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ABSTRACT

A Proof of Concept for Crowdsourcing Color Perception Experiments

Ryan McLeod

Accurately quantifying the human perception of color is an unsolved prob-

lem. There are dozens of numerical systems for quantifying colors and how we

as humans perceive them, but as a whole, they are far from perfect. The ability

to accurately measure color for reproduction and verification is critical to indus-

tries that work with textiles, paints, food and beverages, displays, and media

compression algorithms. Because the science of color deals with the body, mind,

and the subjective study of perception, building models of color requires largely

empirical data over pure analytical science. Much of this data is extremely dated,

from small and/or homogeneous data sets, and is hard to compare. While these

studies have somewhat advanced our understanding of color adequately, mak-

ing significant, further progress without improved datasets has proven difficult

if not impossible. I propose new methods of crowdsourcing color experiments

through color-accurate mobile devices to help develop a massive, global set of

color perception data to aid in creating a more accurate model of human color

perception.
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CHAPTER 1

Introduction

Color is neither an objective nor absolute attribute of anything in our world;

it is always a personal and subjective experience. While color experiences are

generally coupled to real-world stimuli, it is important to remember that they can

be affected by other stimuli in context such as motion, form, ambient light, and

can even arise without stimulus entirely through dreams and memory recollection

[20, p. 52]. Ultimately color is just one end result of the body and brain processing

visual stimuli. All this makes quantifying the psychophysical phenomenon of color

challenging but not impossible.

Aristotle and Newton were among the first to try to classify, understand, and

order color. Many others have come up various other ways of classifying and

ordering color, either by rough means of categories such as “reds” and “orange

reds,” by more qualitative means by which colors are divided by chroma, satu-

ration, or lightness, and finally in more quantified scales using the same kinds

of divisions mentioned prior. The holy grail of color science is a model of color

which allows continuous (as opposed to discrete) measurement of colors and is

perceptually uniform —that is to say if the model is represented in space, chang-
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ing a color within that space through any of its dimensions will have its changes

uniformly reflected by human perception. At the moment, creating a percep-

tually uniform space that attempts to mirror human perception, requires ample

empirical data.

Currently the most perceptually uniform space in the color science field is

the standarized International Commission on Illumination (CIE) Lab 1976 space

—derived from the CIE 1931 space which was built from data collected in 1920.

The current standard for measuring distances between colors in this space is

the CIEDE 2000 formula. While the newest Lab space and distance formulas

are still largely based on data collected nearly a century ago, they have been

modified using more recent data to become what they are today. The CIEDE

2000 formula only predicts the set of perception data that it is based on with

about 33% accuracy [18]. It could very well be that inter-observer variability is

so high that even a color model that perfectly mimics the average-world observer

is poor at predicting individual perception accurately, but it seems unlikely that

the figure would be this high. Considering the dubious quality and small sample

sizes of the data that so much of the field is based on, it seems like a good idea

to evaluate methods of leveraging new technology to assist in creating a better

model of average-world observer to better model human perception.

The tests run in 1920 by David Wright and John Guild led to the creation of

the 2◦ Standard Observer that ultimately backed the creation of the CIE 1931

color space [24]. Their testing procedure was a color matching experiment where

7 subjects [31, p. 14] viewed multiple pure spectral colors (like the light of a laser)

through a hole that forced the subject to only use a 2◦ section of the fovea at

the center of the retina, which at the time was thought to be the location of the

majority of cone cells (we know now cones are concentrated over a larger area
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and 10◦ is a better limitation). Participants mixed red (650nm), green (530nm),

and blue (460nm) lights until they decided that the mix acceptably matched the

provided reference color.

Figure 1.1: CIE 1931 xy Color Space
Diagram [7]

The recordings from this ex-

periment led to the creation of

the CIE Standard Observer func-

tions (Figure 2.5), which show us

the mixtures of light required by a

color-normal person’s three cones

to create a particular color experi-

ence. Through a series of transfor-

mations this diagram can be tran-

scribed into the CIE 1931 XYZ

chromaticity diagram [17].

In 1964 after decades of crit-

icism, the 1931 standard was re-

tired and replaced. Some of the criticism arose from other testing that seemed to

challenge the testing the standard was based on, or highlight the lack of percep-

tual uniformity in the derived Lab space [17, p. 364]. A large part of this criticism

came from the results of MacAdam, who using one subject, mapped ellipses on

the CIE 2◦ chromaticity diagram, the boundaries of which encapsulated all colors

which the observer could not tell the difference from the color at the center of

the ellipse [20, p. 142]. Tests like MacAdam’s, despite using one observer, helped

advance the field. His results were used as a guide to “warp” existing spaces into

more perceptually uniform ones, and are still heavily referenced today.

Although a wealth of the research in the field of color science is from the
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mid 20th century, it should not be discredited. The efforts made then sparked

the mathematical study of the field and were valiant ones given technology and

knowledge available at the time. This said, experimentation has not advanced

significantly since then, while we have proven that those experimental methods

even when carried out carefully, still can lead to large variability and error [18].

Knowing this gives hope that maybe a different approach that embraces the

nature of noisy data, by gathering statistically significant amounts of it can help

us draw better conclusions in the future.

1.1 Problematic Perception

In attempting to quantify how humans perceive color there are three layers to

keep in mind: the hard to predict physical factors that affect the way an object

reflects and gives off light, the varying physiology of humans, and the unique

black box that is the brain.

Figure 1.2: How Humans Perceive Colors [25]
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Considering these variables and challenges there have been what can be de-

scribed as heroic attempts in the last century to understand and quantify the

human perception of color. Improvements in modeling human perception can

only truly come from empirical data [20, p. 31]. This is the field’s largest source

of error and headache. A large contributor to the color science field, Rolf Kuehni,

sums up the need for better data in his 2008 paper, Color Distance Formulas: An

Unsatisfactory State of Affairs, making a case that even the best current formu-

las only have at best a perceptual modeling accuracy of about 65% when tested

on current color perception data sets [18]. Kuehni attributes this unsatisfactory

measure at least partially to the fact that current formulas are based on “various

sets of empirical difference perception data established with different kinds of

materials, under different evaluation condition, and with different observer pan-

els” [18]. The derived formulas are then often compared back to some of the very

datasets that created them to be verified and mark the field’s progress. There is

no real alternative to using empirical datasets to create an “average observer” to

derive these formulas, but through gathering data that is better than what we

have we could potentially create an improved model of the “average observer”

and in turn a better model of color difference.

1.2 Limited Data

Ultimately, colors are psychological experiences and while many are quick

to point out that our understanding of neurological processes is improving, no

matter what advances we make in spying on these internal processes, a proper

understanding of the connection between what can be objectively measured and

subjective experiences created in our minds (ie. consciousness) is far off. To this
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day “there is no detailed scientific explanation of the color vision process or the

vision process in general” [20, p. 23].

Color scientists have noble goals in maintaining rigorous testing procedures

in a field that relies on empirical data from the less than scientifically sacred or

mathematically rigorous platform of consciousness, but ultimately well-controlled

data still leaves us making conjectured leaps to create our models. This obviously

makes the data gathered the crux of our current understanding. Restrictions in

testing such as controlled light booths, expensive color-swatch sets, and other

variable-limiting conditions (such as restricting subjects’ fields of view to the 2

or 10 degrees where cone cells are densest in the fovea) have helped us obtain

data with rigor, but have resulted in small and arguably somewhat homogeneous

data sets.

Subjects can disagree significantly about the perceived magnitude of difference

between two samples of color [13, 18]; so “for the data to have statistical useful

meaning, they should represent the “world-average color difference observer” [20].

Based on existing data Kuehni thought this might require upwards of 60 color-

normal observers [20]. Most of the existing experimental data used to the fit color

difference formulas have used significantly less observers [20]. Trying to gather a

relatively large amount of observational data using such rigorous restrictions has

not yet proven practical or been incentivized enough for a contending model to

be created. As Kuehni states, reaching such a goal will likely take a well-funded

and orchestrated study [18]. Because of these reasons there currently aren’t any

significantly better datasets or new competitive color models. Therefore it may

be worth considering new alternative methods of gathering data such as crowd-

sourcing.

If the reason for this unsatisfactory state of affairs truly is a lack of data as
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opposed to the quality of the data collected, it may be worth exploring crowd

sourced data collection as a new experimental method. Even if this method

proves not viable it could help us understand the importance of quality versus

quantity of color perception data.

My thesis proposes new methods and tools for crowdsourcing color perception

data collection via mobile devices rather than controlled light rooms with tiled

samples in order to gather a massive, and potentially more comprehensive data

set. This data could potentially be used in new, previously impractical ways to

draw insights about how location of individuals, time of day, device profiles, etc

affect perception. This method also makes it relatively easy to record additional

experimental information such as how long observers spent on parts of the ex-

periment and opens to door to ongoing testing with the same observer by pushed

updates that allow for testing of new perception experiments when needed. Af-

ter statistically accounting for noise and device shortcomings, the usefulness of

the data gathered via this method is admittedly still a bit dubious, but there is

great potential in a quantity over quality approach—the extent of which is cur-

rently unknown. I believe given a large enough dataset with the right statistical

approach many of the envisioned shortcomings would ultimately have negligible

effect on the accuracy of the conclusions drawn (this effect may be amplified on

small or just-noticeable difference color difference data). Such a large and po-

tentially global dataset could give us new insights into inter- and intra-observer

variability, how environmental and testing variables affect perception, and more.

So while it is unclear if a less groomed but potentially massive data-set of color

perception data could help improve our current models of perception, exploring

the idea is certainly a worthwhile endeavor.
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1.3 Crowdsourcing Solution

Given the ubiquity of mobile devices with their increasing color accuracy [26],

it makes sense to try to leverage their pervasiveness to gather more voluminous,

varied data to attempt to advance the field. Currently if someone wanted to

create a new color model they would need to reinterpret preexisting data, buy or

create color testing samples along with a controlled light viewing equipment, or

build new experimental equipment. Crowdsourcing requires neither a grant-sized

budget to build or buy new testing equipment nor physical access to a diverse set

of willing test participants. This thesis aims to cover the foundations required to

understand color and human perception and to investigate and provide possible

tools and future directions we can take to bring color data collection and the color

models and formulas that rely on them to new heights of perceptual accuracy.

As outlined, while promising, crowd-sourcing as a means of data-collection is

problematic. Digital screens found on mobile devices use device-dependent RGB

color spaces and represent a fraction of the colors humans can perceive [10, 20].

This means that even if we understand the perception of this limited subset of

colors perfectly we would not be able to safely extrapolate that understanding

to all of the colors humans perceive. Even if we can build better RGB displays

with larger gamuts, creating all human visible colors by mixing three base colors

is fundamentally impossible. While new technology like quantum dot displays

are just beginning to enter the consumer realm they would likely only improve

representation of the visual spectrum from the 20% seen in typical LCDs to 60%

[10].

Until very recently most mobile devices had poor color management even if

they had decent color reproduction. Essentially without color management there
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is no guarantee that a color displayed on one device will appear the same on

another. Newer devices like Apple’s iPhone 5 are color managed and use the

device independent sRGB gamut meaning color can more strictly be controlled

and predicted [16, 26]. Despite this revelation, even sRGB still only represents a

subset of visible colors (see Figure 1.3); that said it still comprises a substantial

amount of the object colors we see day-to-day [5] and if we can make progress

modeling perception of the RGB gamut more accurately, that progress would

likely spill into the rest of the visible range to some degree.

The problems reproducing all colors aside, knowing what color a particular

viewer is seeing on mobile devices can become further complicated when we con-

sider the effects of surrounding light, screen brightness, viewing angle, and the

fact that screen pixels produce light rather than just reflect it they way real world

objects do. Testing on a mobile phone will never be the same as a controlled light

booth, but there are some rudimentary ways in which we can mitigate these con-

cerns to a degree. The first of which is to group data by device; by doing this

we can better guarantee a group is seeing the same colors. By controlling screen

brightness we can make sure all observers are using the same brightness settings.

By recording ambient light via device sensor or front facing camera we can roughly

estimate ambient light (although we cannot capture the spectral distribution) to

either again group data, throw out outliers, normalize variance, or just study the

affects of surrounding light. By recording gyroscope and accelerometer data we

can potentially determine device angle to assist the user in holding the device

at the right angle, or know if they have moved the device significantly during

the test. By recording all of this additional data I believe we should be able to

filter or adjust the collected data enough such that the noise is not statistically

significant.
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Figure 1.3: sRGB gamut drawn inside the CIE 1931 chromaticity dia-
gram [7]
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While there is no logically sound way to verify a tool for measuring perception,

we can try to use the tool to reproduce existing results from other experiments

as a rough means of affirmation. In the case that the tool provides better, but

different data than existing tests it will be hard to confirm that it is valid. That

said, considering all of the variables mentioned it is unlikely this tool will collect

more accurate data on a test by test basis, but by analyzing the overall results

we should hope to see similar results to other tests.

While I cannot claim to be color scientist let alone a mathematician or statis-

tician, I’ve studied and tried to understand the field to the best of my abilities so

that I can apply my expertise as a computer scientist to help advance the color

science field by way of new color discernment and discrimination testing tools

built to tap the masses.
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CHAPTER 2

Background

2.1 Color

Color is arguably the most important sense humans have for navigating, un-

derstanding, and internalizing the world around us. Color itself is a vague term;

a more clarifying way to define color is as a color experience, however, for simplic-

ity’s sake we will just refer to this as color. At its core, the experience of vision

is formed by a small range of electromagnetic waves that are detected and inter-

preted by the roughly 120 million photosensitive cone and rod cells in our retinas.

Only 7 million of those are cone cells that help us detect color, the majority of

which are packed into a 0.3mm across circular area1 called the fovea [20, 3]. From

here a complex patterns of nerves interpolates this information in ways largely

unknown before further processing and interpretation in the brain [20, p. 39].

Most of us are trichromatic and have three kinds of cone cells. A non-trivial part

of the male, global population is dichromatic, causing partial color blindness.

1Tests that refer to a 2◦ observer restrict observer viewing to this dense, cone-only area of
vision.
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There’s evidence that an unknown, small portion of the female population may

be tetrachromatic having slightly extended color vision [17, 15]). These three

kinds of cone cells are most sensitive to what we refer to as long, medium, and

short wavelengths, which roughly associate with the colors red, green, and blue

respectively. Purely talking about the signals our brain receives these are the only

real color inputs we receive, but once in the brain these signals are combined to

form new color experiences like yellow (from reds and greens) and magenta (from

reds and blues). This is to say that even when we produce a pure wavelength of

yellow light, the color we perceive is actually being formed from stimulation of

the long and medium wavelength cones. The spectrum of color we can perceive

is generally referred to as hue, and while it is only one part of what makes up a

color, as we’ll see later is regarded as one of the most important aspects when

humans differentiate between colors [17, 20].

2.2 Modeling and Ordering Color

There are many colorspaces in which we can quantify and numerically repre-

sent colors. Different colorspaces often define new component systems for break-

ing down colors, but often just warp and transform the space to better fit a set

of data or situation at hand. Most people tend to think of color in three compo-

nents: hue (what we tend to think of as defining color), saturation (the strength

of the color from grey to pure), and lightness (how light or dark a color is). There

are other component systems where the space’s dimensions are based on concepts

like opponent colors, or even on the abstract tristimulus responses of the cones.

Still, all of our current models are likely over simplifications of how colors are

actually created and held in the human mind. There is no sound reasoning aside

13



from familiarity and convenience that most color spaces are Euclidian in nature2.

In order to improve our simple models over the years we have warped the spaces

into contorted shapes that attempt to better represent perception, and when

that hasn’t worked we’ve modified the way we measure distances in that space

via distances formulas, which we will discuss in detail later.

Because of the nature of the perception, it is challenging to pare the prob-

lem down into simple numbers and to understand the perception of colors with-

out taking into account their context, but we can still come close. Effects like

metameric matching (objects that appear to be the same/different colors under

different light sources), the Helmholtz–Kohlrausch effect (see Figure 2.1), and

chromatic crispening (see figure 2.2) can alter human perception of color. On

top of these psychological effects, genetics, biological variance, hormones, and

age related corneal yellowing [30] further affect our vision. For the sake of this

discussion and research we will largely, and somewhat naively, ignore these com-

plications (color vision deficiencies excluded), although they are ultimately a part

of developing a truly perfect, perceptually uniform color space.

Figure 2.1: An example of the Helmholtz-Kohlrausch Effect where
increased chroma appears to affect luminance

2Some data supports that this is a strange state of affairs and a recent study has even
proposed a new color space that relies on six dimensions with colors as manifolds of a complex
hypersphere [28].
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Figure 2.2: An example of chromatic crispening. The center colors are
the same, while the surrounds chroma values differ.

2.3 Perceptual Uniformity

Quantification of color with accurate attention to human perception has been

an ongoing struggle first documented by Ancient Greeks; it remains unsolved

today and some say is impossible to solve [17]. Put simply, forming a perceptu-

ally uniform space means designing a color space with humans in mind before

machines, one in which a measured distance between two colors points is propor-

tional to their perceived distance. That is to say around each color is an imaginary

sphere of arbitrary size at which all colors on its surface appear equally different

from the center color, and if the radius were to be doubled all of the colors on the

new sphere’s surface would appear twice as different from the same center color.

As mentioned there are many external and internal variables which complicate

our understanding of perception by way of being largely private and subjective,

and thereby unobservable and unverifiable. It can be argued that without so-

lidifying our understanding of these pillars of perceptions we cannot make any

scientifically sound headway in our understanding of human perception of color,

which while true, as Kuehni says “appears simply to address the fact that at this

point in time we do not have an understanding of consciousness” [20]. This is

where the field of psychophysics (the study of the psychological connection be-

tween physical stimuli and mental experiences) draws scientific criticism. In the
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absence of an analytically rigorous foundation we must do our best to empirically

draw and rigorously test the observable and coincidental relationships of human

perception.

Since perceptual uniformity is not something can be logically solved even

if we could measure the physiological responses of our cones (including the in-

termediate cells between the cones and the brain whose purpose we still don’t

understand [20]), more accurately we would still be lacking clarity on the final

black box step of the brain where the final color experience is formed. Therefore

all color spaces that aim to achieve greater perceptual uniformity must be based

on experimental data3. While standards bodies such as the Commission Inter-

nationale de l’Éclairage4 (CIE), Optical Society of America (OSA), and others

have described standard spaces and data sets, the field is divided when it comes

to following standards. In the past, standards have been created out of necessity

of a divided field, or community discoveries and new experimentation.

2.4 Established color spaces

Color spaces provide an abstract mathematical way to model and understand

colors and enable quantification of colors as coordinate tuples using axes that are

appropriate for the task at hand. For instance while RGB provides a suitable

model for manipulating the colors of display hardware by representing pixels,

CMYK is a more fitting model for print work by representing ink. We can move

colors between spaces but there can be a loss of accuracy in the process through

3It’s important to note that many spaces are naively labeled as perceptually uniform when
they really are just striving for perceptually uniformity and may only come relatively close to
it.

4Translates in English to International Commission on Illumination.

16



gamut clipping, which occurs when a source color space can model more colors

than the target one. Often moving from one space to another requires additional

information especially when moving from abstract spaces to the more tangible

ones where say how lights interact with and change colors is important.

There seemingly isn’t a particularly sound reason that color should be mod-

eled using a 3D Euclidean form but whether out of the convenience of its famil-

iarity or because most of us have three types of cones, they typically are. 3D

color spaces can generally be divided into two camps: those sized by the abstract

principles of a task (eg. RGB, CMYK, or HSV), and the rest which all have

scales that attempt to balance each other to for a gestalt of perceptual unifor-

mity. Spaces that attempt perceptual uniformity often feature new axes and odd

contortions so that a Euclidean distance between two color points is proportional

to human perception of color difference. A helpful way to understand the con-

cept of perceptual uniformity is to look at a space where it is poor such as RGB;

Looking at figure 2.3, if we measure the 3D Euclidean distance between A and

B along the RGB axes their color difference is X, the same is true for C and D,

but anyone with normal vision will disagree that the pairs are equally different.

2.4.1 RGB

The RGB color space is based more on display technology than human per-

ception. In RGB colors are defined by their red, green, blue components. The

space is represented by a cube of equal length axes with white at the combined

maximums and black at the combined minimums of the origin. The entire gamut

of possible color (in RGB space) fits neatly into a 3D Cartesian cube, but dra-

matically fails at being perceptually uniform. This is easily evidenced by looking
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Figure 2.3: RGB space [25]

at the corners of the space where moving equally down any of the three edges

results in colors that any normal-vision person would quickly notice are no where

near equally different.

2.4.2 HSV & HSL

HSV and HSL stand for hue, saturation, and value/lightness respectively,

which makes both crudely attuned to our intuitive understanding of —and thereby

perception—of color. These two spaces were developed in the mid 70s by geo-

metrically mapping RGB into a cylindrical space [17]. Both map the RGB space

similarly except when it comes to the value and lightness axes; where the HSV

model has the white point as the “core” of the cylindrical space so changes in the

value axis never change the “whiteness” of a color, the HSL space has lightness

as a top plane causing the color to approach white, which is represented by the

entire top surface of the space rather than as a core.
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2.4.3 CIE XYZ

The International Commission on Illumination defined the CIE XYZ space

in 1931 by way of a set of phenomenal efforts given technology at the time. To

understand the XYZ space it is key to remember that color is not an absolute

property of an object and is merely a perception of reflected and emitted light

interpreted by our cones and the brain. Like white light through a prism it is

possible to split colored light (like that reflected from an object) into its discrete

measurable color components. It should be noted that this is not possible with

pure spectral light-sources like a laser.

Figure 2.4: Spectral Power Distribu-
tion of the D65 Illuminant (modeled
after daylight) [25]

Spectral power distributions

(SPD) are an objective way to

measure color if perception is not

a consideration —this is color at

its purest in a mathematical sense.

Seen in figure 2.4 is the SPD of the

D65 standard daylight illuminant

showing the colors that make up a

typical “white” daylight. Because

of the nature of our cones, a SPD

of the light that peaks in the green wavelength and an SPD that spikes in the

yellows and blues could represent the same real world green; both of these SPDs

would essentially elicit the same cone responses that form the sensation of green.

Knowing this concept helps understand the experiments carried out by William

David Wright and John Guild in the 1920s. Using a complex contraption they

generated pure spectral colors and had ten normal-vision observers adjust lights
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corresponding to the primary colors of red (650nm), green (530nm), and blue

(460nm) until they were satisfied that their mixed color matched the pure one.

Values varied between observers, the consequence of which is up for debate, but

besides varying genetics, could also include to age related yellowing of the macula

in the foveal region of the eye [11].

Figure 2.5: Cross section of the original device used during the Wright
and Guild experiments [41]

With this data, they were able to create the XYZ color matching functions to

represent what mixes of the primaries which directly affect the cones are needed

to create the color experience as that of a pure spectral color. This ultimately

defines the CIE’s Standard Observer which is the basis of most color research.

This standard observer in essence, is a table of values that backs these functions.
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Figure 2.6: The XYZ color matching functions that resulted from the
Wright and Guild experiments [7]

Figure 2.7: The three matching functions, each represented on their
own axes, connected, and then projected onto an equilateral triangular
plane [25]

By mapping each tristimulus value function in its own dimension of a three

dimensional space we end up with something seen in the outer shape of figure 2.7.
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By then projecting these functions onto a triangular plane (Figure 2.7) formed by

connecting the equal maximums of each axes we end up with a familiar standard:

the CIE 1931 Chromaticity Diagram (Figure 2.8). The Chromaticity Diagram is

an often referenced diagram, and while useful is an awkward diagram to reference

since it leaves out the luminance dimension of color. The diagram’s usefulness

comes from the ability to take any two color points, draw a line connecting them,

and know that the end points of that line can be combined to form any color

along that line. Going further, if three points are chosen, any color within that

triangle can be created by mixing those end-points. This is the basis of RGB

displays or CMYK printing. An important aside is that the color of the diagram

cannot be accurately represented on a screen or paper and thus many of the

colors that should be shown in Figure 2.8 are impossible to represent in this form.

Figure 2.8: The 1931 CIE Chromaticity
Diagram [25]

It should be noted that the

Standard Observer referred to

previously is specifically the

CIE 2◦ Standard Observer,

which gets its name from the

fact that during the experi-

ment the subjects field of view

was constricted to 2◦ based on

the erroneous assumption that

all of the cones in the eye were

located in a 2◦ section of the

fovea in the back of the eye;

while this is where the largest
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concentration of cones is, quite a few lie outside this range leading to the creation

of the 10◦ Standard Observer in 1964 [17] which as expected is slightly different

and recommended by the CIE as most appropriate for representing the response

of human observers.

In summary the XYZ space is a mathematically defined color spaces that

represents all color experiences a normal color observer can have. It is often used

as a base from which other color spaces are created and can serve as a useful

intermediary when translating between color spaces.

2.4.4 CIE Lab

The CIE Lab space (technically L*a*b*) was developed by the CIE in the 70s

out of a need to unify many disparate color spaces and distance algorithms that

were quickly popping up in industries dependent on color. The L component

of the space represents luminosity and ranges from 0-100, while the a and b

components represents red-green and blue-yellow ranging from -128 to +128;

These two color pairs are opponent colors that don’t generally exist at the same

time [17].

After MacAdam first plotted his ellipses (representing sets of colors that were

within just noticeable difference from reference colors) on the 1931 CIE chro-

maticity diagram he set out to apply linear transforms to the space in such a way

that ellipses would become equally-sized circles and thus the space perceptually

uniform according to his data. Many others made similar attempts during the

50s and 60s to little success. Ultimately amongst increasing new visual color dif-

ference data sets, formulas that relied on MacAdam’s ellipses were worse. In 1948

R. S. Hunter started making tristimulus based colorimeter devices that could de-
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Figure 2.9: Ellipses from MacAdam’s solitary participant, Perley G.
Nutting Jr. plotted on the CIE 1931 chromaticity diagram (ellipses
ten times actual size). [7]
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termine CIE tristimulus values of real life colors. Hunter proposed a new color

model with three axes (L, a, and b) as a translation of the XYZ space. The

translation of the space was later revised to agree more closely with the Munsell

color difference data (discussed later). By the 1960 there were at least a dozen

or so datasets with related color models and new ways of measuring color differ-

ences, all created out of necessity by the industries relying on color measurement

and reproduction (textiles, food, paint, printing, etc) [17]. In 1973 Kuehni found

poor levels of correlation between all of these models and their data sets, and

that they were generally poor at representing the average observer [17]. Various

groups and individuals continued down the path of ellipsoid fitting; finally in

1975 R. M. Rich, F. W. Billmeyer, and W. G. Howe modeled ellipsoid fitting on

a computer with great accuracy [17]. In 1976, out of necessity for an industry

standard, the CIE established the Lab space we know today. It didn’t make

any advancements over existing functions and even drew debate about its quality

compared to some of the existing functions it sought to replace, but ultimately a

compromise was reached and it was deemed a standard [17].

The CIE Lab space has become the standard form of color measure it was

intended to be. The space still draws criticism though, partially because the full

range of the space actually exceeds human vision and contains colors that don’t

exist in human vision, but mainly because it still lacks strong perceptual unifor-

mity. So while the space was formed with a goal of perceptual uniformity, it falls

short. Lab space is fairly accurate in its perceptual modeling of luminosity, but is

weakly perceptually uniform in the a and b axes, which affect the chromaticity.

Humans are more sensitive to change in hue than any other color parameter (a

phenomenon called hue superimportance) making improving perceptual unifor-

mity in axes that adjust hue challenging.
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Since 1976, modifications, transformations, and translations of the space have

been proposed. As we’ll discuss, most of these changes have been rolled into

modified distance formulas used within the space rather than changing the space

itself. While there are other potentially better ways to model color, the CIE Lab

standard has served well enough to provide common ground until such a time

where a significantly better space can replace it.

2.5 Color Atlases

Where color spaces attempt to quantify colors on a continuous spectrum color

atlases take a discrete approach, defining sets of specific, unique colors and map-

ping them onto planes of hue, brightness, etc. Color atlases were arguably one of

the first practical ways color was ordered. There have been many color atlases,

but we will discuss the two most important ones.

2.5.1 Munsell

The Munsell color order system was created by Professor Albert H. Munsell

around 1905. It was the first 3D color order system that represented colors cylin-

drically in the three dimensions of hue, value, and chroma (similar to saturation)

with an attempt at being perceptually uniform between steps in any dimension.

In the 1930s the USDA adopted the Munsell color order system as a standard

for quantifying the colors of soil samples [8]. The Munsell system was refined in

the 1950s and 1960s by the Committee on Uniform Color Scales of the Optical

Society of America; through a series of perceptual experiments they completely

revised the Munsell system and ultimately replaced it with the OSA-UCS color
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Figure 2.10: The Munsell Color Order System [7]

order system [17]. The Munsell system continues to have widespread use and is

referred to and relied on in various industries from food quality control to car

paint [8].

2.5.2 Optical Society of America Uniform Color Scales

(OSA-UCS)

The Optical Society of America developed the Uniform Color Scales while at-

tempting to improve the perceptual uniformity of the Munsell color order system.

Through the development of new experimental data they found that modeling

color with perceptual uniformity in a Euclidean space was not possible, but that

they would come as close as possible. After studying 38 uniform color scaling

studies a 500 color set was modeled in 3D rhombohedral lattice based on a cuboc-
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tahedron. Essentially OSA-UCS is a continuous enclosed space like any other;

being based on the XYZ space using a 10◦ standard observer and a D65 illuminant

it is simply another way to discretely model color [17].

2.6 Color Distance

Quantifying the magnitude of difference between something that tastes salty

and something that tastes sweet seems like a bit of a ridiculous task, yet this is

not different from what color distance formulas attempt to do. Color distance

formulas serve as numerical representations of how different two colors are, as

perceived by humans, a problem that has been shown to be provably impossible to

do with perfect accuracy [20]. As Kuehni puts it, “any model short of duplicating

in a robotic fashion the complete color vision system will be found limited and

inadequate in specific circumstances. . . and then there remains the issue of inter-

observer variability and its causes and imports” [20]. In the absence of being able

to replicate the visual system, to at least quantify it relatively well we rely on

empirical human experiments to build a model of the average world observer’s

color perception, with the purpose of shaping our mathematical models to fit

that average observer’s perception accordingly.

Many 3D color spaces have been built in an attempt to capture this average

perceptual uniformity into their shape such that a Euclidean distance (the square

root of the sum of each dimensional difference squared) is perceptually uniform no

matter where the colors chosen lie in the space nor how different or similar they

are. Models can only be as good as the experimental, subjective data they are

based on though and whenever new datasets are gathered they tend to disagree

with the existing data to a non-trivial degree [17]. Often this leads to new distance
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formulas that are far more complex than a simple Euclidean distance. These

distance formulas are the crux of the field and forefront of research.

There are many different experimental color perception tests to test for dif-

ferent sized magnitudes of difference between colors, from large to just barely

noticeable. On top of that, there are dozens of variables (from presentation of

colors, to size, to illumination, to how questions are asked) that can affect the del-

icate subjectivity of the problem at hand [9]. Even when testing is done properly

there is considerable error from inter-observer variation, and even intra-observer

variation between testing sessions when conditions are maintained [13]. In the

end even after creating a perfect world average observer, our mathematical pre-

dictions of the magnitude of difference a person will detect may only really be

accurate for 20% of the population [20, p. 132]. These points, while discouraging

also bring up a whole new facet of study around how different people perceive

color, when their perception changes, and more, but before moving onto these

goals we should first focus on improving our current best distance formulas to the

best of our abilities while there is definite and measured room for improvement.

2.6.1 The Curent State of The Art: CIEDE2000

Near the end of the 19th century Hermann Helmholtz, one of the largest

contributors to the visual perception and experimental psychology fields proposed

measuring the difference between two colors using a Euclidean distance [20]. In

the 1930’s Dorothy Nickerson attempted to more accurately model perception

of difference by introducing a psychological basis that took into account some

of the strange effects of perception. Her work indicated that the well-respected

Munsell system might not have had perceptually uniform axes [17]. In 1942
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David L. MacAdam published a new set of experimental data. In MacAdam’s

experiment one observer repeatedly mixed RGB primaries to match 25 colors

(selected relatively evenly across the CIE chromaticity diagram). After gathering

over 25,000 trials, MacAdam was able to derive the now iconic ellipses (see Figure

2.9) representing colors within a range of just noticeable difference (JND) [24].

Although these ellipses are still widely referred to today, when tested against other

wider datasets that measure color perception of object colors they perform poorly

[20]. The procedure of drawing ellipses to represent difference data remains today.

A presumed reason that MacAdam’s data might not match up to further studies is

that color matching may happen at the physiological-level more than at the post-

processing level of hue and chroma evaluation in the mind. MacAdam’s single

observer data, while significant, cannot be taken to represent the average observer

and what they perceive as just noticeably different. Even MacAdam recognized

this in his 1942 publication: “some variations in judgment are inevitable. No

doubt the ideal method would be to make a large number of matches at each

point in the colour chart and then to analyse the spread of the observations, but

in practice this would be an impossibly lengthy process” [24].

Following MacAdam’s work many new studies emerged testing color difference

perception of object colors to create ellipses5 around reference colors. Fitting color

ellipsoids to be spherical using mathematical transforms has become the standard

process by which distance algorithms are created and improved [17]. Around the

mid and late 1900s a significant amount of new data was gathered. With each new

set of experimental data came new difference formulas, and “in 1973 Kuehni found

that 13 different formulas were in use in color-related industries”, but that “levels

5These ellipses almost always are more elliptical than circular and tend to “point” toward the
somewhat-central neutral white point because of the heavy significance hue plays in perceived
color difference.
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of correlation between visual and calculated data for all. . . were unsatisfactory”

[17]. Eventually in the 1970s, out of need more than revelation, the CIE proposed

a new standard: the CIELAB space and its respective Euclidean measure of

difference.

Following a rash of new experimental datasets and distance formulas, the

most recent crown jewel of the CIE is CIEDE2000, —the result of mathemat-

ically fitting of three combined ellipsoidal datasets (RIT-DuPont, Witt, Leeds

and BFD-P) as well as six other considerations of perceptual effects that the

CIE tried to account for6 that weren’t always accounted for in previous formulas

[13, 17, 20]. Despite best efforts, the exceedingly complex CIEDE2000 formula

has shown to be anything but a large improvement over prior formulas and is

still not anywhere close to perfect.

6The six perceptual effects are hue super importance, relative change in chroma difference
with respect to chroma location, lightness crispening based on surround lightness, the fact that
the ellipse of the white-point is still an ellipse, hue difference with respect to hue location, and
ellipse rotations in the negative b axis.
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CHAPTER 3

A New Way to Test

3.1 We Require Additional Data

Often color science research papers concede to some degree in conclusion that

while best efforts were made, due to the noise of variability, a larger, more di-

verse dataset might have made for stronger results [13, 19, 21, 22]. Additionally

gathered datasets are often hard to compare to one another since they are all

collected slightly differently. This has slowed field-wide progress and not greatly

contributed to our knowledge about the degree to which these differing environ-

mental conditions affect results. In addition to all this we’re beginning to see

evidence that observer variability might be something that cannot simply aver-

aged out, and instead will require us to come up with many different color models

tuned to different groups of the population [19].

All of this is unclear from the relatively small amount of data typically gath-

ered [18, 13]. As mentioned earlier, the study of psychophysics stands on the

unsound ground of consciousness, so rigorous testing methods are necessary for
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both respect and to not add additional variables to observing the complex device

of the mind (and body to a degree). While carefully manufactured paint/fab-

ric samples and calibrated light booths are invaluable assets in studying color,

they are exceedingly expensive and require finding and bringing in test subjects

one-by-one for lengthy experiments. Even experiments that use digital displays

typically require custom setups and relatively large budgets or sponsorships for

the results gathered [39]. The field bemoans more data, yet gathering it is often

prohibitive and archaic.

3.1.1 CIE Guidelines for Coordinated Research

In the Fall of 1978, the CIE published a paper titled CIE Guidelines for

Coordinated Research on Colour-Difference Evaluation with the goal of unifying

research in the field shortly after the standardization of CIE Lab 1976. It was

understood that the CIE 1976 standard was a stopgap that would ultimately

need to be refined [17]. The task at hand was to establish a comprehensive set

of color perception data focusing on small, medium, and large color differences

under different viewing conditions. The authors admitted that the task was

complex and may never be completed, but thought substantial progress could

still be made with a strong collective effort. The established guidelines suggest

breaking testing into four steps, with an end goal of forming contours of equal

perceived colour difference (∆E) from a particular color via a provided difference

equation. The guidelines of the steps are as follows.
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Step 1: Study of Methodology

Step one dictates that experiments should be conducted in the neighborhood

of five standardized color centers (roughly a grey, red, yellow, green, and blue) the

last four of which are means of the four tetrahedra studied in the OSA Uniform

Color Scales [9]. Observers should be tested to ensure that they are normal

trichromats and color discrimination should be further tested if possible. The

guidelines recommend repeating experiments 4 times with at least 20 observers.

The guidelines outline three different techniques of tests, summarized as col-

orimeters (light mixing devices), color difference simulators, and object colors

(sample swatches). In regards to testing finite object colors, the CIE estimated

that it would take about 50 samples per color center, well distributed along stan-

dard vectors from a color center. Essentially all of these tests involve comparing

colors to a reference color in one way or another.

A couple of methods are suggested for comparing object colors, the first be-

ing the Rich-Billmeyer-Howe method where pairs of samples are judged for ei-

ther matching or not matching; repeatedly testing the pairs helps establish if

color pairs are consistently perceivable as different. A second method of compar-

ison with a constant color difference provides observers with two pairs of colors,

one being greyscale. Observers are asked to judge whether the difference be-

tween the greyscale pair is greater than or less than that of the standard pair.

Again, this test repeats the testing of pairs to test for consistency. The third

suggested method of comparison is the visual scaling method which is a catchall

term for a group of experimental methods often used in psychology and sociol-

ogy studies, but also psychophysical studies, where the end result is a ranking

of tested items. Paired comparisons (discussed later) is a comparative visual
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scaling method, with associated statistical procedures that have been developed

specifically for psychophysical tests.

Step 2: Study of Experimental Parameters

Step two suggests investigating the effects of the following parameters on per-

ceived difference: sample size, illumination level (luminance level), sample sep-

aration, texture, colour surround (focusing on neutral surrounds and surrounds

that are similar in color to the samples), luminance factor, size of ∆E of samples,

observer variability, duration of observation, and monocular versus binocular ob-

serving.

Step 3: Study of Color-Difference Perception of the Whole Color Space

Step three is to derive a set of fitting coefficients constants throughout the

color space by following a decided set of conditions (described in Step 2) using

the data from the conducted experiment.

Step 4: Derivation of a Distance Formula

Step four is to derive a new color distance formula from the data obtained in

Step 3 and to test it in field trials.

3.1.2 Established Experimental Methods

The CIE guidelines for coordinated research recommend one of three kinds of

previously mentioned testing procedures. Through investigating dozens of color

perception experiments conducted over the last century with a focus on the last
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few decades, we found a myriad of experimental set ups, but all more or less

largely fall into the following four categories described in detail below.

Color Mix Matching

Color mix matching tests (like those used by MacAdam in the early 1900s)

generally rely on mixing primary colors to match a reference color, with the

end result being a set of colors that the observer has mixed and decided were

indistinguishable from the reference. While this test could be implemented on a

mobile device, its value is questionable for a couple of reasons. First, the spectral

pure wavelength lights meant to represent wavelengths of peak recognition by the

cones, lie on the edges of the chromaticity diagram and cannot be recreated by

any RGB display. We could forgo this requirement and use the RGB primaries

instead, working within the gamut of the device to match colors. Second, while

there are many clever ways to let observers mix colors (via knobs, sliders, or even

by tilting the device), it is hard to give observers the same level of control seen

with physical knobs, but that is a bit of a weak argument; the larger problem

is that given a reference color and a few simple controls, observers are likely to

end up mixing colors in a repetitious way when more random results would be

expected within the range of indiscernible difference. This could be somewhat

averted by techniques such as switching the order of the mixer controls between

tests. Ultimately, if the end goal of such a test is to find colors which observers

find indistinguishable from a reference color then it seems it might be simpler

and faster to generate colors close to the reference and ask the observer if they

can tell the difference.
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Color Discrimination

When exploring the idea of mimicking a color discrimination test inspired by

the Farnsworth Munsell 100 Hue Test (FM 100 Hue Test) [8] it quickly became

apparent that this test, while useful for testing personal color vision discrimi-

nation and possibly drawing correlations between color discrimination abilities

and personal/experimental attributes (gender, age, ethnicity, light source, view-

ing angle etc), was not useful for contributing to the model of the world average

observer. The test itself is designed, “to separate persons with normal color vi-

sion into classes of superior, average and low color discrimination and to measure

the zones of color confusion of color defective people” [8] and can score in such

a way because it prescribes a correct color ordering. Ultimately this type of test

doesn’t help us understand colors within just noticeable difference (at least for

superior color observers) and likely cannot help us understand discernment of

larger color differences. This said, a color discrimination test similar to the FM

100 Hue Test is likely a great measure to use before experiments to check for

color deficiencies in a known and measured way. There may be other more useful

ways to use color discrimination tests to gather the data needed to improve the

average world observer model, but this type of test on a mobile device is probably

too time consuming for the kind of results it delivers.

Contrast Matching

Color matching is used in many recent color discrimination studies [39, 36].

The basic premise is that while there is a yes/no answer to the question of can an

observer tell if there is a discernible difference between two colors, it is harder to

ask an observer how different two colors that are clearly different are. The usual
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strategy is to provide a reference pair of greyscale colors and to ask the observer

if the difference between a provided color pair of colors is greater than, less than,

or equal to that of the greyscale reference pair. Another strategy is to give the

observer a set of greyscale pair samples and ask them to choose the one with the

closest match in difference to a provided reference color pair.

It is my opinion that this is currently the best method for measuring medium

to large color difference discernment, but it is an awkward test to give comparing

greyscale samples to color ones and the test’s origin seems to be driven by pre-

computing technology. A possible digital variation of this test that may be easier

on the observer by allowing the observer to adjust the contrast between the colors

in the greyscale pair until the observer is satisfied that its difference matches that

of the colored pair. This comparison still seems awkward and hard for users to

judge.

Color Difference Discernment

A color difference discernment test can be carried out in a number of forms

but in its simplest form tests if a user can discern the difference between two

colors or not. This is obviously only useful for testing the threshold of just

noticeable difference around a reference color, but can be modified to test for

more. This simple, binary test seems to serve as a modern replacement for color

mix matching tests, but as it is quickly becomes less than useful with color pairs

outside of the just noticeable and small difference range.
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3.2 The Proof of Concept

Cheaper, quicker color difference evaluation using digital displays has largely

been ignored for the last couple decades for a couple of good reasons [17, 20, 39].

However, despite their shortcomings and considering recent improvements we

cannot continue to afford ignoring digital alternatives. Mobile devices with ever

improving color reproduction [26] and a wealth of sensors provide a relatively

easy means to gather new, dense experimental data at a scale researchers like

MacAdam once called impossible.

How digitally gathered datasets compare to physical ones has only begun to

be explored; it is currently unclear if the results of digital tests (using colors that

are in gamut) match up to more established physical ones [17, 39]. It is also likely

that this form of data gathering will be very noisy from inter-observer variability

[39], but with enough observers, tests, and previously unrecorded experimental

data, we may be able to mitigate these problems enough to make meaningful

advances. It is possible that in this trade-off of control for scale we will not be

able to advance our understanding of perception further than we already have;

regardless, it is a worthwhile endeavour to explore the wealth of new experimental

opportunities crowdsourced color perception experimentation on mobile devices

provides, even if only to prove that it is not yet possible and to help understand

why.

After surveying the advantages and shortcomings of existing color tests, it is

clear that the field could benefit from new creative ways to test the degrees of color

difference perception. From this survey and examination of the CIE Guidelines

I propose a new, arguably more robust method of experimentation based on the

statistical method of paired comparisons, to help cope with the additional noise
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that can come from digital and crowd sourced testing, and to help highlight inter-

and intra-observer variability. This variation of a color difference discernment

test uses a center reference color and two comparison colors placed on either side,

and asks the observer to choose which color is closest to the reference (Figure

3.1). This kind of test is unique in some ways, but is related to existing tests

[36, 19, 9]. Additionally, by conducting this test in a crowd sourced manner via

mobile devices, the test itself can be iterated, and performed more rapidly at a

scale never before tested. In addition, this method of experimentation is highly

extensible and adaptable to changing experimental conditions, evolving data sets,

and new hypotheses.

While each individual comparison the observer makes is a discrete test, the

strength of this experimental method relies on the information that can be gleaned

from a completed test session. The combination of information from each individ-

ual comparison test, along with what can be inferred from a session of comparison

tests (plus additional information provided by the mobile device being tested on

regarding environmental and testing conditions) allows us to identify poor judges,

poor testing environments (environment, device, etc), and even poorly designed

tests to a degree.

By testing the same observer with the same color pair multiple times, test-

ing multiple observers with the same test, and overlapping sets of tested colors

with other observers, we can potentially stitch together a larger continuous set

of results. After we have a large pool of test results we can filter and purify

noise out of the data and draw new insights on inter- and intra-observer variabil-

ity. Through crowdsourced testing, we essentially observe if the variables were

controlled (filtering accordingly) rather than trying to control the variables.
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Figure 3.1: A screenshot of the proof-of-concept app

3.2.1 Experiment Specifics

The number of paired comparisons tests in one test session is determined by

the following formula where n is the number of colors being compared to the

reference center color and m is a redundancy multiplier (In a paired comparisons

test we throw out tests of an object against itself, which is why we subtract n.

We divide by 2 as to not double count the same paired comparison with a flipped

object ordering.).

Number of tests in a session = m ∗
(n2 − n)

2
(3.1)

As an example (Figure 3.2), imagine we generate a test session where we want

to test a reference red color against three slightly different red colors (A, B, C).

First we generate the pairs the reference will be compared to in each test such that

color A will be tested against B, A against C, B against C, and so on, skipping
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testing colors against themselves. We then generate the same pair tests m more

times to ensure that an observer will see the same pair multiple times to test for

consistency. An observer that disagrees with their own judgements enough will

have their results thrown out unless a large enough portion of the population also

disagrees with themselves on the same pair, which would mean those two colors

are hard to discern from one another. After all the pairs are generated, their

order (including the order of the colors within each pair) is randomized. This

randomization can happen for each observer or just once before the test is given

to multiple participants.

After generating a set of tests, the observer is shown each pair of colors

with the reference in the center and asked to choose which color in the pair

is closest to the reference color. Time is not limited or recorded for each test,

but could be. Each of the three color patches are equally-sized and positioned

with equal space between them to reduce the known illusory impact of size [34]

and distance1. The color squares are placed on a neutral grey background in

an attempt to reduce the bias of the chromatic and lightness crispening effects

(this effect causes a measurable increase in the perception of difference between

two colors when the surrounding color is close to the samples in lightness or

chroma); most researchers attempt to minimize this bias by consistently using

a measured neutral grey [34, 13]. Between making color selections, the color

patches (excluding the reference) are briefly replaced with the same neutral grey

used as the background to mitigate a burn-in effect (this brief break likely is not

long enough to counteract the illusory effects of staring at a sample for a long

period of time, but could be adjusted accordingly and is better than nothing).

1The farther apart two colors are the more similar they appear. When two colors are side-
by-side with no separation, differences are especially apparent [34]
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Figure 3.2: An example of generating the paired comparisons tests for
a test session using 3 comparison colors (reds) and 1 reference color
(purple)
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While each test is relatively quick, the number of tests required for each

additional color increases exponentially. For example, using our Equation 3.1,

testing 3 colors with triple redundancy takes 18 pair tests, while 6 colors balloons

to 90, which can be reduced to 60 if only double redundancy is used. This,

however, is not impeding since crowdsourced test sessions can be organized such

that they are repeated with similar judges/environments, or even partially overlap

to connect smaller datasets into more meaningful larger ones.

3.2.2 Paired Comparisons

Thurstones Law of Comparative Judgment and the Method of Paired Comparisons[38]

is a widely cited method of statistical analysis for quantifying and ranking pref-

erences of things that are typically hard to quantify and directly compare to one

another. Paired Comparisons makes it relatively easy to rank things like foods,

job options, election candidates, etc. The method itself describes an experiment

design that can be analyzed by a set of statistical methods to rank its inputs and

analyze the validity of the results based on the consistencies of observers. The

basic premise relies on putting every option to be compared against one another

in the style similar to a double round-robin tournament (see the top illustration

in Figure 3.2). The observer is then presented one pair at the time to choose

between based on the question being asked. For each pair the winner is assigned

a point; the score of each comparison is recorded separately for further analysis.

Once all pairs have been tested, scores are tallied per row, representing all of the

comparisons for which that object was chosen (in Figure 3.2, if for the two tests

in row A, A was chosen in the first pair, and C was chosen in the second pair,

the score for row A would be 1). These row totals can then be used to rank the

choices. There are two validity checks to run before using this data however.
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Using Paired Comparisons Data

One of the benefits of Paired Comparisons is how it inherently captures judge

consistency information. One way to check for consistency is by looking for

the number of circular triads an observer makes. Triads are formed when votes

contradict the transitive property. If someone prefers A over B (A > B) in a

paired comparison and then B over C (B > C), we can say that that person

should prefer A over C (A > B > C ≡ A > C). In the case of two choices,

a disagreement might just signify a difference between the three that is within

just noticeable difference (in other words are perceptually the same), but in the

case that a loop is formed (A > B, B > C, C > A) there is a disagreement

and a circular triad is present. These triads occur because either the objects

being compared are imperceptibly different to the observer either due to personal

perception, environmental conditions, or just poor test taking2.

Formulas are available for calculating total number of triads in a set of paired

comparisons for an observer and for creating a coefficient of consistency by com-

paring found triads with total possible triads. When a judge has a consistency

coefficient that is anomalous with the group, then we can identify that they may

have lower perception of differences relative to the group or that their testing en-

vironment was relatively faulty. When a measured majority of judges have poor

consistency coefficients, it might be a sign of a bad test, or imperceptible differ-

ences. Additionally, if a majority in the whole population of judges forms the

same triads there may be an imperceptibility of difference between those objects.

2All of these assumptions can be more-or-less confirmed by comparing results to the global
results and to recorded environmental variables such as light, device movement, etc.
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3.2.3 Following the CIE Guidelines

The CIE Guidelines were kept in mind while designing this experimental

method, with considerations given to the fact that guidelines were published in

1978, long before color experiments using digital displays could be conducted.

Largely this experimental method hopes to follow Steps 1 and 2 to be a means

of providing data for future research following Steps 3 and 4.

Step 1

Being a digital experiment, almost any color center can be tested, granted it

and the range of colors around it being tested fall into the gamut of the device

space. It is important that the experiment be run on a device with a known gamut

so that the mapping of device-independent Lab colors to device-dependent RGB

is accurate. In our testing Apple’s iPhone 5 and 5s were used3, both which

have a known and consistent sRGB gamut. As for the test itself, we determined

that a visual colorimeter or color-difference simulator testing approach did not

make sense considering the medium, and that a test that modeled object color

experiments was more apt. Typically, the limiting factor of object color testing

has been having a limited number of samples, creating them, making sure they

do not degrade, avoiding metamerism, and making sure they are not fluorescent4.

Almost all of these concerns essentially become non-issues on a digital device with

a known, well-controlled gamut5. This is not to say there are not other concerns

with digital reproduction of color (discussed more later). Running an experiment

3Pilot study experiments were run exclusively on an iPhone 5s
4Fluorescent in this sense means emitting light from absorbing light (for example a substance

that glows blue under UV light in normal daylight containing invisible UV light).
5However even quality displays with faithful consistent color reproduction across devices can

degrade different over time or have defects off the factory line resulting from inadequate quality
control.
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like this in a digital crowd sourced manner makes the recommended experiment

repeat and observer counts (of at least 4 and 20 respectively) suggested by the

standard, trivial to meet.

The paired comparisons style experiment we use falls under the suggested

visual scaling method and the raw data gathered should be comparable to other

similar studies. It should be noted that we did test experiments that modeled af-

ter the other two suggestions of the guidelines (the Rich-Billmeyer-Howe method

and comparison with a constant color difference method), but determined the

paired comparisons method to produce more robust and versatile data, and to

be the easiest for observers to understand.

Step 2

Step 2 is about testing the various parameters that are known to affect color

difference perception6. By the nature of our experiment being digital and crowd

sourced, testing the effects of all but two of the parameters described (texture of

samples, and monocular vs. binocular observation) should be relatively simple.

By targeting observers that have already taken a pilot test with an identical test

with one tweaked parameter, we should be able to build an understanding of how

these parameters effect perception.

Simple experimental attributes like sample size, sample separation, color of

surround, duration of observation, and size of ∆E can all be easily tweaked and

tested. Furthermore with crowdsourcing, it is possible to test the fine-grained

effects of slight experimental parameter changes by automatically adjusting pa-

rameters and generating new tests to send out, based on currently received results.

6The quantified degree to which these parameters effect perception is largely disputed and
unknown [9].
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For example if we want to test the size of samples we could send out two modified

tests to our n observers who have already seen the original, one with a slightly

smaller sample size, and one with a slightly larger one; based on the results we get

back, we could then choose to investigate (manually or automatically) some finer

grain of in-between sizes where perception is most contentious to help quantify

how that particular parameter affects perception.

Parameters like illumination level and luminance level are more questionable

to test on mobile devices in uncontrolled environments, but still can be tested to

a degree to possibly provide new insights. By controlling the brightness of the

device screen we can test how illumination level affects perception, although it

must be noted that by the nature of being displayed on a screen, the samples are

emitting light rather than reflecting light from an illumination source. Luminance

factor (the ratio of luminance of a sample compared to a perfect diffuser under

the same lighting conditions) is probably near impossible to test, but a similar

variable we can study is the affect of environmental light at the time of testing.

By using either light sensors built into devices (usually used to adjust screen

brightness automatically), or front-facing cameras, we can measure the intensity

of the light in the testing environment to a degree. This information can later

be correlated to changes in perception, or can be used to filter test results by

throwing out tests that either are outside of a certain range or that fluctuated

too much during testing.

3.3 Pilot Study

The first purpose of the pilot study was to build and test a simple iteration

of the application (app) to determine best usability practices and platform lim-

48



itations. The second purpose was to use the built app to collect a relatively

small, but statistically significant, dataset in order to estimate the rough level of

variability in the data and the scale of data that might be needed in a full study.

3.3.1 App details

The app was built for iOS in order to target Apple’s iPhone 5 and 5s; both

devices use a reliable, much studied sRGB display [26, 16]. Sizing and spacing

of the samples was chosen somewhat arbitrarily and need to be studied more.

When choosing sizing and spacing, consideration was given to providing a decent

margin around the samples while making the samples themselves square and as

large as possible. Careful thought was given as to not use borders or markings

near the samples. The small visual indicators and labels used on the screen were

colored in greys and appropriately distanced from the samples. When possible,

subtle animations were used instead of colored markings to convey which areas

of the screen were tappable.

The app was built to set the device’s backlight brightness to 100% upon

launch and to set it back to 100% if the observer changed it during the test.

Whenever the brightness changed, a small explanatory notification was shown at

the top of the screen. Every test used a random test/pair ordering. For posterity

and future studies, this random order of the tests and the colors in the pairs was

recorded for each observer. The time the test was completed was also recorded.

It would have been possible to record the time taken for each pair and the whole

test session, but this information was not recorded or used for our pilot study.

All color data was recorded as the intended Lab color values as well as the sRGB

values after translation.
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3.3.2 The Colors Chosen

For the pilot study, we used the red specified in the CIE Guidelines [9]. In

addition to complying to the standard we decided to test this red because it is

used and cited in existing research about color perception testing on LCD displays

or by using object colors and the method of paired comparisons [36, 39].

To choose the colors we would compare to the red we looked at the 70 colors

tested against the red color center in the previously mentioned LCD research

experiment. We sorted these colors according to the CIEDE2000 distance for-

mula and then chose 5 evenly spaced colors along the distribution. Due to an

experimental oversight, the Lab values for the standard red specified by the CIE

were used instead of the slightly different Lab values used in the LCD experiment

(The difference between the two being a CIEDE2000 distance of 1.5524). This

CIE defined red was used consistently throughout the rest of the experiment as

the color center. Since the 70 colors used in the LCD experiment were created by

choosing 5 points along 14 equally distributed vectors of equal magnitude from

the color center, an alternative testing approach would have been to test 5 colors

along a single vector. Out of 5 sets of 70 colors tested in the LCD experiment, 9%

of the colors generated were determined to be identical when converted from Lab

to RGB [39]; none of the colors used in our pilot study mapped to the identical

RGB values.

3.3.3 Statistical Verification

The pilot study used eleven observers, consisting of students and professors of

ages between 20 and 60 with a majority falling between 20 and 25. Testing took

place in various conditions with varying surounding light. All observers reported
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Table 3.1: Colors used in pilot study

CIE Lab sRGB

L* a* b* R G B

Ref. Red 44.4 37.9 23.3 0 .665814 0.298181 0.268118

Red 0 44.278000 37.709999 23.469000 0 .663651 0.297694 0.265869

Red 1 44.306999 35.611000 23.422001 0 .653566 0.306167 0.265891

Red 2 45.726002 37.209000 21.694000 0 .675875 0.314403 0.290424

Red 3 46.313000 37.750999 21.889000 0 .685503 0.318068 0.294655

Red 4 47.866001 36.321999 22.391001 0 .696618 0.338833 0.305284

being color normal (in a proper test this would need to be more explicitly tested

via a test like the Ishihara plates or Farnsworth FM 100 or D-15 test). Five

observers were female, and six were male.

Once we had the data for each observer we were able to sum the results of

each row/color (method described in Paired Comparisons section) to see each

observer’s color ranks. This rank was essentially the result of 8 color pair choices.

In this test, since the colors were chosen to be equally distributed along the 70

sorted colors (sorted in regard to their CIEDE2000 distance from the reference

color) from the LCD research experiment, we would expect observers with perfect

discernment to rank the colors in index order with an row rank score of 16 for

red 0, 12 for red 1, 8 for red 2 and so on.

We then calculated the standard deviation of these ranks for each color across

all observers. The resulting standard deviations and standard error (standard

deviation normalized for the sample size), suggests that on average, observers

only deviated from the average rank by one test for each color. This error is
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Table 3.2: Expected/Average Rank, and Standard Deviation/Error of
Ranks per Color (row totals)

Perfect Rank Avg. Rank Standard Deviation Standard Error

red 0 16 14.82 1.168 0.352

red 1 12 12.45 1.036 0.312

red 2 8 7.09 1.375 0.415

red 3 4 5.27 1.009 0.304

red 4 0 0.36 0.924 0.27872

relatively low, but this pilot study employed a small sample size and only tested

one color center with five colors that were relatively well-spaced in regard to

CIEDE2000 distance. As a sanity check, this superficial analysis suggests that

the test on a mobile device in various settings is a viable testing method to be

explored further, especially when we consider that a more complex analysis of

the data and error would allow us to filter noise and draw more complex insights

of intra- and inter-observer variability.

Because of the variables discussed in previous sections, it is hard to determine

how many observers would be necessary in a statistically relevant sample for a

test of this nature. If we are able to detect a relatively balanced and mostly

symmetric distribution of answers in a substantial pilot test, the Central Limit

Theorem tells us that we will need approximately 30 observers per test to produce

results in the 95% confidence range. Once we take into account the number of

these tests necessary to cover all color centers along multiple vectors, overlap

the tests, account for noise, and inter/intra-observer variability, the number will

surely balloon, but not excessively for a crowdsourced experiment.
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3.4 Future Work

Unfortunately, executing a full test of the experimental methods described

prior was outside of the scope of this thesis, however, we have thought through

many of the advantages this type of crowdsourced mobile testing can capitalize

on, along with known shortcomings and problems that will need to be overcome

or taken into account.

3.4.1 Crowdsourcing

Crowdsourcing is not a typical method employed in academic experiments

and has only recently begun to be seriously considered and used by researchers,

largely due in part to advancing technology and the internet. With a sizeable

portion of global population carrying highly accurate displays in their pockets,

loaded with sensors, it is suddenly possible to poll a large swath of the population

in a fraction of the time that it takes to get a single person into the lab. The

potential of global crowdsourced experiments and research has only begun to be

explored and understood for what it is worth. We hope that the previous proof-

of-concept and ideas presented here serve to encourage future color perception

research that capitalizes on mobile crowdsourcing.

Examples of Current Experimental Crowdsourcing

Examples of successful crowdsourcing with the purpose of furthering scien-

tific understanding reach back to the 1900s with The National Audubon Society’s

Christmas Bird Count. This experiment, which started at the turn of the century

with 27 citizen scientists, had 71,531 citizen scientist participants in their world-
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wide 2012 winter count [32]. The iNaturalist iPhone app (a project that started

as a UC Berkeley Masters final project) has a community of over 37,000 global

citizen scientists as of May 1st, 2014 that help record biodiversity by contributing

to a set of over half a million recorded observations [1]. In 2014, following the

disappearance of a commercial jet over the Gulf of Thailand, a satellite company

named DigitalGlobe opened a crowdsourced campaign that allowed anyone to

pour through recent satellite images of the region to flag potential debris and

clues [35].

These are all examples of crowdsourcing that tap engaged citizen scientists,

rather than the average citizen, to collectively solve huge problems. Even though

these projects only ostensibly help the participants, they are all backed by tens

of thousands of volunteers. Considering the over 200,000 user sessions that con-

tributed to popular web cartoonist Randall Munroe’s color naming survey in 2010

[27] and the viral popularity suggested by the nearly 800,000 social shares of X-

Rite’s (parent company of Pantone) digital version of the Farnsworth Munsell

100 Hue Test [8], it is not hard to see how a color perception test distributed as

a mobile app could potentially have a significant number of contributors.

Sweetening the Deal

Sometimes it is not easy to gain significant voluntary participation in crowd-

sourced experiments. In these cases, sometimes the way the data is collected has

to be tailored to benefit the participant. The Track Your Happiness app, which

asks participants questions about their happiness throughout the day, not only

collects meaningful research data, but provides personal insights to participants

along the way. The project began as a doctoral project in 2009 with 1,000 users

and has grown to have over 15,000 highly diverse participants filing a total of
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650,000 reports as of 2011 [40, 37]. The rate at which people return to use the

Track Your Happiness app multiple times is a great indicator of how providing

interesting feedback to participants can keep them engaged. It is not hard to

imagine tweaking a test like ours to provide participants feedback on when they

perform best, what colors they have the most trouble discerning, and perhaps a

visualization of what colors they have been tested on and how much they have

contributed to a global set of data, to make the experiment more engaging. With

an engaged testing population, new tests can be continually created and sent

down (automatically or manually created) to test new hypotheses, points of high

variability, and experimental parameters such as color swatch size and spacing.

Inadvertantly Contributing

There are other potential methods of crowdsourcing such as following the

reCAPTCHA model. In the reCAPTCHA model, participants online needing to

prove their humanness do so by typing hard to recognize words and numbers,

where one of the two is actually a scan/photograph of a book or house, thereby

helping digitize text and annotate scanned literature [2]. In the reCAPTCHA

model there isn’t necessarily a correct answer for the second word or number, but

when a public consensus is reached it can be considered the right transcription

with high probability. Small color tests could be used alongside other reverse

turning tests to slowly build up a large set of color perception data. This model

is not as feasible for delivering lengthy tests or for tracking participants over time

and across tests, and reCAPTCHAs typically are not seen on mobile devices

where color conditions can be more easily known and controlled.

Another possibility is to pay participants online to participate in experiments

through an online crowdsourcing marketplace like Amazon’s Mechanical Turk ser-
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vice. Diversity of workers in these marketplaces is questionable with 57% coming

from the US and 32% from India, and the population generally being younger

and college educated [29]. Despite this, a more recent psychology study in 2011

found the workers to be “more demographically diverse than. . . standard Internet

samples and. . . significantly more diverse than typical American college samples”

[12]. The same study found that overall the data gathered “met or exceeded the

psychometric standards associated with published research” [12]. Costs for ad-

ministering medium length surveys on the order of around ten minutes generally

vary, but appear to not cost more than $0.50 [12, 29]. There are many other

considerations to be had when building an experiment for deployment through

Mechanical Turk, but it is nonetheless a cheap and promising crowdsourcing

method. At the moment Mechanical Turk is a web only tool, making careful con-

trol of the devices used by observers relatively impractictal (or even impossible).

3.4.2 Mobile as a Platform

Color Reproduction and Light

Some of the obvious problems that come up when discussing using mobile

devices for color testing is lacking color-reproduction, variance between displays,

brightness settings, surrounding light conditions, viewing angle/position, and re-

flectance of the screen. While none of this is ideal, it is important that we strive

for consistency in our data and where we cannot guarantee consistency, then we

record all the pertinent data that we can.

As far as color reproduction goes, RGB screens even at their best cover no

more than an estimated 35% of the gamut of human vision [10]; even with 6

primary colors they cannot cover more than 96% of human vision. In 1980,
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Michael R. Pointer created the Pointer’s Gamut (see Figure 3.3), which sought to

capture the range of reflected object colors that we see most day-to-day (based on

4089 samples), while leaving out more specular colors such as those seen in the sky

[5]. This irregular gamut serves as proof that while our displays are not perfect,

they arguably can capture the most important colors. By targeting devices with

known gamuts that have measurably tight tolerances (such as Apple’s iPhone 5

and 5s, which have a consistent sRGB gamut [16, 26]) we can assure that we

are able to reproduce colors consistently across devices and within a significant

portion of the Pointer’s gamut.

By targeting a single, reliable device, we can take into account parameters

like its maximum brightness, and reflectance of the screen to a degree. This

naively ignores such things as backlight degradation, and cases or films that

observers might have covering their screens. By recording or controlling the

screen brightness we can help take the brightness variable into account, and by

asking the user about films or cases before testing we presume we should be able

to filter out compromised data relatively well.

Knowing surrounding light conditions can be tough; on the screen we can

surround color swatches with neutral colors, but factors such as external light

and even the color of the phone bezel could affect the results. Ambient light can

be measured fairly well through device light sensors if available7 or more roughly

via the front-facing camera.

While many tests restrict human vision by having the observer look through

eyepieces or keep their head at a certain distance from the samples with samples

7The front-facing light sensor on iPhones is questionably accessible via a public API, but
use of the API apparently results in Apple App Store rejection [4]. It could still be possible
to distribute such apps not through the App Store, but obviously it would be much harder to
scale.
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Figure 3.3: Pointer’s gamut compared with the iPhone 5’s [6]
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at a controlled angle relative to the eye and light source, a self-administered

mobile test will be held unpredictably. While it is unclear how much relatively

small movements or differing angles affect perception in a test like this, tilting the

device at various angles, bringing it close or farther from the eyes while testing

is likely to have an effect. While there’s no easy way to determine the angle

of the device relative to light sources in the room or to the observer’s eyes, by

recording accelerometer and gyroscopic data during testing, we can determine

certain behaviors and levels of movement and filter tests accordingly.

Capturing Additional Data

An interesting example of the type of extra data we can easily gather with

a mobile crowdsourced test is how long the observer takes to decide on a test

choice. In our pilot test we observed observers taking significantly longer to de-

cided between color pairs determined to be closer using CIEDE2000, while pairs

that were farther away were answered relatively quickly. Going off of this assump-

tion, it may be useful to collect the time taken to complete each test as a means

to strengthen determining where observers contradicted themselves. Observers

can explicitly contradict themselves through their pair choices; by analyzing this

in tandem with the time taken to decide, we may be able to determine whether

a pair decision was difficult because the colors were indistinguishable from one

another, or because they were perceived as equally different from the center color

(for example we might expect observers who regularly flipped their decision on

a pair but answered quickly, to not see the difference between the pair colors,

whereas observers that answered regularly, but took a relatively long time decid-

ing on those pairs might have been more likely to have had difficulty choosing

between the two because the colors seemed equally distant from the center). This
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timing data could also be used more simply to strengthen knowing which pairs

observers contradicted themselves on (in actuality or though relatively lengthy

deliberation).

It is known that the length staring at a sample can affect its perception as well

[13] so by recording the time taken on each test we may be able to throw out tests

where the observer could have been staring for long enough to be affected by an

after-image. Additionally, by using timestamps and app data we can determine

if the observer finished a test in one sitting or if they took their time between

samples (making it more likely the environmental variables changed), and throw

out or filter their data accordingly.

One of the biggest insights that may come from a study of this scale is a better

understanding of inter-observer variability. Inter-observer variability is already

thought to vary widely [19], therefore it may be that even our best model of

a world-average observer does not represent us individually with high accuracy.

There are innate differences between us all both neurobiological and cognitively

that introduce variability into how we each perceive color. Physical changes such

as macular degeneration [11] can further cause us to perceive color differently

than others. According to Kuehni, even with the various ways we can fit formu-

las to observer data, “such a formula can be considered accurate for the mean

observer. . . but it will represent the judgments of only about one third of real

observers to within ±20% of the calculated value” [19].

By asking observers in a widely crowdsourced test basic questions about age,

sex, ethnicity, known vision impairments, and by administering basic color dis-

crimination tests before our own paired comparisons testing, we may finally be

able to model individual perception more accurately by realizing divisions in the

population by which we can group observers.
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CHAPTER 4

Conclusion

Accurate understanding of color is a cornerstone of many industries, yet our

current standards perform poorly, with an accuracy of predicting existing empir-

ical data around 65 percent. While the physics of color remains measurable, the

psychological experience and many of its intricacies is not. Despite this, we can

continue to strengthen our models and understanding of perception with creative

and concerted, empirical experimental efforts. In order to develop a better un-

derstanding of color perception, we need as Kuehni puts it, “a widely controlled

and comprehensive effort” [18].

In understanding perception, we need to not only gather more data, but to

study how the variables in our experiments affect perception. Additionally we

need to better our understanding of the world-average observer and its pertinence

to our models. These questions can be tested at a large scale while gathering color

perception data through a crowdsourced mobile app.

Crowdsourced mobile testing as a method needs to be investigated further,

but promises to be a potentially viable way to improve our understanding of the
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many facets of color perception at a scale, speed, and level of granularity not

yet seen by the field at large. Ultimately, even if this method doesn’t further

the development of our color models and standards it provides an innovative use

of paired comparisons, mobile crowdsourcing, and can shed new light on how

experimental parameters and conditions affect perception.

We hope the ideas and proof-of-concept outlined here help to inspire and

encourage future research which will bolster and reinforce our understanding of

our most relied upon sense. Please do not hesitate to contact the author for any

clarifications or questions1.

1ryanmcleod@gmail.com
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