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ABSTRACT 
 

Vibration-Based Health Monitoring of Rotating Systems with Gyroscopic Effect 
 

Nenad Gavrilovic 
 

This thesis focuses on the simulation of the gyroscopic effect using the 
software MSC Adams. A simple shaft-disk system was created and parameter of 
the system were changed in order to study the influence of the gyroscopic effect. 
It was shown that an increasing bearing stiffness reduces the precession motion. 
Furthermore, it was shown that the gyroscopic effect vanishes if the disk of sys-
tem is placed symmetrically on the shaft, which reduces the system to a Jeffcott-
Rotor. The second objective of this study was to analyze different defects in a 
simple fixed axis gear set. In particular, a cracked shaft, a cracked pinion and a 
chipped pinion as well as a healthy gear system were created and tested in Ad-
ams. The contact force between the two gears was monitored and the 2D and 3D 
frequency spectrum, as well as the Wavelet Transform, were plotted in order to 
compare the individual defects. It was shown that the Wavelet Transform is a 
powerful tool, capable of identifying a cracked gear with a non-constant speed. 
The last part of this study included fault detection with statistical methods as well 
as with the Sideband Energy Ratio (SER). The time domain signal of the individ-
ual faults were used to compare the mean, the standard deviation and the root 
mean square. Furthermore, the noise profile in the frequency spectrum was 
tracked with statistical methods using the mean and the standard deviation. It 
was demonstrated that it is possible to identify a cracked gear, as well as a 
chipped gear, with statistical methods. However, a cracked shaft could not be 
identified. The results also show that SER was only capable to identify major de-
fects in a gear system such as a chipped tooth.  

 

Keywords: Health monitoring, Condition monitoring, Fixed axis gear, Fault detec-
tion, Fast Fourier Transform, FFT, Short-Time Fourier Transform, Short-Term 
Fourier Transform, STFT, 3D FFT, SER, Side Band Energy Ratio, Statistical 
methods, Wavelet Transform 
 

 

 

 

 

 

 



 

 

v 

 

TABLE OF CONTENT 

 

LIST OF TABLES .............................................................................................. vii 

LIST OF FIGURES ........................................................................................... viii 

NOMENCLATURE .............................................................................................. x 

 The Gyroscopic Effect in Shaft-Disk Systems ................................................. 1 

1.1 Introduction .......................................................................................... 1 

1.2 The Effect on Critical Speeds .............................................................. 2 

1.2.1 Equation of Motion ...................................................................... 2 

1.2.2 The Stiffness Matrix .................................................................... 4 

1.3 The Campbell Diagram for Displaying the Critical Speeds .................. 5 

 Introduction to Wavelet Analysis ................................................................... 14 

2.1 Fourier Transform for Periodic Signals .............................................. 14 

2.2 The Short Time Fourier Transform (STFT) ........................................ 19 

2.3 The Wavelet Transform (WT) ............................................................ 21 

2.4 Summary ........................................................................................... 28 

 Simulation of the Gyroscopic Effect in Adams ............................................... 29 

3.1 Introduction ........................................................................................ 29 

3.2 Variation of the Bearing Stiffness ....................................................... 30 

3.2.1 Model Setup .............................................................................. 30 

3.2.2 Model in Adams ........................................................................ 32 

3.2.3 Results ...................................................................................... 34 

3.3 Variation of the Disk Location ............................................................ 39 

3.3.1 Model Setup .............................................................................. 39 

3.3.2 Results ...................................................................................... 40 

3.4 Influence of Eccentricities .................................................................. 43 

3.5 Analysis of an Anisotropic Bearing System ........................................ 45 

 Health Monitoring with a Simple Pair of Gears .............................................. 47 

4.1 General Model Setup ......................................................................... 47 

4.2 Modeling the Speed and Torque Profile ............................................. 49 

4.3 Faults and Defects in the Gear System ............................................. 51 

4.4 Simulation Procedure and Analysis Scope ........................................ 53 

4.5 Analysis of the Flexibility of the Shaft and the Bearings ..................... 54 

4.6 Health Monitoring with FFT and 3D FFT ............................................ 56 

4.6.1 FFT and Time Domain Analysis ................................................ 56 

4.6.1.1 Chipped Pinion .............................................................. 56 

4.6.1.2 Cracked Pinion .............................................................. 58 

4.6.1.3 Cracked Shaft ............................................................... 60 

4.6.2 3D FFT Analysis with a Constant Speed ................................... 62 



 

vi 

 

4.6.2.1 Chipped Pinion .............................................................. 62 

4.6.2.2 Cracked Shaft ............................................................... 64 

4.6.2.3 Cracked Pinion .............................................................. 64 

4.6.3 Linearly Increasing Speed Analysis .......................................... 66 

4.7 Wavelet Analysis................................................................................ 71 

4.7.1 Wavelet Analysis of a Healthy Gear .......................................... 71 

4.7.2 Wavelet Analysis of a Chipped Pinion....................................... 74 

4.7.3 Wavelet Analysis of a Cracked Shaft ........................................ 75 

4.7.4 Wavelet Analysis of a Cracked Gear ........................................ 76 

4.8 Statistical Fault Detection Methods .................................................... 77 

4.8.1 Root Mean Square (RMS) ......................................................... 77 

4.8.2 The Mean .................................................................................. 78 

4.8.3 The Standard Deviation ............................................................ 78 

4.8.4 Sideband Energy Ratio (SER) .................................................. 78 

4.8.5 Statistical Methods for the FFT Spectrum ................................. 79 

4.9 Results ............................................................................................... 80 

4.9.1 Analysis of the Signal in the Time Domain ................................ 80 

4.9.2 Analysis of the Signal in the Frequency Domain ....................... 83 

 Summary and Conclusion ............................................................................. 88 

REFERENCES ................................................................................................. 90 

Appendices 

A: 3D FFT Results (exponential speed) ................................................... 92 

B: Wavelet Toolbox Settings .................................................................... 94 

C: Wavelet Linear Increasing Speed - Results ........................................ 95 

D: How to Plot Wavelet from ADAMS Results ......................................... 99 

E: Gyroscopic Effect Applied in Rotor Systems ..................................... 102 

F: How to define a motor torque curve in Adams ................................... 112 

G: How to Generate an MNF File .......................................................... 115 

 

  



 

vii 

 

LIST OF TABLES 

Table                      Page 

1.1. Parameter and properties of the shaft-disk model ............................................... 9 

1.2. Comparison of the critical speeds with different flexibilities ............................... 13 

3.1. Parameter and properties of the shaft-disk model ............................................. 31 

3.2. Stiffness values for each simulation .................................................................. 31 

3.3. Parameter and properties of the model ............................................................. 39 

3.4. Disk location ratios for each model .................................................................... 40 

3.5. Radius and mass of the eccentricities ............................................................... 43 

4.1. Properties of the gears ...................................................................................... 48 

4.2. Properties of the shaft ....................................................................................... 48 

4.3. Numerical values of the GMFs with different flexibilities .................................... 55 

  



 

viii 

 

LIST OF FIGURES 

Figure                     Page 

1.1. Precession motion of the disk ............................................................................. 1 

1.2. Flexibility of the rotor system] .............................................................................. 5 

1.3. Campbell Diagram and amplitude-frequency diagram ........................................ 6 

1.4. Simple drawing of the single disk-shaft model .................................................... 8 

1.5. Campbell Diagram with flexible bearings and a rigid shaft ................................ 10 

1.6. Campbell Diagram with rigid bearings and a flexible shaft ................................ 11 

1.7. Campbell Diagram with rigid bearings and a flexible shaft ................................ 12 

2.1. Approximation of a square function with a Fourier series .................................. 15 

2.2. Time and frequency domain of a simple sine function ....................................... 16 

2.3. Time and frequency domain of a superimposed function  ................................. 17 

2.4. Time and frequency domain of a non-periodic function  .................................... 18 

2.5. Different window functions and their properties  ................................................ 20 

2.6. Wavelet function and the corresponding scaling function .................................. 22 

2.7. Wavelet plot of a simple sine wave function ...................................................... 23 

2.8. Corresponding scales and frequencies of the WT ............................................. 24 

2.9. Wavelet plot of a superimposed sine function ................................................... 25 

2.10. Wavelet plot of a non-periodic function ........................................................... 26 

2.11. Wavelet plot of a superimposed sine function with noise ................................ 27 

3.1. Single shaft-disk model ..................................................................................... 30 

3.2. Adams model of the single shaft-disk system ................................................... 32 

3.3. Bushing property manager in MSC Adams ....................................................... 33 

3.4. Euler Angle (pitching) with different bearing stiffness values ............................ 34 

3.5. Euler Angle (pitching) with different bearing stiffness values (zoom) ................ 35 

3.6. Euler Angle (yawing) with different bearing stiffness values .............................. 36 

3.7. Euler Angle (yawing) with different stiffness values (zoom in) ........................... 37 

3.8. Orbit plot of the disk with different stiffness values ............................................ 38 

3.9. Euler Angles (pitching) with different disk locations ........................................... 40 

3.10. Euler angles (yawing) with different disk locations .......................................... 41 

3.11. Orbit plots with different disk positions ............................................................ 42 

3.12. Unbalanced shaft-disk system in Adams ......................................................... 43 

3.13. Orbit plots at 15 Hz with different eccentricities ............................................... 44 

3.14. Frequency response at 15 Hz with different eccentricities .............................. 45 

3.15. Orbit plot with anisotropic bearings ................................................................. 46 

4.1. Simple pair of gears system in Adams .............................................................. 47 

4.2. Input torque profile ............................................................................................ 49 

4.3. Input speed profiles ........................................................................................... 50 

4.4. Chipped pinion .................................................................................................. 51 

4.5. Cracked pinion .................................................................................................. 52 

4.6. Cracked shaft .................................................................................................... 52 



 

ix 

 

4.7. GMF comparison with different flexibilities ........................................................ 54 

4.8. Contact force in the time domain of the healthy and chipped pinion ................. 57 

4.9. GMF of the gearing system at a constant speed of 20 Hz ................................. 58 

4.10. Contact force in the time domain of a cracked pinion ...................................... 59 

4.11. Contact force in the frequency domain of a cracked pinion ............................. 59 

4.12. Response of the system with a cracked shaft ................................................. 60 

4.13. Comparison of the faults in the frequency spectrum ....................................... 61 

4.14. 3D FFT of a healthy pinion with a constant speed at 20 Hz ............................ 62 

4.15. 3D FFT of a chipped pinion with a constant speed at 20 Hz ........................... 63 

4.16. 3D FFT of a cracked shaft with a constant speed at 20 Hz ............................. 64 

4.17. 3D FFT of a cracked pinion with a constant speed at 20 Hz ........................... 65 

4.18. Time domain of a healthy and a chipped pinion with an increasing speed ...... 66 

4.19. Frequency domain of a healthy and a chipped pinion ..................................... 67 

4.20. 3D FFT of chipped and healthy gear subjected to an increasing speed .......... 68 

4.21. 3D FFT of cracked shaft and a healthy gear set with an increasing speed ..... 69 

4.22. 3D FFT of cracked pinion and a healthy gear set with an increasing speed ... 70 

4.23. Relation between the number of samples and the time ................................... 72 

4.24. Correspondence frequency to scale table ....................................................... 72 

4.25. Wavelet analysis of a healthy gear system with a constant speed at 20 Hz .... 73 

4.26. Wavelet plot of a chipped pinion with a constant speed at 20 Hz .................... 74 

4.27. Wavelet plot of a cracked shaft with a constant speed of 20 Hz ..................... 75 

4.28. Wavelet plot of a cracked pinion with a constant speed at 20 Hz .................... 76 

4.29. SER for the first three gear mesh frequencies ................................................ 79 

4.30. Definition of three frequency ranges for fault detection analysis ..................... 80 

4.31. RMS and mean values of different faults ......................................................... 81 

4.32. Standard deviation of different defects ............................................................ 82 

4.33. Mean values of area 1 and area 2 ................................................................... 83 

4.34. Mean values of area 3 ..................................................................................... 84 

4.35. Standard deviation of area 1 and area 2 in the FFT plot ................................. 85 

4.36. Standard deviation of area 3 in the FFT plot ................................................... 86 

4.37. SER for the first two gear mesh frequencies ................................................... 86 

4.38. SER for the third gear mesh frequency ........................................................... 87 

  



 

x 

 

NOMENCLATURE 

 

English Letters 

𝑎 m Distance to disk (left) 

𝑏 m Distance to disk (right) 

𝐷 m Diameter of disk 

𝑑 m Diameter of shaft 

𝐸 N/m2 Modulus of Elasticity 

𝐹 N Force  

𝐼 m4 Second Moment of Area 

𝐽𝑑 kgm2 Moment of inertia of the disk (around x and y) 

𝐽𝑝 kgm2 Moment of inertia of the disk (around z) 

𝑗 - Complex number 

𝐿 m Length of disk 

𝑙 m Length of shaft 

𝑡 s Time 

𝑥 m Horizontal displacement of the disk 

𝑥̈ m/s2 Horizontal acceleration of the disk  

𝑦 m Vertical displacement of the disk 

𝑦̈ m/s2 Vertical displacement of the disk 

 

  



 

xi 

 

Greek Letters 

𝜑𝑥 rad Euler Angle around (horizontal) x-axis 

𝜑𝑥̇ rad/s Velocity around (horizontal) x-axis 

𝜑̈𝑥 rad/s2 Acceleration around (horizontal) x-axis 

𝜑𝑦 rad Euler Angle around (vertical) y-axis 

𝜑𝑦̇ rad/s Velocity around (vertical) y-axis 

𝜑̈𝑦 rad/s2 Acceleration around (vertical) y-axis 

Ω rad/s Spinning motion 

𝜔 rad/s Whirling motion 

 

 

Abbreviations 

DOF Degree of Freedom 

FFT Fast Fourier Transform 

GE Gyroscopic Effect 

MNF Modal Neutral File 

RMS Root Mean Square 

SER Sideband Energy Ratio 

STFT Short-Time Fourier Transform 

WT Wavelet Transform  

 

 

 

 



 

1 

 

 The Gyroscopic Effect in Shaft-Disk Systems 

1.1 Introduction  

The gyroscopic effect is the most interesting phenomenon in rotor dynamics and oc-

curs whenever an object with an additional body, such as shaft-disk system, is sub-

jected to a rotational motion. Due to inertia effects, the flexibility and the asymmetry of 

a shaft-disk system, a motion perpendicular to the spinning rotation can occur in the 

system. This means that the gyroscopic motion is present, when the other axis of the 

rotor is spinning, which also referred as the procession motion. See Figure 1.1 for de-

tails.  

 

Figure 1.1. Precession motion of the disk 

 

The gyroscopic motion has been in focus of extensive research [1] and can be even 

considered in fault detection [2]. Therefore, the gyroscopic effect is very important in 

rotor dynamics and vibrations, since it has a significant influence on the critical speeds 

of a system, which will be explained in more detail later in this chapter. Thus, it cannot 

be neglected and must always be taken into account whenever a shaft-disk system is 

placed on flexible supports.  
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Figure 1.1 shows a shaft-disk system with its coordinate system, as well as the spin-

ning axis and the precession axis, caused by the gyroscopic effect. The angles around 

the x- axis 𝜑𝑥 and the y-axis 𝜑𝑦 are called the Euler Angles and are a result of the 

gyroscopic effect. If translational displacements (𝑥 and 𝑦)  are included, as well as the 

angular displacements (𝜑𝑥 and 𝜑𝑦) around the disk, the shaft disk system can be re-

duced to a fourth degree of freedom model [3].  

The gyroscopic effect can occur in many practical applications. One of the most im-

portant example that represents the gyroscopic effect is the gyroscope. Another exam-

ple were precession effects occur are in aeronautics. The most common example is 

the helicopter, where the gyroscopic precession is used to control the pitching of a 

helicopter [4] . 

 

1.2 The Effect on Critical Speeds 

1.2.1 Equation of Motion 

The gyroscopic effect can be described by following equation of motions, which de-

scribe the resulting forces and the moments acting on the disk [5]. Where 𝑘 describes 

the stiffness, 𝐽𝑑 describes the moment of inertia around the x- or y- axis and 𝐽𝑝 around 

the z-axis. If free vibration is introduced the moments and forces are zero. 

𝑚𝑥̈ + 𝑘22𝑥 − 𝑘23𝜑𝑦 = 𝐹𝑥   

𝑚𝑦̈ + 𝑘22𝑦 − 𝑘22𝜑𝑥 = 𝐹𝑦   

𝐽𝑑𝜑̈𝑥 + 𝐽𝑝Ω𝜑𝑦̇ + 𝑘23𝑦 +  𝑘33𝜑𝑥 = 𝑀𝑥   

𝐽𝑑𝜑̈𝑦 − 𝐽𝑝Ω𝜑𝑥̇ − 𝑘23𝑥 +  𝑘33𝜑𝑦 = 𝑀𝑦   
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It is also possible to introduce complex coordinates 𝑗 for the above equations, which 

are shown below [3]. 

𝑧 = 𝑥 + 𝑗𝑦   

𝛹 = 𝜑𝑦 − 𝑗𝜑𝑥   

Substituting these complex numbers in equation (1.1) to (1.4) the equations of motion 

can be written in a convenient and neat form: 

𝑚𝑧̈ + 𝑘22𝑧 − 𝑘23𝛹 = 0   

𝐽𝑑𝛹̈ − 𝑗𝐽𝑝Ω𝛹̇ − 𝑘23𝑧 + 𝑘33𝛹  = 0   

These complex equations of motion can be solved by introducing the homogenous 

solution in order to solve these differential equations:  

𝑧(𝑡) = 𝑟𝑒𝑗𝜔𝑡   

𝛹(𝑡) = 𝛼𝑒𝑗𝜔𝑡   

By substituting the homogenous solutions, equations (1.7) and (1.8) can be pre-

sented in a matrix form:  

[
−𝑚𝜔2 + 𝑘22 −𝑘23

−𝑘23 −𝐽𝑑𝜔2 + 𝐽𝑝Ω𝜔 + 𝑘33
] [ 

𝑟
𝛼 

 ] =  [ 
0

 0 
 ]   

The characteristic equation of this equation can be obtained if the determinant of the 

matrix in equation (1.11) is performed. 
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𝑑𝑒𝑡 [
−𝑚𝜔2 + 𝑘22 −𝑘23

−𝑘23 −𝐽𝑑𝜔2 + 𝐽𝑝Ω𝜔 + 𝑘33
] =  0   

The characteristic equation is presented in equation (1.13). 

𝜔4 −
𝐽𝑝

𝐽𝑑
Ω𝜔3 − (

𝑘33

𝐽𝑑
+

𝑘22

𝑚
) 𝜔2 +

𝐽𝑝𝑘22

𝑚𝐽𝑑
Ω𝜔 +

𝑘22𝑘33 − 𝑘23
2

𝑚𝐽𝑑
= 0   

 

This equation represents the whirling motion of the system. The whirling motion can 

occur in the positive direction 𝜔, as well as in the negative direction −𝜔 (forward and 

backward whirling). When substituting  𝜔 in (1.13) the natural frequency can be calcu-

lated with equation (1.14). 

𝜔4 (1 −
𝐼𝑝

𝐼𝑑
) − (

𝑘33

𝐼𝑑
+

𝑘22

𝑚
−

𝐼𝑝𝑘22

𝑚𝐼𝑑
) 𝜔2 +

𝑘22𝑘33 − 𝑘23
2

𝑚𝐼𝑑
= 0   

If the negative whirling −𝜔 is substituted for spinning speed  Ω  another equation can 

be obtained with which the natural speeds for the backward whirling can be calculated. 

𝜔4 (1 +
𝐼𝑝

𝐼𝑑
) − (

𝑘33

𝐼𝑑
+

𝑘22

𝑚
+

𝐼𝑝𝑘22

𝑚𝐼𝑑
) 𝜔2 +

𝑘22𝑘33 − 𝑘23
2

𝑚𝐼𝑑
= 0   

 

1.2.2 The Stiffness Matrix 

The stiffness components of the shaft can be presented in a matrix form. To obtain the 

individual components, the rotor system has to be assume as a flexible body first, 

which is shown in Figure 1.2 a. The stiffness components of this matrix can be obtained 

using the displacement influence coefficients, which are described in [6]. Next, the flex-

ible influence coefficient method of the flexible bearings and rigid shaft model, shown 

in Figure 1.2 b, has to be used in order to obtain the stiffness components for this 
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matrix. Lastly, the two stiffness matrixes of both cases have to be superimposed in 

order to create the model with flexible bearings and flexible shaft, Figure 1.2 c.  

 

Figure 1.2. Flexibility of the rotor system [3] 

 

 

1.3 The Campbell Diagram for Displaying the Critical Speeds 

Vibrational systems can be characterized by critical frequencies, which are important 

parameter for any rotor system. Reaching critical speeds can result in resonance, 

which is highly to avoid since it can cause failures to machines. Identifying theses crit-

ical speeds is necessary for every engineer in order to reduce danger and harm to the 

environment and the machine itself. However, in many cases resonance frequencies 

are not easy to determine. Critical speeds do not always have to be at a constant value. 

In fact, they can change during the operation in several applications. For instance, 

resonance frequencies can vary with the spinning speed. 

This speed dependence of critical speeds can be caused by the properties of a system. 

The stiffness of some bearing system, like fluid film bearings, has the ability to vary 

with the operational speed or to change with temperature [7]. In addition, the stiffness 

of some systems can change, the higher the operation speed is.  Typically, this effect 
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occurs in turbines. Turbo-blade resonance frequencies increase with the rotor speed. 

This phenomenon is called blade stress stiffening, which occurs with increasing rotor 

speed [8]. On the other hand, the counterpart to stress-stiffness is spin-softening. Spin-

softening enables a reduction of the natural frequencies, when the rotational speed of 

a system increases [9].  

Nevertheless, not only spin-softening and stress-stiffening have a significant influence 

on the critical speeds, the gyroscopic effect influences the critical speeds as well. The 

illustration of critical speeds in terms of rotor speeds are called Campbell Diagrams [8]. 

A Campbell Diagram is presented in the upper part of Figure 1.3. 

 

Figure 1.3. Campbell Diagram and amplitude-frequency diagram [8] 

 

The horizontal axis represents the rotor turning speed, while the vertical axis repre-

sents the natural frequencies. The lower part of the Campbell Diagram is used as a 

reference to describe the resonance frequencies in terms of the amplitude and the 

frequency and to visualize the natural frequencies. The graphs for the different modes, 

which are the natural frequencies of the system, can be obtained by calculating the 

imaginary roots of equation 1.13 and plotting them in terms of the operational speed.  
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The exciting frequency of the system be can represented as a straight line 𝜔 = Ω in the 

Campbell Diagram. Since the relationship between the natural frequency and the ex-

citing speed is in many cases linear, it can be drawn as a line starting from the origin 

of the plot [10].  

The critical speeds can be identified when the line of the exciting frequency hits the 

lines of the natural frequencies. Every intersections of these two lines can lead to res-

onance and is strongly to avoid. Once the critical speeds are identified at these inter-

sections, they can be avoided by operating the machine above or below the critical 

speeds. 

Although the Campbell Diagram is a powerful tool for mapping and localizing reso-

nance frequencies it can only provide the location of the critical speeds, but not the 

corresponding amplitude. Nevertheless, the Campbell Diagram is also suitable for dis-

playing resonance frequencies by considering forward and backward whirling modes.  

However, not all identified critical frequencies are equally dangerous. It is likely that 

some higher modes of the natural frequencies do not appear as significant vibrational 

peaks in an actual system. It can happen that more critical speeds are found in the 

Campbell Diagram but do not appear in an actual system. The reason for that might 

be that some modes are significantly damped and therefore the amplitudes at these 

resonance modes are not highly developed [8], [10]. Nevertheless, the Campbell Dia-

gram provides engineers the prediction of critical speeds and can be very useful espe-

cially in the designing phase of a project.  
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In order to demonstrate the meaning and the importance of the Campbell Diagram 

different example problems will be used. For this, the equation 1.13, which was derived 

in the previous section, will be used to plot the Campbell Diagram. 

First, a system with a rigid body but with a flexible shaft will be used. Next, a disk-shaft 

system with a rigid shaft but with flexible bearings is going to be used for the analysis 

scope. Lastly, a system with a flexible shaft and flexible bearings will be used. For all 

three cases, the critical speeds will be determined using the Campbell Diagram. 

In order to display the Campbell Diagram with the natural frequencies the parameter 

of the single disk model, which is shown in Figure 1.4, needs to be defined. The chosen 

parameters for the following analysis are presented in Table 1.1.  

 

 

Figure 1.4. Simple drawing of the single disk-shaft model 
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Table 1.1. Parameter and properties of the shaft-disk model 

Symbol Parameter name Value Unit 

𝑎 Disk location 0.125 m 

𝐷 Diameter of disk 0.150 m 

𝑑 Diameter of shaft 0.01 m 

𝐸 Modulus of Elasticity 2.07E+11 N/m2 

𝐿 Disk length 0.02 m 

𝑙 Shaft length 0.5 m 

𝑘1 Stiffness of  Bearing 1 1.0E+07 N/m 

𝑘2 Stiffness of  Bearing 2 1.0E+07 N/m 

𝜌 Density 7,800 kg/m3 

𝜐 Poisson ratio 0.29 - 

 

First, the Campbell Diagram of the rigid-shaft and flexible-bearings of the single disk-

shaft system will be plotted and analyzed. This means that this model consist of a rigid 

shaft, which has non-flexible and non-bending characteristics. The stiffness of the 

bearings are assumed to have a value 1.0 E+07 N/m for each bearing component. This 

setting makes the bearing to act as a spring and therefore to act as a flexible bearing.  
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Figure 1.5. Campbell Diagram with flexible bearings and a rigid shaft 

 

The Campbell Diagram for this setup is shown  in Figure 1.5. The black lines represent 

the natural frequencies that vary over time and can be obtained from equating (1.13). 

The blue lines represent the forcing (exciting) speeds. If the whirling rotation, respec-

tively the whirling speed, of the shaft is in the same direction as the rotation of the shaft 

(spinning speed) the upper blue line, which lies in the positive direction of the whirling 

axis, comes into consideration. This determination is valid when forward whirling oc-

curs.  

On the other hand, if the whirling of the shaft is in the opposite direction than the move-

ment of the shaft, backward whirling occurs. If this happens, the lower blue line of the 

forcing speed, which is drawn in the negative axis of the whirling speed, comes into 

consideration.  
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With this method, three different critical speeds can be obtained at every intersection 

of the forcing speed line and the lines of the natural frequencies (379.6 rad/s, -220.5 

rad/s and -427.3 rad/s). Since it is not known if backward or forward whirling occurs in 

the system, it is strongly to avoid running this setup at these speeds in order to avoid 

resonance. 

 

Figure 1.6. Campbell Diagram with rigid bearings and a flexible shaft 

 

Next, the system is assumed to consist a flexible shaft and rigid bearings. The Camp-

bell plot for this configuration is shown in Figure 1.6. Note that for this case compared 

to the previous example, where the system included a rigid shaft with flexible bearings, 

the obtained critical speeds reduce significantly. The values of the critical speeds are 

33.4 rad/s, -7.5 rad/s and -37.4 rad/s and again, it is recommend strongly to avoid 

these specific speed values for this setup. 
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In the last configuration, the bearing, as well as the shaft, are assumed to be flexible. 

For this model, the superposition method must be applied in order to calculate the 

stiffness of the system. The result is shown in Figure 1.7. 

 

Figure 1.7. Campbell Diagram with rigid bearings and a flexible shaft 

 

Surprisingly, a system with flexible bearings and a flexible shaft has lower critical 

speeds than a system with a rigid shaft and flexible bearings. The individual critical 

speeds are -7.5 rad/s, -37.2 rad/s and 33.1 rad/s. 

The critical speeds are summarized for all three configuration in Table 1.2. The differ-

ent configuration are flexible bearings and flexible shaft (FBFS) model, the flexible 

shaft rigid bearings (FSRB) and the rigid shaft and flexible bearings (RSFB) model. As 

previously mentioned, the highest critical speeds appear if the shaft is assumed to be 

rigid but the bearings flexible. It can be  seen that the flexibility of the shaft has a greater 
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influence on the critical speeds than the flexibility of the bearings. This fact is only valid 

for this model and can be different with another model or other properties. However, 

the values of the critical speeds of the two last cases are very close. In a real system, 

these speeds must be avoided in order to reduce the possibility of resonance. 

 

Table 1.2. Comparison of the critical speeds with different flexibilities  

 RSFB FSRB FSFB  

 379.60 rad/s 33.35 rad/s 33.12 rad/s  

 -220.52 rad/s -7.55 rad/s -7.55 rad/s  

 -427.33 rad/s -37.49 rad/s -37.21 rad/s  
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 Introduction to Wavelet Analysis 

This chapter provides an introduction to Wavelet Transform. In order to understand the 

importance of its application and the advantage of analyzing non-periodic signals, clas-

sical vibrational analysis methods will be explained first. These include the Fast Fourier 

Transform (FFT), as well as the Short Time Fourier Transform (STFT). The term “fast” 

is included to the Fourier Transform since the development of a computational algo-

rithm, which is used to process the Fourier Transform more quickly [11].  

 

2.1 Fourier Transform for Periodic Signals 

Most periodic signals that appear in practical applications or in nature are time domain 

signals. That means that a variable e.g. a displacement of a shaft is a time dependent 

variable. However, in many cases it is very important to plot the frequency domain in 

order to gain more insight of a periodic signal. One way to obtain this information and 

to transform a signal from its time domain to its frequency domain is to apply the Fourier 

Transform.  

Jean-Baptiste Joseph Fourier1 discovered that every periodic signal could be approxi-

mated with an infinitive sum of sine and cosine function, which are known as the Fou-

rier series. The Fourier series contains the frequency 𝑓, which is equivalent to the in-

verse of the period  𝑇. Furthermore, the Fourier series includes the coefficients 𝑎𝑛 and 

𝑏𝑛, which describe the weight of the individual sine and cosine functions. The Fourier 

series is presented in equation (2.1). 

𝑓𝑠(𝑡) = 𝑎0 + ∑ 𝑎𝑛cos (
2𝜋𝑛𝑡

𝑇 
)

∞

𝑛=1

+ ∑ 𝑏𝑛sin (
2𝜋𝑛𝑡

𝑇 
)

∞

𝑛=1

   

                                                      

1 French mathematician and physicist (1768-1830) 
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To illustrate this summing function, a square wave is approximated by the Fourier se-

ries in dependence on the number of terms 𝑛, that are used to carry on and to calculate 

the summing function. To illustrate that an approximation of a square function is per-

formed in Figure 2.1.Note, the higher the terms of the function are, the better the ap-

proximation to the real square function is. A term of 𝑛 = 1 shows a simple sine wave. 

By increasing the number of terms, the square function can almost completely be ap-

proximated by the Fourier series. In this example, the error between the real square 

function and the approximated function is vanishing small when 49 terms are taken to 

approximate the square function. 

 

Figure 2.1. Approximation of a square function with a Fourier series [12] 

 

This knowledge reveals that the Fourier series can approximate any periodic function. 

On the other hand, in many cases it is also important to display the frequency and the 
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amplitude of a signal in the frequency domain in order to gain more insight of a function. 

This can be done using the Fourier transform.  

To illustrate this method, a simple sine function with a frequency of 20 Hz and an am-

plitude of 0.2 is used as an example. The signal in the time domain is plotted in the 

upper part of Figure 2.2. Applying the Fast Fourier Transform results in the frequency 

domain, revealing the correct frequency and the corresponding amplitude.  

 

Figure 2.2. Time and frequency domain of a simple sine function 

 

Nevertheless, not only the information of a single sine function can be revealed, nor it 

is possible to transform any imaginable periodic function from the time domain to its 

frequency domain. As an example, three different sine functions, each with a different 

frequency and amplitude, are superimposed and plotted in Figure 2.3. The first sine 

function has an amplitude of 0.2 and a frequency of 20 Hz, the second superimposed 
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sine function contains an amplitude of 0.5 and a frequency of 50 Hz, while the third 

superimposed function consist of an amplitude of 1 and a frequency of 100 Hz. As you 

can see, the frequency domain shows the correct frequencies and amplitudes for each 

superimposed function.  

 

 

Figure 2.3. Time and frequency domain of a superimposed function   

 

FFT is a powerful tool to determine the frequency and the amplitude of a signal but not 

suitable for non-periodic functions though. To explain this in detail, the superimposed 

periodic function from the last example is re-ranged to a non-periodic signal. Rather 

than being superimposed, the individual function are appearing in different periods of 

time, shown in Figure 2.4.  
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If the FFT is applied to this non-periodic signal, the frequencies still can be somehow 

identified. However, a clear determination of the amplitude cannot be guaranteed since 

the frequency domain does not reveal the correct magnitude values. Thus, applying 

the FFT to a non-periodic signal can result in information losses and should never be 

used to analyze a non-periodic signal. The phenomenon of information losses is called 

Leakage and it appears when the signals’ energy is reducing over a wide frequency 

span in the FFT when it should be in a smaller one instead [13].  

 

Figure 2.4. Time and frequency domain of a non-periodic function 

 

The fact that FFT does not reveal how a signal is changing over time leads to the 

consideration of a better method to analyze a non-periodic signal. The Short-Time Fou-

rier Transform, for instance, is a better method to analyze non-periodic functions, which 

is the subject of the next section. 
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2.2 The Short Time Fourier Transform (STFT) 

A better solution to overcome the drawback of the FFT is to introduce a method, which 

divides the signal into thin slices and performs a Fourier Transform for each slice.   

This means that tiny time slices (windows) of the signal are taken and the FFT of every 

slice is performed in order to create FFT plot over the signals’ time range. The fre-

quency spectrum appears now as a three-dimensional plot with an additional time-axis. 

The method of the STFT performs for each time slice a Fourier Transform. Thus, a 

constant window is used for each time slice and then shifted to the next time slice along 

the time line axis, where again another Fourier Transform is performed [14]. 

However, there are plenty of window functions available to perform the FT. A sample 

of windows is presented in Figure 2.5. Each window function has its own characteris-

tics, coming along with its own disadvantages and advantages. Thus, the window func-

tion strongly depends on the signal that is to analyze.  
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Figure 2.5. Different window functions and their properties [13] 

 

The selection of a window cannot be arbitrary chosen and therefore depends on the 

type of signal that is analyzed. Furthermore, several disadvantages have to be taken 

into account when a window function is considered for a frequency analysis. Wide win-

dows, for instance, can result in an excellent frequency resolution but the time resolu-

tion can get worse. On the other hand, if a narrow window size is chosen, the time 

resolution can get better but the frequency resolution will worsen instead [15]. 

The problem is a result of choosing a window function that is suitable for the entire 

signal range and that has a compromise for both – a good time resolution and a good 

frequency resolution [15]. However, this can be very difficult, especially when frequen-

cies are changing over time.  
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This example means that it is not always easy, especially if the exact form of the signal 

is unknown, to find the right window size in order to get all necessary information from 

the 3D FFT plot. This drawback, as well as the exact determination of an appropriate 

overlapping size, which is not further explained in this report, can lead to information 

losses and arises the need of a more suitable and better method. This is where Wave-

let Transform comes into consideration and is explained in the next section. 

 

2.3 The Wavelet Transform (WT) 

The Wavelet Transform was created as another option in order to solve the resolution 

problem that occurs when applying the STFT. The Wavelet analysis is done in the 

similar way to the STFT, but major differences between these two methods exist. In 

contrast to the STFT, where the window size is fixed and therefore cannot be changed, 

the Wavelet Transform allows the window size to be variable. This fact leads to a de-

tection of different frequencies over the whole signals’ time range. Furthermore, it fixes 

the resolution problem. 

This is realized with a special set of scaling functions that every Wavelet function in-

cludes and enables a scaling and shifting of the window over the time range. Only with 

this method, it is possible to detect all necessary information of a signal. 

The Wavelet formulation is presented in equation (2.2). Where 𝑠 stands for the scale 

and is related to the actual frequency of a signal. Furthermore, the mother wavelet 𝜓 

which is the transforming function depends on the time shift 𝜏 and the time 𝑡 of the 

signal 𝑥(𝑡).   

Ψ𝑥 =
1

√𝑠
∫ 𝑥(𝑡)𝜓 (

𝑡 − 𝜏

𝑠
) 𝑑𝑡 
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The parameter scale enables a detailed analysis of a non-periodic signal. In this case, 

low frequencies correspondent to high scales. Vice versa, high frequencies corre-

spondent to low scales. Thus, Wavelet analysis allows a high-resolution detection of 

low and high frequencies. 

Similar to FFT or STFT with windows, the Wavelet Transform has a variety of Wavelet 

functions available, each containing a corresponding scaling function. A Wavelet func-

tion with its scaling function from the Daubechies family is presented in Figure 2.6. 

 

Figure 2.6. Wavelet function and the corresponding scaling function [16]  

 

In order to demonstrate the effectiveness of the Wavelet Transform several example 

will be used. The first example shows simple sine wave function, with an amplitude of 

0.2 and a frequency of 20 Hz, which is the same function as the previous example 

plotted in Figure 2.2. 

Applying the Wavelet Transform of this sine signal leads to the scalogram in Figure 

2.7.  The result is presented in terms of scales and time or space. The term space 

stands for the number of samples of a signal. The 1D Continuous Wavelet Transform 

requires only one variable of a signal (e.g. the displacement) and takes its number of 

samples to process the WT. The number of samples is related to the time and therefore 
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named space or time. In this specific example, the number of samples matches with 

the time in ms.  

The scales of the WT are plotted on the vertical axis, which are related to the frequen-

cies. The correspondence of the frequencies and the scales will be explained in more 

detail later in this chapter. 

Another important parameter in the scalogram is the percentage of energy wavelet 

coefficient. This parameter reveals the maxima of energy in the scalogram, which is 

similar to the peaks in a 3D FFT plot.  

 

Figure 2.7. Wavelet plot of a simple sine wave function (created with [17]) 

 

In Figure 2.7, the sine wave shows an energy maximum at a scale of about 25. In order 

to obtain the frequency value at this specific scale, the scales have to be transferred 

back to the corresponding frequencies. This is realized in Figure 2.8 where the corre-

sponding values of the scales and frequencies are plotted. As you can see, a scale of 

25 corresponds to a frequency of 20 Hz. This is exactly the frequency of the sine wave 

that is used in this example. 
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Figure 2.8. Corresponding scales and frequencies of the WT (created with [17]) 

 

Similar to the FFT, WT can also detect the frequencies of a superimposed function.  

The superimposed function consist of two sine waves, each with a different frequency 

(20 Hz and 200 Hz). This function is presented in equation (2.3).  

𝑥(𝑡) = sin(2𝜋20𝑡) + sin(2𝜋100𝑡)   

The corresponding Wavelet Transform of this function is plotted in Figure 2.9. As you 

can see, two energy maxima appear in the scalogram, which describe the frequencies 

of the system. These energy maxima appear at a scale of around 6 and 25. Using the 

corresponding frequency and scale graph in Figure 2.8, the frequencies of 100 Hz for 

a scale of 6 and of 20 Hz for the scale of 25 can be revealed.      
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Figure 2.9. Wavelet plot of a superimposed sine function (created with [17]) 

 

However, the presented example is still a periodic superimposed function and could 

be analyzed using the FFT or STFT to obtain the frequencies. In order to demonstrate 

a meaningful advantage of the WT, the sine function of the last example will be re-

ranged to a non-periodic signal. Now, the sine wave with a frequency of 20 Hz appears 

in the time range between 0 and 250 ms and again between 750 and 1000 ms. The 

other 100 Hz-sine function is present in the time range between 250 – 750 ms.  

The analyzed signal, as well as the Wavelet result, is presented in Figure 2.10. As you 

can see, the energy maxima appear at a scale of 25 between 0 and 250 ms and again 

between 750 and 1000 ms.  In addition, energy maxima are present at a scale of six 

between 250 and 750 ms. Thus, Wavelet is a suitable method to analyze non-periodic 

and non-stationary signals with a high resolution for both, the frequency and the time. 
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Figure 2.10. Wavelet plot of a non-periodic function (created with [17])  

 

 The Wavelet Transform does not only allows the analysis of a pure signal; it also en-

ables the study of any signal, even if noise is present. Signals obtained in practice 

usually contain noise. In order to perform a vibrational analysis, noise can be an inter-

ference factor and can lead to difficulties when performing a vibrational analysis. In 

many cases, filters are used in order to reduce the presence of the noise and to clarify 

the signal. However, another example will be used to demonstrate that it is possible to 

get the right frequencies with Wavelet Transform, even if a signal contains a lot of 

noise. 

The same superimposed sine function, which was used in equation (2.3), will be the 

objective for the next analysis. Furthermore, a random noise function will be added to 
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this function to get a more realistic signal that can occur in any practical application. 

Figure 2.11 shows the Wavelet plot of the new signal. 

Even the signal is noisy and the energy maxima are not clearly formed, the scales and 

respectively the frequencies of the signal can be identified. Again, the Wavelet plot 

reveals that the energy maxima occur at a scale of 25 and 6. These two values corre-

spond to the frequency of 20 Hz and 100 Hz. Therefore, it is demonstrated that a sig-

nals’ frequencies can be revealed even if noise is present using WT. 

 

Figure 2.11. Wavelet plot of a superimposed sine function with noise (created with 

[17]) 
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2.4 Summary  

The Wavelet Transform was demonstrated starting from explaining the Fourier Trans-

form. The FFT is a suitable tool to perform vibration studies of periodic signals. How-

ever, performing a FFT to non-periodic signals can lead to leakage, which can turn into 

information losses.  A solution can be the Short-Time Fourier Transform (STFT), with 

which the frequency spectrum can be presented as a 3D frequency plot, where an 

additional time axis is added to the frequency spectrum. Even STFT is a powerful tool 

to analyze non-periodic signals, the settings of the window and the determination of 

the window itself is very important, since it can lead to the resolution problem. To over-

come this drawback the Wavelet Transform was introduced to perform vibrational anal-

ysis. It is shown that the WT is suitable to analyze a non-periodic signal and to obtain 

simultaneously a multi-resolution result, which makes the WT a highly powerful tool. 

Furthermore, it was demonstrated that even a noisy signal can be analyzed using WT.  
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 Simulation of the Gyroscopic Effect in Adams 

3.1 Introduction 

This chapter contains the analysis of the gyroscopic effect using the multibody dynam-

ics software MSC Adams. The research and analysis of the gyroscopic effect of a sin-

gle shaft-disk system is split up into several sections.  

Several parameters like the bearing stiffness and the location of the disk are changed 

and the systems’ response is measured. The shaft of the rotor system is modeled using 

the FEA software Abaqus. In order to create an exportable MNF model, a script file is 

used to convert the FEA model into a Modal Neutral File, which is then imported in 

Adams. The bearings of the system are modeled using the features bushings. This 

bushing model allows a convenient change of parameters such as the bearing stiff-

ness. Furthermore, it allows the reduction of the simulation time. 

The output of the system is measured in terms of the Euler Angle that represent the 

angular displacement at the location of the disk. The Euler Angle are a clear and unique 

method to determine the presence of the gyroscopic effect in a rotating system. In 

addition, the orbit plot of the disk is plotted and analyzed. 

Another analysis includes the effect of eccentricities in a shaft-disk system. In order to 

create the eccentricities, different masses are placed onto the rotor disk. The FFT – 

analysis is used to compare the effect of the vibration with different eccentricities. 

Furthermore, an anisotropic bearing system will be created and the orbit plot of the 

shaft will be drawn.   
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3.2 Variation of the Bearing Stiffness 

3.2.1 Model Setup 

The first simulation includes the analysis of the Euler Angle in dependence of the bear-

ing stiffness. To model the gyroscopic effect, a single shaft-disk model needs to be 

created in Adams. A sketch of the rotor model is presented in Figure 3.1. The dimen-

sion and the properties of this system are shown in Table 3.1. Except for the bearing 

stiffness, which is a variable parameter in this study, all other parameters remain un-

changed during each simulation. 

 

Figure 3.1. Single shaft-disk model 

 

The shaft of the model has a length of 0.5 m and a diameter of 0.01 m. The disk is 

mounted at 0.125 m measuring from the left end of the shaft and has a diameter of 

0.15 m. The properties of both, the disk and the shaft, are assigned with the material 

properties of steel. While the disk is modeled as a rigid body, the shaft is created as a 

flexible body.  
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Table 3.1. Parameter and properties of the shaft-disk model 

Symbol Parameter name Value Unit 

𝑎 Disk location 0.125 m 

𝐷 Diameter of disk 0.150 m 

𝑑 Diameter of shaft 0.01 m 

𝐸 Modulus of elasticity 2.07E+11 N/m2 

𝐿 Disk length 0.02 m 

𝑙 Shaft length 0.5 m 

𝑘1 Stiffness of Bearing 1 variable N/m 

𝑘2 Stiffness of Bearing 2 variable N/m 

𝜌 Density 7,800 kg/m3 

𝜐 Poisson ratio 0.29 - 

    

The values that are used are chosen arbitrarily and will be used as standard values for 

other experiments in this paper. The stiffness components of the bearings, which are 

varied during the tests, are shown in Table 3.2. In total, for this study, seven different 

simulation experiments are performed, each with an individual stiffness value. The stiff-

ness is reduced in every experiment by a factor of 10, starting from a value from 

10,000,000,000 N/m. Note that the stiffness value of 10,000,000 N/m in test procedure 

number 4 is used as a standard stiffness value for other analyses. 

Table 3.2. Stiffness values for each simulation 

Simulation number Stiffness (N/m) 

1 10,000,000,000 

2 1,000,000,000 

3 100,000,000 

4 10,000,000 

5 1,000,000 

6 100,000 

7 10,000 
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3.2.2 Model in Adams 

 

Figure 3.2. Adams model of the single shaft-disk system 

 

Figure 3.2 shows the Adams model of the shaft-disk system. It consist of a rigid rotor 

disk mounted on a flexible shaft. The shaft is supported by bushings on each ends. 

The shaft, as previously mentioned, is a flexible body with a mesh size of 1 mm. See 

the appendix how to create a flexible body in Abaqus and how to import it in Adams. 

Furthermore, instead of using the bearings option in Adams, bushings are used. The 

reason for that is that the bearings in Adams do not support any changes of the prop-

erties like the stiffness or the damping. It is also difficult to verify and evaluate how 

accurate the bearing option in Adams is and therefore bushings are used.  

With the bushings option it is possible to analyze the system, depending on different 

dynamic properties such as the stiffness or the damping. Therefore, the bushing option 

is a convenient tool to create pseudo-bearings. Figure 3.3 shows the available bush-

ings option with the option to specify different bearing properties.  

Besides changing the stiffness components, it is also possible to change the damping 

components. Moreover, the property manager contains rotational and translational pa-

rameter of these properties. 
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This available set up makes the bushing option a powerful tool for dynamic studies. 

However, they do not represent a real bearing system, since the stiffness of bearings 

can include a speed dependency.  

However, with the use of bushing the simulation time can significantly be reduced. For 

instance, in this research, the simulation time was reduced up to 98%, when bushings 

were used instead of bearings. In particular, the simulation was carried out with a total 

number of 150,000 steps and a simulation time of 15 seconds. The simulation took 

about two minutes, while with the usage of the bearing option the simulation duration 

exceeded two hours. 

  

Figure 3.3. Bushing property manager in MSC Adams 

 

Furthermore, a constant speed is applied to the shaft of the system. The speed is hold 

constant at a value of 15 Hz (900 rpm). 
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3.2.3 Results 

The result of the gyroscopic effect is presented in terms of the yawing and pitching 

motion of the disk. The yawing, as well as the pitching, can be described by the Euler 

Angles of rotation, which are a result of the integrated motion around the disk. 

The Euler Angle around the (horizontal) x-axis describes the pitching motion of the 

disk, while the Euler Angle around the (vertical) y-axis describes the yawing motion of 

the disk. Figure 3.4, as well as Figure 3.5, shows the simulation results of the pitching 

and yawing motion with different stiffness values. 

 

Figure 3.4. Euler Angle (pitching) with different bearing stiffness values  

 

As you can see, several graphs of the pitching angle exist, each representing a differ-

ent bearing stiffness. The form of the graphs show a linear function, which is due to 

the integrated constant motion around the disk. In this example, a constant speed 

around the z-axis is applied to the shaft, which creates a constant precession motion 
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around the disk. The integration of this motion results in a linear angular displacement 

function.  

Figure 3.5 shows that once the stiffness exceeds a value of 1.0E+06 N/m, the influence 

on the pitching becomes less important, which means that the differences between the 

individual graphs are small and the changes are minimal. This can be seen in detail in 

Figure 3.5 where the graphs of the pitching motion are shown in a range between 

1.0E+06 N/m and 1.0E+10 N/m as a close-up image. As you can see, the individual 

graphs are slightly apart and show only a small difference in the Euler Angle. 

Notice that the graph with the lowest stiffness value of 1.0E+04 N/m is present in the 

opposite direction than the other graphs, which means that for this particular stiffness, 

the pitching appears in the opposite direction. The bearing stiffness of 1.0E+04 N/m 

shows some instabilities since the pitching motion does not reach steady state.  

 

Figure 3.5. Euler Angle (pitching) with different bearing stiffness values (zoom) 
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It is also important to analyze the yawing motion of the disk, since the yawing and 

pitching results in the presence of the gyroscopic effect. Therefore, the yawing motion 

is described by the Euler Angle 𝜑𝑦  around the vertical axis. Figure 3.6 shows the sim-

ulation result of this angle in dependence of different stiffness values. 

Some similarities exist if the yawing and pitching are compared. For instance, the yaw-

ing motion increases with the bearing stiffness. In addition, once the stiffness exceeds 

a value of 1.0E+07 N/m the differences between the individual graphs become very 

small and the bearing stiffness becomes less important to the influence of the gyro-

scopic effect, since the bearings become rigid and the flexibility of the shaft accounts 

for the GE. 

 

Figure 3.6. Euler Angle (yawing) with different bearing stiffness values 
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Notice that the yawing motion is in general higher than the pitching motion. For in-

stance at the end of the simulation time, the yawing angle reaches a value between 18 

and 19 deg for high stiffness values. The pitching, on the contrary, reaches a value of 

about -0.3 deg for high stiffness values. 

 

Figure 3.7. Euler Angle (yawing) with different stiffness values (zoom in) 

 

However, not only the Euler Angles are significant parameter to analyze the behavior 

of system; it is also important to have a closer look at the orbit of the shaft. Thus, the 

orbit plot of the rotor system with different stiffness settings is plotted in Figure 3.8. The 

orbit plots describe the displacement in the x and y-axis of the disk during the rotation.  

Due to instability of the system the orbit plot does not reach a circular movement at a 

stiffness of 1.0E04 N/m. Also note that with an increasing stiffness the displacement, 
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as well as the orbit plot itself becomes smaller. Since there is no significant change in 

the system with a stiffness above 1.0E07 N/m the orbit of the system is not plotted for 

higher stiffness values. 

 

Figure 3.8. Orbit plot of the disk with different stiffness values  
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3.3 Variation of the Disk Location 

3.3.1 Model Setup 

The next analysis is about the influence on the gyroscopic motion when the location of 

the disk is changed. For this purpose, several models, each with a different disk loca-

tion are created. The disk location ratio is used as a reference parameter in this anal-

ysis. The disk location ratio is measured by dividing the disk location 𝑎, which is meas-

ured from the left end of the disk, by the total length of the shaft 𝑙. All other model 

properties remain the same as in the previous analysis. See Table 3.3 for details. 

Table 3.3. Parameter and properties of the model 

Symbol Parameter name Value Unit 

𝑎 Disk location variable m 

𝐷 Diameter of disk 0.150 m 

𝑑 Diameter of shaft 0.01 m 

𝐸 Modulus of Elasticity 2.07E+11 N/m2 

𝐿 Disk length 0.02 m 

𝑙 Shaft length 0.5 m 

𝑘1 Stiffness of Bearing 1 1.0E+07 N/m 

𝑘2 Stiffness of Bearing 2 1.0E+07 N/m 

𝜌 Density 7,800 kg/m3 

𝜐 Poisson ratio 0.29 - 

    

In total four different simulation models, each with a different disk location, are created 

and shown in Table 3.4. Note that only the disk location is a variable parameter, while 

the length of the shaft remains constant. The output parameter and therefore the meas-

ured response is the Euler Angle around the disk.  
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Table 3.4. Disk location ratios for each model 

Model number Disk location ratio a/l 

1 1/8 

2 1/4 

3 3/8 

4 1/2 

 

3.3.2 Results 

The measured response of the GE is the pitching, as well as the yawing angle of the 

disk, which is presented in Figure 3.9 and Figure 3.10.  

 

Figure 3.9. Euler Angles (pitching) with different disk locations 

 

Note that the Euler Angle varies with the disk location ratio. For example, the pitching 

angle shows the highest values at a location of 1/8, if the disk location ratio is increased 
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to 1/4 the pitching will be smaller. If the disk location is increased again, the gyroscopic 

effect will increase again. 

Note that if the disk is placed at the center of the shaft (1/2), the pitching, as well as 

the yawing, will become zero. In other words, the gyroscopic effect will disappear, when 

the disk is placed at the center of the shaft. This is an important observation, since the 

rotor system reduces to a so called Jeffcott-Rotor system then. The Jeffcott-Rotor does 

not include any gyroscopic effects, since the inertia of the system does not contribute 

to the gyroscopic effect.  

 

Figure 3.10. Euler angles (yawing) with different disk locations 

 

Similarities exist if the yawing motion of the disk is analyzed. The yawing increases 

with the off-centered rotor disk, except for a value of ¼. Furthermore, the yawing re-

duces to zero if the disk location ratio is ½, which confirms the observation that no 



 

42 

 

gyroscopic motion is present when a Jeffcott-rotor is used. It is also worthwhile to ob-

serve that the yawing motion is in general greater than the pitching motion and is pre-

sent in the opposite direction. 

Furthermore, the orbit plot of the shaft-disk system is shown in Figure 3.11. As you can 

see the smallest orbit plot exist at a disk location ratio of ¼.  

 

Figure 3.11. Orbit plots with different disk positions  
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3.4 Influence of Eccentricities 

The objective of this section is to observe the influence of the shaft-disk system if the 

disk is unbalanced. Therefore, several different masses will be placed on the disk in 

order to create an unbalanced rotor. Figure 3.12 shows the single disk system in Ad-

ams. The disk of the rotor system is located at 1/4 of the shafts length. All other prop-

erties, as well as dimension of the disk, remain the same as in the previous models. In 

order to create an unbalanced rotor, a mass is added to the disk, which is placed at 

the outer diameter of the disk. The mass is created using a spherical body in Adams 

with the properties of steel. The radius of the sphere is varied in order to create different 

weights, which are shown in Table 3.5. The motion is constant and has a value of 15 

Hz. 

 

Figure 3.12. Unbalanced shaft-disk system in Adams 

 

Table 3.5. Radius and mass of the eccentricities 

Radius of sphere  Mass 

5.35 mm 5 g 

6.74 mm 10 g 

8.49 mm 20 g 

10.7 mm 40 g 
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Figure 3.13 shows the result in form of the orbit plot. Note that once the weight of the 

eccentricity increases, the orbit plot will increase too. This is reasonable since the un-

balanced system will create a higher excitation of the rotor, resulting in an increase of 

the displacement.  

 

Figure 3.13. Orbit plots at 15 Hz with different eccentricities  

 

To demonstrate that there is an effect on the vibrations, the FFT plot with different 

masses are shown in Figure 3.14. As you can see, with a mass of 0 g there is almost 

no peak in the vibration spectrum. Once the mass increases, the amplitude of the vi-

brational response becomes proportional larger. Therefore, it is very important to pay 

attention to the eccentricity and try to unbalance a rotor in order to reduce the vibration 

response.  
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Figure 3.14. Frequency response at 15 Hz with different eccentricities  

 

 

3.5 Analysis of an Anisotropic Bearing System 

Furthermore, it is significant to analyze the shaft-disk system if anisotropic bearings are used. 

Anisotropic bearings are bearings that have different properties in each direction. To create an 

anisotropic bearing system in Adams, the bushing stiffness will be changed. For instance, in 

this example the bearing stiffness in the (vertical) y direction remains constant at 1.0E7 N/m, 

while the stiffness in the horizontal direction (x-direction) is reduced to 1.0E06 N/m. The orbit 

plot of this analysis is presented in Figure 3.15. Note the orbit of the anisotropic bearing does 

not show an elliptical shape. This is due to the reduced stiffness in the x direction. Note also, 

that the orbit increases if anisotropic bearings are used. 
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Figure 3.15. Orbit plot with anisotropic bearings 

  



 

47 

 

 Health Monitoring with a Simple Pair of Gears 

4.1  General Model Setup 

This simulation consist of a simple pair of gears, mounted on flexible shafts that repre-

sents a fixed axis gear system. Each shaft is supported by bearings, which are mod-

eled using the bushing option and ensures that the setup is modeled as realistic as 

possible. Figure 4.1 shows the general model setup in Adams. Furthermore, a rota-

tional speed, as well as a torque, is applied to the pinion and a resistant torque is 

applied to the output shaft. The speed profile, as well as the torque profile, will be 

explained in more detail in this chapter. 

 

Figure 4.1. Simple pair of gears system in Adams 

 

Figure 4.1 shows the general properties of the gearing system. The properties of the 

shaft are shown in Table 4.1 and the properties of the flexible shaft are presented in 
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Table 4.2. Again, the flexible bodies are created in Abaqus and imported in Adams. 

Although the gearing system is small, it can be used to represent a real system and 

scaled if necessary for further studies.  

Table 4.1. Properties of the gears  

 PINION GEAR 

NUMBER OF THEETH 23 31 

MODULE 2 mm 2 mm 

PRESSURE ANGLE 20° 20° 

BORE DIAMETER 10 mm 10 mm 

WIDTH 10 mm 10 mm 

MATERIAL steel2 steel 

 
 

Table 4.2. Properties of the shaft 

Symbol Parameter Value Unit 

𝑑 Diameter of shaft 0.01 m 

𝐸 Modulus of Elasticity 2.07E+11 N/m2 

𝑙 Shaft length 0.2 m 

𝑘 Bearingstiffness 1.0E+07 N/m 

𝜌 Density 7,800 kg/m3 

𝜐 Poisson ratio 0.29 - 

 

  

                                                      

2 This default material definition for rigid bodies is chosen in Adams.    
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4.2 Modeling the Speed and Torque Profile 

Realistic simulation models can only be achieved if the inputs are as realistic as pos-

sible. To ensure a practical gear model, the input torque will represent an AC-motor 

curve, which is dependent on the input speed. However, the values of the curve are 

chosen arbitrary, but the shape of the function resembles a practical motor curve. The 

torque profile, which is specified in Adams is shown in Figure 4.2.  

 

Figure 4.2. Input torque profile  

 

It is also reasonable to define different speed profiles. In a real system, any imaginable 

speed profile could be possible and present. For this purpose, three different speed 

profiles are defined and used for the dynamic analysis, shown in Figure 4.3. 

The first speed profile represents a constant speed, at which the shaft is rotating con-

stantly at 1200 rpm during the whole simulation time. In addition, an exponential speed 

curve is modeled where the speed value of 1200 rpm is reached without overshooting. 

Lastly, a liner increasing speed profile is applied to the system in which the whole range 

of the torque curve is exploited (0-4000 rpm). 
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Figure 4.3. Input speed profiles 

 

This input setup will be used to perform the simulation experiments. Although the de-

fined speed profiles and the torque curve are only a tiny fraction of different possible 

practical setups, they are important for this study in order to design a realistic Adams 

model.  

As mentioned before, a resisted torque is also present in the system in order to ensure 

that a resistance exists in this system. The resistance torque is a function of the input 

and output torque, as well as the input and output speeds. Furthermore, an efficiency 

factor for the gearing system 𝜂𝐺 of 0.98 is included. A realistic range of the gear effi-

ciency varies between 94-98% [18].  

𝑇𝑟𝑒𝑠 =
𝑇𝑖𝑛𝜔𝑖𝑛

𝜔𝑜𝑢𝑡
𝜂𝐺   
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4.3 Faults and Defects in the Gear System 

To ensure proper health monitoring and fault detection, several defects are included in 

the gear system. The first defect is a damaged tooth that is located at the pinion. The 

chipped tooth can be the result of material faults or caused by fatigue. The chipped 

tooth is presented in Figure 4.4.   

 

Figure 4.4. Chipped pinion 

 

The next gear defect includes a cracked tooth located at the driving gear (pinion). In 

order to create this tooth defect, the gear must be created as a flexible body, which is 

realized with Abaqus, too. The same material properties that are defined for the flexible 

shafts applies for the gear. The crack is 0.01 mm thick and has a length of about 50% 

of the tooth width, shown in Figure 4.5. 
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Figure 4.5. Cracked pinion 

 

Not only a crack in the gear can be present in a gear box, it is also imaginable that a 

crack in the shaft can exist. Therefore, another fault will be included in the system, 

which is a cracked shaft. The crack in the shaft is 0.2 mm thick and has a depth of 5 

mm, which is the half of the shafts’ cross section. It occurs at the center (half length) 

of the shaft and is placed at the driving shaft. The crack in the shaft is shown in Figure 

4.6. 

 

Figure 4.6. Cracked shaft  
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4.4 Simulation Procedure and Analysis Scope 

An effective analysis presupposes a well-planned experimental method, as well as 

well-organized simulation procedure. This includes the definition of the inputs and out-

puts, as well as the analysis scope, which are described below. 

 

The inputs of the system are: 

 Torque, defined by the torque-speed curve  

 Speed profile: 

- Constant speed (10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz) 

- Exponential 

- Linearly increasing 

While the output of the system is: 

 Contact force between the two gears 

In addition, the simulation setups are: 

 Healthy/Perfect Gear 

 Chipped tooth 

 Cracked tooth  

 Cracked Shaft 

The analysis is performed by: 

 FFT 

 3D FFT 

 Wavelet 

 Statistical methods 
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4.5 Analysis of the Flexibility of the Shaft and the Bearings 

Before the actual simulation is completed, an analysis of the different possible flexibility 

modes in Adams is carried out. Therefore, a healthy simple pair of gear system is 

modeled with different flexibilities of the shaft and bearings. These different possible 

types of flexibilities can contain a rigid-shaft and rigid-bearing (RSRB)-system, a rigid-

shaft and flexible-bearings system (RSFB) and a flexible-shaft and flexible-bearings 

(FSFB) system. A simulation in Adams is performed with each model at a constant 

speed of 1200 rpm (20Hz). The contact force between the two gears is measured and 

FFT is used to display the gear mesh frequencies (GMF) of the system. The result is 

shown in Figure 4.7 and the values are presented in Table 4.3. 

 

Figure 4.7. GMF comparison with different flexibilities 
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Note, once the model becomes more flexible, the magnitude of the harmonics de-

creases. Thus, a system with a flexible body and flexible bearings shows the lowest 

value of almost all GMF-peaks. The reason for that is that the flexibility of the model 

enables to absorb the force. A flexible FEA body acts as a spring, stores more energy 

and therefore shows a lower magnitude in the FFT-spectrum. On the other hand, a 

rigid body does not have the capability of storing the energy and reveals higher mag-

nitudes for the GMFs. 

 

Table 4.3. Numerical values of the GMFs with different flexibilities 

GMF RSRB RSFB FSFB 

460 Hz 42.65 N 52.36 N 19.00 N 

920 Hz 17.28 N 22.08 N 4.19 N 

1380 Hz 37.13 N 4.52 N 17.24 N 

1840 Hz 51.92 N 15.24 N 15.16 N 

2300 Hz 37.02 N 14.16 N 2.47 N 

2760 Hz 17.87 N 5.23 N 11.23 N 

3220 Hz 38.32 N 15.28 N 14.31 N 

3680 Hz 38.76 N 15.80 N 5.75 N 

4140 Hz 38.20 N 13.64 N 8.02 N 

4600 Hz 11.81 N 4.78 N 14.28 N 

5060 Hz 25.81 N 13.47 N 8.18 N 

5520 Hz 38.07 N 17.16 N 4.37 N 

5980 Hz 26.56 N 12.68 N 10.95 N 

6440 Hz 4.46 N 5.21 N 10.17 N 

6900 Hz 24.36 N 11.80 N 1.08 N 

7360 Hz 35.46 N 18.26 N 9.22 N 

7820 Hz 15.27 N 7.30 N 9.71 N 
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4.6 Health Monitoring with FFT and 3D FFT 

4.6.1 FFT and Time Domain Analysis 

The first study includes the analysis of the frequency domain and the time domain of 

the contact force between the gears. Therefore, the frequency spectrum and the time 

domain of the contact force will be plotted. The FFT signal includes the gear mesh 

frequencies, which appear as peaks in the FFT plot. The individual faults such as the 

chipped pinion, the cracked pinion and the cracked pinion will be compared to a perfect 

gear set. 

 

4.6.1.1 Chipped Pinion  

The signal of the contact force of a healthy and a chipped pinion in the time domain is 

shown in Figure 3.8. As you can see, even the time domain signal allows the possibility 

of condition monitoring. While the response of the healthy pinion shows a constantly 

oscillating signal, the chipped pinion shows additional high contact force peaks in every 

interval of 0.05 s (20Hz) that reaches values up to 2200 N. Since this system creates 

every rotation high impact forces at a single location, it can be revealed that a fault in 

the gearing system is present. Even the location of the fault can be located if the start-

ing position of the gearing system is known. 

However, it is not always guaranteed that a fault can be detected from the time domain 

signal. Moreover, the meshing forces that create high peaks in the system might be an 

exception and could also be much lower and therefore not always be visible. For this 

purpose, it is more suitable to analyze the frequency spectrum of the signal, since it 

reveals more information of a signal. The frequency spectrum of the above signal is 

shown in Figure 4.9.  



 

57 

 

 

Figure 4.8. Contact force in the time domain of the healthy and chipped pinion 

 

The peaks in the vibration spectrum represent the gear mesh frequencies and are cre-

ated during the meshing process of the teeth. While the FFT of the healthy signal has 

a neat and clear form, the FFT of the chipped pinion contains a heavy noise profile. 

The noise of the vibration is due to the defect in the pinion and is present in form of 

sidebands on each side of each gear mesh frequency peaks. Note that for the second 

gear mesh frequency the sideband are even higher that the magnitude of the peak. 

This information can be used to create an automated health monitoring system. One 

method is the Side Band Energy Ratio, which will be explained in more detail later in 

this chapter, and which allows the possibility of fault detection using an algorithm.  
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Figure 4.9. GMF of the gearing system at a constant speed of 20 Hz 

 

 

4.6.1.2 Cracked Pinion  

The contact force of a cracked pinion is plotted in the time domain in Figure 4.10. The 

time domain plot of the cracked pinion contains more noise than the original one, which 

includes a healthy gear set. To emphasize this, the peaks of the cracked gear are 

denser. In that case, the time domain signal reveals some information and shows some 

differences if the contact force of the perfect gearing set is compared. However, a clear 

identification of a fault in the system cannot be made if the time domain of the contact 

force is compared only. Thus, once again, the FFT spectrum of this signal is plotted in 

Figure 4.11. 
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Figure 4.10. Contact force in the time domain of a cracked pinion 

 

As shown above, the gear mesh frequencies show up as peaks in the FFT plot. How-

ever, the frequency spectrum contains less noise than the FFT of the chipped gear 

system. It is difficult to tell if any noise is present in the vibration spectrum due to the 

cracked gear and therefore it makes a fault detection difficult, especially if the presence 

of noise in a practical system is higher. Thus, a comparison between the noise at dif-

ferent speeds and setups is necessary in order to fully reveal and identify a crack in 

the system. 

 

Figure 4.11. Contact force in the frequency domain of a cracked pinion 
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4.6.1.3 Cracked Shaft 

Lastly, the response of the system with a cracked shaft is documented and presented 

in Figure 4.12. As can be seen, the vibration response is similar to the other plots. The 

amplitude of the contact force in the time domain function has approximately the same 

value as the previous graphs. However, the structure of the signal is different. It shows 

some irregularities with a structure that appears as a waveform. The reason for that is 

the cracked in the shaft that increases the oscillating motion of the shaft. If the FFT 

spectrum is analyzed, you will notice that 20 Hz-modulated sidebands are present on 

each side of the gear mesh frequency peaks. Therefore, the appearing sidebands in 

the FFT plot can be an indicator for a crack in the shaft. It is important to emphasize 

that the contact force in this study is taken to measure to response and that the contact 

force reveals the irregularities of the shaft. Thus, the contact force can reveal infor-

mation of bodies that are not in direct contact with gears, such as the shaft. 

 

Figure 4.12. Response of the system with a cracked shaft  
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The result and summary of the individual faults is shown in Figure 4.13. Note the pres-

ence of the sidebands in the individual systems that occur as noise in the FFT.  

 

Figure 4.13. Comparison of the faults in the frequency spectrum  
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4.6.2 3D FFT Analysis with a Constant Speed 

4.6.2.1 Chipped Pinion 

As mentioned before, 2D FFT has its limitations and cannot fully reveal the time infor-

mation of a signal. However, in many cases it is also important to plot the 3D FFT 

frequency response, especially if the signal is not constant over time. For this purpose, 

the fault detection method is applied using the 3D FFT. First with a constant speed of 

20 Hz and then with a linear increasing speed.  

Figure 4.14 shows the 3D FFT of a perfect gearing system with a constant speed at 

20 Hz. As can be seen, the gear mesh frequencies appear as constant peaks along 

the time axis. This is due to the fact, that the rotation speed of the shaft is constant and 

does not vary over time. Note also that almost no noise is present in the entire plot, 

which indicates that the system is healthy. 

 

Figure 4.14. 3D FFT of a healthy pinion with a constant speed at 20 Hz 



 

63 

 

To have a comparison to a damaged gear system, the 3D FFT response of a chipped 

gear is plotted in Figure 4.15. The system contains the same inputs, such as a constant 

speed at 20 Hz and the torque profile. 

 

Figure 4.15. 3D FFT of a chipped pinion with a constant speed at 20 Hz 

 

Compared to the perfect pinion, the chipped pinion contains a lot of noise, which is 

present over the whole time range. Moreover, the magnitude of the gear mesh fre-

quency peaks do not show a constant distribution over the time axis. In particular, the 

peaks are oscillating slightly, which means that at certain intervals (0.05 s) the peaks 

reach a slightly higher magnitude. This fact, as well as the heavy presence of noise in 

this plot, is an indicator that the system has a damaged tooth. Therefore, 3D FFT is a 

suitable method to detect chipped gears in a gearing system.  
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4.6.2.2 Cracked Shaft  

The next analysis includes the 3D FFT plot of a cracked shaft. The response of this 

damaged system is presented in Figure 4.16. 

 
 

 

Figure 4.16. 3D FFT of a cracked shaft with a constant speed at 20 Hz  

 

Surprisingly, the response shows similarities to that one of a healthy gear. A clear noise 

present is non-existing and it is difficult to tell if there is any fault in the system. Even 

the noise appearance is similar to the healthy gear system.  

 

4.6.2.3 Cracked Pinion 

Finally, the three-dimensional frequency spectrum of the cracked pinion with a con-

stant speed at 20 Hz is shown in Figure 4.17. Note that the plot is similar to the plots 

with the healthy gear and the cracked shaft. As you can see, the frequencies as well 
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as the amplitude are almost the same. There are not many visible difference between 

the individual plots and a clear identification of a crack in the pinion cannot be made.  

 

 
 

 

Figure 4.17. 3D FFT of a cracked pinion with a constant speed at 20 Hz 
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4.6.3 Linearly Increasing Speed Analysis  

The next research objective is the analysis of the time domain and 3D FFT of the sys-

tem with a linearly increasing speed profile. The model is subjected to a driving speed 

at the input shaft with a linearly increasing function (0 - 400 rpm). As the speed in-

creases, the contact force increases as well, which is shown in Figure 4.18. Further-

more, the time domain signal shows high vibration peaks that appears whenever the 

damaged gear is in contact.  

 

Figure 4.18. Time domain of a healthy and a chipped pinion with an increasing 

speed  

As expected, the FFT does not show any reasonable results for both, the chipped pin-

ion and the healthy pinion, since the input speed does not create any periodic contact 

force between the two gears. Nevertheless, it shows some differences that can be 
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noticed by the noisy form of the FFT plot in Figure 4.19. However, it is not a reliable 

method for fault detection and should not be used to analyze the systems’ response. 

 

Figure 4.19. Frequency domain of a healthy and a chipped pinion  

A better alternative is to focus on the 3D FFT for non-constant speeds in order to gain 

a better understanding of the response, which is shown in Figure 4.20. As you can see, 

the gear mesh frequencies are present as a “waterfall plot” in form of waves. As the 

speed increases, the gear mesh frequencies shift along the frequency axis and create 

such a unique plot. However, the chipped pinion shows a higher noise profile in the 3D 

FFT plot than the 3D FFT of a healthy pinion. Furthermore, the peaks of the wave show 

irregularities over the time. Refer to the appendix to see the results for the exponential 

speed profile.  
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Figure 4.20. 3D FFT of chipped and healthy gear subjected to an increasing speed 

 

It is also possible to analyze the 3D frequency domain plot of a cracked shaft subjected 

to a linearly increasing speed. Note that the differences lie at the end of the GMFs 

peaks that appear as increasing lines. The GMFs show a different waveform at the at 
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the end of the time. Thus, 3D FFT is a suitable method to detect a cracked shaft for 

his model. 

 

 

Figure 4.21. 3D FFT of cracked shaft and a healthy gear with an increasing speed 
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Figure 4.22. 3D FFT of cracked pinion and a healthy gear set with an increasing 

speed 

 

Finally, the 3D FFT plot of a cracked pinion is plotted and compared in Figure 4.22. 

Notice that the lines of the GMF’s peaks for the cracked pinion are higher than the 

peaks of a healthy gear, which is an indicator for a fault in the system. 
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4.7 Wavelet Analysis 

As previously mentioned, FFT analysis is limited for the use in fault detection. 3D FFT 

has also its limitations regarding the time and frequency resolution. To overcome this 

drawback, the Wavelet Transform will be used for health monitoring in this chapter. 

The same settings and the model setup, which were used in the previous analysis are 

used for the next analysis. The contact force of the gearing system is recorded in Ad-

ams and exported to Matlab, where the Wavelet Toolbox is used in order to perform 

the Continuous Wavelet Transform with the Wavelet function bior3.3.   

 

4.7.1 Wavelet Analysis of a Healthy Gear 

The first Wavelet plot includes the contact force of a healthy gear set. As seen in Figure 

4.23, the x-axis of the plot (for the signal as well as the Wavelet) is presented in terms 

of scales. This variable stands for the number of samples of the signal and has a total 

number of about 50,000. However, the number of samples relates to the time. For 

instance, a simulation time of 0.5 s is set to perform the analysis in Adams with 50,000 

samples. Thus, they are linearly related and presented in Figure 4.23.  
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Figure 4.23. Relation between the number of samples and the time 

 

On the contrary, the y-axis of the Wavelet plot represents the number of scales. As 

previously mentioned in the introduction, the scales relate to the frequencies. Several 

high-energy densities occur as colored straight lines in the wavelet plot. These lines 

represent the gear mesh frequencies and can be converted to real frequencies using 

Figure 4.24. For example at a scale of 205 the correspondence frequency is 460 Hz, 

which is the first gear mesh frequency of the system.  

 
 

Figure 4.24. Correspondence frequency to scale table 
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Figure 4.25. Wavelet analysis of a healthy gear system with a constant speed at 20 

Hz 

 

Unfortunately, the plot does not reveal the information of how big the amplitude of the 

response is. It only shows where the high-energy densities occur. The constant lines 

do not change over the time range and do not show any irregularities, which leads to 

the conclusion that the system is healthy and does not contain any faults. However, 

more analysis have to be carried out in order to identify defects in systems. 

 



 

74 

 

4.7.2 Wavelet Analysis of a Chipped Pinion 

The next analysis includes the Wavelet Transform of a chipped gear, which is shown 

in Figure 4.26. As you can see, the structure of the wavelet plot differs from that one 

with the healthy gear system. In addition to the constant lines, several perpendicular 

shapes appear in the Wavelet plot. This happens whenever the damaged gear is in 

contact. Hence, a clear detection of a damaged gear can be made if Wavelet Trans-

form is considered. Furthermore, the location of the damaged tooth can also be re-

vealed, which is another advantage using this method. 

 

 

Figure 4.26. Wavelet plot of a chipped pinion with a constant speed at 20 Hz 
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4.7.3 Wavelet Analysis of a Cracked Shaft 

The next analysis contains the vibration analysis of cracked shaft using Wavelet Trans-

form. The result is plotted in Figure 4.24. As can be seen, the vibration pattern differs 

from the previous plots. It shows an oscillating structure of the peaks and is due to the 

cracked shaft that causes this pattern to oscillate.  

 

 

Figure 4.27. Wavelet plot of a cracked shaft with a constant speed of 20 Hz 
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4.7.4 Wavelet Analysis of a Cracked Gear  

The last analysis includes the Wavelet plot of a cracked gear, which is presented in 

Figure 4.28. As can be seen, this Wavelet plot is similar to the Wavelet plot with the 

healthy gearing system. However, the constant lines show some inhomogeneity over 

the time axis. This can be an indicator that a crack in the gear is present. However, it 

is not reliable enough to make a clear fault identification, since the source of this phe-

nomenon could also be the cause of noise. However, if another speed profile is taken 

into account, the crack can be identified using Wavelet transform. See the appendix 

for details.  

 

Figure 4.28. Wavelet plot of a cracked pinion with a constant speed at 20 Hz 

 

 



 

77 

 

4.8 Statistical Fault Detection Methods  

This section focuses on health monitoring using statistical methods. As a contrary to 

the visual detection methods, like Wavelet and 3D FFT, statistical methods could be 

an approach to find faults with an automated algorithm. Therefore, the standard devi-

ation, the mean and the root mean square, as well as the Side Band Energy Ratio, will 

be presented and discussed in this chapter. Furthermore, they will be applied in order 

to display the differences between the individual faults in the gear set. The same faults 

(chipped pinion, cracked pinion and cracked shaft) will be used in this chapter and the 

statistical methods will be applied for different constant speed values (10 – 60 Hz) in 

order to reduce the possibility of random noise. The statistical methods will be used in 

order to calculate the time domain signal and the noise presence of the signal in the 

frequency domain. 

 

4.8.1 Root Mean Square (RMS) 

One of the simplest method in health monitoring is applying the root mean square 

(RMS) to the signal in the time domain. It is suitable to monitor the defects in a system, 

such as a gearing system, and to include and track the noise. The root means square 

is also called the quadratic mean and is presented in equation (4.2) [19].  

𝑅𝑀𝑆 =  √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

   

Where 𝑥𝑖 correspondences to value of the signal, 𝑁 for the number of samples of the 

signal and 𝑖 stands for the index. 
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4.8.2 The Mean 

The mean value of a signal or data points is also known as the average. The mean is 

calculated by summing the values of all data points and dividing it by the total number 

of samples. In many cases, it can be important to compare a set of data points with the 

mean. 

𝑥̅ =   
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
   

 

4.8.3 The Standard Deviation 

The standard derivation is another statistical method and describes how close a set of 

data values are to the mean value. Accurate data are present when the data values 

are close to the mean, which leads to small standard derivation. On the other hand, a 

large standard derivation will indicate that the data set is spread.  

𝜎 = √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)2 

𝑁

𝑖=1

             

 

 

4.8.4 Sideband Energy Ratio (SER) 

Another method for fault detection in gear systems is the usage of Sideband Energy 

Ratio (SER). As previously shown, a damaged gear system such as a chipped gear, 

has a greater noise profile in the frequency spectrum, which is present in form of side-

bands on each side of the gear mesh frequencies.  

SER sums the magnitude of the first six sidebands, and divides it by the magnitude of 

the center GMF, shown in Figure 4.29. This is done with the first three gear mesh 
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frequencies. The equation of SER is shown in equation 4.5. If SER exceeds the value 

of one indicates a damage in the gearing system [20]. 

𝑆𝐸𝑅 =   
∑ 𝑆𝑖𝑑𝑒𝑏𝑎𝑛𝑑 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑖

6
𝑖=1

𝐶𝑒𝑛𝑡𝑒𝑟 𝑀𝑒𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
   

 

 

Figure 4.29. SER for the first three gear mesh frequencies [20] 

 

 

 

4.8.5 Statistical Methods for the FFT Spectrum 

Besides using the SER method to detect faults in the gear system, the mean, as well 

as the standard derivation, will be used to analyze the noise profile in the FFT spec-

trum. Similar to the work in [21], where the noise of the frequency spectrum was ana-

lyzed within two frequency ranges; three areas will be introduced in this paper.  
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Figure 4.30. Definition of three frequency ranges for fault detection analysis  

 

Figure 4.30 shows the details of the three frequency ranges that will be used in order 

to calculate the mean and the standard derivation of the noise in the FFT spectrum. 

Area 3 is placed at the beginning of the FFT plot while the block of Area 1 and Area 2 

are placed to the left, respectively to the right of the first gear mesh frequency.  

 

4.9 Results 

The results of health monitoring using statistical methods that were explained are 

shown and discussed in this section. First, the results of the analysis of the signal in 

the time domain will be shown and explained, followed by the results of the analysis in 

the FFT spectrum. 

 

4.9.1 Analysis of the Signal in the Time Domain 

The first result is the analysis of the contact force in the time domain, shown in Figure 

4.31.The results for the root mean square are presented in the left, while the mean 

values for the different defects are presented in the right part of the plot. The vertical 

axis represents the contact force and the horizontal axis reveals the speed, at which 

the RMS and the mean were calculated. 
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Figure 4.31. RMS and mean values of different faults 

 

It can be seen that the RMS is more suitable to detect defects in a gear system than 

the mean value. By using this statistical method, a cracked gear, as well a chipped 

gear can be identified, since both damages show a 10 – 50 N higher value of the con-

tact force than a healthy gear set. However, the detection of a crack in a shaft is more 

challenging. The values of the cracked shaft and the healthy gear set are very close 

and the differences between them are vanishing small. 

Note that the mean values of the different signals do not show any remarkable differ-

ences, which leads to the conclusion that calculating the mean of a signal is not suita-

ble to detect a fault in a system. The only difference exist at a speed of 20 Hz where 

the mean of the chipped gear is much higher than the rest. However, this is an excep-

tion, which could be caused by a random noise appearance in the system, and does 

not necessarily reveal a chipped gear. 

Note also that the values of a cracked shaft show only a small difference in comparison 

to the healthy gear set, in both the RMS and the mean plot. That means that an iden-

tification of a cracked shaft cannot be clearly made if statistical methods are applied to 

analyze the contact force in the time domain. 
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A similar result can be obtained if the standard deviation of the raw signal of the indi-

vidual faults are compared, which is shown in Figure 4.32. It can be seen, that the 

standard derivation of a cracked, as well as the chipped gear, has a higher value than 

the healthy gear set for each speed.  

 

Figure 4.32. Standard deviation of different defects 

 

Again, the values of the healthy system and the cracked shaft are close together and 

show only small differences. Therefore, a crack in the shaft cannot be identified, even 

if the standard derivation is taken into account. An interesting fact that can be seen in 

the above plot is that the standard derivation of all four graphs is increasing with the 

input speed. This is even the case for the last data point. While the mean value shows 

a low value of for this data point, the standard derivation shows a high value for this 

specific point. The increasing standard derivation with an increasing speed could be 

the cause of an increasing noise development in the system at higher speeds. 
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4.9.2 Analysis of the Signal in the Frequency Domain 

The result of the FFT analysis using statistical methods is presented in Figure 4.33 and 

Figure 4.34, where the mean values of the three different area blocks of all simulation 

setups are plotted. Again, the horizontal axis represents the input speed, while the 

vertical axis represents the magnitude of the contact force that appears in the FFT 

spectrum.  

 
 

Figure 4.33. Mean values of area 1 and area 2  

 

As can be seen, the chipped gear has the highest noise level, respectively the highest 

mean value of all simulation setups in all three area blocks. The only exception exist 

in plot for area 1, where the cracked shaft exceeds the value of the chipped gear. A 

clear identification of the chipped gear can easily be made by calculating the noise in 

the FFT. 

On the other hand, this method shows some difficulties in detecting a cracked gear. 

Except for the area 2, the mean values of the cracked gear are close to the healthy 

gear, which means that the average value of the cracked gear is almost the same for 

the healthy gear. This can be explained due to the fact that a cracked gear creates 
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only a slightly higher force and a slightly higher noise level in the FFT spectrum. There-

fore, this analysis is not fully suitable to detect a cracked gear and a cracked shaft, but 

a chipped gear. 

 
 

Figure 4.34. Mean values of area 3 

 

Nevertheless, further research has to be made in order to get a clearer picture of the 

dependence between system faults and noise development in the frequency spectrum. 

Therefore, the standard derivation comes into consideration for the next analysis. Fig-

ure 4.35 and Figure 4.36 show the standard derivation of the noise level in all three 

different area blocks. 

The plots reveal that the chipped gear shows the highest values of the standard devi-

ation for all speeds. The only exception exist at a speed of 20 Hz in the area block 1, 

where the standard deviation of the cracked shaft is even higher than the chipped gear. 

This concludes that the standard derivation is an adequate method to detect major 

defects in a gear set, such as a chipped gear. 
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Figure 4.35. Standard deviation of area 1 and area 2 in the FFT plot 

 

 

It is even possible to identify a cracked gear using the standard deviation to compare 

the noise profile in area 3. Although the differences between a cracked gear and a 

healthy set of gear are very small in area 1 and area 2, there are visible differences in 

area 3, where the standard deviation of the cracked gear has the second largest value. 

The differences are small but a cracked gear can be identified using this analysis. 

Special interest arises the standard derivation of a cracked shaft at low speeds. Again, 

for area block 1 and 2 the values of the standard derivation exceed the values of the 

cracked gear, which leads to the conclusion that there might be a link between the 

contact force of a cracked shaft and the development of the noise profile at low speeds. 

However, further research needs to be made in order to fully reveal the appearance of 

random noise in a system. 
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Figure 4.36. Standard deviation of area 3 in the FFT plot 

 

 

The last methods is the comparison of the Sideband Energy Ratio (SER) between a 

healthy system, a cracked pinion, a cracked shaft and a chipped pinion. As previously 

mentioned, SER is calculated for the first three gear mesh frequencies. The result is 

presented Figure 4.37, where the SER values of the first two GMF’s are plotted. Figure 

4.38 shows the SER values for the third gear mesh frequency.  

 

Figure 4.37. SER for the first two gear mesh frequencies  

 

As can be seen, only the chipped gear can be identified as fault in the system when 

SER is used, since it is the only fault where SER is greater than one for all speeds. 

Although the SER values for a chipped gear at low speeds (10 Hz and 20 Hz) are 

below one in Figure 4.37, the SER is above one in Figure 4.38 for all speeds. There-
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fore, the threshold is exceeded in at least one case and the chipped gear can be iden-

tified using an algorithm. This leads to the conclusion that the method of the Side Band 

Energy Ratio works properly in order to identify major gear defects such as a broken 

tooth. 

However, SER has some difficulties to detect minor defects in the system. As seen 

above, the SER values of the cracked gear and the cracked shaft are below one. The 

only exemption, where the cracked gear exceeds the SER value of one is at the second 

gear mesh frequency at a speed of 40 Hz. SER does not detect a cracked shaft.  

 

 

Figure 4.38. SER for the third gear mesh frequency  
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 Summary and Conclusion 

It was shown that is possible to create the gyroscopic effect in MSC Adams, when a 

disk is mounted asymmetrical on a flexible shaft, which is supported with flexible bear-

ings. The presence of the gyroscopic effect can be measured as angular displace-

ments around the precession axis. It was shown that an increasing bearing stiffness 

has a small effect on the precession motions, since the bearings become more rigid 

and only the flexibility of the shaft accounts for gyroscopic effect. Furthermore, it was 

shown that the disk position on the shaft has a significant influence on the gyroscopic 

effect and vanishes when the disk is placed symmetrically onto the shaft. This result 

confirms the theory of a Jeffcott-Rotor. However, more simulations could be performed 

in order to do more research on the gyroscopic effect in rotor systems. Especially, 

different materials of the shaft could be used in order to analyze the influence of the 

precession motion. Furthermore, the simulation results could be verified with a simple 

practical shaft disk model in future. 

The second analysis in this paper included the research on health detection methods. 

Several defects that included a cracked pinion, a cracked shaft and a chipped pinion 

were built-in in a simple fixed axis gear and the contact force between the gears was 

monitored and used to perform the FFT, 3D FFT and Wavelet analysis. The results of 

the 2D FFT show that that a chipped pinion and a cracked shaft can be visually identi-

fied in the plot. In particular, the presence of sidebands reveal a fault in the system. 

However, the presence of sidebands in the FFT for a cracked gear were too low in 

order to identify a minor defect. The same applies for the 3D FFT, where major differ-

ences between a chipped pinion and a healthy pinion exist. Minor differences were 
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present when a cracked shaft, as well as the cracked pinion, were compared with a 

healthy gear set.  

Furthermore, the Wavelet transform was used in order to analyze the vibration re-

sponse of the system and to identify faults. It was demonstrated that Wavelet is a suit-

able method to detect a cracked shaft, as well as a chipped pinion. However, the dif-

ferences for a cracked pinion and healthy gear set were small at a constant speed. 

Nevertheless, the Wavelet analysis detected a cracked gear when a linearly increasing 

speed is applied to the system, which confirms that Wavelet Transform is a powerful 

tool in health condition monitoring, especially for non-constant speed profiles. How-

ever, a reference to a healthy system is always needed in order to identify faults. 

The last analysis included statistical methods on fault detection. The standard devia-

tion, the root mean square, the mean and the Sideband Energy Ratio were used to 

compare the contact force in the time domain, as well as in the frequency domain. It 

was shown that the root mean square, as well as the standard deviation, is suitable to 

detect defects at the pinion. Under certain circumstances, the statistical methods can 

be applied to the FFT in order to detect a crack in the gear. Furthermore, it was shown 

that with the Sideband Energy Ratio detects only major defects in the system such as 

a chipped gear. 
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Appendices 

A: 3D FFT Results (exponential speed) 
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B: Wavelet Toolbox Settings 
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C: Wavelet Linear Increasing Speed - Results 

Healthy Gear  
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Chipped Gear 
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Cracked shaft 
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Cracked Gear 
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D: How to Plot Wavelet from ADAMS Results  

1. Run “wavelet_simp”  to import the data to matlab. 
2. Choose “continuous Wavelet 1-D” in the appearing window. 
 

 
 

 
3. Then the  “continuous Wavelet 1-D” window opens. Go to File -- 
Import signal from Workspace and choose your data set from matlab 
Workspace. 
 

4. Choose the following settings and click on analyse. 
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E: Gyroscopic Effect Applied in Rotor Systems 

 
mnf file for the shaft is needed. 

 
1. Open new ADAMS view file. Make sure that you choose the  

right units, which must be consistent to FEA model. Here the 
FEA model is created with SI units in ABAQUS. Therfore the 
same units must be chosen in Adams! 

 

 
 

2. Import the *.mnf file first. Select   ADAMS/flex, create flex 
body through  mnf import under body.  
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Notice the 3 local coordinates in the side view, which are generated 
by defining the multi points contraint in Abaqus. 
 
3. Define dummy parts.  
 
Select rigid, sphere under bodies.  
 

 
Rename it as DummyR. Repeat the process for another two dummy 
parts. 
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4.  Connect the Dummy parts to the shaft 
 
Use the fixed joints to connect the Dummy Parts with the flexible 
shaft (Repeat 3 times) to the nodes (appearing as INT_1000000 
etc.) in the browser manager. 
 

 
 
5. Import the bushing CAD model as the “Part Name”  
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Then, the bushing part will be automatically placed to the origin of 
the coordinate system and the model. 
 
6. Assign the material properties to BushingPart 
 

 
 

7. move  and copy the BushingPart to the left to create the 2nd 
Bushing. This is an easy way to create new identical bushing. 
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8. Fix those two bushings to ground. Select the center of mass of 
each bushing as the fix location. 
 
9. Import the disk from CAD model (don’t specify the location). It will 
locate at the origin of GCS.  
 

 
 
10. Assign the material “steel” property to it. (Here: steel) 
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11. Place the disk to the disired location. Choose the .cm of the disk 
part as the point to move from. 
 
12. Fix the disk to the dummy part. Select the cm of the dummyM as 
the location. 
 

 
 
13. Apply actual bushings at those two locations, which will connect 
the BushingPart to its corresponding Dummy points. The location 
must be the center of the Dummy part or the constraint node at the 
flexible shaft. 
 
14. Assign the parameters of the bushings. Change the stiffness to 
1.0e7 N/m. 
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15. Important, this step is necessary to plot the Euler angles. 
Create two markers at the disk location. The first one is placed at the 
ground the center of the flexible shaft node (where the disk is located) 
and rename it as “GroundMarker”. 
The second one is added to the disk part. The location is the same 
(flexible shaft node). Rename it as Diskmarker.  

 
 

16. Create a state variable defined by differential equations  un-
der elements. 
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Another window will appear: 
 
 

 
 
Right click the black at the right –side of Markers and find the desired 
marker. Double click “Insert Object Name”, all of them will show in 
the function. 
Type in “*rtod” to convert radians to degrees.  
 
17. Create another 2 Eulaer angles by coping EulerX twice under El-
ements.  
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Double click EulerY and Change WX to WY and WZ, respectively click 
OK once you finish. 
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18. Apply the rotational speed to the dummy part attached to the right 
side of the shaft. Change to side view to apply the motion 
 

 
 
Since there is not revolute joint, you need to apply the motion from 

point motion .  
 

  Characteristic: Rotation 
 
Choose DummyR, ground and DummyR.cm. The feature direction 
must be around the shaft  (Important). In this case z-dirction. 
 
19. Do the simulation 
 
20. Plot Euler angles in post processing, 
go to the result set, plot EulerX Y and Z.  
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F: How to define a motor torque curve in Adams               

1. Create a torque curve in ADAMS.    Go to  Elements - spline   

 

2. Create a system Variable from elements.   
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Input any speed you want. Here is 5 rad/sec. VARIABLE_1 shows up under System 

Elements 

    

Note: The spline in this example is: SPLINE_2. You may have a different name.  

3. Relate the variable to the motion.  

Modify the motion. Delete the original speed and input the systems‘ variable 
name: VARVAL(VARIABLE_1),  click OK 
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4. Apply a torque on the input link and relate it to the defined torque curve. 

(1). Apply a torque on the input link and rename it as Wu_T (arbitrary) 

   

(2). Modify the applied torque Wu_T   
 

 
 
Choose “All functions” and “Akima Fitting Method” in Function Builder; De-
lete the original speed and input the following command: 
 
AKISPL(VARVAL(VARIABLE_1),0,SPLINE_2).  
 
Use your own spline name here.  
 

 

5. You may apply a small resistant constant torque on the output link. 

6. Run the simulation.  
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G: How to Generate an MNF File                

The units for this example are in SI-units 

Part A. ABQUS Analysis 

1. Save the CAD cracked gear file as a *.step file 

2. Open abaqus 6.13-1, choose “With Standard/Explicit Model”  

 

3. File  Import - part  browse and find your CAD file 

 

4. Define the material properties . Double click materials in the browse tree.  

General ->  density type 7800 for steel. 

Got to Mechanical ->elastic and type the values shown in: 
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Click OK 

5. Create a section called wu-section, continue , and choose the defined 

material: steel  

 

6. Assign a section to the part  
 
Select the entire gear body   
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Click on done to assign the section. 

   click  OK 
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7. Double click on instances under assembly  

Choose “independent (mesh on instance)” for complicated geometries.  

  click OK 

8. double click “mesh under assembly” to mesh on instance, which gives you 

more freedom to generate the mesh.   

 

Seed part instance  
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 OK 

9. Fine seed at the edge of crack. 

Click “seed edge”  

Hold “shift” the key and select the “3 edges” of the crack. Click on Done 
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  Ok    done 

10. “mesh part instance”  

    Yes 

11. If a mesh error shows up: 

“seed edges” again. Zoom in the crack, select the shortest edge of the crack. 

Make the mesh size smaller.  

  OK  done   yes 
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If meshing failed again. 

Go to “mesh” on the top menu of Abqus and select “controls” 

  OK 

 

12. Z view 

Top menu. Tools - set - create   
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Continue.. 

On the top menu, left click and hold to expand the menu with a solid triangle on 

the bottom.  

Click   and select the inner circle center, then expand the radius to include 

the nodes of the hole.   

 done 

13. create steps 

Double click “steps’ on the browse tree”  
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 continue 

  OK 
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14. Make sure the working directory is in your folder by “file - set working di-

rectory”  

 

15. Important, copy the file “ ” in your working direc-

tory to increase the space.  

16. double click on jobs under analysis 

Continue  Ok. Right click jobs created  submit  

17. Save the model and quit ABQUS. 

 

         Part 2. Create mnf file from ABAQUS  

18. Copy and paste the following 3 files into the working directory 

 

19. Write down the name of the set of nodes you have created in Abaqus. In 

this case, it is Set-nodes. 

20. Open the job file (Job1.inp) as text format. 

Open “tooth_nodes.inp” as well. Delete all nodes that are included in this file. 

Copy the nodes from Job1.inp into “tooth_nodes.inp”.  

Short cut. Push the bottom “Ctrl + F” to find “element”. This is the easiest way 

to find the end of the nodes.  
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(1). Click on the end of the node and hold  “Shif” key. Go up to the beginning of 

the nodes and click. In this way, you select all the nodes. 

(2). “Ctrl+X” to delete and copy all the nodes at the same time. 

(3). Repeat the above procedure in “tooth_nodes.inp” to select the old nodes. 

Then past the new nodes there. 

(4). Important. Check and make sure no space at the bottom and top is pre-

sent. Also, no offset of the lines should appear.  

 

21. “MPC NODES” means Multi-points constraint. 

Notice there are two large numbers of the nodes in order to avoid a conflict with 

one of the current nodes. Delete one if necessary, because only one set of 

nodes is defined ABAQUS.  

   

Change z coordinate as 0.015 m which is the half of the width of the fear.  

 

Make sure there is no space. Save and close. 

22. Repeat the same procedure for elements.  

Open “tooth_elements.inp” delete the old elements. Copy and paste the ele-

ments from “Job1.inp” into this file. Save and close. Press “Ctrl+F” Set-

nodes”. Make sure no back space is appearing at the top or the bottom. 

 

23. Open “tooth_BC.inp” 

(1). Change the file name 
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Notice, “SUN” should be the ABAQUS file name for your model. 

 

(2). Define the constraint node sets 

 

 

Select nodes set including “*Nset …” and paste it into this file. 

 

If “instance=…” shows up, delete it and the coma, before it in order to avoid any 

errors while excuting later.  
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(3). Define the beams to connect constraint nodes to MPC node  

Old format with two constraint sets and MPCs 

  

 Your case has one constraint set therfore one MPC node. 

 

(4). Check and modify the element type 

Old format “TYPE=C3D8R” 

 

New element type “TYPE=C3D6”

 

(5) Check and modify the material properties, if necessary. 

In this case, steel appears, which is the same as defined in Abaqus.  

(6). Save “tooth_BC.inp”, but DO NOT save “Job1.inp”  
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24. Open Abaqus Command . Copy the working directory into  the 

Command window.  

 

 

(1) Define the working directory  with cd \working directory 

 

(2) Enter following code: 

abaqus job=tooth_BC interactive 

 

wait until message appears: COMPLETE 

(3) Enter following code: 

(abaqus adams job=filename_BC substructure_sim=filename_BC_Z1 

model_odb units=Mks) 
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(4) Message will come asking you enter for deault or none 

(5) Enter for yes 

I.  

(6)  exit 

25. Go to the working directory and copy the .mnf file and past it into your own file. 

 

          Part 3. Import mnf file into ADAMS to create the model 

26. Open ADAMS view, import mnf file. Change the units as SI which must be 
consistent with ABAQUS. 

 
 
 
 
27. This step must be done before importing the model. You have to enter this 
command in the Command Window to reduce the tolerance scale: defaults ge-
ometry display_tolerance_scale = 0.00001  for SI (m) units.     
 

28. Import *.mnf file first. Select   ADAMS/flex, create flex 
body through  mnf import under body.  
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The distance between sun and planet is 57.2 mm 
 
28. Import the planet as Gear (part name) 
 

 

29. Define the material properties for the Gear. 
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30. Define the revolute joints and apply the motion on the sun.  
31. Define the contact between gears. Choose FlexBody to Solid as Contact 
Type 
 

 

Run the siumlation simulation.  

 

 

 

 
 


