

MOS CURRENT MODE LOGIC (MCML) ANALYSIS FOR QUIET DIGITAL CIRCUITRY

AND CREATION OF A STANDARD CELL LIBRARY FOR REDUCING THE

DEVELOPMENT TIME OF MIXED-SIGNAL CHIPS

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

David Marusiak

June 2014

ii

© 2014

David Marusiak

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: MOS Current Mode Logic (MCML) Analysis for

Quiet Digital Circuitry and Creation of a Standard

Cell Library for Reducing the Development Time of

Mixed Signal Chips

AUTHOR: David Marusiak

DATE SUBMITTED: June 2014

COMMITTEE CHAIR: Tina Smilkstein, Ph.D.

 Assistant Professor

 Electrical Engineering Department

COMMITTEE MEMBER: John Y. Oliver, Ph.D.

 Associate Professor, Director of CPE Program

 Electrical Engineering Department

COMMITTEE MEMBER: Bridget Benson, Ph.D.

 Assistant Professor

 Electrical Engineering Department

iv

ABSTRACT

MOS Current Mode Logic (MCML) Analysis for Quiet Digital Circuitry and Creation of

a Standard Cell Library for Reducing the Development Time of Mixed Signal Chips

David Marusiak

 Many modern digital systems use forms of CMOS logical implementation due to

the straight forward design nature of CMOS logic and minimal device area since CMOS

uses fewer transistors than other logic families. To achieve high-performance

requirements in mixed-signal chip development and quiet, noiseless circuitry, this thesis

provides an alternative to CMOS in the form of MOS Current Mode Logic (MCML).

MCML dissipates constant current and does not produce noise during value changing in a

circuit CMOS circuits do. CMOS logical networks switch during clock ticks and with

every device switching, noise is created on the supply and ground to deal with the

transitions. Creating a noiseless standard cell library with MCML allows use of circuitry

that uses low voltage switching with 1.5V between logic levels in a quiet or mixed-signal

environment as opposed to the full rail to rail swinging of CMOS logic. This allows

cohesive implementation with analog circuitry on the same chip due to constant current

and lower switching ranges not creating rail noise during digital switching. Standard cells

allow for the Cadence tools to automatically generate circuits and Cadence serves as the

development platform for the MCML standard cells.

The theory surrounding MCML is examined along with current and future

applications well-suited for MCML are researched and explored with the goal of

highlighting valid candidate circuits for MCML. Inverters and NAND gates with varying

current drives are developed to meet these specialized goals and are simulated to prove

v

viability for quiet, mixed-signal applications. Analysis and results show that MCML is a

superior implementation choice compared to CMOS for high speed and mixed signal

applications due to frequency independent power dissipation and lack of generated noise

during operation. Noise results show rail current deviations of 50nA to 300nA during

switching over an average operating current of 20µA to 80µA respectively. The multiple

order of magnitude difference between noise and signal allow the MCML cells to

dissipate constant power and thus perform with no noise added to a system. Additional

simulated results of a 31-stage ring oscillator result in a frequency for MCML of

1.57GHz simulated versus the 150.35MHz that MOSIS tested on a fabricated 31-stage

CMOS oscillator. The layouts designed for the standard cell library conform to existing

On Semiconductor ami06 technology dimensions and allow for design of any logical

function to be fabricated. The I/O signals of each cell operate at the same input and

output voltage swings which allow seamless integration with each other for

implementation in any logical configuration.

Keywords: MCML, MOS Current Mode Logic, Digital Logic, High Speed, Standard

Cell, Standard Cell Library, Current Mode Logic, Cadence virtuoso, Cadence, Low-

Noise, Mixed-Signal, Constant Power

vi

ACKNOWLEDGEMENTS

I would like to express my appreciation to my committee chair, Dr. Tina

Smilkstein, who spent countless hours throughout the course of this thesis assisting me

and providing the guidance necessary to make this project possible. Her dedication to the

students she advised is remarkable and paramount in projects and theses like this

reaching culmination at Cal Poly.

I also want to thank my committee members Dr. John Oliver and Dr. Bridget

Benson who provided excellent experiences and friendships both inside and outside of

the classroom. Their feedback on my thesis draft and questions and concerns during my

thesis defense helped focus my thoughts in finalizing the project and creating the final

polished product and thesis report.

Thanks to my family, friends, and everyone who supported me throughout my

journey towards my master‟s degree. Your support kept the academic experience fun and

exciting and helped keep me motivated on completing everything necessary to graduate

within reasonable time.

And thanks to Digi-Key for providing a free schematic entry tool used for

creating the schematics shown in this thesis.

Available: http://www.digikey.com/schemeit

http://www.digikey.com/schemeit

vii

TABLE OF CONTENTS

Page

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER

1. INTRODUCTION ... 1

 1.1 – Motivation & Goals ... 1

 1.2 – Thesis Layout ... 3

2. AN OVERVIEW OF MCML ... 5

 2.1 – Ideal MCML Gate ... 5

 2.2 – Basic MCML Gates ... 10

 2.2.1 – MCML Inverter/Buffer ... 10

 2.2.2 – MCML AND/NAND/OR/NOR Gates 12

 2.2.3 – MCML XOR Gate .. 14

 2.2.4 – MCML MUX .. 15

 2.2.5 – MCML D-Latch .. 16

 2.2.6 – Arbitrary Logic Functions... 17

 2.3 – MCML to CMOS & CMOS to MCML Conversion 20

3. STANDARD CELL LIBRARY BASICS .. 23

 3.1 – Overview .. 23

 3.1.1 – Components of a Standard Cell .. 26

 3.1.2 – Traditional Standard Cell Creation Process 31

 3.1.3 – Automated Standard Cell Creation Process 33

 3.1.4 – Created MCML Standard Cell Library for this Thesis 38

4. MCML CELL OPTIMIZATION AND TRANSISTOR SIZING 39

 4.1 – Challenges in the Optimization of Standard Cell Libraries 39

 4.2 – General Optimization Techniques ... 41

viii

 4.2.1 – Area ... 41

 4.2.2 – Power .. 44

 4.3 – MCML Sizing in This Project... 46

5. MCML IMPLEMENTATION OF A STANDARD CELL LIBRARY 48

 5.1 – Overview .. 48

 5.2 – MCML Inverter Schematic .. 49

 5.2.1 – 1x Inverter Schematic ... 50

 5.2.2 – 2x Inverter Schematic ... 54

 5.2.3 – 4x Inverter Schematic ... 58

 5.2.4 – MCML Inverter Schematic Remarks 61

 5.3 – MCML NAND Gate Schematic... 63

 5.3.1 – 1x NAND Gate Schematic .. 65

 5.3.2 – 2x NAND Gate Schematic .. 69

 5.3.3 – 4x NAND Gate Schematic .. 72

 5.3.4 – MCML NAND Gate Schematic Remarks 75

 5.4 – MCML Inverter Layout ... 77

 5.4.1 – 1x Inverter Layout... 77

 5.4.2 – 2x Inverter Layout... 80

 5.4.3 – 4x Inverter Layout... 81

 5.5 – MCML NAND Gate Layout .. 83

 5.5.1 – 1x NAND Gate Layout ... 83

 5.5.2 – 2x NAND Gate Layout ... 85

 5.5.3 – 4x NAND Gate Layout ... 86

 5.6 – MCML Layout Remarks .. 87

 5.7 – MCML Ring Oscillator .. 89

 5.7.1 – MCML Gate Chaining Proof of Concept................................ 89

 5.7.2 – MCML Ring Oscillator Design and Test 93

ix

 5.8 – MCML Results Summary .. 96

6. CONCLUSION AND FUTURE WORK ... 99

 6.1 – Summary .. 99

 6.2 – Future Work ... 100

WORK CITED... 103

APPENDICES

A. Standard Cell Library Cadence Schematics and Layouts 104

B. Cadence Setup & SKILL Scripts Used For Development 124

x

LIST OF TABLES

Table Page

2.1. Arbitrary 3-Input Truth Table .. 18

5.1. 1x Inverter Parameter Settings for Simulation... 54

5.2. 2x Inverter Parameter Settings for Simulation... 58

5.3. 4x Inverter Parameter Settings for Simulation... 61

5.4. 1x NAND Gate Parameter Settings for Simulation ... 68

5.5. 2x NAND Gate Parameter Settings for Simulation ... 72

5.6. 4x NAND Gate Parameter Settings for Simulation ... 75

5.7. Inverter Results Summary Detailing Simulated Operation 96

5.8. NAND Gate Results Summary Detailing Simulated Operation 96

5.9. Frequency Sweep for the 1x MCML Inverter.. 97

5.10. Frequency Sweep for the 1x MCML NAND Gate .. 97

xi

LIST OF FIGURES

Figure Page

2.1. General Layout of an Ideal MCML Gate ... 5

2.2. MCML Inverter/Buffer Schematic .. 10

2.3. MCML AND/NAND/OR/NOR Schematic ... 13

2.4. MCML 2-Input XOR Gate & 3 Input XOR Gate Schematics 14

2.5. MCML 2:1 MUX Schematic ... 15

2.6. MCML D-Latch Schematic ... 17

2.7. Binary Decision Tree for Table 2.1 ... 18

2.8. MCML Gate for Table 2.1 ... 19

2.9. Simplified MCML gate for Table 2.1 .. 20

2.10. MCML to CMOS & CMOS to MCML Converters... 21

3.1. Flowchart of Various Design Paths Using Cadence Tools [10] 25

3.2. Unconnected MCML Inverter Layout & Copy of Figure 2.2 Schematic as

Reference ... 27

3.3. Connected Layout for an MCML Inverter with no DRC Errors 28

3.4. Automatically created data sheet for D flip flop using compilation [8] 37

4.1 Reducing Component Count through Elimination of Logically Redundant

Transistors that do not Affect the Final Output of the Circuit 43

5.1. Recreated MCML Inverter/Buffer Schematic ... 49

5.2. MCML Inverter Schematic with Transistor Sizing Variables 51

5.3. 1x Inverter Simulated Results Showing Correct Logical Operation 52

5.4. 1x Inverter Simulation with Current through the Tail Transistor 53

5.5. 2x Inverter Simulated Results Showing Correct Logical Operation 56

5.6. 2x Inverter Simulation .. 57

xii

5.7. 4x Inverter Simulated Results Showing Correct Logical Operation 59

5.8. 4x Inverter Simulation .. 60

5.9. Recreated MCML AND/NAND/OR/NOR Schematic 64

5.10. MCML NAND Gate Schematic with Variable Sized Transistors 65

5.11. 1x NAND Gate Simulated Results Showing Logical Performance 66

5.12. 1x NAND Gate Simulated Results with Biasing Current Visible 67

5.13. 2x NAND Gate Simulation Showing Logical Performance 70

5.14. 2x NAND Gate Simulated Results with Current Performance Visible 71

5.15. 4x NAND Gate Simulation Showing Logical Performance 73

5.16. 4x NAND Gate Simulated Results with Current Performance Visible 74

5.17. MCML 1x Inverter Block Layout with Pcells and Routing 79

5.18. MCML 1x Inverter Full Routed Layout with All Layers and Pathing 79

5.19. MCML 2x Inverter Block Layout with Pcells and Routing 81

5.20. MCML 2x Inverter Full Routed Layout with All Layers and Pathing 81

5.21. MCML 4x Inverter Block Layout with Pcells and Routing 82

5.22. MCML 4x Inverter Full Routed Layout with All Layers and Pathing 82

5.23. MCML 1x NAND Gate Block Layout with Pcells and Routing 84

5.24. MCML 1x NAND Gate Full Routed Layout with All Layers & Pathing 85

5.25. MCML 2x NAND Gate Block Layout with Pcells and Routing 86

5.26. MCML 2x NAND Gate Full Routed Layout with All Layers & Pathing 86

5.27. MCML 4x NAND Gate Block Layout with Pcells and Routing 87

5.28. MCML 4x NAND Gate Full Routed Layout with All Layers & Pathing 87

5.29. Three 1x MCML Inverters in Series for Concept Testing 89

5.30. Open-Ended Three 1x MCML Inverter Chain Logical Test Results 90

5.31. Open-Ended Three 1x MCML Inverter Chain with Current Data 91

xiii

5.32. Three Stage MCML Ring Oscillator Concept Test ... 92

5.33. Three Stage MCML Ring Oscillator Output Results ... 93

5.34. 31-Stage Ring Oscillator Block Diagram Schematic ... 94

5.35. Steady State Peaks of the 31-Stage Ring Oscillator .. 95

A.1. Model File Configuration Window for SCMOS ami06 Transistors 105

A.2. Stimuli Windows for vdd and Pbias – Both Use DC Voltage Functions 106

A.3. Stimuli Windows for the In & !In Signals – The Signals are Complements 107

A.4. Highlighted MCML Inverter Schematic with Highlighted Pin List 108

A.5. Final ADE L Window Before Running Simulation ... 109

A.6. 4x Inverter Full Logical Performance of Inverter/Buffer 110

A.7. Vdd and Pbias Stimuli Windows for the MCML NAND Gates 111

A.8. A and !A Stimuli Windows for the MCML NAND Gates 111

A.9. B and !B Stimuli Windows for the MCML NAND Gates................................. 112

A.10. Final Parameter Window in ADE L for NAND Gate Simulation 113

A.11. Highlighted NAND Gate Schematic with Highlighted Pin List 113

A.12. 1x MCML NAND Gate Full Logical Performance ... 114

A.13. 2x MCML NAND Gate Full Logical Performance ... 115

A.14. 4x MCML NAND Gate Full Logical Performance ... 115

A.15. Dual Differential Pbias Control Circuitry Attempt .. 116

A.16. MCML Pbias Control Circuitry Symbol.. 117

A.17. 1x MCML NAND Gate Schematic Ready for Layout 118

A.18. Physical Configuration Window for an MCML Inverter 119

A.19. Physical Configuration Window for an MCML NAND Gate 120

A.20. Cadence Virtuoso Toolbar with „Create Via‟ Button Indicated 121

A.21. 16x16 Multiplier Layout Generated Using 7rf Standard Cells 122

1

CHAPTER 1

INTRODUCTION

1.1 – Motivation & Goals

As technology has advanced over the past decades, VLSI systems experienced

miniaturization of devices which lead to increased processing speed and power with

reduced overall chip area. This trend results in the modern handheld devices individuals

use daily, from phones to laptops and even watches. As devices become portable, the

chips on the devices contain more mixed-signal components to reduce overall device

cost. As the chip number increases, the packaging cost becomes the main expense in

modern devices. This makes the need for quiet digital circuitry of paramount importance

for the engineers designing modern consumer electronics. Mixed signal chips allow for

overall reduction in total chip count and resulting packaging cost. This means that having

digital and analog devices on the same IC die is becoming necessary for the production of

modern systems. Electronically, this produces a need for mixed signal interaction.

Devices used day to day must be reliable and robust to succeed in the current technology

market. MCML allows for reduced chip number without negative performance impacts

between nearby analog and digital circuits.

 Devices utilizing CMOS logic have issues with precise analog circuitry when

placed near switching digital devices. This is due to the ground and supply noise induced

during digital switching in a clocked system. These problems escalate as devices scale

down in size and concurrently, supply voltages also decrease, increasing the likelihood of

interference between analog and digital circuitry [3]. MOS Current Mode Logic is a

2

digital logic implementation that demonstrates noiseless operation which makes it useful

for mixed signal applications and minimizes the effects of the switching noise on the

ground and supply rails due to constant current biasing. Examining mixed-signal

applications stems from the technical market constantly trying to reduce production cost.

Packaging constitutes a major cost of electronics production and modern designs aim to

reduce this cost through reduction of chips. The supply and ground noise incorporated

from digital electronics can cause adverse effects on analog devices in close proximity,

especially when such devices require precise voltages and inputs. Even if digital and

analog circuits do not share the same supply and ground rails, coupling can also provide

similar negative effects on a system. MCML logic provides a means of addressing these

issues with evolving electronics and creates a means for reducing cheap count and

allowing for mixed signal interaction.

 There are design aspects and properties of MCML that may provide drawbacks to

a system and that should be kept in mind along with the myriad of benefits. Standard cell

implementation of MCML devices are more complicated than their CMOS counterparts

due to the added number of transistors and more complex sizing that that goes along with

MCML. The stacked nature of MCML logic gates may require a higher supply than the

equivalent CMOS implantation to allow for necessary voltage drops on each transistor in

the chain or path. Despite these complexities, MCML is less sensitive to process variation

than CMOS logic due to the differential and digital nature of the devices. MCML also

allows for higher frequency operation compared to CMOS devices and dissipates

constant current regardless of operating frequency which allows for less power consumed

3

than equivalent CMOS devices at higher frequencies. The advantages and drawbacks

should be kept in mind and compared when designing electronics and mixed signal chips.

Engineers have established a large knowledge base for CMOS technology.

Conversely, MCML is dramatically less understood and the information pool regarding

this technology remains limited. As a result, this thesis boils down to two main goals.

First, is to provide broad analysis of MCML to build upon that knowledge base and

investigate applications for MCML technology and how they compare with their CMOS

counterparts. The second goal is to provide a design aid by implementing MCML in a

standard cell library to allow designers to utilize MCML gates without necessarily having

to master their properties and create their own gates on a silicon level. Along these lines,

both goals are advanced through examination of optimization methods for MCML gates

and providing schematics and layouts for basic logic gates in the on-semiconductor

SCMOS technology. Layouts utilizing IBM 7rf 180nm technology are also detailed for

attempted chip tape out but the simulations and results base on the On Semiconductor

SCMOS 600nm technology.

1.2 – Thesis Layout

This thesis examines MCML and its ability to enable quick design for noise sensitive and

mixed signal chips. This analysis requires some basis of comparison, so standard CMOS

devices are used as baselines for performance. Chapter 2 investigates basic MCML

operation and provides an overview of the technology for conceptual purposes and

developing a base of MCML theory. This includes an examination of performance

characteristics and common logical gates. Chapter 3 continues investigating MCML for

practicality in real world applications. This section is heavily cited as implementation of

4

these systems goes beyond the scope of this project but sheds light on the possible

avenues for MCML in the modern technical world. Chapter 4 acts as a bridge between

MCML theory and standard cell library implementation. Here, an overview of standard

cell libraries is provided and the SKILL language is detailed as it serves as the means of

implementation for the MCML gates within the Cadence software and the language

allows for utility and optimization scripts to be written as well. Chapter 5 details standard

cell optimization challenges on the IC level and explores multiple avenues for

optimization to serve as a baseline for potential further research. Chapter 6 details the

implementation of the MCML standard cell library and examines simulated results of the

template cells. These cells include MCML inverters and NAND gates with varying

current capabilities with common sized layouts that snap into an existing standard cell

library. Chapter 7 provides a final summary of the work throughout the thesis project and

summarizes avenues of potential future work where dozens of projects or theses could

build upon the base line principles established here.

5

CHAPTER 2

AN OVERVIEW OF MCML

2.1 – Ideal MCML Gate

Like any theoretical foundation, one begins with the ideal case to understand the

operation of a device on a general level. An MCML gate contains three main blocks: the

current source, an NMOS pull-down network, and load resistances (shown in Figure 2.1).

Figure 2.1: General Layout of an Ideal MCML Gate

For MCML, the inputs are differential, meaning one must provide the logical input and

its inverse to the system. The pull-down network implements the Boolean function of the

gate and is composed of NMOS transistors. This network steers more current to one side

or the other of the two output braches, causing one side to have a lower voltage than the

other, based on the logical function performed. The current source for an ideal gate will

be viewed as ideal, though in practice, this source is implemented with an NMOS

6

transistor operating in the saturation region. This source provides a constant bias current,

IB. The output voltage swing is defined as the difference between the two output levels.

Under ideal circumstances, this voltage swing VS is given by Eq. 2.1. Note that since

current is present in both paths of the device, each resistance should be tuned to achieve

an equal voltage swing on either side of the device. This is especially important with non-

symmetric layouts as examined later with the NAND gate. The factor of two comes from

the differential nature of MCML where if one branch increases by a voltage, the other

path decreases by that same voltage. The voltage swing for a single path through the

circuit would be the same equation without the factor of two.

This swing voltage is usually much smaller than Vdd, in the order of hundreds of

millivolts, and is set exclusively by the load resistance and the biasing current source.

The load resistances can be implemented as passive or active devices. On a chip, passive

resistors require large amounts of real estate and depending on the resistance value, can

occupy the bulk of the chip area. As a result, these load resistors are typically

implemented as active devices in the form of a PMOS transistor operating in the linear

region, allowing for a voltage controlled resistance.

 For digital systems, delay calculations are important and can show the maximum

frequency that a digital circuit can operate. For an ideal gate, MCML or otherwise, we

can assume an RC time constant delay. If N identical MCML gates are connected in a

chain, then the delay is realized in Eq. 2.2.

(2.1)

(2.2)

7

By using Ohm‟s Law where ∆V is VS, we can define this delay as the following (Eq.

2.3):

Following standard power calculations for N identical gates, the power dissipated of a

chain of identical MCML gates can be defined as follows in Eq. 2.4:

Combining the power and delay values, the power-delay product can be calculated (Eq.

2.5):

Similarly, the energy-delay can be computed by taking the product of the power-delay

and the delay, resulting in Eq. 2.6.

Note that the energy-delay for an MCML gate is proportional to the square of the output

swing voltage. This makes designs with low voltage swings within hardware limits

desirable for high frequency systems and lower power dissipation. For comparative

purposes, equivalent CMOS equations are shown from Eq. 2.7 – Eq. 2.10, as derived by

Mizuno et al. [2]:

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

8

The parameters α and k are transistor sizing and process properties. Vt denotes the

threshold voltage of the MOS transistors used in the CMOS circuit. As J. Musicer notes,

MCML circuits do not have a theoretical energy-delay minimum, whereas their CMOS

counterparts do [3]. An engineer can “arbitrarily reduce the energy-delay product by

increasing the current for a given C, Vdd, and voltage swing [3].” This means that through

optimization, MCML devices can achieve superior performance over CMOS logic with

higher frequency of operation and less power dissipation at high frequency.

 These equations are based around the fact of having N chained gates in a system.

With logically chained devices in this manner, the length of the chain, or logical depth,

affects the overall performance of a circuit. The power-delay and energy-delay products

for MCML contain an extra N factor when compared to their CMOS counterparts due to

delay dependent power consumption of CMOS devices. For large logical depth, MCML

has poor delay products due to the static power consumption of an MCML gate, even

when not switching [3]. Therefore, for MCML layouts, it is advantageous for the designer

to minimize the logical depth if possible. For low frequencies, CMOS circuits dissipate

less power than equivalent MCML circuits but for high switching frequency circuits and

high performance applications, with shallow logic depth, MCML circuits vastly

outperform the equivalent CMOS circuits [3]. This is due to the fact that CMOS

dissipates power during every switching operation which makes power consumption a

function of how often the circuit switches but MCML power remains constant regardless

of operating frequency because of constant current flow. Therefore, as frequency

(2.9)

(2.10)

9

increases, a CMOS device will dissipate increasing amounts of power and eventually

more than an MCML counterpart.

 For mixed signal applications, the constant current in MCML devices is desirable

as more constants in a large system will help limit the noise on sensitive analog circuitry

through removal of ground and supply noise through no change in current during

switching operations. CMOS circuits on the other hand, are dramatically affected by

changes in current and a dI/dt can cause unwanted outcomes. For the ideal MCML case,

these current changes are effectively zero. However with any realistic device, there are

non-idealities in the form of small leakage currents. J. Musicer‟s MCML simulations

show these current changes below 5%, making them relatively negligible [3]. The layout

of MCML circuitry possesses inherent common mode rejection due to the differential

input setup, making these devices highly resistant to power supply noise. This attribute

makes MCML a favorable candidate for mixed signal applications. Since MCML circuits

are differential, they are resistant to common mode noise which provides more reliable

logical transitions and keeps the circuit robust in operation.

 For standard cell applications, fan-out proves to be the major concern with

MCML implementation. Since fan-in delays are exponential in nature they can prove to

be the most taxing to performance of a logical network. Fan-in is handled by limiting the

total number of inputs and/or cascading gates together. Fan-out concerns include having

enough drive strength to power all the gates in a logical network. To account for fan-out,

standard cells of 1x, 2x, and 4x current drives are developed for MCML to account for

assorted fan-out needs. These principles are important to keep in mind and are detailed in

later sections and chapters.

10

2.2 – Basic MCML Gates

2.2.1 – MCML Inverter/Buffer

An inverter is the simplest gate one can implement with MCML. Note that an MCML

buffer shares an identical layout to an MCML inverter due to the differential nature of

MCML gates. To change between gate operations, one only needs to switch the output or

input. The transistor level schematic for an inverter or buffer is shown in Figure 2.2.

Figure 2.2: MCML Inverter/Buffer Schematic

Note that the schematic shows the buffer output pins as default. Flipping the output pins

(shown in parentheses) constitutes inverter operation. For this gate, the pull-down

network is implemented by the NMOS input transistors controlled with a single,

differential input. Both load resistances are implemented with fixed gate voltage PMOS

transistors that operate in the linear region to model passive resistor operation. Active

loads can provide higher gain and faster transitions but the control of resistance is less

consistent and makes the voltage swings more sensitive to variation. As mentioned with

11

the ideal gate, a fixed voltage NMOS transistor operating in the saturation region acts as

the current source for the device. Note that creating a better current source can be

achieved through creating a biasing network to automatically set the gate voltage of the

tail current source. This can result in lower noise operation but requires more transistors

and may require a higher Vdd. The gates designed for this thesis utilize a simple current

mirror to set the gate voltage during simulation and achieve desired results but more

elaborate designs for current setting are possible.

Current flowing through both paths of the device is favorable for the low-noise

circuits aimed for in this thesis as with careful tuning of swing, the transistors never

change regions of operation and as a result do not affect ground and supply with

additional switching noise. With current flowing through both paths constantly and a

swing much smaller than Vdd, the current steering creates the necessary output voltage

for logical operation but keeps the transistors in consistent regions of operation. This

means that there will be minimal noise when inputs to an MCML device switch and

therefore should behave well in sensitive applications. Though many configurations can

act as a current source depending on the application, MCML gates usually use a single

NMOS transistor as the current source both for simplicity and to minimize the area

footprint of a necessary component of the gate. However, a single biasing network that

sets the gate voltage of this transistor allows for consistent and reliable operation and this

thesis utilizes a current mirror to set the N-Bias voltage for the MCML gates. The PMOS

load transistors are typically preferred to remain as minimally sized as possible,

especially for digital applications, as increasing the width of these devices will increase

the capacitance: a major issues that would cause problems given that the PMOS devices

12

should perform as close to passive resistors as possible. The MCML gates developed for

this thesis contain the same voltage swings on input and output which is achieved through

linear operation of the PMOS loads. If the load transistors operate in saturation, the

voltage swings fluctuate and the circuit is less resistant to variation.

2.2.2 – MCML AND/NAND/OR/NOR Gates

The next level of complexity for basic logic gates are AND, NAND, OR, & NOR gates.

Digital systems typically use NAND and NOR gates since any logic function can be

implemented by those gates. However, the differential properties of MCML allow for any

of these logic functions to be implemented with the same circuit topology. The presence

of both polarities for inputs and outputs allow for this versatility in logical configuration.

The only differences in implementing each function are the configuration of the inputs

and the output branch utilized. Figure 2.3 depicts the general layout for each of these four

gates with generalized pin labeling.

13

Figure 2.3: MCML AND/NAND/OR/NOR Schematic

The generalized pins show an AND gate configuration where A & B = Out. Flipping the

output pins achieve the NAND pin configuration for the gate where A & B = ̅̅ ̅̅ ̅. The

device achieves OR gate operation with the output pin configuration depicted and the

polarities of the A pins flipped yielding the A + B = Out. With flipped A pins, the output

pins could then be reversed to achieve the NOR gate operation with ̅̅ ̅̅ ̅̅ ̅ = Out. This

versatility allows for simple logic design when one can use the same layout for many

logic functions. However, this does rely on MCML‟s nature of having both polarities of

each input signal present to the device. With that in place, logical configuration simply

becomes a wiring setup or input/output pin selection setup.

14

2.2.3 – MCML XOR Gate

The XOR gate is a more complicated logic gate that serves as a benchmark in digital

electronics due to its unique logical function and more component heavy layout. This

results in more transistors in an XOR gate than with other basic logic functions. The

layouts for a 2-input and 3-input XOR gate are shown in Figure 2.4.

Figure 2.4: MCML 2-Input XOR Gate & 3 Input XOR Gate Schematics

Note that the MCML schematic for an N-input XOR device is more compact than the

equivalent CMOS designs and as a result, should perform better and are more suited

towards high speed digital applications. However, given the doubling of pull-down

components per input added, logical depth should be minimized and XOR gates with

many inputs should likely not be implemented both for area concerns and increased

device complexity, especially when designing on the IC level. However, with a simpler

pattern than the CMOS XOR gate, MCML XOR gates of any number of inputs are

quicker to design and test. Note that XOR gates can be simplified (especially CMOS)

15

through implementation in AND & OR gates. The associative nature of logic gates allow

for construction in this manner and enable serializing multiple input gates. However,

examination into these types of gates is not within the scope of this thesis.

2.2.4 – MCML MUX

Digital systems also need other components aside from logic gates to perform their

functions. The multiplexer (MUX) is a fundamental circuit block in digital applications.

The device contains a select signal that chooses one of an assortment of input branches to

forward along to a single output branch. This data transmission capability is crucial in

digital systems and requires examination within the scope of MCML. For simplicity, a

2:1 MUX is constructed on a schematic level and displayed in Figure 2.5.

Figure 2.5: MCML 2:1 MUX Schematic

The differential nature of MCML proves advantageous again as a MUX of any dimension

would follow the same pattern where one polarity of each input is tied to one output,

16

while the remaining pins are tied to the other. This configuration also allows for intuitive

output pinning regardless of the circuit size.

Note that MCML can also implement a DEMUX function as well, though due to

the static power consumption of MCML devices at low frequencies, these functions are

typically implemented in some form of CMOS. Due to the advantages of using CMOS

devices alongside MCML devices in these situations, CMOS to MCML and MCML to

CMOS converters can be designed simply for applications where utilizing multiple

configurations proves advantageous for a system. These converters are covered in detail

in Section 2.3.

2.2.5 – MCML D-Latch

The D-Latch is a fundamental memory device and serves as the primary storage element

for sequential circuits and for processor register memory. The basic structure of a D-

Latch in MCML is shown in Figure 2.6. Like the XOR gate, the MCML D-Latch

possesses a smaller layout than the equivalent CMOS implementation. Also note that the

D-Latch schematic can be tweaked to a D Flip Flop with the pins tuned to a master and

slave configuration.

17

Figure 2.6: MCML D-Latch Schematic

2.2.6– Arbitrary Logic Functions

The block level of MCML gates remains the same, regardless of the logic function being

implemented. Each gate will contain two pull-up load devices, a current source, and the

logical pull-down network. This means that MCML can realize any logic function based

on the configuration of the NMOS pull-down network. The pull-down network structure

for MCML is identical to that of emitter coupled logic (ECL). Though ECL gates use

BJTs, the logical design process remains the same. However, ECL serves more as a

textbook implementation for high-speed digital circuits but is not widely used in modern

electronics largely due to high power consumption.

 To examine the design process for an arbitrary logical function, let‟s consider a

simple 3-input truth table (Table 2.1) and create an MCML gate for the final result.

18

Table 2.1: Arbitrary 3-Input Truth Table

A B C OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Here, the final equation can be simplified to the following: ̅̅ ̅̅ ̅̅ . For

design and implementation, consider the fully laid out binary decision tree shown in

Figure 2.7. Note that with the differential configuration of MCML, the un-simplified

result proves easiest to implement the full logic function.

Figure 2.7: Binary Decision Tree for Table 2.1

The tiered structure presented creates a logical pyramid for the pull-down network. In this

form, each variable block (A, B, or C) is replaced with an NMOS transistor with the final

result, looking identical to the original decision tree. Figure 2.8 depicts the final MCML

layout for this example.

19

Figure 2.8: MCML Gate for Table 2.1

Note that the final pull-down network structure emulates the structure of the decision tree

(inverted in this layout). With the decision tree and final schematic realized, one sees the

process for implementing an MCML device from an arbitrary logic function. Note that

upon inspection, the circuit can be reduced to the simplified equation by eliminating the

transistors that do not provide any logical action to the circuit. Specifically, this includes

the two pairs of C and ̅ transistors that have no effect on the logical outcome of that

circuit path.

20

Figure 2.9: Simplified MCML gate for Table 2.1

This final result depicts the maximum simplification for the logic function where four

transistors are removed and the logic path on another branch is simplified. Note that both

circuits satisfy the logical operation specified by the truth table and subsequent decision

tree, however for overall simplicity and minimization of area, an engineer should opt for

the reduced solution in order to reduce area and improve speed by reducing overall

capacitance of the logical network.

2.3 – MCML to CMOS & CMOS to MCML Conversion

Given the prominent use of CMOS circuitry throughout academia and the industry, one

should not expect full transitions to MCML layouts and some applications are better

suited to CMOS implantation than MCML. However, the net result becomes possible use

of both logic families in a single circuit. As a result, one should examine the conversion

circuitry required for interaction between the logical families.

21

 One can implement CMOS to MCML conversion with a CMOS inverter and an

MCML inverter. This takes the single CMOS output and creates the differential MCML

input. This relies on MCML‟s ability to operate correctly with larger than required

differential inputs [3]. MCML to CMOS conversion is trickier as one needs to take the

differential MCML output and create a single signal for the CMOS logic. This is

accomplished with a differential to single ended amplifier and a CMOS inverter.

Complications arise in this conversion due to the fact that MCML tends to have a much

smaller swing than CMOS and may not provide a large enough swing to switch the

CMOS inverter. This constitutes a need for a differential pair with a larger swing to

provide the CMOS components with the necessary signal. These thoughts should be kept

in mind when utilizing both logic families to ensure that the circuit behaves as intended.

Figure 2.10 displays both converters with appropriately labeled inputs/outputs.

Figure 2.10: MCML to CMOS & CMOS to MCML Converters

The amplifier in the MCML to CMOS converter requires enough gain to achieve an

output voltage swing capable of switching the inverter. With an input of 200mV, the

amplifier only needs a gain of 10 to satisfy all points of operation [3]. The cells

22

developed for this library possess a high output and may not provide the swing necessary

to create the CMOS transition. If conversion is necessary in this situation, a differential

pair with larger voltage swing can replace the CMOS inverter in the MCML to CMOS

conversion.

 Standard cell libraries typically convert an HDL deck of logic to automatically

generate the gates in a circuit. This generation utilizes only one topology (CMOS,

MCML, etc.) and would prove challenging to implement mixtures with nothing but

logical HDL input. For the purposes of this standard cell library, only MCML devices are

generated and used for quiet and mixed signal applications. Conversion circuitry is not

necessary for the applications presented in this thesis but the theory should be kept in

mind when designing with MCML in a mixed logic family application. Diligence with

cell naming in the HDL structural view allows for the standard cell layout tool to select

the correct cell even with multiple logic families in use.

23

CHAPTER 3

STANDARD CELL LIBRARY BASICS

This chapter aims to detail the fundamental theory regarding standard cell libraries and

the SKILL language (the scripting used for implementing the library in Cadence ®

integrated circuit front to back (icfb) software suite). Understanding both the components

of a standard cell library and the means of implementing one greatly enhances the ability

for one to understand the MCML standard cell implementation and layout optimization

theory that are detailed in later chapters. These theoretical concepts are utilized during the

design process for the MCML standard cells presented in this thesis.

3.1 – Standard Cell Library Overview

This section examines the basics of standard cell libraries and discusses the goals for

creating one. The section also investigates the conventional design techniques for

standard cells and compares that process with a newer approach, with the goal of creating

cells in a quick and efficient manner. Given the lack of a standard cell compiler [8], the

more rapid approach that will be introduced was not feasible for this project but serves as

a potential area for future research and projects.

 A standard cell library is a compilation of digital devices that meet and follow

certain parameters of electronic operation and physical properties such as height and

position of inputs and outputs, drive strengths and topologies. The goal of a standard cell

library is to provide a level of design abstraction and rapid design process where a

designer can utilize simple gates and blocks. This is accomplished through high level

24

HDL design of a system where the software tools take the code and synthesize the design

on a gate level in silicon. This allows for rapid transition from high level design to gates

and implementation. For complex designs, this abstraction is necessary to dramatically

reduce the time required to generate a circuit layout, or a more complex block layout. To

achieve this level of simplicity, the abstract view for a cell contains the size and I/O pin

positions which allow for the software tools to handle routing gates together and allow

the designer to not have to deal with the layouts for each gate and transistor. Figure 3.1

shows the paths one can take to design a circuit based on customization level. Standard

cells focus on the left portion of the flowchart and provide the highest level of abstraction

to the designer due to the use of standardized gates. Depending on more specialized

applications, more customization of components and parts is required to achieve desired

performance metrics.

For a designer utilizing standard cells, a high level HDL design is written in

behavioral fashion. The Cadence tools then synthesize the HDL to create a new Verilog

file containing the structural or gate configuration of the design. Next, the tools use

standard cells for each gate and perform routing based on the structural configuration.

With the preliminary design created, Virtuoso is then used for error checking and

verification that the synthesized layout follows layout design rules and matches the

schematic (behavioral) configuration originally created by the designer. Once all

validation is complete, files are generated to send to a fabricator for IC creation.

25

Figure 3.1: Flowchart of Various Design Paths Using Cadence Tools [10]

Unlike a customized grouped layout, where specific layout blocks are manually selected

together for copy paste use, a standard cell contains fixed dimensions where each cell has

the same height or a multiple of that height. The software tools place standard cells onto a

grid layout and then perform routing between each gate. For a chip with many gates,

power and ground connections (rails) are routed evenly throughout an entire IC region.

This guarantees that power and return signals do not have to travel extremely far

depending on where a component is located on a chip. Placing standard cells that have

uniform height on a fixed grid ensures that the power rails of the cells line up with the

grid the cells are placed on for rapid development. The width of standard cells can vary

due the different sizes of blocks gate to gate. As long as the height remains fixed, then the

26

rail connections remain intact. Standard cells also contain multiple layout sizes that have

different current drive strengths. This allows for the Cadence tools to select cells

correctly based on the structural Verilog code and ensure that each gate in the circuit can

be driven effectively. Grouped layouts or custom symbols created from grouped layouts

cannot be used as standard cells unless implemented into the library itself while adhering

to the necessary sizing guidelines that allow standard cells to interface with each other.

This shows how standard cells provide efficient means of going from high level abstract

design to gate level layout in silicon. Standard cells primarily reduce development time

and as a result, shorten time to market of products and systems that utilize this design

method. However, the tradeoff come in device performance as large standard cells

designs may be less optimal than partially or fully customized designs specific to an

application.

3.1.1 – Components of a Standard Cell

1) Circuit Layout

Each standard cell includes a silicon level layout for a gate or block. This includes full

metal layer detailing on the silicon level for the schematic of that gate. Figure 3.2

presents an unconnected layout of an MCML inverter created in Cadence virtuoso with

the Layout XL tool. The unconnected layout should prove similar in view and easy to

conceptualize with the schematic in Figure 2.2 in mind, recreated in Figure 3.2 for

convenience. Note that the formal standard cells presented in this document are created

by hand as all standard cells must be and then used in the automated development

process. The following layouts were created with 180nm IBM technology.

27

Figure 3.2: Unconnected MCML Inverter Layout & Copy of Figure 2.2 Schematic as

Reference

A partially automated and hand-drawn layout for the connected inverter is shown in

Figure 3.3. Note that much of the layout, including the placement of vias and most metal

layers was performed by hand and all design rule checking (DRC) errors were removed

to constitute a “valid” layout. The following represents the first iteration of a simple

layout that contains no physical errors. This non-optimal layout took multiple hours to

create with the bulk of that time devoted to fixing DRC errors. The DRC errors check to

ensure that a chip can be fabricated on the equipment of the fabricator, MOSIS in this

case, as well as guaranteeing that the physics of the traces and transistors are valid.

Checks made on the traces and transistors include checks such as making sure that wires

are not too narrow or too close and that regions of the transistor do not couple.. Having

no DRC errors does not ensure that a circuit will function when fabricated, only that the

circuit will physically have no errors. Other Cadence tools such as the LVS (layout verses

schematic) check the layout to ensure it complies with the schematic devices and

28

connections. Other checks involve simulations to make sure the layout functionally works

as well as performs at the speed the user demands.

Figure 3.3: Connected Layout for an MCML Inverter with no DRC Errors

Note that there are some inefficient aspects in this layout especially with respect to the

metal to gate layer contacts. For example, the left PMOS and tail transistor contain extra

fingers of metal layers that do not provide direct connection. This is due to the fact that

the DRC rules require a minimum trace area for a particular trace layer. These fingers

provide the trace with overall net area to satisfy that rule. Given different layout

dimensions or another iteration of routing development, these fingers could be removed.

However, with this layout in the same form as the circuit schematic, the detail presented

is much easier to understand. In attempts to simplify the design process for this layout,

auto route was used to generate as much of the connection as possible to minimize

29

manual layout. Auto routing does not create an optimal result but attempts to perform a

“good enough” job that balances functionality and performance while maintaining rapid

development time through automation. The algorithm for auto routing looks for

unconnected traces and connection points and attempts to generate paths between each

component terminal and device. Due to the sizing of the transistors, not each connection

was generated automatically. Since auto routing did not provide a suitable layout for this

design, a manual approach was chosen for this layout. This MCML inverter utilizes 7rf

technology and was created in attempts to tape out a chip in the winter of 2014. The

standard cells developed for this thesis utilize the On Semiconductor C5 (SCMOS)

technology. The standard cells developed for the SCMOS library contain a stricter layout

that meets the requirements and height dimensions necessary for library implementation.

Inverters in both CMOS and MCML topologies were designed with the goal of

comparing their differing performance with regards to noise and operating frequency.

2) Software Simulation Models

Once a layout is constructed, one must simulate the device and this requires computer

simulation models. These are the types of files that an engineer links to components in a

Spectre schematic simulation. Schematic simulation allows proof of functionality but not

an accurate check of speed or IR drop affects. Schematics do not include capacitance and

resistance of traces. Traces are treated as ideal (no capacitance or resistance and no drop

in voltage from end to end. Also, when one end has a new voltage on it, the other end

changes instantaneously). Capacitance in the transistors is approximated so some

frequency related behavior can be observed even in a schematic simulation. To get an

accurate simulation of an actual laid out circuit, extraction needs to be carried out on the

30

finalized layout of the circuit. Now that wire lengths and distances between devices is

known, coupling and resistive drops can be accurately simulated. Extraction adds the

parasitic capacitances and resistances to the netlist and that netlist can then be simulated

just as the netlist of the schematic was simulated but just with more accuracy. Schematic

simulations utilize model files for components but assume that wires are ideal and cannot

account for coupling or other intrinsic properties of a device on silicon. Since standard

cells are layout blocks, the models for a standard cell include parasitic values and

properties based on the physical layout of the device. For an accurate simulation, the

model takes wire length/width, metal and layer proximities, and parasitic capacitances

into account to allow for software based simulation to explore how a device will perform

on the silicon level before fabrication of an IC.

3) Electrical Properties

The physical properties of each component and layer in silicon control the capabilities of

a specific cell and determine performance metrics like power dissipation and propagation

delay. The Encounter tool performs the extraction that generates realistic simulation files

that take these properties into account. These values allow for accurate, realistic software

simulation based on the physical layout for a cell and help the standard cell tool select the

appropriate size (current drive) for a gate in a given position in the circuit. Note that each

cell should be characterized under worst case conditions to provide the most realistic

benchmarking on the limits and delays within a circuit. This is done through simulation at

the corners. This means that for PMOS and NMOS devices, they are simulated with best

case (B) and worst case (W) metrics within the fabrication spec. Each extreme

combination of performance for the NMOS and PMOS transistors are performed in the

31

following manner: BB, BW, WB, WW. This creates four corners of performance that

characterize the operating range for the device based on potential fluctuations during chip

fabrication. As long as the circuit performs as desired anywhere within the operating

range created by the corners, then the fabricated chip should work as the designer

intends; regardless of any fluctuations in the fabrication process.

3.1.2 – Traditional Standard Cell Creation Process

The traditional standard cell design process includes creating the listed components for a

standard cell exclusively by hand. This means that each file and necessary view is created

by the standard cell designer. Starting from a blank slate, standard cells must have three

cell views. These include a transistor level schematic, behavior Verilog view, and silicon

level layout with no DRC errors. High quality libraries contain timing information with

the Verilog files as well. Since standard cells require fixed heights to match with power

rails, sizing information can be found in a definitions file for the technology being used.

This sizing is usually based around the I/O pad sizing which provides the physical

connection capabilities of a chip with the outside world. Next, an extracted view of the

cell is made which includes the parasitic properties of the device on silicon. This allows

the Spectre tool to perform realistic simulations as to how the device will perform once

fabricated. This usually includes corner simulations to create an operating range for the

device. Then an abstract view derived from the layout is created within Cadence that tells

the tools where to place and route the I/O port locations and the dimensions of the

standard cell. This file also includes any “keep out” locations that constitute regions

where no routing should occur. Similarly to the abstract view, a library exchange format

(LRF) file is used by Encounter within Cadence and also contains technology information

32

along with the standard design information contained in the abstract view. A Verilog

interface file provides the inputs and outputs of each cell and works together with the

structural Verilog file that is created by the RTL compiler. Finally, the Liberty (.lib)

format file is the synopsis file used by Cadence and is utilized in the RTL compiler. This

file describes the I/O interface, logical function, latency of the device, and capacitances

on the pins, specifically Cin and Cout. This file can be generated during the Spectre

simulation of the cell. These files provide the complete design for a standard cell and all

the necessary data and characteristics of the device for simulation and fabrication on both

the transistor level and silicon level.

 Standard cells must also contain a specific geometry to allow for grid placing of

the devices that line up with power and ground rails and allow the Cadence tools to route

more easily between gates. The geometric requirements for a standard cell are as follows:

 Each cell must be the same height (or a multiple of)

o Allows for uniform grid placement on power and ground rails.

 PMOS on the top of the cell and NMOS on the bottom of the cell (or vice versa)

for every standard cell.

o Ensures that cells snap onto the power and ground rails correctly.

 Ensure that the PMOS n-well goes to the edges so that it is continuous across a

standard cell row.

o Ensures equivalent power connections gate to gate between Vdd and the

PMOS transistors.

 Vdd and GND rails must be the same width on each cell.

o Makes sure each cell snaps onto the same fixed grid and that each power

rail is uniform across the entire IC and each cell.

 Vdd and GND rails must extend to the edge of each cell.

o Enables a continuous connection across a row on the grid between

cells/gates.

The standard cells designed for this thesis utilize each of these mentioned geometric rules

during layout design to fulfill the requirements for valid standard cell layouts.

33

Since a common library can contain upwards of 200 elements, the creation of an

entire library could take multiple years. Though libraries are acceptable only containing

Inverters, NAND gates, and a flip-flop, all with various sizes; that serves as a starting

point where further cells can be added. Inverters and NAND gates are capable of

performing any logical function though for complicated systems, having other cells in the

library can dramatically reduce the number of gates necessary to implement some logic.

Given the rapid evolution of technology, by the time a standard cell library is completed

via these means, the technology utilized may already be obsolete [8]. The manual

approach was selected for this thesis with inverters and NAND gates as the focus of the

design. Though standard cell libraries contain a flip-flop as well for minimum

requirements, one can be constructed using NAND gates so effective functionality

remains with the cells developed. Despite the manual design for each cell, the automated

process is worth mentioning as it serves as a more reliable and rapid development process

especially for large standard cell libraries.

3.1.3 – Automated Standard Cell Creation Process

A. Martinez, S. Dholakia, and S. Bush created a fully automated compilation technique

for creating a standard cell library in fractions of the time compared to traditional hand

done processes [8]. The automated approach helps illuminate the range (manual to auto)

of possible paths for standard cell development. The requirements for a standard cell:

automated or otherwise, remain the same. Therefore, full automation requires that the

same components be included in a cell including full layout, simulation modeling and

results, and optionally, a full documentation page for the cell. The compiler approach

presented in [8] demonstrates a process where five individuals were able to create 280

34

standard cells over the course of nine months. This would be impossible by hand and

only a small fraction of cells would be created with more designers working on the

library over an equivalent amount of time.

 The compiler approach presented includes a step by step process detailing the

formation of a standard cell. The first step is generation which involves layout creation

and includes creating larger designs by working with common building blocks for a

digital device like: latches, flip-flops, and counters [8]. The compiler excels at creating

efficient layouts for smaller gates and devices that do not include IO pads. The lack of

common building blocks for such a device makes the compiler ineffective. However, for

any logical component or gate, the compiler rapidly generates the layout for a particular

gate size and provides the necessary documentation and files required for library use of

that cell.

Next, the compiler performs full behavioral simulation for each standard cell and

the complete timing and performance metrics are generated automatically [8]. Cadence

tools can achieve similar operation through script usage that performs the discrete steps

necessary to simulate and output performance data. Note that place and route tools only

require the cell size and I/O placement metrics so that gates can be routed together.

However, ensuring that the layout performs as expected within the block involves

simulation and thus, the automated process performs the necessary characterization to

ensure that the cells behave as desired. The models used for software simulation are

generated independently from the layout models but are compared together to ensure the

logical integrity and timing of the device. As mentioned previously, the simulations are

performed under worst case conditions and Martinez et al. linearized the delay outputs

35

and placed them into a high level parameter that could be used by a model compiler. The

worst case power dissipation as a function of frequency was computed for each standard

cell with a software program [8].

With this data, [8] then moves towards model generation the behavior for each cell is

detailed in a primitive model (PMD). The PMDs show example building blocks one can

use as standard cells where each primitive model can be a component in a larger system.

The primitive models each contain a primitive type, connectors, and timing parameters.

The list of primitives used includes [8]:

 Boolean Gates (AND, OR, NAND, NOR, XOR, XNOR)

 Inverters/Buffers (including transceivers)

 Flip-Flops (D, T, sc, MUX, JK, w/scan, tri-state, etc.)

 Boolean Expressions (multiple inputs, outputs, and equations

 Muxes

 Decoders

 I/O Pads

With functional models, the analysis moves to a characterization step. This step proves to

be the most time consuming during the generation of a standard cell library using these

automated techniques. The Cadence Spectre simulation engine generates the necessary

files required for characterization. The automated models in [8] are extracted and

implemented as SPECTRE simulation files where characterization is expedited by the

executive decision to use a uniform output load of 1pF [8]. Since many devices are

comprised of common blocks, the blocks can be characterized individually and their

respective delays summed to generate the result for an entire cell. Note that complicated

cells utilize common pieces, but do not combine to create a large standard cell that is

comprised of smaller standard cells. Static timing analysis and the use of corners, as

36

detailed earlier in the chapter, allow for delay estimation for a digital network of standard

cells and investigation of operational corners allows for a range of operation to be

established based on possible variation during the IC fabrication process.

 Finally with all necessary components of a standard cell, the automated compiler

creates documentation for the device. Having a datasheet for a standard cell is more

uncommon than not due to the added time in manually creating documentation and the

fact that log files generated throughout a cell‟s development can provide the same

information. However, the automated compiler presents the information in an easily

readable fashion without forcing a designer to track down necessary files. The Cadence

tools do not include standard cell documentation or a means of automatically generating

such a file. Though datasheets are useful for standard cells, one would need to create

them manually when utilizing a non-automated process. Each data sheet created for [8]‟s

standard cells contains combinations of text, delay equations, and supporting graphics.

These components are blended together automatically and include a functional

description of the cell, schematic icons, layout outlines and signal locations, a logical

truth table, timing waveforms, propagation delay equations, and propagation delay tables

[8]. Figure 3.4 shows an example of a data sheet created by [8] for their standard cells

using this approach.

37

Figure 3.4: Automatically created data sheet for D flip flop using compilation [8]

The data sheet presents itself in an organized manner and details the important features of

the standard cell. Since human text input is kept at an absolute minimum, the likelihood

for entry errors diminishes as well. The automation also creates a uniform formatting that

should present itself the same way regardless of the standard cell utilized. This means

that regardless of which cell is selected from the library, the corresponding data between

cells will be detailed in the same document location and should make properties easy to

find when working within a single library [8]. Such documentation is not within the

scope of this thesis but is important to keep in mind, especially when automated

techniques can generated these forms during standard cell compilation.

38

Creating a single library of standard cells that operate with one another in any

configuration is an essential goal for the gates designed in this thesis. The cells are tuned

to accept the same level and swing of input signals and output an output signal of fixed

swing that matches with different cell types and the different cell sizes. A complete

standard library includes a verified schematic, layout, and simulation data.

Documentation is an added feature that can allow performance metrics of a standard cell

to be more readily available but is not necessary for completion of a library. The Cadence

tools require size and I/O placement for placing and routing a large device with many

cells. Each standard cell should be individually simulated and verified at both the

schematic and layout level to ensure that the gates will function as intended in

implemented designs.

3.1.4 – Created MCML Standard Cell Library for this Thesis

For the library created in this thesis, elements of the traditional design are implemented

for creation of Inverter and NAND gate MCML standard cells. With no full automation

capabilities for generating standard cells, manual layouts that fit to a fixed grid were

developed using SCMOS technology. Since an existing SCMOS standard cell library was

not available, standardized dimensions from a standard cell tutorial [9] are used to size

the grid layout needed for the MCML gates. Inverters and NAND gates with 1x, 2x, and

4x current drive capability were developed and simulated for implementation into the

standard cell library already present on the Cadence system with the SCMOS process.

The design work for the MCML standard cells is entirely manual to ensure uniformity

between the cells and guarantee that each cell fits on the same grid height.

39

CHAPTER 4

MCML CELL OPTIMIZATION AND TRANSISTOR SIZING

4.1 – Challenges in the Optimization of Standard Cell Libraries

When one implements a system on the silicon level, perfection is unattainable. There is

intrinsic variability that occurs across a chip causing small changes in operation possibly

away from the desired result. Coping with this property poses a significant challenge in

the semiconductor industry. Here, I examine current literature regarding variability

tolerance for a CMOS standard cell library where the goal is to create high-speed and

low-power circuits by optimizing transistor dimensions. The atomic properties that occur

on the silicon / IC level occur regardless of process (CMOS or MCML) and an engineer

or designer should keep them in mind.

 Device variability occurs in two domains: namely the spatial domain and the

temporal domain. Spatial variability occurs when the device shape differs from the

intended design, including uneven doping, non-uniformity in layer thickness, and poly-

crystalline surfaces. This variability is possible at all levels: “over the lifetime of the

fabrication system, across a wafer of chips, between cells within a very large scale

integration (VLSI) chip and between individual devices within that cell [7].” Temporal

variability includes the effects of electromigration where smaller grains of a crystalline

structure begin to move and separate, gate-oxide breakdown, and the distribution of

negative-bias temperature instability. Temporal variabilities can be estimated, resulting in

an approximate lifetime for a particular device. Common intrinsic properties of a device

40

will vary during fabrication due to atomic level variations in devices that are identical in

schematic, layout, construction, and environment. These properties include [7]:

 Random Dopant Fluctuations: The unavoidable variations caused by the

number and position of dopant atoms within the silicon lattice. Even with

precisely controlled implant and annealing, these variations will cause fluctuation

in device threshold voltage, subthreshold slope, and drive current.

 Line Edge Roughness (LER): The horizontal plane deviation of a fabricated

feature boundary from its ideal form. This is caused by mask imperfections,

photo-resist and etching process, and the stochastic nature of discrete molecules

throughout the photo-resist layer.

 Surface Roughness: The vertical plane deviation of the actual surface compared

to its ideal form. Surface layer (oxide layer) dimension changes can cause

parasitic capacitance variation and in turn modification of device threshold

voltage.

 Poly-Silicon Grain Boundary Variability: The variation due to the random

arrangement of grains within the gate material. Implanted ions can penetrate

through poly-silicon and insulator layers and into the devices. This creates

localized stochastic variation.

To model these effects for a particular transistor, one must generate a large number of

current-voltage (I-V) curves for the device and use the resulting data to calibrate the

parameters of a model library. Walker et al. investigate the optimization of CMOS

devices using a genetic algorithm [7]. To avoid gratuitously long computational times,

the algorithm optimizes within percent tolerances of the parameters. Utilizing an

intelligent algorithm and selected fitness objectives, [7] was able to achieve better delay

and power results compared to standard design techniques for a Buffer, NAND, OR, and

XOR gate from a commercial CMOS standard cell library. They also noted that larger

cells benefit more from the optimization techniques. Their research helps pave the way

into possible future work where one can create variability tolerant standard cells, whether

using CMOS or MCML topologies.

41

4.2 – General Optimization Techniques

Depending on the application, circuits can be optimized around any number of

parameters, including combinations of size, speed, power, noise, time-to-market, and

robustness. For general optimization techniques, the approaches are detailed in a broad

scope then compared to how one could use such an optimization technique for MCML

devices. The goal here is to illuminate methods for circuit optimization and provide some

tools for improving designs whether working on MCML, CMOS, or other logic family.

Each optimization method‟s influence on the designs of the MCML gates of this thesis is

explored as well. Further research and projects could be performed strictly in the realm of

optimization while focusing on one or a combination of techniques.

4.2.1 – Area

Area optimization involves minimizing the area or footprint that a circuit takes up or

occupies on a chip. The idea being, that a smaller chip is cheaper to produce, package,

and ship to a consumer than a larger chip that performs the same function which

increases overall yield. Minimizing chip area requires the designer to keep principles in

mind to allow for correct circuit operation on a smaller package or can simplify a logical

network by reducing the number of components before moving to creating a layout.

MCML gates occupy a larger area than equivalent CMOS gates because of the increased

number of transistors. To shrink the area, higher aspect ratios can be used but high and

low aspect ratios provide routing challenges and require transistors to be spaced apart.

This metric of spacing is known as „congestion.‟ A higher congestion percentage means

that the devices in a circuit are more densely placed in layout. An aspect ratio at either

extreme; high or low, requires lower congestion to allow for successful routing.

42

However, this in turn tends to increase the overall footprint of the circuit. Balancing these

two properties are crucial to optimizing or minimizing the area of a circuit on a chip.

Before transitioning from schematic to layout, or even before schematic creation,

large logic networks should be examined to see if simplification is possible. The Cadence

tools provide automated gate reduction and optimization in the synthesis step where HDL

code is converted into standard cell gates. For manual optimization however, Boolean

algebra principles allow for logical reduction of a network while keeping an equivalent

logical function. Having fewer gates to create in layout can naturally reduce the footprint

of a circuit without any complicated layout modifications. However, with a lower number

of gates, especially buffers, the width of the gates must be larger if they need to drive a

larger load. The RTL compiler performs this simplification when using standard cells to

create a design from logical code. For simpler designs and understanding, manual

component reduction can be quicker than performing the entire standard cell procedure.

Figure 4.1 shows a simple simplification that can occur where the total number of

transistors in a circuit is reduced manually through observation and application of

reduction rules where paths of both logical polarities do not change the output of the

circuit. For those situations, the transistors that have no effect on logical output can be

removed.

43

Figure 4.1: Reducing Component Count through Elimination of Logically Redundant

Transistors that do not Affect the Final Output of the Circuit

This creates substantially less components that are required to generate a functional

layout. Even before techniques are employed to reduce the overall footprint of a layout,

44

circuits should be checked for possible simplifications as that could drastically reduce the

effort required to optimize and allow for more ideal results. However, note that reducing

the total number of gates too much could result in an inability to drive a large load. For

standard cell usage, the RTL compiler will ensure that all gates in a circuit can be driven.

If a logical network must drive a large capacitive load, a longer chain of gates could

prove advantageous in preserving correct circuit operation. The RTL compiler will

automatically add gates onto a path if necessary to achieve necessary drive strength. For

standard cell development, each gate can be optimized manually to minimize the width of

a cell (fixed height). The standard cell compiler handles optimization in routing between

individual cells but each cell template created for this thesis is manually laid out and

tuned to allow for compatibility with other cells of any drive strength.

4.2.2 – Power

Power optimization involves taking a chip and minimizing the amount of power the

device dissipates, while still ensuring correct operation and performance. Optimizing the

power consumption of a design does not dramatically affect the layout of a circuit in

general. Reducing the power a circuit dissipates involves reducing the voltages and/or

currents in the network while preserving circuit function. Modifying transistor

dimensions and changing transistor bias points are two possible means of reducing net

power consumption. Changing the bias point of a transistor affects the overall current

flow through the device. Since the MCML standard cells developed for this thesis are

biased with a fixed current source at the tail of each device. 1x, 2x, and 4x current

strength devices were developed and as a result of each increased current drive, the

power through each device increases by that same factor. Since the bias points for these

45

transistors in this thesis are designed for specific current strengths and operating voltage

swings, power optimization was not heavily influencing the design choices here but the

principles of power tuning should still be discussed. This allows for more context

surrounding the operational theory of the standard cells and illuminate avenues for further

development or cell optimization.

 Resistance in a FET can be modified by either increasing transistor width or

decreasing transistor length. Increasing the width of a transistor allows current to more

easily flow through the device and in increasing the cross sectional area of the transistor,

the resistance decreases following this equation for resistance in silicon:

. Increasing the width or thickness of a transistor has the same effect of allowing

more space for current to flow and accordingly, less resistance. Through the same

equation, decreasing the length of a transistor achieves the same effect in reducing the

resistance of the device. If current must travel a farther distance to traverse through a

device (increased length), than the voltage drop across the device is higher due to the net

resistance increase. Since MCML cells have constant overall current, the power

dissipation remains constant as it is dependent on Vdd and Ibias. Tweaking the dimensions

of a transistor has limits however. Changing the dimensions too drastically can result in

incorrect transistor operation or different biasing properties. Transistor regions of

operation can be affected and with MCML this can change the voltage swing of a device

or even overall device current if the tail transistor is biased incorrectly.

 Transistor current bias points affect how much power the device dissipates.

Changing the gate voltages on a FET can influence the current that travels through the

device and in turn, the power dissipated. Bias point changes can dramatically influence

46

the total power used by a system since bias points directly affect the power and delay

characteristics of the device. For digital electronics and MCML, the delay in a logical

network can be of paramount importance depending on the system. To ensure correct

system operation, the dimensions of the components in the device should be examined

and tweaked when attempting such optimization. Power reduction is an incredibly broad

and deep area of study where techniques are constantly being investigated and tested for

reducing the net power of a circuit. At the same time, transistor density increases which

drives power and heat up and thermal dissipation also becomes a concern. Due to the

nature of the topic, additional projects or theses could be performed on power

optimization alone. The goals of the MCML devices designed in this thesis include low

noise and constant power dissipation. Therefore, power minimization of individual cells

is not explored, though the standard cell compiler can provide optimizations on this front

for large systems with many gates.

4.3 – MCML Sizing in This Project

The goal of the MCML gates developed for this project is implementation into a standard

cell library that performs with low noise and constant power dissipation. This requires

that cells snap onto a grid of fixed width and length and that each transistor meets

specified sizing factors. As a result, the optimizations discussed in this chapter are not

directly applied to create an optimal standalone result. The principles and theory

discussed through the optimization sections are kept in mind during the development of

standard cell layouts but full effort towards optimizing any category would prove

infeasible in keeping with the requirements of the standard cell library. Therefore, the

cells developed during this thesis are meant to be logically functional and able to with the

47

grid sizes dictated by the standard cell rules. Since noiseless operation is the primary

focus of the MCML standard cells, specific optimization in power or area are not applied

however, the area of each cell is specifically designed to provide easier grid

implementation of cells and ensure maximum compatibility between each gate and gate

size. The MCML standard cells are implemented into the same library as the SCMOS

standard cells on the Cadence side and conform to those sizing requirements such that

they can be implemented and tested on an equivalent grid without substantial redesign.

48

CHAPTER 5

MCML IMPLEMENTATION OF A STANDARD CELL LIBRARY

5.1 – Overview

This chapter details the development of MCML cells for the standard cell library. Since

any logical operation can be performed with inverters and NAND gates which serve as a

minimum requirement for developing cells that provide a full range of functionality.

Standard cells typically include different variants for current capabilities and following

that model, devices with 1x, 2x, and 4x drive strengths are created for both the inverters

and NAND gates. These strengths are a metric of how much capacitance a gate can drive

at a particular frequency. Since capacitance and subsequent current drive is proportional

to transistor width, these drive strength variations in capacitance are created by doubling

and quadrupling the widths and current draws of each gate. The standard cells for this

thesis were laid out by hand to ensure conformity to height and width constraints. The

constraint in this case involves creating layouts that will fit into an existing SCMOS

standard cell library where the created MCML cells match the dimensions of existing

cells. This includes ensuring that transistor dimensions and cell dimensions could snap

onto an identical “grid” as with the SCMOS standard cells. This mainly involves ensuring

that active transistor regions are matched and that the rails of each cell are the same size

and line up precisely so that cells can be tiled regardless of which cell is being used and

allowing the MCML cells to fit seamlessly into the library.

 First, schematics for each cell had to be developed and simulated to ensure correct

logical operation and current compliance with each desired step in strength. For the

49

SCMOS C5 technology, the minimum transistor length in this project is 600nm,

minimum width is 1.5µm, and the increment for length or width sizing is also 300nm.

The 1x current models for both devices are generated with as minimally sized devices as

possible that achieve desired low noise results and high frequency performance and then

scaled up for larger current drive devices.

5.2 – MCML Inverter Schematic

The MCML inverter follows the schematic shown in Figure 5.1 (recreated from Figure

2.2 for convenience). Note that depending on the arbitrary output pin configuration, the

MCML inverter can also serve as a buffer.

Figure 5.1: Recreated MCML Inverter/Buffer Schematic

The standard “1x” current variation of the inverter utilizes minimally sized devices and

the symmetrical nature of each path of operation for both inverter or buffer allow for the

device to perform equally well in both modes of operation and allow for issues fixed in

50

one situation to positively influence the same error on the other side. For correct

operation, the biasing voltage for the load resistances was kept at 0V to ensure linear

operation of the load transistors.

5.2.1 – 1x Inverter Schematic

The first iteration of the inverter utilizes the smallest transistor widths out of the inverter

iterations. The current for MCML typically ranges from 10µA to 100µA [3]. To fit this

range and operate within the bounds of AMI06/C5N Technology, the base line 1x

inverter current is set to 20µA. Following previously discussed MCML setup, the inverter

is assembled as shown in Figure 5.1. The nmos4 transistor symbols and the pmos4

transistor symbols from the NCSU_Analog_Parts library are used for the creation of the

schematic. The Vdd and GND rails are also from the NCSU_Analog_Parts library such

that every component falls within the same fabrication process. Note that there are

varieties of other supply and ground rails in other libraries that appear similar in layer

composition but will not operate correctly unless every component is from the same

technology library. For schematic purposes of any NCSU technology, the transistors and

components in NCSU_Analog_Parts will correctly serve the desired need. Model files for

simulation and layout generation that utilize a specific technology, like SCMOSC5, are

defined and linked later during simulation and layout. Figure 5.2 shows the baseline

MCML inverter with variables indicated for transistor sizing. These variables are then set

during simulation to allow for maximum design flexibility and editing efficiency. A

current mirror is used as control circuitry to set the current of the tail current source that

acts as the biasing current for the MCML gate. This circuitry works by forcing current

through the N4 transistor and to compensate, the device acquires a VGS to match that

51

current draw. This voltage is tied to the tail transistor of the MCML gate and since both

devices are the same size, the same current (20µA set point) is drawn through the MCML

gate.

Figure 5.2: MCML Inverter Schematic with Transistor Sizing Variables

For more robust and readable simulations and layout error checking, note that each node

is labeled even if already handled by a pin. This guarantees that nodes are not

automatically assigned names that become difficult to track for larger circuits with many

connections. This also ensures that the schematics and layouts are more readable and

understandable when moving into other design modules within Cadence. The pin

configuration shown in Figure 5.2 shows inverter operation. As before, swapping the

output pins would allow readability as a buffer, but this is an aesthetic change; the circuit

performs both functions in this state depending on how it is examined and probed.

 Simulating the schematic takes place in Cadence through the ADE L module. The

Analog Design Environment (ADE) allows for selection of model files, setting of test

52

signals, and selection of desired outputs to be examined, plotted, and/or saved. More

details on setting up the simulation settings and screenshots along those steps can be

found in Appendix A. The simulated inverter results are shown in Figure 5.3. The input

signal consists of a sine wave that oscillates between 1.8V and 2.6V at a 2kHz frequency

and is represented by the pink trace with the device output shown as the red trace. The

input values were examined and chosen to achieve consistent logical operation and

achieve circuit stability where each period, whether first or in steady state, operates the

same way. These values also perform to these standards for all the MCML devices and

sizes developed over the course of the thesis.

Figure 5.3: 1x Inverter Simulated Results Showing Correct Logical Operation

Here the inverter operation shows a voltage swing of about 1.5V which reaches the input

pulse value of 3.3V. The logical low in this current operation are shown as 1.8V, the

same value as the input minimum. Though 1.5V is a larger swing for MCML, the primary

goal of these devices is low noise operation and the set points and ranges used are

designed with noiseless operation in mind. Including the output current for the 1x inverter

shows a final average current value of 20.13µA. For an MCML gate, the power

53

consumed follows this equation: . With the 3.3V Vdd, this nets an average

power of 66.43µW. Eliminating the small current noise would net the effective same

power dissipation without the fluctuation that occurs. The associated simulation output

for this result is shown in Figure 5.4.

Figure 5.4: 1x Inverter Simulation with Current through the Tail Transistor

For MCML gates, it is okay to allow the voltage to rail at Vdd, but the tradeoff with this

operation is the potential source of noise this introduces. Since the goal for these cells is

to provide quiet circuitry for mixed signal applications, any source of noise must be

examined and kept as minimal as possible. The current also begins to „spike‟ in a small

way after a couple cycles. These spikes range in the 10-50nA range however, and have

negligible effect on the circuit performance. Despite these oscillations, the average

current value remains steady. Further development of control circuitry can likely reduce

this abnormality however the net operation remains correct and consistent. Current

averaging occurs through software integration of the current signal in the Cadence

simulator and over simulation timeframes that include many periods if signal operation.

Further simulation and parameter captures for the 1x Inverter can be examined in

54

Appendix A. Control circuitry for the Pbias node was also experimented with for the

purposes of keeping the load resistances in linear operation and able to make minor

corrections based on operation. Once the current control was implemented however,

correct operation was achieved using a 0V Pbias. Further details regarding the control

circuitry development can be found in Appendix A along with additional info

surrounding the inverter design. The full list of input parameters set during simulation for

the 1x inverter is shown in Table 5.1.

Table 5.1: 1x Inverter Parameter Settings for Simulation

Parameter Name Parameter Value

NmosWidth 2.7µm

NmosLength 600nm

PmosWidth 1.8µm

PmosLength 3.9µm

TailWidth 30µm

TailLength 9µm

TailCurrent 20µA

Signal Name Signal Value

In 2.2V Offset -0.4V Amplitude Sine Wave

!In 2.2V Offset 0.4V Amplitude Sine Wave

Vdd 3.3V

Pbias 0V

Output Swing 1.5V

5.2.2 – 2x Inverter Schematic

The 2x drive inverter configuration aims to provide identical logical function with the

difference of providing 2x the current and subsequent output drive. To set the doubled

current for the device, the current mirror biasing network is set to 40µA and the tail

transistor width is doubled. To compensate for the doubled current, the widths of all the

transistors in the device are doubled as well. This ensures that the voltage drops through

each transistor remain consistent through drive strength iterations. For the PMOS

55

however, length is adjusted as well to achieve voltage drops comparable to the rest of the

variations in drive strength gates. As discussed in Chapter 2, the load resistors effectively

perform as linear devices based on the bias current. The biasing is left constant and the

resistance is halved by doubling the width while leaving the biasing and other signals the

same. The other transistor widths are doubled as well due to the symmetric nature of the

device and to allow for the equivalent ease in driving double current. This is a useful

result for the inverter as the increased current configurations can be implemented with no

changing of the input signals. Small incremental changes were made in sizing after

doubling to achieve similar output functionality as the 1x inverter. This allows for

interchangeability and the versatility expected with standard cells. The 2x inverter utilizes

the same schematic as shown in Figure 5.2 with different parameters and settings for the

variables. The doubled inverter meets the incremental requirements specified by the

standard cell library constraints. The fact that a doubling in width linearly provides

double the current supports the discussed theory and allows for greater ease of use and

implementation of the inverter cells into the standard cell library. Simulating the double

current inverter shows identical operation to the 1x design. Figure 5.5 shows the 2x

inverter logical performance.

56

Figure 5.5: 2x Inverter Simulated Results Showing Correct Logical Operation

Note that the swings for each logical high and low value are the same as with the 1x

current model. The peak output voltage rails at 3.3V and extends to 1.78V, netting a

1.52V swing. As mentioned previously, this is a larger swing for MCML but is consistent

across each of the gates designed. This swing matches the 1x inverter results and the

consistency with the input minimums allow for inverters in series to perform the same

logical operations with the same voltage swings. The main difference in simulated

performance between the 2x inverter and 1x inverter is the doubling of current. Figure 5.6

shows the current plot superimposed with the rest of the data.

57

Figure 5.6: 2x Inverter Simulation with Current through the Tail Transistor

The marked current in the graph shows nominal current operation at 40.34µA that

oscillate on the 200nA range with the input signal and small noise values that do not

exceed 10nA. The spikes present with the baseline case are have a larger magnitude than

that of the noise or spikes in the 2x case. This can be attributed to the increased transistor

widths making the circuit resistant to noise that low in magnitude. The noise spikes only

affect the current while the voltage remains constant. These oscillations may be attributed

to simulator error or the behavior of ideal rails during simulation. These spikes tend to

appear and disappear over three to five periods in steady state operation. The average

current of 40.34µA is a 2.004 factor increase between the 1x case and the 2x result. The

associated power consumption for the 2x current case computes to 133.12µW. This

consistency of current doubling allows for interfacing between these MCML gates and

enables use in the standard cell library. As with the previous inverter, further analysis and

details from the 2x inverter design can be found in Appendix A. Table 5.2 shows the final

parameter list utilized for the 2x inverter simulation. Note that the widths of each

transistor are doubled from the 1x inverter settings but the PMOS load transistors

58

required some minor incremental changes and length increase to achieve the desired

voltage swing that matches where the lowest output value matches the lowest input value.

The fact that the same input signals provided for the 1x inverter create the same result on

the 2x inverter allow for cells to be exchanged without system redesign and make the

standard cells more robust and interchangeable.

Table 5.2: 2x Inverter Parameter Settings for Simulation

Parameter Name Parameter Value

NmosWidth 5.4µm

NmosLength 600nm

PmosWidth 3.9µm

PmosLength 5.1µm

TailWidth 60µm

TailLength 9µm

TailCurrent 40µA

Signal Name Signal Value

In 2.2V Offset -0.4V Amplitude Sine Wave

!In 2.2V Offset 0.4V Amplitude Sine Wave

Vdd 3.3V

Pbias 0V

Output Swing 1.52V

5.2.3 – 4x Inverter Schematic

Following the same design practices as before, the widths of the transistors are doubled

again to achieve the quadrupled current for the 4x MCML inverter design. With the

doubling methodology performing effectively for the 2x case, the same approach proved

viable with the 4x as well. This also allows for the same functionality and compatibility

as the other cells in utilizing the same signals for operation and providing the same output

voltage swings and logical operation. The process proved effective once again and as

with the 2x inverter, the W/L PMOS loads had to be tuned slightly to achieve the desired

voltage swing. Figure 5.2 shows the final schematic iteration for this standard cell library

59

at the 4x current specification where the parameters are updated again for the increased

result. The same operation holds again for the quadrupled current case and the voltage

swing remains steady at 1.5V to match the previously designed inverters. The maximum

and minimum voltages for both input and output remain equivalent to the 1x and 2x

inverters. Figure 5.7 shows this result with identical logical operation.

Figure 5.7: 4x Inverter Simulated Results Showing Correct Logical Operation

The output voltage again keeps the same 3.3V to 1.8V swing where the input and output

minimums have the same value. This ensures operation that stays consistent when the

MCML gates are chained together. The increased width again has a positive impact on

the noise within the current signal. The transistors are wide enough to where noise is not

noticeable in the simulation envelope. To verify another correct doubling of current,

Figure 5.8 shows the simulated result with current plotted. Here, the current stays steady

and smooth with no noise interfering. The only current fluctuation present occurs in line

with the input signal to the system and the fluctuations yield about a 325nA variation in

current throughout the duration of a signal pulse which constitutes ~0.5% in current

variation over the course of a period of operation. This oscillation can be attributed to the

60

idealities in simulation of the rails and gate chain simulations shown later exhibit near

constant operation.

Figure 5.8: 4x Inverter Simulation with Current through the Tail Transistor

The average current for the 4x case comes out to 80.76µA. This is a 2.002 factor of

current increase from the 2x case and an overall 4.012 factor more current than the base

1x case. The power dissipated by the 4x inverter is 266.51µW. The smooth operation,

especially in the larger cells, shows the smooth operation achievable with MCML gates

and the consistent control possible during operation. These results show that the inverter

cells are suitable for standard cell operation and the fact that the currents were so closely

doubled without any change to the input signals speaks favorably for the compatibility

and interchangeable nature of these inverter cells. The minimal variation in current also

supports the goal of creating quiet standard cells where logical operation of the device

does not add noise to a system. Table 5.3 shows the final parameter configuration for the

4x inverter simulation. The trends from the 1x to 2x stage hold up well with regards to

the widths of the transistors. The widths for the NMOS and tail transistors all double

while the length for those components remains constant. The width of the PMOS loads is

doubled and then modified slightly to increase the voltage drop and match up the output

61

minimum with the input minimum. Increasing W/L for the PMOS transistors decreases

the voltage drop across the device and decreasing W/L through either width narrowing or

length increasing raises the voltage drop. Small incremental tunings of the W/L values for

the load transistors achieve the desired voltage swing.

Table 5.3: 4x Inverter Parameter Settings for Simulation

Parameter Name Parameter Value

NmosWidth 10.8µm

NmosLength 600nm

PmosWidth 3.9µm

PmosLength 5.1µm

TailWidth 60µm

TailLength 9µm

TailCurrent 40µA

Signal Name Signal Value

In 2.2V Offset -0.4V Amplitude Sine Wave

!In 2.2V Offset 0.4V Amplitude Sine Wave

Vdd 3.3V

Pbias 0V

Output Swing 1.5V

5.2.4 – MCML Inverter Schematic Remarks

The voltage swing attained during simulation falls into the desired range for these

MCML devices to achieve low noise operation. Unlike CMOS gates, MCML devices

should never swing rail to rail since both current paths remain active during correct

operation. The current between each path is shifted one way or the other depending on

the input signal and logical function of the device. The fact that each path remains active

means that there are no devices changing between conduction and non-conducting

operation which puts less noise on the supply and ground rails than a logic family that

changes from conducting to non-conducting during switching as is the case with CMOS.

The MCML gates also dissipate the same power regardless of switching frequency.

62

Changing the pulse times of the input signals causes no voltage or current change. As a

result, the power consumed effectively remains equivalent; an advantageous property for

MCML devices especially at high switching frequencies. CMOS counterparts dissipate

nearly all of their power during switching, so a higher switching frequency results in

higher power consumption.

 Other notable trends include the common performance in logical operation and

switching time over the course of each MCML inverter iteration. The voltage swings and

magnitude of the outputs remain consistent with the same input signals for each gate size

and drive strength. The oscillation magnitude of the current increases proportionally with

the overall current increase and the noise within the current fluctuations decreases with

the higher current values and wider transistors. Restated, the overall current fluctuation

from nominal, as a result of ideal rail behavior in simulation, remains at ~0.5% the

average current value. Each inverter also performs with the same input signals where the

pulses on the transistor gates are sine waves that range from 1.8V to 2.6V at a frequency

of 2kHz. These sine waves allow for clear depiction of logical operation for simulation of

a single gate. Chains of gates and an oscillator provide more realistic representation of

performance in a system and are examined later in the chapter. Vdd is set to 3.3V, and the

Pbias for the load transistors is kept at 0V to ensure linear operation of the load devices.

The biasing for the current regulation is controlled by a current mirror that sets the gate

voltage of the MCML tail transistor based on the current through forced through the

mirror. The consistent performance across each MCML inverter shows the modular

nature of the devices and speaks favorably to low noise performance and the ability to

implement the designed gates into a library.

63

 Finally, additional control circuitry could smooth out the small fluctuations

present in the operation of the device. Only the biasing tail current has simple control

circuitry. The Pbias value would benefit from control as well where the resistive nature of

the loads could adjust to keep the voltages within a desired region. There are many means

of implementing these types of control circuitry and determining which option is best

depends on the application. In a larger system, control circuitry would be utilized to keep

sensitive mixed signal applications calm in operation. This would yield the constant

power operation expected from standard cells and MCML. To attain standard cells, the

schematics were developed independently of control circuitry and such additions would

be external to the cell itself. The results show that the inverter standard cells function as

expected in terms of logical operation and current capabilities. Next steps include layout

development for implementation into a full standard cell library and development of other

library components. This library develops a NAND gate cell to allow for any logical

function to be created with the cells designed.

5.3 – MCML NAND Gate Schematic

The MCML NAND gate follows the schematic shown in Figure 5.9, recreated from

Figure 2.3 for convenience. Note that depending on the arbitrary output pin

configuration, the gate can also serve as an AND, OR, or NOR gate. The pin

configurations for the output explicitly shown in Figure 5.9 show the AND gate

configuration.

64

Figure 5.9: Recreated MCML AND/NAND/OR/NOR Schematic

Flipping the output pin labels causes the circuit to read as a NAND gate. In that light, the

pin configurations used for the schematics detailed in this section utilize the general

NAND gate configuration and are labeled as such. The standard “1x” current variation of

the NAND gate utilizes minimally sized devices that still provide correct logical

functionality. The non-symmetric nature of the MCML NAND gate creates additional

challenges in the development of these cells and make biasing and transistor sizing

trickier. To match up the voltage drops between the Out and ̅̅ ̅̅ ̅ lines, the PMOS load

transistors were sized independently to allow for the necessary voltage drop across either

path for low output. The current mirror used for controlling current set points for the

inverter is present in the NAND as well.

65

5.3.1 – 1x NAND Gate Schematic

The first iteration of the NAND gate follows the same design principles as with the

inverter and utilizes the minimally sized transistors with both the length and width set to

600nm. This is the minimum dimension allowed by the SCMOSC5 technology and

serves as the baseline for minimum drive operation. The NAND gate is assembled as

shown in Figure 5.9. The same nmos4 transistor symbols and pmos4 transistor symbols

from the NCSU_Analog_Parts library are used for the creation of the NAND schematic.

The same vdd and gnd rails are utilized as well. With the same Cadence procedures and

steps as the inverter, the schematic for the general NAND gate is generated as shown in

Figure 5.10.

Figure 5.10: MCML NAND Gate Schematic with Variable Sized Transistors

66

Simulating the NAND gate follows the same process as the MCML inverter except with a

two more input signals to supply. The same magnitudes for input signals were used for

the NAND gate as with the inverter for maximum compatibility. The NAND gate

however, uses square wave inputs to correctly show the logical transitions based on input

with a resolution that sine wave inputs would not provide due to non-exact switching

between logical positions. Figure 5.11 depicts the 1x NAND gate simulations with the

logical operation of the NAND signals visible. Like the inverter, the PMOS load gate

voltages are kept at 0V for linear operation.

Figure 5.11: 1x NAND Gate Simulated Results Showing Logical Performance

The logical operation for the NAND path follows inputs of: 00, 01, 11, & 10. As the

results show, the NAND gate performs as expected with the only low output swing given

for the 11 input. The voltage for the NAND gate rails similarly to the inverter for

logically high output at 3.3V and is designed to swing the logical low output to the

minimum of the input signal. As with the inverter, the input ranges from 1.8V to 2.6V

and the NAND output reaches a minimum of 1.78V, yielding a 1.52V output swing. The

1.8V to 2.6V input range again proves to provide stable starting operation for a single

67

MCML gate under simulation. Realistic gate to gate connections are explored later in the

chapter. The same swinging ranges and input signals as the MCML inverter allow for

interfacing of gate types with correct logical operation maintained. To examine the

current capabilities of the base case, Figure 5.12 includes the output data with current

plotted as well.

Figure 5.12: 1x NAND Gate Simulated Results with Biasing Current Visible

The blue trace represents the current for the NAND gate and this current follows the

operation of the „A‟ input meaning that when „A‟ switches, the tail current source

fluctuates due to the switching operation and current steering. The „A‟ inputs control

which main path is steered to the tail current path and the non-symmetric nature shows

the associated fluctuation in current when the „A‟ signal switches. This fluctuation

remains on the order of about 100nA where the average current for the 1x NAND gate

computes to 20.15µA. Similar to the inverters, this variation represents a 0.5% current

fluctuation during the most severe switching operation. Despite these minor current

fluctuations, the current stays balanced over logical sweeps and nominally performs at

the 20µA intended current setting. Note that this current set point matches that of the 1x

68

MCML inverter and the subsequent drive strength iterations continue to follow those

trends in consistency between NAND gates and inverters at each drive strength. This

ensures compatibility between each of the cells developed and a ring oscillator is created

to prove this point and is examined later on. The power dissipated for the 1x NAND gate

averages 66.50µW with the same 3.3V Vdd that was used for each iteration of the

MCML inverter. Following the same methodology as the inverter design, 2x and 4x

current iterations for the NAND gate are developed as well for compatibility in the

standard cell library. The principle of doubling transistor widths is employed again for

current doubling and the PMOS load transistors are tweaked incrementally to maintain

the desired voltage drops. Further analysis and captures from the 1x NAND gate

development can be found in Appendix A along with inverted logic (AND) results that

mirror the NAND functionality. Table 5.4 displays the final parameters utilized for the 1x

NAND gate. Design variables match up with the labeled schematic variable naming in

Figure 5.10.

Table 5.4: 1x NAND Gate Parameter Settings for Simulation

Parameter Name Parameter Value

NmosWidth 2.7µm

NmosLength 600nm

PmosWidthL 2.7µm

PmosLengthL 6.6µm

PmosWidthR 2.1µm

PmosLengthR 4.8µm

TailWidth 30µm

TailLength 9µm

TailCurrent 20µA

Signal Name Signal Value

In 2.2V Offset -0.4V Amplitude Pulse

!In 2.2V Offset 0.4V Amplitude Pulse

Vdd 3.3V

Pbias 0V

69

Output Swing 1.52V

5.3.2 – 2x NAND Gate Schematic

The 2x current NAND gate follows the same principles as before. First, transistor widths

are double to allow for approximate halving of resistance and subsequent doubling of

current. The generalized MCML applications discussed in Chapter 2 show the simple

nature of the equations behind MCML operation and even in the realistic cases simulated,

the expected performance and nature of the devices holds true. The 2x NAND gate model

utilizes the same general schematic as presented in Figure 5.10. Simulating the doubled

current NAND gate follows the same guidelines as with the inverters. The signals are

kept the same as the 1x NAND gate and all transistor sizes are kept to legal standard cell

library increments. Since the load transistors change resistance when the width of each

component is doubled, the PMOS load dimensions are tweaked to achieve the desired

voltage drop across the loads and create the expected output voltage swing. Logical

operation for the 2x current NAND gate follows the same performance trends as with the

base case with nearly identical output voltage swings for the same input signal as the 1x

case. Figure 5.13 shows the 2x NAND gate logical operation.

70

Figure 5.13: 2x NAND Gate Simulation Showing Logical Performance

With identical logical performance with the 1x drive case, the performance metric

remaining is the current performance of the doubled NAND gate. Note that the voltage

swing for the output ranges from the 3.3V rail down to 1.79V, totaling a 1.51V output

swing. This matches with both the minimum of the input signal and the minimum of the

previous NAND gate and inverters. This ensures that the 2x NAND gate is compatible

with the other cells in the library and can be interfaced with other logical devices or gates

of various drive strengths while preserving logical functionality. Figure 5.14 displays the

current performance of the doubled NAND gate. Small tail current spikes occur during

the transitions of the „A‟ signal for the same physical reasons as examined in the 1x drive

NAND case and the current remains within a 200nA region where only the switching

spikes exceed any variation over 100nA from the nominal tail current during operation.

71

Figure 5.14: 2x NAND Gate Simulated Results with Current Performance Visible

The current matches the predicted trends and follows the same patterns as the 1x case.

Note that the largest and most inconsistent tail current operations occur in the switching

of signal „A‟. The nonsymmetrical nature between the NAND gate paths explain this

fluctuation with the net resistance on the line depending on the active path. Since „A‟

dictates the overall current steering of the gate between the left and right paths, it makes

sense that the current fluctuates. However, single gate simulations behave with idealized

rails which also attribute the switching spikes. Connected gates explored later

demonstrate even tighter performance in current which highlights the low noise nature of

the designed MCML cells. Otherwise, the current remains steady and averages out to

40.38µA. This is a 2.004 factor increase over the base case NAND gate. The power

dissipated by the 2x NAND gate totals 133.25µW. Further analysis of the NAND gates

and development process including logical performance of the ̅̅ ̅̅ ̅ AND line can be

found in Appendix A. The simulation parameters required for 2x NAND gate

performance are detailed in Table 5.5. Note that each transistor width doubles and the

72

PMOS load transistors then show small incremental changes for increased performance

in achieving the desired results.

Table 5.5: 2x NAND Gate Parameter Settings for Simulation

Parameter Name Parameter Value

NmosWidth 5.4µm

NmosLength 600nm

PmosWidthL 3.9µm

PmosLengthL 5.1µm

PmosWidthR 4.5µm

PmosLengthR 6µm

TailWidth 60µm

TailLength 9µm

TailCurrent 40µA

Signal Name Signal Value

In 2.2V Offset -0.4V Amplitude Pulse

!In 2.2V Offset 0.4V Amplitude Pulse

Vdd 3.3V

Pbias 0V

Output Swing 1.51V

5.3.3 – 4x NAND Gate Schematic

As with the MCML inverters and NAND gates so far, the same trends are expected to

hold again during a subsequent doubling of transistor widths to achieve the 4x drive

strength. The schematic again follows the variable dimension setup in Figure 5.10 where

the transistor sizings are set in the simulation interface. Figure 5.15 depicts the logical

performance of the 4x NAND gate. The voltage swings remain consistent with the

previous 1x and 2x NAND gates as well as the inverter iterations. The voltage swing

remains steady around the desired 1.5V where the output swing traverses from the 3.3V

Vdd rail to 1.82V. This nets a 1.48V output swing where the minimum values of the

output and input align. This again makes for compatibility and interchangeability with

73

other cells in the library and these criteria serve as a useful metric of performance for

characterizing additional cells.

Figure 5.15: 4x NAND Gate Simulation Showing Logical Performance

With identical performance to the previous NAND gates including voltage swing and

logical operation, the metric for classifying the successful design of the 4x gate lies with

the current performance. Figure 5.16 shows the logical operation of the NAND gate with

current plot in place. Note that the fluctuation trend from before follows where the tail

current nominally lowers when „A‟ switches into a logical high input This occurs because

signal „A‟ controls the steering between the overall left and right branches of the gate.

Again, these transitions account for a 0.5% variation off average current and can be

attributed to the ideal nature of rails during schematic simulation.

74

Figure 5.16: 4x NAND Gate Simulated Results with Current Performance Visible

The simulated current for the 4x NAND gate follows the same characteristic fluctuation

as with the 2x and 1x inverters. As expected with the subsequent doubling of current, the

variation in current performance doubles as well. The current spikes during „A‟ switching

peak at maximum of 350nA where the nominal operational variation in current sits at

about 175nA. Interestingly this is not fully double the variation observed in the 2x case

and as a result, one could speculate that a larger gate would be more tolerant to noise, but

would likely perform more slowly. As with the previous gates, the variation peaks around

0.5% of the nominal current value and can be attributed to major current steering changes

when „A‟ logically switches and the ideal nature of Vdd and GND when simulating at the

schematic level. Ring oscillator simulations and connected gate simulations later in the

chapter display even more constant current operation and demonstrate the low noise

capabilities of the MCML gates.

 The current average for the 4x NAND gate comes out to 80.84µA. This is a 2.002

factor of current increase from the 2x NAND gate and an overall 4.012 increase from the

75

1x NAND gate. The net power dissipated by the 4x inverter is 266.77µW. Table 5.6

shows the final 4x NAND gate simulation parameters.

Table 5.6: 4x NAND Gate Parameter Settings for Simulation

Parameter Name Parameter Value

NmosWidth 10.8µm

NmosLength 600nm

PmosWidthL 9.6µm

PmosLengthL 6.9µm

PmosWidthR 9.6µm

PmosLengthR 6.9µm

TailWidth 120µm

TailLength 9µm

TailCurrent 80µA

Signal Name Signal Value

In 2.2V Offset -0.4V Amplitude Pulse

!In 2.2V Offset 0.4V Amplitude Pulse

Vdd 3.3V

Pbias 0V

Output Swing 1.49V

Interestingly, the load transistors for the 4x NAND gate ended up achieving the desired

swing with the same transistors dimensions. In each of the other NAND gate iterations,

comparable delays between the output and its inverse required fairly different sizings for

the load transistors. As with each schematic, further captures detailing operation are

presented in Appendix A.

5.3.4 – MCML NAND Gate Schematic Remarks

The NAND gates performed largely as expected after the development of the MCML

inverters. The same principles in transistor and gate biasing were applied and the NAND

gate performed as desired. This is favorable for further MCML gate development as the

76

same principles for other logical functions and devices should allow for rapid

development of more standard cells or gate sizings.

 Since the NAND gate is not symmetric, the PMOS transistors were sized

independently to balance either the output voltage swing or the swing of its inverse.

Interestingly, the sizings for the larger NAND gates utilize PMOS transistors that were

much closer in size to one another. The 4x NAND gate specifically ended up achieving

the desired voltage swing on both outputs with identical PMOS loads. Since the PMOS

loads are usually intended to be kept at the smallest sizing possible, the increased

transistor widths of the NMOS components eventually dominated the network due to

higher W/L ratios and the PMOS transistors became less impactful in dictating the output

response for a given dimension change.

 The fact that the MCML NAND gates utilize the same signal input bounds as the

inverter allow a common source to drive both gates without fear of losing logical

operation. The output swings of the NAND gates also match those of the inverter and

each gate developed swings from rail to the minimum input value. This constitutes the

first step in examining gate interfacing. The ring oscillator developed takes this further

and ensures that these gates maintain the same performance results in a system with many

MCML gates connected together. This allows gates to be mixed, matched, and strung

together while ensuring correct logical performance. Further cells or sizes developed for

the MCML standard cell library should adhere to the same principles and attempt to

function using the same input signals and be sized to provide the same output swing. This

allows the library to be extended in the future by future projects and ensures

compatibility for anyone deciding to use the library in design of a system.

77

Additional development info and captures for the MCML NAND gates can be

found in Appendix A. With each schematic generated for any logical function and

varying current capabilities, the layouts for each standard cell can then be designed with

the confidence that the cells can interact favorably with each other and are compatible in

terms of input and output signals.

5.4 – MCML Inverter Layout

The inverter layouts for the 1x, 2x, and 4x sizings are created by hand and maintain the

sizing requirements for standard cells. This means that the height of each cell is fixed and

the width of the cells can be variable. The tool that utilizes the standard cell library must

know the size of the cell and the I/O positioning for placing each block into the grid. The

fixed height allows for the cells to snap onto uniform Vdd and GND rails. Utilizing the

height sizing of 36.15µm from another standard cell library [9] using the ami06

technology, the layouts for the MCML devices can be generated for each sizing of the

device. The current biasing circuitry implemented for the schematic simulations are not

included in each cell layout and are an external addition to the standard cell. Each cell

contains the core logic of the device and utilizes the simulated transistor sizings from the

previous sections.

5.4.1 – 1x Inverter Layout

For each layout, a pr boundary is created that contains the overall sizing of the cell

layout. Each layer fits within this boundary and the height of each pr boundary represents

the consistent height required for standard cells to be placed and connected in grid-like

fashion. The 1x Inverter layout utilizes a pr boundary with height of 36.15µm and width

of 47.7µm. The width of the cell is arbitrary and flexible as long as the cell snaps into the

78

grid rails that are configured based around the height. The width of the cell is selected to

create enough space between devices to allow for routing when creating the layout. Pcells

are used for each of the transistors when moving from schematic to layout. These are

parameterized cells that take the dimensions set in the schematic and create the layout for

each transistor. From there, the transistors are positioned and routed to achieve the same

operation as the simulated schematic. The rails for the inverter are creating using 3µm

long metal1 layers that create Vdd and GND. The Vdd rail also needs a 4.5µm n-well

below the rail to meet the standardized requirements for cell development as in [9]. The

PMOS transistor n-wells must also overlap the major n-well so each bulk region carries

the same potential and the transistors function correctly. Figure 5.17 shows the block

layout for the 1x inverter with visible Pcells and routed paths/rails. Figure 5.18 depicts

the full completed layout for the 1x inverter where all layers are visible for the transistors

and the necessary routing layers. Rulers are present around the cell on the top and left to

indicate overall dimensions and ensure that the rails and heights meet the necessary

requirements for the standard cell in the ami06 technology.

79

Figure 5.17: MCML 1x Inverter Block Layout with Pcells and Routing

Figure 5.18: MCML 1x Inverter Full Routed Layout with All Layers and Pathing

Note that the Vdd rail requires a PTAP which is provided in the NCSU ami06 library.

This provides the necessary connections for the rails and the connection to the outside

world for powering. Similarly, the GND rail uses the NCSU NTAP which provides the

80

same functionality for the ground portion of the circuit. For standardized implementation

and usability, the layout is kept as symmetrical as possible with similarly sized paths for

each signal. Multiple pathing layers connect the tail current source to ground to ensure

even current flow through the wide device.

5.4.2 – 2x Inverter Layout

The 2x MCML Inverter layout follows the same sizing design principles as the 1x

inverter. The height of the cell remains fixed at 36.15µm while the width must increase to

90µm to accommodate the larger width of the tail current source. For this cell and for

other layouts, the width sizing is attempted to be kept at the tail transistor width plus

30µm to allow for the other smaller devices. Following these ideas and the same rail

positioning and sizing as the 1x inverter, the final layout for the 2x inverter standard cell

is generated. Again, Pcells are used from the NCSU ami06 library for the transistors,

vias, and rail taps. The general form of the layout keeps the same design as the 1x

inverter with the larger components. Figure 5.19 shows the block layout with routed

layers and vias. Each block represents a Pcell utilized to generate a small piece of the

layout including transistors and rail taps. Figure 5.20 shows the final routed version of the

2x MCML inverter with all layers for each transistor and pathing available. Again note

that there are rulers present on the layout for reference sizing in microns. Note that the

sizing was successfully fit in the 90µm width (60µm tail width + 30µm).

81

Figure 5.19: MCML 2x Inverter Block Layout with Pcells and Routing

Figure 5.20: MCML 2x Inverter Full Routed Layout with All Layers and Pathing

As with the 1x inverter, the layout is kept symmetric and the tail transistor contains

multiple ground routing paths for even current flow over the wider device.

5.4.3 – 4x Inverter Layout

The layout for the 4x MCML Inverter follows the same design methodology as the first

two sizing iterations. Again, the height of the standard cell is fixed at 36.15µm and the

rails are designed with the same sizing and height dimensions. The tail transistor of the

4x inverter is 120µm wide and following the same sizing decision as the 2x inverter, the

82

overall width for the cell is set to 150µm. Even with the large layout of the 4x device,

additional metal levels are not required due to the simple nature of the MCML inverter.

As a result, the final layout for the 4x MCML appears similar to that of the smaller drive

strength inverters. Figure 5.21 shows the block layout with Pcells and routing visible and

Figure 5.22 shows the final full layout for the 4x inverter where all transistor layers, vias,

and pathing are visible.

Figure 5.21: MCML 4x Inverter Block Layout with Pcells and Routing

Figure 5.22: MCML 4x Inverter Full Routed Layout with All Layers and Pathing

The elongated nature of the NMOS transistors required a small path around one of the

devices for biasing the tail current transistor. As with the previous iterations, additional

paths from the tail transistor to ground are added for even current flow and the PMOS

devices are connected to Vdd with two path lines for smoother current flow across the

device and lower overall impedance from wiring to ensure that the devices perform like

the schematic simulations.

83

Each inverter utilized a mix of auto and manual routing where necessary. The

auto routing took care of non-via connections for the I/O pins where the final transistor

connections and power routing all took place by hand following the same principles and

guidelines. The same process steps and constraints are kept in mind when developing the

NAND gate layouts as well.

5.5 – MCML NAND Gate Layout

The layouts for the MCML NAND Gate standard cells follow the same guidelines as the

MCML inverter. The height remains fixed at 36.15µm and the width is variable and set to

tail transistor width plus 30µm for similarity in sizing with the inverter cells. The more

complex nature of the NAND gate in MCML requires the metal 2 layer to be utilized for

some of the routing to meet the desired dimensions. The number of transistors in the

NAND gate make the height of the standard cell the limiting factor and main challenge in

routing. Using metal 2 allows for the layout to remain compact but adds fabrication

complexity. As with the inverters, the NAND gate layouts are developed without the

current biasing circuitry as in implantation, biasing circuitry would only be required

every few cells and would add to overall complexity if implemented in every gate of a

larger system.

5.5.1– 1x NAND Gate Layout

The 1x NAND gate uses a pr boundary for the layout of 36.15µm by 60µm. This width

fits the arbitrary specification of setting the standard cell width to tail width plus 30µm.

The process follows the same steps as the inverter layouts with a more complicated

layout due to the added components necessary for a two input gate. The same Pcells from

the ami06 NCSU library are used for the NMOS and PMOS transistors. The rail sizing

84

and dimensions match that of the inverter layouts so that the standard cells are compatible

when implemented together or in a library. Figure 5.23 shows the block layout of the 1x

NAND gate with routing and paths. Figure 5.24 shows the final layout with all paths and

layers visible for each component. Due to the non-symmetric nature of the NAND gate,

the layout cannot be kept exactly symmetric and a small metal2 layer is required to allow

for all necessary transistor connections. The height begins to cause some challenges in

layout already with the nature of the NAND gate and one long path had to be created to

connect the „b‟ input transistors together. The PMOS load transistors also reflect the

width differences explored during schematic simulation. Extra power routing paths are

added to allow for lower impedance and uniform current flow through the device. Note

that each layout view contains visual rulers for scaling reference.

Figure 5.23: MCML 1x NAND Gate Block Layout with Pcells and Routing

85

Figure 5.24: MCML 1x NAND Gate Full Routed Layout with All Layers & Pathing

5.5.2 – 2x NAND Gate Layout

The 2x NAND gate layout for the MCML standard cell library takes the same

specifications into consideration during development. The width of the cell is set to 90µm

to fit the increased tail transistor that has a width of 60µm. As the NAND gate cells get

larger, more layout challenges come into play and slightly more metal2 is used as a

result. With all rails and height dimensions the same as the 1x NAND gate and all

inverters to meet standard cell requirements. Figure 5.25 shows the 2x NAND gate block

layout with Pcells and pathing routes visible. Figure 5.26 depicts the final layout for the

2x NAND gate with all transistor layers and routing aspects visible. For this layout,

metal2 is used to connect the two „b‟ input transistors and the path stretches across much

of the width of the layout. The rest of the pathing for the layout was able to be kept at the

lower metal1 layer to keep the design simple.

86

Figure 5.25: MCML 2x NAND Gate Block Layout with Pcells and Routing

Figure 5.26: MCML 2x NAND Gate Full Routed Layout with All Layers & Pathing

The small NMOS transistors allow for comfortable spacing between the devices on this

layout. The larger dimensions across all devices for the 4x case cause more encroachment

when following the same sizing guidelines.

5.5.3 – 4x NAND Gate Layout

The MCML layout for the 4x NAND gate sets a cell width to 150µm to accommodate the

larger 120µm tail current transistor. The added width for the other transistors cause the 30

micron cushion to create a denser layout and more metal2 is used to allow for the same

fitting of overall dimensions and remain comparable to the 4x inverter layout. Figure 5.27

87

shows the block view with routing connections of the 4x NAND gate where each block

represents a Pcell used for a transistor or via. Figure 5.28 shows the final layout for the

MCML 4x NAND gate where all layers for transistors, pathing, and routing are shown.

Figure 5.27: MCML 4x NAND Gate Block Layout with Pcells and Routing

Figure 5.28: MCML 4x NAND Gate Full Routed Layout with All Layers & Pathing

As mentioned, the increased widths of all devices cause a denser final layout for the 4x

NAND gate. As a result metal2 had to be used in more places to fit the same sizing

dimensions. Clever positioning and via use allows for these layers to be kept minimal in

size and maintain circuit functionality. As with the wider layouts developed so far, the

wider transistors contain more power connections to achieve uniform current flow

through the device and maintain the performance of the schematic level simulations.

5.6 – MCML Layout Remarks

The MCML layouts developed for the 1x, 2x, and 4x versions of the Inverter and NAND

gate all meet the sizing criteria for standard cells. The height matches with other standard

88

cells that utilize the ami06 technology and are fixed at 36.15µm. The width its variable

and kept uniform between the inverters and NAND gates with the exception of the 1x

sizing. Each cell is compatible with existing standard cells and fit onto a grid where those

height guidelines are utilized. The layouts only need the metal1 layer for pathing with

exception of small routes on the 2x and 4x NAND gates. This keeps the design simple

and minimized difficulty in fabrication of these devices. Though optimization is not

achievable with hand layouts, symmetry and wire impedance were kept in mind

throughout the development of the standard cells to create layouts that perform like their

schematic counterparts. With the completed layouts, the next step involves overwriting

existing standard cell layouts such that the inverter and NAND gate cells utilize the

MCML logic family without having to redesign, reprogram, and rescript, an entire library

from the ground up. With the standard cell layouts of MCML complete, the remaining

tests speak towards the low noise and high frequency performance capabilities of MCML

and compare the results to equivalent CMOS devices.

Additional information regarding more tutorial based information to supplement

existing works and the creation and settings of configuration files that helped develop the

MCML standard cell layouts can be found in Appendix A. Additional information

includes ensuring Pcell linking matches with the schematic device selection and the small

schematic modifications necessary to allow for rapid transition from schematic to layout.

Since the compilation tools for using standard cells only require the size of the cell and

I/O positions, conformity to the library is ensured and the fixed height guarantees that the

cells can snap onto the grid created when developing a large system with standard cells.

89

5.7 – MCML Ring Oscillator

This section examines MCML‟s suitability for quiet, fast digital circuitry. A ring

oscillator is a common bench marker for this test as one can derive speed and noise

performance from the oscillator operation. The circuits developed for this test utilize the

1x drive MCML inverter developed and detailed in Section 5.2. Before developing a

large scale ring oscillator, tests are performed to ensure the validity of prior conclusions

and examine a couple gates connected together.

5.7.1 – MCML Gate Chaining Proof of Concept

To verify the principles discussed throughout the chapter and ensure that the MCML

gates can work together, a test of three 1x inverters in series is performed to verify

consistent operation across each gate. The same current mirror control circuitry is used

here and since each inverter will be of identical size, the biasing circuitry controls every

tail current source in the inverter chain. The associated schematic for the three inverter

chain is shown in Figure 5.29. Note that each inverter utilizes the same biasing network

and parameterized variables. Each inverter is configured to be the same size during

simulation and the 1x inverter sizings and biases are used.

Figure 5.29: Three 1x MCML Inverters in Series for Concept Testing

90

This inverter network operates in series with no feedback into the first inverter to

examine how the gates perform and swing when connected together. The desired voltage

swings for these inverters should range from the 3.3V Vdd rail to around 1.8V, or the

minimum value of the input. To show proof of concept before creating a ring, voltages at

each stage should remain stable and within the established swing boundaries. Figure 5.30

shows the 3 stage open-ended inverter chain simulation. Note that since the gain is

greater than one, the signal squares off as stages progress but values remain within the

designed minimum bound.

Figure 5.30: Open-Ended Three 1x MCML Inverter Chain Logical Test Results

The output of each stage ranges from 3.3V to 1.8V as desired and remains steady over

multiple periods of operation. For examination of low noise operation, the stage currents

are explored in Figure 5.31.

91

Figure 5.31: Open-Ended Three 1x MCML Inverter Chain with Current Data

The first stage current performs identically to that of the standalone inverter examined

previously where the current follows the inverse of the input. Both the second and third

stages increase nominally in current by about 200nA and remain steady within 20-25nA

with 50nA spikes during switches between stages. The first stage current is still affected

by the ideal nature of simulated rails. The second and third stages show realistic results

where their inputs are provided from another gate. The fact that both stages keep virtually

identical currents with one another and remain constant within 10s of nA demonstrates

the noiseless nature of MCML and serves as proof of concept for developing a larger

chain of gates and shows the compatibility of the MCML cells designed.

 With successful results in an open ended chain of MCML inverters, the next proof

of concept stage involves placing the same three inverters in a loop that act as a mini ring

oscillator and examining the stability of the device operation. Symbols are created for the

inverter for ease of development and clean schematic design. The same current biasing

system used for each gate so far, is used for the oscillator as well. Initial conditions are

also set to the current max and min of the inputs used so far. Figure 5.32 shows the

92

symbolic three stage ring oscillator with initial condition settings visible on the starting

node. Note that the initial conditions are set to the minimum (1.8V) and maximum (2.6V)

inputs used in single gate simulation.

Figure 5.32: Three Stage MCML Ring Oscillator Concept Test

The same sizing parameters used for the 1x inverter are used for each stage of the ring

oscillator test. The simulated results for the small ring oscillator aim to show perpetual

stability in operation where steady state operation remains in control and constant in

voltage swing. Figure 5.33 shows the simulated results for the small oscillator. Note that

the voltage swing is only 0.8V due to the short nature of the chain. The system does not

have enough time to swing fully with a three gate chain. However, the stability between

each stage during operation shows that a ring oscillator is feasible with the inverters

developed. The fact that each stage remains consistent in period and voltage swing

demonstrates that a larger ring oscillator with many stages can be designed with the same

MCML inverters and perform with stability.

93

Figure 5.33: Three Stage MCML Ring Oscillator Output Results

The 0.8V swing compared to the observed 1.5V swing so far is a non-issue. The short

chain limits the time the inverter has to fully swing and for a longer chain the expectation

is that of a more square result with a higher voltage swing, comparable to that of the

single gate simulations. The stability in a connected loop though shows proof of concept

for the ring oscillator using the MCML inverters designed here.

5.7.2 – MCML Ring Oscillator Design and Test

With chained operation verified and tested, a ring oscillator with many stages can be

developed with the expectation of steady state stability. The goal of the ring oscillator is

to examine speed capabilities of MCML and compare with CMOS results of a fabricated

ring oscillator in the SCMOSC5 technology. Mosis created a 31 stage ring oscillator

using CMOS inverters and tested the fabricated result. Since the dimensions of these

gates are unknown and the MCML oscillator remains in a simulation state, the

comparison is not ideal but allows for light to be shed on the effectiveness of the MCML

design. For better matching with the Mosis CMOS results, the ring oscillator designed in

94

MCML is also kept to 31 stages. Figure 5.34 shows the block diagram view of the ring

oscillator.

Figure 5.34: 31-Stage Ring Oscillator Block Diagram Schematic

A symbol for the MCML inverter was created to allow for stamping down of inverters for

the 31-stage oscillator, allowing for more rapid design. The nodes for each block are

labeled such that wires don‟t need to be drawn across the length of the schematic. Initial

conditions are set at the origin node identical to the three stage oscillator test. Figure 5.35

shows results inverted and non-inverted output during steady state oscillation of the 31-

stage device. The labels on each plot indicated the time at which the peaks take place.

Taking a full period of the signal allows for calculation of the operational frequency of

the oscillator where the frequency is determined by how long it takes the oscillator to

return to its original value.

95

Figure 5.35: Steady State Peaks of the 31-Stage Ring Oscillator

Since the ring oscillator contains an odd number of gates, one cycle of signal through the

system inverts the input and the next cycle returns it to its original value. This means that

for a 31-stage ring oscillator, the signal must travel through 62 gates to return to its

original value and complete one period of operation. The sizings for each inverter follow

the 1x parameters detailed in Table 5.1. The peaks occur every 39.5ns which over the

course of 62 gates, indicates that it takes about 0.637ns per gate for the signal to transfer.

This yields a total operating speed of 1.57GHz. The Mosis simulation for the CMOS 31-

stage oscillator yielded an operation at 150.35MHz. This shows the MCML device

operating approximately 10 times faster than its CMOS counterpart. This speaks

favorably to the high speed and high frequency capabilities of MCML devices over

CMOS even despite the fact that the MCML remains in simulated state compared to the

fabricated CMOS device. The constant current trends that were explored on the 3-stage

proof of concept example hold for the 31-stage ring oscillator as well which show the

quiet operation of MCML devices. These results speak towards two of the major

advantages of MCML over CMOS in select applications. The results from the chapter are

96

summarized in Section 5.8 to place all relevant data in the same place with a more

readable format.

5.8 – MCML Results Summary

This section tabulates the numerical results from Chapter 5 into a readable table for

overall viewing ease and analysis. Results include comparisons in performance between

the inverters and NAND gates for all three sizes developed over the course of the thesis.

Table 5.7 and Table 5.8 show the MCML inverter and MCML NAND gate results

ranging from power consumption and output swing voltages.

Table 5.7: Inverter Results Summary Detailing Simulated Operation

Gate Size Voutmin Voutmax Vswing Current Power

1x Inv 1.80 V 3.3 V 1.50 V 20.13 µA 66.43 µW

2x Inv 1.78 V 3.3 V 1.52 V 40.34 µA 133.12 µW

4x Inv 1.80 V 3.3 V 1.50 V 80.76 µA 266.51 µW

Table 5.8: NAND Gate Results Summary Detailing Simulated Operation

Gate Size Voutmin Voutmax Vswing Current Power

1x NAND 1.78 V 3.3 V 1.52 V 20.15 µA 66.50 µW

2x NAND 1.79 V 3.3 V 1.51 V 40.38 µA 133.25 µW

4x NAND 1.82 V 3.3 V 1.48 V 80.84 µA 266.77 µW

These results summarize the consistent operation detailed in the previous sections of the

thesis. The swings of each device and device size remain consistent and the current

doubling of each device size is nearly perfect. The consistency in swings between the

inverter and NAND gate show the compatibility between the cells in the library and the

ability for all gates to function together and provide necessary signals to each other

regardless of sizing requirements. Further testing shows MCML‟s constant power

dissipation at any frequency. Frequency is swept in decades across six orders of

magnitude and the current and power dissipation of the devices are compared. Table 5.9

97

shows the results of the frequency sweep for the inverter and Table 5.10 shows the results

of the same frequency sweep range for the MCML NAND gate. The tests for both gates

take place using the 1x baseline sizings of each device.

Table 5.9: Frequency Sweep for the 1x MCML Inverter

Frequency Current Power Vswing

1 kHz 20.13 µA 66.43 µW 1.55 V

10 kHz 20.13 µA 66.43 µW 1.55 V

100 kHz 20.13 µA 66.43 µW 1.55 V

1 MHz 20.13 µA 66.43 µW 1.55 V

10 MHz 20.12 µA 66.40 µW 1.58 V

100 MHz 20.13 µA 66.43 µW 1.70 V*

1 GHz 20.28 µA 66.92 µW 0.37 V*

Table 5.10: Frequency Sweep for the 1x MCML NAND Gate

Frequency Current Power Vswing

1 kHz 20.14 µA 66.46 µW 1.52 V

10 kHz 20.14 µA 66.46 µW 1.52 V

100 kHz 20.14 µA 66.46 µW 1.52 V

1 MHz 20.14 µA 66.46 µW 1.52 V

10 MHz 20.15 µA 66.50 µW 1.51 V

100 MHz 20.18 µA 66.59 µW 0.70 V*

1 GHz 20.57 µA 67.88 µW 0.10 V*

The ideal current sources and rails involved in the simulation of a single gate cause the

irregular voltage swings on the high frequency operation. These data points are indicated

with a „*‟ to indicate this effect. However, even with that irregular operation and logical

function degraded, the power still remains consistent due to constant current across six

orders of magnitude in frequency and in realistic settings this trend only improves.

The results from Section 5.7 show the capability of MCML to perform at a higher

frequency than equivalent CMOS circuitry using the same technology. Granted the

results of fabrication versus simulation will allow for fluctuation but not nearly on an

order of magnitude that would impact the conclusion from the results. The results show

98

that the major goals of MCML operation are achieved with quiet operation and constant

power across all frequencies. This makes MCML well suited for mixed signal

applications. The comparison in operation for high frequency devices shows MCML over

CMOS in the ring oscillator test making MCML a better candidate for high frequency

operation. Through the open ended inverter chain and ring oscillator designs, the

noiseless nature of MCML is validated for these designs through the constant current

operation between gates and at any switching frequency. The standard cell layouts meet

requirements for the standard cell library and meet compatibility needs with the

development tools. This accomplishes the goals outlined for the thesis and provides the

necessary fundamental knowledge to build upon or utilize MCML or the library for a

designer‟s needs.

99

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 – Summary

MOS Current Mode Logic provides an alternative to conventional CMOS technology for

mixed signal applications due to the quiet nature of the circuit‟s operation. The results

show that the MCML inverters and NAND gates of current variations 1x, 2x, and 4x

perform as expected from MCML theory and the constant power dissipation across all

frequencies demonstrates the quiet nature of MCML and the standard cells developed.

During connected gate simulations, current remains constant within ~20nA during steady

state switching operation which demonstrates the low noise nature of the MCML cells

designed for this thesis. A 31-stage ring oscillator test demonstrates the superior

frequency performance MCML provides over an equivalent CMOS system. The layouts

developed over the course of the thesis meet the fixed height requirements of standard

cells and as a result, are compatible with existing libraries that use a grid size of

36.15µm. The standard cells developed and the MCML theory discussed throughout the

thesis create a fundamental knowledge platform that allows for dozens of theses or

projects to build upon or extend the work developed here. The end result is to make

MCML more accessible for designers and engineers, specifically in an academic

environment. For ease of use, the topics covered are broad and the results are well

explored to ensure that subsequent work can rapidly recreate results or utilize the

fundamentals to explore their own applications in MCML.

100

6.2 – Future Work

Chapter 4 discussed optimization techniques in general and the thoughts associated with

each type of optimization technique. Projects and theses can explore any one of these

techniques with relation to MCML or the standard cell library and perform development

on creating specifically optimized cells. Another option involves developing optimization

using multiple techniques at a shallower level and creating a metric of performance for

the cells and determining which technique proves most effective in overall device

performance.

Layout work has been pursued throughout the course of this thesis and with tight

deadlines and I/O Pad issues; final tape out files could not be submitted. However,

layouts for both 7rf technology and SCMOS technology have been developed and are in a

position where either technology could be utilized for tape out. The 7rf technology

layouts include an MCML and CMOS inverter built from minimally sized components

and further development of those layouts and chip tape out can provide a useful

comparison between MCML and CMOS devices. The SCMOS layouts developed are for

the standard cell library and as a result are constrained on net dimensions and rail sizing.

However, the layouts could be simulated, modified, and taped out for analysis for these

cells as well. Other cells could also be developed and taped out using similar processes

and the layouts from this thesis as a reference along the way.

The MCML current oscillations are presented and discussed in Chapter 6. Control

circuitry additions or replacements could provide a smoother signal control with

robustness to limit both the signal noise on the lower current devices and the steady

current oscillation present in the simulations. Musicer presents some forms of control

101

circuitry that assist in controlling the MCML gate biases for smoother operation [3].

Control circuitry ensures accurate voltages for each desired signal and aids in controlling

the overall voltage swing the gate would have as well. Control circuitry for the tail

biasing current and potential Pbias control was also experimented with. Both avenues can

be expanded upon and optimized depending on the application. Control circuitry can be

developed and simulated for comparative results with the non-controlled MCML devices

and various control methods analyzed to see which is most important for consistent

operation.

Standard cell libraries are effectively limitless in the iterations that can be

developed on a cell to cell basis and the sheer number of cells in a library can always be

increased as well. More variations of current capabilities for existing cells and other

logical cells should be developed in MCML to provide a more comprehensive library.

Though the nature of MCML allows for the cells developed to provide for any logical

function to be implemented, other standard devices should be included as well ranging

from flip-flops to Muxes etc. Following the procedures and development techniques

highlighted throughout this thesis should hopefully reduce the development time required

for a standard cell and allow the library to continue to grow over the course of further

projects or theses.

Chapter 3 discusses a couple applications of MCML for modern technical

systems. This research aims to shed more light on the potential avenues where MCML

device can thrive over CMOS or other logic family counterparts. That chapter shows the

reader potential research applications involving MCML in developing a more specialized

system for a narrow purpose. The MCML theory provided throughout this thesis serves

102

as a knowledge baseline where applications and research can build upon these ideas and

explore specific uses suited for MCML devices.

Any of these future work possibilities can serve as a suitable project or thesis for

development. Creating the base that allows for further research in any direction allows

this thesis to serve as inspiration for ideas that build upon this foundation. Other ideas

and specialized applications are available to MCML as well, but this highlights a few that

are directly related to the work developed in this thesis and build upon and expand the

base of knowledge and library created. In that light, dozens of projects or theses could be

developed from the ideas presented and should be pursued to further knowledge in

MCML and continue to shed light on possible applications of conventional approaches,

including CMOS devices.

103

WORK CITED

[1] B. Davari. et al. “CMOS Scaling for High Performance and Low Power – The Next

Ten Years”. Proceedings of the IEEE, vol. 3, no. 4, pp. 595-606, April 1995.

[2] M. Mizuno et al., “A GHz MOS Adaptive Pipeline Technique Using MOS Current-

Mode Logic”. IEEE Journal of Solid-State Circuits, vol. 31, no. 6, pp. 784-791,

June 1996.

[3] J. Musicer, “An Analysis of MOS Current Mode Logic for Low Power and High

Performance Digital Logic,” M.S. thesis, Department of Electrical Engineering

and Computer Science, U.C. Berkeley, Berkeley, CA, 2000.

[4] A. Cevrero et al., “Power-Gated MOS Current Mode Logic (PG-MCML): a Power

Aware DPS-Resistant Standard Cell Library”. DAC 2011, pp. 1014-1019, June 5-

10 2011.

[5] F. Cannillo, C. Toumazou, T. Sverre Lande. “Nanopower Subthreshold MCML in

Submicrometer CMOS Technology”. IEEE Transactions on Circuits and Systems,

vol. 56, no. 8, pp. 1598-1611, August 2009.

[6] M. Yamashina et al., “A Low-Supply Voltage GHz MOS Integrated Circuit for

Mobile Computing Systems”. IEEE Symposium on Low Power Electronics,

pp.80-81, 1994.

[7] J. Walker. et al. “Optimizing electronic standard cell libraries for variability tolerance

through the nano-CMOS grid”. Philosophical Transactions of the Royal Society,

pp. 3967-3981, 2010.

[8] A. Martinez, S. Dholakia, S. Bush, “Compilation of Standard-Cell Libraries,” IEEE

Journal of Solid-State Circuits, vol. sc-22, no. 2, pp. 190-197, April 1987.

[9] Wayne State University, “Layout Using Virtuoso Layout XL” ECE Department,

Wayne State University, 2010, Lab 3.

[10] T. Smilkstein, EE 431 Course Materials, Fall 2012.

104

 APPENDIX A

STANDARD CELL LIBRARY CADENCE SCHEMATICS & LAYOUTS

This Appendix details addition development details for the cells developed for the

standard cell library. It includes additional steps and guidance for simulation and layout

creation in Cadence and can serve as a general reference for the related Cadence modules

as well. Some additional windows and steps not explicitly detailed are highlighted here to

again create the base of knowledge necessary for development and provide users with a

helpful reference that minimizes the amount of outside research need be required to

perform similar development.

Additional simulation results and explicit parameterized setup for the simulations

performed over the course of this thesis are also present to allow for results to be more

readily recreated.

MCML Inverter Schematic Development

For simulation in ADE, the simulation must be set to Spectre. By default, this should be

the configuration and not require any changes. The model files utilized for the NMOS

and PMOS transistors in SCMOS C5 include the Spectre model files for the ami06

library. Setting the file paths for the model files occurs under the Setup>Model Files

window. There may be files presently on the list that are used for 7rf technology and can

be deleted. Including the paths from the ami06 library yields a final result as shown in

Figure A.1.

105

Figure A.1: Model File Configuration Window for SCMOS ami06 Transistors

Next, the stimuli for simulation should be configured to set up the circuit for operation.

The stimuli window can be selected through setup or the icon can be clicked to bring up

the stimuli. Each input or output pin created on the schematic appear as default disabled

on the stimuli list and are configured individually and independent of one another. Select

the desired pin to configure and use the on screen parameters to set up a signal. Note that

the analogLib library must be included in the overall library hierarchy to have parameter

values appear in the stimuli window. The configuration windows for each of the MCML

inverter stimuli pins are shown in Figure A.2 and Figure A.3. Note that vdd appears

under the „Global Sources‟ radio button and all other input pins appear under the „Inputs‟

radio button.

106

Figure A.2: Stimuli Windows for vdd and Pbias – Both Use DC Voltage Functions

107

Figure A.3: Stimuli Windows for the In & !In Signals – The Signals are Complements

Once the stimuli are configured, the simulation conditions must be set. The button at

the top of the right hand side of the window allows for the final simulation setup step

before running. For the inverter simulations, a transient simulation is used and set to 1ms

to allow for a handful of switching operations to occur. The simulation could be run at

this stage but Cadence needs to know what signals to plot so selecting the Outputs>To Be

Plotted>Select on Schematic option brings the schematic to the front window where any

mouse clicks will select a node for probing. Clicking on wires or the I/O pins selects a

node for voltage probing. Selecting a terminal of a device (drain of a transistor) or the

device itself will allow current measurement for current flowing into the selected terminal

or current measurement for each terminal on the device respectively. Nodes and terminals

that are selected become illuminated on the schematic to verify correct selection. A

108

sample highlighted schematic for the inverter is shown in Figure A.4 with associated pin

list also depicting highlights. Once all desired terminals are selected, pressing escape will

toggle off the selection of nodes.

Figure A.4: Highlighted MCML Inverter Schematic with Highlighted Pin List

Now the simulation can be run by hitting the button on either the ADE L window or

the added toolbar in the schematic view. Figure A.5 shows the final setup window in

ADE L before running the simulation.

109

Figure A.5: Final ADE L Window Before Running Simulation

A successful simulation run opens up a plotting window automatically with all the signals

selected in the plotting window. There is a color coded key on the right hand side of the

simulation window that labels each signal and allows toggling on and off the view of a

particular signal. Clicking the name of a signal bolds the signal in the graphical view and

one can bold multiple signals using control or shift. Signals can be sent to separate

plotting panes or windows through options present when the name of a signal is right

clicked. Similar procedural steps are followed for setting up and developing the NAND

gates as well.

 Figure A.6 shows an additional operational graph of the 4x inverter with the

inverted input and output signals present in the result as well. This shows the clean

operation of the MCML inverter and the symmetric nature of the device ensures the

mirrored performance on the positive and negative output results.

110

Figure A.6: 4x Inverter Full Logical Performance of Inverter/Buffer

MCML NAND Gate Schematic Development

The simulations for the NAND gate take place in ADE L like the inverters. The NAND

gate is a two input device where both inputs must have their logical inverse provided to

the system as well. Figure A.7, Figure A.8, and Figure A.9 show the stimuli windows for

the NAND gate signals. The Vdd and Pbias signals are the same as for the inverter but

the input logical signals are square wave pulses for clear logical operation.

111

Figure A.7: Vdd and Pbias Stimuli Windows for the MCML NAND Gates

Figure A.8: A and !A Stimuli Windows for the MCML NAND Gates

112

Figure A.9: B and !B Stimuli Windows for the MCML NAND Gates

The final parameter window is shown in Figure A.10. Note that populating the design

variable list occurs by selecting Variables>Copy From Cellview. Values can then be

entered in the value field for each variable before simulation.

113

Figure A.10: Final Parameter Window in ADE L for NAND Gate Simulation

The fact that MCML devices output a signal and its inverse (and take in a signal and its

inverse) allow for full logical performance to be examined. Figure A.11 shows a sample

NAND gate that is highlighted for signal examination. The selected terminals and nodes

provide full logical performance data.

Figure A.11: Highlighted NAND Gate Schematic with Highlighted Pin List

114

Full logical performance ensures that the gates perform well for either output regardless

of the focus of the gate (i.e. NAND operation). This allows for gates to be chained

together where both outputs would be connected to the next gate in the sequence. In other

words, the output and its inverse possess the same voltage swing and performance

properties that allow interfacing between the MCML gates developed. Figure A.12,

Figure A.13, and Figure A.14 show the full logical performance of the 1x, 2x, and 4x

NAND gates respectively. Note that each gate possesses the same output swing for the

same input signal. This again speaks to the potential for interfacing gates together and

ensuring correct logical performance through a network of MCML devices.

Figure A.12: 1x MCML NAND Gate Full Logical Performance

115

Figure A.13: 2x MCML NAND Gate Full Logical Performance

Figure A.14: 4x MCML NAND Gate Full Logical Performance

MCML Control Circuitry Development

Basic control circuitry for the MCML gates was also explored when trying to achieve

correct simulations. The simple current biasing network detailed in Chapter 5

automatically biases the tail current transistor voltage based on the reference current. This

allows for accurate current setting through the MCML gate. Since possible future work in

the area includes exploration into control circuitry, these building blocks could prove

useful for beginning study or development in the area.

116

 The other control circuitry method explored and eventually disregarded was

biasing circuitry for the Pbias signal. The idea was to make a network that would set the

gate voltages for the PMOS load transistors automatically and could shift these

resistances if an output voltage deviated above or below the desired value. The current

biasing ended up providing enough stability for these not to be implemented and in fact,

PMOS gate voltages were kept at 0V for the cells developed in this thesis. But precise

systems or larger applications may benefit from biasing circuitry for the loads. Figure

A.15 details the early attempt at a control circuit for the PMOS loads.

Figure A.15: Dual Differential Pbias Control Circuitry Attempt

This circuit was meant to contain two sets of differential paths that would shift based on

the desired input voltages. The transistor dimensions of the control circuitry were meant

to match that of the actual circuitry for better matching between the control and system.

Here, the circuit is meant to lower the Pbias value if the voltage drop across the load

transistors is too high and raise the bias voltage if the drop is not high enough. The

biasing would be set on the control circuitry and output the biasing result to the rest of the

system. Figure A.16 shows a symbolic representation of the control circuitry for

schematic placement.

117

Figure A.16: MCML Pbias Control Circuitry Symbol

In practice, the control circuitry was setting the Pbias to around 1.1V which was close to

the desired value at the time. However, once current control was implemented and the

range of input signals was modified, there was no longer a need for the biasing circuitry

for the load transistors. However, benefits can still be achieved for MCML devices

through exploration of control circuitry. There are countless methods of implementing

control circuitry to achieve desired signal control or stability. A characterization and

comparison of different control circuitry types could serve as a useful project and

reference for electronics development in this area.

MCML Layout Development

The layouts for the MCML standard cells involve taking the schematic form of the circuit

and creating the layout for the device on the silicon level. For the standard cells

developed in this thesis, the schematics needed modification before moving to layout to

allow for the automated tools to perform some of the work. First, the biasing circuitry

was removed and a pin was generated for the Ibias signal to come from external sources

outside the cell. Next, the variable width names used for quickly making simulation

118

changes had to be set to defined numbers so that the Pcells know what dimensions to

make the transistors. This results in a sample schematic like that shown in Figure A.17

for the MCML NAND gate. Note that the dimensions for the transistors are from the 1x

NAND gate parameters in Table 5.4 but are explicitly defined on the schematic level.

Figure A.17: 1x MCML NAND Gate Schematic Ready for Layout

When the Layout XL view is opened from schematic on a circuit with no existing layout,

Cadence prompts for a physical configuration. Select „Create New‟ for both options and

advance through the naming window where default values should be fine. The resulting

window comes up with blank regions for the transistor device fields. The „physical

library‟ should be selected in the blank field and the „nmos‟ and „pmos‟ views should be

chosen for the „physical cell‟ field. Since the layout is the only physical view available

for those cells, the layout should automatically populate into the final field and the line

119

should turn blue indicating successful pairing between schematic symbol and physical

layout. The resulting windows for a sample size of the MCML inverter and MCML

NAND gate are shown in Figure A.18 and Figure A.19 respectively. Once the settings

match the desired specifications, ensure to save the file and close it. Now the schematic is

ready to be turned into a silicon level layout.

Figure A.18: Physical Configuration Window for an MCML Inverter

120

Figure A.19: Physical Configuration Window for an MCML NAND Gate

First the transistors must be generated on the layout side using Pcells. This is done by

selecting Connectivity>Generate>All From Source. This places all I/O pins and

transistors into the layout view window. The alternative method involves layout by hand

using the same names of each transistor. The devices can be moved into the place and

route (pr) boundary which act as the dimensional limits for a cell and close to intended

regions by using Connectivity>Generate>Place as in Schematic. From there, manual

modifications to placement can be performed to create the intended layout. The next step

is routing everything together. Cadence has a built in auto route function but it usually

cannot perform all the routing that needs to be done on the circuit. Major layers for power

like Vdd and GND are created using the rectangle tool creation tool („r‟) and selecting a

121

layer. Connections between I/O pins are done by using the path creation tool („p‟) and

selecting the desired connection layer. Paths can contain joints and right angle turns if

desired. Clicking once after making a line path can allow for a change in direction and

clicking a second time in the same location as the first (or double click) finishes the path

creation. Some paths and connections cannot be made without vias however. Vias allow

for transition between layers in the silicon. The vias are automatic layer combinations

that perform this connection and can be accessed by using the via button on the tool

bar as shown in Figure A.20. Note that the toolbar section may need to be extended to

show the button explicitly otherwise it can be accessed from the same toolbar section

using the „>>‟ icon.

Figure A.20: Cadence Virtuoso Toolbar with ‘Create Via’ Button Indicated

To route devices together, perform the auto routing step by selecting

Route>Automatically Route and then selecting „Okay‟ on the subsequent window. The

default options on that window should be fine for automatic routing. Finally, use the path

tool and vias to finalize any pathing remaining on the circuit. Once everything is

connected, the final checks can be made to ensure correct operation with the schematic

by using layout versus schematic (LVS) or error checking to ensure fabrication validity

using Design Rule Checking (DRC).

 For standard cells, the layouts are then meant to be implemented into a library

where the Cadence tools can automatically use the customized layout for use in large

scale integration. This means that a single layout created for a gate can be used repeatedly

122

for a system containing any number of gates. To illustrate this point, the working 7rf

technology library was used to generate a 16x16 multiplier which consists of a few

hundred gates. Using standard cells, the final design can be generated quickly to create a

product like what is shown in Figure A.21.

Figure A.21: 16x16 Multiplier Layout Generated Using 7rf Standard Cells

The MCML Standard Cell layouts created in this thesis aim to replace the layouts in the

On Semiconductor ami06 technology so that similar outcomes can be created using

MCML for specialized applications in VLSI.

123

124

 APPENDIX B

CADENCE SETUP & SKILL SCRIPTS USED FOR DEVELOPMENT

Overview

This appendix shows some of the scripts and modifications required to run Cadence from

a personal directory without interfering with common resources. These procedures and

scripts should prove useful for any follow-up projects or theses that utilize Cadence and

would benefit from the ability to have Cadence files and scripts in an editable, personal

directory. Running Cadence in this manner allows for creation of new files, editing of

existing files, and should any destructive files actions occur inadvertently, the common

directories serve as a functioning backup so no net damage is done. This is the most ideal

way to run Cadence for development of this nature without allowing accounts to have

write permissions in community directories. Note that irrelevant commented portions of

scripts are removed for readability and commentary for important parts of each script is

provided when necessary and useful. The NCSU directory should be copied over into

your personal directory before editing scripts and to allow for that directory to be fully

editable. The changes described in the scripts look for various files from the NCSU folder

in the personal directory and should be copied over as the first step.

Cadence Setup Scripts

 cad-ncsu2.sh – File called to run the Cadence virtuoso tools. This is the file

called from your local directory to run the tools. The echo lines here are modified

to show that the correct file is being run. The output text displays in the terminal

once the script is called. The environmental variable CADDMM is defined here

which points to the local working directory for the Cadence tools. Note that

CADSETUPS utilizes the personal directory as well and is called in other scripts

as well. Note that this script calls the setup-ncsu2.sh file which in turn calls the

setup-cadence2.sh file. These file paths should be set to the working directory of

125

the Cadence install (your personal directory). Also note that the default bash file

may attempt to search for the common directory script first. This can be changed

by adding the path to your local directory below the line with the default search

path (the bash file searches bottom to top). Alternately, the tools can be started

from the personal directory by calling the file manually with the full path (for me

as /home/dmarusia/SKILLSCMOS/CadCommon/cad-ncsu2.sh) or the relative full

path from the terminal (for me as ./CadCommon/cad-ncsu2.sh). Either command

works equivalently but the latter requires the terminal to be cd‟d into the personal

local directory.

#!/bin/bash

Startup script for icfb with the cmrf7sf technologies

export CADPUB=/usr/cad_tools/cadence

export CADDMM=/home/dmarusia/SKILLSCMOS

export CADSETUPS=$CADDMM/CadCommon

echo "Running cad-ncsu2.sh - FIXED (DMM CUSTOM)"

Set up for the Cadence tools with NCSU technologies

source ${CADSETUPS}/setup-ncsu2.sh

reminds the user where they are...

echo "Working directory is" $PWD

We need the cdsLibMgr.il file in the startup directory!

Link it if it's not here already...

if [-e cdsLibMgr.il]

 then

 ln -s $CDK_DIR/cdssetup/cdsLibMgr.il .

 echo "cdsLibMgr.il LINKED USING MODIFIED cad-ncsu2.sh"

fi

Also link to the system-wide .cdsinit file

if [! -e .cdsinit] ; then

 ln -s $FIXED_LOCATION/cdsuser/.cdsinit .

 echo ".cdsinit LINKED USING MODIFIED cad-ncsu2.sh"

fi

You may want the class version of cds.lib. You need a copy of

this so you can modify it as you add your own libraries.

if [$?LOCAL_CADSETUP] ; then

 if [! -e cds.lib] ; then

 cp $FIXED_LOCATION/samples/cds.lib .

 echo "cds.lib COPIED from FIXED path:

/usr/cad_tools/cadence/installs/IC615/tools.lnx86/dfII/samples"

 fi

 echo "cad-ncsu2.sh local setup done"

fi

Fire up virtuoso, and pass any args through to the program

#icfb $argv ---- IC615 uses virtuoso

126

 echo "Starting Virtuoso"

virtuoso -64only $argv

 setup-ncsu2.sh – File called when cad-ncsu2.sh is run. Performs NCSU file

setups for Cadence. Here the „CADDMM‟ variable sets a path to my personal

working directory. An environmental variable of any name to the directory you

will run Cadence from. Note that the default CADPUB and CADSETUPS paths

remain intact since some of those locations should draw from configuration files

from the common directory. CDK_PUB was renamed from CDK_DIR to more

readably differentiate between the common directory and personal directory. The

echo of the final script line has an added custom setup text to verify that the

correct script is called when cad-ncsu2.sh is called and that echo line will appear

in the terminal window shortly before Cadence boots up. Note that this script is

for NCSU file configuration and ONSEMI C5 topology. The 7rf files would be

different with included paths but the personal variables modified would be the

same as here.

set the directories that have the basic setups

export CADPUB=/usr/cad_tools/cadence

export CADDMM=/home/dmarusia/SKILLSCMOS

export CADSETUPS=$CADDMM/CadCommon

set the location of the NCSU local directory

May be source of problem

echo "Next line in setup-ncsu2.sh may be a problem (creating filepath vars)"

#export FIXED_LOCATION=${CADPUB}/installs/IC615/tools.lnx86/dfII

export FIXED_LOCATION=${CADPUB}/NCSU/ncsu-cdk-1.6.0.beta

export CDK_PUB=${FIXED_LOCATION}

source the general Cadence setup file...

source $CADSETUPS/setup-cadence2.sh

Set CDK_DIR

export CDK_DIR=${CADDMM}/NCSU/ncsu-cdk-1.6.0.beta

Set CDS_SITE so that Cadence can find the cdsLibMgr.il, .cdsinit,

and .cdsenv in the CDK directory...

echo "Next lines in setup-ncsu2.sh may be a problem (CDS_SITE) Stuff"

ORIGINAL

#export CDS_SITE=${CDK_DIR}/cdsuser

#export CDS_SITE=${CDK_DIR}/samples:${CDS_SITE}

export CDS_SITE=${CDK_PUB}/cdsuser

export CDS_SITE=${CDK_PUB}/samples:${CDS_SITE}

unset base_dir uname

#---- End of Cadence NCSU Setup -------------------------------

#echo "You are now set up to run Cadence with the cmrf7sf packages."

These environmental variables are declared in cad-ncsu2.sh but

are re-listed here for readability and inspection without

requiring more files open to see the paths.

CDK_DIR set to the custom editable file

path here. This variable is grabbed by

other scripts that then propagate through

and include more files. This MUST be set

to your directory for full operation.

127

echo "You are now set up to run Cadence with the SCMOS setup. (CUSTOM SETUP - DMM)"

EOF

 setup-cadence2.sh – File utilized for Cadence setup and called by setup-ncsu2.sh.

No modifications here though it is important to note that this script sets up

Cadence prior to performing any NCSU file setup. Personal directory operation

should not require interaction with this file.

Startup script for basic Cadence. This does NOT set up specific NCSU

or AMI or TSMC things. For those, you need to set things up on your own...

echo Using the setup-cadence script from F2012 EE431

Set the base directory for the cadence software

export base_dir="/usr/cad_tools/cadence/installs"

echo "Running setup-cadence2.sh"

Set some configuration environment variables.

export CLS_CDSD_COMPATIBILITY_LOCKING=NO

export CDS_Netlisting_Mode=Analog

export SPECTRE_DEFAULTS=-E

export CDS_LOAD_ENV=CWDElseHome

export SKIP_CDS_DIALOG

set uname = "/bin/uname"

Point to each of the installation directories for the tool suites

export CDS=$base_dir/IC615 # Basic Cadence (i.e. IC tools)

export IC=$base_dir/IC615 # IC tools (composer, virtuoso, etc.)

export ICC=$base_dir/ICC11241 # ICC (ccar) tools

#export SOC=$base_dir/SOC81b # SOC Encounter place and route

#export SOC=$base_dir/EDI11 # SOC Encounter place and route

export EDI=$base_dir/EDI101 # EDI Encounter Digital Implementation System

#export RC=$base_dir/RC91 # RTL Compiler synthesis

#export RC=$base_dir/RC111 # RTL Compiler synthesis

export RC=$base_dir/RC101 # RTL Compiler synthesis

export MMSIM=$base_dir/MMSIM72base # Spectre analog simulation

export IUS=$base_dir/IUS82 # Verilog simulators

export ETS=$base_dir/ETS91 # Encounter Library Characterizer

export ASSURAHOME=$base_dir/ASSURA615 # ASSURA DRC

Set some environment variables for licensing

export CDS_LIC_FILE=5280@eelicensing.ee.calpoly.edu

export CDS_INST_DIR=$IC

128

export CDS_LIC_TIMEOUT=30

export TERM=$term

export LANG=C

update the shell's path to point to the tools

export PATH=$ETS/bin:${PATH}

export PATH=$RC/tools/bin:${PATH}

Added to get RTL compiler to run:

export PATH=$RC/bin:${PATH}

export PATH=$EDI/tools.lnx86/fe/bin/64bit:${PATH}

Added to get SOC Encounter to work.

Next line didn't work so went back to try to solve ELF64 error

#export PATH=/root/cadence/installs/SOC81/tools.lnx86/fe/bin/64bit

ELF64 error:

#export PATH=/root/cadence/installs/SOC81/tools.lnx86/bin

export PATH=$ASSURAHOME/tools/bin:${PATH}

export PATH=$ASSURAHOME/tools/assura/bin:${PATH}

export PATH=$ICC/tools/bin:${PATH}

export PATH=$ICC/tools/iccraft/bin:${PATH}

export PATH=$ICC/tools/dfII/bin:${PATH}

export PATH=$IUS/tools/bin:${PATH}

Added to get Verilog to work.

export PATH=$IUS/tools/dfII/bin:${PATH}

export PATH=$IC/tools/dfII/bin:${PATH}

export PATH=$IC/tools/bin:${PATH}

export PATH=$MMSIM/tools.lnx86/bin:${PATH}

export PATH=$MMSIM/tools.lnx86/bin/64bit:${PATH}

export PATH=$MMSIM/tools.lnx86/dfII/bin:${PATH}

export MMSIM_PATH=$MMSIM/tools/bin

export MMSIMHOME=$MMSIM

MAN FILES NOT PLACED TODO

if [$?MANPATH]; then

 export MANPATH=$IC/share/man:${MANPATH}

 export MANPATH=$IC/tools/man:${MANPATH}

else

 export MANPATH=$IC/share/man:${MANPATH}

 export MANPATH=$IC/tools/man:${MANPATH}

fi

if [$?LD_LIBRARY_PATH]; then

 export LD_LIBRARY_PATH=$ASSURAHOME/tools/lib:${LD_LIBRARY_PATH}

 export LD_LIBRARY_PATH=$ASSURAHOME/tools/assura/lib:${LD_LIBRARY_PATH}

 export LD_LIBRARY_PATH=$IUS/tools/lib:${LD_LIBRARY_PATH}

 export LD_LIBRARY_PATH=$IC/tools/lib:${LD_LIBRARY_PATH}

else

 export LD_LIBRARY_PATH=$ASSURAHOME/tools/lib:${LD_LIBRARY_PATH}

129

 export LD_LIBRARY_PATH=$ASSURAHOME/tools/assura/lib:${LD_LIBRARY_PATH}

 export LD_LIBRARY_PATH=$IUS/tools/lib:${LD_LIBRARY_PATH}

 export LD_LIBRARY_PATH=$IC/tools/lib:${LD_LIBRARY_PATH}

fi

echo Basic Cadence script finished

You're now ready to execute the Cadence tools!

For testing without NCSU files:

#virtuoso -64only $argv

Library Management Scripts

 cdslib – File utilized for including the paths to desired libraries within Cadence.

The important parts here for SCMOS operation include the NCSU_Analog_Parts

library, NCSU_Digital_Parts library, and the NCSU_TechLib_ami06 library.

These contain the files used to develop SCMOS layouts and further projects

building upon or taping out some of these designs must be sure to include these

files. The Analog_Parts library contains the transistor symbols and simulation

data for the development performed in this project, and the ami06 library contains

the layouts for those transistors when moving to layout development. The

configuration file should be set to use those layouts for the NCSU transistors to

allow for automated cell creation.

File Created by David Marusiak at Tue May 27 23:10:03 2014

assisted by CdsLibEditor

File Created by root at Mon Apr 28 18:22:27 2014

assisted by CdsLibEditor

File Created by root at Thu Dec 19 13:33:54 2012

DEFINE NCSU_Analog_Parts $CDK_DIR/lib/NCSU_Analog_Parts

DEFINE NCSU_Digital_Parts $CDK_DIR/lib/NCSU_Digital_Parts

Library added for layout cells for SCMOS transistors ##

DEFINE NCSU_TechLib_ami06 $CDK_DIR/lib/NCSU_TechLib_ami06

DEFINE NCSU_TechLib_ami16 $CDK_DIR/lib/NCSU_TechLib_ami16

###DEFINE analogLib $CDS/tools/dfII/etc/cdslib/artist/analogLib

DEFINE sbaLib $CDS/tools/dfII/etc/cdslib/artist/sbaLib

DEFINE basic $CDS/tools/dfII/etc/cdslib/basic DEFINE sample $CDS/tools/dfII/samples/cdslib/sample

DEFINE US_8ths $CDS/tools/dfII/etc/cdslib/sheets/US_8ths

DEFINE avTech /usr/cad_tools/cadence/installs/ASSURA615/tools/assura/etc/avtech/avTech

DEFINE analogLib /usr/cad_tools/cadence/installs/IC615/tools/dfII/etc/cdslib/artist/analogLib

Below are personal libraries created for development or testing.

DEFINE ThesisFinal /home/dmarusia/SKILLSCMOS/ThesisFinal

DEFINE SKILL_Name /home/dmarusia/SKILLSCMOS/TestLibraries/SKILL_Name

DEFINE SKILL_NameTest /home/dmarusia/SKILLSCMOS/TestLibraries/SKILL_NameTest

UNDEFINE SKILL_NameTest

130

DEFINE SKILL_NameTest /home/dmarusia/SKILLSCMOS/TestLibraries/SKILL_NameTest

DEFINE Tinaz /home/dmarusia/SKILLSCMOS/Tinaz #Removed by ddDeleteObj: DEFINE SCMOSlibs

/home/dmarusia/SKILLSCMOS/SCMOSlibs

DEFINE SCMOSlibsTanner /home/dmarusia/SKILLSCMOS/SCMOSlibsTanner

DEFINE OSU_stdcells_ami05 /usr/cad_tools/cadence/OSU/cdb2oa/OSU_stdcells_ami05

DEFINE cdsDefTechLib /usr/cad_tools/cadence/installs/IC615/tools/dfII/etc/cdsDefTechLib

 cdsinit – Lisp (or SKILL) file for performing SKILL files setups. This file is

integral in moving forward with getting SKILL up and running. The script adds

the file paths that each contains loadskill.il files in each subdirectory. Those files

then call the SKILL files related to their directory. Main important note with this

file is that the first line gets the CDK_DIR environmental variable from the shell.

This is a file path set previously in the scripts utilized to start Cadence. This

variable grab and the previous local directory settings allow for the rest of the

Cadence tools to load and spider through all the necessary files from the local

directory with only the few environmental variable changes detailed.

;; -*-Lisp-*-

;;

;; NCSU CDK Copyright (C) 2006 North Carolina State University

;;

(let

 ((LOCAL_CDK_DIR (getShellEnvVar "CDK_DIR")))

 (if LOCAL_CDK_DIR

 (if (not (boundp 'NCSU_CDK_LOADED))

 (let () ; CDK needs to be loaded, so load it.

 (setq NCSU_CDK_DIR LOCAL_CDK_DIR)

 (procedure (prependNCSUCDKInstallPath dir)

 (strcat NCSU_CDK_DIR "/" dir))

 (printf "Loading NCSU CDK 1.5.1 customizations...\n")

 (setq NCSU_newLayoutMenuLabels t)

 (putpropq (hiGetCIWindow) 96 "maxLayerPoolSize")

 (envSetVal "graphic" "drfPath" 'string

 (strcat NCSU_CDK_DIR "/cdssetup/display.drf"))

 (if (isFile (prependNCSUCDKInstallPath "cdssetup/cdsenv"))

 (envLoadVals

 ?envFile (prependNCSUCDKInstallPath "cdssetup/cdsenv")

 ?tool "ALL"))

 (if (isFile "~/.cdsenv")

 (envLoadVals

 ?envFile "~/.cdsenv"

 ?tool "ALL"))

131

 (let

 ((configFileList (list ; "aaConfig.il"

 ; "dmConfig.il"

 ; "dciConfig.il"

 ; "metConfig.il"

 ; "sysConfig.il"

 ; "uiConfig.il"

 ; "leConfig.il"

; "schConfig.il"

 "streamIn.il"

))

 (path (strcat ". ~ "

 (prependNCSUCDKInstallPath "skill/config_files")))

 (saveSkillPath (getSkillPath))

 file)

 (setSkillPath path)

 (foreach file configFileList

 (if (isFile file)

 (loadi file)))

 (setSkillPath saveSkillPath))

 (let

 ((bindKeyFileList (list

 "common_bindkeys.il"

))

 (path (strcat ". ~ "

 (prependNCSUCDKInstallPath "cdssetup")))

 (saveSkillPath (getSkillPath))

 file)

 (setSkillPath path)

 (foreach file bindKeyFileList

 (if (isFile file)

 (loadi file)))

 (setSkillPath saveSkillPath))

 (sstatus writeProtect nil)

 (let ((skillPathElements

 (list "." "~"

 (prependNCSUCDKInstallPath "skill")

 (prependNCSUCDKInstallPath "skill/cdf")

 (prependNCSUCDKInstallPath "skill/menus")

(prependNCSUCDKInstallPath "skill/menus/artist")

 (prependNCSUCDKInstallPath "skill/menus/ciw")

(prependNCSUCDKInstallPath "skill/menus/virtuoso")

 (prependNCSUCDKInstallPath "skill/misc")

 (prependNCSUCDKInstallPath "skill/pcells")

These lines spider through the local

directory originally defined from the

CDK_DIR variable and include all the

necessary SKILL files for the Cadence

tools.

Adding SKILL files into the network

should be as simple as adding another

install path line here and following the

same loadSkill.il file formatting as each

subdirectory does where each load files

then handles any other SKILL files in

that directory.

132

 (prependNCSUCDKInstallPath "techfile")))

 sPE)

 (foreach sPE skillPathElements

 (setSkillPath (cons sPE (getSkillPath)))))

 (if (not (boundp 'NCSU_skillAlreadyLoaded))

 (let ()

 (setq NCSU_skillAlreadyLoaded t)

 (printf "Loading NCSU SKILL routines...\n")

 (load (prependNCSUCDKInstallPath "skill/loadSkill.il"))))

 (envSetVal "graphic" "drfPath" 'string

 (strcat NCSU_CDK_DIR "/cdssetup/display.drf"))

 (setq lePlotTemplate

 (prependNCSUCDKInstallPath "cdssetup/layoutPlotTemplate"))

 (setq schPlotTemplate

 (prependNCSUCDKInstallPath "cdssetup/schPlotTemplate"))

 (unless (getShellEnvVar "SKIP_CDSLIB_MANAGER")

 (ddsOpenLibManager))

 (printf "Done loading NCSU_CDK customizations.\n")

)

 (printf "NCSU CDK already loaded.\n")

)

 ; you get to this let if NCSU_CDK_DIR is nil

 (let ()

 (printf "Environment variable CDK_DIR must be defined to use\n")

 (printf "the NCSU CDK. It is not defined in the calling environment\n")

 (printf "so the NCSU customizations will not be performed!\n"))))

