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Abstract

Communication Accommodation Theory (CAT) states that individuals adapt to each

other’s communicative behaviors. This adaptation is called “convergence.” In this work

we explore the convergence of writing styles of users of the online music distribution plat-

form SoundCloud.com. In order to evaluate our system we created a corpus of over 38,000

comments retrieved from SoundCloud in April 2014. The corpus represents comments from

8 distinct musical genres: Classical, Electronic, Hip Hop, Jazz, Country, Metal, Folk, and

World. Our corpus contains: short comments, frequent misspellings, little sentence struc-

ture, hashtags, emoticons, and URLs. We adapt techniques used by researchers analyzing

other short web-text corpora in order to deal with these problems. We use a supervised

machine learning approach to classify the genre of comments in our corpus. We examine the

effects of different feature sets and supervised machine learning algorithms on classification

accuracy. In total we ran 180 experiments in which we varied: number of genres, feature set

composition, and machine learning algorithm. In experiments with all 8 genres we achieve up

to 40% accuracy using either a Naive Bayes classifier or C4.5 based classifier with a feature

set consisting of 1262 token unigrams and bigrams. This represents a 3 time improvement

over chance levels.
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Chapter 1

Introduction

Many online communities exist for users to share and discuss content. SoundCloud.com

is one of these websites. It is dedicated to the sharing and discussion of music. Through

SoundCloud’s interface users are able to leave comments on a per song basis. SoundCloud

categorizes the music uploaded to its servers as one of several genres. In this work we explore

the link between comment writing style and musical genre. We use a supervised machine

learning approach with several classes of features in order to predict the genre of music each

comment is discussing. We go on to use our classification system to determine if we can

accurately predict the genre of a song based on the classification of the comments made

about it.

Corpora used by Natural Language Processing (NLP) researchers are mostly works of

literature or prose, generally free of misspellings and consist of well-structured grammatical

and coherent sentences. This is not the case for the vast majority of SoundCloud comments.

They often contain misspellings; both typos and stylizations. They lack much of the basic

structure found in literary text. They are rarely longer than a sentence and are often single

words or phrases. They also contain constructs mostly seen in Internet text: emoticons,

hashtags, urls, and responses (“@” followed by a username). Our literature research indicated

no other analysis done on a corpus of SoundCloud comments. This led us to use techniques

from the vast amount of work completed on Twitter-based corpora.
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Chapter 2

Background

2.1 Machine Learning

Machine learning is a “computational methods using experience to improve performance

or to make accurate predictions”[1]. Algorithms analyze past sample data in order to gen-

erate models for predicting characteristics of data presented to these algorithms in future.

The building of these models is called training. Our method takes the supervised learning

approach. In this approach all of the training examples shown to the learning algorithm are

tagged with labels representing classes of data. Large sets of labeled training examples can

be difficult to obtain since they often require that humans manually label each example. The

source of our corpus made this task relatively easy. Supervised learning is generally used for

classification and ranking problems[1].

Features are sets of attributes that are associated with an example. They are often

represented as vectors. As an example, the features of a book may include: number of

chapters, presence of certain words, weight (in the case of a physical book), and the literary

period in which it was written. Examples are grouped into samples. Training samples are

groups of examples and their labels which a learning algorithm uses to train. Validation

samples are used “to tune parameters of learning algorithms.” Test samples are “used to

evaluate the performance of a learning algorithm.” [1] Test samples are kept separate from

training and validation samples and are used after a learning algorithm has been trained.

2



2.1.1 Classifiers

Näıve Bayes

A Näıve Bayes classifier is a classifier based on Bayes’ theorem. It has a strong (näıve)

independence assumption about features. It assumes the presence of a feature is independent

of the presence or absence of any other feature. A Näıve Bayes classifier chooses the class

label based on the class that is most probable. This means that a Näıve Bayes classifier

must compute the probability that an instance is of each class. The probability of a class is

the product of the conditional probabilities of each feature with respect to the class.

The equation is as follows:

classify(f1, ..., fn) = max(C = c)
n∏

i=1

p(Fi = fi|C = c) (2.1)

Where fi is a feature, c is a class label, and i is the number of features.

C4.5

The C4.5 learning algorithm is a decision tree algorithm. It is an improvement on the

ID3 algorithm. Both created by J. Ross Quinlan [2]. In the decision tree leaves indicate a

class. Decision nodes specify some test to be carried out on a single attribute/feature value

with a branch for each outcome. At each decision node the C4.5 algorithm uses the attribute

which creates the greatest split of classes into subsets. The process recurs until C4.5 reaches

one of three base cases.

• All training samples remaining are from the same class.

• None of the remaining features provide any information gain.

• The algorithm encounters and unseen class.

We make use of the WEKA J48 implementation of this classifier.
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Support Vector Machines

Support Vector Machines (SVM) map training vectors, xi into a higher dimensional space

by a function φ. The mapping into higher dimensional space is defined in terms of a kernel

function. There are many different kernel functions. Some of the most common are: linear,

polynomial, radial basis function, and sigmoid. SVM finds a linear separating hyperplane

with the maximal margin in the higher dimensional space [3]. The goal is to maximize the

distance from the hyperplane to the nearest training data point. We make use of the WEKA

interface to the LibSVM [4] implementation of SVM.

IB1

The IB1 algorithm is a very simple learning algorithm. It takes an “instance based”

approach to predict the class of a sample. It finds the training instance with the smallest

euclidean distance from the test example and predicts the training instance’s class for the

test instance. [5]

Figure 2.1: Supervised Machine Learning Pipeline
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2.1.2 Performance Metrics

The simplest metric for assessing the performance of a machine learning system is accu-

racy. It measures the proportion of true positives and true negatives to the total size of the

sample population:

TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative
(2.2)

Two other metrics are widely used to assess performance of machine learning systems.

Precision is the fraction of documents retrieved that are relevant:

TruePositive

TruePositive+ FalsePositive
(2.3)

Recall is ratio of relevant documents retrieved to the total number of relevant documents:

TruePositive

TruePositive+ FalseNegative
(2.4)

The two metrics have an inverse relationship. You can achieve 100% recall by simply clas-

sifying every sample as positive. You can achieve 100% precision by never guessing that a

sample is in the class you are looking for.

Precision and recall are often combined to form a metric called the F-Measure. It is the

harmonic mean of precision and recall:

2 · precision · recall
precision+ recall

(2.5)

The value of F-measure ranges from 0-1. An F-measure of 1 is ideal.
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Area Under ROC Curve (AUC)

A receiver operating characteristics (ROC) graph displays the relation between true pos-

itives and false positives. It is often used in place of accuracy in order to compare the

performance of classifiers. The vertical axis represents the true positive rate while the hor-

izontal axis the false positive rate. Each rate can range from 0 to 1. The line y = x

represents a classifier which randomly guesses a class for a given sample. When using it to

analyze multinomial classes false positives represent a prediction of any other class than the

correct class.

ROC curves are two-dimensional representations of classifier performance. In order to

compare classifiers these curves are often reduced to a single scalar value. This is often

achieved through calculating the area under the ROC curve (AUC) [6]. All points along the

x = y curve have an AUC value of 0.5. This means that a classifier with an ROC value

above 0.5 performs better than random chance.

[6] states that: “The AUC has an important statistical property: the AUC of a classifier is

equivalent to the probability that the classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative instance.” Bradley’s work in [7] suggests that AUC

appears to be “one of the best ways to evaluate a classifier’s performance on a data set when

a ‘single number’ evaluation is required...”

2.2 Stylistics

Karlgren posits that “texts are much more than what they are about” and “[s]tyle is

the difference between two ways of saying the same thing” [8]. The source of this variation

comes from the linguistic choices authors make. These choices are constrained in multiple

ways. Karlgren groups these variation-generating constraints into three categories. These

categories are differentiated by the level of constraint they place on the author and the source

of the constraint.
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1. Rule (from the language): syntax and morphology

2. Convention (from the genre): lexical patterns, patterns of argumentation, and tropes

3. Free (from the author): repetition, organization, elaboration

Karlgren also provides a definition of a genre. ”For most purposes, genres can be un-

derstood as groupings of documents that are a) stylistically consistent and b) intuitive to

accomplished readers of the communication channel in question” [8]. In this work we suggest

that linguistic genres can be linked to musical genres with the later influencing the former.

2.3 Music Genres

The words style and genre are often used interchangeably. Though some argue this is

incorrect [9], we generally treat them as the same thing. Since we aim to show a link

between writing style and musical genre it is necessary for us to define what a musical genre

is. Meyer says that style ”is a replication of patterning, whether in human behavior or in the

artifacts produced by human behavior, that results from a series of choices made within some

set of constraints” [10]. Fabbri and Chambers state: ”A musical genre is a set of musical

events, real or possible, whose course is regulated by a definite arrangement of socially

accepted rules” [11]. The emphasis is my own. These definitions share a common link to our

definition of writing style. Writing style and musical genres are both, in part, the products

of rules and constraints. Linguistic rules may constrain things like word choice and syntax

whereas musical rules may constrain things like lyrics and instrumentation. Fortunately for

us SoundCloud categorizes music into several genres.

2.4 Communication Accommodation Theory

Communication Accommodation Theory (CAT) describes accommodation as “a process

concerned with how we can both reduce and magnify communicative differences in inter-

7



action.” [12] It is largely attributed to Howard Giles. It consists of two accommodative

strategies of convergence and divergence.

”Convergence is defined as a strategy through which individuals adapt their com-

municative behavior in such a way as to become more similar to their interlocu-

tor’s behavior. Conversely, the strategy of divergence leads to an accentuation

of differences between self and other. A strategy similar to divergence is main-

tenance, in which a person persists in his or her original style, regardless of the

communication behavior of the interlocutor. Central to the theory is the idea

that speakers adjust (or accommodate) their speech styles in order to create and

maintain positive personal and social identities.” [13]

We use this theory as the basis of our motivation to search for stylistic differences and

similarities between SoundCloud users.

2.5 SoundCloud Corpus

SoundCloud is an online audio sharing service headquartered in Berlin, Germany. As

of July 2013, the site had 40 million registered users [14]. SoundCloud.com has an Alexa

Global Rank of 171 and is ranked 145 in the United States as of May 20th, 2014 [15]. It

allows users to upload audio for other users to: listen to, share, and discuss music.

SoundCloud users have the ability to comment on songs they listen to. These user

comments served as the source for the corpus used in this research. SoundCloud lets users

”Explore” many types of audio. We focus on the many genres of music SoundCloud hosts,

including: Classical, Country, Dubstep, Electronic, Hip Hop, House, Jazz, Metal, Pop, R&B,

Reggae, Rock, Techno, and World. Our corpus was compiled from user comments on songs

from a subset of these genres.

The comments in our corpus were retrieved using SoundCloud’s Python API wrapper

documented in [16] and [17]. Each comment made on SoundCloud.com is tagged with

several properties [18]:

8



• ID: a unique integer ID

• URI: API resource URL

• created at: timestamp of creation

• body: HTML comment body

• timestamp: associated timestamp in milliseconds

• user id: unique user id of the owner

• user: a group of characteristics representing the commenter

• track id: the unique id of the audio file the user commented on

Our corpus consists of body, user id pairs. We keep these pairs organized by their corre-

sponding song and musical genre.

2.6 Tools

2.6.1 Waikato Environment for Knowledge Analysis

The Waikato Environment for Knowledge Analysis (Weka) is a widely used set of tools

used for machine learning tasks [19]. Weka provides a GUI interface and a Java API. The

GUI tool is called Weka workbench. It “includes algorithms for regression, classification,

clustering, association rule mining and attribute selection”. Weka also comes with imple-

mentations of several learning algorithms. We make use of it’s Java API and four supervised

classifiers for our experiments: Näıve Bayes, J48, IB1, and SVM. We store our training and

test sets in Weka’s file format called the Attribute Relation File Format (ARFF). ARFF

Files contain a list of feature vectors and the corresponding description of the feature vec-

tors included. This format allows us to extract features from comments once and use them

to run multiple experiments.

9



2.6.2 Natural Language Toolkit

The Natural Language Toolkit (NLTK) is Python based platform for working with human

language data [20]. It provides modules for:Accessing corpora, string processing, collocation

discovery, part-of-speech tagging, classification, chunking, parsing, etc. We make use of its

part-of-speech module. During our initial prototyping we also made use of its Näıve Bayes

classifier implementation.

10



Chapter 3

Related Work

3.1 No Country for Old Members: User Lifecycle and Linguistic Change in

Online Communities

The authors of [21] explore the linguistic change of users as they join and leave online

communities. Similar to our research they target a community with well-defined, tight-

knit subcultures. In this case the authors perform linguistic analysis on users of two large

online communities focused on beer: BeerAdvocate and RateBeer. Their work explores “the

complex interplay between community-level and individual-level linguistic change.” In order

to compare individuals’ language to that of the community they used a series of “snapshot

language models.” These snapshots were created for every month in their dataset starting

in 2001 and ending in 2011. They use word bigram language models with Katz back-off

smoothing. Individual posts are compared to the model of the month in which they were

posted. The authors calculate the post’s cross-entropy with respect to the appropriate model.

Posts with higher cross-entropy values are seen as deviating from the community’s linguistic

state.

The authors are able to leverage their technique to predict how long a user would remain

active in a community by analyzing his or her first few posts. In contrast to the work

in [21] we do not analyze the language of individual users nor do we treat our dataset as a

singular community. Instead we examine one online community that harbors several differing

subcommunities. In our case, we view a community as the users that comment on a specific

11



genre of music. We then explore the similarities and differences between these genre-defined

communities. We also use different feature sets than [21] due to the nature of our dataset.

The posts in our dataset are generally shorter and lack the structure found in their dataset.

3.2 Distinguishing Venues by Writing Styles

The authors of [22] hypothesize that venues for research paper publication are distin-

guishable by their writing styles. They used three standard WEKA classifiers: SVM, Naive

Bayes, and Random-Forest. Using these classifiers they examined several features which

they grouped into three types: lexical, syntactic, and structural. They tested their approach

by randomly choosing K venues where K was one of: 2, 5, 10, 30, 50, 100, and 150. Their

classification approach was able to beat random class selection for any number of venues.

This work is similar to ours in that it shows that stylometric features can be used to

distinguish documents which discuss a common topic. Similar to [21] their dataset contains

longer, more-structured documents than the documents in our dataset. This work helped

shape our experimental setup: varying the classifier used and the number of classes.

3.3 Twitter Part-Of-Speech Tagging for All: Overcoming Sparse and Noisy

Data

The authors of [23] worked to improve the quality of part-of-speech taggers when tagging

tweets. SoundCloud comments and Twitter posts present similar challenges to using estab-

lished NLP techniques due to their sparse and noisy nature. They use an identical scheme

for representing replies: “@” followed by a username. Also, they often contain URLs and

hashtags.

The authors implemented several improvements to learning-based classifiers. They were

able to train their classifiers with Part-of-Speech tagged tweet datasets. Even with this

datasets they often incorrectly labeled tokens. The tokens most often labeled incorrectly

were: slang, jargon, misspellings, genre-related phrases, emoticons, and unambiguous named

12



entities. They used a lookup list in order to translate many unknown words to more common

forms (e.g. luv to love). For words not in the list they applied the use of “rare word features”

such as word shape and word length. The use of fixed-word lists alone repaired approximately

80% of unknown tokens.

Further improvements to PoS-tagging came from a bootstrapping approach. They used

their labeled training data to automatically tag tweets from the streaming 10% of global

tweets that the Twitter API provides. If their multiple taggers agreed upon labels for a

tweet’s tokens then they included the tweet in the set of tweets that would a be used to train

the taggers in future runs. This approach improved their accuracy to 90.54% for tokens and

28.81% for sentences. This was after the taggers were trained with 1.5 million tokens. Their

data suggests the taggers could be improved with more training tokens.

Though we do not use their PoS tagging scheme, we use their work to decide which tokens

to substitute.

13



Chapter 4

Methodology

4.1 Text Processing

User comments are processed in several steps in order to put them in the proper format

for classification.

1. Read comments from disk.

2. Tokenize each comment.

3. Part-of-Speech Tagging (optional).

4. Substitute certain tokens

5. Stem tokens that weren’t substituted.

4.1.1 Tokenization and Token Substitution

Tokenizers made for literature and prose do not work well on our corpus. This is due to

token types unique to many forms of text on the web. In order to break our text into useful

tokens we use a regular expression based tokenizer developed by Christopher Potts [24] and

improved upon by Jganadg Gopinadhan [25]. We look for the following types of tokens:

• Emoticons. I.e. “:)”

• Hashtags. I.e. “#music”

14



Figure 4.1: Text Processing Pipeline

• Replies to other users. I.e. “@username”

• URLs

• Words with apostrophes or dashes.

• Numbers

• Words without apostrophes or dashes.

• Ellipsis.

• Everything else that isn’t whitespace.

15



We replace many tokens with more generic tokens. Emoticons are replaced with [EMOTI-

CON], hashtags are replaced with [HASHTAG], replies are replaced with [REPLY], and URLs

are replace with [URL]. We also replace musical terms with [MUSICAL TERM]. This to-

ken substitution is used to collapse several tokens to improve performance for unigram and

bigram feature sets.

4.1.2 Part-of-Speech Tagging

Following tokenization and prior to stemming we use the Natural Language Toolkit’s

(NLTK) [20] part-of-speech tagger based on the Penn Treebank [26] tag set. We keep track

of part-of-speech unigrams and bigrams for use in feature extraction.

4.1.3 Stemming

All tokens that haven’t been replaced with more generic tokens are stemmed to collapse

them onto a smaller set of tokens. We make use of the Porter Stemming Algorithm [27].

The Porter stemmer “removes common morphological and inflexional endings from words in

English.” Similar to token substitution this process improves unigram and bigram feature

sets.

4.1.4 Term Frequency - Inverse Genre Frequency

In order to select the most useful token unigrams and bigrams for classification we apply

a well-known technique called Term Frequency - Inverse Document Frequency (TFIDF).

The process of TFIDF generates a score per token in a document. This score is the token’s

frequency in the document divided the number of documents in the corpus that contain it.

In our case we treat each genre as a single document. This approach gives us a ranking of

each token’s uniqueness to the genre it is found in. We call this approach Term Frequency

- Inverse Genre Frequency (TFIGF). In our case the highest TFIGF scores represent tokens

which show up many times in a single genre and/or show up in few genres. Low TFIGF
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scores represent tokens that show up in many of the genres and/or are used less frequently.

We choose the tokens with the highest TFIGF scores in each genre to use as features. We

also complete the TFIGF process for token bigrams to select the most relevant bigrams for

use as features in classification. In order to cap the dimensionality of our feature set we only

use the top 100 token unigrams and bigrams from each genre as features. This number was

chosen through experimentation. It outperformed using the top 50 and top 150 unigrams

and bigrams.

4.1.5 Feature Extraction and Feature Families

Machine learning algorithms require a feature vector which represents value of each fea-

ture in a document. In order to create this vector we “extract” the values for each document.

In this section we describe the features we use and the process of extracting them.

Token N-Grams

We check for the presence of each of the token unigrams selected by the TFIGF process.

The value of this feature is “true” if the comment contains the token or “false” if the token

is not found in the comment.

Like the unigrams we check for the simple prescence of each of the bigrams selected by

the TFIGF process. The value of this feature is “true” if the comment contains the token

bigram or “false” if the token bigram is not found in the comment.

Counts

We check for the presence of repeated character strings. This feature represents whether

or not a comment contains a string of 3 or more of the same characters in a row. A comment

containing “cool” would receive the value “false” for this feature. A comment containing

“coool”, “coooool”, etc would receive a value of “true” for this feature. This feature is

extracted using the original comment (prior to tokenization). One version of the feature
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represents the presence or absence of repeated letters. The other version of this feature

represents the presence or absence of punctuation.

We use the length of the comment in characters and the number of tokens it contains as

features. We also use the ratio of unique tokens to total number of tokens as a feature

Dictionaries

The dictionary based features consist of the presence or absence of tokens from three

separate dictionaries. The first dictionary is the simplest. It consists of the names of all

genres included in the experiment. We also check for the presence or absence of musical

terms taken from a list of terms on Wikipedia [28]. Finally we check for the presence or

absence of emoticons from a list found on Wikipedia [29].

Part-of-Speech N-Grams

We check for the presence or absence of each of the part-of-speech tags found in the

Penn Treebank [26]. We also check for the presence or absence of every permutation of Penn

Treebank part-of-speech tags.
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Chapter 5

Experimental Setup

We ran a total of 180 classification experiments. Our initial experiments were used to

determine the best feature set and classifier. We ran these experiments with 8 different

genres: Classical, Hip Hop, Jazz, Country, Metal, Folk, World. SoundCloud provides an

interface for browsing audio by genre. This interface provides 37 genres to choose from. Of

these genres 11 are non-music audio and at least 13 can be considered sub-genres of Electronic

music. We selected our 8 from the remaining 13 genres for their relative distinctness from

each other. We held the number of training and test comments constant for each genre.

We grouped our features into four different sets: counts, dictionaries, part-of-speech

n-grams, and token n-grams. Counts consists of: the number of tokens, the length of a com-

ment in characters, the ratio of unique tokens to total tokens, and the presence of repeated

characters. Dictionaries consists of: the presence of or absence of the genre names them-

selves, the presence or absence of musical terms, and the presence or absence of emoticons.

Part-of-speech n-grams consists of the presence or absence of each of the parts-of-speech in

the Penn Treebank as well as the presence or absence of each combination of two parts-of-

speech from the Penn Treebank. Token n-grams consists of the top scoring unigrams and

bigrams selected from the TF-IGF process. We also experimented with using all of these

features together.

Once our feature sets were determined we experimented with several data sets consisting

of 2 or 4 genres. We randomly selected 20 combinations of 2 genres and 20 combinations of

4 genres for these runs. As we will show in the Results chapter our best feature set consisted

19



of token unigrams and bigrams.

Our experiments were run on a desktop machine with: an Intel i5-2500k quad-core pro-

cessor clocked at 3.3 GHz and 12 GB of DDR3 RAM. It used Ubuntu 14.04 LTS as the

operating system. No experiment was limited by memory though many were bottlenecked

by the CPU.
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Chapter 6

Results

6.1 Feature Set and Classifier Combinations
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Figure 6.1: Results for 8 Genre Experiments

For all feature sets the J48 and Näıve Bayes classifiers performed the best. Neither

classifier was clearly the best performer. Though we were generally unconcerned with the

run time of experiments it is interesting to note that J48 experiments took up to 24 hours to

complete while Näıve Bayes experiments took 1 to 2 minutes to complete. In generally Näıve
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Bayes experiments were the quickest to run. The IB1 classifier clearly performed the worst

of all classifiers. This was expected since the IB1 classifier simply tries to find the single

training comment that a test comment is most similar to and uses the training comment’s

genre as its prediction.

Our experiments show that the feature set consisting of token unigrams and bigrams

performed the best. It was followed closely by a feature set consisting of all of our features.

The hand-made dictionary feature set performed around random chance levels while all other

feature sets outperformed random chance.

6.2 Varying the Number of Genres

Our experiments with 2 and 4 genre sets confirm that the J48 and Näıve Bayes classifiers

demonstrate the best performance. On average we achieve a 1.5x improvement over chance

for 2 genre classification experiments: 75% vs 50%. For 4 genre experiments we achieve 2x

improvement over chance: 50% vs 25%. These results suggest that we could reliably detect

the genre of a song based on the comments made about it

6.2.1 Statistical Significance Tests

We compare our results against a classifier which randomly selects a class label and

against a Näıve Bayes classifier trained with unmodified unigram tokens.

2 Genres

Our system achieved a mean accuracy of 73.2% with a standard deviation of 8.04 for

28 runs. To compare our results to a random choice classifier we generated a data set

containing 960 test samples evenly divided between two classes. Over 100 runs this classifier

achieved a mean accuracy of 50.01% with standard deviation of 1.53. Our null hypothesis

was that our classification scheme would achieve the same accuracy as the random classifier.

Our alternative hypothesis was that our classifier would achieve a higher accuracy than the
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Figure 6.2: Results for 4 Genre Experiments
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Figure 6.3: Results for 2 Genre Experiments
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random classifer. We test for statistical significance using a Z-test. With these values we

achieve a z-score of 15.35. Our p-value is far less than 0.01. This leads us to reject the null

hypothesis and accept our alternative hypothesis that our classifier performs better than a

random choice classifier.

We ran 30 experiments with a Näıve Bayes classifier trained on the 250 most frequent

unigram tokens found in the training set. This approach achieved a mean accuracy of 69.4%

with a standard deviation of 7.97. This results in a z-score of 2.51 and p-value of 0.006.

This is also far below the 0.05 threshold for statistical significance showing that our classifier

outperforms a baseline unigram approach.

4 Genres

For the 4 genre case we test our classifier against the same random classifier and Näıve

Bayes classifier trained on token unigrams as before. Our system achieved a mean accuracy

of 51.40% with a standard deviation of 5.67 over 30 runs. The random choice classifier

achieved a mean accuracy of 24.97% with a standard deviation of 1.08. This results in a

z-score of 25.65 and a p-value far below the .05 statistical significance threshold.

The Näıve Bayes classifier trained on unigrams achieved a mean accuracy of 46.51% and

a standard deviation of 5.24. This results in a z-score of 2.51 and p-value of 0.0048. This is

under the threshold of 0.05 for statistical significance.

6.3 Per-Genre AUC Results

The data in table 6.1 shows how well our classification system can identify each individual

genre. According to these results the “World” genre is most easily identified relative to

other genres. This seems counterintuitive because the “World” genre encompasses a wide

range of genres: usually music of non-western origin. It is also strange because the poorest

performance genre, “Electronic,” also represents a wide range of sub-genres: essentially

any music that is made up of “electronically produced or modified sounds” [30]. For most
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Genre 2 Genre Experiment 4 Genre Experiment 8 Genre Experiment
Hip Hop 0.86 0.81 0.81
Classical 0.82 0.78 0.77
Country 0.81 0.76 0.72
Jazz 0.79 0.72 0.69
Metal 0.80 0.76 0.76
World 0.93 0.91 0.93
Electronic 0.75 0.73 0.75
Folk 0.80 0.77 0.76

Table 6.1: Per Genre ROC results using best feature set and classifier.

genres performance decreases slightly as the total number of genres increases. However the

difference in performance is relatively small.
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Chapter 7

Recommendations for Future Work

There are several potential improvements, applications, and sources of further analysis

for this work. We ignored the temporal variability of user writing style. The technique in

[21] could be applied to a SoundCloud corpus collected over an extended period of time in

order to see the change in writing style of users on a per-genre level.

We previously mentioned that SoundCloud contains nearly 15 sub-genres of “Electronic”

music. Our technique could be applied at the sub-genre level. This would allow us to

determine how much variation exists within genres. Our system could be trained using

musicians as class labels. This could be used to determine if fans of artists accomadate each

others’ langauge.
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Chapter 8

Contributions

We now present a summary of the contributions of this work.

• A corpus of user comments from SoundCloud

• Term Frequency-Inverse Genre Frequency: a modification of the tf-idf statistic

• Analysis of per-genre prediction performance.

• A system for predicting the genre of online user comments
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Chapter 9

Conclusion

Comments on SoundCloud show similarity to comments found on other social media

sites such as Twitter. They are often short and contain: frequent misspellings, emoticons,

hashtags, URLS, etc. This allows us to apply techniques used on Tweet-based corpora to

our own corpus of SoundCloud comments. We examined the efficacy of several different

feature sets. In the end we found that using a feature set consisting of token unigrams and

bigrams provided the highest performance as measured by accuracy. Our classification sys-

tem outperforms a random chance and a baseline Näıve Bayes classifier trained on unigrams

within a margin of statistical significance. We were surprised to find that the combination

of all of our features did not perform better than the feature set of unigrams and bigrams.

We thought that the combination of all features would improve performance because each

individual feature set was able to provide improvement over random chance (though likely

not statistically significant). We hypothesize that this could be attributed to the Curse

of Dimensionality. In the context of machine learning this curse states that adding more

features (dimensions) without adding more training samples can actually hurt performance.

Our results suggest that users of SoundCloud show some level of genre-dependent writing

style. Per-genre AUC analysis suggests that some genres are easier to distinguish than others.

In our corpus the “World” genre was the most easily distinguished from other genres.
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Appendix A

Full Experimental Results

Genres IB1 J48 Naive Bayes SVM
Classical/World 69.5 84.8 85.4 79.7
Jazz/Electronic 53.6 63.8 65.2 58.8
Jazz/World 68.1 84.9 86.7 79.8
Hip Hop/World 63.9 82.0 82.2 79.2
Jazz/Metal 56.0 67.4 65.9 59.1
Country/Folk 55.7 64.2 63.8 60.4
Classical/Metal 62.0 74.9 74.0 67.5
World/Folk 69.0 84.4 85.5 78.0
Hip Hop/Folk 61.6 77.9 77.6 71.1
Classical/Country 58.8 71.1 70.1 65.6
Country/Hip Hop 59.8 75.1 76.9 68.4
Classical/Hip Hop 63.6 78.8 78.5 71.8
Jazz/Hip Hop 56.5 73.8 74.3 65.9
Country/World 59.2 86.4 86.9 80.2
Metal/World 68.1 84.2 86.0 81.0
Classical/Folk 56.4 67.1 66.2 61.0
Classical/Electronic 61.6 70.3 73.3 67.0
Metal/Electronic 54.5 63.8 64.3 61.2
Classical/Jazz 58.5 65.8 67.2 60.0
Metal/Folk 58.2 70.4 70.2 65.5

Table A.1: Accuracy (%) for Two Genre Experiments using Token Unigrams and Bigrams.
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Genres IB1 J48 Naive Bayes SVM
Classical/World 0.667 0.847 0.854 0.794
Jazz/Electronic 0.438 0.637 0.641 0.543
Jazz/World 0.649 0.848 0.866 0.795
Hip Hop/World 0.588 0.82 0.821 0.789
Jazz/Metal 0.472 0.671 0.653 0.561
Country/Folk 0.471 0.627 0.632 0.591
Classical/Metal 0.568 0.748 0.734 0.65
World/Folk 0.661 0.843 0.854 0.778
Hip Hop/Folk 0.561 0.779 0.776 0.696
Classical/Country 0.52 0.706 0.692 0.639
Country/Hip Hop 0.523 0.75 0.768 0.666
Classical/Hip Hop 0.587 0.787 0.783 0.704
Jazz/Hip Hop 0.477 0.737 0.741 0.643
Country/World 0.515 0.862 0.868 0.799
Metal/World 0.65 0.841 0.859 0.808
Classical/Folk 0.493 0.669 0.649 0.584
Classical/Electronic 0.561 0.702 0.726 0.643
Metal/Electronic 0.451 0.626 0.635 0.588
Classical/Jazz 0.508 0.652 0.661 0.567
Metal/Folk 0.518 0.703 0.701 0.641

Table A.2: F-Measure for Two Genre Experiments using Token Unigrams and Bigrams.
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Genres IB1 J48 Naive Bayes SVM
Country/Metal/World/Folk 34.8 56.3 57.4 47.4
Classical/Jazz/Metal/World 40.6 56.3 58.5 46.7
Jazz/Hip Hop/World/Electronic 39.6 56.6 57.7 46.0
Country/Hip Hop/World/Electronic 33.2 57.1 57.9 47.2
Metal/World/Electronic/Folk 39.0 57.8 58.0 46.0
Classical/Jazz/Hip Hop/World 41.6 58.1 60.0 49.2
Classical/Country/Jazz/Hip Hop 34.4 49.1 51.2 39.1
Classical/Jazz/Hip Hop/Folk 33.0 47.7 49.3 38.6
Jazz/Hip Hop/Electronic/Folk 33.8 47.6 47.6 36.1
Classical/Country/World/Folk 35.2 54.1 55.5 45.2
Classical/Jazz/Metal/Folk 33.3 43.7 45.0 36.2
Country/Jazz/Hip Hop/Electronic 32.7 46.9 47.0 36.9
Jazz/Metal/Hip Hop/Folk 34.4 48.2 47.5 40.1
Country/Hip Hop/World/Folk 35.4 59.3 60.6 49.6
Classical/Jazz/Metal/Electronic 33.6 44.9 46.4 36.0
Metal/Hip Hop/World/Electronic 39.8 53.0 54.3 45.6
Classical/Jazz/Metal/Hip Hop 34.7 49.3 49.9 40.5
Classical/Country/Metal/Hip Hop 36.4 51.4 51.1 43.5
Metal/Hip Hop/Electronic/Folk 33.7 48.5 48.7 38.6
Country/Jazz/Metal/Electronic 31.1 45.2 44.5 35.3

Table A.3: Accuracy (%) for Four Genre Experiments using Token Unigrams and Bigrams.
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Genres IB1 J48 Naive Bayes SVM
Country/Metal/World/Folk 0.296 0.563 0.572 0.446
Classical/Jazz/Metal/World 0.348 0.558 0.581 0.42
Jazz/Hip Hop/World/Electronic 0.335 0.568 0.581 0.423
Country/Hip Hop/World/Electronic 0.264 0.573 0.583 0.448
Metal/World/Electronic/Folk 0.327 0.578 0.583 0.427
Classical/Jazz/Hip Hop/World 0.366 0.576 0.599 0.465
Classical/Country/Jazz/Hip Hop 0.293 0.478 0.5 0.35
Classical/Jazz/Hip Hop/Folk 0.274 0.46 0.479 0.34
Jazz/Hip Hop/Electronic/Folk 0.278 0.475 0.475 0.317
Classical/Country/World/Folk 0.298 0.54 0.556 0.448
Classical/Jazz/Metal/Folk 0.273 0.428 0.437 0.32
Country/Jazz/Hip Hop/Electronic 0.265 0.472 0.472 0.335
Jazz/Metal/Hip Hop/Folk 0.287 0.468 0.474 0.373
Country/Hip Hop/World/Folk 0.3 0.589 0.604 0.467
Classical/Jazz/Metal/Electronic 0.272 0.444 0.461 0.307
Metal/Hip Hop/World/Electronic 0.34 0.529 0.547 0.429
Classical/Jazz/Metal/Hip Hop 0.295 0.483 0.499 0.376
Classical/Country/Metal/Hip Hop 0.32 0.502 0.515 0.426
Metal/Hip Hop/Electronic/Folk 0.279 0.486 0.494 0.367
Country/Jazz/Metal/Electronic 0.242 0.448 0.439 0.309

Table A.4: F-Measure for Four Genre Experiments using Token Unigrams and Bigrams.

Feature Set IB1 J48 Naive Bayes SVM
Word 20.3 40.4 40.3 28.5
Counts 13.6 22.4 20.4 22.9
Dictionaries 12.6 13.6 13.6 13.1
POS 12.4 20.5 20.4 20.0
All Features 23.1 38.1 36.4 24.6

Table A.5: Accuracy (%) for each Feature Set with Eight Genres

Feature Set IB1 J48 Naive Bayes SVM
Word 0.178 0.402 0.401 0.247
Counts 0.062 0.209 0.14 0.212
Dictionaries 0.029 0.05 0.05 0.039
POS 0.035 0.153 0.137 0.149
AllFeatures 0.226 0.374 0.358 0.22

Table A.6: F-Measure for each Feature Set with Eight Genres
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