is plotted and compared in Figure 4.22.
Notice that the lines of the GMF’s peaks for the cracked pinion are higher than the

peaks of a healthy gear, which is an indicator for a fault in the system.
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4.7 Wavelet Analysis

As previously mentioned, FFT analysis is limited for the use in fault detection. 3D FFT
has also its limitations regarding the time and frequency resolution. To overcome this
drawback, the Wavelet Transform will be used for health monitoring in this chapter.
The same settings and the model setup, which were used in the previous analysis are
used for the next analysis. The contact force of the gearing system is recorded in Ad-
ams and exported to Matlab, where the Wavelet Toolbox is used in order to perform

the Continuous Wavelet Transform with the Wavelet function bior3.3.

4.7.1 Wavelet Analysis of a Healthy Gear

The first Wavelet plot includes the contact force of a healthy gear set. As seen in Figure
4.23, the x-axis of the plot (for the signal as well as the Wavelet) is presented in terms
of scales. This variable stands for the number of samples of the signal and has a total
number of about 50,000. However, the number of samples relates to the time. For
instance, a simulation time of 0.5 s is set to perform the analysis in Adams with 50,000

samples. Thus, they are linearly related and presented in Figure 4.23.
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On the contrary, the y-axis of the Wavelet plot represents the number of scales. As
previously mentioned in the introduction, the scales relate to the frequencies. Several
high-energy densities occur as colored straight lines in the wavelet plot. These lines
represent the gear mesh frequencies and can be converted to real frequencies using
Figure 4.24. For example at a scale of 205 the correspondence frequency is 460 Hz,

which is the first gear mesh frequency of the system.
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Figure 4.24. Correspondence frequency to scale table
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Figure 4.25. Wavelet analysis of a healthy gear system with a constant speed at 20
Hz

Unfortunately, the plot does not reveal the information of how big the amplitude of the
response is. It only shows where the high-energy densities occur. The constant lines
do not change over the time range and do not show any irregularities, which leads to
the conclusion that the system is healthy and does not contain any faults. However,

more analysis have to be carried out in order to identify defects in systems.
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4.7.2 Wavelet Analysis of a Chipped Pinion

The next analysis includes the Wavelet Transform of a chipped gear, which is shown
in Figure 4.26. As you can see, the structure of the wavelet plot differs from that one
with the healthy gear system. In addition to the constant lines, several perpendicular
shapes appear in the Wavelet plot. This happens whenever the damaged gear is in
contact. Hence, a clear detection of a damaged gear can be made if Wavelet Trans-
form is considered. Furthermore, the location of the damaged tooth can also be re-

vealed, which is another advantage using this method.
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Figure 4.26. Wavelet plot of a chipped pinion with a constant speed at 20 Hz
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4.7.3 Wavelet Analysis of a Cracked Shaft

The next analysis contains the vibration analysis of cracked shaft using Wavelet Trans-
form. The result is plotted in Figure 4.24. As can be seen, the vibration pattern differs
from the previous plots. It shows an oscillating structure of the peaks and is due to the

cracked shaft that causes this pattern to oscillate.
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Figure 4.27. Wavelet plot of a cracked shaft with a constant speed of 20 Hz
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4.7.4 Wavelet Analysis of a Cracked Gear

The last analysis includes the Wavelet plot of a cracked gear, which is presented in
Figure 4.28. As can be seen, this Wavelet plot is similar to the Wavelet plot with the
healthy gearing system. However, the constant lines show some inhomogeneity over
the time axis. This can be an indicator that a crack in the gear is present. However, it
is not reliable enough to make a clear fault identification, since the source of this phe-
nomenon could also be the cause of noise. However, if another speed profile is taken

into account, the crack can be identified using Wavelet transform. See the appendix

for details.
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Figure 4.28. Wavelet plot of a cracked pinion with a constant speed at 20 Hz
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4.8 Statistical Fault Detection Methods

This section focuses on health monitoring using statistical methods. As a contrary to
the visual detection methods, like Wavelet and 3D FFT, statistical methods could be
an approach to find faults with an automated algorithm. Therefore, the standard devi-
ation, the mean and the root mean square, as well as the Side Band Energy Ratio, will
be presented and discussed in this chapter. Furthermore, they will be applied in order
to display the differences between the individual faults in the gear set. The same faults
(chipped pinion, cracked pinion and cracked shaft) will be used in this chapter and the
statistical methods will be applied for different constant speed values (10 — 60 Hz) in
order to reduce the possibility of random noise. The statistical methods will be used in
order to calculate the time domain signal and the noise presence of the signal in the

frequency domain.

4.8.1 Root Mean Square (RMS)

One of the simplest method in health monitoring is applying the root mean square
(RMS) to the signal in the time domain. It is suitable to monitor the defects in a system,
such as a gearing system, and to include and track the noise. The root means square

is also called the quadratic mean and is presented in equation (4.2) [19].

RMS = (4.2)

Where x; correspondences to value of the signal, N for the number of samples of the

signal and i stands for the index.
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4.8.2 The Mean

The mean value of a signal or data points is also known as the average. The mean is
calculated by summing the values of all data points and dividing it by the total number
of samples. In many cases, it can be important to compare a set of data points with the

mean.

(4.3)

4.8.3 The Standard Deviation

The standard derivation is another statistical method and describes how close a set of
data values are to the mean value. Accurate data are present when the data values
are close to the mean, which leads to small standard derivation. On the other hand, a

large standard derivation will indicate that the data set is spread.

N
1 _
o = m;(xi - X)z (44)

4.8.4 Sideband Energy Ratio (SER)

Another method for fault detection in gear systems is the usage of Sideband Energy
Ratio (SER). As previously shown, a damaged gear system such as a chipped gear,
has a greater noise profile in the frequency spectrum, which is present in form of side-

bands on each side of the gear mesh frequencies.

SER sums the magnitude of the first six sidebands, and divides it by the magnitude of

the center GMF, shown in Figure 4.29. This is done with the first three gear mesh
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frequencies. The equation of SER is shown in equation 4.5. If SER exceeds the value

of one indicates a damage in the gearing system [20].

¥6_, Sideband Amplitude;

SER =
Center Mesh Frequency Amplitude (4.5)
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Figure 4.29. SER for the first three gear mesh frequencies [20]

4.8.5 Statistical Methods for the FFT Spectrum

Besides using the SER method to detect faults in the gear system, the mean, as well
as the standard derivation, will be used to analyze the noise profile in the FFT spec-
trum. Similar to the work in [21], where the noise of the frequency spectrum was ana-

lyzed within two frequency ranges; three areas will be introduced in this paper.
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Figure 4.30. Definition of three frequency ranges for fault detection analysis

Figure 4.30 shows the details of the three frequency ranges that will be used in order
to calculate the mean and the standard derivation of the noise in the FFT spectrum.
Area 3 is placed at the beginning of the FFT plot while the block of Area 1 and Area 2

are placed to the left, respectively to the right of the first gear mesh frequency.

4.9 Results

The results of health monitoring using statistical methods that were explained are
shown and discussed in this section. First, the results of the analysis of the signal in
the time domain will be shown and explained, followed by the results of the analysis in

the FFT spectrum.

4.9.1 Analysis of the Signal in the Time Domain

The first result is the analysis of the contact force in the time domain, shown in Figure
4.31.The results for the root mean square are presented in the left, while the mean
values for the different defects are presented in the right part of the plot. The vertical
axis represents the contact force and the horizontal axis reveals the speed, at which

the RMS and the mean were calculated.
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Figure 4.31. RMS and mean values of different faults

It can be seen that the RMS is more suitable to detect defects in a gear system than
the mean value. By using this statistical method, a cracked gear, as well a chipped
gear can be identified, since both damages show a 10 — 50 N higher value of the con-
tact force than a healthy gear set. However, the detection of a crack in a shaft is more
challenging. The values of the cracked shaft and the healthy gear set are very close

and the differences between them are vanishing small.

Note that the mean values of the different signals do not show any remarkable differ-
ences, which leads to the conclusion that calculating the mean of a signal is not suita-
ble to detect a fault in a system. The only difference exist at a speed of 20 Hz where
the mean of the chipped gear is much higher than the rest. However, this is an excep-
tion, which could be caused by a random noise appearance in the system, and does

not necessarily reveal a chipped gear.

Note also that the values of a cracked shaft show only a small difference in comparison
to the healthy gear set, in both the RMS and the mean plot. That means that an iden-
tification of a cracked shaft cannot be clearly made if statistical methods are applied to

analyze the contact force in the time domain.
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A similar result can be obtained if the standard deviation of the raw signal of the indi-
vidual faults are compared, which is shown in Figure 4.32. It can be seen, that the
standard derivation of a cracked, as well as the chipped gear, has a higher value than

the healthy gear set for each speed.
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Figure 4.32. Standard deviation of different defects

Again, the values of the healthy system and the cracked shaft are close together and
show only small differences. Therefore, a crack in the shaft cannot be identified, even
if the standard derivation is taken into account. An interesting fact that can be seen in
the above plot is that the standard derivation of all four graphs is increasing with the
input speed. This is even the case for the last data point. While the mean value shows
a low value of for this data point, the standard derivation shows a high value for this
specific point. The increasing standard derivation with an increasing speed could be

the cause of an increasing noise development in the system at higher speeds.
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4.9.2 Analysis of the Signal in the Frequency Domain

The result of the FFT analysis using statistical methods is presented in Figure 4.33 and
Figure 4.34, where the mean values of the three different area blocks of all simulation
setups are plotted. Again, the horizontal axis represents the input speed, while the
vertical axis represents the magnitude of the contact force that appears in the FFT

spectrum.
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Speed f (Hz) Speed f (Hz)

Figure 4.33. Mean values of area 1 and area 2

As can be seen, the chipped gear has the highest noise level, respectively the highest
mean value of all simulation setups in all three area blocks. The only exception exist
in plot for area 1, where the cracked shaft exceeds the value of the chipped gear. A
clear identification of the chipped gear can easily be made by calculating the noise in

the FFT.

On the other hand, this method shows some difficulties in detecting a cracked gear.
Except for the area 2, the mean values of the cracked gear are close to the healthy
gear, which means that the average value of the cracked gear is almost the same for

the healthy gear. This can be explained due to the fact that a cracked gear creates
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only a slightly higher force and a slightly higher noise level in the FFT spectrum. There-
fore, this analysis is not fully suitable to detect a cracked gear and a cracked shaft, but
a chipped gear.
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Figure 4.34. Mean values of area 3

Nevertheless, further research has to be made in order to get a clearer picture of the
dependence between system faults and noise development in the frequency spectrum.
Therefore, the standard derivation comes into consideration for the next analysis. Fig-
ure 4.35 and Figure 4.36 show the standard derivation of the noise level in all three

different area blocks.

The plots reveal that the chipped gear shows the highest values of the standard devi-
ation for all speeds. The only exception exist at a speed of 20 Hz in the area block 1,
where the standard deviation of the cracked shaft is even higher than the chipped gear.
This concludes that the standard derivation is an adequate method to detect major

defects in a gear set, such as a chipped gear.
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Figure 4.35. Standard deviation of area 1 and area 2 in the FFT plot

It is even possible to identify a cracked gear using the standard deviation to compare
the noise profile in area 3. Although the differences between a cracked gear and a
healthy set of gear are very small in area 1 and area 2, there are visible differences in
area 3, where the standard deviation of the cracked gear has the second largest value.

The differences are small but a cracked gear can be identified using this analysis.

Special interest arises the standard derivation of a cracked shaft at low speeds. Again,
for area block 1 and 2 the values of the standard derivation exceed the values of the
cracked gear, which leads to the conclusion that there might be a link between the
contact force of a cracked shaft and the development of the noise profile at low speeds.
However, further research needs to be made in order to fully reveal the appearance of

random noise in a system.
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Figure 4.36. Standard deviation of area 3 in the FFT plot

The last methods is the comparison of the Sideband Energy Ratio (SER) between a
healthy system, a cracked pinion, a cracked shaft and a chipped pinion. As previously
mentioned, SER is calculated for the first three gear mesh frequencies. The result is
presented Figure 4.37, where the SER values of the first two GMF’s are plotted. Figure

4.38 shows the SER values for the third gear mesh frequency.
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Figure 4.37. SER for the first two gear mesh frequencies

As can be seen, only the chipped gear can be identified as fault in the system when
SER is used, since it is the only fault where SER is greater than one for all speeds.
Although the SER values for a chipped gear at low speeds (10 Hz and 20 Hz) are

below one in Figure 4.37, the SER is above one in Figure 4.38 for all speeds. There-
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fore, the threshold is exceeded in at least one case and the chipped gear can be iden-
tified using an algorithm. This leads to the conclusion that the method of the Side Band
Energy Ratio works properly in order to identify major gear defects such as a broken

tooth.

However, SER has some difficulties to detect minor defects in the system. As seen
above, the SER values of the cracked gear and the cracked shaft are below one. The
only exemption, where the cracked gear exceeds the SER value of one is at the second

gear mesh frequency at a speed of 40 Hz. SER does not detect a cracked shaft.

SER3
3 T T T T
—+— Healthy
—— Cracked Gear
251 | —%— Cracked Shaft| 7
Chipped Gear
2 L T -
% 15 ...... . G e . ..... e e
%) : : :
1 L =
0.5F .
O . ~+ — - )
0 10 20 30 40 50 60 70

Speed f (Hz)

Figure 4.38. SER for the third gear mesh frequency
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5 Summary and Conclusion

It was shown that is possible to create the gyroscopic effect in MSC Adams, when a
disk is mounted asymmetrical on a flexible shaft, which is supported with flexible bear-
ings. The presence of the gyroscopic effect can be measured as angular displace-
ments around the precession axis. It was shown that an increasing bearing stiffness
has a small effect on the precession motions, since the bearings become more rigid
and only the flexibility of the shaft accounts for gyroscopic effect. Furthermore, it was
shown that the disk position on the shaft has a significant influence on the gyroscopic
effect and vanishes when the disk is placed symmetrically onto the shaft. This result
confirms the theory of a Jeffcott-Rotor. However, more simulations could be performed
in order to do more research on the gyroscopic effect in rotor systems. Especially,
different materials of the shaft could be used in order to analyze the influence of the
precession motion. Furthermore, the simulation results could be verified with a simple

practical shaft disk model in future.

The second analysis in this paper included the research on health detection methods.
Several defects that included a cracked pinion, a cracked shaft and a chipped pinion
were built-in in a simple fixed axis gear and the contact force between the gears was
monitored and used to perform the FFT, 3D FFT and Wavelet analysis. The results of
the 2D FFT show that that a chipped pinion and a cracked shaft can be visually identi-
fied in the plot. In particular, the presence of sidebands reveal a fault in the system.
However, the presence of sidebands in the FFT for a cracked gear were too low in
order to identify a minor defect. The same applies for the 3D FFT, where major differ-

ences between a chipped pinion and a healthy pinion exist. Minor differences were
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present when a cracked shaft, as well as the cracked pinion, were compared with a

healthy gear set.

Furthermore, the Wavelet transform was used in order to analyze the vibration re-
sponse of the system and to identify faults. It was demonstrated that Wavelet is a suit-
able method to detect a cracked shaft, as well as a chipped pinion. However, the dif-
ferences for a cracked pinion and healthy gear set were small at a constant speed.
Nevertheless, the Wavelet analysis detected a cracked gear when a linearly increasing
speed is applied to the system, which confirms that Wavelet Transform is a powerful
tool in health condition monitoring, especially for non-constant speed profiles. How-

ever, a reference to a healthy system is always needed in order to identify faults.

The last analysis included statistical methods on fault detection. The standard devia-
tion, the root mean square, the mean and the Sideband Energy Ratio were used to
compare the contact force in the time domain, as well as in the frequency domain. It
was shown that the root mean square, as well as the standard deviation, is suitable to
detect defects at the pinion. Under certain circumstances, the statistical methods can
be applied to the FFT in order to detect a crack in the gear. Furthermore, it was shown
that with the Sideband Energy Ratio detects only major defects in the system such as

a chipped gear.
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Appendices

A: 3D FFT Results (exponential speed)
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B: Wavelet Toolbox Settings
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C: Wavelet Linear Increasing Speed - Results
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Chipped Gear
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Cracked shaft
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Cracked Gear
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D: How to Plot Wavelet from ADAMS Results

1. Run “wavelet_simp” to import the data to matlab.

2. Choose “continuous Wavelet 1-D” in the appearing window.

| ) Wavelet Toolbox Main Menu H=]

File ‘Window Help
One-Dimensional

Wayvelet 1-D

Wiavelet Packet 1-D

Specialized Tools 1-D

SWT Denoising 1-D

-

Continuous Wavelet 1-

Density Estimation 1-D

Complex Cantinuous Wavelet 1-D

Regression Estimation 1-D

Continuous Wavelet 1-D {Using FFT)

Wavelet Coeflicients Selection 1-D

Fractional Brownian Generation 1-D

Two-Dimensional

Wavelet 2-0

Matching Pursuit 1-D

Wavelet Packet 2-D

Confinuous Wavelet Transform 2-D

Specialized Tools 2-D

True Compression 2-D

SWT Denoising 2-0

Three-Dimensional

Wavelet 3-D

Wavelet Coefficients Selection 2-D

Image Fusion

Multiple 1-D

Multisignal Analysis 1-Dr

Display

Wavelet Display

Multivariate Denoising

Multiscale Princ. Comp. Analysis

¥avelet Packet Display

Wirawelet Design

| Mew Vavelet for CWT

Extension

Signal Extension

Image Extension

Close

3. Then the “continuous Wavelet 1-D” window opens. Go to File --->
Import signal from Workspace and choose your data set from matlab
Workspace.

4. Choose the following settings and click on analyse.
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E: Gyroscopic Effect Applied in Rotor Systems

mnf file for the shaft is needed.

1. Open new ADAMS view file. Make sure that you choose the
right units, which must be consistent to FEA model. Here the
FEA model is created with Sl units in ABAQUS. Therfore the
same units must be chosen in Adams!

Create New Model

Model Name I rotor_GYO

Gravity l Earth Normal (-Global Y)

Uni€ !MKS - m,kg.N,s.deg >

Working Directory |C:\Users\xwu\Desktop\Start

OK l Apply | Cancel |

2. Import the *.mnf file first. Select & ADAMS/flex, create flex
body through mnf import under body.
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Flexible Body Name: | rotor_GYO . FLEX_Shaft

MMF - | C\Wsersvowu\Desktop\Stat\Shaft. mnf

Damping Ratio: v Use Default

Generalized Damping |lef

Location |

Orientation - |

Relative To |

[ More FEMTransIate‘ MMNF XForm Apply | Cancel |

Notice the 3 local coordinates in the side view, which are generated
by defining the multi points contraint in Abaqus.

3. Define dummy parts.

Select rigid, sphere under bodies.

Geometry: Sphere

|New Part j

v Radius (0.5mm)}

Rename it as DummyR. Repeat the process for another two dummy
parts.
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-/ Bodies

+- [ DummyL
+- [ DummyM
+-[JDummyR
E""Tﬂgrnund

+- i FLEX_Shaft

4. Connect the Dummy parts to the shaft

Use the fixed joints to connect the Dummy Parts with the flexible
shaft (Repeat 3 times) to the nodes (appearing as INT_1000000
etc.) in the browser manager.

5. Import the bushing CAD model as the “Part Name”
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File Type

File To Read | C\Usersvowu\Desktop\Start\Bushingpart x_t

File Type | Ascll -

Part Name j |EIushingF'art

Location |

Orientation 10.0. 0.0, 0.0

Relative To |
| Explode Assemblies

oK | Apply | Cancel |

Then, the bushing part will be automatically placed to the origin of
the coordinate system and the model.

6. Assign the material properties to BushingPart

B} Modify Body St (=
Body |ElushingF'art

Category |Mass Properties j
Define Mass By |Geometry and Material Type j
Material Type ||.materia|s_steel

Density 7801.0 kg/meter™3

Young's Modulus ~ 2.07E+011 newton/meter~2
Poisson's Ratio 0.29

Show calculated inertia ...

OK | Apply | Cancel |

an
7. move @ and copy the BushingPart to the left to create the 2"
Bushing. This is an easy way to create new identical bushing.
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= Bodies
+-[JBushingPartL
+-[TJBushingPartR
+- [ DummyL

+- [ DummyM
+-[JDummyR

- [Elground

+ § FLEX_Sha

8. Fix those two bushings to ground. Select the center of mass of
each bushing as the fix location.

9. Import the disk from CAD model (don’t specify the location). It will
locate at the origin of GCS.

File Type Parasolid (*xmt_txt, *x_t, “xmt_bin, *.x_Hid

File To Read | C\Userseowu\DesktopiStart\Disc.x_t

File Type ASCI -

Part Mame j |DiscF'art

Location |

Orientation 10.0,0.0, 0.0

Relative To |
[ Explode Assemblies

OK | Apply ‘ Cancel |

10. Assign the material “steel” property t& (Here: steel)

"D Modify Body P

Body | DiscPart

Category | Mass Properties j
Define Mass By |Geometr'_\,r and Material Type j
Material Type |Lmateria|s.stee|

Density 7801.0 kg/meter™3

Young's Modulus ~ 2.07E+011 newton/meter*2
Poisson’s Ratio 0.29

Show calculated inertia ..

0K | Apply | Cancel
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11. Place the disk to the disired location. Choose the .cm of the disk
part as the point to move from.

12. Fix the disk to the dummy part. Select the cm of the dummyM as
the location.

13. Apply actual bushings at those two locations, which will connect
the BushingPart to its corresponding Dummy points. The location
must be the center of the Dummy part or the constraint node at the
flexible shaft.

14. Assign the parameters of the bushings. Change the stiffness to
1.0e7 N/m.
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LY Modify Bushing

Name | BUSHING_1

Action Body| BushingPartL

Reaction Body| DummyL

Translational Properties (x,y.z components):

Stiffness | (1.0E+7(newton/meter)).(1.0E+7(newton/meter)),(1.0E+7(newton/meter))

Damping | (5.5E-003(newton-sec/meter)),(5.5E-003(newton-sec/meter)),(5.5E-003(newton-sec/meter))

Preload| 0.0.0.0,0.0

Rotational Properties (x,y.z components):

Stiffness | (1.9198621772E-008(newton-meter/deg)).(1.9198621772E-008(newton-meter/deg)),(1.9198621772E-008(newton-meter/deg))

Damping | (4.7123889804E-009(newton-meter-sec/deq)).(4.7123889804E-009(newton-meter-sec/deg)).(4.7123889804E-009(newton-meter-sec/deg))

Preload| 0.0,0.0,0.0

Force Display| On Action Body A
S| WP

OK | Apply | Cancel |

15. Important, this step is necessary to plot the Euler angles.

Create two markers at the disk location. The first one is placed at the
ground the center of the flexible shaft node (where the disk is located)
and rename it as “GroundMarker”.

The second one is added to the disk part. The location is the same
(flexible shaft node). Rename it as Diskmarker.

Marker

| Add to Part ~|
Orientation

| Global XY Plane -]

16. Create a state variable defined by differential equations %] un-

der elements.

Nams| rotor_GYO EulerX
Type | Explicit =
Definition| Run-Time Expression <

,-\

2 -

Initial Condition:

y [t=0] = | 0.0

™ Keep value constant during static analyses.

Jia [y

OK | Apply | Cancel
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Another window will appear:

M runction | [ x )
Define a runtime function " Full names ¢ Short names  Adams ids

WX({.rotor GY0.DiscPart.DiskMarker, .rotor GYO.ground.GroundMarker, .rotor GY0._ground.GroundMarker ) *rtod

Velocity j Assist...‘ j

Velocity along X

Velocity along ¥

Velocity along Z

Velocity Magnitude

Zngular Velocity about ¥
Zngular Velocity about Z
Zngular Velocity Magnitude
Velocity along Line-of-Sight

Modal Velocity Getting Object Data

Markers j| GroundMarker

Insert Object Name |

Verify
WX( To_Marker , From_Marker , About_Marker ) oK Apply Cancel

Right click the black at the right —side of Markers and find the desired
marker. Double click “Insert Object Name”, all of them will show in
the function.

Type in “*rtod” to convert radians to degrees.

17. Create another 2 Eulaer angles by coping EulerX twice under El-
ements.

3. _ Elements
=- System Elements
& EulerX

-1-—Elements

=/ System Elements
- [&IEulerZ
- [R|EulerY

1 Eulerk
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Mame | Eulery

Type I Explicit *l

Definition | Run-Time Expression j
vy = | WY (DiskMarker, GroundMarker, GroundMarker)*rtod J

Initial Condition:

y [t=0] = | 0.0

[ Keep value constant during static analyses.

]

OK | Apply | Cancel |

Namel Euler?

Type I Explicit *l

Definition | Run-Time Expression j
y = | WZ(DiskMarker, GroundMarker, GroundMarker)*rtod J

Initial Condition:

y [t=0] = | 0.0

[ Keep value constant during static analyses.

Apply | Cancel

Double click EulerY and Change WX to WY and WZ, respectively click
OK once you finish.
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18. Apply the rotational speed to the dummy part attached to the right
side of the shaft. Change to side view to apply the motion

Since there is not revolute joint, you need to apply the motion from

point motion

Characteristic:

| Fotation

-l

Point Motion
Construction:
|2 Bodies - 1 Location j
| Pick Geometry Feature j

Rot. Speed| 30.0

Characteristic: Rotation

Choose DummyR, ground and DummyR.cm. The feature direction
must be around the shaft (Important). In this case z-dirction.

19. Do the simulation

20. Plot Euler angles in post processing,
go to the result set, plot EulerX Y and Z.
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F: How to define a motor torque curve in Adams
-l
el
1. Create a torque curve in ADAMS. Goto Elements - spline

103 Modify spline .. =
Name | Torque Curve|

X [v | Type = =
1 |[0.0 1.3804654586 View asf | Tabular Data
2 |10 1.5612739886 Uit j
3|20 20 R
(E513.0 20006501005 ™ Linear extrapolation
5 |40 1.8243618365
6 |50 1.8447025426
— X '\
7 |60 1.7158765785 pipend row to % and v deta
8 |70 16141716492 Prepend row to X and Y data
9 |8.0 0.7598506626
10

9.0 0.8751161093 Insert Row After
Remove Row

0K Apply Cancel

Elements

2. Create a system Variable from elements. @

B odify State Variable ...
Name | VARIABLE_1

Definition | Run-Time Expression j
b —

Ftime. <= [4] D ]

¥ Guessfor Ft=0)= 0.0

=&

Ok | Apply Cancel
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Input any speed you want. Here is 5 rad/sec. VARIABLE_1 shows up under System
Elements

=I-[=+Elements
=+ System Elements

&V VARIABLE 1

=8 Data Elements
: - ="SPLINE_2
+-F= Measures

Note: The spline in this example is: SPLINE_2. You may have a different name.

3. Relate the variable to the motion.

Modify the motion. Delete the original speed and input the systems’ variable
name: VARVAL(VARIABLE_1), click OK

n Function Builder @

Define a runtime function ¢ Fullnames * Short names ¢ Adams ids
e

VARVAL (VARTABLE_1)|

Math Functions Ll Assist...‘ w .l

ABS

P

AINT

ANINT

ASIN

ATAN

ATANZ

Chebyshev Polynomial
Cos

cosH Getting Object Data

DELAY

DIM Markers - |

EXE —

Fourier Cosine Series Insert Object Name

Fourier Sine Series

Haversine Step = Plot I Plot Limits... Verify |
oK Apply ‘ Cancel |

nlointMnlicn X

Name OTION 1

Joint JOINT_1
Joint Type |revnlute

Direction Rotational el
Define Using Function =

Function (time) I VARVAL(VARIA J

ﬁl
Displacemant IC R

Velocity IC |
oK | apply | cancel |
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4. Apply a torque on the input link and relate it to the defined torque curve.

(1). Apply a torque on the input link and rename it as Wu_T (arbitrary)

T+ Forces
&WU_T

(2). Modify the applied torque Wu_T

u Modify Torque ﬁ

Name |Wu_T

Direction |On One Body, Fixed In Space j

Body | Linkoa

Define Using | Function j

Function | AKISPLVARVAL(VARIABLE_1).0.SPLINE_2) J

Solver ID [1

Torque Display | On j
W oK | Apply ‘ Cancel |

Choose “All functions” and “Akima Fitting Method” in Function Builder; De-
lete the original speed and input the following command:

AKISPL(VARVAL (VARIABLE_1),0,SPLINE_2).

Use your own spline name here.

n Function Builder x|

Define a runtime function " Fullnames  Short names  Adams ids

SPL(VARVAL (VARIABLE 1),0,SPLINE_2)

Assist.. I j

Modal Acceleration ﬂ
One-sided Impact

Two-si ded Impact

Cubic Fitting Methed

B-Spline Fitting Method J

Bkima Fitting Method

Durability Interpolation

All Functions

Getting Object Data

Joint Primitive Force |kaers .jl
Single-component Force

Three-component Force s
];hxee—ccmznanb Torague LH Verify
AKISPL( 1st_Indep_Var . 2nd_Indep_Var . Spline_Name , Deriv_Order) OK ‘ Apply | Cancel |

5. You may apply a small resistant constant torque on the output link.

6. Run the simulation.
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G: How to Generate an MNF File

The units for this example are in Sl-units
Part A. ABQUS Analysis
1. Save the CAD cracked gear file as a *.step file

2. Open abaqus 6.13-1, choose “With Standard/Explicit Model”

Create Model Database

With Standard,/Explicit Model

<= Import Part

Direckary: II:l IuliaWuzol4

File Mame: IGear.ﬁ._SunGear_MDtDrllnput_Cra-:kEd.STEF‘ (0] 4

File Filter: ISTEP‘ (*, skp* ¥ shep®) j Cancel |

4. Define the material properties . Double click materials in the browse tree.
General -> density type 7800 for steel.

Got to Mechanical ->elastic and type the values shown in:
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& Edit Material [x]

Mame: ISteeI

Description: 7

-

i Material Behaviors

Density

A

i

General  Mechanical  Thermal — Electricalifagnetic  ther | yl

— Elastic

Type: IIsotrnpic j - Subnptionsl I

[™ Use temperature-dependent data

Mumber of Field variables: I ] _,;‘

Maduli time scale (For viscoelasticity): |Long-term b

[ Mo CoMmpression

™ Mo tension
— Data
Young's Poisson's
Modulus Ratio
1| zo7e+09

oK | Cancel |

Click OK

5. Create a section called wu-section, continue , and choose the defined
material: steel

El |F_'E Materials 1)

i ghegl

Eﬁ- Calibrations
= ﬁ[r& Sections (1)

6. Assign a section to the part EL!

Select the entire gear body
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Select the regions ko be assigned a seckion { W Create set: |Set-1 ) |Du:une|

Click on done to assign the section.

<& Edit Section Assignment
— Region

Region: Set-1
— Seckion

Section: |\Wu-Section ﬂ ﬂfr

Mote: Lisk contains only sections
applicable to the selected regions,

Type: Salid, Homogeneaus

Material; Skeel

K | Zancel |

2 Model-1
= % Parts (1}
=l SunCracked

click OK

& Surfaces
> B Skins
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7. Double click on instances under assembly
Choose “independent (mesh on instance)” for complicated geometries.

— Create Instance

Create instances From:
{* Parts " Models

— Parks

— Instance Type
" Dependent {mesh on part)

* Independent (mesh on inskance)

Mote: Tochange a Dependent inskance's
mesh, wou musk edit its part's mesh,

[ Auto-offset From other instances

Ik I apply | Cancell

click OK

8. double click “mesh under assembly” to mesh on instance, which gives you
more freedom to generate the mesh.

= Fd Assembly
E| @ Instances (1)
' =l sunCracked-1

(i Position Constraints

Il

'l

Seed part instance
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£ Global Seeds E

— Sizing Controls
Approximate global size: ID.DDII

¥ Curvature control
Mazxirum dewiation Fackor (0.0 < hjL < 1.00: |01
(Approximate number of elements per circle: &)

Mirimum size conkrol

(¥ By fraction of global size (0.0 < min < 1.0% ID.I
" By absolute value (0.0 < min < global size) ID.DDDIS

ol s | Apply I Defaultsl Zancel |

9. Fine seed at the edge of crack.

Click “seed edge” -,

Hold “shift” the key and select the “3 edges” of the crack. Click on Done

|
ﬂﬂ Select the reqgions to be assigned local seeds |individually j Dnnel ™ Use single-bias picking
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Siociseets |

Basic I Conskrainks |

— Method Bias
¥ By size @ mMone O Single ¢ Double
" By number

— Sizing Controls
Approximate element size: ID.DDDII

W Curvature conkral

Mazirmum deviation Fackor (0.0 < h/L < 1.0); (0.1
{Approximate number of elements per circle; &)

Minimum size Fackor {as a fraction of element size):

" Use default {0.1) * Specify (0.0 < min < 1,0) ID.I

[~ Create set with name: IEdge Seeds-1

" Set Creation

QK | Apply | Defaultsl Cancel I

Ok done

10. “mesh part instance” &

I
ﬂﬂ 0K ko mesh the part instance? Mo |

Yes

11. If a mesh error shows up:

“seed edges” again. Zoom in the crack, select the shortest edge of the crack.
Make the mesh size smaller.

+Local Seeds
Basic I Constrainks |

— Method Bias
(& By size i nNone O Single ¢ Double
¢ By number

000000

— Sizing Controls
Approximate ele b size: ID.DDDDl

¥ Curvature control

Maximurn deviation Factor (0.0 < hjL < 1.0%: (0.1
(Approximate number of elements per circle: &)

Minirmum size Factor (as a Fraction of element size):

¢ Use default (0,13 & Specify (0.0 < min < 1.0) ID.I

Set Creation
’]_ Create set with name: IEdge Seeds-1
(0] 4 | Apply | Defaults Cancel

OK done yes
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If meshing failed again.

Go to “mesh” on the top menu of Abqus and select “controls”

— Mesh Controls

— Element Shape

" Hex ¢ Hex-dominated € (Tet & wedge

— Technique ——
" fasis

" Fres D

€ sStructured .

= SEEp D
" Botbom-up D
) Multiple

Redefine Sweep Path... | Assign Stack Direction. .. I

(a4 | Defaults | Cancel |

OK
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12. Z view

Top menu. Tools --> set --> create
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— LCreake Set E

Mame: ISet-n-:u:Ies

Type
" Geometry & Mode  Element
Warning: Mative node and element

sets will be invalidated
if thie mesh changes.

| Conkinue, ., I Cancel

Continue..

On the top menu, left click and hold to expand the menu with a solid triangle on
the bottom.

@
Click —= and select the inner circle center, then expand the radius to include
the nodes of the hole.

done

13. create steps

Double click “steps’ on the browse tree”
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Marne: IWu-Step

Insert new step after

Procedure type: ILinear perturbation YI

Buckle

Static, Linear perturbation
Skeady-state dvnamics, Direct
Substruckure generation

Conkinue. . I Zancel |

continue

Marne: Wu-Step

Tvpe: Freguency

Basic I Cther |

Description: I

Mlaeom: OFF
Eigensalver: ©* Lanczos © Subspace & AMS
Mumber of eigenvalues requested: ¢ Allin fregquency range

* Yalue: IZEI

Fequencyy' shi CyCIES]LIME 5
[T F hiFt {cwcles/time 2

[ Minimum Frequency of interest (oycles time): I

[ Maximum frequency of interest {cycles time): I

¥ Include acoustic-struckural coupling where applicable

Block size: % Defadlt € valus: I

Maximumn number of block Lanczos steps: © Default & value:

[ Use 5IM-based linear dynamics procedures

[ Include residual modes

K | Zancel |
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14. Make sure the working directory is in your folder by “file - set working di-
rectory”

+ Set Work Directory
Current wark direckory:

T4 Juliawuz014

Mew work direckory:

|4 uliawuzo14

Mote: In file selection dialog boxes, wou can
click the waork directary icon ko jump
ko the current work directorsy,

Cancel |

B abaqus_ve.env

15. Important, copy the file
tory to increase the space.

" in your working direc-

16. double click on jobs under analysis

i; Analysis
o Job

Adantiviby Prorecar

ey |':|.:|§
Continue Ok. Right click jobs created - submit! =

17. Save the model and quit ABQUS.

Part 2. Create mnf file from ABAQUS
18. Copy and paste the following 3 files into the working directory

|| tooth_BC.inp
|| tooth_elements.inp

|| tooth_nodes.inp

19. Write down the name of the set of nodes you have created in Abaqus. In
this case, it is Set-nodes.

20. Open the job file (Jobl.inp) as text format.

Open “tooth_nodes.inp” as well. Delete all nodes that are included in this file.
Copy the nodes from Job1.inp into “tooth_nodes.inp”.

Short cut. Push the bottom “Ctrl + F” to find “element”. This is the easiest way
to find the end of the nodes.
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(2). Click on the end of the node and hold “Shif’ key. Go up to the beginning of
the nodes and click. In this way, you select all the nodes.

(2). “Ctrl+X” to delete and copy all the nodes at the same time.

(3). Repeat the above procedure in “tooth_nodes.inp” to select the old nodes.
Then past the new nodes there.

(4). Important. Check and make sure no space at the bottom and top is pre-
sent. Also, no offset of the lines should appear.

|ww

H e GEOMETRY MODES
b
N

1, 0.014038185%6, -0.01053327424,
2, 0.0140419435, -0.0105355456,
T N MAnE4ANIIR -N 1N534471 37

)

21. “MPC NODES” means Multi-points constraint.

Notice there are two large numbers of the nodes in order to avoid a conflict with
one of the current nodes. Delete one if necessary, because only one set of
nodes is defined ABAQUS.

10000000, 0., 0., 0.
20000000, 0., 0., 1.

Change z coordinate as 0.015 m which is the half of the width of the fear.

d MPZ MODES
Yl

10000000, 0., 0., 0. 015

O
O

Make sure there is no space. Save and close.
22. Repeat the same procedure for elements.

Open “tooth_elements.inp” delete the old elements. Copy and paste the ele-
ments from “Job1.inp” into this file. Save and close. Press “Ctrl+F” Set-
nodes”. Make sure no back space is appearing at the top or the bottom.

[ = Ry | (LRI R Ly | () [ el B [l Y S Y R )
HH

HH

1, 1, 2, 795, 2267, 2268, 32061
z, 875, oll, 945, 3141, 3177, 3211
3, 887, 554,  ©54, 3153, 2820, 3220

23. Open “tooth_BC.inp”

(1). Change the file name
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HH

HHEADI MG
SUM
N

Notice, “SUN” should be the ABAQUS file name for your model.

B L™ |

HH

HHEADIMNG

FlexsearCrack
ey

O

(2). Define the constraint node sets

#[tooth_BC.inp - Notepad

File Edt Format View Help

s s1_sun_nlé_z25

*% Created from: Rene sawatzky
** Dpate: 03/28/2014
%% wersion: vl

i Heading
ere

“HEADING ] 30b-1.inp - Notepad

FlexGearcrack Fie Edt Format iew Help

v noDE pEf|*ElEment, type-C3pé

“Nset, nset=set-1, generate
“Elset, elset=Set-1, genarate
1, 122380, 1
“¥ Section: Wu-Section
*solid section, elser=set-1, material=steel

ol NODES SE

“Nset, nset=bcl-nodes

137, 138, 135, 140, 141,
153,7154, 155, 156, 157
215, 716, 717, 218, 18
“Nsat , nset=hc2-nodes

545, 546, 547, 548, 549,
s6d, 562, 7563, 564, 565
623, 624, 625, 626, 627

“End Instance

e MPC Def-

“MPC

BEAM, hcl-nades , 10000000
BEAM ; hcz-nades , 20000000
v

n
“NSET, NSET=RETNODES

ot ELEMENT

“ELEMENT , TYPE=C3D8R , ELSE"
ek

[ ELEMENT

e maTerLAl [l
“MATERTAL , NAME=STEEL
1c

2.07E+11, 0.29
1TV

[ MODAL Al

“STEP, name=frequency
“FREQUENCY , ETGENSOLVER=LANCZOS
e’

% BOUNDARY CONDITIONS

‘

[ =m EeEIT=

Select nodes set including “*Nset ...” and paste it into this file.

O
“MNset, nset=set-nodes, instance=suncracked-1

If “instance=...” shows up, delete it and the coma, before it in order to avoid any
errors while excuting later.

e e —
O

Whzet, nset=Set-nodes
254, 255, 256, 257, 258, 255,

= = = === === =4 =
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(3). Define the beams to connect constraint nodes to MPC node
Old format with two constraint sets and MPCs

HH mMmPC Definiton (Multi-point constraints)
O

HMPC

BEAM , hcl-nodes , 10000000
EEAM,bc2-nodes , 20000000
M

HH

“MSET, MSET=RETMODES

N
Your case has one constraint set therfore one MPC node.

WMPC
BEAM, Set—nodes , 10000000
O

HH

®NSET, MSET=RETMODES

(4). Check and modify the element type
Old format “TYPE=C3D8R”

il ELEMENT DEFIMITIOM

¥ELEMENT , TYPE=C3DBR, ELSET=PROPL, INPUT=tooth_slements. inp

O
O

O

(5) Check and modify the material properties, if necessary.
In this case, steel appears, which is the same as defined in Abaqus.

(6). Save “tooth_BC.inp”, but DO NOT save “Job1.inp”
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Abagus
ommand

24. Open Abaqus Command
Command window.

(1) Define the working directory with cd \working directory

t:“Temprcd T:“JuliaWu2Bi4
T:sJulialluZ2@i4>

(2) Enter following code:

abaqus job=tooth_BC interactive

_:\Juliaﬂ92314>ahqgus Jjob=tooth_BC interactive

wait until message appears: COMPLETE
(3) Enter following code:

(abaqus adams job=filename_BC substructure_sim=filename_BC _ Z1
model_odb units=Mks)
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(4) Message will come asking you enter for deault or none
(5) Enter for yes
I Ahagqus model ODB file (wso .odhbh> [{enter? for default or nonel:

Mumher of Element Faces: 21552

End abaZadamz<SIM—to—MNF>

END ADAMS TRAHSLATION (SIM—to—MHWF>
Abagqus JOB tooth_BC COMPLETED

Tz~ JuliaWu2@i4:

exit

(6)

25. Go to the working directory and copy the .mnf file and past it into your own file.

. kooth_BC.mnf 2i612014 8:09 PM MMF File 59,035 KB

Part 3. Import mnf file into ADAMS to create the model

26. Open ADAMS view, import mnf file. Change the units as SI which must be
consistent with ABAQUS.

A

Create New Model

Model Name | Gear_mnf

Gravity [Earth Normal (-Global Y)

Units | MKS - m.kg.N,s.deg

Working Directory |C:\Users\xwu\Desktop\MNFmodel

Apply Cancel

27. This step must be done before importing the model. You have to enter this
command in the Command Window to reduce the tolerance scale: defaults ge-
ometry display_tolerance_scale = 0.00001 for SI (m) units.

28. Import *.mnf file first. Select &3 ADAMSI/flex, create flex
body through mnf import under body.
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Flexible Body Name: I_Gear_mnf_CracI-cedF'inion

MNF - I CAUsersvowu\Desktop\MMNFmodelitooth_BC mnf

Damping Ratio: v Use Default
Generalized Damping I Off
Location I
IOrientation 'I
Relative To I
™ More FEM Translate | MMF XForm | oK | Apply Cancel
Planetary 37 74
Sun 20 40

The distance between sun and planet is 57.2 mm

28. Import the planet as Gear (part name)

File Type I Parasolid (*.xmt_txt, *x t. *xmt_bin, *x_b j

File To Read CAlUsersvowuDeskiop\MiNFmodel\GearC_PlanetaryGear.x_t

File Type

Part Mame

Location |0,0,0.0672]

Orientation |0.0.00.00

Relative To I
I~ Explode Assemblies

Apply Cancel

29. Define the material properties for the Gear.
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Body |Gear

Category |Mass Properties

Define Mass By |Geometr3.r and Material Type

|.materia|s_steel

7801.0 kg/meter™3

Material Type
Density
2.07E+011 newton/meter™2

Young's Modulus

Poisson’s Ratio

0.29

Show calculated inertia ...

OK | Apply | Cancel |

30. Define the revolute joints and apply the motion on the sun.
31. Define the contact between gears. Choose FlexBody to Solid as Contact

Type

Contact Name
Contact Type

| Flexible Body
J Solid

v Force Display
MNormal Force
Stifness

Force Exponent
Damping
Penetration Depth

Friction Force

| MNFgear CONTACT_1

| Flex Body to Solid

|GearFIex

|lsoLID1

Red

|Impact

| 1.0E+008

|22

| 1.0E+004

| 1.0E-004

‘None

-l

0K | Apply| Close|
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