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ABSTRACT

Optimizing Lempel-Ziv Factorization for the GPU Architecture

Bryan Ching

Lossless data compression is used to reduce storage requirements, allowing for the

relief of I/O channels and better utilization of bandwidth. The Lempel-Ziv loss-

less compression algorithms form the basis for many of the most commonly used

compression schemes. General purpose computing on graphic processing units

(GPGPUs) allows us to take advantage of the massively parallel nature of GPUs

for computations other that their original purpose of rendering graphics. Our

work targets the use of GPUs for general lossless data compression. Specifically,

we developed and ported an algorithm that constructs the Lempel-Ziv factoriza-

tion directly on the GPU. Our implementation bypasses the sequential nature of

the LZ factorization and attempts to compute the factorization in parallel. By

breaking down the LZ factorization into what we call the PLZ, we are able to

outperform the fastest serial CPU implementations by up to 24x and perform

comparatively to a parallel multicore CPU implementation. To achieve these

speeds, our implementation outputted LZ factorizations that were on average

only 0.01 percent greater than the optimal solution that what could be computed

sequentially.

We are also able to reevaluate the fastest GPU suffix array construction al-

gorithm, which is needed to compute the LZ factorization. We are able to find

speedups of up to 5x over the fastest CPU implementations.
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CHAPTER 1

Introduction

Lossless data compression has the ability to reduce storage requirements, while

still maintaining the integrity of the original data. Several advantages can be

gained by reducing the size of data, including the relief of transfer across I/O

channels. Compression algorithms have a trade-off, in that they require an addi-

tional computation to be done on the original data before a compressed version

can be used. This can be computationally expensive and the cost to compress

might require too much processing or time. In many cases and applications, the

increase of bandwidth rates outweighs any other consideration, but the increase

in compression speeds would generally be helpful. This work takes a look into

speeding up those compression speeds by performing the compression directly on

a GPU, a graphics processing unit.

Applications and algorithms are beginning to be developed and ported to

utilize the relatively new general purpose computing (GPGPU) aspect of GPU

technology. GPGPUs allow applications to run computations unrelated to graph-

ics, while allowing for the exploitation of the massively parallel nature of GPUs.

GPGPUs are becoming increasingly popular for high performance computing,

and are often utilized in large clusters. GPGPUs are typically used as coproces-

sors, assisting the CPU by performing tasks assigned to it. Typically, all desktop

computers have some form of GPU; often, they are not always being used or are

underutilized. Developing an application that can run on the GPU allows us to
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make use of this underutilized hardware. Being faster than a CPU implementa-

tion is just an added bonus.

Our contribution is a Lempel-Ziv factorization, a lossless compression algo-

rithm, implementation that runs directly on the GPU. The first step of the factor-

ization is the construction of a suffix array. We reimplemented and reevaluated

the GPU suffix array construction algorithm by Deo and Keely [6]. Breaking

down the problem so that it can be done in parallel, we were able to find a solu-

tion that found speedups of 12-18x over the fastest single threaded CPU solution,

while only increasing the final compressed output by 0.01 percent.

This thesis is organized as follows. Chapter 2 defines GPU technology and the

Lempel-Ziv factorization problem. Chapter 3 describes our GPU implementation

of Lempel-Ziv factorization. Chapter 4 describes our evaluation and results.

Chapter 5 presents our conclusions. Finally, Chapter 6 discusses further steps

that could be taken.

2



CHAPTER 2

Background

2.1 GPU Architecture

2.1.1 CUDA

NVIDIA’s Compute Unified Device Architecture (CUDA) is the dominant pro-

prietary framework used to access and control NVIDIA GPUs. CUDA provides

the toolchain required to create applications that run on the GPU. As noted ear-

lier, GPUs are coprocessors to CPUs; CPUs must give the instructions to launch

a GPU kernel, the body of code that each thread on the GPU runs. The CUDA

engineer writes these kernels to be launched on the GPU.

There are various parameters that one can control when writing and launch-

ing a GPU kernel. The thread model and memory model are the most common of

these parameters. The thread model defines how many and in what configuration

a kernel launches its threads. There are four layers in the CUDA thread model:

the grid, the block, the thread, and the warp. The grid is composed of all the

CUDA threads, grouped into blocks. Various limits are imposed on the dimen-

sions and sizes of these grids and blocks. These limits depend on the compute

capability of the GPU, which closely coincides with the microarchitecture of the

GPU. When launching a kernel, the engineer specifies exactly how many blocks

should be launched and how many threads make up each block. Uncontrolled by
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the engineer, the warp is a group of threads that execute in lockstep.

The memory model defines the different memory types available to the layers

of the thread model. The first and largest is the global memory. It is the slowest

of all the memory types but is accessible from all of the threads. Global memory

is usually the advertised GPU memory size. Next is shared memory, which any

thread in a block can access. Shared memory is much faster than global memory,

but is limited in size per block. Lastly, registers are the fastest but are limited to

an individual thread. These limits are also dependant on the compute capability

of the GPU and the binary. The CUDA engineer usually tries to reduce the

number of accesses to global memory and make use of the faster shared memory

and registers.

2.1.2 Libraries and Parallel Primitives

A variety of libraries make development on CUDA more streamlined. Some pro-

vide a fast solution to a particular problem. Others provide layers of abstraction

to hide the complexity of CUDA programming. This includes the transfer of

memory and the thread model. In our implementation, we try and use libraries

whenever possible. First, these libraries have been developed over a long time by

people who are more familiar with the architecture and advanced optimization

techniques. Second, abstraction allows a problem to be continually optimized,

while presenting a common API to use. This allows us to somewhat future-proof

our implementation, since the libraries should be updated in the future against

newer CUDA versions and hardware. Lastly, the purpose of many libraries are

to provide solutions to parallel primitives.

Parallel primitives change the way a programmer looks at implementing a
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parallel algorithm on the GPU. Instead of having to create a totally new algo-

rithm specific for the GPU, one can change their program to be a collection of

parallel primitives. These parallel primitives are common operations that we see

in parallel algorithms across any architecture. Some very well known operations

are scans, like prefix sum, or reductions, such as finding the minimum or sum

of an array. Although these primitives may seem simple at first, there are many

optimizations used by these libraries to provide speed up. Many of these are

CUDA specific and a beginner to intermediate CUDA engineer are likely to not

know them.

One of the most widely used CUDA libraries is the Thrust [12] library, pro-

viding device-wide primitives. One of the key features of the Thrust library is

the interoperability of different architectures and technologies (CUDA, OpenMP,

TBB). Although this may be nice for portability, we decided to avoid the use of

Thrust and use the more CUDA-specific CUB library [17]. CUB provides ab-

stractions at all three layers of the CUDA thread model, the device, the block,

and the warp. CUB is more aware of CUDA features. That said, many of the

algorithms are shared between CUB and Thrust. We decided to choose CUB

because it is higher performing than Thrust [17] and contains specific features

unavailable in Thrust, like the primitives that work on the block and warp levels.

Some of the primitives that we use in our implementation include an inclusive

sum, device select, radix sort, and block reduce.

Another interesting library that we make use of is Modern GPU, MGPU [3].

More specifically we make use of its algorithm for merge sorting, as we will see

in our implementation in Section 3.1. One of the primary concerns when parallel

programming is how to load balance a problem across the threads. MGPU makes

use of a technique called Merge Path. A merge sort takes in two sorted arrays, A
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Figure 2.1: Merge Path partitioning scheme. Figure taken from [19]

and B, and outputs a final larger sorted array C with elements from both of the

original arrays. First, let us imagine a merge matrix, a matrix where each row

corresponds to an element from A and each column represents an element from

B. If we were to try and run the merge sort sequentially, we’d start at the top left

corner, and traverse the grid, moving right or down, depending on if A is greater

than B at a specific element. Merge Path realizes that a path of traversal, the

so-called merge path, is formed through the merge matrix during a merge sort.
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Merge Path runs diagonals through the merge matrix and finds their intersection

with the merge path. All elements on the diagonal before the intersection have a

less than relationship. We can use this fact to quickly find the intersection using

a binary sort. Using the intersections of the merge path, we now know which

groups of elements from A and B are responsible for specific sections of C. If we

use even divisions, we can then partition the work in a way that each thread is

responsible for a constant number of elements from C and know which elements

from A and B are required. Figure 2.1 shows an example merge matrix with a

merge path and divisions. We refer you to the original paper of [19] for a more

in-depth description of merge path.

There are some caveats when using these libraries. The first is that they

provide an additional dependency to your application. Sometimes these libraries

can be cumbersome to install on the host system. The next is that it is feasible

to write a higher performing code with specific knowledge of the application. For

example, knowing that part of the input array always appears in certain positions

in the merged output could be utilized by the programmer. We opt for a more

general approach at the cost of some potential performance improvement.

2.2 Compression

Compression, or more specifically data compression, is a field of computer science

that is rich with applications. Compression allows us to reduce the size of the

original data while still representing that original data. Compression techniques

can be categorized as either lossless or lossy. Lossless compression tries to find

repetitive or redundant patterns, while preserving all data allowing us to go back

and forth from a compressed state to an uncompressed state without any data
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loss. Lossless compression is often used to archive files but is also seen in many

other fields, like genetics and executables. On the other hand, lossy compression

tries to remove nonessential data from the source, often in a way that a human

cannot even notice. In turn, this allows lossy compression to compress more

than any lossless compression can since it is subjective what you can or cannot

notice and how much is acceptable. Lossy compression algorithms, in contrast

to lossless compression algorithms, do not preserve the original data, which now

cannot be recreated. Some of the more common lossy compression algorithms

are used as codecs to reduce video or audio sizes or as graphics formats. This

includes household names like mp3 or jpeg. The focus of our work is on the

Lempel-Ziv factorization, a lossless compression algorithm.

Let’s first take a step back and discuss some terminology involved in evaluat-

ing a compression algorithm. The ratio between the sizes of the original uncom-

pressed file and the compressed file is referred to as the compression ratio. The

compression ratio tells us how much smaller the file has become after compressing.

A high compression ratio indicates that the compressed file is much smaller than

the original. Next, the compression speed is how long it takes for a compression

algorithm to run. There is often a trade-off between the compression ratio and

compression speed. Usually, having a faster compression algorithm may result in

or is caused by having a smaller compression ratio. This works both ways. It is

important to note that different users might have different requirements, leading

them to choose one of these properties as more important than the other.

2.2.1 Lempel-Ziv

The seminal work on the Lempel-Ziv lossless compression algorithms is the orig-

inal paper authored by Lempel and Ziv in 1977 [26]. Their work, LZ77, built
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their final compressed output, called the LZ77 LZ factorization, by matching

with previously parsed input. LZ77 is used in combination with Huffman cod-

ing to form the popular DEFLATE algorithm [7]. The DEFLATE algorithm is

widely implemented and used; some of the most popular implementations include

gzip, 7zip, zip, and the PNG file format. Lempel and Ziv later modified their

algorithm into LZ78 which instead provided an explicit dictionary that could be

used for random lookup decompression [27]. LZ77 and LZ78 would become the

basis for a whole family of lossless data compression algorithms. Welch’s work,

LZW, improved the space efficiency of LZ78 by removing redundant characters

and introducing variable encoding [25]. LZW is used today in Unix compress

and in the GIF image format. LZSS improves on LZ77 by ensuring that the

references replacing redundant symbols are indeed shorter than what they are

replacing [24]. Today, it is used in popular archivers such as PKZip and RAR.

Other variants, including LZMA and LZSS, change some aspect of the original

algorithm to increase compression speed or the compression ratio. The focus of

this thesis is on LZ77, and its LZ factorization.

Practical implementations of LZ77 use a sliding window buffer, a section

of the overall input, where the algorithm operates on a longer factored prefix

and a short unfactored suffix. In practice, using the sliding window produces

comparable compression ratios while greatly increasing compression speed. We

decide to calculate the LZ factorization of the entire string instead of just a

window. In actuality, our final implementation is a compromise between these

two. Throughout the paper, we will use the terms, LZ77 LZ factorization, LZ

factorization, and ideal LZ factorization. The LZ77 LZ factorization and ideal

LZ factorization refer to the LZ factorization of the whole string. In almost all

cases, the term LZ factorization will also refer to the ideal LZ factorization. We
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will now describe and define the LZ factorization of a string.

2.2.2 Lempel-Ziv Factorization

i S[i] nsv-lex nsv-match psv-lex psv-match LPF[i] PrevOcc[i] LZ

0 a -1 - -1 0 -1 0

1 b -1 - 0 - 0 -1 1

2 b 1 b 0 - 1 1 2

3 a 0 a -1 - 1 0 3

4 a 2 - 0 abb 3 0 4

5 b -1 - 1 bb 2 1 -

6 b 1 bbaa 2 bb 4 1 -

7 b 2 baa 4 - 3 2 7

8 a 3 aa -1 - 2 3 -

9 a 3 aab 8 aa 3 3 -

10 a 0 ab 3 a 2 0 10

11 b 6 b 2 ba 2 2 -

12 a 10 ab 3 a 2 10 12

13 b 7 b 4 - 1 7 -

Table 2.1: SA, ANSV, LPF, PrevOcc, and LZ for S = abbaabbbaaabab

As previously described, Lempel-Ziv compression, a lossless data compression

algorithm, tries to find repeated occurrences. Compression occurs by replacing

these repeated occurrences with a pair of numbers representing the location of

the previous occurrence and the length of the match. LZ77 compression finds

these repeated occurrences by using a greedy left-to-right parsing, called the LZ

factorization. The LZ77 LZ factorization is the breaking down of the input string
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into substrings, referred to as factors, where each factor is either a repeated

occurrence or a completely new character. The LZ factorization builds these

factors from left-to-right using the previously factored prefix to search for previous

occurrences. Formally, the LZ factorization of a string S[n] decomposes S into

factors S = w0w1 . . . wk where k <= n, where a factor wi is either the longest

prefix that appears before wi in S or is a new character.

For example, the LZ factorization of string S = abbaabbbaaabab has the fac-

torization a.b.b.a.abb.baa.ab.ab, where w0 = a, w1 = b, w2 = b, w3 = a, w5 =

abb, w6 = baa, w7 = ab, w8 = ab. If we were to naively solve the LZ factorization

of the string S, we would start at the first suffix, suf0 = abbaabbbaaabab, and

try to find the longest prefix of suf0 that appears previously. Since no prefix

appears previously, the first factor is the first character of the suffix, w0 = a.

We then move on to the second suffix, suf1 = bbaabbbaaabab. Again, no prefix

appears previously and the first character is used again, w1 = b. Now, we look

at the third suffix, suf2 = baabbbaaabab, and check if any prefix matches any of

the previously factored string, ab. The third suffix does have prefix that matches

previously. Only the first character b has appeared previously, so the next factor

w2 = b. Similarly, the next factor w3 = a, because again only a appears previ-

ously. For the fifth factor, w4, we need to look at the suffix, suf4 = abbbaaabab,

and the previously factored input, abba. This time, the prefix abb has appeared

previously in abba, so the next factor is w4 = abb. We can then move on to the

suffix, suf7 = baaabab, and continue until the whole string is factored.

The LZ factorization can be encoded simply using a sequence of pairs. One

encoding scheme uses the pair with a position of previous occurrence and the

length of the match or a character, if the length is 0. We can store the po-

sitions of previous occurrence into a Previous Occurrence (PrevOcc) array and
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the length of the match into a Longest Previous Factor (LPF) array. The string

abbaabbbaaabab encoded using this scheme would output:

(PrevOcc, LPF) = [(a, 0),(b, 0),(1, 1),(0, 1),(0, 1),(2, 3),(0, 3),(10, 2)]

Another encoding scheme uses the pair of original position, stored in the LZ ar-

ray, and the position of the previous occurrence (LZ, PrevOcc).

(LZ, PrevOcc) = [(0, a),(1, b),(2, 1),(3, 0),(4, 0),(7, 2),(10, 0),(12, 10)]

Note that these two schemes produce the same number of pairs and each can be

derived from the other. The goal of the LZ factorization algorithm is to fill these

arrays. For the purpose of this thesis, we need not worry about the encoding

scheme, as we will output all three arrays.

A naive LZ factorization can begin parsing the input from left-to-right filling

the above arrays, by naively performing a string match with the prefix of the

unfactored input and every position in the previously factored input. LZ fac-

torization algorithms try and improve the efficiency of the LZ factorization by

improving this string matching. Various LZ factorization algorithms have been

compared experimentally in [1]. In general, efficient LZ factorization algorithms

all make use of a few common data structures, the suffix array (SA) and the All

Nearest Smaller Values (ANSV) arrays. The suffix array sorts every suffix of the

input which the ANSV arrays can then utilize to reduce the number of positions

that need to be checked for each factor. Tables 2.1 and 2.2 shows these structures

for the string abbaabbbaaabab.

2.2.2.1 Suffix Array

The suffix array is a common data structure in string matching algorithms. The

suffix array SA of S is a lexicographic ordering of integers of order n where each

integer represents a suffix of S, so that sufSA[0] <sufSA[1] <. . . sufSA[n-1].

12



sa suf-lex nsv-lex psv-lex

8 aaabab 3 -1

9 aabab 3 8

3 aabbbaaabab 0 -1

12 ab 10 3

10 abab 0 3

0 abbaabbbaaabab -1 -1

4 abbbaaabab 2 0

13 b 7 4

7 baaabab 2 4

2 baabbbaaabab 1 0

11 bab 6 2

6 bbaaabab 1 2

1 bbaabbbaaabab -1 0

5 bbbaaabab -1 1

Table 2.2: Suffix array and ANSV in lexicographic order for the string abbaabb-

baaabab

First introduced as a space efficient alternative to suffix trees, the suffix array

can fully replace the suffix tree with the use of additional data structures, such

as the LCP array. Suffix arrays can be used to quickly find and match strings in

a dictionary. This ability has a wide variety of applications from string searches

to data compression to bioinformatics.

There exist many suffix array construction algorithms (SACA). The skew

algorithm [14] uses a divide and conquer approach to construct a partial suffix

array to infer the rest of the positions. The pseudocode of the SACA that we
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will use is presented in Figure 3.1. Essentially, the skew algorithm divides the

suffixes into two groups. A suffix array is constructed using the larger group,

which holds 2/3 of the suffixes. A quick check is used to see if these suffixes can

be quickly sorted using their first three characters. If this sort does not create

the suffix array, due to non-unique suffixes, then the algorithm recurses until the

suffix array is constructed. The smaller group can then be sorted using inference

and merged with the larger group. Running in linear time, the skew algorithm

has also been studied in parallel. The fastest known construction of suffix arrays

on the GPU by Deo and Keely [6] utilizes the skew algorithm. Inspired by most

of their ideas, the work in this thesis is also a reimplementation and benchmark

of their algorithm.

Table 2.2 shows the constructed suffix array for the string abbaabbbaaabab.

2.2.2.2 ANSV and LZ Factorization Calculation

Let us first formally define the LPF (Longest Previous Factor) and lcp (longest

common prefix). The lcp of any two strings is the length of the common prefix

between the two strings if any. For example, the lcp(aaabab, aabab) = 2. The

LPF, longest previous factor, array holds the lengths of the longest previous

factors at any position i. In other words, LPF[i] holds the maximum lcp of

sufSA[i] and all suffixes less than i.

In our example,

LPF [2] = max(lcp(SA[2], SA[1]), lcp(SA[2], SA[0]))

.

A naive LZ factorization algorithm may work by calculating the LPF for every

position, by calculating the lcp with every previous suffix. It can be seen that

14



1: procedure LazyLZFactorization(S, n, PSV,NSV )

2: i← 1

3: while i ≤ n do

4: a LZ factor starts here

5: if lcp(i, PSV ) ≥ lcp(i, NSV ) then

6: LZ Factor = (PSV,lcp(i,PSV)) . Pair (PrevOcc,LPF)

7: else

8: LZ Factor = (NSV,lcp(i,NSV))

9: end if

10: if LPF = 0, PrevOcc = -1, and the character is inserted

11: i← i + max(LPF, 1)

12: end while

13: end procedure

Figure 2.2: LZ Factorization Pseudocode
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this naive algorithm runs in O(n3) time. This can be bounded to O(n2) time

using the knowledge that the total length of all lcp’s is N. In [4], the number of

positions that a suffix needs to be compute lcp with is reduced to the PSV and

NSV. The NSV, next smaller value, and PSV, previous smaller value, make up the

ANSV, all nearest smaller values, problem. We only need to previous suffixes and

only the closest ones since the suffix array is in lexicographic order. Computing

the ANSV problem can be done linearly and sequentially using a stack-based

algorithm found in [9]. By reducing the number of suffixes to compute lcp against

to two, this observation now reduces the problem to an O(n) time complexity.

Table 2.1 shows the constructed suffix array and ANSV arrays (PSV,NSV)

for the string abbaabbbaaabab. We can take a look at where the NSV and PSV

values for suf10=abab is found. Simply looking at the suffix array, we can see that

the NSV of suf10 is suf0, because 0 is the first smaller value after 10. Likewise,

the PSV of suf10 is suf3, because 12, the previous value, is greater than 10, but

3, which comes before 12, is smaller.

With these NSV and PSV arrays, a naive algorithm may try and calculate

the LPF for every position. With the LPF array filled at every position, the

LZ factorization can be quickly found [4]. More recent LZ factorization algo-

rithms have decided to forgo this intermediate step and directly calculate the LZ

factorization. If we examine Table 2.1, we can see that the LZ factorization of

the string abbaabbbaaabab can be reduced to 8 positions. The positions where a

factor do not begin, position 5 for example, does not need to calculate the LPF.

It also does not need to calculate the ANSV, but that calculation is relatively

inexpensive and may come from the generation of the other values anyway. Re-

ferred to as lazy LZ factorization in [13], the LPF value is only calculated at

the start of a factor. Figure 2.2 shows the basic pseudocode for calculating the
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LZ factorization given the PSV and NSV arrays using this lazy method. Again,

we need only check the PSV and NSV positions for the lcp and take the larger

of the two. Finally, we store the position of the larger value into the Previous

Occurrence (PrevOcc) array.

2.3 Related Works

Lossless data compression on the GPU is a field that has yet to be fully investi-

gated. Many lossless data compression algorithms are application specific.

Although few, there does exist work on porting general purpose lossless data

compression algorithms to CUDA. CULZSS ports the LZSS algorithm, a sibling

to LZ77, to the GPU with success [21]. The common optimization on these

ports is the use of pipelining, where the input is broken up to be worked on

individually, using CUDA streams, CUDA’s ability to concurrently copy partial

data and run kernels. Many of their original algorithms allow for this. Many

of these applications also make use of a sliding window, as seen in most LZ77

implementations. Implementations using the sliding window do not know or make

use of the whole input. This could lead to larger compressed files.

To the best of our knowledge, this is the first attempt to calculate the LZ

factorization on the GPU. Although we will not be calculating the ideal LZ fac-

torization, as described later, the knowledge of the whole input string is still

utilized. The project by Shun and Zhao [23] is a multicore CPU parallel imple-

mentation of the LZ factorization. They provide one of the first and most recent

parallel implementations of the LZ factorization, where many of the inspirations

throughout our project and implementation derive from. In their project, they

were able to show a O(n) work algorithm with significant speedups on a multicore
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CPU. Most of our implementation matches their’s, except on the GPU; however,

we do not calculate the whole LPF string, and make use of the lazy LZ factoriza-

tion technique described earlier. The cost to calculate the ideal LZ factorization

in a parallel fashion, as they did, was too great for GPU. Calculating every LPF

position was a very memory intensive task that we found took too long on the

GPU due to the high memory latency. This was the primary cause to the usage

of the PLZ, which we’ll describe in Chapter 3.
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CHAPTER 3

Implementation

Our implementation is structured in three main steps: the construction of the

suffix array, the calculation of ANSV for every index, and finally the generation

of the LZ factorization.

3.1 SA

The construction of the suffix array stays true to the algorithm used by Deo and

Keely [6]. In Figure 3.1, we show the pseudocode used by Deo and Keely. One

of the intermediate steps is to sort suffixes based on their first three characters.

We used CUB’s implementation of radix sort to facilitate this. In line 6, we

need to check if the sorted triplets are unique. To accomplish this, we used a

combination of small custom kernels and CUB primitives. Finally as mentioned

in Section 2.1.2, we used the MGPU library to facilitate the merge sort.

3.2 ANSV

To calculate the needed ANSV values we used the parallel algorithm from Shun

and Zhao [23].

The first step is to build a balanced binary tree, where the leaves are elements

from SA, and the ancestors are the minima of their children. Although more
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1: procedure computeSA(s, sa, n)

2: initMod12(); . Kernel to set flags at 2/3. DeviceSelect to get s12,sa12

3: radixSort(s12); . DeviceRadixSort

4: radixSort(s12);

5: radixSort(s12);

6: lexicRankOfTriplets(); . Custom kernel to check unique. Inclusive Sum

to count. Custom kernel to get s12.

7: if !allUniqueRanks then

8: computeSA(s12, sa12); . Recursion

9: storeUniqueRanks(); . Kernel

10: else

11: computeSAFromUniqueRank(); . Kernel

12: end if

13: radixSort(s0);

14: mergeSort(s0, s12); . Merge Path + Merge Sort

15: end procedure

Figure 3.1: Suffix Array Construction Pseudocode from [6]. Comments add de-

tails from our implementation.

efficient algorithms may exist, we decide to take a simpler naive approach and

launch a kernel at each level. Each thread in the kernel calculates for a node the

minimum of its two children and stores it into a 1d array. A 2d array would be

easier to index into, but much more difficult to allocate. A 1d array has additional

benefits of improved memory coalescing and better cache performance.

The suffix array is then divided into even divisions. Each thread uses a stack,

in the form of an array, and traditionally solves ANSV for their division. Because
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1: procedure ANSV

2: for each level of MinTree do . Bottom Up Construction

3: MinTree(level); . Build level by calculating minima of children

4: end for

5: ANSVKernel(mintree, chunkSize)

6: end procedure

1: procedure ANSVKernel

2: chunk ← threadID ∗ chunkSize . Each thread gets a unique chunk

3: ANSVLinear(chunk)

4: if ( thenchunk detects no PSV/NSV) . ANSVLinear may be wrong

5: checkMinTree(mintree) . Manually check MinTree

6: end if

7: end procedure

Figure 3.2: ANSV Pseudocode
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each thread can only see their division, many of the positions will think there is

no smaller position, while they may exist in the next or previous division. To

compensate for this, each thread will manually check each position that did not

find a smaller value using a search on the previously generated binary tree.

This algorithm will generate the ANSV arrays for each index, although not

every index is needed in the final LZ factorization. We did experiment with

the idea of solving the ANSV problem for a specific index only when needed,

but found that in most cases, this was only a little faster or much slower than

generating every ANSV value at once.

3.3 LZ Factorization

The final step is to calculate the LZ factorization.

At first, we attempted to follow the parallel algorithm of Shun and Zhao

[23]. In their work, the LPF array is calculated for every position, and then

the LZ factorization is solved using a parallel list ranking algorithm. We found

that the calculation of the LPF array at every index to be too computationally

expensive and wasteful, even on the GPU. Instead, our work will also employ

the lazy LZ factorization, mentioned in [13]. The biggest problem with the lazy

LZ factorization was that it is incredibly sequential. Since it is impossible to

know what entries will exist in future points in the LZ factorization, it is a hard

problem to parallelize.

3.3.1 PLZ

We propose breaking away from the ideal LZ factorization and using a Parallel

LZ factorization (PLZ). Using PLZ, the string S will be broken into chunks of
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i S[i] NSV[i] PSV[i] LPF[i] LZ

0 a -1 -1 0 0

1 b -1 0 0 1

2 b 1 0 1 2

3 a 0 -1 1 3

4 a 2 0 3 4

5 b -1 1

6 b 1 2

7 b 2 4 3 7

8 a 3 -1

9 a 3 8

10 a 0 3 2 10

11 b 6 2

12 a 10 3 2 12

13 b 7 4

Table 3.1: chunk size c=7, divisions d=2, LZ=8

size c to be worked on individually. Each thread will be assigned a chunk and

traditionally calculate the LZ factorization on it. The LZ factorization calculated

by each thread will be entered unmodified into the final LZ factorization. The

main advantage of this is being able to parallelize the problem, while not incurring

too many penalties on the compression ratio. By doing this, we are also able to

limit the amount of work any one thread will do, in an attempt to load balance.

There are several disadvantages that may appear, all of which depend on the

original input string. There is a chance for the PLZ LZ factorization to be larger
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than the ideal LZ factorization. There is also an unlikely chance for them to be

exactly the same.

Recall that an entry into the final LZ factorization indicates the start of

a factor. The ideal LZ factorization is a sequence of longest previous factors.

When we use PLZ, we are breaking down the LZ factorization into chunks to be

worked on in parallel. At the start of each chunk, we insert a first entry into

the LZ factorization. We then continue calculating the LZ factorization using

the traditional sequential algorithm. At the end of the chunk, we stop the string

comparisons and cut off the current factor. By stopping the string comparisons,

we are able to limit the amount of work needed to process a chunk. This also

means that factors are limited in length to the chunk size.

Various scenarios may occur when using PLZ, which we will first explain and

later show with example in Tables 3.1, 3.2, and 3.3. The first scenario occurs when

that first entry is in the same position as an ideal LZ factorization factor. The LZ

factorization of that chunk will then be the same as the ideal LZ factorization.

If every first entry is in the same positions as an ideal LZ factorization, the final

PLZ LZ factorization will be exactly the same as the ideal LZ factorization.

The next scenarios occur when a first entry is not in the same position as an

ideal LZ factorization factor. This would happen when the chunk splits in the

middle of a ideal LZ factorization factor. In these scenarios, the last factor in the

previous chunk will no longer be the longest. The LPF of that last factor will be

shorter than the ideal LZ factorization. When the LZ factorization is calculated

on this chunk, the next factor may or may not start at an ideal LZ factorization

factor. We then begin calculating the LZ factorization of that chunk, starting

at that first entry. If any of the calculated factors begin at the start of the

ideal LZ factorization factor, then all factors after will also match the ideal LZ
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factorization. It is impossible to know a priori which of these scenarios will occur,

since they are all dependent on the input string.

The next question to be answered is deciding the chunk size c. A larger chunk

size could reduce the chances for a larger factorization and increase compression

ratios. On the other hand, a smaller chunk size would more evenly distribute the

work among the GPU threads, and in turn should increase compression speeds.

This is a trade-off that should be left to the user. In our implementation, we

have the option to define an arbitrary size for the chunk size c or for a number

of divisions d of the input string. Some optimal sizes might be to use divisions

that are multiples of the number of multiprocessors. In any case, it is impossible

to predict the compression ratio, and different users will have different priorities.

The resulting PLZ LZ factorization when using PLZ with chunk sizes of 7, 4,

and 3 can be seen in Tables 3.1, 3.2, and 3.3. These chunk sizes, from a string

size n = 14, can result from divisions of d = 2, 4, 5. Table 2.1 can be used as

reference with the whole LPF and PrevOcc arrays filled. First note that the LPF

and PrevOcc arrays are not totally filled. As we are doing a lazy LZ factorization,

not all values need to be computed, and this is shown accordingly. Next, notice

that there are breaks within the table. These indicate chunks for a single thread,

or block as we’ll see soon, to work on. The next thing to notice are the bold

elements in the LPF array. A bold element indicates that the value is no longer

the LPF at that position and is changed from the reference LPF values. Recall

that when using PLZ, the string matching stops at the end of a chunk.

In Table 3.1 with a chunk size of 7 and a division of 2, we can see that there

are no changes in the LZ factorization. The split occurred at position i = 7, the

beginning of a factor in the ideal LZ factorization. Therefore, we see no changes

while being able to solve the problem in parallel.
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Tables 3.2 and 3.3 begin to show changes from the ideal LZ factorization. In

Table 3.2, we use a chunk size of c = 4 and a division of d = 4. Notice how

the third chunk starts at position i = 8. Because the ideal LZ factorization did

not have a factor starting at position 8, it can be determined that the PLZ LZ

factorization is no longer the same as the LZ factorization. The LPF at position

8 is 2, so that the next factor starts at position 10. The ideal LZ factorization

had a factor starting at position 10, so we are now back on track. Any additional

factors calculated from this chunk should match that of the ideal LZ factorization.

The resulting PLZ LZ factorization has a length of l = 9, 1 more than the ideal

LZ factorization length of l = 8.

The last example in Table 3.3 shows a chunk size of c = 3 and a division of

d = 5. Notice again that chunks 2 and 3, starting at positions 6 and 9 respectively,

have a different factor from the ideal LZ factorization. A key thing to realize from

this example is that the length is unchanged. Both the PLZ LZ factorization and

the LZ factorization have a length, l = 8. By using PLZ, we were able to split

the work into 5 to be worked on in parallel and compress the string to the same

length as the ideal LZ factorization.

3.4 More LZ Factorization Optimizations

One thing that we have yet to cover is how we perform the string match. The

naive operation is to do a character by character match until the prefix no longer

matches with the LPF. One optimization that we have implemented is to instead

do a parallel string comparison. A block of threads can load a group of characters

into shared memory. The BlockLoad primitive from CUB is used to load a number

of characters from the LPF and from the prefix into arrays for use in an individual
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thread in the block. To simplify, we can imagine a block of 32 threads loading a

chunk of 32 characters from the LPF and prefix. Each thread, responsible for a

single index and two characters, then compares the two characters for a match.

A match is assigned the block’s dimensions (32), and a mismatch is assigned the

thread’s id (0-31). The threads can then cooperatively find the minimum in a

block using reduction, with the BlockReduce primitive from CUB for example.

If all 32 characters matched, the value 32 is returned to the first thread in the

block, which controls all the logic. That thread will then set a flag to indicate

to the rest of threads to continue with the comparisons. If there is a mismatch,

the index of the mismatch is instead returned to the first thread, which can then

stop the comparisons. Which implementation is faster is solely dependent on the

data and the average factor length. Average factor lengths less than the number

of characters loaded and compared in parallel may see faster speeds with just the

naive comparisons. Our implementation will use the parallel string comparison

for evaluation. In doing so, each chunk is worked on by a single block.

Finally because we are cutting off the matching at the end of the chunk, an

optimization can be made to reduce the number of searches. Because the LPF

can occur at either the PSV or the NSV, we usually need to check both and pick

the longer. Reaching the edge of a chunk during the first search allows us to skip

the second chunk.

The final LZ factorization, made up of relevant entries from the LPF and

PrevOcc arrays, can be gathered by using CUB’s DeviceSelect, which allows us

to compact the arrays using a flag set at the start of each factor. This allows our

final data transfer to require sending less data.
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i S[i] NSV[i] PSV[i] LPF[i] LZ

0 a -1 -1 0 0

1 b -1 0 0 1

2 b 1 0 1 2

3 a 0 -1 1 3

4 a 2 0 3 4

5 b -1 1 - -

6 b 1 2 - -

7 b 2 4 3 7

8 a 3 -1 2 8

9 a 3 8 - -

10 a 0 3 2 10

11 b 6 2 - -

12 a 10 3 2 12

13 b 7 4 - -

Table 3.2: chunk size c=4, divisions d=2, LZ=9
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i S[i] NSV[i] PSV[i] PrevOcc[i] LPF[i] LZ

0 a -1 -1 -1 0 0

1 b -1 0 -1 0 1

2 b 1 0 1 1 2

3 a 0 -1 0 1 3

4 a 2 0 0 2 4

5 b -1 1 - - -

6 b 1 2 1 3 6

7 b 2 4 - - -

8 a 3 -1 - - -

9 a 3 8 3 3 9

10 a 0 3 - - -

11 b 6 2 - - -

12 a 10 3 10 2 12

13 b 7 4 - - -

Table 3.3: chunk size c=3, divisions d=2 ,LZ=8
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CHAPTER 4

Results

4.1 Experimental Setup

4.1.1 Test Machine

All measurements were gathered from a single machine with an NVIDIA Tesla

K40c and NVIDIA GTX TITAN Black. The Tesla K40c and GTX TITAN Black

are two of NVIDIA’s higher end solutions. The GTX TITAN Black, which we’ll

now refer to as Black, has a 0.98 GHz GPU clock rate, 3.5 GHz memory clock

rate, and 6 GB of memory. The Tesla K40c, now K40c, has a 0.88 GHz GPU

clock rate, 3.0 GHz memory clock rate, and 12 GB of memory. The Black is faster

than the K40c, but has significantly less memory. Both the CUDA runtime and

driver version were 6.0. The binary was compiled using -O3 optimization and

compute capability 2.0. We chose the more compatible compute capability 2.0

instead of 3.5, because we did not need any of the features of 3.5. Timings were

recorded using the CUDA events API.

4.1.2 Data

Data for our evaluation was gathered from various publicly available datasets,

often used in benchmarking lossless compression algorithms.
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4.2 Suffix Array

Figure 4.1: Speedup of suffix array construction on the GPU compared to the

fastest CPU implementation

The evaluation of the suffix array is actually an evaluation of a reimplemen-

tation of the fastest known GPU suffix array construction algorithm (SACA) by

Deo and Keely [6]. The benefits and applications of the suffix array has already

been detailed in Section 3.1 Deo and Keely’s evaluation was done on an AMD

Radeon GPU using OpenCL. Our results on a NVIDIA GPU using CUDA and

CUB primitives with ModernGPU’s merge path method to mergesort are not

expected to be significantly different. We will be comparing our results to a

set of SACA benchmarks found on the wiki of LibDivSufSort, one of if not the
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size(MB) filename Black(ms) K40c(ms) CPU(ms) BlackSpeedup Blackms/B

0.05 paper1 15.2 16 34 2.2 0.286

0.11 bib 19.3 21.2 34 1.8 0.173

0.36 news 33.6 36.8 46 1.4 0.089

0.43 mj 29.2 30.9 52 1.8 0.065

0.49 hi 34.2 36.1 50 1.5 0.067

3.14 hs 108.5 130.6 272 2.5 0.033

3.86 bible.txt 112.9 141.5 338 3.0 0.028

9.72 dickens 282.8 353.5 1212 4.3 0.028

20.61 samba 536.9 693 2042 3.8 0.025

37.60 howto 1021.1 1339.7 5320 5.2 0.026

48.85 mozilla 1278.2 1642.6 4958 3.9 0.025

66.50 jdk13c 1928.2 2525.4 9010 4.7 0.028

99.37 w3c2 2896 3840.8 13486 4.7 0.028

Table 4.1: Runtimes(ms), speedups, and ms/B of datasets for evaluation of suffix

array construction

fastest CPU SACA implementation [18]. That benchmark compares the fastest

CPU SACA implementations on a variety of test files. We will compare our GPU

implementation against the fastest CPU time for each file. Files were picked to

match closely with Deo and Keely’s evaluation. GPU times include parsing the

file, transferring the data both ways, and the construction of the suffix array.

Figure 4.1 and Table 4.1 presents the results comparing the CPU implemen-

tations to our GPU implementation. The first thing to note is that the CPU

SACA benchmarks are significantly faster than those used by Deo and Keely.

Our GPU implementation did not see the speedup of 35x that theirs did, but we
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still found around a 4-5x speedup for most files for Black. We did not have their

implementation or their raw result data to compare against. Loosely comparing

with the charts in their paper though, we find that our GPU implementation is

at least on par if not faster.

Another interesting metric is the runtime in microseconds per Byte seen in

[1]. We found that after a certain point, our Black implementation was achieving

rates of around 0.02 to 0.03 ms/B. In comparison, [1] found results between 0.1

to 0.4 ms/B.

Like many other GPU algorithms, we found that smaller files did not see the

greater speedups that larger files did. The likely cause is that smaller files cannot

fully saturate the GPU, and the cost of initialization and data transfer could not

be hidden by increased computations. This indicates that the GPU is not the

all around solution for faster suffix arrays and the size of the input needs to be

considered.

Figure 4.2 shows a profile of the SACA of the GPU implementation. Kernels

other than those involved in the merging or sorting take the greatest percentage

of time in both examples. These kernels have the most room for improvement,

since they are less likely to deal with primitives and more likely deal with the

setup and movement of data. The CUDA grid and block sizes could have a

greater factor in the speeds and further optimization are more likely to see gains

here.

4.3 ANSV

he ANSV algorithm divides the suffix array into chunks for each thread. These

threads will then individually solve the ANSV problem on their chunk and solve
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Figure 4.2: Profile of Suffix Array construction on the GPU

Figure 4.3: The effect of chunk size on ANSV runtime on the GPU
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any outliers using a preconstructed binary tree.

Figure 4.3 shows the impact of changing the chunk size in the ANSV gener-

ation. For our setup we can see a noticeable speedup at a chunk size of 4. The

chunk size of 4 is not a universal speedup for all NVIDIA GPUs. Although not

presented in this paper, a mobile GPU, NVIDIA GT 650M, found speedups at

a much greater chunk size. Different hardware have different memory latencies

and other costs.

4.4 PLZ

Figure 4.4: The effects of chunk size on percent increase and runtimes

To directly compare the generation of PLZ to algorithms and implementa-

tions generating the ideal LZ factorization would be unfair. The outputs are

totally different, as the PLZ has lost an important property of the ideal LZ fac-

torization, the LPF. The LPF in the PLZ are no longer the longest, as discussed
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in our implementation. What can be done is a relative comparison to previous

implementations. We will present the percent increase of the PLZ from the LZ

factorization to help in the evaluation.

The data set and CPU benchmarks will be taken directly from the results

in [23]. Specifically, we will compare our results to their benchmarks of LZ-OG,

the most time efficient single threaded algorithm as seen in [20], LZ-ANSV, the

sequential algorithm which computes the LZ factorization without every LPF

value using lazy LZ factorization, and their contribution PLZ3, their parallel

CPU algorithm using 40 cores with hyper-threading. LZ-ANSV is the closest

sequential algorithm after the ANSV generation, while the ANSV generation

algorithm comes from PLZ3.

The first and most important metric to look at is how the PLZ chunk size

affects the final LZ factorization size. If the percent increase is too great, then the

usage of PLZ is unacceptable. What percent increase is too great is a judgement

that must be made by each user, as each user will have their own requirements.

To pick the different chunk sizes, we decided to use number of divisions as the

parameter, although we could have used the actual block size as mentioned before.

More specifically we used multiples of the number of SMs (15). To try and get a

wide range, we used powers of 2 to multiply.

The second most important metric is how the chunk sizes affect the runtimes.

Since the suffix array construction and the ANSV generation are unrelated, we

will keep our focus on the LPF time. This time assumes the suffix array and

ANSV arrays are already present on GPU memory. It includes the generation of

the necessary LPF and PrevOcc arrays, the isolation of the needed values using

CUB’s deviceSelect, and the data copy of those values back to the CPU. Many

LZ factorization papers evaluate the runtime of their algorithm starting after the
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suffix array is in memory. We will consider that runtime later.

Figure 4.4 presents the results with these two metrics together. We show the

effect of percent increase and runtime as a function of the number of divisions.

First, we notice that the percent increase grows linearly with the number of divi-

sions. This trend is intuitive as each extra division has a chance to increase the

final PLZ length if the division boundary occurs between the ideal LZ factoriza-

tion. Next, we notice that the runtime generally decreases rapidly as we increase

the number of divisions. At some point however, the rapid decreases stops and

increasing the divisions further does not have as much effect on the runtime. As

we can see in Figure 4.4, this occurs at around 480 divisions for both cards, with

a 0.01 average percent increase. For some perspective, a file that compresses to 1

MB using the ideal LZ factorization would require an additional 105 bytes using

PLZ. At this point, the Black has an average runtime of 303.7 ms, while the

K40c has an average runtime of 406.8 ms. As we increase the number of divisions

from 480 to 30720, Black’s runtime decreases only 30 percent, while the percent

increase changes over 150 percent to 1.54 percent. Similarly, K40c’s runtime de-

creases only 32 percent. We will use this 0.01 percent increase with 480 divisions

for the rest of this evaluation.

We now take a look at how our GPU implementation compares to the CPU LZ

factorization implementations mentioned earlier. Table 4.2 tabulates the results

and speedups found in our experiments. Our GPU implementation outperforms

LZ-OG and LZ-ANSV on all the data sets. Black sees speedups between 15-

24x (19.25x average) compared to LZ-OG and speedups between 13-19x (17.07x

average) compared to LZ-ANSV. When compared to the 40 core PLZ3 implemen-

tation, Black performs comparatively with speedups of 1.1-1.5x (1.26x average).

The slower, K40c sees speedups of 12-19x (15.02x) and 10-15x (13.32x) against
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LZ-OG and LZ-ANSV respectively. K40c performed comparatively with PLZ3

having speedups and slowdowns no greater than 1.2x (0.98x average).

Figure 4.5: Profile of GPU implementation

Figure 4.5 shows a profile of the three main sections of our implementation,

the SA, the ANSV, and the LZ. The majority of our implementation, like most LZ

factorization implementations, spend most of their time constructing the suffix

array. The suffix array construction takes on average 81 percent of the overall

time.

Highly compressible inputs are excluded from the above results, because they

are likely to incur an incredible space cost when using PLZ. Specifically, the file

10Midentical contained only one character. The resulting ideal LZ factorization

contained 2 factors. Each PLZ division increased the LZ factorization by 1 fac-

tor. With 480 divisions, we found 481 factors with the PLZ LZ factorization,

amounting to an increase of 23950 percent.
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CHAPTER 5

Conclusion

We have presented an algorithm and implementation to calculate the Lempel-

Ziv factorization on the GPU. We show the usage of PLZ in the calculation of

the LZ factorization. Although this removed our ability to calculate the ideal

LZ factorization that would be calculated in a traditional sequential algorithm,

we found that using the PLZ found significant speedups on the GPU, while

incurring a minimal space cost. Specifically in our evaluation, we found using

480 divisions only increased the LZ factorization by 0.01 percent. Using 480

divisions, we were able find speedups on an NVIDIA GTX TITAN Black of

15-24x over the sequential LZ-OG algorithm and up to 0.5x over the multicore

parallel PLZ3. Using the PLZ, although not calculating the most space efficient

ideal LZ factorization, could work well where time is a more important factor.

We have also presented a reimplementation and reevaluation of the GPU

suffix array construction algorithm of Deo and Keely [6]. With the use of GPU

libraries and parallel primitives, we were able to replicate their OpenCL results

using CUDA on a NVIDIA GPU. On files greater than 10 MB, we found at least a

4-5x speedup over the fastest CPU implementations. This suffix array algorithm

and implementation have many applications outside of data compression, most

notably in bioinformatics.
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CHAPTER 6

Future Work

Our implementation, like many other LZ factorization implementations, was a

proof of concept to show compression speeds and compression ratio. Although

we do output the correct pairs needed, we could take it further and encode them

in a way that decompression implementations can understand. In doing so, we

could create an actual utility to be used to compress actual data.

One aspect that was not considered in this thesis was the effect of having

previous knowledge of the input. Specifically, what can we do if we know the

alphabet of the input is limited. For instance during the suffix array construction,

we do an initial sort of the 2/3 group using a 3 character prefix. To do this, we

need to use three radix sorts. If we know exactly how many bits represent the

largest character or integer in the alphabet, we can specialize the radix sort to only

sort on those bits. If this is not possible, we could also check if three characters

could fit into a smaller number of characters and perform a lesser number of radix

sorts on them.

Recent work has looked at different ways to solve the ANSV problem. Work

done in [4] and [10] has explored a technique called peak elimination to solve the

ANSV problem. It is unclear whether this solution would parallelize and fit on

the GPU architecture. They also found success using a single data structure to

hold both the PSVs and NSVs to improve memory locality.
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Another very important measurement that we did not consider was the space

efficiency of our algorithm. As inputs, such as DNA sequences, grow larger and

larger, it is important to make sure the algorithm is as space efficient as possible,

so that the algorithm can scale. Recent work by [11] has shown methods to

reduce the space needed by LZ factorization algorithms by reusing the space

required by auxiliary data structures. It is especially important when working

on the GPU, where hardware limits are stricter, memory is more sparse, and

the communication overhead to go back and forth from the GPU to the CPU is

expensive.

Multiple GPU support is becoming increasingly popular as GPU applications

become more mainstream. Enabling multiple GPU support would allow our

implementation to handle larger inputs. It would be interesting to investigate

the added communication overhead and its effects on the overall performance.

Multiple GPU support would also allow us to accompany high performance users,

who have machines or clusters of machines with single or multiple GPUs.

A simpler optimization that could be added in future implementations is a

more dynamic kernel launch parameters. In our implementation, we left many

of the kernel parameters as program launch parameters for exhaustive trial and

error. Other kernel parameters were also optimized specifically to the GPU we

used for evaluation. Our implementation would still work with other GPUs, but

different parameters might find faster compression speeds. One approach is to

gather information about the GPU using the CUDA API before launching any

kernels. We can then use that information to generate more sensible grid and

block sizes. We can also use templating features for greater flexibility. Many

CUDA libraries make use of this approach to great success.

NVIDIA CUDA is still a growing framework, as new hardware and new API
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releases add additional features to ease or enable programmers. Recent releases

have enabled dynamic parallelism and a unified memory. Dynamic parallelism

allows GPU kernels to launch additional kernels from the kernels themselves.

Traditionally, the GPU is used as a coprocessor and kernels must be launched

from instructions on the CPU. Using dynamic parallelism, added overhead from

communication between the GPU and CPU can me circumvented. Dynamic par-

allelism can also allow for easier or more load balanced parallelism. For example,

during the final LZ factorization calculation, we could launch a new CUDA kernel

to do string comparisons instead of having threads in a block working together.

The benefits of unified memory in our current implementation is not clear. Since

most of the data is generated and remains on the GPU, unified memory may only

simplify the communication while not adding performance benefits. It would still

be interesting to evaluate if these new features could provide speedups.

As of now, our implementation works only on NVIDIA GPUs through the

use of CUDA. Although GPGPU development is dominated by NVIDIA CUDA

on NVIDIA GPUs, the graphics market share includes many other significant

vendors, including AMD and Intel. There are a variety of methods to create an

implementation for use with those other vendors. One option is to rewrite the

implementation using OpenCL. Other options include utilizing efforts such as

OpenACC or GPU Ocelot. Furthermore, the usage of PLZ could be examined

on different platforms, where the cost to perform string comparisons are not as

expensive, like a multicore CPU.
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