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ABSTRACT 

Identifying and Predicting Rat Behavior Using Neural Networks 

Jonathan Gettner 

 

The hippocampus is known to play a critical role in episodic memory function. 

Understanding the relation between electrophysiological activity in a rat hippocampus 

and rat behavior may be helpful in studying pathological diseases that corrupt electrical 

signaling in the hippocampus, such as Parkinson’s and Alzheimer’s. Additionally, having 

a method to interpret rat behaviors from neural activity may help in understanding the 

dynamics of rat neural activity that are associated with certain identified behaviors.  

In this thesis, neural networks are used as a black-box model to map 

electrophysiological data, representative of an ensemble of neurons in the hippocampus, 

to a T-maze, wheel running or open exploration behavior. The velocity and spatial 

coordinates of the identified behavior are then predicted using the same neurological 

input data that was used for behavior identification. Results show that a nonlinear 

autoregressive process with exogenous inputs (NARX) neural network can partially 

identify between different behaviors and can generally determine the velocity and spatial 

position attributes of the identified behavior inside and outside of the trained interval. 

 

  



 

v 

TABLE OF CONTENTS 

Page 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

Chapter 1: Introduction ....................................................................................................... 1 

1.1 Statement of Problem ................................................................................................ 2 

1.2 Research Questions ................................................................................................... 3 

1.3 Issues and Assumptions ............................................................................................ 4 

1.4 General Approach ..................................................................................................... 5 

1.5 Organization of Thesis .............................................................................................. 6 

Chapter 2: Literature Review .............................................................................................. 8 

2.1 Background ............................................................................................................... 8 

2.2 Traditional Methods .................................................................................................. 9 

2.3 Neural Networks ....................................................................................................... 9 

Chapter 3: System Design ................................................................................................. 11 

3.1 Three Stage Design ................................................................................................. 11 

3.2 Pre-Processing Stage ............................................................................................... 12 

3.2.1 Raw Data Gathering ......................................................................................... 12 

3.2.2 Spike Sorting .................................................................................................... 14 

3.2.3 Forming Temporal Component of Input Data, Illustrative Example 

Using Simplified NARX Network ............................................................................ 17 

3.3 Identification Stage ................................................................................................. 21 

3.3.1 Identification Network Parameters .................................................................. 21 

3.3.2 Identification Training Methods ...................................................................... 22 

3.4 Behavior Attribute Prediction Stage ....................................................................... 24 

3.4.1 Behavior Attribute Network Parameters .......................................................... 24 

3.4.2 Behavior Attribute Training ............................................................................. 26 

3.5 System Implementation ........................................................................................... 27 

Chapter 4: Testing and Evaluation .................................................................................... 29 

4.1 Testing Identification Network ............................................................................... 29 

4.1.1 Self-Testing Datasets For Identification Network ........................................... 30 

4.1.2 Cross-Testing Datasets For Identification Network......................................... 36 

4.2 Testing of Behavior Attribute Network .................................................................. 39 



 

vi 

4.2.1 T-Maze Behavior Attribute Network ............................................................... 40 

4.2.2 Wheel Running Behavior Attribute Network .................................................. 42 

4.2.3 Open Exploration Behavior Attribute Network ............................................... 43 

4.3 Results Discussion................................................................................................... 45 

Chapter 5: Summary and Conclusions .............................................................................. 48 

5.1 Contributions ........................................................................................................... 49 

5.2 Future Work ............................................................................................................ 49 

REFERENCES ................................................................................................................. 50 

APPENDICES 

Appendix A: Network Learning Process ...................................................................... 53 

Appendix B: Program.................................................................................................... 57 

Identification Network Code ..................................................................................... 57 

Behavior Attribute Network Code for T-Maze ......................................................... 68 

Appendix C: Self-Testing Identification Network with Datasets 2, 3 and 4................. 75 

Appendix D: Total Error Calculation ............................................................................ 79 

 

 

 

 

  



 

vii 

LIST OF TABLES 

Table                                                                                                                               Page 

Table 1: General location of rat hippocampal neural activity associated with shank  

               ID number .......................................................................................................... 13 

Table 2: Four time steps of input data with four additional steps of no input .................. 19 

Table 3: Parameters of the NARX identification network................................................ 21 

Table 4: Parameters for every behavioral network ........................................................... 25 

Table 5: Possible datasets that can be used to train or test the identification  

              network ............................................................................................................... 29 

Table 6: The number of training sample points used for each behavior from  

               dataset 1 to train the identification network ....................................................... 30 

Table 7: The time interval of the training data, time gap between training and  

               testing and testing data ....................................................................................... 32 

Table 8: Time intervals of the training set, time gap between training and testing  

               sets and 2nd testing set ........................................................................................ 35 

Table 9: Datasets used for behavior attribute network training and testing ..................... 39 

 

 

 

  



 

viii 

LIST OF FIGURES 

Figure                                                                                                                            Page 

Figure 1: (a) Anatomy of the rat hippocampus, illustrating the transfer of  

                 electrical signals between regions in the hippocampus [2]. The  

                 electrical signal will start at the EC region go through the CA3 and  

                 CA1 regions, then loop back to EC region where the information  

                 carried by the signal is projected into long-term memory. (b) A 

                 computer simulation illustrating the possible firing of an ensemble of  

                 neurons in a rat hippocampus, demonstrating the spatial aspect of  

                 neurological activity as an ensemble of neurons consisting of individual  

                 neurons firing in relation to one another [3]. ..................................................... 1 

Figure 2: The overall design consists of three stages: pre-processing stage,  

                 identification stage and behavior attribute prediction stage. The pre- 

                 processing stage decomposes filtered LFP spike waveforms into cluster  

                 ID data. The identification stage uses the cluster ID and shank ID data  

                 as input for the identification network, which categorizes the input into  

                 an output of 1, 2 or 3 representing T-maze, open exploration or wheel  

                 running behavior, respectively. The behavior attribute prediction stage  

                 uses the same input used to identify the general behavior to determine  

                 the velocity and spatial coordinate attributes of the behavior identified  

                 in the identification stage. ................................................................................ 12 

Figure 3: (a) An example of a shank with six recording sites on it. Illustrating how  

                 one shank may gather multiple signals at once [23]. (b) A sample LFP  

                 of a rat performing wheel running task for a 1000ms interval. Every  

                 shank is represented by a unique color. ........................................................... 14 

Figure 4: Example of aligning spike waves and finding the resulting principal  

                 components [25]............................................................................................... 16 

Figure 5: An example of creating boundaries around clusters to identify the  

                unique neurons in a system [25]. ...................................................................... 16 

Figure 6: Cluster data for a rat performing wheel running behavior. (a) The local  

                cluster data illustrating how many neurons an individual shank  

                recognizes. (b) The cluster ID# arranged from 1-128, ordering cluster 

                ID sequentially from shank ID 1 to shank ID 14 .............................................. 17 

Figure 7: A simplified NARX network used to illustrate the temporal component.  

                The input x1 and x2 represents shank ID and cluster ID, respectively.  

                Weights (w) are used to factor the importance of a particular input or  

                previous output and are optimally determined by training the network  

                with a representative dataset. For this example, input weights (w1 and  

                w2) are set to unity, value of 1, and the weight of the previous output  

                (wo) is 0.5.This network calculates the next output by linearly summing  

                the weighted current input and weighted previous output. The nonlinear  

                hidden layer of the network is removed to simplify the example. .................... 18 

 



 

ix 

Figure 8: The resulting output calculated by the network using eight time steps.  

                This plot illustrates that the calculated output is the sum of the input and  

                half the previous output at any given time point. However, when there is  

                no further input, the network still retains half the value of the previous  

                time point. ......................................................................................................... 20 

Figure 9: A diagram of the NARX network used for identification of T-maze,  

                wheel running or open exploration behavior. Both of the inputs have a  

                delay of 30, where “D” represents a time-series delay, which implies the  

                other 29 previous values of input and their weights not illustrated. The  

                output has a single delay (z-1) that feeds back the previous output as  

                input to the hidden layer. All of the inputs are fully connected to the  

                hidden layer. ...................................................................................................... 22 

Figure 10: A general NARX network in series-parallel mode. A series parallel  

                  mode uses the previous value of the desired output, rather than the  

                  previous value of the network output, to avoid using incorrect network  

                  output as input for training. ............................................................................. 23 

Figure 11: The NARX model with the parameters of the behavior attributes  

                  network implemented. Input consists of the cluster ID and shank ID at  

                  the current time-point and the previous 50 inputs along with the  

                  previous output. The input is fully connected to the 30 neurons in the  

                  hidden layer where the input is nonlinearly transformed, then linearly  

                  summed at the output. ..................................................................................... 25 

Figure 12: An open mode NARX network illustrated in MATLAB, where the  

                  previous desired output is used, rather than the calculated output of the  

                  network. Using the desired output as input to the network allows the  

                  network to make mistakes during training, but still converge to a  

                  solution. ........................................................................................................... 27 

Figure 13: A closed-loop mode NARX network with the same parameters used in  

                  the identifier network. This model is used for testing the network with  

                  new data that it has not been previously trained for. ...................................... 28 

Figure 14: A plot of all 15000 time points of input data used to train the identifier  

                  NARX network. The input data consists of cluster ID as a function of  

                  shank ID for each behavior. Input data of the open exploration is well  

                  distinguished from T-maze and wheel running data, while the T-maze  

                  and wheel running input closely overlap. ....................................................... 31 

Figure 15: Identification results for the input used to train the network. The  

                  desired identification for the corresponding input data (left) includes  

                  5000 time points for each behavior, where the first 5000 time points is  

                  T-maze, time points between 5001-10000 is open exploration and the  

                  last 5000 time points is wheel running. The network identification  

                  (right) demonstrates that the network can effectively identify input  

                  data from within the training interval. ............................................................ 33 

 



 

x 

Figure 16: Results when identifying new input data the network was not trained  

                  with. The network combines wheel running and T-maze behavior into  

                  one behavior and identifies the behavior as 1 (T-maze behavior). The  

                  T-maze and open exploration behavior is correctly identified as 1 and  

                  2, respectively, outside of the training interval. .............................................. 34 

Figure 17: Identification results with the 2nd set of testing data for dataset 1. The  

                  desired identification results (left) and the network identification  

                  (right) when there is a significant time gap between the training and  

                  testing data. The network correctly identifies between open  

                  exploration and T-maze behavior and still confuses the wheel running  

                  behavior as T-maze behavior. ......................................................................... 35 

Figure 18: Identification results when identification network is trained by dataset  

                  1 and tested with dataset 2. The top row involves the network being  

                  tested with early time points of dataset 2 and the bottom row involves  

                  the network being tested with later time points of dataset 2. .......................... 37 

Figure 19: Identification results when identification network is trained by dataset  

                  1 and tested with dataset 3. The top row involves the network being  

                  tested with early time points of dataset 3 and the bottom row involves  

                  the network being tested with later time points of dataset 3. .......................... 37 

Figure 20: Identification results when identification network is trained by dataset  

                  1 and tested with dataset 4. The top row involves the network being  

                  tested with early time points of dataset 4 and the bottom row involves  

                  the network being tested with later time points of dataset 4. .......................... 38 

Figure 21: A comparison of the desired rat velocity (left-blue) and spatial  

                  coordinates (Right-blue) to the predicted velocity (left-red) and spatial  

                  coordinates (right-red) of the T-maze behavior attribute network. The  

                  network prediction resulted in an average velocity when compared to  

                  the actual velocity and the predicted spatial coordinates did not  

                  completely traverse the actual path of the rat. The short-comings in  

                  both the velocity and spatial position of the rat is what makes this  

                  network more generalized, or applicable to other neurological data that  

                  the network has not been trained with. ........................................................... 41 

Figure 22: A comparison of the desired rat velocity (left-blue) and spatial  

                  coordinates (Right-blue) to the predicted velocity (left-red) and spatial  

                  coordinates (right-red) of the T-maze behavior attribute network tested  

                  with a dataset that it was not trained for. The network was trained with  

                  T-maze data from dataset 1 and tested with T-maze data from dataset  

                  2. The neurological data given to the network was completely different  

                  from the data that the network was trained with in Figure 21, however,  

                  the network was able to converge to a new average velocity and path  

                  for the rat. The form of the predicted spatial position is similar to the  

                  desired spatial position, but the predicted direction differed from the  

                  actual path, which demonstrates that the network was able to partially  



 

xi 

                  adapt to a new event that it was not trained for. ............................................. 41 

Figure 23: A comparison of the desired rat velocity (left-blue) and spatial  

                  coordinates (Right-blue) to the predicted velocity (left-red) and spatial  

                  coordinates (right-red) of the wheel running behavior attribute  

                  network. For this testing input, the prediction of the velocity generally  

                  stayed constant at 600 mm/s, demonstrating the tendency of the  

                  network to converge to an output value that generally modeled the  

                  desired velocity. The spatial coordinates were well predicted for most  

                  of the wheel running data, due to lack of spatial movement during  

                  wheel running behavior................................................................................... 42 

Figure 24: A comparison of the desired rat velocity (left-blue) and spatial  

                  coordinates (Right-blue) to the predicted velocity (left-red) and spatial 

                  coordinates (right-red) of the wheel running behavior attribute network  

                  for a dataset the network had not been trained for. The network was  

                  trained with dataset 1 and tested with dataset 2. For this testing data,  

                  the network prediction of velocity generally models the desired  

                  velocity. The spatial coordinates were well predicted, due to lack in  

                  spatial movement during wheel running behavior. ......................................... 43 

Figure 25: A comparison of the desired rat velocity (left-blue) and spatial  

                  coordinates (Right-blue) to the predicted velocity (left-red) and spatial  

                  coordinates (right-red) of the open exploration behavior attribute  

                  network. The predicted velocity remained at approximately 100  

                  pixel/s, demonstrating the tendency of the network to converge to an  

                  output value that reasonably fits the desired velocity. The network’s  

                  prediction of the spatial position poorly reflects the desired spatial  

                  positioning of the rat, due to the networks nature to stop training when  

                  either of the outputs (i.e. velocity or spatial position) converges to a  

                  solution. Thus, the network’s velocity prediction converged to a  

                  solution before the spatial position prediction was able to completely  

                  converge to a solution, providing poor results for the predicted path in  

                  this case. .......................................................................................................... 44 

Figure 26: A comparison of the desired rat velocity (left-blue) and spatial  

                  coordinates (Right-blue) to the predicted velocity (left-red) and spatial  

                  coordinates (right-red) of the open exploration behavior attribute  

                  network for a dataset the network had not been trained for. The  

                  network was trained with dataset 1 and tested with dataset 3. The  

                  predicted velocity converged to an output value of approximately 100  

                  pixel/s, which is faster than most of the desired velocity data and the  

                  predicted waveforms do not fit the desired velocity data well. The lack  

                  in adaptability demonstrates how modeling the training data well can  

                  work against the network when new data is presented. The predicted  

                  spatial position of the rat started in the same area the network  

                  predicted for the trained data, however, it adapted to the new  



 

xii 

                  neurological data and converged to a region similar to that of the  

                  desired spatial position. ................................................................................... 44 

Figure A-1: A series-parallel mode of the NARX network used for training.  

                    Training utilizes the previous desired output rather than the network  

                    output to minimize performance error of the network during training. ........ 53 

Figure C-1: 15000 time points of input data for dataset 2 used to train the  

                    identification network. The T-maze and wheel running behavior data  

                    are closely overlapped, while most of the open exploration behavior  

                    data is distinguishable from T-maze and wheel running behavior. .............. 75 

Figure C-2: Identification network results when data from dataset 2 was used. The  

                    network was able to identify all three behaviors within the training  

                    interval (top-right), but confused T-maze behavior as wheel running  

                    behavior outside of the training interval (bottom-right). .............................. 76 

Figure C-3: 15000 time points of input data for dataset 3 used to train the  

                    identification network. The T-maze and wheel running behavior data  

                    are closely overlapped, while most of the open exploration behavior  

                    data is distinguishable from T-maze and wheel running behavior. .............. 76 

Figure C-4: Identification network results when data from dataset 3 was used. The  

                    network was able to identify all three behaviors within the training  

                    interval (top-right), but confused T-maze behavior as wheel running  

                    behavior outside of the training interval (bottom-right). .............................. 77 

Figure C-5: 15000 time points of input data for dataset 4 used to train the  

                    identification network. The T-maze and wheel running behavior data  

                    are closely overlapped, while all of the open exploration behavior  

                    data is distinguishable from T-maze and wheel running behavior. .............. 77 

Figure C-6: Identification network results when data from dataset 4 was used. The  

                    network was partially able to identify all three behaviors within the  

                    training interval (top-right), but confused T-maze behavior as wheel  

                    running behavior outside of the training interval (bottom-right). The  

                    identification results were more difficult for this dataset due to a  

                    larger variation of input data. ........................................................................ 78 

 

 



 

1 

Chapter 1: Introduction 

The hippocampus is known to be essential for the creation of declarative, or fact-

based short-term memories. Information is stored by transferring processed spatio-

temporal neurological activity from the entorhinal cortex (EC) region to the CA1 region 

[1], where the information is projected into long-term memory. The anatomical location 

of the CA1, CA3 and EC region is shown in Figure 1, along with a graphic illustration of 

what neurological spatial-temporal activity may look like in a rat hippocampus [2], [3].  

  

 

Figure 1: (a) Anatomy of the rat hippocampus, illustrating the transfer of electrical signals 

between regions in the hippocampus [2]. The electrical signal will start at the EC region go 

through the CA3 and CA1 regions, then loop back to EC region where the information 

carried by the signal is projected into long-term memory. (b) A computer simulation 

illustrating the possible firing of an ensemble of neurons in a rat hippocampus, 

demonstrating the spatial aspect of neurological activity as an ensemble of neurons 

consisting of individual neurons firing in relation to one another [3].  

 

The process of information propagating through the rat hippocampus can be 

described in terms of its spatial and temporal properties when considering the 

neurological activity of an ensemble of neurons. The spatial component of neural activity 

can be described by an ensemble of neurons that consist of individual neurons firing in 

relation with one another, while the temporal component considers the influence that 

previous neural activity has on the current predicted output at a point in time.  

(a) (b) 
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When determining a time series prediction of rat behavior from neural activity in 

the hippocampus, there are many factors that have to be taken into consideration, such as 

the effect an animal’s location and direction of movement has on the spatio-temporal 

firing patterns of hippocampal neurological activity [4]. By altering the environment, 

certain neural properties may change, such as firing location, peak firing rate and field 

overlap of neural activity due to the neurological network adjusting to task conditions [5]. 

However, there are aspects of cognition that depend on the brain to self-generate 

sequential (temporal) neural activity [6], which is independent of where the animal is 

spatially located in the environment. Thus, factors that influence the dynamic properties 

of neural activity is a combination of both the external environment and internal 

generation of electrical signals in a rat hippocampus. Dynamic properties that 

hippocampal neurons may exhibit, include axonal conduction speed, synaptic strength of 

neural connections, firing rate and inhibition affecting post synaptic spike patterns [5]. 

Additionally, the mechanisms of electrophysiological activity is inherently nonlinear, 

where the spike trains of neurons are not additive and are shown to have varying 

amplitudes depending on the temporal pattern of the previous input [7]. This 

demonstrates the need of a nonlinear and dynamic system to predict the behavior of a rat 

from recorded neurological activity.  

1.1 Statement of Problem 

Damage to the hippocampal region from events, such as a stroke or head trauma, 

can impair electrophysiological transfer of information and disrupt the spatio-temporal 

patterns between hippocampal regions possibly causing amnesia or impairing long-term 

memory formation [8]. Alzheimer’s disease and other forms of dementia are typically 
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associated with loss of neurons in the EC region, the region that provides input to the 

hippocampus [9] 

Understanding the electrophysiological signal encoding of hippocampal neurons 

from the EC to CA1 region in a rat hippocampus may provide insight concerning the 

relation of electrophysiological activity between the EC and CA1 hippocampal regions 

and rat behavior, which has not been as extensively studied as electrophysiological 

activity between the CA3 to CA1 region [1], [8]. This thesis aims to use neurological 

patterns simultaneously recorded from the EC and CA1 region in a rat to identify whether 

the neurological activity is associated with wheel running, T-maze or open exploration 

behavior. The spatial coordinates and velocity attributes of the identified behavior are 

then predicted. Possible applications of this thesis, include improving deep brain 

stimulation therapy for neural implant devices that stimulate based on the pattern of 

neurological activity [10], advancing research in brain-to-machine-interfaces [11], and 

providing additional insight in how neurological activity might be related to behavior. 

Review of literature suggests that research interests focus on identifying rat 

behavior or predicting neurological activity in certain regions of the hippocampus. 

However, by applying a model that can both identify and predict the behavior of the rat 

given a spatio-temporal representation of the EC and CA1 region, the range of possible 

applications for this research increases.  

1.2 Research Questions 

Questions that this thesis addresses and raises include the following: Can T-maze, 

wheel running and open exploration behavior of a rat in laboratory conditions be 

identified with neural networks using input data that consists of cluster ID and shank ID 
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to represent the spatial component of hippocampal neural activity? Additionally, can 

neural networks predict velocity and spatial coordinate attributes of T-maze, wheel 

running and open exploration behavior? Answering these questions may give insight on 

possibilities for recovering functions of damaged brain regions, controlling behavior 

through external electrical stimulation, and enhancing the performance of artificial 

intelligence.  

1.3 Issues and Assumptions 

The data was obtained online from an external source [12]. Assumptions the 

researchers made during the gathering of this data is unknown and may not be coincident 

with the assumptions that were made in this thesis. Results shown in this thesis assume 

that the shanks, during the live gathering of neural activity, did not drift between sessions 

and the rat’s state of mental and physical health were constant throughout all of the 

sessions. Additionally, it was assumed that one behavior would not have an influence on 

another behavior’s neurological activity, if multiple behaviors occurred during the same 

session. The behaviors that can occur in one session include T-maze and wheel running, 

which could possibly cause the neural activity of the rat to be different from a rat that 

only experiences either T-maze or wheel running behavior during a session.  

Recurrent neural networks are utilized in this thesis to map the dynamical process 

between rat neurological activity and T-maze, wheel running and open exploration 

behavior. Although neural networks are non-parametric, requiring the user to know 

nothing about the generation of the signal, there are still some difficulties that present 

themselves while pre-processing the input data and determining the parameters of the 

network structure. Pre-processing the input data is needed, in most cases, for good 
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prediction to occur, such as removing linear and nonlinear trends and periodic patterns 

[13]. The only pre-processing done in this thesis was normalization, which scaled all of 

the data between the values of -1 and 1. Difficulty with the network structure involves 

choosing an appropriate input delay, which represents the amount of previous input time 

points that have a direct impact on the next output, and number of hidden neurons of the 

network. Choosing the parameters pose difficulties due to a lack in deterministic 

processes to calculate the parameters of the network. Parameters of the network are 

commonly found through heuristics that change depending on the application of the 

network and trial-and-error approaches [14].  

Modifying network parameters can enhance or degrade the performance of the 

network in various ways. By increasing the number of hidden neurons, the network’s 

ability to solve complex problems increases, however, too many hidden neurons can 

cause the network to model the noise in the input and provide poor results for data 

outside of the training interval. Increasing the number of input delays can give the 

network the ability to recognize patterns over a longer period of time, however, this can 

be a limitation if the network recognizes patterns that are nonexistent between input and 

output pairs, generally resulting in poor prediction.  

1.4 General Approach 

The general approach entails three stages, the pre-processing stage, general 

behavior identification stage and behavioral attribute stage. Stage 1 (pre-processing 

stage) decomposes the rat’s raw neurological activity into clusters that represent neurons. 

Stage 1 was done by other researchers [12], but is a necessary step in obtaining the input 

used in stage 2 and 3. In Stage 2 (general behavior identification stage), the resultant 
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cluster ID and shank ID input data obtained from stage 1 are used as input for the 

identification network to determine whether the general behavior associated with the 

input data is a T-maze, open exploration or wheel running task. In Stage 3 (behavior 

attribute prediction stage), velocity and spatial coordinate attributes of the identified 

behavior, from stage 2, are determined using the same cluster ID and shank ID input data 

that was used to identify the behavior.  

This approach uses four Nonlinear autoregressive processes with exogenous 

inputs (NARX) networks, one for general behavior identification and three additional 

networks for predicting the velocity and spatial coordinate attributes for the identified 

behavior. Each network is trained with data that is specific to the networks application. 

Neural networks are used as the general approach in this thesis because a neural network 

has properties that represent a biophysically-realistic spiking network and employ 

continuous variables that may be used to represent the temporal component of neural 

activity [15].  

1.5 Organization of Thesis 

Chapter 2 considers other works that have used similar methods for other 

applications or alternative methods to analyze the dynamics of neural activity. 

Additionally, advantages and limitations of using a neural network approach for 

applications involving neural dynamic systems are discussed. In chapter 3, the overall 

system design is explained with each stage discussed in more detail. There is also a 

section that considers implementation of the model into MATLAB. Chapter 4 describes 

testing and evaluation of networks with respect to hippocampal data and discusses overall 

finding and results. This thesis concludes with Chapter 5 which includes a summary of 
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the methods, results and contributions of this work. Additionally, there is a future works 

section, which describes how the results might be improved and what further applications 

this work might inspire.  
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Chapter 2: Literature Review 

2.1 Background 

Understanding the mechanisms underlying neural activity and transfer of 

information in the hippocampus has been a research topic of interest for neural prostheses 

applications involving sensory input, motor control or cognitive function [8]. Many 

aspects of neurological activity have been extensively researched, including mechanisms 

underlying synaptic transmission and generation of electrical activity for individual 

neurons [8], transfer of information based on spatio-temporal neural activity of neuron 

ensembles in the CA3 to CA1 region in rats [1], [5], [8], [16], and transfer of information 

in the prefrontal cortex in nonhuman primates [15]. These studies contribute to modeling 

dynamic properties of neural activity and behavior associated with neural activity. 

However, a review of the literature suggests there is little research focused on identifying 

multiple behaviors from the same brain region and determining specific attributes of 

those behaviors (i.e. velocity and spatial coordinates).  

Previous research has shown that spatio-temporal patterns observed in 

hippocampal neural activity is a result of the inner mechanisms associated with intrinsic 

networks and the external environment of a rat [6], [16]. Additionally, the parameters of 

electrical activity that are dynamic or stay constant in response to environmental 

perturbations has been previously determined [5]. The parameters of neurons shown to be 

dynamic in response to an environmental stimulus include the firing location and firing 

rate, thus providing further evidence that neurological activity can be effectively 

represented by using spatial and temporal components of electrophysiological signals.  
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2.2 Traditional Methods  

Due to a high dimension of nonlinearity in neural activity, alternative methods 

typically consist of orthogonality techniques to decrease the dimensionality and number 

of parameters needed to interpret, analyze or predict neurological activity [17]. The most 

extensively used method includes variations of Volterra integral methods, which provide 

a general mathematical representation of the nonlinear dynamics involved in signal 

transformation and coding by class of neural systems [18]. This method has an 

orthogonalization scheme to reduce the dimensionality of the problem, thus reducing the 

parameters needed to model the given input. However, implementing orthogonality 

techniques for nonlinear biological systems may be difficult for researchers who are 

unfamiliar in using Volterra kernels for modeling nonlinear systems, which may require 

the use of higher-order complex terms.  

Using a neural network approach allows for a non-parametric method for 

mapping a time-series input to an output, where no information concerning how the 

signal was generated is necessary, thus, providing a more accessible way to interpret and 

analyze nonlinear biological systems. 

2.3 Neural Networks 

A variety of neural networks have been used for neurological applications. Radial 

basis function (RBF) recurrent networks have been used to successfully predict epilepsy 

up to 60s before occurrence [19] and have also been used to transform rat brain signals 

into robotic movement [20]. Three layer artificial networks have been shown to solve 

simple spatial tasks similar to those that are handled by the hippocampus, which allowed 

the network to determine an optimum path using relative landmarks [21]. And Hopfield 
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neural networks have been utilized to model auto-associative and hetero-associative 

memory of the hippocampus [22]. Thus, networks have been used to interpret and 

analyze hippocampal neurological activity, mimic hippocampal functions and form brain-

to-machine interfaces (BMI).  

The model proposed in this thesis is best compared to modeling a chaotic time 

series using a NARX network [13]. A NARX network is essentially a feedforward 

network with input delay and output delay, or recurrence. This network has been shown 

to have potential in modeling nonlinear dynamic systems and is typically faster in 

converging to a solution for a complex dynamic and nonlinear problem [13]. 
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Chapter 3: System Design  

This chapter discusses the overall design through illustration and explanation of 

the three stages: pre-processing, identification and attribute prediction, in detail. Each 

stage has its own section regarding the contents and processes the respective stage entails.  

3.1 Three Stage Design  

The three stage design consists of importing cluster ID and shank ID data, that 

represents the neurological activity of neuron ensembles, as input to a NARX network 

that identifies the general behavior associated with the input data as a 1, 2 or 3 

representing T-maze, open exploration, or wheel running behavior, respectively. After 

identification, the input data is sent to another NARX network that predicts the velocity 

and spatial coordinate attributes of the identified general behavior. Thus, a total of four 

NARX networks are used in this system to account for all the possible variations of input 

data. This thesis only considers predicting behavior attributes for one identified behavior, 

rather than multiple identified behaviors in a testing session. The diagram in Figure 2 

illustrates the overall design and process of this thesis.  
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Figure 2: The overall design consists of three stages: pre-processing stage, identification 

stage and behavior attribute prediction stage. The pre-processing stage decomposes filtered 

LFP spike waveforms into cluster ID data. The identification stage uses the cluster ID and 

shank ID data as input for the identification network, which categorizes the input into an 

output of 1, 2 or 3 representing T-maze, open exploration or wheel running behavior, 

respectively. The behavior attribute prediction stage uses the same input used to identify 

the general behavior to determine the velocity and spatial coordinate attributes of the 

behavior identified in the identification stage.  

 

3.2 Pre-Processing Stage 

The pre-processing stage takes the recorded local field potential and decomposes 

it into clusters that represent individual firing of neurons. This stage was done by other 

researchers [12], but is a crucial step in obtaining data that may be representative of 

neuronal spatial firing in the hippocampus. Methods on how to spike sort LFP signals to 

obtain cluster ID data is briefly discussed in this thesis as the first stage. 

3.2.1 Raw Data Gathering 

Local field potential (LFP) data was gathered using 16 probes (shanks) that 

simultaneously recorded neural activity of the CA1 region, in the left and right 
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hemisphere, and EC region in the right hemisphere of the rat hippocampus, while the rat 

performed T-maze, wheel running or open exploration behavior. Table 1 outlines the 

relative location of a shank with the corresponding shank ID number. Each of the 16 

shanks have 8 recording sites, allowing for a total of 128 channels to gather neural 

activity from the CA1 and EC region. The LFP is a representation of the raw data that 

was recorded using the shanks, where each shank ID is associated with a specific color.  

Table 1: General location of rat hippocampal neural activity associated with shank ID 

number 

Shank ID# Location in rat hippocampus 

1-4 Right EC 

5-8 Right CA1 

9-16 Left CA1 

 

Figure 3 is an example of an LFP recorded from a rat hippocampus during wheel 

running activity for a 1000ms time interval. There are eight distinct lines of one specific 

color representing the eight recording sites of a particular shank.  
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Figure 3: (a) An example of a shank with six recording sites on it. Illustrating how one 

shank may gather multiple signals at once [23]. (b) A sample LFP of a rat performing wheel 

running task for a 1000ms interval. Every shank is represented by a unique color. 

 

3.2.2 Spike Sorting 

Spike sorting is the general process of relating a unique spike waveform to an 

individual neuron, the neurons are represented by clusters which are optimally identified. 

The primary spike sorting technique used to decompose the LFP spike waveforms into 

clusters is called principal component analysis (PCA). PCA reduces the dimensionality of 

a spike waveform into three components, which represent the features that exhibit the 

(a) 

(b) 
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greatest variability between spike waveforms, then by plotting the principal components 

against one another formations of specific clusters are observed. When spike sorting, the 

following assumptions are typically made:  

1. Every unique spike waveform is associated with the firing of a specific neuron.  

2. The spike waveform associated with a neuron is not changing over time.  

3. Neurons are firing at a constant frequency.  

Realistically, the assumptions made are not necessarily true, but since the spike 

waveforms and frequency of any given neuron are dynamic and change with time, the 

above assumptions are typically used for consistent identification of individual neurons 

or clusters.  

Amplitude thresholds were used to filter out extracellular waveforms that might 

represent noise or smaller spikes from neurons in the local region, this step is used to 

separate the neuron of interest from background noise and weak neural signals from 

neurons not in the local region, before the use of PCA [24]. For PCA, features are 

automatically chosen by using a program to find an ordered set of orthogonal basis 

vectors that capture the largest variations in data. Figure 4 demonstrates the separation of 

spike waves into principal components.  
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Figure 4: Example of aligning spike waves and finding the resulting principal components 

[25]. 

 

Individual neurons for the spike waveforms shown in Figure 4, can be found by 

plotting the principal components against one another and forming boundaries around 

clusters that might represent the firing of a specific neuron, which is illustrated in Figure 

5. 

 

Figure 5: An example of creating boundaries around clusters to identify the unique neurons 

in a system [25]. 

 

Using the spike sorting process shown above, cluster ID data was obtained for 

each shank. The spatial component for neurological activity will be represented by the 
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global cluster ID as a function of the shank ID for the remainder of this thesis. The 

relation between local cluster data and global cluster data is shown in Figure 6. 

 

 

 

Figure 6: Cluster data for a rat performing wheel running behavior. (a) The local cluster 

data illustrating how many neurons an individual shank recognizes. (b) The cluster ID# 

arranged from 1-128, ordering cluster ID sequentially from shank ID 1 to shank ID 14. 

 

3.2.3 Forming Temporal Component of Input Data, Illustrative Example Using 

Simplified NARX Network  

Information of specific neurons (cluster ID) recorded by a shank at a specific 

point in time forms the spatial component of the input data. The spatial component of the 

system, represented by the input data, is given temporal properties by considering the 

influence of input data (cluster ID and shank ID) and output (general behavior) at one 

point in time has on the output at another point in time. Input and output was arranged 

into a time-series, where an input and corresponding output was defined for every time 

point. Thus, the temporal component is represented through the process of feeding input 

to the neural network, such that the previous input and output data has an effect on the 

next output being predicted. The rest of this section demonstrates how the temporal 

Classified 7 

neurons for 

shank 3

1-7

10 neurons 

for shank 4

8-18

(a) (b) 
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component is formed through the network with a simplified example of sequentially 

introducing four cluster ID and shank ID data points into a NARX network.  

Consider the nonlinear autoregressive process with exogenous inputs (NARX) 

network in Figure 7, where the next output depends on the current input data and the 

previous output. Note, the nonlinear hidden layer was removed for demonstration 

purposes, however, any properties exhibited by the simplified network apply to the three-

layer structure networks used for identification and behavior attribute prediction as well. 

 

Figure 7: A simplified NARX network used to illustrate the temporal component. The 

input x1 and x2 represents shank ID and cluster ID, respectively. Weights (w) are used to 

factor the importance of a particular input or previous output and are optimally determined 

by training the network with a representative dataset. For this example, input weights (w1 

and w2) are set to unity, value of 1, and the weight of the previous output (wo) is 0.5.This 

network calculates the next output by linearly summing the weighted current input and 

weighted previous output. The nonlinear hidden layer of the network is removed to 

simplify the example.  

 

The output for the simplified NARX network shown above can be described by 

the following equation:  

𝑦(𝑡 + 1) = 𝑥1(𝑡) ∗ 𝑤1 + 𝑥2(𝑡) ∗ 𝑤2 + 𝑦(𝑡) ∗ 𝑤𝑜           [Eq. 1] 

 

For this example the weights are:   
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𝑤1 = 𝑤2 = 1  

 𝑤𝑜 = 0.5 

The weights (w) scale a particular input based on the significance the input has on 

the next output. For this example, the cluster ID data and shank ID data are weighted 

equally and the previous output is weighted half as much as the input.  

Using 4 time steps from the input data in Figure 6 gives the example input data 

shown in Table 2. Calculation of the output is carried out for four additional steps with no 

input data to demonstrate that the network still holds memory of previous data, which the 

network uses to predict the next value.  

Table 2: Four time steps of input data with four additional steps of no input  

X1(Shank ID) 4 9 11 7 0 0 0 0 

X2(Cluster ID) 40 91 104 71 0 0 0 0 

 

 

The example data in Table 2 is sequentially presented to the simplified network shown in 

Figure 7 to produce the results seen in Figure 8. 
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Figure 8: The resulting output calculated by the network using eight time steps. This plot 

illustrates that the calculated output is the sum of the input and half the previous output at 

any given time point. However, when there is no further input, the network still retains half 

the value of the previous time point.  

 

The simplified NARX network still calculates the next output value when there is 

no input and retains half the value of the previous time point. The NARX network’s 

ability to store memory of previous output data was essential to form the temporal 

component of neural activity. The associative memory properties of the NARX network 

demonstrate that it may have the capability to map complex dynamic and nonlinear 

neurological activity to a behavior. All of the properties demonstrated for a simplified 

NARX network apply for a NARX network with a nonlinear hidden layer as well. 

In summary, the cluster ID and shank ID input data presented to the network form 

the spatial component of neurological activity, while the temporal component of neural 

activity is represented by the sequential loading of input data into a NARX network. In 

other words, the input data is the spatial component and how the input data is processed 

in the network forms the temporal component.  
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3.3 Identification Stage 

The identification stage uses the cluster ID and shank ID obtained from the pre-

processing stage to determine whether the general behavior is a T-maze, wheel running or 

open exploration behavior represented by a value of 1, 2 or 3, respectively. The result of 

the identification network is post-processed to determine the most likely value that is 

predicted by the NARX network.  

3.3.1 Identification Network Parameters 

Possible modifiable NARX network parameters include the input delay, output 

delay, number of layers, number of hidden neurons and the nonlinear activation function 

of the hidden layer. The network for identifying behaviors had best results when a ratio of 

1:2 for input delay and number of hidden neurons was used. However, below an input 

delay of 25, the network was generally not able to identify behaviors within the training 

interval.  

The activation function for the hidden layer is chosen based on the application of 

the network. Only nominal values of 1, 2 and 3 representing T-maze, open exploration 

and wheel running behavior, respectively were desired, thus a hard-limiting nonlinear 

activation function was used for identification. The parameters that yielded the best 

results with the data used in this thesis are shown in Table 3.  

Table 3: Parameters of the NARX identification network 

Number of layers  3 (input-hidden-output) 

Number of hidden layer neurons, H 60 

Input delay 30 

Output delay 1 

Hidden layer activation function, f Hard limiting  
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Figure 9 illustrates a NARX network with the parameters outlined in Table 3. 

 

Figure 9: A diagram of the NARX network used for identification of T-maze, wheel 

running or open exploration behavior. Both of the inputs have a delay of 30, where “D” 

represents a time-series delay, which implies the other 29 previous values of input and their 

weights not illustrated. The output has a single delay (z-1) that feeds back the previous 

output as input to the hidden layer. All of the inputs are fully connected to the hidden layer.   

 

3.3.2 Identification Training Methods  

 

The identification NARX network was trained with 5000 time points of samples 

consisting of input (cluster ID and shank ID) and desired output (identification number) 

data for T-maze, open exploration and wheel running behavior data from an early portion 

of each behaviors respective dataset. Taking time points from early portions of a dataset 

was done for practical purposes, to simulate a situation where researchers only had to 

train the network with the first few seconds of gathered data, then move on to testing. . 
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A series-parallel model of the NARX network was used for training. A series-

parallel NARX network uses the previous desired output value as input, rather than 

feeding back the output value the network calculates. Training with this network model 

allows for errors in network training to occur and still provide satisfactory training 

results, a diagram of the training process is shown in Figure 10. 

 

Figure 10: A general NARX network in series-parallel mode. A series parallel mode uses 

the previous value of the desired output, rather than the previous value of the network 

output, to avoid using incorrect network output as input for training.   

 

After training, the identification network was tested with input data outside of the 

training interval to determine how well the network can generalize to other time points 

that it has not been trained for. A parallel model of the NARX network was used for 

testing, where the calculated output of the network feeds back as input to the hidden 

layer, model previously shown in Figure 9. See Appendix A for more information 

regarding the theory of the learning process.  
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Note that the input data is split between training, validation and testing within the 

training procedure. After the network reaches a minimum error value goal validation will 

occur and if the network gets a wrong value for the input sample, then it will 

automatically go back to training. Because the sample data is randomly split between 

training, validation and testing, there are a large variety of results that can occur even 

when the network is tested for a time interval that it has been trained for.  

3.4 Behavior Attribute Prediction Stage 

This stage determines the spatial coordinates and velocity attributes for the 

behavior that was identified in the previous, identification, stage. T-maze, wheel running 

and open exploration behavior has its own respective NARX network for behavior 

attribute prediction. The use of multiple networks within the behavioral attribute stage 

was necessary to predict multivariate output for the identified behavior. Each network has 

the same parameters and structure, but trained with data representative of a specific 

networks behavior. The behavior attribute prediction network uses the same input data as 

the identification network during testing.  

3.4.1 Behavior Attribute Network Parameters   

Possible modifiable behavior attribute NARX network parameters include the 

input delay, output delay, number of layers, number of hidden neurons and the nonlinear 

activation function of the hidden layer. Best results were obtained using 40-60 input 

delays and 30-50 number of hidden neurons, Table 4 outlines the parameters of the 

behavioral attribute network. 
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Table 4: Parameters for every behavioral network 

Number of layers  3 (input-hidden-output) 

Number of hidden layer neurons 30 

Input delay, dx 50 

Output delay, dy 1 

Hidden layer activation function, f Sigmoidal  

 

Parameters of the behavioral attribute network that differ from the identification 

network include the nonlinear activation function, f, of the hidden layer, which was 

changed to sigmoidal for attribute prediction. By changing the nonlinear function to 

sigmoidal, a range of values can be predicted, rather than nominal values. Additionally, 

the number of hidden neurons and the input delay was changed and chosen through trial-

and-error. The structure of the model, shown in Figure 11, looks much like the identifier 

stage NARX network. 

 

Figure 11: The NARX model with the parameters of the behavior attributes network 

implemented. Input consists of the cluster ID and shank ID at the current time-point and 

the previous 50 inputs along with the previous output. The input is fully connected to the 
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30 neurons in the hidden layer where the input is nonlinearly transformed, then linearly 

summed at the output.  

3.4.2 Behavior Attribute Training 

The behavior attribute stage NARX network was trained and tested similarly to 

the identification stage network. The network was trained in series-parallel (open) mode, 

which allowed the next output value to use the previous desired output value as input, 

rather than the output value calculated by the network. Training data consisted of a large 

range of possible velocity and spatial coordinates the rat could exhibit during a session. 

After training, the network was converted to parallel (closed) mode where the output 

calculated by the network was used, rather than the desired output. Closing the network 

allowed for a multi-step ahead prediction of the spatial coordinates and velocity. Testing 

was done with new input data outside of the training interval, consisting of cluster ID and 

shank ID input data, the network was not previously trained for. The output of the 

network is compared with the desired output to determine whether the methods in this 

thesis are applicable.  
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3.5 System Implementation  

The overall design proposed in this work is implemented in MATLAB. This 

program was used due to availability and convenience of implementation. The identifying 

and behavior attribute NARX networks were designed using the neural networking 

toolbox (NNT) in MATLAB, Appendix B contains the code used when implementing the 

networking toolbox. The NNT has two different modes for a NARX network, consisting 

of open and closed. When the network is in open mode, it will delay and use the desired 

output as input to calculate the next output, a MATLAB illustration of the open network 

structure is shown in Figure 12. This is a one-step ahead prediction model suitable for 

training the network. 

 

Figure 12: An open mode NARX network illustrated in MATLAB, where the previous 

desired output is used, rather than the calculated output of the network. Using the desired 

output as input to the network allows the network to make mistakes during training, but 

still converge to a solution.  

 

After training, the network was closed and the previous calculated output of the 

network was fed back as part of the input, Figure 13 illustrates the MATLAB model of 

the closed loop structure. This NARX network mode was used for testing and has the 

ability to predict multiple steps ahead, whereas open loop mode can only predict one-step 

ahead.  
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Figure 13: A closed-loop mode NARX network with the same parameters used in the 

identifier network. This model is used for testing the network with new data that it has not 

been previously trained for.  

 

  



 

29 

Chapter 4: Testing and Evaluation 

Testing consists of two parts: self-testing with new input data from the same 

dataset the network was trained with and cross-testing with new input data from a 

different dataset that the network was not trained with. Datasets include two sessions of 

T-maze and wheel running behavior and two sessions of open exploration behavior. T-

maze and wheel running behaviors are combined due to both behaviors taking place in 

the same cage, making it possible for both behaviors to occur in one session. Different 

combinations of the four sessions creates four different datasets for testing identification 

and two different datasets for testing attribute behavior networks. A summary of the 

combinations of sessions used to form each dataset is shown in Table 5. 

Table 5: Possible datasets that can be used to train or test the identification network  

          Open Exploration  

                            Session  

 

T-Maze and  

Wheel Run Session 

Session 1:  

Large 2D platform 

exploration, 60 min 

(252,925 time points) 

Session 2: 

Large 2D platform 

exploration, 60 min 

(3,166,564 time points) 

Session 1:  

T-maze: 35 min  

Wheel runs: 20sec intervals 

(998,725 time points) 

 

Dataset 1 Dataset 3 

Session 2:  

T-maze: 23 min  

Wheel runs: 20sec intervals 

(897,776 time points) 

 

Dataset 2 Dataset 4 

 

 

4.1 Testing Identification Network  

Effectiveness of the identification network was tested using two methods, self-

testing datasets and cross- testing datasets. For self-testing datasets, the network was 
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trained with early time points of a dataset, then tested with later time points from the 

same dataset used to train the network, this tested how far outside the training interval the 

identification network remains effective when identifying behavior of the same dataset. 

Cross-testing datasets involved using one dataset to train the network and another dataset 

to test the network, this tested for generalization of the identification network across 

sessions. For both testing methods, the identification network is always trained using one 

dataset, rather than multiple datasets at once.  

4.1.1 Self-Testing Datasets For Identification Network 

Self-testing datasets involved using one dataset for both training and testing. 

Training data consisted of 5000 early time points of cluster ID and shank ID input data 

and desired output for T-maze task, wheel running and open exploration behaviors, 

amounting to a total 15000 input-output pairs used for training. Table 6 summarizes what 

identification number is associated with each behavior. 

Table 6: The number of training sample points used for each behavior from dataset 1 to 

train the identification network  

Behavior Identification Training Sample points 

T-Maze 1 5000 

Open Exploration 2 5000 

Wheel Run 3 5000 
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Plotting all the time points of the input data from Table 6 demonstrates that cluster ID as 

a function of shank ID between behaviors can closely overlap or be easily distinguished, 

see Figure 14.  

 

Figure 14: A plot of all 15000 time points of input data used to train the identifier NARX 

network. The input data consists of cluster ID as a function of shank ID for each behavior. 

Input data of the open exploration is well distinguished from T-maze and wheel running 

data, while the T-maze and wheel running input closely overlap.  

 

Although the amount of time points for each behavior during training and testing 

were the same, the actual time period between behaviors would differ. A time point refers 

to a recognizable spike of an individual neuron at a point in time, while the time period 

refers to a time span of the behavior in seconds. Table 7 describes the time period of the 

training and testing interval of the input data shown previously in Figure 14. Where 

training interval is the time between the first and last time point of the training set, time 

gap is the wait time between the last time point of the training set and the first time point 

of the testing set and testing interval is the time between the first and last time point of 

the testing sample. Note, there is a larger training interval period for open exploration 

behavior compared to T-maze or wheel running behavior when the same number of 
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training time points were used for all three behaviors. This implies that there was a lower 

frequency of spikes during open exploration behavior than there were for T-maze or 

wheel running.  

Table 7: The time interval of the training data, time gap between training and testing and 

testing data 

Dataset 1- Test 1 T-Maze Open Exploration Wheel Run 

Training Interval (s) 8.40 12.4 7.35 

Time gap (s) 30.2 41.8 50.2 

Testing Interval (s) 5.10 7.10 6.10 

 

All of the training time points were taken early on in the dataset to try and 

replicate a real event, where only the first few seconds of behavior would be needed for 

training, then succeeding time points can be identified without knowing the actual 

behavior of the rat. The next output is dependent on the previous values of input and 

output, thus, it is necessary to use sequential training samples consisting of successive 

time points. Training with sequential time points, rather than random time points, makes 

it possible for the network to find a pattern in the input that can be associated with the 

desired output. 

After the network was trained using a series-parallel structure, which allowed the 

network to use previous desired output, rather than the previous network output. Figure 

15 illustrates the training results of the network, while the closed network structure was 

tested using the interval of data that it was trained with, to determine if the network was 

trained well. A good training session would result in the network output closely matching 

the desired output, but not completely. A small deviation from the desired output shows 

that the network can be generalized to other data. 
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Figure 15: Identification results for the input used to train the network. The desired 

identification for the corresponding input data (left) includes 5000 time points for each 

behavior, where the first 5000 time points is T-maze, time points between 5001-10000 is 

open exploration and the last 5000 time points is wheel running. The network identification 

(right) demonstrates that the network can effectively identify input data from within the 

training interval.  

 

A successfully trained identification network with good generalization would be 

able to distinguish between all three behaviors inside and outside the training interval, 

however, networks that showed appropriate distinction between all three behaviors within 

the training interval would typically confuse two behaviors as one outside of the training 

interval, thus, only two behaviors outside of the training interval were correctly 

identified. The results from using behavior data outside of the network training interval 

are shown in Figure 16. 
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Figure 16: Results when identifying new input data the network was not trained with. The 

network combines wheel running and T-maze behavior into one behavior and identifies the 

behavior as 1 (T-maze behavior). The T-maze and open exploration behavior is correctly 

identified as 1 and 2, respectively, outside of the training interval.  

 

Different training iterations of the network can yield different results. However, 

identification results generally confused the T-maze and wheel running behavior outside 

of the training interval. This is not surprising, as both behaviors take place in a single 

session and the neurological activity between T-maze and wheel running behaviors are 

closely overlapped, as seen in Figure 14. Although, the network was only able to 

distinguish between open exploration and T-maze behaviors outside of the training 

interval, the identification network was able to consistently identify between open 

exploration and T-maze behaviors throughout the entire dataset that the network was 

trained with. Consistency of identification between open exploration and T-maze 

behaviors outside of the training interval is shown using testing time points from a later 

portion of dataset 1, demonstrating that the network can still distinguish between T-maze 

and open exploration behavior with a much larger time gap between the training and 

testing time points. A summary of the time interval for specific time frames is given in 

Table 8. 
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Table 8: Time intervals of the training set, time gap between training and testing sets and 

2nd testing set  

Dataset 1:  Test 2 T-Maze Open Exploration Wheel Run 

Training Interval (s) 8.40 12.4 7.35 

Time gap (s) 155 203 213 

Testing Interval (s) 10.0 9.36 6.50 

 

 

A comparison of the desired identification output and network identification 

output for the testing interval shown in Table 8, demonstrates that the network can still 

identify between open exploration and T-maze behavior, but not wheel running behavior, 

see Figure 17.  

 

Figure 17: Identification results with the 2nd set of testing data for dataset 1. The desired 

identification results (left) and the network identification (right) when there is a significant 

time gap between the training and testing data. The network correctly identifies between 

open exploration and T-maze behavior and still confuses the wheel running behavior as T-

maze behavior. 

 

General observations when self-testing with the identification network include the 

network being unable to distinguish one behavior outside of its training interval, thus, if 

three behaviors were correctly identified inside the training interval, then two behaviors 

were typically identified outside the training interval. When the network was only able to 

distinguish between two behaviors inside the training interval, then only one behavior 
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was identified outside the training interval. However, once the network scaled down one 

behavior outside the training interval, it would identify consistently throughout the rest of 

the dataset that was used for training, assuming that the network was trained correctly 

and accurate initial results were obtained during training.  

The property of the identification network to scale down one behavior outside of 

the training interval based on the input data was observed with self-testing datasets 2, 3 

and 4 as well, thus, to reduce redundancy with the thesis, results for the additional 

datasets are provided in appendix C.  

4.1.2 Cross-Testing Datasets For Identification Network 

Cross-testing consists of training the identification network with one dataset and 

using another dataset to test it. The same amount of time points used for self-test training 

are used to train the identification network for cross-testing, previously shown in Table 6. 

Testing input data was then taken from a random interval within another dataset the 

network was not trained with.  

Dataset 1 was used to train the network with 5000 time points of T-maze, wheel 

running and open exploration behavior. Figure 18-Figure 20 demonstrates the prediction 

results of the network, trained with dataset 1, when testing with input data taken from 

another dataset, specifically the early and latter portion of datasets 2, 3 and 4.  
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Figure 18: Identification results when identification network is trained by dataset 1 and 

tested with dataset 2. The top row involves the network being tested with early time points 

of dataset 2 and the bottom row involves the network being tested with later time points of 

dataset 2. 

 

 

Figure 19: Identification results when identification network is trained by dataset 1 and 

tested with dataset 3. The top row involves the network being tested with early time points 

of dataset 3 and the bottom row involves the network being tested with later time points of 

dataset 3. 
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Figure 20: Identification results when identification network is trained by dataset 1 and 

tested with dataset 4. The top row involves the network being tested with early time points 

of dataset 4 and the bottom row involves the network being tested with later time points of 

dataset 4. 

 

General observations of cross-testing between datasets include the identification 

network being unable to effectively identify behaviors from early or latter time points of 

a dataset that the network is not trained with. The results of cross-testing demonstrate that 

a larger difference in datasets would exhibit poorer identification. Dataset 1 has one 

session changed between datasets 2 and 3, so the network may identify one or two 

behaviors correctly, however, both sessions are changed between datasets 1 and 4 

resulting in completely incorrect identification for any time point in dataset 4 with a 

network that is trained with dataset 1. Cross-testing between the other datasets were 

unsatisfactory as well and were not included in this thesis to reduce redundancy.  
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4.2 Testing of Behavior Attribute Network  

The behavior attribute network was trained and tested similarly to the 

identification network, however, a behavioral attribute network only takes input data, 

consisting of cluster ID and shank ID, for one behavior. Behavioral attribute networks are 

trained with input-output data representative of possible velocity and spatial coordinates 

the rat can undergo during a session. The behavioral attribute network is more compliant 

when training, compared to the identification network, due to the cluster ID and shank ID 

data coming from one behavior, rather than all three behaviors at once, as in the 

identification network. This network is a multi input-multi output NARX network that 

maps the cluster ID and shank ID (two inputs) from one behavior to the x- and y-

coordinate positions and velocity (three outputs) of the rat during the identified behavior. 

The network was tested with the same time points as the identification network due to the 

nature of the model shown in the overall design.  

The spatial position and velocity of the rat predicted by the network was generally 

satisfactory, but may vary between training sessions. Two datasets containing different 

sessions of a specific behavior are used for training and testing the behavior’s respective 

behavioral attribute network. A summary of the datasets used for each BAN is shown in 

Table 9.  

Table 9: Datasets used for behavior attribute network training and testing  

T-Maze BAN Open Exploration BAN Wheel Running BAN 

Dataset 1 Dataset 1 Dataset 1 

Dataset 2 Dataset 3 Dataset 2 

 

The network was tested in the training interval to validate if training was 

successful, then tested outside of the training interval to determine generalization of the 
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network. Additionally, the network was tested across datasets, where the network is 

trained with one dataset and tested with another. For practical purposes, it would be 

advantageous for an attribute network to be trained with one dataset and tested with 

another due to the range of values that a behavior attribute network needs to be trained 

with, unlike the identification network, which only has an output of 1, 2 or 3.  

4.2.1 T-Maze Behavior Attribute Network  

Training for the T-maze behavior attribute network was done using approximately 

1x105 time points of T-maze behavior from one session that covered the entire range of 

possible velocity magnitude and trajectories the rat could undergo during one session. 

The network was then tested with the same data used for training the network to test how 

well the network modeled the training data. A successful test of training data would result 

in the network generally modeling the training data but not exactly. If satisfactory 

generalization was observed, then the network was self-tested and cross-tested. Figure 21 

illustrates the results of a network trained and tested with dataset 1, while Figure 22 

cross-tests the network with dataset 2. 
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Figure 21: A comparison of the desired rat velocity (left-blue) and spatial coordinates 

(Right-blue) to the predicted velocity (left-red) and spatial coordinates (right-red) of the T-

maze behavior attribute network. The network prediction resulted in an average velocity 

when compared to the actual velocity and the predicted spatial coordinates did not 

completely traverse the actual path of the rat. The short-comings in both the velocity and 

spatial position of the rat is what makes this network more generalized, or applicable to 

other neurological data that the network has not been trained with.  

 

 

Figure 22: A comparison of the desired rat velocity (left-blue) and spatial coordinates 

(Right-blue) to the predicted velocity (left-red) and spatial coordinates (right-red) of the T-

maze behavior attribute network tested with a dataset that it was not trained for. The 

network was trained with T-maze data from dataset 1 and tested with T-maze data from 

dataset 2. The neurological data given to the network was completely different from the 

data that the network was trained with in Figure 21, however, the network was able to 

converge to a new average velocity and path for the rat. The form of the predicted spatial 

position is similar to the desired spatial position, but the predicted direction differed from 

the actual path, which demonstrates that the network was able to partially adapt to a new 

event that it was not trained for.  
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4.2.2 Wheel Running Behavior Attribute Network   

The datasets used for training and testing the T-maze behavior attribute network 

are used for the wheel running behavior attribute network as well, due to wheel running 

and T-maze behavior taking place within the same session. However, only time points 

representative of wheel running behavior are taken from dataset 1 and 2 for training and 

testing. The training data is representative of a range of velocities and trajectories that the 

rat may undergo during a session.  

The wheel running behavior attribute network was self- and cross-tested to 

determine generalization of the trained network prediction outside of the training interval 

for a dataset the network was trained with and across datasets, see Figure 23 and Figure 

24.  

 

Figure 23: A comparison of the desired rat velocity (left-blue) and spatial coordinates 

(Right-blue) to the predicted velocity (left-red) and spatial coordinates (right-red) of the 

wheel running behavior attribute network. For this testing input, the prediction of the 

velocity generally stayed constant at 600 mm/s, demonstrating the tendency of the network 

to converge to an output value that generally modeled the desired velocity. The spatial 

coordinates were well predicted for most of the wheel running data, due to lack of spatial 

movement during wheel running behavior. 
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Figure 24: A comparison of the desired rat velocity (left-blue) and spatial coordinates 

(Right-blue) to the predicted velocity (left-red) and spatial coordinates (right-red) of the 

wheel running behavior attribute network for a dataset the network had not been trained 

for. The network was trained with dataset 1 and tested with dataset 2. For this testing data, 

the network prediction of velocity generally models the desired velocity. The spatial 

coordinates were well predicted, due to lack in spatial movement during wheel running 

behavior. 

 

 

4.2.3 Open Exploration Behavior Attribute Network 

Open exploration behavior datasets contain entire sessions of just open 

exploration behavior, unlike the T-maze and wheel running behavior datasets, training 

and testing data for open exploration can be chosen from any interval in the dataset. Open 

exploration behavior involves placing a rat in a cage with no inner boundaries giving the 

rat freedom to explore and imposing no specific task onto the rat. The open exploration 

behavior attribute was trained with a possible range of velocity and spatial position data. 

The network was then self-tested with new data outside of the training interval, from the 

same dataset used for training, and cross-tested with new data from a dataset the network 

was not trained with, which is illustrated in Figure 25 and Figure 26. 



 

44 

 

Figure 25: A comparison of the desired rat velocity (left-blue) and spatial coordinates 

(Right-blue) to the predicted velocity (left-red) and spatial coordinates (right-red) of the 

open exploration behavior attribute network. The predicted velocity remained at 

approximately 100 pixel/s, demonstrating the tendency of the network to converge to an 

output value that reasonably fits the desired velocity. The network’s prediction of the 

spatial position poorly reflects the desired spatial positioning of the rat, due to the networks 

nature to stop training when either of the outputs (i.e. velocity or spatial position) converges 

to a solution. Thus, the network’s velocity prediction converged to a solution before the 

spatial position prediction was able to completely converge to a solution, providing poor 

results for the predicted path in this case.  

 

 

Figure 26: A comparison of the desired rat velocity (left-blue) and spatial coordinates 

(Right-blue) to the predicted velocity (left-red) and spatial coordinates (right-red) of the 

open exploration behavior attribute network for a dataset the network had not been trained 

for. The network was trained with dataset 1 and tested with dataset 3. The predicted 

velocity converged to an output value of approximately 100 pixel/s, which is faster than 

most of the desired velocity data and the predicted waveforms do not fit the desired velocity 

data well. The lack in adaptability demonstrates how modeling the training data well can 

work against the network when new data is presented. The predicted spatial position of the 

rat started in the same area the network predicted for the trained data, however, it adapted 

to the new neurological data and converged to a region similar to that of the desired spatial 

position.  
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4.3 Results Discussion  

The various results found in this thesis raise the following questions: What 

possible factors caused the identification network to confuse the T-maze and wheel 

running behavior outside of the training interval? Why does cross-testing work for 

behavior attribute networks and not identification? How close does the comparison 

between the desired and predicted behavior have to be to consider the results of the 

network satisfactory? And what modifications can be made to the design to improve the 

predicted outcome? Each of these questions are addressed, but still remain open ended.  

A time series spatial representation of neural activity in the form of cluster ID and 

shank ID for T-maze, wheel running and open exploration behavior was loaded into an 

identification NARX network resulting in identification of two out of three behaviors 

outside of the training interval. There are many factors that could possibly be affecting 

the performance of the identification network. Assumptions that were made in this thesis, 

such as the mental and physical state of the rat remaining the same and electrode drift not 

occurring between sessions, may not be coincident with the assumptions made by the 

researchers that gathered the live data. Additionally, the network parameters may not be 

optimally sufficient for a problem of this complexity. Distinguishing between three 

different time-series spatial representations of behavior may be too dynamic and 

nonlinear for a NARX network with a three layer structure consisting of an input, hidden 

and output layer.  

The content of the input data may have been another contributing cause for the 

confusion between T-maze and wheel running behaviors. The cluster ID and shank ID 
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data used to train the network may not have appropriately represented the entire dataset. 

However, the most probable explanation for the subpar performance in identification 

results may be due to the similarity of the wheel running and T-maze behavior input data. 

There is a clear overlap of input data between T-maze and wheel running behavior, 

previously shown in Figure 14, which would most likely cause the network to generalize 

the two behaviors into one. Moreover, the chosen parameters for the input, cluster ID and 

shank ID, may not have appropriately represented the spatial component of neurological 

activity in the hippocampus. Additional parameters, such as theta phase or time between 

firing of neurons, may be needed to completely represent the spatio-temporal firing of 

neuron ensembles in a hippocampus. 

Multiple methods were used to extract input data from datasets, such as random 

sampling and uniformly spaced time points, to train the NARX network with. However, 

best results were observed when the network was trained with sequential data. This 

finding supports the initial assumption of an existing pattern between the current and 

previous input data and behavior.  

Cross-testing the identification network demonstrated that the identification 

network trained with one dataset would not be practical to use for another dataset. The 

identification network was typically not able to distinguish between behaviors in another 

dataset that it was not trained with. However, there were training sessions where the 

identification network distinguished two behaviors in another dataset. Thus, the 

identification network may be suitable for cross-testing with further modification of the 

datasets, network parameters and/or input parameters.  
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The behavior attribute network for T-maze, wheel running and open exploration 

were generally successful in self- and cross-testing. This demonstrates that the NARX 

network is much more effective recognizing patterns within one behavior, than between 

different behaviors. However, the behavior attribute network required much more 

training to familiarize the network with the general range of velocities and spatial 

positions that the rat might undergo. Due to the amount of training the behavior attribute 

network may require, the network becomes more practical when trained with a range of 

input and output values from one dataset and tested with another dataset.  

Due to the mentioned limitations and advantages of the NARX network, the 

following training process is suggested to enhance practicality of the overall design. The 

identification NARX network provides the best results when trained with data from the 

same session as the test data. The most suitable method of training the identification 

network would involve gathering neural activity from the rat as all three behaviors are 

performed for a few seconds. Whereas, the behavior attribute NARX networks for T-

maze, wheel running and open exploration behaviors can be trained with input from 

another session for the networks respective behavior. Training the network with a variety 

of spatial positions and velocities from another session representative of all the possible 

time points is suggested for the network to generalize well and appropriately predict data 

outside of the training interval.  
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Chapter 5: Summary and Conclusions 

In summary, the three stage design was utilized to create cluster ID and shank ID 

data representative of neuronal firing in the CA1 and EC hippocampal regions during the 

pre-processing stage by other researchers [12]. The cluster ID and shank ID data was 

used as input for the identification network, which identified whether the data was T-

maze, wheel running or open exploration behavior during the identification stage. The 

velocity and spatial coordinate attributes were predicted during the behavior attribute 

stage for the behavior previously identified.  

The overall design proposed in this thesis showed partial success during the 

identification stage when the same dataset was used for both training and testing. Two of 

the three behaviors were generally identified correctly outside of the training interval, 

which demonstrates that the network may have the ability to correctly identify all three 

behaviors with further modification of the network structure or input data. One possible 

modification includes implementing a quantitative assessment of the results, such that a 

reasonable total error, or mean squared error (MSE), can be produced, which would help 

the user determine the reliability and consistency of the network output. Refer to 

Appendix D, for an explanation about calculating the total error.  

The NARX behavioral attribute network was observed to generally provide 

satisfactory prediction of the velocity and spatial coordinates for a rat when the same 

dataset was used for both training and testing or when a dataset, the network was not 

trained with, was used for testing. General success in self- and cross-testing of behavioral 

attributes provide support that data representative of an ensemble of neurons in a time-

series formation may be appropriate to describe behavior attributes.   
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5.1 Contributions  

By providing a design that can identify T-maze, wheel running and open 

exploration behavior and predict velocity and spatial coordinate attributes of the 

identified behavior, it may be possible to determine what a rat is dreaming of during rapid 

eye movement (REM) of a sleep cycle. This situation is analogous to the theoretical black 

box model considered in this thesis, where the neurological activity of the rat can be seen, 

but the behavior and behavior attributes are unknown. Further implications of the 

proposed design include possible enhancements for brain-to-machine-interfaces (BMI), 

by taking neurological activity from the hippocampus, rather than the motor or parietal 

cortex of the brain. The three stage design could potentially be used to recognize multiple 

cognitive diseases, such as Parkinson’s and epilepsy, with one device.  

5.2 Future Work 

There are many modifications and advancements possible for the design presented 

in this thesis. Future work includes gathering the neurological data personally, rather than 

acquiring the information through an external source. Testing of the three stage design 

with more than one rat or subject to determine if the results found in this thesis are 

conclusive. Modifying the NARX network structure to have more than three-layers and 

determining if partial success in this thesis was due to the structure of the network. And 

creating a robotic interface that responds to output of the three stage design.  
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APPENDICES 

 

Appendix A: Network Learning Process 

This appendix section is used as supplementary material on the Levenberg-

Marquardt learning method used to train the identification and attribute behavior NARX 

networks. A series parallel mode is used for training the network, see Figure A-1 

 

Figure A-1: A series-parallel mode of the NARX network used for training. Training 

utilizes the previous desired output rather than the network output to minimize 

performance error of the network during training.  27 
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The equation that describes the series-parallel mode of the NARX network is 

provided in Eq. A-1.  

 

𝑦(𝑡 + 1) =∑𝑤oh

ℎ=1

∗ 𝑓 (∑ 𝑥1(𝑡 − i1) ∗ 𝑤1hi
i1=0

+ ∑ 𝑥2(𝑡 − i2) ∗ 𝑤2hi
i2=0

+∑𝑑((𝑡 + 1) − 𝑗) ∗ 𝑤𝑜hj
𝑗=1

)                                            [Eq. A − 1]   

 

Eq.A-1 has the same form as the generalized NARX network equation, however, 

the only difference is the replacement of the network output, y, with the desired output, d. 

Levenberg-Marquardt Back-propagation learning algorithm was used to optimize the 

weights by using the following equation:  

𝑤𝑘+1 = 𝑤𝑘 − (𝐽𝑘
𝑇𝐽𝑘 + μI)

−1
𝐽𝑘𝑒𝑘          [Eq. A − 2]  

Where: ek,is the error between the desired and network output, calculated by,  

ek = dk – yk 

 wk, are the current weights that need to be updated 

H 

n n 

n 



 

55 

 I, is the identity matrix  

 µ, is the learning constant that gradually gets smaller as the iterations 

increase 

 

  

J, is the first order Jacobian matrix, calculated by, 

   J = 

(

  
 

𝜕𝑒1,1

𝜕𝑤1
. . .

𝜕𝑒1,1

𝜕𝑤𝑁
𝜕𝑒1,𝑀

𝜕𝑤1
. . .

𝜕𝑒1,𝑀

𝜕𝑤𝑁
. . . . . . . . .
𝜕𝑒𝑝,𝑀

𝜕𝑤1
. . .

𝜕𝑒𝑝,𝑀

𝜕𝑤𝑁 )

  
 

  

Equation A-2 describes how the weights are updated after every iteration. J, 

represents the first order Jacobian matrix used to approximate the second order Hessian 

matrix without the need of actually computing the Hessian matrix. This decreases the 

computation necessary, thus decreasing the amount of time needed to solve the problem. 

The learning rate parameter, μ, is constantly changed throughout the process of training, 

which contributes to fast and stable training.  

The Levenberg-Marquardt algorithm starts μ off at a large value at the beginning 

of training, which would reduce Eq. A-2 into the gradient descent method equation seen 

below.  

𝑤𝑘+1 = 𝑤𝑘 − αg𝑘      [Eq. A − 3] 

 Where: α is the learning rate parameter  
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g is the gradient of the error performance, calculated by, 

g = (
𝜕𝐸

𝜕𝑤1

𝜕𝐸

𝜕𝑤2
. . .

𝜕𝐸

𝜕𝑤𝑁
)𝑇  

where, E = 
1

2
∑ ∑ 𝑒2𝑝,𝑚

𝑀
𝑚=1  𝑃

𝑝=1   

The gradient descent method has the advantage of quickly decreasing the error 

performance at high errors, but has the disadvantage of taking a relatively long time to 

find the minimum error. This disadvantage is avoided by decreasing the learning rate 

after every training step, which eventually reduces eq.A-2 to the learning newton method 

seen in the equation below.  

𝑤𝑘+1 = 𝐻𝑘
−1𝑔𝑘          [Eq. A − 4] 

Where, H is the approximate Hessian matrix calculated by the Jacobians and g is 

the error gradient. The Newton method is much better at finding an error minimum than 

the gradient descent method, but has the disadvantage of getting caught in a local 

minimum.  
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Appendix B: Program  

The code used to produce the previously shown results is provided in this 

appendix. The complete code is separated into four different programs representing the 

four different NARX networks, which consist of identification, T-maze behavior attribute 

prediction, wheel running behavior attribute prediction and open exploration behavior 

attribute prediction. However, since all of the behavior attribute networks are essentially 

the same, but trained and prepared with different data, only the T-maze behavior attribute 

network is provided for example, which can be modified with little effort, to produce 

attribute results shown for other behaviors.  

Results obtained using the provided code in this appendix may or may not be 

similar to the results provided in this thesis, due to random partitioning of training data 

and network training method. Additionally, use of neural networks may require some 

understanding of the input-output data being used and how fast the network might 

converge to a solution, in some cases, early stopping may be needed to stop the network 

from modeling noise and obtain generalized training results  

Identification Network Code  

%% Identification NARX network  

% This network identifies whether the general behavior is a 

T-maze, open exploration or wheel running behavior by 

providing an output of 1, 2 or 3, respectively, using shank 

ID and cluster ID as input. 
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% DISCLAIMER: The results obtained with this code may or 

may not be similar 

% to the results provided in the thesis. Possible 

conditions that may 

% provide poor results, include using data that poorly 

represents the 

% entire dataset, training the network for too long or 

stopping training too early. 

  

%% Clear MATLAB and load input data 

close all  

clc 

clear 

  

%% Load one of the possible datasets 

% Currently, dataset 1 is selected 

load('Dataset1') 

% load('Dataset2') 

% load('Dataset3') 

% load('Dataset4') 

  

%% Set index period of interest within data set 

% Here are three possible indices used for training or 

testing 
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t_whlrun =  97195:102159;           % 127565:128565; % 

158940:159940; 

t_maze_explore = 117607:122607;     % 138804:139804; % 

172000:173000; 

  

%% Calculate time periods 

% The time period of the training interval is calculated 

WhlTime_Interval = (Sorted.Time(t_whlrun(end))- 

...Sorted.Time(t_whlrun(1)))/1250; 

TMazeTime_Interval = (Sorted.Time(t_maze_explore(end))- 

...Sorted.Time(t_maze_explore(1)))/1250; 

OpenTimeInterval = (SortedM.Time(t_maze_explore(end))- 

...SortedM.Time(t_maze_explore(1)))/1250; 

  

%% Create Input Data Matrix  

% Cluster ID and Shank ID input data for T-maze behavior 

sorted by time 

T_maze_input = 

...[Sorted.Shank(t_maze_explore)';Sorted.Clu(t_maze_explore

...)']; 

  

% Cluster ID and Shank ID input data for open exploration 

behavior sorted by time 
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Explore_input = 

...[SortedM.Shank(t_maze_explore)';SortedM.Clu(t_maze_explo

...re)']; 

  

% Cluster ID and Shank ID input data for wheel running 

behavior sorted by time 

WheelRun_input = 

...[Sorted.Shank(t_whlrun)';Sorted.Clu(t_whlrun)'];  

  

%% Plot the input data of cluster ID vs shank ID for all 

behaviors 

figure(1); 

hold on 

plot(T_maze_input(1,:),T_maze_input(2,:),'b.') 

plot(Explore_input(1,:),Explore_input(2,:),'r.') 

plot(WheelRun_input(1,:),WheelRun_input(2,:),'k.') 

title('Comparison of cluster ID as a function of shank ID 

between behaviors') 

xlabel('Shank ID'),ylabel('Cluster ID') 

legend('T-Maze task','Open exploration','Wheel 

running','Location','SouthEast') 

axis([0 16 0 128]) 

box on 

hold off  
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%% Arrange data suitable for network input 

x1 = 

...[T_maze_input(1,:),Explore_input(1,:),WheelRun_input(1,: 

...)]; 

x2 = 

...[T_maze_input(2,:),Explore_input(2,:),WheelRun_input(2,: 

...)]; 

  

% Combine the shank ID and cluster ID for all behaviors 

into one input matrix 

X = [x1;x2]; 

  

% Change the concurrent input into sequential input for a 

time-series  

% representation of the data 

XCseq = con2seq(X); 

  

%% Create the output identification for the input 

y1 = ones(1,length(T_maze_input(1,:)));         % Value for 

T-maze task 

y2 = 2.*ones(1,length(Explore_input(1,:)));     % Value for 

Open exploring  
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y3 = 3.*ones(1,length(WheelRun_input(1,:)));    % Value for 

Wheel running  

  

% Join output values, such that they correspond with the 

input data 

Y = [y1,y2,y3]; 

  

% Change concurrent output to sequential output 

YCseq = con2seq(Y); 

  

%% Define structure parameters of network 

du = 30;    % Delay of shank and cluster input 

dy = 1;     % Delay of the output  

L = 60;     % Number of hidden layers 

  

%% Create the identification NARX network  

NARX_ID = narxnet(du,dy,L); 

  

%% Initialize the parameters and transfer function of the 

network and input 

NARX_ID.trainParam.epochs = 150;           % Max epoches of 

network  

NARX_ID.layers{1}.transferFcn = 'hardlim'; % Hard limiting 

activation f'n 
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%% initialize the delay  

% This function will set aside the first 30 input values 

for the initial 

% delay. Output does not need to be initialize due to there 

being one delay 

% , the first delayed output = 0, previously shown in 

simplified example.  

[p,Pi,Ai,t] = preparets(NARX_ID,XCseq,{},YCseq); 

  

%% Train the network  

% Extra training with the same training data is optional. 

However, it is 

% recommended to not over train with same data, otherwise 

poor 

% generalization results occur.  

  

for i = 1:2 

NARX_ID = train(NARX_ID,p,t,Pi); 

end 

  

%% Close the network 

NARX_ID_Close = closeloop(NARX_ID); 
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% Optional to have MATLAB illustrate closed network 

% view(ClassnetClose) 

  

%% Test the closed network with training data 

uclose = XCseq;       % Define closed input same as 

training input 

yclose = YCseq;       % Define closed output same as 

training output  

% Initialize the input and output data 

[p1,Pi1,Ai1,tf1] = 

...preparets(NARX_ID_Close,uclose,{},yclose); 

% Output of the NARX network in time-series formation 

yp1 = NARX_ID_Close(p1,Pi1,Ai1); 

% Convert time-series output to array output for 

illustration purposes 

yp1M = cell2mat(yp1); 

  

%% Create new input-output data to test network   

Whl_test = 206999:209999;  % 128000:131000;  

Explore_TM_test = 200000:203000;     % 139000:142000; 

  

%% Calculate time period information of new data 

% Calculation for time gap between training interval and 

testing interval 
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% for each behavior 

WhlIntervalBetweenTrainAndTest = (Sorted.Time(Whl_test(1))-

...Sorted.Time(t_whlrun(end)))/1250; 

TMazeIntervalBetweenTrainAndTest = 

...(Sorted.Time(Explore_TM_test(1))-

...Sorted.Time(t_maze_explore(end)))/1250; 

OpenIntervalBetweenTrainAndTest = 

...(SortedM.Time(Explore_TM_test(1))-

...SortedM.Time(t_maze_explore(end)))/1250; 

  

% Calculation of testing interval for each behavior 

WhlTime_Interval_test = (Sorted.Time(Whl_test(end))- 

    Sorted.Time(Whl_test(1)))/1250; 

TMazeTime_Interval_test = 

...(Sorted.Time(Explore_TM_test(end))-

...Sorted.Time(Explore_TM_test(1)))/1250; 

OpenTimeInterval_test = 

... (SortedM.Time(Explore_TM_test(end))-

...SortedM.Time(Explore_TM_test(1)))/1250; 

  

%% Table for time periods  

% This code provides convenient display of time periods for 

data calculated earlier 

Intervals = {'Interval','Wheel Run','T-Maze','Open'; 
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...'Train(s)',WhlTime_Interval, 

...TMazeTime_Interval,OpenTimeInterval; 

...'Between(s)',WhlIntervalBetweenTrainAndTest, 

...TMazeIntervalBetweenTrainAndTest,OpenIntervalBetweenTrai

...nAndTest;'Test(s)',WhlTime_Interval_test,TMazeTime_Inter

...val_test, OpenTimeInterval_test} 

  

%% Arrange test input  

xt1 = 

...[SortedM.Shank(Explore_TM_test)',Sorted.Shank(Explore_TM

..._test)', Sorted.Shank(Whl_test)']; 

xt2 = 

...[SortedM.Clu(Explore_TM_test)',Sorted.Clu(Explore_TM_tes

...t)', Sorted.Clu(Whl_test)']; 

Xt = [xt1;xt2]; 

XCseq2 = con2seq(Xt); 

  

%% Arrange test output 

Yt_TMaze = ones(1,length(Sorted.Shank(Explore_TM_test))); 

Yt_Explore = 

...2*ones(1,length(SortedM.Shank(Explore_TM_test))); 

Yt_WhlRun = 3*ones(1,length(Sorted.Shank(Whl_test))); 

  

Yt = [Yt_Explore,Yt_TMaze,Yt_WhlRun]; 
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YCseq2 = con2seq(Yt); 

  

%% Initialize the testing data 

[p2,Pi2,Ai2,t2] = 

...preparets(NARX_ID_Close,XCseq2,{},YCseq2); 

  

%% Use the closed network 

% Output is in time-series form 

a2 = NARX_ID_Close(p2,Pi2,Ai2); 

% Convert to array form for illustration purposes  

Ad2 = cell2mat(a2); 

  

%% Plot the results  

figure(2); 

% Plot of desired identification 

subplot(2,2,1) 

plot(Y,'b.') 

title('Desired Identification') 

xlabel('index'),ylabel('Identification #') 

axis([0 2*length(t_maze_explore)+length(t_whlrun) 0 4]) 

  

% Plot of network identification 

subplot(2,2,2) 

plot(yp1M,'r.') 
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title('Network Identification') 

xlabel('index'),ylabel('Identification #') 

axis([0 2*length(t_maze_explore)+length(t_whlrun) 0 4]) 

  

% Plot of desired identification 

subplot(2,2,3) 

plot(Yt,'b.') 

title('Desired Identification') 

xlabel('index'), ylabel('Identification #') 

axis([0 2*length(Explore_TM_test)+length(Whl_test) 0 4]) 

  

% Plot of network identification 

subplot(2,2,4) 

plot(Ad2,'r.') 

title('Network Identification') 

xlabel('index'), ylabel('Identification #') 

axis([0 2*length(Explore_TM_test)+length(Whl_test) 0 4]) 

  

 

Behavior Attribute Network Code for T-Maze  

%% The network predicts the velocity and spatial coordinate 

attributes given T-maze input-output data.  

% This program follows the NARX_Identifier program if the 

output is identified as a '1.'  
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%% Clear  

close all  

clc 

clear 

  

%% Load dataset  

% Currently, dataset 1 is selected 

load('dataset1') 

% load('dataset2') 

  

%% Initialize the training interval  

% Here are possible intervals that were used for 

training/testing  

t_train = 107000:114000;   %180000:183500;  % 

140000:142000; %   

  

%% Initialize the inputs that get fed into the network 

x1 = Sorted.Shank(t_train)';  

x2 = Sorted.Clu(t_train)'; 

  

% Combine the inputs into one matrix 

Xmlp = [x1;x2]; 

  

% Change from concurrent to sequential data type 
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Xseq = con2seq(Xmlp); 

  

%% Initialize the outputs for training  

y1 = Sorted.X(t_train)'; 

y2 = Sorted.Y(t_train)'; 

y3 = Sorted.speed(t_train)';  

  

% Combine into one matrix 

Ymlp = [y1;y2;y3]; 

  

% Convert into time-series form  

Yseq = con2seq(Ymlp); 

  

%% Define network structure parameters 

delay1 = 50; 

delay2 = 1; 

layer = 30; 

  

%% Create the open loop NARX network 

  TMazeNARX = narxnet(delay1,delay2,layer); 

   

  % Max number of training iterations before network stops 

  % Generally, early stopping would be necessary before max  

  % epoch is reached. 
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  TMazeNARX.trainParam.epochs = 1000; 

   

%% Prepare the input and output paramters   

  [p,Pi,Ai,t] = preparets(TMazeNARX,Xseq,{},Yseq); 

  

%% Train the open network  

  TMazeNARX = train(TMazeNARX,p,t,Pi,Ai); 

  

%% Close the network 

TMazeClose = closeloop(TMazeNARX); 

  

% Optional to view MATLAB illustration of closed  

%   view(WhlRunNARX) 

  

  %% Prepare testing points for the network  

tClose_test = t_train; 

  

% Testing input data 

x1_test = Sorted.Shank(tClose_test)';  

x2_test = Sorted.Clu(tClose_test)'; 

  

% Combine the inputs into one matrix 

Xmlp_test = [x1_test;x2_test]; 

Xseq_test = con2seq(Xmlp_test); 
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%% Prepare desired outputs to compare with network output 

y1_test = Sorted.X(tClose_test)'; 

y2_test = Sorted.Y(tClose_test)'; 

y3_test = Sorted.speed(tClose_test)';  

  

% Combine outputs into a matrix 

Ymlp_test = [y1_test;y2_test;y3_test]; 

Yseq_test = con2seq(Ymlp_test); 

  

%% Test closed loop network with data used to train 

% Note: that for testing, the training section is commented 

out and another sample of input data is chosen 

  uclose = Xseq_test; 

  yclose = Yseq_test; 

   

  [p1,Pi1,Ai1,tf1] = 

preparets(TMazeClose,uclose,{},yclose); 

  yp1 = TMazeClose(p1,Pi1,Ai1); 

  yp1M = cell2mat(yp1); 

  p1M = cell2mat(p1); 

   

%     view(WhlRunClose) 
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% Plot the desired and predicted velocity for comparison 

figure(1) 

subplot(1,2,1) 

hold on  

% Plot of desired output 

plot(t_train,y3') 

% Plot of networks output  

plot((linspace(t_train(1),t_train(end),length(yp1M(3,:)))),

yp1M(3,:),'r') 

  

title('Comparison of desired and predicted velocity') 

xlabel('index'), ylabel('Velocity(mm/s)') 

axis([t_train(1) t_train(end) 0 1000]) 

legend('Desired','Predicted') 

box on 

hold off 

  

% Plot the desired and predicted spatial coord. For  

% comparison 

subplot(1,2,2) 

hold on  

% Plot desired output 

plot(y1,y2) 
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% Plot predicted output 

plot(yp1M(1,:),yp1M(2,:),'r') 

title('Comparison of desired and predicted spatial 

position') 

xlabel('X(mm)'), ylabel('Y(mm)') 

axis([0 1400 0 1400]) 

legend('Desired','Predicted') 

box on 

hold off 
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Appendix C: Self-Testing Identification Network with Datasets 2, 3 and 4 

Self-testing results, which uses the same dataset for both training and testing, of 

the identification network with datasets 2, 3 and 4 are shown in this appendix. The results 

of identification with datasets 2, 3 and 4 were similar to the training and testing done with 

dataset 1. An identification network that was able to distinguish between T-maze, wheel 

running and open exploration behavior inside the training interval would typically 

confuse one behavior outside of the training interval. For datasets 2, 3 and 4, the input 

data is plotted to illustrate the difference of input data between datasets. Additionally, 

network identification of training data and new data outside of the training interval from 

the same dataset used to train the network are presented here, see figures C-1-C-6.  

 

Figure C-1: 15000 time points of input data for dataset 2 used to train the identification 

network. The T-maze and wheel running behavior data are closely overlapped, while most 

of the open exploration behavior data is distinguishable from T-maze and wheel running 

behavior.28 
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Figure C-2: Identification network results when data from dataset 2 was used. The network 

was able to identify all three behaviors within the training interval (top-right), but confused 

T-maze behavior as wheel running behavior outside of the training interval (bottom-

right).29 

 

 

Figure C-3: 15000 time points of input data for dataset 3 used to train the identification 

network. The T-maze and wheel running behavior data are closely overlapped, while most 

of the open exploration behavior data is distinguishable from T-maze and wheel running 

behavior.30 
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Figure C-4: Identification network results when data from dataset 3 was used. The network 

was able to identify all three behaviors within the training interval (top-right), but confused 

T-maze behavior as wheel running behavior outside of the training interval (bottom-

right).31 

 

Figure C-5: 15000 time points of input data for dataset 4 used to train the identification 

network. The T-maze and wheel running behavior data are closely overlapped, while all of 

the open exploration behavior data is distinguishable from T-maze and wheel running 

behavior.32 
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Figure C-6: Identification network results when data from dataset 4 was used. The network 

was partially able to identify all three behaviors within the training interval (top-right), but 

confused T-maze behavior as wheel running behavior outside of the training interval 

(bottom-right). The identification results were more difficult for this dataset due to a larger 

variation of input data.33 
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Appendix D: Total Error Calculation 

A statistical and quantitative analysis of the network results will be needed in 

future modifications to determine and improve the consistency and reliability of the 

network output. Thus, this appendix provides a possible method to determine the total 

error of the network output, which can be used to develop a standard of efficiency for 

behavior prediction from neurological activity.  

The total error of the network output would be helpful in understanding how 

reliable the output data is. The mean-squared error (MSE) is commonly used when 

determining the overall error of the network output and can be calculated using equation 

D-1,  

𝑀𝑆𝐸 =
1

𝑁
∑(𝑑𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

               [𝐸𝑞. 𝐷 − 1] 

Where d is the desired output and y is the network output. By comparing the MSE 

of the network output for training data with new testing data, it may be possible to 

determine a quantitative value that represents the adaptability of the network.  

 


