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ABSTRACT 

Evaluating the Effectiveness of Cranial Molding for Treatment of 
Positional Plagiocephaly Using Finite Element Analysis 

Maziyar Keshtgar 

 

Since the advent of recommendations for placing infants in the supine position during 

sleep to reduce the incidence of sudden infant death syndrome, clinicians have noted an 

increase in the frequency of cranial asymmetry due to deformation of suture sections of the 

infants’ skulls as a result of constant concentrated stress in one area at the back of their head. 

This specific form of cranial deformation is known as positional plagiocephaly and its rate of 

occurrence has increased from 0.3% in 8.2% within the past 30 years.  

Current treatments and methodologies for preventing and correcting positional 

plagiocephaly such as stretching exercises, bedding pillows, and cranial molding are not 

optimized for effectiveness and comfort. Literature surrounding the implementation of these 

methodologies or devices often assesses the relative effectiveness of each treatment through 

statistical means, or studies complications associated with their use. There is a lack of 

quantified mechanical analysis for determining the effectiveness of each treatment or 

engineered solutions.  

In this study, a finite element model was created and validated to study the effect of 

wearing a cranial helmet, as the most effective non-surgical device for treatment of positional 

plagiocephaly, on reducing concentrated stress from the back of the baby’s head during sleep. 

The results from this model were then compared to two other finite element models with a 

healthy baby sleeping in supine position on a pillow, and a patient diagnosed with a severe case 

of positional plagiocephaly sleeping on the flat side of his head in supine position. The 

geometries representing the head of the babies in these models are the refined 3D laser-
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scanned file of a patient’s head contour at Hanger Clinic as well as the cavity inside the cranial 

helmet that was used for treatment of the baby.  

After successfully assigning section and contact properties to different regions of the 

models, applying proper loading and boundary conditions, and performing mesh convergence 

studies for each of the three models, the average Von Mises stress values of each of the 13 

different suture segments of each model were summarized in tables and evaluated using 

mathematical and qualitative methods. 

             The stress value data obtained from different suture regions of the model with the 

cranial helmet resulted in the smallest standard deviation among all three populations which 

supports that wearing the cranial helmet helps to reduce stress concentrations.  Use of the 

cranial helmet during sleep also showed a significant decrease of the average Von Mises stress 

within the posterior fontanelle by 90% compared to the healthy baby sleeping in supine position 

and 73.4% compared to the deformed head sleeping on the flat surface of the head. 

              The major limitations of this study are correlated with the simplifying assumptions and 

geometries in generating and validating the models. Future studies need to focus on 

overcoming these limitations and generating more complex models using a similar approach. 

The methods used in this study and the results obtained from the models can serve as a basis 

for future development of engineered solutions that are more effective than the existing 

solutions in the market and reduce the side-effects and complications associated with their use. 

 

Keywords: Cranial Molding, Cranial Helmet Therapy, Positional Plagiocephaly, Deformational   

Plagiocephaly, Cranial Asymmetry, Corrective Orthotic Device, Finite Element Analysis, Von 

Mises Stress 
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Introduction  

Positional Plagiocephaly 

Since the advent of recommendations for placing infants in the supine position during 

sleep to reduce the incidence of sudden infant death syndrome, clinicians have noted an increase 

in the frequency of cranial asymmetry (1). This cranial asymmetry is also known as plagiocephaly. 

Cranial asymmetry in the absence of synostosis of the sutures is described as nonsynoptic 

posterior plagiocephaly. Positional plagiocephaly (PP) is always of this type and is also referred 

to as deformational plagiocephaly because of the effects of forces to deform the skull shape in 

the supine position (1). Unilateral flattening of the occiput with ipsilateral anterior shifting of the 

ear (Figure 1) are common signs of PP (1).  

 

Figure 1- Normal Skull vs. Deformational Plagiocephaly (1). 

   

In 1974, plagiocephaly occurred once every 300 live births among prone-sleeping infants. 

(2) After the initiation of the “Back to Sleep” campaign, the frequency of plagiocepha ly increased 

to 1 in 60 in 1996 (3). The incidence of this deformity is estimated to have increased from 0.3% 

to 8.2% or even higher today, depending on the sensitivity of the criteria used for diagnosing it 

(4).  
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PP occurs at six weeks of age, increases to a maximum at four months, and then slowly 

decreases over two years because most cases resolve in that time. A large longitudinal study of 

7,609 Dutch infants, published in 2010, showed a persistence of occipital asymmetry in about 

5% of all children by the third year of life (5). 

Factors increasing the risk of PP are male sex, firstborn, limited passive neck rotation at 

birth (congenital torticollis), multiple births, breech births, low birth weight, supine sleeping 

position at birth and at six weeks, bottle feeding, breast feeding fewer than three times per day, 

and lower activity level with slower achievement of milestones (6, 7). Sleeping with the head to 

the same side and positional preference when sleeping are also associated with the 

development of PP (6). The side of occipital flattening correlates strongly to the side that the 

head faces when in the supine sleep position (8). 

It has been determined that brain volume quadruples and brain size increases to 75% of 

its adult volume during the first two years after birth (7). Also, about 85% of cranial growth takes 

place during the first year of postnatal life. (9) Therefore, treatment strategies focus primarily on 

this age group (9). PP must be differentiated from a pre-mature unilateral coronal or lamboidal 

synostosis (posterior synostoses), both of which will require surgical vault correction of the 

fused suture (7). 

Long-term effects of positional plagiocephaly on development of a baby remain 

undefined (10). A study performed by M. F. Shamji et. al. is one of the very few publications in 

the literature that tried to define the cosmetic and cognitive outcomes observed following 

management of positional plagiocephaly (10). The study evaluated if the side of plagiocephaly 

could impact on the child’s neurocognitive development and outcome. Surveys collected from 

parents of patients treated for positional plagiocephaly through the Children’s Hospital of 

Eastern Ontario interrogating costmetic outcome, school performance, language skills, cognitive 

development and societal fuction were used to test the outcomes dependent on gender, age, 

and plagiocephaly side at the 0.05 level of confidence (10). The results suggested that non-
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surgical plagiocephaly management achieved good cosmetic outcome among patients in the 

study. Children with deformities on the left side of their head frequently encountered difficulties 

with cognitive and scholastic activities; however, the roles of the underlying disease and the 

treatment measures in this delay cannot be differentiated (10).    

Diagnosis 

The most commonly used technique by clinicians for diagnosing PP and quantifying the 

severity of this disease is calculating the Cranial Vault Asymmetry Index (CVAI). The longest 

and shortest diagonal from the forehead to the posterior skull are measured (Figure 2) and used 

to calculate the CVAI using the following formula (9):  

 

Figure 2- Calculating CVAI (9, 11). 

 

Measurements must be made in millimeters (mm) at 30 ˚ from center of nose (outer 

edge of eyebrow).The output of the equation would then correspond to one of the following five 

severity classifications (9): 
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Table 1- Plagiocephaly Severity (9, 11). 

 
Using the severity scale (Table 1), the clinician would then decide which type of 

treatment would be best for the patient. For severe cases, cranial helmet treatment is usually 

implemented (12). Figure 3 demonstrates an example of how measurement of CVAI is 

implemented in clinical applications.  

 



5 
 

 

Figure 3- Photos and 3D Computer Tomography (CT) Images of a PP Patient: Pre- and Post-
Treatment. The treatment initiation age was 6.3 months and the treatment period was 7.1 
months .A) The initial CVAI was 11.46%. B) The CVAI decreased by 8.19% at the end of the 
treatment period. C) 3D CT scan before the therapy was performed to confirm that 
craniosynostosis was not present. Any discrepancy in the diagonal distances was also noted in 
the 3D scan. D) The 3D CT scan was performed again after the treatment to assess the 
treatment effect. The results showed the decreases discrepancy of the CVAI (13). 

 

Other examination methods for diagnosis of PP involve measuring the head 

circumference, palpation of the anterior fontanel and each cranial suture for ridging, evaluating 

the range of motion of the neck (chin-to-chest, chin-to shoulder, and ear-to-shoulder flexibility), 

and examination of the facial symmetry including the mandible, ears, eyes, and forehead (7).   

Prevention and Treatment Methods 

Positioning and Repositioning  

Primary prevention should be based on perinatal parental education on how and how 

often to change the infant’s head position during sleep to avoid the incidence of cranial 

deformity (1, 14).  

A study longitudinally evaluated 161 children with PP who were treated with 

“repositioning” only. By preschool, only 61% of children achieved normal skull contour, and 4% 

still had severe residual deformities (7). 

Secondary prevention should be through the use of physiotherapy, osteopathic 

medicine, positioning devices, and engineered products such as bedding pillows. A study 

performed on 1086 Hong Kong infants with occipital flattening showed that 91% of the infants 

had resolved craniofacial asymmetry after physiotherapy (manual stretching) (14) . 
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Repositioning is inexpensive compared to the other treatments; however, it requires 

dedicated parents who are willing and are able to proactively and continuously alter their child’s 

head position and room logistics (13). It also requires at least 60 minutes of awake active 

“tummy time” and/or stretching exercises similar to the method shown in figure 4.  

 

Figure 4- Stretching exercises: A) Stretching the cervical musculature in right/left rotatuin, and 
hold 10 seconds. B) Stretching the cervical musculature in right/left flexion, hold 10 seconds 
(12). 

 

This method may arguably be more acceptable for females since they can rely on 

customarily longer hair as they grow to cover their deformity if the PP does not improve 

significantly (13). 

Bedding Pillows 

Bedding pillows (Figure 5) are designed to relieve the cranial pressure from the back of 

the baby’s head while sleeping in supine position (16,17). Although parents often find using 

these pillows advantageous during early therapies and report improvements in head 
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deformities, the efficacy of this method as a treatment for fixing severe deformations has not yet 

been systematically analyzed or proven (17, 18). Therefore, these products are considered as 

preventative devices or early treatments only. All of these preventative methods should be 

started as soon as the child is born and be continued in an adequate manner to achieve 

improvements (16). However, if no satisfactory improvement of the cranial shape is achieved, 

orthotic helmet treatment should be initiated at an adequate age for the effective correction of 

the cranial deformities (16, 18). 

 

Figure 5- A) A bedding pillow designed to prevent PP. B) Use of the bedding pillow (12). 

 

A group of 50 children aged 5 months or younger diagnosed with PP were included in a 

prospective clinical trial to evaluate the impact of stretching exercises versus available bedding 

pillows on positional plagiocephaly. The results suggested that stretching exercises and bedding 

pillows resulted in improvements in positional head deformities while improvements were 

slightly greater when using bedding pillows versus stretching (16). 
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Orthotic Helmet Treatment  

Orthotic helmet treatment (Figure 6) involves creating a cranial molding helmet around 

the child’s head so that the baby’s skull fills the void areas within the helmet as the baby’s head 

grows rapidly in the early stages of his/her life. Orthotic helmet treatment has been known to 

result in a significantly better result when treating severe cases of PP (18). Most favorable 

cosmetic outcomes can be achieved when this treatment is applied early on infants between 6-

12 months of age (19). 

 

Figure 6- Orthotic helmet and its use (1). 

 

The process involves measuring the baby’s head to keep track of the progress during 

each successive visit. Some clinics create a plaster cast of the child’s head for use in making of 

the helmet and photographically record the head shape of the baby during each visit (Figure 7). 

However, more modern techniques nowadays involve using a 3D laser scanner (Figure 8) to 

create a 3D computer model of the baby’s head geometry which can be used for recording the 

baby’s progress during each visit as well as designing, manufacturing, and modifying the helmet 

using CAD software and CAM equipment. 
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Figure 7- Plaster Casting Process- A: Head is covered in cotton stocking to protect the baby’s 
skin. B: Ear, eyebrows, and centerline are marked. C: A piece of plaster is placed behind the 
head. D: A second interlocking piece is fit over the top. E: Plaster pieces harden in a couple of 
minutes and then immediately removed and put back together to generate an exact 
representation of the skull. F: The molded representation of the skull would then be used for 
manufacturing the cranial helmet (20). 

 

Figure 8- Use of 3D laser scanning technology: A) Creating a 3D computer image of the 
patient’s head geometry B) Using CAD software to record and modify the 3D files. C) Custom 
cranial helmet created using the CAD files and CAM technologies (21). 
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A study performed by Se Yon Kim, et al. compared “positioning” with “orthotic helmet 

therapy” in 298 consecutive infants referred for correction of head symmetry. The results of the 

study revealed that helmet therapy is efficacious in terms of correcting cranial asymmetry and 

ear shift, while counter positioning therapy is only effective in correcting the patient’s ear shift 

(22). In addition, patients with moderate to severe deformational plagiocephaly showed superior 

improvements in terms of correcting cranial asymmetry and ear shift compared to the patients 

receiving only active repositioning treatments (22). 

Cranial molding and orthotic helmet treatment is expensive if compared to other 

treatment methods, averaging about $3000 for just the orthoses, plus requiring multiple office 

visits to both the orthotic supplier and the subspecialists (7). In addition, commercial insurance 

companies in the US rarely cover the costs of the helmet orthoses, except for post-synostoses 

surgery (7). Orthotic helmet treatment may also cause scalp and skin rashes (Figure 9), 

including seborrhea capitis, while it may make parents self-conscious about their child’s problem 

(7, 23). Another inconvenience of this method is the discomfort resulted from wearing the 

orthoses for about 23 hours every day for about 2 to 4 months at minimum (7).  

 

Figure 9- Skin irritation and discomfort caused by wearing the orthotic helmet (24). 
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Purpose 

The literature surrounding PP lack a focus on quantifying and analyzing the stress 

distribution throughout an infant’s skull while sleeping in different positions or when wearing a 

corrective cranial helmet or using bedding pillows. The goal of this study is to develop and validate 

three separate Finite Element (FE) models of a baby with a healthy skull sleeping in supine 

position, a baby diagnosed with PP sleeping in supine position with the flat side of the head 

directly contacting the pillow, and a baby diagnosed with PP sleeping in supine position wearing 

a cranial helmet to quantify and analyze the difference between the resulted Von Mises Stress 

distribution due to similar loading conditions and different boundary conditions. The focus will 

mainly be on the suture segments of the skulls with the FE models since deformation mostly 

occurs as a result of stress on the soft sutures in charge of skull growth. The results from this 

study may help to optimize the design, comfort, and effectiveness of engineering solutions for 

correcting and preventing PP.  

Von Mises Stress 

Von Mises stress will be used to quantify the stress distribution within the baby’s skull 

and find areas of high and low stress for all three cases. Von Mises Stress is an equivalent or 

effective stress at which yielding is often predicted to occur in ductile materials under complex 

loading conditions. 
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The concept of Von Mises Stress arises from distortion energy failure theory. Based on 

this theory, failure occurs when the distortion energy per unit volume in actual case is more than 

the distortion energy per unit volume for yield in a simple tension case at the time of failure.  

 

Bone and suture tissues within the infant’s skull undergo ductile behavior due to the 

stresses applied during sleep or cranial helmet therapy. Therefore, although failure of these 

tissues within the infant’s skull is not a point of interest in this study, the concept of Von Mises 

stress can still be applied for quantifying the complex stress distribution within the skull system 

since the quantity is a representation of the principal stresses in all three directions.  

Methods 

Model Preparation 

The laser-scanned 3D surface contours of a male subject diagnosed with PP were 

obtained before and after three months of cranial molding therapy at Hanger Clinic, San Luis 

Obispo. The patient was five months old when treatment was initiated. Figure 10 demonstrates 

the results after three months of cranial molding therapy. Areas shown in red color represent the 

scanned contour after, and areas in green refer to the head contour before treatment.  
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Figure 10- Effect of the cranial molding treatment on correcting the patient’s head asymmetry: 
Compares before (March 2012) and after (June 2012) treatment head contours. 

 

Figure 11- Insignia’s 3D laser scanner technology at Hanger Clinic (25). 

 

The laser scanning files were generated in Standard Tessellation Language (STL) format 

with about 28000 triangular faces in each file that defined the surface geometry of the subject’s 
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head. As you can see from Figure 12, the original STL file for the “before treatment scan” has two 

open surfaces at the top and bottom of the geometry. In order to be able to use the files in Abaqus 

software and perform FEA, they had to be converted to Initial Graphics Exchange Specification 

(IGES) format with an enclosed geometry (no open boundaries within the surface). Therefore, 

they had to undergo a series of modifications before they could be used for FEA. 

 

Figure 12- The original STL file of the patient’s scanned head surface contour: Contains 28000 
triangles. 

 

Each STL file was opened in MeshLab software, the geometry was re-meshed, and the 

number of triangular faces was brought down to 6000 so that the resulting STL file could be 

opened by SolidWorks for further preparation of the file. The result of this process is shownin 

Figure 13.  
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Figure 13- The modified water-tight STL file of the patient’s scanned head surface contour with 
6000 triangles. 

 

In SolidWorks, the files were scaled properly to convert the units from millimeters to 

inches, and the suture lines were traced over the surface of the part according to a CT scan image 

of an infant’s skull. Tracing the suture boundaries would allow us to separate the skull suture 

sections from bone sections and assign different material properties to different areas of the 

model in the Abaqus environment.  

The file was opened in Abaqus 6.12, and the faulty faces were repaired using the repair 

tools within the software. Then the mesh resulting from the triangular faces of the STL was 

deleted, and the part was re-meshed using the mesh options in Abaqus. Figure 14 shows the CT 

scanned image as well as the re-meshed part with suture areas highlighted in red. The mesh 

characteristics and section properties for each of the three models will be further discussed later 

throughout this section.   
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Figure 14- Tracing cranial sutures over the modified 3D computer image according to the CT 
scanned images (5). 

 

The cranial helmet was constructed using the STL file of the cranial cavity. The file was 

prepared for being imported into SolidWorks in a similar fashion as the “before scan” file. The 

geometry was then trimmed and modified to create the helmet. Figure 15 contrasts theconstructed 

helmet with the resurfaced cranial molding cavity file. The file was then saved as an IGES file and 

imported into Abaqus. 
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 Figure 15- Creating the 3D model of the orthotic helmet: Reconstructed based on the helmet 
cavity file provided by Hanger Clinic. 

 

Lastly, a solid model of a flat 12”x7”x 2” rectangular pillow was drawn in SolidWorks and 

imported into Abaqus as a solid object. As you can see from Figure 16, small sections have 

been created in this model to allow for meshing in the Abaqus environment. 
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Figure 16- Solid model of the pillow used to create the FE models. 

 

The four prepared files of the baby with the deformed shape, the cranial molding cavity 

representing a healthy head shape, the cranial helmet, and the pillow were used in development 

of the three separate models:  

 Model 1: A healthy baby sleeping on a pillow in supine position 

 Model 2: The PP patient sleeping on a pillow in supine position with the flat area 

touching the surface of the pillow 

 Model 3: The PP subject sleeping in supine position wearing the cranial helmet 

Considering that the average weight of a 5 months old baby is about 16.5 lbs, and the 

head of a 5 months old infant is about ¼ of its total weight, the weight of the baby’s head was 

estimated to be about 4.125 lbs in all three models (26, 27). 
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Model 1: A Healthy Baby Sleeping on a Pillow in Supine Position 

The healthy head contour and the pillow were imported and assembled in Abaqus 6.12 to 

represent a baby sleeping in supine position (Figure 17).  

 

Figure 17- The loading, boundary, and surface contact conditions for model 1. 

 

The loading and boundary conditions for this model are listed below: 

 Weight of the head: 4.125 lbs (26, 27) 

 Bottom of the pillow was fixed in x, y, and z planes 

 Head was allowed to only dislocate in y direction 

 Finite-sliding normal hard contact between the head and the top surface of the pillow.  

 Element type: Quadratic Triangular Shell Element.  

Model 2: The PP Patient Sleeping on a Pillow in Supine Position 

The PP head contour and the pillow were imported and assembled in Abaqus 6.12 to 

represent a baby diagnosed with PP sleeping in supine position (Figure 18).  
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Figure 18- The loading, boundary, and surface contact conditions for model 2. 

 

The loading and boundary conditions for this model are listed below: 

 Weight of the head: 4.125 lbs (26, 27) 

 Bottom of the pillow was fixed in x, y, and z planes 

 Head was allowed to only dislocate in y direction 

 Finite-sliding normal hard contact between the head and the top surface of the pillow.  

 Element type: Quadratic Triangular Shell Element.  

Model 3: The PP Subject Sleeping in Supine Position Wearing the Cranial Helmet 

          The PP head contour and the cranial helmet were imported and assembled in Abaqus 6.12 

to represent a baby sleeping in supine position wearing a helmet (Figure 19). 
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Figure 19- The loading, boundary, and surface contact conditions for model 3. 

 

The loading and boundary conditions for this model are listed below: 

 Weight of the head: 4.125 lbs (26, 27) 

 The ABS plastic on the outer layer of the helmet was constrained to have no displacement 

or rotations in any directions. 

 Two points below the neck area (where spinal cord would be) were fixed as hinge joints 

that would only allow the head to rotate around y-axis.  

 Finite-sliding normal hard contact between the head and the helmet. 

 

Assumptions for all Three Models:  

 Uniform skull thickness of 3mm everywhere within the model 

 Isotropic material properties 

 Effects of cranial pressure, atmospheric pressure, weight of the helmet, soft tissues, bone 

modeling, and bone remodeling are minimal and negligible  
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 Material properties are not rate dependent  

 Frictionless tangential contact between the parts 

 Hard normal contact between the parts 

 Table 1 summarizes material properties assigned to different sections of all three models (ABS 

plastic is only used in model 3).  

 

 

The material properties for the infant’s skull were determined from a study performed by 

B. Coats et al. (8). Human infant (<1 year old) cranial bone and suture from 23 skulls were tested 

in three-point bending and tension at rates ranging from 1.2-2.8 m/s to find the elastic modulus of 

each of the samples from different age groups at different rates (8). The average elastic moduli 

from 25 occipital bone samples and 21 parietal bone samples were taken and assigned to the 

bone regions of the models. The average elastic moduli for 10 suture samples were taken and 

assigned to the suture regions of the models.  

Mesh Convergence 

Mesh convergence plots were used to confirm that the number of elements used to run 

the model were sufficient for converging to a specific value. The nodes shown by the red arrow in 

Figures 20, 21, and 22 were used for collecting the mesh convergence data. These specific nodes 

Table 2- Material properties used for the helmet, bones, sutures, and the pillow. 

Materials Young's Modulus 
(PSI) 

Poisson's 
Ratio 

Element 
Thickness (in) 

ABS Plastic 362594.25 (28, 29) 0.3 0.1 

Polyethylene Foam 174.05 (30, 31) -0.3 0.5 

Parietal and Occipital Bones 56461.0 (18) 0.3 0.118 

Sutures 1176.3 (19) 0.3 0.118 
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were chosen because their location stayed the same regardless of the seed size in all three 

models.  

 

 

Figure 20- Mesh convergence plot of Model 1: The convergence values shown in the table. The 
red arrow points to the node used for generating the plot. 
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Figure 21- Mesh convergence plot of Model 2: The convergence values shown in the table. The 
red arrow points to the node used for generating the plot. 
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Figure 22- Mesh convergence plot of Model 3: The convergence values shown in the table. The 
red arrow points to the node used for generating the plot. 
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Results 

Figure 23 shows a color contour plot of the Von  Mises stress distribution throughout the 

isolated suture segments of model 1. Areas in red represent high stress locations and areas in 

blue correspond to low stress locations.  

Figure 23- Color contour plot of Von Mises stress distribution for model 1: baby with a healthy 
skull sleeping in supine position on a pillow. 

 

Table 3 summarizes the number of elements, minimum, maximum, and average stress 

values for each of  the 13 suture segments. It may be noted that the posterior fontanelle has the 

highest stress values among all suture groups of this model. 
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Suture Section Number of 
Integration points 

Min (PSI) Max 
(PSI) 

Average 
(PSI) 

Anterior Fontanelle and 
Frontal Suture 

474 0.00 0.09 0.02 

Sagittal Suture 339 0.00 4.59 0.51 

Posterior Fontanelle 156 0.24 10.51 3.32 

Left Corronal Suture 90 0.00 0.01 0.00 

Right Corronal Suture 72 0.00 0.01 0.00 

Left Sphenoid Fontanelle 147 0.00 0.25 0.062 

Right Sphenoid Fontanelle 117 0.00 0.32 0.03 

Left Squamosal Suture 42 0.12 0.46 0.28 

Right Squamosal Suture 42 0.15 0.65 0.43 

Left Mastoid Fontanelle 57 0.38 0.64 0.53 

Right Mastoid Fontanelle 60 0.23 0.85 0.45 

Left Lamboidal Suture 72 0.56 0.95 0.74 

Right Lamboidal Suture 96 0.72 2.38 1.69 

 

Table 3- Stress Value Results for Model 1: Number of elements, minimum, maximum, and 
average Von Mises stress values off all 13 different suture sections for the baby with a healthy 
skull sleeping in supine position on a pillow. 

 

Similarly, figures 24 and 25 show the color contour plots of Von Mises stress 

distributions, and tables 4 and 5 summarize the number of elements, minimum, and maximum 

stress values in different suture sections of models 2 and 3 respectively. Highest stress values 

in model 2 are the right sphenoid fontanelle, sagittal, and the right coronal sutures, and highest 

stress values in model 3 are found in the left sphenoid fontanelle and the left squamosal suture. 

For detailed contour plots of each of the suture segments for all three models please refer to the 

Appendix.  
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Figure 24- Color contour plot of Von Mises stress distribution for model 2: PP patient sleeping in 
supine position on the flat side of his head on a pillow. 

Suture Section Number of 
integration points 

Min (PSI) Max 
(PSI) 

Average 
(PSI) 

Anterior Fontanelle and Frontal 
Suture 

285 0.22 2.31 0.93 

Sagittal Suture 162 1.65 3.12 2.50 

Posterior Fontanelle 153 0.08 2.85 1.24 

Left Corronal Suture 69 0.24 0.55 0.40 

Right Corronal Suture 102 1.49 4.17 2.43 

Left Sphenoid Fontanelle 108 0.02 0.55 0.26 

Right Sphenoid Fontanelle 111 0.41 5.67 3.46 

Left Squamosal Suture 60 0.24 0.54 0.37 

Right Squamosal Suture 54 1.06 3.42 1.80 

Left Mastoid Fontanelle 87 0.08 0.52 0.32 

Right Mastoid Fontanelle 57 0.16 1.50 0.82 

Left Lamboidal Suture 66 0.27 0.53 0.45 

Right Lamboidal Suture 81 0.07 1.92 1.14 

Table 4- Stress Value Results for Model 2: Number of elements, minimum, maximum, and 
average Von Mises stress values off all 13 different suture sections for PP patient sleeping in 
supine position on the flat side of his head on a pillow. 
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Figure 25- Color contour plot of Von Mises stress distribution for model 3: PP patient sleeping in 
supine position wearing an orthotic helmet. 

Suture Section Number of 
integration points 

Min (PSI) Max (PSI) Average 
(PSI) 

Anterior Fontanelle and 
Frontal Suture 

273 0.04 0.48 0.21 

Sagittal Suture 143 0.01 0.25 0.13 

Posterior Fontanelle 146 0.15 0.59 0.33 

Left Corronal Suture 80 0.29 1.20 0.77 

Right Corronal Suture 102 0.04 2.40 0.37 

Left Sphenoid Fontanelle 64 0.08 7.62 1.59 

Right Sphenoid Fontanelle 60 0.03 1.72 0.31 

Left Squamosal Suture 51 0.60 1.70 1.03 

Right Squamosal Suture 55 0.24 0.64 0.43 

Left Mastoid Fontanelle 87 0.33 0.80 0.57 

Right Mastoid Fontanelle 61 0.14 0.47 0.30 

Left Lamboidal Suture 90 0.26 0.71 0.48 

Right Lamboidal Suture 103 0.07 0.65 0.43 
 

Table 5- Stress Value Results for Model 3: Number of elements, minimum, maximum, and 
average Von Mises stress values off all 13 different suture sections for the PP patient in supine 
position wearing an orthotic helmet. 
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The range of stress values obtained from the 13 different suture regions of models 1, 2, 

and 3 as well as the average stress value for each population are demonstrated by Figure 26.  

Model 3Model 2Model 1
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Figure 26- Interval plots of the three populations of average Von Mises values for models 1, 2 
and 3.  

Table 6 summarizes the descriptive statistics for each population. 

 

Table 6- Descriptive Satistics of the three populations of average Von Mises stress 
values. 

Figure 27 compares the three different average Von Mises Stress values of each individual 

suture segment for models 1, 2 and 3. Bars with blue, orange, and grey colors represent models 

1, 2, and 3 respectively. 
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Figure 27- Side-by-side comparison of average Von Mises stress values for all 13 individual 
suture regions of models 1, 2, and 3. 

Model Validation 
 

In order to assess the validity of the values resulted from the models, a simplified 

problem was designed and solved for each of the three models. The purpose of solving these 

problem was to find and compare the order of magnitude of the theoretical pressure exerted on 

the pillow or helmet due to the weight of the baby’s head to the pressure values obtained from 

the FE models. Pressure was specifically chosen as the target quantity for validation since it 

only contains the perpendicular forces to the surfaces which makes calculations simpler to 

perform.  

Using the Query Tool inside the Abaqus environment, pressure values corresponding to 

elements of the surface area of the pillow directly in contact with the baby’s head in Model 1 

(Figure 28) were probed from 364 integration points from the surface elements. The average 

0

0.5

1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 V
o

n
 M

is
es

 S
tr

es
s 

 (
P

SI
)

Suture Regions

COMPARISON OF AVERAGE VON MISES STRESS VALUES FOR INDIVIDUAL 
SUTURE REGIONS OBTAINED FROM MODELS 1, 2, AND 3

Model 1 Model 2 Model 3



32 
 

pressure value of these elements was found to be 3.6 lbf/in2. This area measures to be about 

1.1 square inches area and is represented by the red region on the figure below: 

 

 

Figure 28- Color contour plot of pressure distribution over the surface of the pillow in Model 1. 
Pressure values are in PSI. 
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Assuming that the weight of the baby’s head is distributed uniformly around this area, 

the theoretical average pressure value over the pillow can be calculated as follows: 

Average Pressure over Pillow = 
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐵𝑎𝑏𝑦′𝑠 𝐻𝑒𝑎𝑑

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐴𝑟𝑒𝑎
 

Average Pressure over Pillow = 
4.1 𝑙𝑏𝑓

1.1𝑖𝑛2  

Average Pressure over Pillow = 3.7 
𝑙𝑏𝑓

𝑖𝑛2 

The difference between the calculated value and the value obtained from the model can then be 

calculated as follows: 

% Difference = |
𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑉𝑎𝑙𝑢𝑒−𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
|x 100 

% Difference =|
3.7−3.6

3.7
|x 100 

% Difference =2.7% 

Similarly, the theoretical pressure values on the pillow and helmet for models 2 and 3 

respectively were calculated and compared to the values obtained from the FE models with the 

same assumptions. Table 9 summarizes the results from this analysis. Figures 30 and 31 show 

the pressure distributions over the surface of the pillow and the interior surface of the helmet for 

models 2 and 3 respectively. 

 



34 
 

 

Table 7- Comparing the calculated pressure values. 

 

 

Figure 29- Color contour plot of pressure distribution over the surface of the pillow in Model 2. 
Pressure values are in PSI. 

Model 
Number 

Surface 
Contact 

Area (in2) 

Number of int. 
pts. on the 

contact Surface 

Theoretical 
Pressure 

Value (lbf/in2) 

Pressure Value 
from FE Model 

(lbf/in2) 

Percentage 
Difference 

Model 1   1.1 364 3.7 3.6 2.7 

Model 2 .8 224 5.3 5.8 9.4 

Model 3 127 22124 .03 .0003 99.0 
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Figure 30- Color contour plot of pressure distribution over interior surface of the helmet in Model 
3. Pressure values are in PSI. 

 

As it may be noted from Table 9, there was only a 2.7% and 9.4% difference between 

the theoretical value and the FE model values for models 1 and 2 respectively due to the 

simplifying assumptions that were made for the calculated theoretical values. The differences 

are insignificant and suggest that models 1 and 2 resulted in fairly valid outputs.  

The value obtained from model 3 is 99% lower than the calculated value. Looking at 

Figure 31, it may be observed that our model generated a pressure distribution inside the 
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helmet with areas of negative and positive values (represented by blue and green colors 

respectively) due to a surface distortion caused by the friction-less contact of the baby’s head 

with the relatively soft shell elements inside the helmet. On the other hand, the pressure values 

were assumed to be all in the negative direction in our calculation. The positive and negative 

values would then cancel each other out when calculating an average pressure and result in a 

significant decrease in the value compared to the theoretical value. Therefore, the complex 

geometries, over-simplifying assumptions, and the unrealistic distortion of the foam layer inside 

the helmet in model 3 limit our ability in validating this model.  

Discussion 

             Based on the data summarized in Tables 3 and 4, the highest amount of stress is found 

to be around the suture regions that were closest to the point of contact of the baby’s head with 

the pillow for Models 1 and 2 (posterior fontanelle in model 1, right sphenoidal fontanelle, the 

right coronal, and sagittal sutures in model 2. The data in tables 3, 4, and 5 suggest that 

sleeping with the cranial helmet would decrease the average Von Mises stress within the 

posterior fontanelle by 69% compared to the healthy baby sleeping in supine position and 21% 

compared to the deformed head sleeping on the flat surface of the head. 

              Looking at the size of interval plots created using the three sets of 13 individual 

average Von Mises stress values for the three models (Figure 26), it may be noted that the data 

sets for models 1 and 2 resulted in a larger intervals plots compared to model 3. Similarly, the 

standard deviations, as shown in Table 5, are higher for models 1 and 2 in comparison with 

model 3. This effect clearly supports the belief that wearing the helmet results in a more 

uniformly distributed stress all around different suture regions of the baby’s skull which results in 

a smaller standard deviation and interval plot.  
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By comparing the results obtained from the models to the data gathered during clinical 

trials, it may be found whether or not the results obtained from the models are in accordance 

with the outcome of cranial molding in clinical use, and try to find a correlation between Von 

Mises stress distribution within critical sutures and effectiveness of the treatment. 

In a study performed by Schweitzer et al., 20 female and 31 male Caucasian infants 

diagnosed with PP with ages ranging from 3.07 to 7.17 months were subjects of an experiment 

that evaluated the effectiveness of cranial molding on correcting the head geometry of PP 

patients (32). The subjects of this study were prospectively recruited from June 2010 to January 

2012. Three dimensional stereophotogrammetry was performed as data set for creating the 

cranial helmet for each individual patient as well as for basic morphometric analysis. The control 

group consisted of 37 Caucasian infants from 4.93-7.10 months without apparent asymmetry 

which provided morphometric parameters of what is considered a “normal” head shape and 

growth. Figure 31 demonstrates how the axes and planes were orientated for taking the three 

dimensional measurements using the STL files obtained from the patients in the study (32). 

 

 

Figure 31- Orientation of three dimensional measurements. Setting up x-axis, y-axis, z-axis, and 
0-plane: Measurement plane is the 0-plane shifted parallel to the level of maximum posterior 
curvature in the occiput (left). Demonstration of volume quadrants from 0-plane (right) (31). 
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The growth related parameters and morphometric measurements are described in Table 8. 

 
 

Table 8- Growth related parameters and morphometric measurements used in the study 
performed by Schweitzer e al (32). 

 

The results of the morphometric analysis before and after cranial molding are 

summarized in Table 9 for the patients and the control group. T1 in this table refers to the time 

at which the initial morphometric measurements were taken prior to the treatment, and T2 refers 

to the end of the treatment period after implementation of cranial molding. The decision to 

terminate the molding therapy was made when a level of cranial symmetry was achieved that 

was satisfying for the parents. The study was conducted from June 2010 to 2012 with an 

average of 4.5 months (±1.5) for the duration of each treatment (T1-T2) (32). 
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Table 9- The results of the morphometric analysis at T1 and T2 (32). 

  

As it may be noted from the values in Table 5, the symmetry-related parameters that had 

the most significant shift towards the control group from T1 to T2 were Diagonal Difference and 

PCAI.  Among all parameters in Table 9, these two values are also the best representation of 

the effectiveness of cranial molding since they directly correlate to the changes in the 

asymmetry of the back of the baby’s head in posterior, lamboidal, and sagittal suture regions. 

The stress values of these sutures obtained from models 1 and 3 can therefore be compared to 

the Diagonal Difference and PCAI values obtained from morphometric measurements at T1 and 

T2 during the clinical trials to better understand how the Von Mises stress distributions before 

and after wearing the helmet (models 1 and 3) relate to the baby’s skull growth from T1 and T2.  

 Units Patients 
T1-T2 

Control 
T1-T2 

% Difference 
between Control 

and Patient Groups 
T1-T2 

% Shift 
Towards the 

Control 
Group T1-T2  

Growth Related Parameters 

Circumference Cm 43.28-45.57 43.36-46.06 1.8%-1.1% 0.7% 

Width Cm 12.98-13.32 12.47-13.09 3.9%-1.7% 2.2% 

Length Cm 14.25-15.40 14.85-15.93 4.0%-3.3% 0.7% 

CI index % 91.19-84.91 84.27-82.29 8.2%-3.2% 5% 

Vertex Height Cm 11.18-12.02 10.97-11.60 1.9%-3.6 -1.7% 

Symmetry-related Parameters 

Diagonal 
Difference 

Cm 1.11-0.52 0.35-0.33 217.1%-57.57% 159.5% 

Ear  Shift Cm 0.50-0.37 0.21-0.19 138.1%-94.7% 43.3% 

ACAI % 5.17-4.43 3.08-2.78 67.86%-59.35% 8.5% 

PCAI % 20.99-8.07 6.20-5.92 238.5%-36.3% 202.2% 
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A side-to-side comparison of the average Von Mises stress values for each skull suture 

within models 1 and 3 is shown on Figure 27. It may be noted that the values for the left 

lamboidal, right lamboidal, sagittal, and posterior sutures have decreased by 35.1%, 74.5%, 

74.5%, and 90.0% respectively from Model 1 to Model 3 due to the effects of wearing the cranial 

molding helmet during sleep. A summary of the stress values and the percentage of reduction of 

stress (after wearing the helmet) for each of the suture segments are shown in Table 10.  

  Average Von Mises Stress 
Value (PSI) in Model 1 

Average Von Mises Stress 
Value (PSI) in Model 3 

% 
Difference 

Left Lamboidal .74 .48 35.1 

Right Lamboidal 1.69 .43 74.5 

Sagittal .51 .13 74.5 

Posterior 3.32 .33 90.0 

 

Table 10- Comparing average Von Mises Stress Values of Left Lamboidal, Right Lamboidal, 
Sagittal, and Posterior sutures obtained from models 1 and 3. 

 

The reduction of stress (as shown in Table 10) is in accordance with the outcome of the 

clinical study discussed earlier. Wearing the cranial helmet during sleep relieves the pressure 

from one area at the back of the baby’s head and distributes it all around the baby’s skull which 

assists the natural symmetric skull growth of all regions. The results of the two studies suggest 

that a 35% to 90% reduction of stress from the back of the head of a PP patient during sleep 

may lead to an average of 160% correction in the Diagonal Difference and a 202% correction in 

PCAI during 4.5 months of therapy. 

Limitations 

             Limitations of the models are mainly associated with the simplifying assumptions and 

geometries in generating and validating the FE models. A few of such limitations are addressed 

in this section. 
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             The laser scanned files of the baby’s head were obtained in STL format and only 

defined the surface contour of the baby’s head. Therefore, in order to mesh the helmet and the 

head contours in the models, shell elements with a uniform thickness were used. In reality, the 

thickness of human skull and its sutures are non-uniform and variable. The results of the 

simulations would have been more accurate if the mesh was generated over a 3D CT scanned 

file instead of laser-scanned surface contour. 

              Similarly, the suture lines were manually traced over the STL files to represent the 

approximate geometry of the sutures and neglected the effects of the micro-level complexities of 

the geometry. In reality, the boarder-lines between sutures and bones within an infant’s skull 

has many small details such as sharper angles and distorted lines (vs. smooth lines of the 

simplified models in this study) which can create several stress concentrations and skewed 

results. Such small details in the geometry of the sutures are also variable from one person to 

another person and depends on genetic and environmental factors associated with each 

individual. Therefore, it’s impossible to create one model that accurately generates results that 

resembles all individuals.  

              The effects of cranial pressure, atmospheric pressure, muscle forces, soft tissues, 

anisotropic behavior of the materials, and friction between materials were neglected in the 

models; all of which could have had a significant effect on the results obtained from the models. 

               Also, the boundary conditions either eliminated or neglected the effects of side-to-side 

rotation of the head around the neck joints in order to create models that converge to a solution. 

A more precise model would ideally incorporate all loading conditions and boundary conditions 

that were excluded from the models in this study.  

               Furthermore, validation of the models was done by comparing the results of 

calculations with many simplifying assumptions. As a result of making such simplifying 
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assumptions in the calculations, the values obtained from the calculations may have been 

significantly different from an ideal case. However, without having quantitative experimental or 

clinical data to compare with the results of the models, solving a simplified mathematical 

problem might arguably be the best approach for validation of the models. 

Future Directions 

              Future studies need to focus on over-coming the limitations discussed and develop 

similar models with less simplifying assumptions and include more complexities and variables 

for more accurate results. 

              Clinical data and studies surrounding implementation of medical devices for treatment 

of positional plagiocephaly lack a focus on methods that quantify distribution of stress for 

evaluating the effectiveness of the devices. Future studies could focus on fulfilling this need by 

coming up with methods using pressure sensors and force gauges to gather experimental data 

that may be used to validate computational models or compare the efficacy of devices to each 

other.  

               The methods implemented in this study and the results obtained from the models may 

be used as a basis for future evaluation and design of engineered solutions for treatment and 

prevention of PP in new-born babies. For example, a similar model could be generated for a baby 

sleeping in supine position on a bedding pillow to study and compare the resulting stress 

distributions within the sutures to the models obtained in this study. Then the geometry and 

material of the corrective device could be modified accordingly for an optimized uniform stress 

distribution.   

                 Furthermore, the effects of different loading and boundary conditions on bone 

remodeling of different regions of the baby’s skull can be assessed by combining similar methods 

used in this study with a bone remodeling algorithm developed by Dr. Scott Hazelwood et al. (33). 
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This would help to come up with engineered solutions that not only focus on the efficacy of the 

device on correcting PP, but also optimize and control the response of bone tissues to stress 

within the patient’s skull. 

Conclusions 

There is a considerable market for corrective methods and devices that target treatment 

of PP. Bedding pillows, cranial helmets, 3D laser scanners, and CAD software packages are 

examples of technologies engineered for use at orthopedic clinics for treatment of PP. Most of 

the publications surrounding the use of these devices and methods either compare the 

effectiveness of each method or device in correcting the head shape of the baby within a specific 

period of time, or assess finding the shortcomings and side effects of using each method. These 

studies often lack a focus on quantifying the magnitude and distribution of the stress that either 

cause or correct head deformations in new born babies for optimizing the efficacy of the 

engineered products. 

In this study, three separate FE models were developed and validated that outputted the 

magnitudes of Von Mises stresses at different regions of an infant’s skull sutures in three different 

scenarios: a baby without PP sleeping on a pillow in supine position, a baby with PP sleeping on 

the flat side of his head in supine position, and the same baby with PP wearing a helmet and 

sleeping in supine position. The goal of the study was to assess the efficacy of implementing a 

cranial helmet for reducing concentrated stress from the back of the subject’s head using a 

quantitative approach. 

The results supported that wearing the cranial helmet reduces concentrated stress from 

the lamboidal, posterior, and sagittal sutures while the subject sleeps in supine position. 

In addition, the data obtained from models 1 and 3 were compared to the morphometric 

measurements collected before and after implementation of cranial molding during a clinical 

study. The results showed that the regions with most stress reductions in model 3 (compared to 
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model 1) were the ones that correlated the most to the morphometric parameters that had the 

major shift towards the control group at the end of the clinical study, which confirms that the results 

of the FE models and the clinical evaluation were in accordance with each other.  
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APPENDICES 

Appendix A: Color Contour Plots of Von Mises Stress Distribution within Suture Segments of 

Model 1 
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Appendix B: Color Contour Plots of Von Mises Stress Distribution within Suture Segments of 

Model 2. 
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Appendix C: Color Contour Plots of Von Mises Stress Distribution Within Suture Segments of 

Model 3 
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