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ABSTRACT 

Effect of Liquid Contamination on Hermeticity of Seal Strength of Flexible Pouches with LLDPE 

Sealant 

Francesca Delle Cese 

 Flexible packaging is a growing successful market and the majority of flexible package 

applications are for the food industry. The demand for process optimization and reduced 

production costs, has led to an increase in flexible packaging. However, fast production lines can 

result in contamination in the seal area. For flexible food packaging, contamination is considered 

any food particle or substance trapped in the seal area. Current quality control processes can 

detect contamination in the seal area, but it is not determined if seal contamination effects seal 

quality. Oil-based and sodium based snack foods are two common categories that can be 

packaged on a horizontal flow film and seal (HFFS) flow-wrap machine. The study uses 

vegetable oil and a salt water solution to simulate the effect of liquid contamination along the T-

point of flexible pouches made on an HFFS. The T-point refers to where the fin seal meets the 

end seal and requires the seal jaw to seal through four layers of film, which is the most difficult 

point to seal. The study tests a combination of different sealing temperatures and dwell time to 

determine the optimal sealing condition for a hermetic seal. A quality hermetic seal provides an 

enclosed seal with no leaks due to successful polymer chain entanglement between the two 

sealant layers. The different test categories of the study are non-contaminated (control), salt water 

solution for salt based foods, and vegetable oil for oil-based foods. Given the test parameters of 

the study, 140⁰C sealing temperature and 0.3 seconds dwell time are considered to be the optimal 

sealing condition for all three test categories. For Phase 1 of the study, salt water has a lower 

hermeticity pass rate compared to vegetable oil and non-contaminated seals. In addition, the 

effect of refrigerated storage temperature and ambient storage temperature did not show to be 

significant for any of the test categories. However, refrigerated conditions showed a higher 

hermeticity pass rate, but it was not statistically different. The findings for seal strength indicated 

no test category had higher or lower seal strength over the 14 day test period. Overall, the study 

shows there is no effect of liquid contaminant on hermeticity and seal strength for flexible film 

with LLDPE sealant layer.  
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1.0 Introduction  

The demand for high production volume requires fast production lines, and especially for flexible 

food packaging it is common to find food particles trapped in the seal area. Any food particle or 

substance found in the seal area of a flexible package is considered a contaminant. Quality control 

processes detect contamination and in some cases the package is discarded due to the assumption 

that the seal quality is compromised. The study is important to determining the effect of liquid 

contamination in the seal area for the flexible food packaging industry. As of June 2013, the 

flexible packaging industry grossed $26.7 billion dollars in sales with 58 percent for the food 

packaging industry [1]. Flexible packaging uses less material weight and has the ability to 

optimize production. According to the Flexible Packaging Association, over a six year time 

frame, the packaging weight of a candy bar has reduced by 60 percent [1]. The ongoing 

successful research and development of advanced materials for specialty films gives flexible 

packaging a strong advantage among other packaging options. A wide range of different film 

structures offers solutions to prolonging shelf life and other package performance concerns such 

as contamination. In the food industry, two primary packaging functions are protecting the 

product from outside contamination and containing the product within the package. The demand 

for flexible packaging comes from the demand for low cost and high volume production 

capability. In comparison to rigid packaging, flexible packaging reduces packaging material 

weight per package. Thinner and lighter weight material can save costs for companies without 

compromising their packaging needs as well as reducing the environmental footprint. The switch 

to more flexible packaging requires a trial and error process to determine the optimal temperature 

and dwell time combination. Moreover, choosing the highest sealing temperature and dwell time 

is not the most effective option because it can slow down production and can effect seal 

properties. For flexible packaging, the film chosen for an automated packaging production will 

have an optimal or range of packaging conditions. In this study, nine different packaging 
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conditions will be analyzed to compare the performance of seal through liquid contamination for 

oil-based and sodium-based food products.  

  



 

 

3 

2.0  Literature Review 

2.1 Quality Control 

Currently, quality inspection for food production inspects for food particles in the seal area 

among other quality issues. Food particles found in the seal area are considered a contaminant 

and in some cases lead to leaking. The food particles in the seal area can be aesthetically 

displeasing to the consumer, and effect the consumer’s perception of the product. It is time 

consuming to inspect every bag manually for contamination, so automated quality control 

processes were developed to efficiently find packaging defects. Polarized Light is one procedure 

used in industry to find food particles in the seal area. It is a non-destructive process that uses 

linear polarized light to pass through transparent film, which shows a color stress pattern once the 

light passes through the second light filter. Laser scattering imaging is another non-destructive 

process that measures the light that is deflected from the contaminant found in the seal area [2]. 

Both types of technologies produce images to inspect for food particles or other contaminants 

such as metal content in the seal area. In a study completed by Barnes et. al [2], polarized light 

and laser scatter technology had an accuracy of 96% and 90%. Overall, polarized light and laser 

scatter technology identify defects in the seal but cannot determine if the defect has an effect on 

the hermetic seal. A hermetic seal provides a complete enclosed package with no leaks or holes. 

In addition to food contamination, wrinkles from film overlapping in the seal can also lead to 

poor seal integrity. These issues can be visibly seen during inspection and detected through 

automated quality control processes. In this study, liquid contaminants are forced into the seal 

area to test hermeticity and seal strength. The quality of the seal is determined by seal integrity, 

which includes seal strength properties and hermeticity. Seal strength is the amount of force 

required to separate the film progressively over time [3]. It is also important factor for containing 

the product from the time it is packed to the time it is consumed. However, too high of a seal 

strength can make it difficult for consumers to open the package.  
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2.2 Heat Sealing Technology 

Heat sealing is commonly used in the flexible packaging industry and includes jaw-type seal bars, 

rotary sealers, band rotary sealers, bead sealers, hot knife or side-weld sealers [4]. The study uses 

heat sealing technology using jaw-type seal bars for a horizontal form, fill, and seal flow-wrap 

machine. There are three parameters for heat sealing: 1) sealing temperature 2) dwell time 3) and 

pressure. The temperature is an important factor for the sealant surface to reach its molten or 

partially molten stage. Secondly, the dwell time is the duration the seal jaws come into contact 

with the film. In this study, the dwell time is considered the actual time period the seal jaws are in 

direct contact with the film versus the total time the seal jaws are in motion to make each seal. 

Dwell time allows for the polymer chains to reach molten or partially molten stage to entangle 

and create a hermetic seal. If dwell time is too short for the polymer chains to reach molten or 

partial molten stage, the corners and the T-point will have a weak seal and are more likely to 

show leaks during hermeticity testing. The T-point refers to the point on the seal where the fin 

seal meets the end seal. The pressure applied to seal both sides of the film together will remain 

the same throughout the study. Pressure is needed to seal two film surfaces together, but 

increasing the pressure has no effect on seal strength [4,5].  

The seal jaw temperature is a primary factor for seal properties but the interface temperature is 

the actual temperature of the sealed surface during the sealing process. Interfaced temperatures 

are important to reaching desirable sealing properties. This study did not record the interface 

temperature but monitored the actual sealing temperature of the machine. Future work can 

include determining the relationship between the set sealing temperature and interface 

temperature. 

According to Meka and Stehling [4], the interfacial temperature is a lower value than the platen 

temperature. The study also tested the relationship between dwell time and platen temperature. At 

130⁰C, an increase of only 10% interface temperature was observed from 0.4 seconds to 1.4 
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seconds dwell time. In addition, Meka and Stehling determined the effect of dwell time has less 

an effect on interface temperature as the sealing temperature increases. Moreover, sealing 

temperature has more of an effect on seal strength than dwell time.  

Moreover, seal jaw styles can differ between machines and different sealing technologies. 

Matthews et. al [6], studied seal strength and the effect of crimp angle and pitch of the seal jaw 

for heat sealing processes.. The study compared Cellulose (38µm) and PLA (35µm) to OPP 

(25µm, 35µm, and 50µm) and found that crimp angle is a secondary factor to seal strength. 

Moreover, the crimp styles with more than 80⁰ angles provide greater seal strength for films 

outside 25-45 µm. The film used in this study is 65 µm, and crimp style seals were used in the 

study. The crimp angles of the seal jaws were not determined in this study, but can be determined 

in future studies. Furthermore, the study showed crimp geometry as a secondary factor behind 

seal temperature.  

Although sealing temperature is one of the two primary factors to reaching hermeticity, it is 

important to consider the peel force required to open the package. The temperature and dwell 

time combination may provide the strongest seal strength but it may make it impossible for the 

consumer to open the package. Companies can increase sealing temperatures with shorter dwell 

times to expedite the filling process. However, the change in temperature and dwell time to reach 

the desired interface temperature more quickly can change the seal properties [7].  

2.3 Seal Strength  

Testing the seal strength determines the amount of force or stress on the seal with respect to the 

elongation or strain to reach material or peel failure. In this study, the seal strength will be tested 

during Phase 2 after the optimal sealing condition is determined from Phase 1. Testing the seal 

strength of a flexible pouch determines the type of seal failure for the given sealing condition.  
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Figure 1: Relationship between Seal Bar Temperature and Apparent Seal Strength for 

semicrystalline polymer films [4] 

The Figure 1 shows that if the seal bar temperature is above the melting point, Tm, of the sealant, 

then the seal strength test will show a tearing mode failure. On the other hand, the seal strength 

test will show a peel failure if the seal bar temperature is well below the Tm of the sealant. 

However, if the seal bar temperature is within close range of the Tm but below the melting point, 

the seal strength test will more likely result in a peeling and tearing mode failure. 

There are several types of results from a seal strength test: peel failure, tear failure, peel and tear 

failure, and elongation failure. A weld seal will result in a tear failure, which shows that the 

strength of the seal is stronger than the strength of the film [7]. In addition, there is also 

delamination failure mode that can occur in combination with the other failure types. 

Delamination occurs when one of the layers separates from the film during seal strength while 

either the outer layer or sealant layer remains attached during tensile testing.  
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Figure 2: Previous Seal Strength Results found in study completed by [7]  

According to Yuan et. al [5], a sealing temperature of a few degrees before the melting 

temperature, Tm, seal strength will significantly increase and result in a peel, delaminating a tear 

mode or combination of the failure modes. If the sealing temperature is more than a few degrees 

below the melting point, then a peel failure mode will more likely occur and the result will be a 

lower strength than the other failure modes. Yuan et. al [5] tested a similar structure to what is 

used in this study, Polyethylene-Terephthalate, PET (film laminate) and linear low-density 

polyethylene, LLDPE (sealant layer). An increase in seal strength occurred from 0.1 seconds to 1 

second dwell time for the majority of sealing temperatures within the range of 103⁰C and 130⁰C. 

Furthermore, the same seal strength can be made at different sealing conditions. For example, a 

115⁰C and 0.2 seconds sealing condition showed the same results for a sealing temperature equal 

or greater than 118⁰C with 0.1 seconds.  

 Tetsuya et. al [8] studied OPP and CPP seal strength at different sealing temperatures and 

concluded that an increase in temperature showed an increase in material failure at edge of seal. 
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The lower range sealing temperature of 115⁰C showed more immediate material failure compared 

to 170⁰C and 250⁰C that showed more necking before failure. 

 2.4 Liquid Contaminants in the Seal Area 

A previous study completed by Mihindukulasuriya and Lim [9] investigated seal strength with 

contamination in the seal area. According to Mihindukulasuriya and Lim [9] the liquid 

contaminant will act as a heat sink by absorbing the thermal energy that passes from the seal jaws 

through both plies of film. The thermal diffusivity of vegetable oil, 0.09 x 10
-4

 m
2
/s at 20⁰C, is 

lower than water 1.4 x 10
-4

 m
2
/s at 20⁰C Mihindukulasuriya and Lim [9]. However, this study 

uses a salt water solution instead of water. Therefore, the heat sink effect will be greater with salt 

water due to its ability to absorb more thermal energy than vegetable oil. Less thermal energy 

passing through the liquid contaminant may effect the interface temperature of the film. The 

thermal diffusivity of the liquid contaminants may effect the seal strength and hermeticity 

compared to the control, which has no contamination in this study.  

Different oil-based and salt-based liquid contaminants have different surface tension with the film 

which refers to the contact area between the contaminant and film. The contact of the area of the 

liquid contaminant is due to the surface tension between the liquid and film. Young determined 

the equation for the relationship between liquid, solid, and vapor between a liquid droplet and a 

solid surface: 

 γSV⁰ - γSL = γLV⁰ 
cosθ 

γSV⁰ is the surface tension of the solid and vapor boundary. γSL is the surface tension of the solid 

and liquid boundary. γLV⁰ is the surface tension of the liquid and vapor boundary [9,10].  
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Figure 3: Liquid Contact Angle with Solid Surface 

When in contact with a solid surface, the contact angle θ for water is 89.51⁰   1.17⁰ and 

vegetable oil is 29.96⁰   1.2⁰ [9]. Overall, the contact angle indicates the amount of 

contamination that comes in direct contact with the film over an area of the film. However, the 

movement of the seal jaws will cause the contaminant to displace over the area of the seal. 

Furthermore, the surface tension and contact angle influence the displacement of the contaminant 

that occurs during the sealing process. Both contaminants apply the same volume of 

contamination, but the contaminant to film contact area will be different.  

In addition to contact angle, the liquid’s density is an important property for determining liquid 

displacement during the heat sealing process. The salt percentage used in the salt water solution is 

8.2% to simulate contaminant performance more similar to salty foods. The density varies 

slightly for different vegetable oils, but soybean oil has a density of 0.9185 g/cm
3
 at 20⁰C  [11]. 

According to Rodenbush et.al [12], density for vegetable oil decreases by 0.00064 g/cm
3 
for every 

1⁰C increase in temperature.  

         

  expresses the density in grams per cubic centimeter,   is the intercept,   is the negative slope 

referring to the relationship between density and temperature, and   is the temperature in Celsius. 
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Water has a density of 0.988 g/cm
3 
at 21⁰C [13], which is greater than vegetable oil and will 

displace more compared to vegetable oil.  

Different densities mean the contaminants will displace differently during the sealing process. 

Furthermore, the density indicates salt solution will displace more when the seal is made 

compared to vegetable oil because it has a greater density. The greater contact angle of the salt 

solution also shows there is less initial contact with the film for salt water for the same volume of 

contamination. Once the two seal jaws bring the two film surfaces together, then the water 

contaminant should be expected to spread over a greater area. In addition, the salt solution is 

expected to come in less contact with the film due to the surface tension.  

2.5 Previous Testing Methods for Leaks with Seal Contamination 

To test seal integrity, there is either destructive or non-destructive methods. Some destructive 

methods include tensile testing used for seal strength, water vacuum chamber used for hermeticity 

testing, and dye penetration to show leaks in seal. Dye penetration is a visual inspection to check 

for leaks shown by a path through the seal from the inside to the outside of the bag. Matthew et. 

al [6] determined dye penetration is a poor method to test the presence of seal leaks because only 

samples exposed to excessive sealing conditions pass the test.  

Non-destructive tests include ultrasonic pulse-echo or ultrasonic transmission testing for defects 

in the seal such as contamination. Transmission uses transmitting and receiving transducers on 

opposite sides of the seal. A contaminant in the seal will decrease the amplitude of the ultrasonic 

beam passing through the seal [14]. On the other hand, pulse-echo used a reflective pulse to test 

for, cracks, folds, voids, shrinks, porosity and flaking in metals [14]. Prior to Ozguler’s [14] study 

on ultrasonic pulse-echo technique for flexible packaging, it was assumed that the technology was 

insensitive to test seal integrity for flexible films [14]. Ultrasonic pulse-echo used backscattered 

amplitude integral (BAI), which is an acoustic technology compared to optical to record the 
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reflective sound waves to detect seal defects. Furthermore, BAI measures sound waves at 17.3 

MHz and can detect any defects whether it is water or an air bubbles as long as the test is done 

within 10 µm range of the film [14]. 

2.6 Sealants and Film Characteristics 

The sealant layer is the inner most layer of the packaging film that comes in direct contact with 

the opposing sealant layer during the sealing process. A high quality sealant has a broad sealing 

window and high hot tack strength [15]. A wide range of sealing temperature also allows for 

lower sealing temperatures without compromising the integrity of the seal. In addition, the hot 

tack strength refers to the film’s ability to refrain from strains during its molten state [16]. A 

sealant with a low seal initiation temperature allows for lower process sealing temperatures, and a 

lower sealing temperature will use less energy than a higher sealing temperature.  

Furthermore, the study uses a LLDPE commercial grade for its higher tensile strength, puncture 

resistance, and elongation compared to LDPE [16]. There are three polymerization processes – 1) 

high pressure 2) gas phase 3) slurry pressure 4) solution. More importantly, the linear low-density 

polyethylene sealant uses The Dow Chemical Company’s constrained geometry catalyst systems 

(CGCT) or INSITE™ technology. INSITE™ uses metallocene catalysts for a solution process for 

improved physical properties and process capabilities [17]. The improved long chain branching 

(LCB) of the polymer produced by INSITE technology is not found in other metallocene 

technology processes. The polymers produced with LCB have an improved melt fracture 

resistance and uniform shear resistance process capability [17]. Lastly, the metallocene 

copolymer has a lower melting point due to the increase in long chain branching to short chain 

branching ratio. The reduction in the comonomer short chains allows for a low seal initiation 

temperature.  
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Package performance depends on the film structure chosen for a product. In addition to providing 

high quality seals, the film must support the product and its expected shelf life from the time the 

product is packaged, followed by transportation, and lastly consumed by the consumer. A Failed 

hermetic seal can shorten the shelf life of a product. Even though this study observes seal strength 

and hermeticity due to contamination, different food products react with the film over time. 

Depending on the food product application, oxygen and water vapor barriers are important 

characteristics of a film to ensure the shelf life of the product.  

2.7 Food Product Applications 

The horizontal flow wrap machine used in this lab is commonly used for snack foods such as bar 

type foods, sliced and block cheese, cookies and other baked goods. Packaging processes are best 

suited for each product application based on the product’s needs. For example, a vertical form, 

fill, and seal machine is used to pack flexible pouches with product using gravity such as 

shredded cheeses or bagged lettuce. On the other hand, candy bars and cookies that require more 

delicate handling or thermoformed trays will use a horizontal flow wrap machine. In addition, 

some food product applications require modified atmosphere packaging or vacuum packaging to 

delay the oxidation or aging process of the product. For example, vacuum packaging is 

commonly used for cheese packaging to eliminate the oxygen in the headspace to prevent aerobic 

bacteria, yeasts, and molds [18].  Trapped air in the package can quickly shorten the shelf life of 

the cheese, but a poor seal can also lead to oxygen passing through to the product due to leaks in 

the seal. 

The study relates most to snack bars such as cereal bars, protein bars, and candy bars, but it can 

be used to relate to the greater food industry. The majority of these foods are stored by the retailer 

and consumer at ambient conditions, which is considered to be 23⁰C ± 1⁰C [19].  
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2.8 Conditioning Temperatures 

The second phase of the study will test each contaminant’s performance at standard conditions at 

23⁰C ± 1⁰C (73.4⁰F ± 2⁰F) and 50% ± 2% relative humidity, and refrigerated conditions at 5⁰C ± 

2⁰C (41⁰F ± 4⁰F) and 85% ± 5% relative humidity [19]. The conditioning temperatures are set at 

a constant for the two week test period to test the effect of temperature on hermeticity and seal 

strength for the two contaminant types.   

2.9 Literature Review Summary 

Overall, the flexible packaging market is a growing and successful market especially for the food 

industry. Developments in film and polymerization process technologies have made film 

packaging more desirable and applicable to many food industries. Previous work studied the seal 

strength of flexible pouches with seal contamination, but this study further determines the effect 

of seal through liquid contamination and temperature over time. Sealing temperature and dwell 

time are the two primary sealing factors to produce a quality seal. As mentioned previously, seal 

jaw pressure has little effect on the quality of the seal. Lastly, seal through liquid contamination 

may be able to be detected with current quality control processes, but the study determines the 

impact on the seal’s properties.  
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3.0  Objective 

The objective of the study is determining the effect of liquid contamination found in the seal area 

on hermeticity and seal strength for flexible pouches with linear low-density polyethylene sealant. 

First, the study must determine if liquid contaminants perform differently at different sealing 

temperatures and dwell times. In addition, the study must determine if time and storage 

temperature effect the performance of liquid contamination in the seal area. The optimal sealing 

condition with the highest hermeticity pass rate is determined based on statistical analysis. 

Furthermore, a shelf life study is used to ensure hermeticity does not change over time. If there is 

a seal leak two days after the package is produced, then it should also show a seal leak fourteen 

days after production. It is also important to observe the difference in results for both hermeticity 

and seal strength. The three test categories are salt water for sodium based foods, vegetable oil for 

oil-based foods, and non-contaminated seals (control).  
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4.0  Method and Materials 

4.1 Film Structure 

The film used in this study was provided by The Dow Chemical Company and it is a commercial 

grade film currently used by the snack food industry. The film is a DOWLEX™ 2045G LLDPE 

1.6mil film. The PET film is a laminate that is commonly used in films for improved puncture 

resistance, and barrier properties. An adhesive is used to adhere the PET laminate to the film. 

Overall, the film is tested for performance in addition to the sealant performance since it comes in 

direct contact with the contaminant. 

The linear low-density polyethylene (LLDPE) sealant, with the trademark name ELITE™ 5400G,   

has a 0.916 g/cm
3
 density and has a low seal initiation temperature, 90⁰C.  The sealant’s puncture 

resistance equals 107 N and 5.5 J. Three film rolls are supplied for the study from the beginning 

of Phase 1 to Phase 2.  

 

Figure 4: Film Structure 
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4.2 Equipment 

The experiment uses the horizontal form fill and seal (HFFS) machine manufactured by Delfin, 

and a Dow specialty film with a chosen sealant grade commonly used for commercial snack food 

applications. For hermeticity testing, the Test-A Pak integrity tester is a large cylindrical water 

tank with a lid that submerges one inch under water. The Test-A Pak is a vacuum chamber to 

inflate the sample bags and visually observe for seal leaks.  The Testometric tensile tester is a 

pneumatic system for seal strength testing. A Raytek temperature gun is used to test the actual 

temperature of the environmental chambers and the actual temperatures of the sample bags. The 

two environmental chambers used for conditioning temperatures are manufactured by Darwin 

Chamber Company. Lastly, a JDC precision sample cutter, manufactured by Thwing-Albert 

Instrument Company is used for cutting the specimen samples for seal strength testing from the 

sample bags.  

4.3 Consistency 

The system must allow for consistent contamination from top to bottom seal for all types of 

contamination. The stream of contamination must be consistent from sample bag to sample bag to 

ensure data results are accurate. To measure consistent contamination, the width or thickness of 

the contamination must be measured during preliminary testing. The width measurements of the 

stream will be taken next to the front and back seals and the midpoint along the contamination 

stream. However, there is some tolerable variation allowed from sample bag to sample bag since 

the measurements are taken by the human eye. The acceptable coefficient of variation will be less 

than 15%. A preliminary trial must be conducted to measure the contamination and to test the 

contamination system. The flow rate of contamination may vary between contamination types, so 

the flow rate must be measured for each contamination as well as the width or thickness of the 

contamination stream.   
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4.4 Contamination System 

The contamination stream falls along the path of the fin seal to contaminate the T-point, which is 

the most critical point of failure on the package. The T-point is chosen for point of contamination 

since the seal jaws will be sealing through four layers of film. The decision to contaminant on top 

of the fin seal was chosen because it is most difficult to seal through four layers of film at the 

optimal condition for temperature and dwell time.  

The three test categories for this study are vegetable oil and a salt water solution, and non-

contamination which is the control. Vegetable oil is used to simulate for oil based products that 

will be in a flexible film packaged on a horizontal flow wrap machine. Salt Water will be used to 

simulate snack food products that are sodium based packaged in a film on a horizontal flow wrap 

machine. Pure Wesson 100% Natural Soybean Oil brand is used in the study for the vegetable oil 

contaminant. No additives such as water are added to the vegetable oil in the study. Morton Salt 

brand was mixed with water for the sodium water contaminant. The salt percentage in water was 

8.2% or 41.92 grams per 465.16 ml of water. The percentage of sodium water was chosen based 

on preliminary work to maximize the amount of salt in the solution with semi-dissolved 

characteristics. Once the solution was mixed with a tongue depressor for two minutes, the sodium 

was dissolved into the water but the salt grains remained visible in the contamination stream.  

A system is created on the machine that uses a mechanical syringe pump, 60 ml syringe, 1/4” OD 

0.170” ID clear vinyl tubing to attach the syringe to the 3/16” OD 0.148” ID steel tube (three 

feet), one brass adapters (male), and one brass swivel straight nozzles (female). The system forces 

one stream of contamination inside the bag by exposing the nozzle right after the fin seal is 

created and before the two end seals are made. This allows for contamination to be contained in 

the bag during the tube form as well as contaminate the end seals.  



 

 

18 

The syringe pump has a vinyl flexible tube (o.d.) which is extended to a stainless steel tube on the 

opposite end, which has a single nozzle to release the contaminant onto the film. The fin seal is 

created through rollers underneath the conveyor belt, which creates the tube of film. The nozzle 

hovers over the fin seal once it is created and passes the heated rollers underneath the conveyor 

belt. The nozzle hovers to avoid preventing the film from moving forward, but the tip of the 

nozzle still comes in direct contact with the film (Figure 7). 

 

Figure 5: Overall System 

 

Figure 6: Mechanical Syringe Pump Setup 
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Figure 7: Contamination Release Point 

The system has two tongue depressors attached to the right side of the stainless steel tube once 

the fin seal starts to form to prevent the tube of film to shift to one side of the conveyor belt. It is 

observed in the preliminary study that the tube will shift to the left causing a corner leak on the 

same side for the front and end seal. After the addition of the tongue depressors, the detection of 

corner leaks during the hermeticity test was reduced.  

The stainless steel tube is placed through a wooden block that is attached to the inner former to 

keep it from moving freely during production. The wooden block is held in place to avoid 

unwanted movement during production of the sample bags. 

4.5 Method 

4.5.1 PHASE 1 

There are a total of nine conditions (temperature and dwell time combinations) that will be used 

in Phase 1 and include different temperatures and dwell times. Phase 1 conducts hermeticity 

testing at all nine conditions to determine the most optimal sealing condition. The different 

conditions are as follows: 
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Temperature Dwell Time 

120 ⁰C 0.2 seconds 

  0.3 seconds 

  0.4 seconds 

140 ⁰C 0.2 seconds 

  0.3 seconds 

  0.4 seconds 

160 ⁰C 0.2 seconds 

  0.3 seconds 

  0.4 seconds 

Table 1: Sealing Condition Combinations 

Phase 1 will test two contaminants – vegetable oil and salt water at all the above conditions. Non-

contaminated bags will be the control in the study. A total of 13 samples for each bag type will be 

made at each condition to account for discarded samples during hermeticity testing. The 

discarded samples can result from poor fin seals, unwanted crease or folds in the seal, and sample 

bags bursting open under vacuum pressure. 

Phase 1 will be conducted over a six day period. One contaminant type is randomly selected for 

each day over the six day period. Therefore, the nine machine conditions for each type of 

contaminant are randomly divided into two days. The random order is shown in Table 2. 
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    Condition 

1 

Condition 

2 

Condition 

3 

Condition 

4 

Condition 

5 

Day 1 Control T1, D2 T2 D3 T3 D1 T2 D2 T3 D3 

Day 2 Salt Water T2 D3 T1 D3 T2 D1 T3 D3   

Day 3 Vegetable 

Oil 

T1 D3 T3 D1 T2 D1 T2 D3   

Day 4 Salt Water T1, D2 T1 D1 T3 D1 T2 D2 T3 D2 

Day 5 Control T2 D1 T3 D2 T1 D3 T1 D1   

Day 6 Vegetable 

Oil 

T3 D2 T1 D1 T3 D3 T2 D2 T1, D2 

Table 2: Test Schedule for Phase 1 

Temperature 1 (T1) 120 C 

Temperature 2 (T2) 140 C 

Temperature 3 (T3) 160 C 

Table 3: Referenced Sealing Temperatures in Table 1 

Dwell Time 1 

(D1) 0.2 seconds 

Dwell Time 2 

(D2) 0.3 seconds 

Dwell Time 3 

(D3) 0.4 seconds 

Table 4: Referenced Dwell Time in Table 1 

After each day, the bags will be stored at ambient temperature (20 ⁰C) for two hours to ensure 

that the polymer chains have reached “equilibrium” and the polymer chains have reached 
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maximum entanglement.  After the two hour waiting period, the samples are sent to hermeticity 

testing to check for leaks.  

4.5.2 Hermeticity Testing 

Hermeticity of the Flexible Bags will be tested using ASTM Standard D3078 – Test Method for 

Determination of Leaks in Flexible Packaging by Bubble Emission [20]. Each sample bag will be 

placed in the vacuum chamber with an attached cover plate immersed under water by one inch. 

One sample bag will be placed in the chamber with the fin seal faced down.  

The vacuum is set to 22.0 inHg and the package is observed for air bubbles. However, bubbles 

will be of different sizes depending on the total area of the leaked seal. According to ASTM 

Standard D3078, a small bubble will release ½ ml of air over 365 seconds [20].  

Size (He) Average Sr SR r R 

Big 6E-02 26.11 2.667 3.918 7.467 6.122 

Medium 7E-

03 

82.11 4.073 6.196 11.406 13.019 

Small 3E-03 365.00 18.963 32.549 53.096 69.962 

Very Small 

1E-04 

0.037 0.192 0.192 0.000 1.235 

Table 5: Bubble Size Categories for Hermeticity [20] 

The above table indicates that small leaks will produce 0.41 ml per 30 seconds; medium leaks 

will produce will release 0.1826 ml per 30 seconds; and large leaks will release 0.574 ml per 30 

seconds. In addition, the bubbles must continuously surface from one seal point to be considered 

a failed hermetic seal. Using the above table from ASTM D3078 [20], three continuous bubbles 

released over 30 seconds will be considered a failed hermetic seal. There are different size leaks 
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which will release different sizes. However, in this study the size of the bubbles cannot be 

determined without access to Helium leak detector, which is explained in ASTM D3078 [20].  

Hermeticity of the seals will be tested by using a vacuum chamber that places the bags into a 

contained tub of water and the pressure is brought down to 22.0 in Hg. The standard ASTM 

D3078 suggests three vacuum levels – low vacuum (12.5   0.5 in. Hg), medium vacuum (18.5   

0.5 in. Hg), and high vacuum (24.5   0.5 in. Hg). The preliminary work tested the three vacuum 

levels were tested with the film used in the experiment as well as different films with different 

film structures. The different films required different vacuum test levels, and it was determined 

that the suggested vacuum levels were inadequate for the test. For the film used in the 

experiment, the high vacuum level caused every test bag to burst open in the vacuum chamber 

and the medium vacuum level did not apply enough vacuum pressure to inflate the bags. 

Therefore, the preliminary test included testing vacuum pressures between 24.5 in. Hg and 18.5 

in. Hg. As a result, 22.0 in. Hg seemed to be the best fit for this type of film and bag structure. 

The size of the test bags and the film structure seem to be two factors that influence the vacuum 

pressure for hermeticity testing.  

Overall, the vacuum pressure causes the bag to expand, and allows bubbles to form at the leaking 

points at the seal. The bubbles indicate a failed hermetic seal and no bubbles indicate a pass 

hermetic seal. The bags will be placed in the hermetic fish tank for 30 seconds, which is a 

sufficient time period to observe bubble formations. Bubbles may tend to form that are trapped at 

the surface along the surface of the seal. Furthermore, a failed hermetic seal will show continuous 

bubbles from a leaking point. 

Bubble formations may occur at different points on the seals of the sample bags. The locations of 

the leaks will be recorded and categorized based on type of leak. Bubbles forming at the corners 

of the seal will be considered a “pass” in this study since the corners are not subject to 

A
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contamination. However, corner leaks that also have a leak at the T-point point will be considered 

a “fail”.   

 

 

 

Figure 8: Critical Points for Bag Samples 

A = Seal Corners; B = T-point Point 

Leak Location Hermeticity Result 

No leaks True Pass 

At corners  Pass  

At T-point  True Fail 

At T-point and corners True Fail 

At contamination area (near T-point point) True Fail 

Table 6: Hermeticity results based on leak location 

Figure 8 shows the critical point where the seal jaws must seal through four layers of film. For a 

successful seal to be produced at the T-point, the polymer chains in the sealant layer should reach 

their molten stage and completely entangle. However, a low sealing temperature and dwell time 

can limit the chains from entangling and result in a failed hermetic seal. 

  

A 

B 

A 

B

 A

 

Front Seal 

Back Seal 
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4.5.3 Phase 2 

Phase 2 tests the effect of storage temperature, time, and contaminants with the film using the 

optimal packaging condition determined in Phase 1. Control samples will be made for each 

contaminant’s packaging condition if the optimal packaging condition is different for each 

contaminant. However, Phase 1 results indicate that both contaminants have an optimal 

packaging condition of 140⁰C sealing temperature with 0.3 seconds dwell time. The following 

test procedure for Phase 2 is randomly created using Microsoft Excel. 

  

Total Sample 

Bags Produced (+10% more samples) Total 

2/19/204 Salt Water 120 12 132 

2/20/2014 Vegetable Oil 120 12 132 

2/21/2014 Control 120 12 132 

Table 7: Phase 2 Production Schedule 

The sample bags will be produced over a three day period in a complete random block design 

schedule. Once all bags are produced each day, they will all be randomly placed in the 

environmental chambers and chosen at random each day for sample testing. In addition, the bags 

will be randomly placed during production into each of the eight corrugated boxes.  

Ten samples for hermeticity and five samples for seal strength will be taken each day on Day 2, 6, 

10 and 14 from each of the refrigerated and ambient temperature chambers. A 14 day period was 

chosen to assume the average time period between packing and production to consumer.  

 

Day 2 Day 6 Day 10 Day 14 

Salt Water 2/21/2014 2/25/2014 3/1/2014 3/5/2014 

Vegetable Oil 2/22/2014 2/26/2014 3/2/2014 3/6/2014 

Control 2/23/2014 2/27/2014 3/3/2014 3/7/2014 

Table 8: Phase 2 Data Collection Schedule 
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Hermeticity Testing Sample 

Size 

Seal Strength Testing Sample 

Size 

 Testing 

Procedure  Refrigerated Ambient Refrigerated Ambient 

 

Day 2 10 10 5 5 

3

0 

Day 6 10 10 5 5 

3

0 

Day 10 10 10 5 5 

3

0 

Day 14 10 10 5 5 

3

0 

Total: 40 40 20 20 

 
Table 9: Phase 2 Expected Sample Size for Each Collection Day 

Each contaminant has 120 samples randomly placed in 12 boxes with an additional 12 to 24 bag 

samples to account for necessary discarded samples throughout Phase 2. Please refer to Appendix 

1 for the random placement of each sample bag into each box. In addition, the 12 boxes are 

randomly chosen for each conditioning temperature using Microsoft Excel. Lastly, each of the 6 

boxes are randomly chosen for hermeticity and seal strength, and randomly placed in each 

chamber. The random box assignment to each chamber is listed in Appendix 2.  

The temperature and relative humidity of each chamber is recorded on each data collection day at 

the beginning of testing. The actual chamber temperature is measured using a Raytek temperature 

hand gun, but no accurate tool was used to measure actual relative humidity. For each testing 

period, one box for hermeticity and one box for seal strength is removed from the chamber and 

opened immediately to determine the actual temperature of the sample bags. However, each 

testing period requires only five bags for seal strength testing, so the seal strength box is returned 

to its placement in the designated chamber after the necessary sample bags are removed from the 

box for testing. The boxes chosen for hermeticity and seal strength for each test day are randomly 

selected and listed in Appendix 3.  
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4.5.4 Seal Strength Testing 

In addition to hermeticity, the seal strength is tested to determine if there is a significant 

difference between contaminated and non-contaminated seals. The purpose of testing the seal 

strength is determining the consistency of seal strength from sample bag to sample bag with 

contamination and without contamination. It is also used to validate the sealing conditions for 

packaging production. According to ASTM F88 – Standard Test Method for Seal Strength of 

Flexible Barrier Materials, the sample for peel force will be one inch wide and three inches long 

from the end point of the seal [3]. The standard does not indicate a necessary sample number, so 

ten samples are chosen for each condition.  

 

Figure 9: Specimen Setup for Unsupported Seal Strength Test 

The unsupported seal strength test will be used for this study. It is not expected to have another 

force affecting the seal strength as is shown in the above Figure 9. Each leg or unsealed section is 

fastened to the top and bottom grip on the tensile tester. The seal is tested at a rate of 12 

inches/min. and the maximum force to failure is recorded. The average seal strength (n) is the 

average force per unit width of seal at failure. [3,5,6] 
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4.5.5 Determining Optimal Packaging Conditions 

The hermeticity test will show how the pass percentage of each contaminant at the different 

conditions. It is assumed that there will be a difference between contaminated and non-

contaminated seals. In addition, the contaminated seals have a lower hermetic pass rate than non-

contaminated bags. The optimal packaging condition considers the temperature and dwell time of 

the end seals that gives the highest pass rate that remains insignificantly different than non-

contaminated bags. The lower the temperature the lower the amount of energy needed to package 

the bags, and the lower the dwell time indicates a faster production speed. In addition to 

determining the statistical difference within one condition, it is also important to determine if 

there is a statistical difference between the contaminated hermetic pass percentage with a lower 

dwell time to a higher dwell time. If between the two dwell times at the optimal temperature is 

insignificant, than the lower dwell time would be used. However, if the hermetic pass percentage 

is significant between the two dwell times, then the longer dwell time will be the optimal 

condition. One sealing condition of one temperature and dwell time will be used for each 

contaminant type for Phase 2. 

After determining the optimal packaging condition for each contaminant, Phase 2 tests the 

performance of the contaminated compared to non-contaminated seals over a shelf life of 14 

days. A two week period is chosen because this is the common time period a package is on the 

shelf for these product types. The same size bags will be made using the HFFS machine, but only 

using the optimal packaging condition for each contaminant. Empty or non-contaminated bags 

will also be made as the control for each of the contaminants optimal condition if all 

contaminants do not have the same optimal condition.  

Each contaminant will be tested for two types of environmental conditions – refrigerating 

conditions at 5⁰C and 85% humidity and ambient conditions of 23⁰C and 50% humidity [19]. The 

bags are prepared at ambient temperature of approximately 22⁰C and 33% RH.  
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4.6 Test Procedure 

4.6.1 Horizontal Form, Fill and Seal Machine 

1. Attach the green compressed air hose to the machine. 

 

Figure 10: Air Hose Attachment 

2. Turn the air supply on by turning the black handle on the air pipe counterclockwise until 

it is upright as shown in the picture below. 

 

Figure 11: Air Pipe 
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3. Turn on the machine by using turning the power switch clockwise until it reads ON.  

 

Figure 12: ON Switch for HFFS 

4. Insert the machine key into the machine next to the RESET button and turn it to the 

RIGHT. Turning the key to the RIGHT turns SAFETY OFF and allows the user to open 

and close the safety guards located on both sides of the seal jaws without disarming the 

machine. Ensure the safety guards are down, and turn the key to the LEFT to enable the 

safety guard. Press the RESET button to enable to the compressed air to pass through the 

machine.  
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Figure 13: HFFS Control System 

5. The initial interface may have a warning sign with an X at the top of the screen. Press the 

X on the interface to go to the home screen which is shown in the Figure 15. The rabbit 

should read 15⁰ which indicate the machine will make 15 bags per minute. Use the + or – 

keys next to the rabbit if it does not read 15⁰. To the right of the rabbit indicates that the 

bag length should be 215mm from seal to seal. If it does not read 215mm, press the key 

with the bag image to adjust the bag length. 

6. Next, temperature can be adjusted by clicking on the top right button on the home 

interface page. 

 

Figure 14: Temperature Setup Button 
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7. The next page will show the temperature interface shown below in Figure 15. The first 

temperature value indicates that the first roller of three for the fin seal is set to 30⁰C. The 

second roller is set to 135⁰C and the last roller has no heat. The last two temperatures are 

for the top and bottom seal jaws. The top and bottom seal jaws will have the same 

temperature and will be adjusted for each sealing temperature in the study. However, the 

rolling wheel temperature will remain the same for all sealing conditions. All values 

located in the green boxes are the set values and the number above is the actual 

temperature. The machine will not run unless the actual temperature is within nine 

degrees of the set temperature. Testing will begin and continue when the actual sealing 

temperatures reach the set temperature. 

 

Figure 15: Temperature Interface  

8. Pressing the X button in the top left corner of the screen will lead to the home page. 

9. To change the dwell time, press the second key down from the top right of the home 

screen shown in Figure 13. Next, press the image that is highlighted in green in Figure 16 

below.  
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Figure 16: Dwell Time Setup Control Button 

10. The next screen indicates two degree values. The second degree value, 52⁰ indicates that 

the dwell time is 0.2 seconds. For 0.3 seconds, the degrees for dwell time will need to 

change to 61⁰ by pressing on the 52⁰ value in the green box. For 0.4 seconds dwell time, 

press the degree value in the same box and change the value to 71⁰. The top degree, 250⁰ 

indicates the amount of time allotted for the seal jaws to move up and down per seal. The 

time allotted for the seal jaws to move up and down will remain the same at 250⁰. 

 

 

Figure 17: Dwell Time Setup Interface Screen 

11. Vegetable oil and salt water require the contaminant system that starts with the 

mechanical syringe pump. The syringe is filled of 60 ml of the contaminant type and 

secured to the syringe pump. Vegetable oil will be set to X1 range and 7.7% flow rate 
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and salt water 5.7% flow rate. The power will be set to ON immediately prior to 

collecting sample and running the machine. The image below has the % flow rate set to 

7.7% for the vegetable oil contaminant, but salt water can use the + and – buttons located 

above and below the flow rate value shown to reach 5.7%. 

 

Figure 18: Mechanical Pump Control System 

 The syringe pump is connected to a flexible vinyl tube, which is attached on the other 

end to a three foot stainless steel tube. On the other end of the stainless steel tube, a 

nozzle is screwed in place to provide a narrow passage for consistent contamination.  

12. The stainless steel tube slides into the tube of film on the packaging line and secured in 

place through the drilled hole in the wooden block. The block prevents the tube from 

moving during operation. The flexible vinyl tube is attached to the filled syringe and 

attached the stainless steel tube once it is placed in the block.  

13. In order to begin testing, turn the power knob on the syringe pump to ON, pull down all 

safety guards, turn safety key to the left, and push the green ON button on the control 

panel. Push the RED button on the control panel once testing is done for each test 

category. 

4.6.2 Hermeticity Testing Procedure 

1. Turn on the Test-A-Pack Integrity Tester machine by the power button located on the 

back of the machine.  
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Figure 19: Test-A-Pack Machine for Hermeticity Testing 

2. The level of the water should be filled to one inch above the top platen of the vacuum 

chamber. If it is not filled to the indicated line on the chamber, water can be added to the 

chamber.  

 

Figure 20: Hermeticity Test Fill Line 
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3. The motor switch should be flipped to the ON position, which will start the motor.  

4. To start the test, push the START button and press the down arrow until TEST SETUP is 

selected. Press the SET button and UNITS is first selected indicated by an arrow to the 

left of UNITS. Press the SET button and use the UP arrow until it reads the units inHg 

GAGE. Press SET again so inHG GAGE stops blinking. 

5. Next, use the down arrow to select the VALUE to set the test to 22.0 inHg. Once VALUE 

is selected, press the SET button and use the UP arrow to reach 2 for the first digit then 

use the DOWN arrow to then choose 2 for the next digit. Next, press the SET button to 

confirm the value is set to 22 inHg.  

6. Next use the DOWN arrow to select the TIME setting. Press the SET button and use the 

UP arrow until 3 is shown for the first digit. Use the DOWN arrow to move to the second 

digit to select 0 and press the SET button. The time should be set to 30 seconds. 

7. Push the START button which will show the TEST home page. Next, press START 

again to begin the test.  

8. The inHg value in the bottom right corner of the screen indicates the actual vacuum 

pressure of the chamber. The interface shows the time in seconds of the test and will read 

EVACUATE until the vacuum pressure is held at 22.0 inHg for 10 consecutive seconds. 

The timer will then reset to HOLD and count down from 30 seconds. The chamber will 

reset to ambient pressure once the 30 seconds test is completed.  

4.6.3 Seal Strength Test Procedure 

The test method for seal strength used in the study follows ASTM Standard F88 [3]. 
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Figure 21: Seal Strength Testing Machine 

1. Turn on the computer by pushing the power button ON. 

2. Choose Tester User Login and Open WinTest located on the desktop. The WinTest 

software will open with the main control interface. Use the DOWN arrow to bring the top 

jaw to exactly 1 inch above the bottom jaw on the TESTOMETRIC Tensile Tester. 

Check the air compressor to ensure there is at least 100 psi before testing begins.  Adjust 

setting to compression versus tensile testing to bring top jaw down. Once at 1 inch, 

change the test mode to tensile. The jaw clamps are pneumatic and require enough 

compressed air in the system to secure each tail of the specimen.   
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Figure 22: WinTest Control Interface 

 

  

Figure 23: Compression Mode Button 
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Figure 24: Tensile Mode Button 

3. Next, click the button with the graph image to begin test mode.  

 

 

Figure 25: Graph Button to Begin Test Mode 

4. In order to go to test setup, close the top window which shows the graph of the current 

test to open the overall test log. Select the following Test Setup button to set the Force to 

Newtons (N) units with a range from 0 to 75 N, and elongation to mm with a range from 

0 to 50 mm.  

 

Figure 26: Test Setup Button 
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5. Next, select TEST at the top menu followed by START TEST. The current test window 

will open with the Force and Elongation values located on the right side. Before starting 

the test, both values are set to zero by clicking the zero button the left of each value. The 

graph should be blank prior to each test.  

6. Each sample bag will have two replicates from the front and back end seals at the T-point 

shown in Figure 27 below. The front and back seals are named based on the order of 

which the seal is made during production. The fin seal direction, located on the bottom 

face of the bag in Figure 27, indicates which is the front and back seal. The fin seal is 

forced in the direction of the right hand side of the bag from the perspective at the end of 

the production line. 
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Figure 27: Front and Back T-Point Seal Samples Taken from Sample Bag 

7. Following ASTM F88 [3], each sample is 1 inch in width and 3 inches in length with the 

T-point approximately in the middle of the cut sample. Both samples are cut from the bag 

using a 1 inch width JDC Precision Sample Cutter, manufactured by Thwing-Albert 

Instrumental Company. 

8. The bottom tail of the specimen is first secured into the bottom jaw using the foot petal 

attached to the Testometric machine to enable the pneumatic system. Before locking the 

bottom tail into the bottom jaw, the seal is raised approximately equidistant between the 

two grip jaws. 

 

Direction of Fin 

Seal Placement 

Back Seal 

Front Seal 
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Figure 28: Specimen Setup for Seal Strength Test 

9. Next, the top tail of the specimen can be secured in the top jaw using the designated foot 

petal to enable the pneumatic system.  

10. Start the test by clicking the UP arrow on the current test screen. The tensile test will run 

until it reach failure mode.  

11. The current test results will be stored in the test log by clicking the check button. Record 

the results of the graph and raw data by right clicking on each trial name. The raw data 

and a .pdf image of each trial’s graph are stored in a recognized folder in the computer.  

 

 

Figure 29: Check Button to Store Seal Strength Data 
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12. Release the jaw grips using the foot petals, followed by selecting TEST from the top 

menu to then select START TEST. Repeat steps 8 through 11 from the Seal Strength Test 

Procedure. 
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5.0 Results 

5.1 Contamination consistency results from Phase 1 and 2 

Throughout preliminary work and Phase 1 and Phase 2 of the study, the consistency of 

contamination from sample bag to sample bag was measured. A ruler was used to measure the 

width of the contamination stream near the front and back seals as well as the midpoint of the 

stream. Overall, vegetable oil had an average coefficient of variation of 0.217 which is greater 

than 0.15. As mentioned previously, 0.15 coefficient of variation was the goal of the study to 

have almost no variation from sample bag to sample bag. On the other hand, the salt water 

contaminant had a higher coefficient of variation of 0.211, which is greater than the desired 0.15 

coefficient of variation. The greater C.O.V of salt water could be due to the density and contact 

angle of the solution. In comparison to vegetable oil, the salt water solution is more prone to 

move during production. A greater amount of sample bags were measured for salt water to 

measure its incline to move away from the fin seal path. Even though the salt water solution has a 

higher coefficient of variation, both contaminants are considered to have an acceptable consistent 

stream. The raw data for consistency is listed in Appendix E.  

5.2 Phase 1 Results 

The results showed an increase in temperature increase the pass rate within 120⁰C to 160⁰C. For 

each temperature, there is also an increase in pass rate as the dwell time increases. The 

hermeticity test observes the leaks in the seals for the sealing conditions and what type of leaks 

are occurring. Contaminants fall only along the fin seal and contaminate the T-point, so any fails 

that are not along the T-point are considered a pass such as corner leaks. It was found that some 

leaks occur at the corners of the seal which are considered pass but not a true pass since they were 

not contaminated. T-point failures are what we are comparing in this study, so all corner leaks are 

considered a pass. 
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  5.2.1 Hermeticity Results by Sealing Condition 

120⁰C Sealing Temperature 

 
Pass Fail Fail Type 

 Control 7   corners 

 

  3 T-point 

Total: 7 3   

     

 
Pass Fail Fail Type 

 Salt Water 0 10 T-point & corners 

 

      

Total: 0 10   

     

 
Pass Fail Fail Type 

 Vegetable Oil 0 10 T-point & corners 

 

      

Total: 0 10   

Table 10: 120⁰C Sealing Temperature and 0.2s Dwell Time 

 
Pass Fail Fail Type 

 

Control 1 3 

T-point & 

corners 

 

  6 T-point 

Total: 1 9   

     

 
Pass Fail Fail Type 

 Salt Water 2 1 T-point 

 

2   corner 

 

  4 

T-point & 

corners 

Total: 4 5   

     

 
Pass Fail Fail Type 

 Vegetable Oil 1 7 T-point 

 

2   corner 

Total: 3 7   

Table 11: 120⁰C Sealing Temperature and 0.3s Dwell Time 
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Pass Fail Fail Type 

 Control 4 1 T-point & corners 

 

  3 T-point 

 

2   corner 

Total: 6 4   

     

 
Pass Fail Fail Type 

 Salt Water 3 3 T-point 

 

1   corner 

 

  3 T-point & corners 

Total: 6 6   

     

 
Pass Fail Fail Type 

 Vegetable Oil 4 6 T-point 

 

    

 Total: 3 7   

Table 12: 120⁰C Sealing Temperature and 0.4s Dwell Time 

 

Figure 30: Contaminant Pass Rates by Dwell Time for 120⁰C Sealing Temperature  

Due to the above results for 120⁰C, it can be inferred that the results for 0.3 seconds dwell time 

are inconclusive since the pass rate for both vegetable oil and salt water is greater than the 

control. Therefore, 120⁰C with 0.3 seconds dwell time will not be considered an optimal 
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packaging condition for Phase 2. The error for 0.3 seconds dwell time could be a result of the 

small sample size of 10 replicates. It is possible that a larger sample size may eliminate the error. 

However, the pass rate for 120⁰C and 0.3 seconds dwell time has a low pass rate for all 

contaminants and control compared to the other conditions in Phase 1. The results indicate that 

there is a large difference between the contaminants and the control for 0.2 seconds and less of a 

difference for 0.4 seconds dwell time. Overall, there is an increase in pass rate as the dwell time 

increases for 120⁰C sealing temperature. As mentioned previously, the pass rate also includes 

leaks only at the corners during the test.   

140⁰C Sealing Temperature 

 
Pass Fail Fail Type 

 Control 2 3 T-point 

 

  3 T-point & corners 

 

1   corner 

Total: 3 6   

     

 
Pass Fail Fail Type 

 Salt Water 3 6 T-point 

 

1   corner 

Total: 4 6   

     

 
Pass Fail Fail Type 

 Vegetable Oil 3 7 T-point 

 

      

Total: 3 7   

Table 13: 140⁰C Sealing Temperature and 0.2s Dwell Time 

Salt water has a slightly higher pass rate than the control, but the control has a smaller sample 

size. Testing led more than three discarded samples during the hermeticity test due to the vacuum 

pressure, failed fin seal, or creases in the seal. 13 total replicates were made at each condition, 

and four discarded samples led to a sample size of nine for the control at 140⁰C and 0.2 seconds 

dwell time.  
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Pass Fail Fail Type 

 Control 6 2 T-point 

 

  1 

T-point & 

corners 

 

1   corner 

Total: 7 3   

     

 
Pass Fail Fail Type 

 Salt Water 6 4 T-point 

 

      

Total: 6 4   

     

 
Pass Fail Fail Type 

 Vegetable Oil 6 2 T-point 

 

2   corner 

Total: 8 2   

Table 14: 140⁰C Sealing Temperature and 0.3s Dwell Time 

Vegetable Oil has a slightly higher pass rate than the control at 140⁰C and 0.3 seconds dwell 

time. However, both the control and the vegetable oil have the same number of true passes and 

the vegetable oil has one more corner pass than the control. Furthermore, the control had an 

additional sample that showed leaks at the corners, but that same sample had a T-point leak. A T-

point leak and a corner leak indicate a failed sample compared to a sample that only leaks from 

the corners.  
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Pass Fail Fail Type 

 Control 7 2 T-point 

 

1   corner 

Total: 8 2   

     

 

Pass Fail 

Fail 

Type 

 Salt Water 5 5 T-point 

 

      

Total: 5 5   

     

 

Pass Fail 

Fail 

Type 

 Vegetable Oil 7 3 T-point 

 

      

Total: 7 3   

Table 15: 140⁰C Sealing Temperature and 0.4s Dwell Time 

The results for 140⁰C and 0.4 seconds dwell time show that vegetable oil has a higher pass rate 

compared to salt water. Control has a higher pass rate than both contaminants at this condition.  

 

 

Figure 31: Contaminant Pass Rates by the Dwell Time for 140⁰C Sealing Temperature 
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At 140⁰C sealing temperature, there is no test category has a consistently higher pass rate than the 

other test categories or a consistently lower pass rate at all dwell times. The condition for the 

highest pass rate that is statistically significant for all test categories is 140⁰C and 0.3 seconds 

dwell time. This condition has a higher pass rate than 120⁰C for all dwell times.  

160⁰C SEALING TEMPERATURE 

 
Pass Fail Fail Type 

 Control 5 3 T-point 

 

1   corner 

Total: 6 3   

     

 
Pass Fail Fail Type 

 Salt Water 2 5 T-point 

 

  2 T-point & corner 

Total: 2 7   

     

 
Pass Fail Fail Type 

 Vegetable Oil 3 5 T-point 

 

  1 T-point & corner 

 

  1 contamination 

Total: 3 7 

  
Table 16: 160⁰C Sealing Temperature and 0.2s Dwell Time 

At 160⁰C sealing temperature and 0.2 seconds dwell time, there is a difference between the 

contaminants and the control. The control has a 40% higher pass rate than salt water and 30% 

higher pass rate than vegetable oil. Vegetable oil had one failed sample that showed a leak at the 

contaminate area near the T-point. Although the contaminant lies along the T-point, the 

contaminant will spread within the area near the T-point when the two surfaces come together. 

Even though this total area is not measured in this study, the initial thickness of the contamination 

is recorded.  
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Pass Fail Fail Type 

 Control 9 0   

 

1   corner 

Total: 10 0   

     

 
Pass Fail Fail Type 

 Salt Water 5 4 T-point 

 

  1 contamination 

Total: 5 5   

     

 
Pass Fail Fail Type 

 Vegetable Oil 6 4 T-point 

 

      

Total: 6 4 

  
Table 17: 160⁰C Sealing Temperature and 0.3s Dwell Time 

As mentioned previously for the last condition, the salt water contaminant had one failed sample 

that showed leaks from the contaminated area near the T-point. The control had nine samples that 

were true passes, and one sample that showed a leak at the corners. Salt water and vegetable oil 

contaminants each had four samples that failed at the T-point. In comparison to the previous 

condition of 160⁰C and 0.2 seconds dwell time, pass rates increased for all test categories. 

 
Pass Fail Fail Type 

 Control 10  0  None 

Total: 10 0   

     

 
Pass Fail Fail Type 

 Salt Water 7 2 T-point 

 

  1 T-point & corner 

Total: 7 3   

     

 
Pass Fail Fail Type 

 Vegetable Oil 10 0  None 

Total: 10 0 

  

Table 18: 160⁰C Sealing Temperature and 0.4s Dwell Time 

At 160⁰C sealing temperature and 0.4 seconds dwell time, vegetable oil contaminant and the 

control had all ten samples pass with no leaks. The salt water contaminant had the lowest pass 
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rate of 70% with two samples failed at the T-point point and one sample failed with T-point and 

corner leaks.  

 

Figure 32: Hermeticity Pass Rate for 160⁰C Sealing Temperature 

 

Figure 33: Hermeticity Pass Rate for 0.2s Dwell Time 
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Figure 34: Hermeticity Pass Rate for 0.3s Dwell Time 

 

Figure 35: Hermeticity Pass Rate for 0.4s Dwell Time 
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5.2.2 Phase 1 Statistical Analysis 

A binary logistic regression is used in this study to analyze the odds ratio for the hermeticity pass 

rate. The results show the odds of passing between the different sealing temperatures and the 

dwell times. The alpha (α) equals 0.05, which is the probability of rejecting the null hypothesis. 

Phase 1 Null and Alternative Hypotheses: 

HO(temp) :There is no difference in hermeticity pass rate between 120⁰C, 140⁰C, and 160⁰C. 

HA(temp) :There is a difference in hermeticity pass rate between 120⁰C, 140⁰C, and 160⁰C 

HO(dwell time) :There is no difference in hermeticity pass rate between 0.2s, 0.3s, and 0.4s 

HA(dwell time) :There is a difference in hermeticity pass rate between 0.2s, 0.3s, and 0.4s 

HO(contaminant) :There is no difference in hermeticity pass rate between the control and salt water and 

vegetable contaminants.  

HA(contaminant) :There is a difference in hermeticity pass rate between the control and salt water and  

vegetable oil. 

TEMP (Ref. 140 ⁰C) 

Odds 

Ratio 95% C.I. P-Value 

120 ⁰C 0.32 (0.16, 0.62) 0.001 

160 ⁰C 1.60 (0.82, 3.10) 0.166 

DWELL TIME (Ref. 0.3 s)   

 

  

0.2 seconds 0.33 (0.17, 0.65) 0.001 

0.4 seconds 1.92 (0.99, 3.71) 0.054 

Contaminant (Ref. Control)   

 

  

Salt Water 0.30 (0.15, 0.60) 0.001 

Vegetable Oil 0.45 (0.23, 0.89) 0.021 

Table 19: Phase 1 Binary Logistic Regression Analysis 

*The odds ratio refers to the category associated with the odds ratio compared to the reference category 

Table 19 compares 120⁰C and 160⁰C to 140⁰C sealing temperature. The table shows that 160⁰C 

sealing temperature has greater odds of passing the hermeticity test compared to 140⁰C. For 

example, for every 10 sample bags that have a hermetic seal with 140⁰C sealing temperature 16 
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sample bags will have a hermetic seal when accounting for dwell time and contaminants. 

However, the p-value of 160⁰C equals 0.166. Therefore, we are 95% confident that there is not 

enough evidence to conclude that there is a difference in pass rate between 160⁰C and 140⁰C 

when accounting for the effect of dwell time and contamination. In addition, 120⁰C sealing 

temperature has a lower pass rate than 140⁰C because the odds ratio, 0.32 is less than one.  The 

odds ratio indicates that 120⁰C sealing temperature has the odds of producing a hermetic seal 

0.32 compared to every control sample has a hermetic seal. The p-value for 120⁰C compared to 

140⁰C equals 0.001. Therefore, we are 95% confident that there is a difference in pass rate 

between 120⁰C and 140⁰C when accounting for the effect of dwell time and contamination. 

Vegetable oil and salt water have a lower pass rate than the control, but vegetable oil has greater 

odds of passing than salt water. The odds for vegetable oil and salt water are 0.45 and 0.30, which 

are both less than one. If the odds ratio was greater than one, then the contaminants would have 

greater odds for a hermetic seal than the control. The p-values for both salt water and vegetable 

oil are 0.001 and 0.021, so there is enough evidence to reject the null hypothesis, HO(contaminant). 

Therefore, we are 95% confident that there is enough evidence to conclude that the contaminants 

will have a lower pass rate compared to the control when accounting for the effect of dwell time 

and sealing temperature. The dwell time of 0.2 seconds compared to 0.3 seconds has an odds 

ratio less than one and a p-value less than 0.05. Therefore, we are 95% confident that there is a 

difference between 0.2 seconds and 0.3 seconds when accounting for contamination and sealing 

temperature. Also, the dwell time of 0.4 seconds compared to 0.3 seconds has a p-value that is 

0.054 which is slightly more than 0.05. Since it is more beneficial to use a shorter dwell time for 

production, 0.4 will not be used for the dwell time in Phase 2. Therefore, we are 95% confident 

that there is not a significant difference between 0.4 seconds and 0.3 seconds dwell time.  
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TEMP (Ref. 120⁰C) Odd Ratio 95% C.I. P-Value 

140 ⁰C 3.13 (1.61, 6.08) 0.001 

160 ⁰C 5.00 (2.51, 9.95) 0.000 

DWELL TIME (Ref. 0.2 

s)       

0.3 seconds 3.01 (1.55, 5.84) 0.001 

0.4 seconds 5.76 (2.88, 11.53) 0.000 

Contaminant (Ref. 

Control)       

Salt Water 0.30 (0.15, 0.6) 0.001 

Vegetable Oil 0.45 (0.23, 0.89) 0.021 

Table 20: Phase 1 Binary Logistic Regression Analysis 

*The odds ratio refers to the category associated with the odds ratio compared to the reference category 

Table 20 compares 140⁰C and 160⁰C to 120⁰C, and 0.3s and 0.4s to 0.2s. In comparison to 

120⁰C, both 140⁰C and 160⁰C have an odds ratio that is greater than one. The p-value for both 

temperatures are less than 0.05 and can reject the null hypothesis, HO(temp). Therefore, we are 95% 

confident that there is a difference between 120⁰C and 140⁰C as well as 120⁰C and 160⁰C when 

accounting for the effect of dwell time and contamination. Looking at the dwell time comparison, 

0.3s dwell time and 0.4s dwell time have an odds ratio of 3.01 and 5.76. The values are greater 

than one, which imply that 0.3s and 0.4s dwell time have greater odds for passing hermeticity 

than 0.2s dwell time. Furthermore, the p-values for both dwell times are less than 0.05 and can 

reject the null hypothesis, HO(dwell time). Therefore, we are 95% confident that there is a difference 

between 0.2 seconds and 0.3 seconds as well as 0.2 seconds and 0.4 seconds for dwell time when 

accounting for the effect of sealing temperature and contamination. The contaminants’ odds ratio 

indicates vegetable oil will have a higher pass rate compared to salt water when comparing 

against the performance of the control. The p-values for salt water and vegetable oil are 0.001 and 

0.021, and can reject the null hypothesis, HO(contaminant). Therefore, we are 95% confident that there 

is a difference in pass rate for both contaminants compared to the control when accounting for 

the effect of dwell time and sealing temperature.  
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The interaction between two factors indicates one factor is affected by the other. If there is a 

significant p-value for the interaction (less than 0.05), then there is an association between the 

two factors when determining the pass rate. For example, if the p-value for the interaction 

between 120⁰C, 0.2s and 140⁰C, 0.3s is less than alpha (      ) then there is an association 

between the temperature and dwell time when testing hermeticity.  

TEMP (Ref. 140 ⁰C) Odds Ratio 95% C.I. P-Value 

120 ⁰C 0.25 (0.06, 1.05) 0.25 

160 ⁰C 4.34 (0.75, 24.95) 4.34 

DWELL TIME (0.3 s)       

0.2 seconds 0.58 (0.14, 2.45) 0.58 

0.4 seconds 1.66 (0.36, 7.57) 1.66 

CONTAMINANT (Ref. Control)       

Salt Water 1.51 (0.35, 6.48) 1.51 

Vegetable Oil 1.9 (0.42, 8.53) 1.9 

TEMP*CONTAMINANT (Ref. 140⁰C)       

120*Salt Water 0.7 (0.15, 3.34) 0.7 

120*Vegetable Oil 0.36 (0.07, 1.88) 0.36 

160*Salt Water 0.1 (0.01, 0.67) 0.1 

160*Vegetable Oil 0.18 (0.03, 1.29) 0.18 

DWELL TIME*CONTAMINANT (Ref. 0.3 s)       

0.2*Salt Water 0.28 (0.05, 1.49) 0.28 

0.2*Vegetable Oil 0.2 (0.04, 1.14) 0.2 

0.4*Salt Water 0.24 (0.04, 1.38) 0.24 

0.4*Vegetable Oil 0.63 (0.1, 3.9) 0.63 

TEMP*DWELL TIME (140⁰C*0.3s)       

120⁰C*0.2 seconds 3.05 (0.58, 16.04) 3.05 

120⁰C*0.4 seconds 3 (0.62, 14.43) 3 

160⁰C*0.2 seconds 1.05 (0.19, 5.76) 1.05 

160⁰C*0.4 seconds 7.69 (1.06, 55.99) 7.69 

Table 21: Binary Logistic Regression Analysis Results with Interactions 

*The odds ratio refers to the category associated with the odds ratio compared to the reference category 

The p-values for the interactions shown in the analysis above indicate that we are 95% confident 

that there is not enough evidence to conclude that there is an association between sealing 
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temperature and contaminant type, dwell time and contaminant type, and sealing temperature 

and dwell time. Moreover, the significance of the interaction does not change the optimum 

sealing condition for Phase 2 of the study.  

5.2.3 Phase 1 Summary 

Vegetable oil and salt water pass rates increase from 0.2 second to 0.4 seconds dwell time. The 

control showed no difference between 0.3 second and 0.4 seconds since all 10 sample bags 

passed with no leaks. At 0.2 seconds dwell time, vegetable oil contaminant showed one sample 

that leaked during hermeticity from the seal area that was contaminated near the T-point point. In 

addition, salt water had one sample at 0.3 seconds that failed due to leaking from the 

contaminated area near the T-point. Even though the study aims to observe the performance of 

the T-point, the stream of contamination spreads across the seal area near the T-point. 

Furthermore, the force from the seal jaws to bring the two film surfaces together causes the 

contaminant to spread in the seal area.  

Overall, the binary logistic regression analysis indicates the optimal sealing condition for all 

contaminant types is 140⁰C and 0.3s dwell time. The first binary logistic regression analysis in 

Table 19 shows there is not enough evidence to conclude there is a difference in pass rate 

between 140⁰C and 160⁰C sealing temperature and 0.3s and 0.4s dwell time. However, there was 

enough evidence to conclude that there is a difference between 120⁰C and 140⁰C sealing 

temperature and 0.2s and 0.3s dwell time. Furthermore, the analysis indicates 120⁰C sealing 

temperature has a lower pass rate compared to 140⁰C sealing temperature. In addition, the 

analysis shows 0.2s dwell time has a lower pass rate compared to 0.3s dwell time.  

5.3 Phase 2 Results 

Phase 2 tests the effect of temperature, time and contamination given the parameters of the test. 

Each contaminant was tested four times over the 14 day shelf life study on Days 2,6,10 and 14. 
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On each day, it was hopeful to test at least 10 sample bags for hermeticity in order to have an 

adequate representation for each contaminant type. Unfortunately, even with 10-20% more 

samples than what was needed each day, some sample sizes were less than 10 due to wrinkles in 

the seal and insignificant bag inflation during hermeticity testing. To test a hermetic seal, the 

sample bag must fully expand under the vacuum chamber. In addition to hermeticity testing, at 

least five sample bags were tested each day for each temperature for seal strength. Each sample 

bag had two replicates for front and back seal, which provided 10 to 12 samples for each 

conditioning temperature on each day. However, samples were only represented in the results if 

the failure mode was peel or a combination of peel and material failure. The seal strength graphs 

of the raw data by testing period and by conditioning temperature are shown in Appendix 8.  

5.3.1 Phase 2 Hermeticity Results 

Hermeticity was tested for both conditioning temperatures during each testing period – Days 

2,6,10, and 14. Hermeticity testing was conducted to determine if hermeticity had a significant 

change over time due to contamination.  
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Control 

Day 2 Tested on 2/23/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

1   Corners 

 

6 3 Crossover  

 

  

 

Crossover & Corners 

 

    Contamination 

Total: 7 3 

 Pass % 70% 

      

Ambient 

Condition Pass Fail Notes: 

 

    Corners 

 

5 4 Crossover  

 

  1 Crossover & Corners 

 

    Contamination 

Total: 5 5 

 Pass % 50% 

  
Table 22: Control Day 2 Testing for Phase 2 

Day 6 Tested on 2/27/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

1   Corners 

 

5 3 Crossover  

 

    Crossover & Corners 

 

  1 Contamination 

Total: 6 4 

 Pass % 60% 

  
    Ambient 

Condition Pass Fail Notes: 

 

    Corners 

 

3 5 Crossover  

 

  1 Crossover & Corners 

 

    Contamination 

Total: 3 6 

 Pass % 33% 

  
Table 23: Control Day 6 Testing for Phase 2 
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Day 10 Tested On 3/3/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

    Corners 

 

6 4 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 6 4 

 Pass % 60% 

  

    Ambient 

Condition Pass Fail Notes: 

 

    Corners 

 

6 4 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 6 4 

 Pass % 60% 

  
Table 24: Control Day 10 Testing for Phase 2 

Day 14 Tested on 3/7/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

    Corners 

 

5 1 Crossover  

 

  2 Crossover & Corners 

 

    Contamination 

Total: 5 3 

 Pass % 63% 

  

    Ambient 

Condition Pass Fail Notes: 

 

2   Corners 

 

3 5 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 5 5 

 Pass % 50% 

  
Table 25: Control Day 14 Testing for Phase 2 
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Salt Water 

Day 2 Tested on 2/21/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

    Corners 

 

3 5 Crossover  

 

    Crossover & Corners 

 

  1 Contamination 

Total: 3 6 

 Pass %: 33% 

  

    Ambient 

Condition Pass Fail Notes: 

 

1   Corners 

 

4 5 Crossover  

 

    

Crossover & 

Contamination 

 

    Contamination 

Total: 5 5 

 Pass %: 50% 

  
Table 26: Salt Water Day 2 Testing for Phase 2 

On day 2 testing for salt water, ambient condition was 23.2⁰C, 49.8%RH, and refrigerated 

condition was 5.2⁰C, 84.7%RH. The Raytek temperature gun measured the actual temperatures to 

be 21.2⁰C for ambient and 5.4⁰C for refrigerated. The test room temperature was set to 22 and 

33% RH.  The temperatures of the boxes for ambient condition were 22.4⁰C, for hermeticity 

samples, and 22.8⁰C for seal strength samples. The temperatures of the boxes for refrigerated 

condition were 7.1⁰C, for hermeticity samples, and 8.4⁰C for seal strength samples. Furthermore, 

the contamination did not look visibly different between the two storage conditions.  
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Day 6 Tested on 2/25/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

1   Corners 

 

5 3 Crossover  

 

    Crossover & Corners 

 

  1 Contamination 

Total: 6 4 

 Pass %: 60% 

  

    Ambient 

Condition Pass Fail Notes: 

 

    Corners 

 

3 5 Crossover  

 

  1 Crossover & Corners 

 

    Contamination 

Total: 3 6 

 Pass %: 33% 

  
Table 27: Salt Water Day 6 Testing for Phase 2 

On day 6 testing for salt water, ambient condition was set to 22.9⁰C, 50.8%RH, and refrigerated 

condition was set to 4.7⁰C, 90.2%RH. The Raytek temperature gun measured the actual 

temperatures to be 21.2⁰C for ambient and 5.4⁰C for refrigerated. The test room temperature was 

21.0⁰C, 33%RH.  The temperatures of the boxes for ambient condition were 22.8⁰C, for 

hermeticity samples and for seal strength samples. The temperatures of the boxes for refrigerated 

condition were 8.6⁰C, for hermeticity samples, and 7.2⁰C for seal strength samples. Ambient 

condition starts to show changes in contamination with approximately 50% total water loss of 

total contamination in sample bags.  

 

 

 

 

 



 

 

65 

Day 10 Tested on 3/1/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

    Corners 

 

6 4 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 6 4 

 Pass %: 60% 

  

    Ambient 

Condition Pass Fail Notes: 

 

1   Corners 

 

2 5 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 3 5 

 Pass %: 38% 

  
Table 28: Salt Water Day 10 Testing for Phase 2 

On day 10 testing for salt water, ambient condition was 23.2⁰C, 50.0%RH, and refrigerated 

condition was 4.8⁰C, 85.5%RH. The Raytek temperature gun measured the actual temperatures to 

be 23.0⁰C for ambient and 4.9⁰C for refrigerated. The test room temperature was 19.0⁰C, 

56%RH.  The temperatures of the boxes for ambient condition were 22.4⁰C for hermeticity 

samples, and 22.2⁰C for seal strength samples. The temperatures of the boxes for refrigerated 

condition were 9.0⁰C, for hermeticity samples, and 10.0⁰C for seal strength samples. Ambient 

condition shows changes in contamination of approximately 85% total water loss of 

contamination in sample bags.  
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Day 14 Tested on 3/5/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

    Corners 

 

4 3 Crossover  

 

  1 Crossover & Corners 

 

    Contamination 

Total: 4 4 

 Pass %: 50% 

  

    Ambient 

Condition Pass Fail Notes: 

 

1   Corners 

 

1 5 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 2 5 

 Pass %: 29% 

  
Table 29: Salt Water Day 14 Testing for Phase 2 

On day 14 testing for salt water, ambient condition was 23.2⁰C, 51.1%RH, and refrigerated 

condition was 4.9⁰C, 85.8%RH. The Raytek temperature gun measured the actual temperatures to 

be 22.8⁰C for ambient and 4.6⁰C for refrigerated. The test room temperature was 29.0⁰C, 

78%RH.  The temperatures of the boxes for ambient condition were 23.6⁰C for hermeticity 

samples, and 23.0⁰C for seal strength samples. The temperatures of the boxes for refrigerated 

condition were 9.0⁰C, for hermeticity samples, and 6.0⁰C for seal strength samples. Ambient 

condition results in approximately 100% total water loss of contamination in sample bags.  
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Vegetable Oil 

Day 2 Tested on 2/22/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

2   Corners 

 

5 3 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 7 3 

 Pass %: 70% 

  

    Ambient 

Condition Pass Fail Notes: 

 

    Corners 

 

6 4 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 6 4 

 Pass %: 60% 

  
Table 30: Vegetable Oil Day 2 Testing for Phase 2 

On day 2 testing for vegetable oil, ambient condition was 22.8⁰C, 50.2%RH, and refrigerated 

condition was 4.6⁰C, 85.1%RH. The Raytek temperature gun measured the actual temperatures to 

be 22.8⁰C for ambient and 3.2⁰C for refrigerated. The test room temperature was set to 19⁰C and 

32% RH.  The temperatures of the boxes for ambient condition were 22.8⁰C, for hermeticity 

samples, and 23.4⁰C for seal strength samples. The temperatures of the boxes for refrigerated 

condition were 7.4⁰C, for hermeticity samples, and 6⁰C for seal strength samples. Furthermore, 

the contamination did not look visibly different between the two storage conditions.  
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Day 6 Tested on 2/26/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

1   Corners 

 

5 3 Crossover  

 

  1 Crossover & Corners 

 

    Contamination 

Total: 6 4 

 Pass %: 60% 

  

    Ambient 

Condition Pass Fail Notes: 

 

    Corners 

 

4 5 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 4 5 

 Pass %: 44% 

  
Table 31: Vegetable Oil Day 6 Testing for Phase 2 

On day 6 testing for vegetable oil, ambient condition was 23.1⁰C, 33.0%RH, and refrigerated 

condition was 5.1⁰C, 86.2%RH. The Raytek temperature gun measured the actual temperatures to 

be 23.2⁰C for ambient and 3.4⁰C for refrigerated. The test room temperature was set to 20⁰C and 

40% RH.  The temperatures of the boxes for ambient condition were 23.2⁰C, for hermeticity 

samples, and 22.6⁰C for seal strength samples. The temperatures of the boxes for refrigerated 

condition were 10.8⁰C, for hermeticity samples, and 9.8⁰C for seal strength samples. 

Furthermore, the contamination did not look visibly different between the two storage conditions.  

 

 

 

 

 

Day 10 Tested on 3/2/2014 
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Refrigerated 

Condition Pass Fail Notes: 

 

    Corners 

 

6 4 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 6 4 

 Pass %: 60% 

  

    Ambient 

Condition Pass Fail Notes: 

 

    Corners 

 

6 4 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 6 4 

 Pass %: 60% 

  
Table 32: Vegetable Oil Day 10 Testing for Phase 2 

On day 10 testing for vegetable oil, ambient condition was 22.9⁰C, 49.9%RH, and refrigerated 

condition was 4.9⁰C, 85.5%RH. The Raytek temperature gun measured the actual temperatures to 

be 23.0⁰C for ambient and 3.6⁰C for refrigerated. The test room temperature was set to 19⁰C and 

55% RH.  The temperatures of the boxes for ambient condition were 22.6⁰C, for hermeticity 

samples, and 22.4⁰C for seal strength samples. The temperatures of the boxes for refrigerated 

condition were 6.0⁰C, for hermeticity samples, and 4.6⁰C for seal strength samples. Furthermore, 

the contamination did not look visibly different between the two storage conditions.  
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Day 14 Tested on 3/6/2014 

Refrigerated 

Condition Pass Fail Notes: 

 

1   Corners 

 

3 3 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 4 3 

 Pass %: 57% 

  

    Ambient 

Condition Pass Fail Notes: 

 

    Corners 

 

5 5 Crossover  

 

    Crossover & Corners 

 

    Contamination 

Total: 5 5 

 Pass %: 50% 

  
Table 33: Vegetable Oil Day 14 Testing for Phase 2 

On day 14 testing for vegetable oil, ambient condition was 23.2⁰C, 50.1%RH, and refrigerated 

condition was 4.8⁰C, 85.6%RH. The Raytek temperature gun measured the actual temperatures to 

be 23.8⁰C for ambient and 4.8⁰C for refrigerated. The test room temperature was set to 29⁰C and 

78% RH.  The temperatures of the boxes for ambient condition were 23.8⁰C, for hermeticity 

samples, and 23.8⁰C for seal strength samples. The temperatures of the boxes for refrigerated 

condition were 4.4⁰C, for hermeticity samples, and 4.8⁰C for seal strength samples. Furthermore, 

the contamination looked slightly different than Day 10 with 10% of contaminant dry. 
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Figure 36: Phase 2 Refrigerated Condition Hermeticity Results for All Contaminants 

 

Figure 37: Phase 2 Ambient Condition Hermeticity Results for All Contaminants 
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5.3.2 Phase 2 Hermeticity Statistical Analysis 

Contaminant (Ref. 

Control) 

Odds 

Ratio 95% C.I. P-Value 

Salt Water 0.64 (0.33, 1.22) 0.175 

Vegetable Oil 1.09 (0.57, 2.08) 0.792 

Chamber (Ref. Ambient)   

 

  

Refrigerated Condition 1.63 (0.96,2.79) 0.073 

Day (Ref. Day 2)   

 

  

6 0.75 (0.36, 1.57) 0.439 

10 1.02 (0.49, 2.14) 0.955 

14 0.79 (0.37, 1.69) 0.540 

Table 34: Binary Logistic Regression Analysis for Phase 2 Hermeticity Testing 

*Odds ratio refers to the category of interest compared to the reference category 

The binary logistic regression analysis indicates that salt water will likely have a lower pass rate 

when associated with the pass rate of the control. For example, salt water is associated with 0.64 

odds of having a hermetic seal compared to the control. In addition, vegetable oil is associated 

with 1.09 odds of having a hermetic seal compared to the control. Therefore, vegetable oil has a 

similar pass rate compared to the control since the odds ratio is close to 1. However, the p-value 

for both salt water and vegetable oil contaminants is 0.175 and 0.792. Therefore, we are 95% 

confident that when accounting for the effect of storage temperature and time there is no 

significant difference between salt water and vegetable oil contamination compared to the 

control. Also, the refrigerated conditioning temperature is associated with greater odds of 1.63 of 

having a hermetic seal compared to ambient conditions.  

5.3.3 Phase 2 Seal Strength Failure Modes 

As mentioned in the methods subchapter, each sample bag had two replicates to represent the 

average performance of the sample bag using the average of the front and back T-point seals. 

However, if the seal strength resulted with an insignificant peel failure, then the results of that 

sample are not included in the represented data. Furthermore, only one seal will represent the 

seals strength of a sample bag if one of the seals resulted in a material failure. The results of the 
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seal strength failure modes are divided into the categories shown in Table 35. The failure types 

are shown in the following Figures 37 through 41.  

Failure Type Category 

Peel  A Failure 

Material Along Edge of Seal B Failure 

Peel + Material  C Failure 

Delamination D Failure 

Material Away from Edge of 

Seal E Failure 

Table 35: Categories of Failure Modes 

 

 

Figure 38: Peel Failure 
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Figure 39: Peel Failure followed by Material Tear Mode at the T-point 

 

Figure 40: Peel Failure followed by material tearing failure on edge of seal.  

*Material failed on the 4 layer of film side of the sample. 
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Figure 41: Material Tearing Failure along entire edge of seal. No peel failure observed. 

 

 

Figure 42: Material Failure not on edge of Seal. No peel failure observed. 
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5.3.4 Phase 2 Seal Strength Results 

The Seal Strength Failure Modes for all three test categories did not show any trend in type of 

failures for any category. For example, no category resulted in a greater amount of peel failure 

compared to the other categories. In addition, no category had a shift from peel to material failure 

or vice versa. The types of failures for each test category and conditioning temperature in 

Appendix I.  

 

Figure 43: Seal Strength Results for Refrigerated Conditioning Temperature  
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Refrigerated 

Condition Average Force (N) 

Contaminant Day 2 Day 6 Day 10 Day 14 

Control 54.43 57.74 49.02 63.21 

Salt Water 58.08 62.91 56.04 57.12 

Vegetable Oil 70.12 52.15 59.49 50.58 

Table 36: Average Force (N) of Represented Samples for Refrigerated Condition 

 

Figure 44: Seal Strength Results for Ambient Conditioning Temperature 

Ambient Condition Force (N) 

Contaminant Day 2 Day 6 Day 10 Day 14 

Control 49.39 58.89 53.78 50.32 

Salt Water 61.35 64.50 53.06 60.89 

Vegetable Oil 51.86 52.73 60.66 57.28 

Table 37: Average Force (N) of Represented Samples for Ambient Condition 

The results show no significant difference for seal strength for both contaminants and the control 

between refrigerated and ambient storage conditions. Throughout the 14 day period, neither the 
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control nor either of the two contaminants had a consistently higher or lower seal strength 

compared to the other two conditions. 

5.3.5 Phase 2 Seal Strength Statistical Analysis 

The second phase of the study requires a multiple comparison of means to analyze the effect of 

time, conditioning temperature, and contamination with seal strength at 140⁰C and 0.3 seconds 

sealing condition. The mean was calculated each test day for each contaminant over the 14 day 

period. A general linear model analysis compared the four recorded mean values for each 

contaminant shown in Table 38. 

ANOVA for Force (N) 

Variables P-value 

Day 0.863 

Storage Temperature 0.606 

Contaminant 0.372 

Day*Contaminant 0.462 

Day*Storage Temperature 0.670 

Storage Temperature*Contaminant 0.742 

  

  ANOVA for STRAIN (mm) 

Variables P-value 

Day 0.949 

Storage Temperature 0.499 

Contaminant 0.525 

Day*Contaminant 0.847 

Day*Storage Temperature 0.615 

Storage Temperature*Contaminant 0.629 

Table 38: General Linear Model (ANOVA) Analysis Results for Phase 2 

The p-values for all factors for the FORCE (N) response and STRAIN (mm) response are greater 

than 0.05 (α = 0.05). Therefore, we are 95% confident that there is no difference force (N) or 

strain (mm) when accounting for the effect of day, conditioning temperature, contaminant, day 

and contaminant interaction, day and chamber interaction, and chamber and contaminant 

interaction.  
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5.3.6 Phase 2 Summary 

The statistical analysis indicates that there is no significant difference in hermeticity for both 

contaminants and the control over the duration of Phase 2, nor is there a significant difference 

between contaminants and the control. In addition, there is no significant difference in seal 

strength between the contaminants and the control over the 14 day period; nor is there a 

significant difference in seal strength for each contaminant and the control throughout the 14 day 

period. 

For the refrigerated conditioning temperature, vegetable oil has a similar hermeticity pass rate to 

the control and salt water has a lower pass rate across the 14 day test period. In addition, the 

ambient conditioning temperature shows vegetable oil with a higher pass rate for Days 2 and 6, 

but as stated previously there is no statistical difference.  However, the sample size was less on 

day 14 for salt water and vegetable oil due to samples performing leaks at unwanted wrinkles or 

poor inflation during hermeticity testing. The increase in inadequate inflation of the sample bags 

may be the result of gradual air loss over time. The sample bags may have had seal leaks, which 

allowed for enough air to release from inside the bag. Moreover, the sample bags with inadequate 

inflation were discarded and not included in the represented data for hermeticity. It was also 

observed there was a visual difference in the aging of contamination over the 14 day period. The 

salt solution showed significant water loss from Day 2 to Day 14, which allowed for the salt and 

the red dye to be left behind. The vegetable did not show significant changes over the 14 days.  
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6.0 Conclusion 

6.1 Significance of Contaminant Effect on Hermeticity and Seal Strength 

The results of the study measure the effect of liquid contaminant at the T-point of the seal with a 

linear low-density polyethylene (LLDPE) sealant. Vegetable oil was used to simulate the effect of 

oil-based snack foods and the salt water solution was used to simulate salty snack foods. As 

mentioned previously, the T-point was chosen as the point of contamination because it is the most 

critical point of the seal. It was noted that the vegetable oil contaminant left residuals of oil onto 

the corrugated box during storage, which was determined in the study’s findings that it may not 

necessarily be due to a failed hermetic seal. During production, the contamination was a 

continuous stream from bag to bag and may have been the reason for the oil found in the box. 

Therefore, the hermeticity of the seal should be tested in addition to the visual observations made 

during quality inspection. Overall, it was determined that liquid contaminants found at the T-

point do not have a significant effect on the hermeticity or seal strength when using the study’s 

method. Moreover, the effect of storage temperature and time do not have a significant effect on 

the performance of the LLDPE sealant when liquid contamination present in the seal area. Room 

temperature may be considered the more common storage temperature compared to refrigerated 

conditions, but it was important to determine if temperature was a factor to the performance of 

the sealant. The visual observation of the liquid contaminants between the two storage 

temperatures was seen to be the most different for the salt water solution. During the 14 day test 

cycle, the salt water solution progressed to a dry contaminant. Again, this can be due to the water 

vapor transmission rate of the film. Even though this study was used on a horizontal form, fill and 

seal, flow-wrap machine, the information can be useful for other snack food operating 

applications.  

In addition to hermeticity, the seal strength performance can be used to determine that the 

integrity of the seal strength of the T-point is not compromised with liquid contaminants. Each 

sample size included at least five sample bags with two replicates each at the front and back T-

points. Therefore, the average of each sample bag was calculated to determine the average seal 

strength of the sample size. Overall, there was no significant difference between the test 

categories for the average maximum force experienced by the seal before failure. Prior to the 

study, it could have been assumed that the contaminants would lower the average seal strength to 

separate the film at the seal.  
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6.2 Significance of Sealing Temperature and Dwell Time  

The different sealing temperatures and dwell time were chosen based on an acceptable range of 

sealing conditions and tested during Phase 1. The Phase 1 test was conducted to test if different 

sealing conditions result in different hermetic seals. It would be more desirable to have a lower 

sealing temperature and dwell time for faster production and lower production costs. A high seal 

temperature and longer dwell time may be assumed to provide a higher hermeticity pass rate. A 

sealing temperature of 160⁰C and 0.4 seconds dwell time did show a higher pass rate than 140⁰C 

and 0.3 seconds dwell time. However, the binary logistic regression analysis indicates that the 

difference between the sealing temperatures and dwell times is not significant. In addition, 120⁰C 

sealing temperature and 0.2 seconds dwell time did have a significantly lower hermeticity pass 

rate. The low seal initiation temperature of the LLDPE sealant allows for lower sealing 

conditions, but increasing the sealing temperature and dwell time will eventually plateau. The 

hermeticity pass rate will eventually peak given the capacity of the molecular chain entanglement.  

Therefore, 140⁰C sealing temperature and 0.3 seconds dwell time is the optimal condition for 

producing a hermetic seal when accounting for vegetable oil and salt water liquid contamination 

for LLDPE sealant. Although not all sample bags had a hermetic seal, the purpose of the study 

was to compare the sealant layer’s performance with no contamination to liquid contamination.  

 6.3 Significance of Results to Past Work 

In comparison to some previous studies, practical and useful experimental conditions for the 

snack food industry were chosen for the test method. Some past work use dwell times greater 

than 0.5 seconds, which would lower the production efficiency if it was applied to industry. It 

may show seal strength and hermeticity trends on a large scale, but the scope of the study was to 

test a close range of sealing temperatures and dwell time that would most likely be used in 

industry. Within the sealing conditions investigated, the optimal seal temperature and dwell time 

were different than the study completed by Mihindukulasuriya and Lim [9] due to the wide range 

of dwell time and seal temperatures. However, Mihindukulasuriya and Lim [9] determined that 

vegetable oil has a slightly lower seal strength compared to water and the control. In addition to 

the findings of Mihindukulasuriya and Lim [9], this study uses statistical analysis to not only test 

for a difference between contaminants, but if the difference is significant. In addition, no work 

has been completed for hermeticity using a vacuum chamber, so the test method for the 

hermeticity in this study can be used for future work. 
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 6.4 Future Work 

The suggested future work includes tested granular contaminants with the same method. The 

contamination system needs to be different in order to apply a consistent stream of contamination. 

However, the same hermeticity and seal strength methods can be applicable to other contaminants 

for flexible food packaging. It is also recommended to use twice as many samples for a stronger 

representation of the effect of liquid contamination on hermeticity and seal strength. In addition, 

testing the effect of freezing conditions can apply this test method to the frozen food industry.  
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APPENDICES 

Appendix A: Excel sheet for bag placement in boxes for Phase 2 

Salt 

Water     

Vegetable 

Oil     Control   

Box # Bag #   Box # Bag #   Box # Bag # 

10 1   12 1   12 1 

11 2   6 2   5 2 

12 3   8 3   8 3 

7 4   4 4   6 4 

10 5   6 5   2 5 

6 6   4 6   10 6 

5 7   6 7   1 7 

9 8   7 8   9 8 

2 9   1 9   11 9 

6 10   5 10   1 10 

8 11   12 11   8 11 

9 12   7 12   7 12 

11 13   2 13   9 13 

3 14   10 14   4 14 

8 15   12 15   8 15 

4 16   8 16   6 16 

5 17   12 17   1 17 

8 18   6 18   12 18 

2 19   8 19   2 19 

11 20   6 20   12 20 

5 21   11 21   4 21 

1 22   12 22   8 22 

8 23   12 23   12 23 

4 24   1 24   12 24 

9 25   1 25   11 25 

4 26   5 26   6 26 

7 27   8 27   11 27 

10 28   3 28   2 28 

7 29   9 29   11 29 

2 30   2 30   3 30 

3 31   6 31   8 31 

12 32   8 32   5 32 

1 33   2 33   3 33 

1 34   6 34   7 34 

4 35   6 35   10 35 

4 36   3 36   11 36 

4 37   3 37   5 37 

12 38   10 38   4 38 

12 39   3 39   1 39 

4 40   5 40   7 40 

5 41   7 41   12 41 

9 42   5 42   4 42 

1 43   1 43   5 43 
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3 44   9 44   1 44 

2 45   1 45   8 45 

6 46   8 46   5 46 

5 47   6 47   2 47 

2 48   7 48   10 48 

6 49   11 49   10 49 

5 50   9 50   11 50 

11 51   3 51   5 51 

6 52   6 52   7 52 

2 53   9 53   5 53 

2 54   11 54   3 54 

8 55   1 55   7 55 

7 56   5 56   4 56 

8 57   10 57   7 57 

10 58   10 58   12 58 

7 59   5 59   3 59 

9 60   2 60   6 60 

6 61   3 61   10 61 

7 62   4 62   2 62 

3 63   10 63   1 63 

12 64   11 64   10 64 

2 65   5 65   9 65 

1 66   9 66   10 66 

1 67   2 67   7 67 

12 68   9 68   10 68 

6 69   9 69   9 69 

2 70   1 70   4 70 

11 71   1 71   4 71 

4 72   4 72   2 72 

12 73   8 73   9 73 

8 74   7 74   6 74 

12 75   10 75   2 75 

6 76   4 76   6 76 

5 77   10 77   7 77 

11 78   7 78   4 78 

10 79   11 79   5 79 

7 80   7 80   4 80 

11 81   11 81   9 81 

9 82   7 82   6 82 

11 83   11 83   9 83 

3 84   11 84   10 84 

7 85   1 85   4 85 

1 86   3 86   6 86 

3 87   2 87   9 87 

3 88   4 88   5 88 

5 89   10 89   6 89 

7 90   5 90   3 90 

6 91   2 91   12 91 

5 92   9 92   9 92 
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1 93   8 93   3 93 

3 94   12 94   8 94 

3 95   7 95   11 95 

9 96   12 96   8 96 

7 97   12 97   3 97 

9 98   2 98   9 98 

2 99   4 99   11 99 

1 100   3 100   11 100 

10 101   11 101   12 101 

4 102   10 102   3 102 

3 103   9 103   1 103 

5 104   2 104   8 104 

4 105   4 105   7 105 

10 106   3 106   1 106 

10 107   9 107   2 107 

11 108   12 108   2 108 

1 109   2 109   11 109 

12 110   5 110   7 110 

8 111   1 111   6 111 

10 112   5 112   12 112 

10 113   11 113   2 113 

8 114   8 114   8 114 

8 115   3 115   1 115 

9 116   8 116   10 116 

9 117   10 117   1 117 

12 118   7 118   3 118 

11 119   4 119   5 119 

6 120   4 120   3 120 

 

Appendix B: Random Box Assignment to Chamber 

 

Salt Water Veg. Oil Control

Box # Chamber Box # Chamber Box # Chamber

1 B 1 B 1 B

2 B 2 B 2 A

3 A 3 A 3 B

4 A 4 B 4 A

5 B 5 A 5 B

6 B 6 A 6 A

7 A 7 A 7 B

8 A 8 A 8 A

9 B 9 A 9 B

10 A 10 B 10 A

11 B 11 B 11 A

12 A 12 B 12 A
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Appendix C: Random Order of Boxes Assigned by Test Day 

Salt Water 

 

Vegetable Oil 

 

Control 

 

  

Chamber A Assigned Test Box # Chamber B Assigned Test Box #

Day 2 Hermeticity 4 Day 2 Hermeticity 6

Day 6 Hermeticity 10 Day 6 Hermeticity 2

Day 10 Hermeticity 7 Day 10 Hermeticity 5

Day 14 Hermeticity 12 Day 14 Hermeticity 1

Day 2/ Day 14 Seal Strength 8 Day 2/Day 14 Seal Strength 9

Day 6/Day 10 Seal Strength 3 Day 6/Day 10 Seal Strength 11

Chamber A Assigned Test Box # Chamber B Assigned Test Box #

Day 2 Hermeticity 3 Day 2 Hermeticity 1

Day 6 Hermeticity 7 Day 10 Hermeticity 11

Day 10 Hermeticity 5 Day 6 Hermeticity 12

Day 14 Hermeticity 9 Day 14 Hermeticity 10

Day2/Day 10 Seal Strength 8 Day 2/Day10 Seal Strength 2

Day 6/Day14 Seal Strength 6 Day 6/Day14 Seal Strength 4

Chamber A Assigned Test Box # Chamber B Assigned Test Box #

Day 2 Hermeticity 2 Day 2 Hermeticity 1

Day 6 Hermeticity 11 Day 6 Hermeticity 7

Day 10 Hermeticity 12 Day 10 Hermeticity 3

Day 14 Hermeticity 4 Day 14 Hermeticity 6

Day2/Day 6 Seal Strength 8 Day2/Day 6 Seal Strength 5

Day 10/Day14 Seal Strength 10 Day 10/Day14 Seal Strength 9



 

 

89 

Appendix D: Random Box Placement by Chamber  

The box placement within each chamber is shown from a top view. Boxes were all placed on the 

chamber floor except for those boxes that were stacked and indicated in the below images. 

 

*C= Control, SW= Salt Water, VO= Vegetable Oil 

 

*C= Control, SW= Salt Water, VO= Vegetable Oil 

Chamber A

5 (VO) 4 (SW) 12 (C) 3 (SW)

11 (C) Top Box 3 (VO) 10 (C) 12 (SW)

10 (SW) Bottom Box

7 (SW) 2 (C) 

8 (VO)

7 (VO) 9 (VO)

6 (VO) 8 (C) 4 (C) 8 (SW)

Back of Chamber

Front of Chamber

Chamber B

6 (C)  Top Box 9 (C) 2 (VO) Top Box

6 (SW) 11 (SW) Bottom Box

1 (C) 

5 (C) 3 (C) 

12 (VO) Top Box 5 (SW) 7 (C) 

4 (VO) Bottom Box

1 (VO) Top Box 11 (VO)

10 (VO) Top Box 9 (SW) Bottom Box

2 (SW) Middle Box  

1 (SW) Bottom Box

Back of Chamber

Front of Chamber
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Appendix E: Contamination Consistency 

 

Vegtable Oil
Date Front (in.) Middle (in.) Back (in.)

12/2/2013 0.125 0.125 0.125

0.125 0.125 0.125

0.1875 0.125 0.125

0.125 0.125 0.125

0.125 0.1875 0.125

0.125 0.125 0.1875

0.125 0.125 0.125

0.1875 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

1/18/2014 0.125 0.125 0.1875

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.1875 0.125

0.125 0.125 0.125

0.1875 0.1875 0.125

0.125 0.125 0.125

0.1875 0.125 0.1875

1/21/2014 0.1875 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.1875

0.125 0.125 0.1875

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.1875 0.125 0.125

0.0625 0.125 0.125

2/20/2014 0.125 0.125 0.0625

0.125 0.1875 0.125

0.25 0.1875 0.25

0.125 0.125 0.125

0.1875 0.125 0.1875

0.125 0.1875 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.1875 0.1875

0.125 0.125 0.125

STDEV 0.032632218 0.024298526 0.0326322

AVERAGE 0.137820513 0.136217949 0.1378205

C.O.V. 0.236773305 0.178379765 0.2367733

AVERAGE C.O.V 0.217308792
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Salt Water

Date Front (in.) Middle (in.) Back (in.)

1/11/2013 0.125 0.1875 0.0625

0.125 0.125 0.125

0.125 0.125 0.125

0.1875 0.125 0.125

0.1875 0.125 0.1875

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.1875

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.0625 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.25 0.125 0.125

1/14/2014 0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.0625 0.125

0.125 0.125 0.125

0.125 0.0625 0.188

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.0625 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.063 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

1/17/2014 0.125 0.125 0.125

0.25 0.1875 0.125

0.1875 0.1875 0.125

0.125 0.1875 0.125

0.125 0.125 0.125

0.125 0.1875 0.125

0.125 0.1875 0.0625

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.0625

1/19/2014 0.1875 0.125 0.125

0.0625 0.125 0.125

0.125 0.0625 0.125

0.125 0.125 0.125

0.125 0.125 0.1875

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.1875

0.125 0.125 0.125

2/19/2014 0.125 0.0625 0.125

0.125 0.125 0.125

0.125 0.0625 0.125

0.125 0.125 0.125

0.125 0.125 0.1875

0.125 0.125 0.1875

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.125

0.125 0.125 0.0625

0.125 0.125 0.0625

0.125 0.125 0.0625

0.125 0.125 0.125

0.125 0.125 0.125

STDEV 0.02707 0.026543397 0.026543397

AVERAGE 0.130 0.124 0.126

C.O.V. 0.208013 0.213811642 0.21090264

AVERAGE C.O.V 0.210909
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Appendix F: Phase 1 Binary Logistic Regression Analysis Results 

Variable   Value   Count 

PASS       P         140 

          F        126 

           Total    266 

 

            95% CI 

Predictor Coef SE Coef Z P 

Odds 

Ratio Lower  Upper 

Constant 1.15226 0.368824 3.12 0.002       

TEMP               

120 -1.14006 0.339598 -3.36 0.001 0.32 0.160 0.62 

160 0.468708 0.338224 1.39 0.166 1.60 0.82 3.10 

DWELL TIME               

0.2 -1.10157 0.338602 -3.25 0.001 0.33 0.17 0.65 

0.4 0.650081 0.337086 1.93 0.054 1.92 0.99 3.71 

CONTAMINANT               

Salt Water -1.19825 0.349380 -0.343 0.001 0.30 0.15 0.60 

Vegetable Oil -0.79306 0.342643 -2.31 0.021 0.45 0.23 0.89 

A.  

Log-Likelihood = -153.664 

Test that all slopes are zero: G = 60.689, DF = 6, P-Value = 0.000 

 

      

95% CI 

Predictor Coef SE Coef Z P 

Odds 

Ratio Lower Upper 

Constant -1.08937 

0.37158

9 -2.93 0.003 

   TEMP 

       

140 1.14006 

0.33959

8 3.36 0.001 3.13 1.61 6.08 

160 1.60877 

0.35148

6 4.58 0.000 5.00 2.51 9.95 

DWELL TIME 

       

0.3 1.10157 

0.33860

2 3.25 0.001 3.01 1.55 5.84 
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0.4 1.75165 

0.35393

4 4.95 0.000 5.76 2.88 11.53 

CONTAMINAN

T 

       

Salt Water -1.19825 

0.34938

0 -3.43 0.001 0.30 0.15 0.60 

Vegetable Oil -0.79306 

0.34264

3 -2.31 0.021 0.45 0.23 0.89 

 

Log-Likelihood = -153.664 

Test that all slopes are zero: G = 60.689, DF = 6, P-Value = 0.000 

 

            95% CI 

Predictor  Coef    SE Coef       Z      P Odds Ratio  Lower  Upper 

Constant 0.510002 0.569797 0.9 0.371       

TEMP               

120 -1.37256 0.727119 -1.89 0.059 0.25 0.06 1.05 

160 1.46725 0.892633 1.64 0.100 4.34 0.75 24.95 

DWELL TIME               

0.2 -0.548748 0.736750 -0.74 0.456 0.58 0.14 2.45 

0.4 0.504548 0.775221 0.65 0.515 1.66 0.36 7.57 

CONTAMINANT               

Salt Water 0.409607 0.744460 0.55 0.582 1.51 0.35 6.48 

Vegetable Oil 0.643941 0.765339 0.84 0.40 1.90 0.42 8.53 

TEMP*CONTAMINANT               

120*Salt Water -0.358683 0.797668 -0.45 0.653 0.70 0.15 3.34 

120*Vegetable Oil -1.01009 0.838314 -1.20 0.228 0.36 0.07 1.88 

160*Salt Water -2.35386 0.999294 -2.36 0.018 0.10 0.01 0.67 

160*Vegetable Oil -1.70942 1.003910 -1.70 0.089 0.18 0.03 1.29 

DWELL TIME*CONTAMINANT               

0.2*Salt Water -1.27796 0.855884 -1.49 0.135 0.28 0.05 1.49 

0.2*Vegetable Oil -1.59413 0.879009 -1.81 0.07 0.20 0.04 1.14 

0.4*Salt Water -1.43438 0.897785 -1.60 0.11 0.24 0.04 1.38 

0.4*Vegetable Oil -0.457805 0.928398 -0.49 0.622 0.63 0.10 3.9 

TEMP*DWELL TIME               

120*0.2 1.11455 0.847171 1.32 0.188 3.05 0.58 16.04 

120*0.4 1.09731 0.801991 1.37 0.171 3.00 0.62 14.43 

160*0.2 0.0459875 0.869460 0.05 0.958 1.05 0.19 5.76 

160*0.4 2.03994 1.012900 2.01 0.044 7.69 1.06 55.99 
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Appendix G: Phase 2 Binary Logistic Regression Analysis Results 

 

 

 

Appendix H: Phase 2 General Linear Model Analysis Results 

Factor Type Levels Values 

   Day fixed 4 2, 6, 10, 14 

   Chamber fixed 2 A, B 

   Contaminant fixed 3 C, SW, VO 

   

       

       Analysis of Variance for Force, using Adjusted SS for Tests 

  

       

Source DF Seq SS Adj SS 

Adj 

MS F P 

Day 3 27.08 27.08 9.03 0.24 0.863 

Chamber 1 10.91 10.91 10.91 0.3 0.606 

Contaminant 2 86.48 86.48 43.24 1.17 0.372 

Day*Contaminant 6 240.32 240.32 40.05 1.08 0.462 

Day*Chamber 3 60.19 60.19 20.06 0.54 0.67 

Chamber*Contaminant 2 23.22 23.22 11.61 0.31 0.742 

Error 6 221.53 221.53 36.92     

Total 23 669.73         

S = 6.07631 R-Sq = 66.92%  R-Sq(adj) = 0% 

   

Variable Value Count

Pass/Fail P 119

F 105

Total 224

Predictor Coef SE Coef Z P Odds Ratio Lower Upper

Constant 0.120593 0.350294 0.34 0.731

Contaminant

SW -0.45402 0.33467 -1.36 0.175 0.64 0.33 1.22

VO 0.08707 0.329785 0.26 0.792 1.09 0.57 2.08

Chamber

B 0.489777 0.272929 1.79 0.073 1.63 0.96 2.79

Day

6 -0.29295 0.378383 -0.77 0.439 0.75 0.36 1.57

10 0.021318 0.378133 0.06 0.955 1.02 0.49 2.14

14 -0.23968 0.391007 -0.61 0.54 0.79 0.37 1.69

95% C.I.

Test that all slopes are zero: G = 7.098, DF = 6, P-Value = 0.312

Log-Likelihood = -151.278
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       Analysis of Variance for STRAIN, using Adjusted SS for Tests 

  

       

Source DF Seq SS Adj SS 

Adj 

MS F P 

Day 3 8.2 8.2 2.73 0.11 0.949 

Chamber 1 12.49 12.49 12.49 0.52 0.499 

Contaminant 2 34.78 34.78 17.39 0.72 0.525 

Day*Contaminant 6 59.83 59.83 9.97 0.41 0.847 

Day*Chamber 3 46.65 46.65 15.55 0.64 0.615 

Chamber*Contaminant 2 24.25 24.25 12.13 0.5 0.629 

Error 6 145.09 145.09 24.18     

Total 23 331.28         

S = 4.91742 R-Sq = 56.20%  R-Sq(adj) =  0% 

   

        

Appendix I: Seal Strength Failure Modes by Test Category and Conditioning Temperature 

Salt Water 

 

 

 

Refrigerated Condition

Day A B C

2 1 1 7

6 4 0 2

10 3 5 5

14 4 3 5

Total 12 9 19

Failure Mode Category

Ambient Condition

Day A B C

2 3 0 1

6 2 1 6

10 4 5 3

14 1 3 8

Total 10 9 18

Failure Mode Category



 

 

96 

Vegetable Oil 

 

 

Control 

 

 

Refrigerated Condition

Day A B C D

2 2 0 2 0

6 4 3 3 0

10 3 1 4 0

14 4 2 2 1

Total 13 6 11 1

Failure Mode Category

Ambient Condition

Day A B C

2 1 1 1

6 4 0 4

10 2 3 3

14 5 4 2

Total 12 8 10

Failure Mode Category

Refrigerated Condition

Day A B C D E

2 4 4 2 0 1

6 5 2 7 0 0

10 4 4 2 1 0

14 2 7 1 0 0

Total 15 17 12 1 1

Failure Mode Category

Ambient Condition

Day A B C

2 3 2 3

6 4 4 5

10 4 7 3

14 5 5 2

Total 16 18 13

Failure Mode Category
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Appendix J: Seal Strength Raw Data Results 
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