

THE BLE CLOAKER: SECURING IMPLANTABLE MEDICAL DEVICE

COMMUNICATION OVER BLUETOOTH LOW ENERGY LINKS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Taylor Anthony Nesheim

September 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32434397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

© 2015

Taylor Anthony Nesheim

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: The BLE Cloaker: Securing Implantable Medical

 Device Communication over Bluetooth Low Energy

 Links

AUTHOR: Taylor Anthony Nesheim

DATE SUBMITTED: September 2015

COMMITTEE CHAIR: Zachary N J Peterson, Ph.D.

 Assistant Professor of Computer Science

COMMITTEE MEMBER: Phillip L. Nico, Ph.D.

 Professor of Computer Science

COMMITTEE MEMBER: John Seng, Ph.D.

 Assistant Professor of Computer Science

iv

ABSTRACT

The BLE Cloaker: Securing Implantable Medical Device Communication over Bluetooth

Low Energy Links

Taylor Anthony Nesheim

 Historically Implantable Medical Devices (IMDs) such as pacemakers have only

been able to communicate to external devices through close proximity means of

communication, primarily through inductive telemetry. Because of the unlikelihood of an

adversary being able to gain access to an IMD through this type of communication, these

devices were never designed with security in mind. However the recent advent of IMDs

that are equipped with long-range wireless capabilities has made it necessary to consider

how to secure these devices from malicious attacks.

 This work presents an implementation of prior work that developed a theoretical

security model whose specific intent was to secure IMDs with long-range wireless

capabilities against both passive and active adversaries, while also ensuring the safety of

the patient. This implementation is known as the Bluetooth Low Energy (BLE) Cloaker

model and provides a prototype system that uses BLE as the long-range communication

medium between an emulated IMD, an external programmer, and the BLE Cloaker

device itself. The BLE Cloaker acts as a secure data proxy between the IMD and the

external programmer. This prototype shows the benefits and drawbacks of this theoretical

model when used in a real world system as well as the security strengths and weaknesses

of using BLE as the wireless link in a medical application.

v

TABLE OF CONTENTS
Page

LIST OF FIGURES ... ix

CHAPTER 1 – Introduction.. 1

1.1 Statement of Research Question ... 1

1.2 General Approach ... 2

CHAPTER 2 – Background and Related Work .. 3

2.1 Background ... 3

2.2 Related Work... 6

CHAPTER 3 – System Design ... 10

3.1 System Overview .. 12

3.1.1 System Diagram ... 13

3.1.2 BLE Overview .. 14

3.1.3 BLE Scatternet Topology ... 15

3.2 System Components .. 16

3.2.1 The IMD Device ... 16

3.2.1.1 IMD Device Software Flow Diagram ... 18

3.2.1.2 IMD Device UML Diagram.. 19

3.2.2 The BLE Cloaker .. 20

3.2.2.1 BLE Cloaker Software Flow Diagram .. 21

3.2.2.2 BLE Cloaker State Diagram ... 22

vi

3.2.3 The IMD Programmer .. 23

3.2.3.1 IMD Programmer Software Flow Diagram .. 24

3.2.3.2 IMD Programmer UML Diagram ... 25

3.3 Security Model .. 26

3.3.1 Adversary Threat Models ... 26

3.3.1.1 Passive Adversaries .. 26

3.3.1.2 Active Adversaries .. 27

3.3.1.3 Denial of Service... 27

3.3.2 BLE Link Security .. 27

3.3.3 Known Limitations ... 28

CHAPTER 4 – System Implementation ... 29

4.1 BLE Security ... 29

4.1.1 Security Modes and Levels... 29

4.1.2 Pairing Phases ... 30

4.1.2.1 Pairing Phase 1 .. 32

4.1.2.2 Pairing Phase 2 .. 33

4.1.2.3 Pairing Phase 3 .. 36

4.1.3 Message Encryption ... 36

4.2 IMD Services and Characteristics ... 37

4.3 System Components .. 37

vii

4.3.1 RFID Slave Device ... 41

4.3.2 IMD Device .. 43

4.3.2.1 Normal Operation with the BLE Cloaker ... 44

4.3.2.2 Emergency mode operation without the BLE Cloaker 45

4.3.3 BLE Cloaker ... 46

4.3.3.1 No devices connected ... 46

4.3.3.2 IMD Device connected ... 47

4.3.3.3 IMD Programmer and IMD Device connected ... 48

4.3.4 IMD Programmer ... 48

4.3.4.1 Scanning for the BLE Cloaker .. 49

4.3.4.2 Scanning for the IMD Device in emergency mode 49

CHAPTER 5 – Issues, Assumptions, and Limitations ... 50

5.1 Issues and Assumptions .. 50

5.1.1 BLE Issues and Assumptions ... 50

5.1.2 RFID Issues and Assumptions .. 50

5.2 Current Limitations and Future work .. 51

5.2.1 BLE 4.1 ... 51

5.2.2 NFC/RFID Encryption ... 51

5.2.3 IMD Device Emulation .. 51

CHAPTER 6 – Key Contributions and Conclusions .. 52

viii

REFERENCES ... 53

ix

LIST OF FIGURES

Figure Page

Figure 1: Typical IMD Ecosystem .. 11

Figure 2: System Diagram outlining major components .. 13

Figure 3: Diagram of the BLE Scatternet ... 15

Figure 4: IMD Device Software flow diagram ... 18

Figure 5: IMD Device UML Diagram .. 19

Figure 6: BLE Cloaker Software Diagram ... 21

Figure 7: BLE Cloaker State Diagram .. 22

Figure 8: IMD Programmer Software Flow Diagram... 24

Figure 9: IMD Programmer UML Diagram ... 25

Figure 10: Phases 1 through 3 of the BLE pairing and encryption process 31

Figure 11: Diagram of the STK generation process in Phase 2 .. 35

Figure 12: Picture showing an overview of the whole system ... 39

Figure 13: Overview of the various communication protocols used between the

master and slave devices ... 40

Figure 14: Diagram showing the necessary steps in an RFID setup and data transfer 42

1

CHAPTER 1 – Introduction

 Until recently, Implantable Medical Devices (IMDs) were only able to

communicate to external devices through close-proximity methods such as RF inductive

telemetry. The necessity of being in such close-proximity made the possibility of a

malicious adversary attacking these devices extremely unlikely. As such, the security of

IMDs was never considered when they were originally designed. Modern IMDs however

are equipped with long-range wireless communication that ranges from a few feet to

across the room. Because of the swiftness of this change coupled with the previous lack

of a need for it, IMDs are now completely unsecured against both passive and active

adversaries. The purpose of this work is to provide a communications protocol for

securing IMDs against cyberattacks. It additionally aims to provide and test an

implementation of this communications protocol using off-the-shelf hardware.

1.1 Statement of Research Question

 This work aims to answer the following research questions: what kind of

communication protocol is needed for an Implantable Medical Device (IMD) equipped

with Bluetooth Low Energy and RFID technology to be secured against malicious

intrusion? Because of the current lack of security present in these IMDs combined with

the life threatening consequences of device failure, ongoing research to find a solution to

this problem is both important as well as urgent. There are several important criteria that

need to be kept in mind when developing this kind of protocol. This protocol needs to

provide protection from passive adversaries that have the ability to eavesdrop on wireless

communications from the IMD, thereby gaining access to private patient data. It also

needs to provide protection from active adversaries that have the ability to employ Denial

2

of Service attacks, Replay attacks, and device spoofing that could lead to improper

functionality that could be harmful or fatal to the patient. It needs to ensure that the IMD

is able to be accessed immediately by medical practitioners in a medical emergency, but

is secured against malicious adversaries during all other times. Any protocol

implemented needs to ensure proper device operation in a low power and low resource

environment. This means that the battery life of the IMD must be conserved as much as

possible as the replacement of depleted devices poses a significant risk to the well-being

of the patient.

1.2 General Approach

 The general approach that will be used to address this problem will be to design

and develop a communications protocol that meets the above requirements based on a

review of what the current best practices are for security in terms of encryption and

authentication. Once the design has been completed, it will be implemented in an

iterative process on actual hardware. The first iteration will consist of getting the various

components setup and talking to each other with a focus on function rather than on

security. The next iteration will involve refactoring the implementation to incorporate the

aforementioned security including communication encryption and device authentication.

The final iteration will refine the previous iterations as needed in order to achieve the

constraints that will be present in an actual IMD. The implementation will then be put

through various experiments to test and verify that it is conforming to the real world

constraints while maintaining the necessary level of security.

3

CHAPTER 2 – Background and Related Work

2.1 Background

 The notion of the development and use of Implantable Medical Devices is not a

new concept. Doctors first considered the idea in the early 50s, and in 1952 the first

external pacemaker was developed [4]. It was wall powered and caused a painful burning

of the skin when in use, but it was a first step towards the devices that are commonplace

today. With the advent of the transistor and the lithium battery, much smaller devices

were possible and the further development of printed circuit boards and microchips in the

1980s led to the widespread development and implantation of pacemakers and other

IMDs that closely resemble those that are seen today [4].

 Historically, the primary method of communications of these devices with

external programmers has been through RF inductive telemetry. Security was never an

issue nor a primary concern of medical device companies because the only means for

interfering with the device was through close proximity to the patient using the RF

inductive telemetry mentioned above. Now however, more and more devices are being

equipped with long-range wireless capabilities. This fact has substantially increased the

possibility for adversaries with malicious intent to interfere with the proper functioning of

these devices. When combining this with the knowledge that security has never been a

primary concern of medical device companies, the potential for current and future device

failures due to adversarial attacks is a huge concern. This also justifies the need for both

the research in the area of IMD security and the subsequent implementation of this

research by medical device companies in their products.

4

 There have been several research papers written in recent years that specifically

highlight the inherent security vulnerabilities in currently used models of IMDs. One

such paper written by Halperin, Daniel, et al. shows that they were able to both read from

and modify settings of an Implantable Cardioverter Defibrillator (ICD) using an off-the-

shelf RF Commodity Software Radio [5]. The method they employed was simply to use

this RF Radio to attempt to passively eavesdrop on known commands between the ICD

and an external programmer, and then try to replay these communications back to the

ICD and verify whether or not the ICD accepted or rejected the command. While doing

this they found several worrisome results. The first was that both the eavesdropped

patient and medical data being transmitted were completely in plaintext, making it

straightforward to decode the information without even needing to know anything about

the underlying structure of the communication packets. The second was that they were

able to successfully replay previously eavesdropped packets and have the ICD accept

these commands within several attempts. With just these two simple attacks, they were

able to make both small changes such as modifying the patient name stored in the device,

and much more devastating changes including disabling device therapies and inducing

fibrillation that would send shocks of approximately 138V to a patient.

 At first glance, the obvious solution is for medical device companies to simply

adopt the industry best practices for security and apply them to all of their medical

devices. Unfortunately, medical devices have significantly different requirements than

most other software and hardware systems on the market. Because of this, industry best

practices are either not applicable or need to be modified in order to be feasible in IMDs.

In another paper written by Halperin, Daniel, et al., they examine the various system

5

requirements inherent to IMDs as well as go through the tradeoffs between these

requirements and enforcing security [6]. These tradeoffs are summarized as follows:

 Security vs. Accessibility: IMDs need to be made secure against all unauthorized

users. However these devices need to be made available to surgeons and healthcare

professionals during critical and emergency situations. Failure to do so could cause

harm or death to the patient or those attempting to operate on the patient. Adding a

software back door is one possible solution to this, however this means intentionally

adding an exploitable security vulnerability to the IMD.

 Security vs. Device Resources: The large majority of IMD devices are extremely

resource limited due to their size and battery longevity requirements. Standard

cryptographic methods of security are computationally expensive and are therefore

not practical for use in resource constrained devices such as IMDs. Protecting against

Denial of Service (DoS) attacks are of the utmost importance in these devices

especially those relating to battery depletion and buffer overflow attacks. Any DoS

attack could necessitate the explanting of the IMD from the patient, which increases

the likelihood of infection and patient injury.

 Security vs. Usability: The user interfaces associated with Clinical Programmers and

the devices themselves need to maintain security while also ensuring usability. If the

usability of a programmer is such that a doctor or patient is unable to properly update

or change settings on the IMD, it limits accessibility to that device and can again lead

to adverse consequences for the patient. Likewise, although patient comfort and

convenience is a priority, it can also come at the cost of security. Long range RF

wireless capable IMDs for example allow patients a greater sense of comfort and

6

freedom as they are able to move about their home or doctor’s office unconstrained.

But this wireless capability comes at the cost of increasing the likelihood of passive

and active attacks from adversaries.

 Because of these and other issues uniquely attributed to the requirements of

IMDs, securing these devices against malicious attacks is by no means a straightforward

or trivial task. Each class of IMD has their own set of unique requirements and

constraints that need to be considered separately when determining how to secure a

particular device. There are no shortcuts or silver bullets in security, and when lives are at

stake software developers need to do their due diligence to ensure that they have done all

they can to protect patients against security vulnerabilities.

2.2 Related Work

 This research is based upon previous work in which the authors outlined an IMD

security model that incorporates a new type of device they deemed The Cloaker [3]. The

model they put forth was mostly theoretical and involved only a simulation in software.

Although this is a good first step, their work would benefit from an actual

implementation under realistic hardware and software constraints found in typical IMD

systems. The goal of this work is to provide this implementation and determine the

feasibility of using The Cloaker model in practice. The primary concern of the authors

when designing the security model of The Cloaker was that it adhere to the following

design criteria:

1. The system should be safe and provide open access in emergencies.

2. Security and privacy needs to be maintained under adversarial conditions.

3. Battery life of the device needs to be maintained.

7

4. The system should respond to both the patient and the doctors within a reasonable

and safe amount of time.

 Modern IMD systems typically involve two devices: (1) the IMD device itself that

is implanted in the patient, and (2) the Clinical Programmer that communicates to the

IMD either to change settings or read important patient information from the IMD. In

contrast, their system involves the addition of a third intermediate device. This third

device, The Cloaker, acts as a proxy between the IMD and the Clinical Programmer to

support the design goals that were outlined above. The Cloaker is foreseen as being a

device very much like current wearable health devices in terms of scale and

computational power and would be worn by the patient. In this model there are two use

cases that need to be considered separately.

 The first is when The Cloaker is present. When this is the case, all communication

between the IMD and the Clinical Programmer must go through The Cloaker. There are

several advantages to this setup. Since power consumption is a primary concern of IMD

design, The Cloaker allows a means to use more computationally expensive

cryptographic methods to pair with external Clinical Programmers without depleting the

IMD device. The IMD and The Cloaker can be considered to be in a long-term

relationship, so encrypted symmetric key protocols can be used to pair the two devices

together and not attempt to pair with other devices. This shift of authenticating external

devices through The Cloaker prevents Denial of Service attacks specifically targeting

battery life through repeated authentication attempts.

 The second use case to be considered is when The Cloaker is not present. As a

means to fulfill their first design goal, the authors suggest that the IMD “fail open” in the

8

absence of The Cloaker. In an emergency situation this allows doctors to gain full access

to the device by either removing or destroying the device. They suggest using biometric

information such as the patient’s pulse to indicate whether or not The Cloaker is present.

This prevents against the possibility of The Cloaker being lost but still locking the device

in the case of an emergency.

 This work will provide an implementation of their proposed system called the

BLE Cloaker that will use Bluetooth Low Energy (BLE) as the long-range wireless

communication medium in conjunction with Out-of-Band (OOB) pairing through RFID

to provide additional security. BLE is a good candidate for medical wireless

transmissions due to its low power, compatibility with other sources of Electromagnetic

Interference (EMI), and data transmission confidentiality [7]. If configured, BLE also

supports 128-bit encryption as well as periodically changing the device address to a

random value. There has been research that has shown the feasibility of using BLE

directly in IMDs such as the BLE enabled Implantable Glucose Monitor [1]. There are

also numerous examples of BLE being used as a means to connect wireless body sensors

that take biometrics such as ECG to external devices including cell phones [10]. One

reason that BLE is so appealing is that it has already been widely adopted by mobile

phone developers, so in the future there is the potential for IMDs to directly use the

patient’s cellphone to upload medical information.

 An RFID link will be used between the BLE Cloaker device and the IMD device

to initiate the BLE pairing procedure using OOB. Although it won’t be addressed in this

implementation, the security of this link is also a concern and should be considered.

There are several papers which outline methods for securing RFID links. Many of these

9

could be considered RFID versions of The Cloaker whose purpose is to act as an

authenticated proxy between a resource constrained device and that of an external device

attempting to read or update that constrained device. Some examples of these include the

RFID Guardian which is a proposed device that is supposed to be kept near the person

and block unauthorized access to a person’s RFID enabled devices that are within range

[8]. There has also been research that has shown that it is possible to implement RC5 on a

resource constrained RFID microcontroller that performed relatively well in terms of

both needed computational power and energy consumption [2]. It should be noted that all

of the above research was geared towards developing cryptography methods for passive

RFID tags whose goal was to keep the device as inexpensive as possible to make

widespread manufacturing of these devices on household items economically feasible.

Because IMDs are not produced in quite the ubiquitous scale as passive RFID tags,

reducing cost in this manner is not a primary concern so it is reasonable to assume that

there will be at least a marginal improvement in the amount of computational power

available in IMDs for cryptographic purposes.

10

CHAPTER 3 – System Design

 The overarching computing ecosystem of a patient using an IMD is complex and

expands across multiple platforms and devices, as well as between multiple parties

including doctors, clinicians, and software developers. The IMD directly connects to a

Clinical Programmer or base station through either close proximity RF telemetry or long-

range wireless techniques. In the case of a Clinical Programmer, a clinician or

manufacturer technician will be present to update settings and take patient measurements.

For home use, an IMD may connect to an external base station that will send patient data

through the phone line to a backend database for future analysis by a doctor. In the future,

it is possible that a mobile device using either a GSM or Wi-Fi network could replace this

base station. Figure 1 shows what an example system might look like.

11

IMD Device

Clinical Programmer

Base Station Mobile Device

Database

G
S

M
/W

iF
i

P
h

o
n

e
 L

in
e

Figure 1: Typical IMD Ecosystem

12

3.1 System Overview

 The security model presented in this work focuses on only a portion of the

ecosystem outlined in Figure 1. Specifically it is concerned with the security of the direct

link between the IMD Device and the external devices, both authorized and unauthorized,

who wish to connect to it. This system has three parts: (1) the IMD device itself, (2) the

BLE Cloaker, and (3) the external IMD programmer which could be any one of the three

devices mentioned above, namely a Clinical Programmer, base station, or mobile device.

Figure 2 presents a diagram of the various components of this system. Two different

scenarios are outlined which were discussed in the Related Works section, one in which

the BLE Cloaker is present and the other in which it is not. Each component will be

discussed in more detail in the subsequent sections.

13

3.1.1 System Diagram

IMD Device:
Nordic

microcontroller

The IMD
Programmer: PC

with Attached
Bluegiga BLE Dongle

Scenario A: Cloaker not present. All communication is in the clear.

RFID Module: Unused in
this scenario

SP
I

BLE: Unencrypted Data Transfer

IMD Device:
Nordic

microcontroller

The IMD
Programmer: PC

with Attached
Bluegiga BLE Dongle

Scenario B: Cloaker is present. All communication is encrypted
and authenticated.

RFID Module: Out of
Band connection for

Cloaker Authentication

SP
I

RFID Module: Out of
Band connection for
IMD Authentication

SP
I

Cloaker Device: Nordic
microcontroller

LCD Display: Passkey
display for Programmer

Authentication

Keyboard: Passkey entry
for Cloaker

Authentication

Keyboard: Unused in
this scenario

BLE: Encrypted Data
Transfer

NFC Communication

Figure 2: System Diagram outlining major components

14

3.1.2 BLE Overview

 BLE follows a simple model that contains two different types of devices: a

Central and one or more Peripheral devices. The Central device can also be referred to as

the Master device, and is responsible for scanning for and connecting to Peripheral

devices. Peripheral devices in a similar fashion are also known as Slave devices. They are

responsible for advertising themselves and allowing Central devices to connect to them.

Peripherals also have what are known as Services and Characteristics.

A Service is represented by a 128 bit Universally Unique Identifier (UUID) and is

a way to create logical separations between the functionalities of a given Peripheral

device. Each of these Services may have one or more Characteristic values that are also

represented by 128 bit UUID’s. Characteristics are a further way to separate different

types of data within a Service. Each Characteristic has its own properties including

whether it is allowed to be written or read to, as well as how many bytes of data a

Characteristic can hold. An example of this is the Blood Pressure Service defined by the

Blueooth Special Interest Group (Bluetooth SIG). This Service has several

Characteristics including the “Blood Pressure Measurement” Characteristic and the

“Intermediate Cuff Pressure” Characteristic. After a Central device connects to a

Peripheral device, there is a standard method known as service discovery in which the

Central discovers all of the Peripherals Services and Characteristics. Depending on the

properties of each Characteristic, the Central will then be able to read and write to these

Characteristics.

15

3.1.3 BLE Scatternet Topology

 The Star topology is the most common and most supported configuration in which

BLE is used today. This topology, described in the previous section, is where there is one

master node that connects to one or more slave devices. In BLE the master is the only

role which can initiate a connection request to other slave devices. Because of the

inclusion of the BLE Cloaker node, what is known as a Scatternet topology will need to

be used. The BLE Cloaker needs to be able to both connect to the IMD Device as well as

be connected to by the IMD Programmer. A Scatternet topology allows the BLE Cloaker

to act as both a master and a slave simultaneously, therefore making this dual

connectivity requirement possible. Figure 3 shows what this Scatternet topology looks

like in practice.

IMD Device:

Slave

IMD

Programmer:

Master

BLE Cloaker

Slave

Master

BLE Connection Request

BLE Connection Request

Figure 3: Diagram of the BLE Scatternet

16

3.2 System Components

 Each of the three components, although related, have their own distinct

responsibilities and roles within the system. The design of each of these components will

be given in detail below. Software flow diagrams are provided for all three components

outlining the order of code execution. Additionally, the IMD Device and the IMD

Programmer were both written in C++ and as such have corresponding UML class

diagrams. For technical reasons described later, the BLE Cloaker was written in C and a

state diagram is provided instead. The BLE Programmer and the BLE Device

components follow the State design pattern outlined in “Design Patterns: Elements of

Reusable Object-Oriented Software”, and the BLE Cloaker follows it to a lesser extent

due to it not being written in an Object-Oriented language.

3.2.1 The IMD Device

 In a real system the IMD Device would be responsible for taking patient

measurements and providing necessary medical treatments. Since this is not a real IMD,

dummy data will be sent across the BLE link. The IMD Device component is responsible

for generating and providing this simulated data when it is requested by the IMD

Programmer. The IMD Programmer will either request this information directly or

indirectly through the BLE Cloaker depending on the current usage scenario. It is also

responsible for responding to connection requests from the BLE Cloaker that are initiated

by the RFID module as well as advertising itself openly to the IMD Programmer when

the Cloaker is not present. See Figure 4 and Figure 5 respectively for the IMD Device’s

Software flow and UML diagrams. Note that the UML diagrams do not show all

17

functions prototypes as it would be impractical to do so in a diagram. They will be

explained in the System Implementation section.

18

3.2.1.1 IMD Device Software Flow Diagram

Device Power On

Run Init:
-Set Device Name
-Set Role to Peripheral
-Set Advertising/Connection parameters
-Add services/characteristics
-Start Scanning for Advertisement
packets

Is Cloaker RFID field
Present?

Yes

-Use RFID to transfer
authentication

information

Able to connect with
received key?

No

Yes
Cloaker

Heartbeat
Detected?

No

Yes

Data Request/
Settings change?

No

Yes

-Send/receive
encrypted data

No

-Change settings to allow
unencrypted/

unauthenticated requests
from Programmers

Is Cloaker RFID field
Present?

Yes

Connection
Request?

Yes

-Connect to Device
-Send/Receive data

-Start Advertising

No

No

Is Cloaker Present?

Yes

No

Disconnected

Emergency
Situation?

Yes

Figure 4: IMD Device Software flow diagram

19

3.2.1.2 IMD Device UML Diagram

IMDDevice

-IMDDevice(ble_evts_t ble_evt_struct)
-void Initialize()
-void InitRFID()
..... [Note: See each substate for further
methods that aren't duplicated here] ...

_state

Public Methods

-void ChangeState(IMDDeviceState*)

Private Members

-IMDDeviceState* _state

Private Methods

<<Interface>>
IMDDeviceState

-virtual void Initialize(IMDDevice* p)
-virtual void Advertise(IMDDevice* p)
..... [Note: See each substate for further methods
that aren't duplicated here] ...

Public Methods

-void ChangeState(IMDDevice *, IMDDeviceState*)

Protected Methods

IMDDeviceInit

-static IMDDeviceState* Instance()
-void Initialize(IMDDevice*)

Public Methods

-IMDDeviceInit()

Private Members

-static IMDDeviceInit* _instance

Protected Methods

IMDDeviceAdvertise

-static IMDDeviceState* Instance()
-void Advertise(IMDDevice*)
-void StoreConnectionHandle(...)

Public Methods

-IMDDeviceAdvertise()

Private Members

-static IMDDeviceAdvertise* _instance

Protected Methods

IMDDeviceOOBTransfer

-static IMDDeviceState* Instance()
-void InitRFID(IMDDevice*)
-void InitAsTarget(IMDDevice*)
-RFIDStatusCode WaitForInitiator(IMDDevice*)

-void TransferBLEAddressAndOOB(IMDDevice*)

Public Methods

-IMDDeviceOOBTransfer()

Private Members

-static IMDDeviceOOBTransfer* _instance

Protected Methods

IMDDeviceConnected

-static IMDDeviceState* Instance()
-void SendSecurityReply(IMDDevice*)
-void SendOOBKeyReply(IMDDevice*)
-void StoreImdDeviceKeys(...)

Public Methods

-IMDDeviceConnected()

Private Members

-static IMDDeviceConnected* _instance

Protected Methods

IMDDeviceEmergency

-static IMDDeviceState* Instance()
-void EmergencyAdvertise(IMDDevice*)
-void EmergencyConnected(IMDDevice*)
-void EmergencySet(IMDDevice*)

Public Methods

-IMDDeviceEmergency()

Private Members

-static IMDDeviceEmergency* _instance

Protected Methods

Figure 5: IMD Device UML Diagram

20

3.2.2 The BLE Cloaker

 The role of the BLE Cloaker is to detect the RFID field from the IMD Device and

subsequently transfer the appropriate keys and connect to it over BLE. Once connected, it

is then responsible to advertise itself to the IMD Programmer and display its key on the

attached LCD screen. From this point on it mediates the data transfer between the IMD

Device and the IMD Programmer. If it loses the “heartrate” reading from the patient, it

will disconnect from both the IMD Device and the IMD Programmer. See Figure 6 and

Figure 7 for the BLE Cloaker’s Software flow and State diagrams.

21

3.2.2.1 BLE Cloaker Software Flow Diagram

Device Power On

Run Init:
-Set Device Name
-Set Role to Central
-Set Advertising/Connection parameters
-Add services/characteristics
-Start Scanning for Advertisement
packets

IMD Device RFID field
present?

No

Yes

-Use RFID to transfer
authentication

information

Able to connect with
received key?

No

Yes

No

Connection request
from Programmer?

No

Yes
-Display 6 digit
Passkey on LCD

screen

Received correct
Passkey from
Programmer?

No Yes
-Connect to IMD

Programmer

-Send/Receive Encrypted
packets between

Programmer and IMD
Device

Heartrate
detected?

Yes

No

Programmer
Disconnect

Heartrate
detected?

Yes

-Connect to IMD
Device

-Disconnect from
IMD Programmer

and Device

Figure 6: BLE Cloaker Software Diagram

22

3.2.2.2 BLE Cloaker State Diagram

IMD_CLOAKER_INIT

entry /
-board_configure()
-sd_softdevice_enable()
-sd_ble_enable()
-sd_nvic_EnableIRQ(SD_EVT_IRQn)
-imd_service_add()

IMD_CLOAKER_DEVICE_CONNECTING

entry /
-sd_ble_gap_connect

IMD_CLOAKER_DEVICE_CONNECTED

entry /
-conn_handle = imd_conn_handle

BLE_GAP_EVT_CONNECTED

IMD_CLOAKER_FINDING_DEVICE_SERVICES

entry /
-sd_ble_gattc_primary_services_discover()

Found IMD
 Service?

BLE_GATTC_EVT_PRIM_SRVC_DISC_RSP

No Yes

IMD_CLOAKER_FINDING_DEVICE_CHARACTERISTICS

entry /
-sd_ble_gattc_characteristics_discover()

BLE_GATTC_EVT_CHAR_DISC_RSP

IMD_CLOAKER_START_ADVERTISING

entry /
-sd_ble_gap_adv_data_set()

Found IMD
 Characteristic?

Yes NoBLE_GAP_EVT_CONNECTED

IMD_CLOAKER_PROGRAMMER_CONNECTED

entry /
-conn_handle = prog_conn_handle
do /
BLE_GATTS_EVT_WRITE:
-Write the specified data to the IMD Device

NOTE:
Blue text in bold are BLE Events.
(aka BLE_GAP_EVT_CONNECTED)

IMD_CLOAKER_NO_HEARTBEAT

entry/
-IMDNoHeartbeat()
-sd_ble_gap_disconnect()

Heartbeat?

No

Yes

IMD_CLOAKER_SCAN_IMD

entry/
-sd_ble_gap_scan_start

IMD_CLOAKER_DEVICE_SECURED

entry /
-IMDCloakerCheckSecurityAuth

IMD_CLOAKER_PROGRAMMER_SECURED

entry/
-IMDCloakerWriteIMD
-IMDCLoakerRead

Figure 7: BLE Cloaker State Diagram

23

3.2.3 The IMD Programmer

 The IMD Programmer needs to scan for the availability of both the BLE Cloaker

and the IMD Device. The user, either a clinician or other authorized user, will then select

which device to connect to. If the selection is the IMD Device and that device is in a state

of emergency, it will connect without any security protocols used. If the BLE Cloaker is

chosen, the IMD Programmer will send out a request to the BLE Cloaker to display its

key on the LCD display. The user will then input this key into the IMD Programmer and

the devices will be connected. After a connection is established to either device, settings

can be updated and patient data can be received either directly from the IMD Device

itself or indirectly through the BLE Cloaker’s encrypted link again depending on the

current use case. Figure 8 and Figure 9 show the Software flow and UML diagrams of the

IMD Programmer.

24

3.2.3.1 IMD Programmer Software Flow Diagram

Device Power On

Run Init:
-Set Device Name
-Set Role to Central
-Set Advertising/Connection parameters
-Add services/characteristics
-Start Scanning for Advertisement
packets

Is Cloaker Device
present?

Yes
-Send Connection

Request
No

Is IMD Device
present in emergency

mode?

No

Yes

-Send Connection
Request

Connection
Successful?

-Send unencrypted
“emergency”

resolution
Connection Lost

No

-Wait for user input
of 6 digit Passkey

displayed on Cloaker

Cloaker verifies passkey
correctness?

-Send/Receive
Encrypted data

packets

Yes

No

Figure 8: IMD Programmer Software Flow Diagram

25

3.2.3.2 IMD Programmer UML Diagram

IMDProgrammer

-IMDProgrammer(...)
-void Initialize()
-void ScanForIMD()
-uint32_t StopIMDScan()
-uint32_t ConnectToIMD()
-uint32_t DiscoverIMDServices(uint16_t conn_handle)
-uint32_t SetIMDCharacteristic(uint8_t led_state)
....[Note: Not all methods shown here]....

_state

Public Methods

-void ChangeState(IMDProgrammerState*)

Public Members

-static const ble_gap_addr_t imd_peripheral_addr
-dm_handle_t dm_handle
-ble_db_discovery_t ble_db_discovery
-bool memory_access_in_progress
-ble_imd_t imd_char_led
-void (*ble_evt_dispatch)(ble_evt_t* p_ble_evt)
-void (*sys_evt_dispatch)(uint32_t sys_evt)
-void (*db_discovery_evt_handler)(ble_db_discovery_evt_t * p_evt)
-api_result_t (*device_manager_event_handler)(const dm_handle_t*
 p_handle, const dm_event_t* p_event, const api_result_t event_result)

Private Members

-IMDProgrammerState* _state
-dm_application_instance_t p_appl_instance
-uint8_t base_uuid_type
-ble_gap_scan_params_t scan_params
-ble_gap_conn_params_t connection_params

Private Methods

<<Interface>>
IMDProgrammerState

-virtual void Initialize(IMDProgrammer* p)
-virtual void ScanForIMD(IMDProgrammer* p);
-virtual uint32_t StopIMDScan(IMDProgrammer*)
-virtual uint32_t ConnectToIMD(IMDProgrammer*)
-virtual uint32_t DiscoverIMDServices(IMDProgrammer*, uint16_t)
-virtual uint32_t SetIMDCharacteristic(IMDProgrammer*, uint8_t led_state)
...[Note: Not all methods shown here]...

Public Methods

-void ChangeState(IMDProgrammer *, IMDProgrammerState*)

Protected Methods

IMDProgrammerInit

-static IMDProgrammerState* Instance()
-void Initialize(IMDProgrammer*)

Public Methods

-IMDProgrammerInit()

Private Methods

-void ble_stack_init(IMDProgrammer* p)
-void device_manager_init(IMDProgrammer *p)
-void db_discovery_init(void)
-void ble_uuid_discovery_init(IMDProgrammer* p)

Private Members

-static IMDProgrammerInit* _instance

Protected Methods

IMDProgrammerScanIMD

-static IMDProgrammerState* Instance()
-virtual void ScanForIMD(IMDProgrammer*)
-virtual uint32_t StopIMDScan(IMDProgrammer*)
-virtual uint32_t ConnectToIMD(IMDProgrammer*)

Public Methods

-IMDProgrammerScanIMD()

Private Members

-static IMDProgrammerScanIMD* _instance

Protected Methods

IMDProgrammerConnected

-static IMDProgrammerState* Instance()
-uint32_t SendSecuritySetupRequest(IMDProgrammer*, uint16_t)
-uint32_t SendSecurityPasskeyReply(IMDProgrammer*)
-uint32_t CheckSecurityStatus(IMDProgrammer*)

Public Methods

-IMDProgrammerConnected()

Private Members

-static IMDProgrammerConnected* _instance

Protected Methods

IMDProgrammerEmergency

-static IMDProgrammerState* Instance()
-void DiscoverIMDEmergencyCharacteristic(..)
-void SetIMDEmergencyCharacteristic(...)
-void ConfirmEmergencyWrite(...)

Public Methods

-IMDProgrammerEmergency()

Private Members

-static IMDProgrammerEmergency* _instance

Protected Methods

IMDProgrammerSecured

-static IMDProgrammerState* Instance()
-uint32_t DiscoverIMDServices(...)
-uint32_t SetIMDCharacteristic(...)
-uint32_t ReadIMDCharacteristic(...)
-uint32_t DisconnectIMDCloaker(...)

Public Methods

-IMDProgrammerScanIMD()

Private Members

-static IMDProgrammerScanIMD* _instance

Protected Methods

Figure 9: IMD Programmer UML Diagram

26

3.3 Security Model

 In any software system that is hoping to implement security in some form or

another, it is important to recognize the limitations of that system as well as define what

type of adversaries it is designed to protect against. This is important for the purposes of

both testing and practicality. The following sections will describe the particular types of

adversaries that this protocol aims to protect against and what parts of the overall IMD

ecosystem will be protected through the use of our protocol.

3.3.1 Adversary Threat Models

 In general there are passive adversaries and active adversaries. Passive

adversaries simply try to see what types of information they can obtain from a particular

software system, whereas active adversaries, as the name suggests, actively try and

manipulate the data they gather or try to exploit security vulnerabilities. Denial of Service

(DoS) is another form of attack which attempts to deny a user or group of users’ access to

part or all of the functionality of a system. All of these attacks can be harmful and there

are many different types of attacks that are possible. It should also be noted that it is

assumed that any adversaries attacking this system are considered to be computationally

bound, meaning that they do not have infinite resources in terms of computational power

and time. The types of attacks that this protocol will provide protection against are

detailed below.

3.3.1.1 Passive Adversaries

 An adversary shall not be able to gain any useful information from passively

eavesdropping on the BLE communication happening between the three components of

27

the system. Although it will be apparent that communication is happening, the adversary

won’t be able to tell the difference between what it is seeing and random data.

3.3.1.2 Active Adversaries

 It will also protect against replay attacks in which the adversary attempts to replay

back previous communications in the hopes that the receiving system will accept it as a

new request. Authentication shall be provided, preventing an adversary from either

performing the replay attacks noted above or other attempts at Spoofing the system using

known plaintext or known ciphertext attacks.

3.3.1.3 Denial of Service

 Adversaries will be prevented from carrying out DoS attacks that are aimed at

draining the IMD battery life. The main method for doing this would be repeated

attempts to authenticate with the IMD Device through the BLE connection procedure,

thereby continually waking up the microprocessor and draining the battery. This will be

prevented through the use of the BLE Cloaker. The IMD Device will not advertise itself

and will only connect to the BLE Cloaker once the two devices have transferred keys

through the RFID link.

3.3.2 BLE Link Security

 There are two separate BLE links within this system that will both have different

security schemes. Both BLE links use what is known as Secure Simple Pairing (SSP),

however they each use a different method of passing their link keys. The first BLE link is

between the IMD Device and the BLE Cloaker. These two devices will use what is

known as Out-of-band (OOB) pairing to pass their link keys to each other through an

RFID connection and finish the connection process. The second is the BLE link between

28

the BLE Cloaker and the IMD Programmer. This uses a passkey entry system in which

the IMD Programmer requests the BLE Cloaker to display a 6-digit key to its LCD

screen. The operator of the IMD Programmer then inputs this key. If the key matches, the

two devices will successfully connect. Both of these pairing methods lower the likelihood

of Man-in-the-middle (MITM) attacks as the keys are not directly transferred through

BLE at any time under the two schemes, but instead rely on proximity and human

interaction to transfer the keys.

3.3.3 Known Limitations

 This work is primarily focused on the security of the BLE links between the

devices as well as the general security of the system as it pertains to ensuring patient

safety. As such, the security of the RFID link used for OOB pairing has not been

enforced. This is not a trivial concern and needs to be addressed in future work. One

common misconception is that the sheer proximity of RFID is enough to make it secure

against both eavesdroppers and active adversaries attempting either passive or active

attacks such as replay or MITM attacks. This is not true as it has been shown that by

using relatively inexpensive equipment one can create an RF sniffer that can arbitrarily

extend the communication distance of RFID devices.

29

CHAPTER 4 – System Implementation

 This section outlines in detail how each portion of the BLE Cloaker model works

in practice. This includes an in-depth overview of how BLE security has been

implemented according to the BLE specification and what that looks like when using

actual BLE hardware. In addition an explanation of how the IMD Device, BLE Cloaker,

and the IMD Programmer along with their associated peripherals has been programmed

will also be written up in this section.

4.1 BLE Security

 As mentioned in the previous sections, the wireless communication link between

the IMD and the outside world is the primary weak spot that an adversary can take

advantage of if they wish to tamper with one of these devices. The wireless

communication that is used in this implementation to connect the IMD to an external

device is BLE. Aside from being significantly more energy efficient than previous

versions of Bluetooth, one of the major design goals of BLE was to adhere to a higher

standard of security. This work uses off-the-shelf BLE radios from Nordic

Semiconductor in conjunction with some additional peripherals to implement the highest

level of security that is possible using the BLE specification. This section gives an

overview of how security is implemented in the BLE protocol.

4.1.1 Security Modes and Levels

 The BLE specification outlines two different modes of security: mode one and

mode two. Each of these modes has several levels of security associated with them.

Security mode one has three different levels. Level one means that there is no security

present at all, level two requires unauthenticated pairing with encryption thereafter, and

30

level three requires authenticated pairing with encryption. Mode two has two levels of

security. Level one requires unauthenticated pairing with data signing and level two

requires authenticated pairing with data signing. As security mode one level three

requires both authentication during pairing as well as an encrypted connection thereafter,

the National Institute of Standards and Technology (NIST) considers it to be the most

secure option that the BLE standard provides [9]. This is the security mode and level that

will be used in this project.

4.1.2 Pairing Phases

 The BLE pairing process contains three distinct phases to create a secure

connection between two different devices. In Phase 1, the Central device sends an initial

pairing request and the Peripheral responds to this request. This is also when the

Temporary Key (TK), which will be described later, is transferred between the two

devices. In Phase 2, a Short Term Key (STK) is generated. The STK is generated using

the TK that was transferred earlier along with randomly generated numbers. An

encrypted link is temporarily started using the STK. Phase 3 is when the Long Term Key

(LTK) is generated and exchanged between the BLE devices using the link that was

encrypted using the STK. In addition to this, an Identity Resolving Key (IRK) as well as

a Connection Signature Resolving Key (CSRK) may or may not also be generated and

exchanged. Figure 10 shows the various steps involved in each phase.

31

Figure 10: Phases 1 through 3 of the BLE pairing and encryption process

P
h

as
e

3
P

h
as

e
 2

P
h

as
e

1

BLE Central BLE Peripheral

Pairing Request

Pairing Response

TK Transmitted

Secret Keys Distributed

Secret Keys Distributed

LTK, IRK, CRSK Transmitted

STK Agreement

32

4.1.2.1 Pairing Phase 1

 The primary purpose of pairing Phase 1 is to transfer the Temporary Key (TK).

The TK is the primary component of what all of the keys that are created and transferred

in the second and third phases are based off of. There are three different means of

transferring the TK, and these variations are known as Secure Simple Pairing (SSP). All

three of these variations are used at different points in the project.

 The first variation for transferring the TK is known as Out of Band (OOB)

pairing. As the name implies, a communications method that is different from BLE is

used to transfer the TK between the Central and the Peripheral. This method provides

protection against MITM attacks insofar as the OOB medium that is used is resistant to

them. Near Field Communication (NFC), a close proximity version of RFID

communication will be used in this project to perform OOB pairing as will be described

later.

 The second variation for transferring the TK is Passkey Entry. This is a common

form of pairing that has been used by previous versions of Bluetooth. In order for it to

work, at a minimum one device needs to have display capability and the other needs to

have input capability such as through a keyboard. One device displays a randomly

generated 6 digit numeric key and the other device types this displayed key in. If the key

was input properly, the TK is generated from this 6 digit key and the devices move on to

the second phase.

 The final variation for transferring the TK is known as Just Works, and it should

not be considered as an actual secure method of pairing. When Just Works pairing is

used, the TK is set to all zeroes and the second and third phases carry on from there. This

33

is clearly not secure as the STK can easily be determined by an adversary since it is based

off of the TK, which is known in this scenario. This model should not be used unless it is

desirable to have an insecure link, which as will be explained does serve a purpose in the

BLE Cloaker model.

4.1.2.2 Pairing Phase 2

 After Phase 1 has completed and TK has been transferred, the process of

generating and transferring the STK begins in Phase 2. There are several steps in this

phase, the first of which is to authenticate each device using a verifier function to ensure

that each device is using the same TK. This verifier function is defined in the BLE

specification document and is known as the “Confirm value generation” function, or c1

for short. It uses 128-bit AES encryption under the hood and takes the following

parameters:

 Mconfirm = c1(TK, Mrand, Pairing Request command, Pairing Response

command, initiating device address type, initiating device address, responding

device address type, responding device address)

 Aside from TK and Mrand which are randomly generated the other parameters are

static to each device. The exception is the Pairing Request and Response commands,

which are always the same. Each device generates starts off the process by generating a

128 bit random number, known as Mrand in the case of the Central and Srand in the case

of the Peripheral device. Then each device uses c1 to generate Mconfirm and Sconfirm

respectively. The two devices exchange Mconfirm and Sconfirm, and then the Central

transmits Mrand to the Peripheral. The Peripheral uses c1 to recalculate Mconfirm using

Mrand, TK, and the other parameters. If the received Mconfirm and the generated

34

Mconfirm match, then the process continues with the Peripheral transmitting Srand and

the central device recalculating Sconfirm. Assuming both Mconfirm and Sconfirm are

successfully verified, each device uses the “Key generation function” s1 to generate the

STK. This function takes the following parameters:

 STK = s1(TK, Srand, Mrand)

This function also uses 128 bit AES encryption as its basis for key generation. At this

point, the two devices use the STK to create a temporary encrypted link to transfer the

remaining keys. Figure 11 shows this verification process more clearly.

35

Figure 11: Diagram of the STK generation process in Phase 2

BLE Central BLE Peripheral

Generate 128 random
number Mrand

Generate 128 random
number Srand

Generate Mconfirm
using c1

Generate Sconfirm
using c1

Confirm value Generation: c1(TK, Mrand/Srand, ….)

Transmit Mrand

Verify Mconfirm using
c1 and Mrand

Transmit Mconfirm/Sconfirm

Transmit Srand

Verify Sconfirm using c1
and Srand

Generate STK
using s1

Generate STK
using s1

Key generation function: s1(TK, Srand, Mrand)

36

4.1.2.3 Pairing Phase 3

 The third and final phase, Phase 3, is when the Long Term Key (LTK) is

generated and distributed over the STK encrypted BLE link. The LTK is generated from

yet another 128 bit AES based function known as the “Diversifying function” or d1. It

has the following signature:

 LTK = d1(ER, DIV, 0)

 ER is the Encryption Root which is a static and random 128 bit number. DIV is a

16 bit diversifier that is unique to each trusted device. In addition to the LTK, the IRK

(Identity Resolving Key) and the CRSK (Connection Signature Resolving Key) can be

generated in this phase. However for this application neither of these keys are necessary.

The IRK is needed when the BLE privacy setting is enabled. When this feature is active,

an advertising device will periodically change its publicly visible address so that it can’t

be followed by an unwanted adversary. In addition, this address can only be resolved

using the IRK. This implies that devices need to have been previously bonded in order for

this privacy feature to be used, which is not the case for this implementation. The CRSK

is used for data signing, which is also not a feature that is being used in this project.

4.1.3 Message Encryption

 The BLE specification makes use of the industry standard Advanced Encryption

Standard-Counter with CBC-MAC (AES-CCM) algorithm for encryption. AES-CCM is a

mode of operation for blocks of 128 bits in length. AES-CCM provides both

authentication as well as encryption and uses an “authenticate-then-encrypt” scheme. It is

used as would be expected to encrypt messages being sent over the BLE link, and the key

to be used for AES-CCM is generated as follows:

37

 h4(LTK, KeyID, BD_ADDR_M, BD_ADDR_S) = HMAC-SHA-256(KeyID ||

BD_ADDR_M || BD_ADDR_S) / 2128

KeyID is set to the string “btdk” which stands for “Bluetooth Device Key” and

BD_ADDR_M and BD_ADDR_S are the Central and Peripheral addresses respectively.

4.2 IMD Services and Characteristics

 For this work it was necessary to define two Services and three Characteristics to

be used by each of the BLE components within the system. When creating “vendor

specific” BLE Services and Characteristics rather than those that are predefined by the

Bluetooth SIG, it is customary to use a common 128 bit base UUID for all of the

necessary Services and Characteristics. The way this is done in the Nordic chipset is that

the base UUID is given first, and then a different two byte value is then given for each

Service and Characteristic that is to be used. When added, these two bytes take the place

of bytes 12 and 13 of the base UUID. The 16 bit values used and their corresponding

Services and Characteristics are outlined below. Each Service and Characteristic will be

discussed in later sections:

 IMD_DEVICE_SERVICE_ENCRYPTED: 0x1701

o IMD_DEVICE_CHARACTERISTIC: 0x1702

o IMD_DEVICE_EMERGENCY_CHARACTERISTIC: 0x1703

 IMD_CLOAKER_SERVICE_ENCRYPTED: 0x1704

o IMD_CLOAKER_CHARACTERISTIC: 0x1705

4.3 System Components

 The picture in Figure 12 shows what the system looks like and highlights which

microcontrollers and peripherals are a part of each of the three system components of the

38

BLE Cloaker model. The diagram in Figure 13 gives an overview of the communication

protocols that each of these components uses to talk to their respective peripherals. This

section will describe in detail how each of these components work both individually and

together.

39

Figure 12: Picture showing an overview of the whole system

BLE Cloaker

IMD Programmer

IMD Device

40

Figure 13: Overview of the various communication protocols used between the master and slave devices

BLE Cloaker
(nrf51422)

IMD
Programmer
(nrf51822)

IMD Device
(nrf51822)

LCD
Display

RFID ModuleRFID Module

SP
I

SP
I

UART

PC UART

41

4.3.1 RFID Slave Device

 A pair of off-the-shelf NFC/RFID breakout boards designed by Adafruit were

used as the means for transferring OOB data between the IMD Device and the BLE

Cloaker. At the core of this board is the PN532 IC that acts as a slave device and supports

SPI, I2C, and UART commands. A SPI interface was used for both devices. These

commands are used to setup the board for sending and receiving data between RFID

enabled devices. Additionally there is an interrupt line available on the board so that the

master microcontroller can be notified when new data has been received.

 In addition to transferring OOB data, it is also used to transfer the BLE addresses

of the IMD Device and BLE Cloaker back and forth. As a means to save power, the IMD

Device doesn’t start advertising until the RFID field of the BLE Cloaker’s RFID device is

within range and the OOB data has been transferred. The hardware within the PN532 IC

takes care of the timing and protocol requirements of several different types of RFID

protocols. The Near Field Communication Interface and Protocol (NFCIP-1) was used as

it is one of the simplest schemes available. A transfer speed of 106 kbits/s was used as

well as passive communication. Passive communication means that only the Initiator of

the connection powers its RF field during communication, whereas the Target simply

uses the power from the generated field for data transmission. By strategically making the

IMD Device act as the Target, this allows for potential current savings.

After both the Initiator and the Target have been initialized, they wait until they

are within range of each other. When this happens, further information is transferred and

the Initiator decides on the baud rate and communication protocol to be used. After this,

data can be repeatedly transferred back in forth. Figure 14 shows these steps.

42

Figure 14: Diagram showing the necessary steps in an RFID setup and data transfer

Initiator
(BLE Cloaker)

Target
(IMD Device)

Send Initiator
command

Wait for
response

Wait for Initiator
command

Send response

Send Data Wait for Data

Send DataWait for data

43

4.3.2 IMD Device

 The purpose of the IMD Device in this system is to emulate the wireless

communication frontend of an actual IMD as closely as possible. There were two pieces

of hardware that make up the IMD Device. The first is an NRF51822 IC on the mbed kit,

a breakout board manufactured by Nordic Semiconductor. This is the primary device and

contains a standalone processor as well as a BLE radio. Attached to it through a SPI

connection is one of the two RFID slave devices for receiving OOB data from the BLE

Cloaker. The software is split into two distinct sections on the flash memory: the Nordic

S110 SoftDevice and the application code. The S110 SoftDevice is Nordic’s proprietary

Peripheral BLE stack that handles all BLE related operations as required by the BLE

specification. The application code makes function calls into the SoftDevice to control

the BLE radio and to carry out the IMD Devices two primary functions.

 In its idle state, the IMD Device makes a call to sd_app_evt_wait(). This function

call puts the IC into a low power state until either a BLE or other event happens. The

IMD Device has two modes. The normal case is it enters into an encrypted connection

with the BLE Cloaker. The other case is when it enters into emergency mode and can

enter into an unencrypted connection with anyone who is scanning for it. The

circumstances that cause both of these modes to occur as well as a detailed description of

these modes is described below. Prior to either of these modes occurring however, the

IMD Device enters the IMDDeviceInit state. In this state the IMD Device initializes the

S110 BLE stack, sets up the Device Manager, and sets up the General Access Protocol

(GAP) settings required for a BLE connection to occur. The Device Manager is

responsible for such tasks as intercepting incoming BLE events and managing peer

44

connections and their corresponding security keys. Additionally it adds the IMD Device

encrypted BLE Service and both the encrypted Characteristic for normal operation and

the unencrypted Characteristic to be used in emergency mode. Finally it sets the

connection security parameters to require bonding, MITM protection, and states that it

supports OOB and has no I/O capabilities.

4.3.2.1 Normal Operation with the BLE Cloaker

 The IMD Device enters into normal operation when the RFID field of the BLE

Cloaker is detected. When this happens, the IMD Device enters the

IMDDeviceOOBTransfer state and the OOB data as well as the BLE address of itself and

the BLE Cloaker are transferred. For security purposes, these BLE addresses are set to

random values every time a new connection is formed between the IMD Device and the

BLE Cloaker. This helps to ensure that an adversary is not able to continually have access

to a device even if a successful attempt was made in the past.

After the OOB transfer completes, the IMD Device goes into the

IMDDeviceAdvertise state. The advertising settings are set to connectable directed. What

this means is that the IMD Device will only attempt to connect one device, namely the

BLE Cloaker whose BLE address was transferred during the OOB link. This mode allows

for a very fast connection with a 1.28 second advertising period. This short amount of

advertising helps to reduce power consumption.

Once connected, the IMD Device enters the IMDDeviceConnected state, at which

time it replies to a request made by the BLE Cloaker regarding what its BLE security

requirements and abilities are. In this case, OOB security with MITM protection is

required so the IMD Device responds with the TK it received over the OOB connection.

45

The second and third phases of the pairing sequence are done by the SoftDevice without

the need for user intervention. Once this process completes, the LTK is stored and

encrypted reads and writes from the IMD encrypted Characteristic are now possible.

4.3.2.2 Emergency mode operation without the BLE Cloaker

 Prior to being connected to the BLE Cloaker, an IMD emergency can be

simulated through a button press on the board. When this happens, the IMD Device goes

into the IMDDeviceEmergency state and begins to advertise using the connectable and

undirected settings. This means that any device who is listening will be able to connect to

the IMD Device. In this scenario, the unencrypted IMD emergency Characteristic is

added to the advertising data. The reason for this is so that the IMD Programmer will be

able to parse the advertising packet for the emergency Characteristic UUID and thereby

be able to find IMD Devices in emergency mode. If a connection request comes in from

the IMD Programmer, the IMD Device will immediately connect using the Just Works

pairing scheme. From here, the IMD Programmer can write to the unencrypted

emergency Characteristic and resolve the “emergency”. Something of note is that

although no security is required to access the emergency Characteristic, the application

does need to internally authorize access to it. This is so that in normal operation, although

the emergency Characteristic is visible to the Central device, the application can refuse it

access to reading or writing to it inappropriately. The motivation for this lack of security

is that during a life threatening emergency, it would be better to have the IMD fail open

and be accessible so that a medical practitioner may be able to help the patient more

efficiently.

46

4.3.3 BLE Cloaker

 The purpose of the BLE Cloaker is to act as an intermediary communications

device between the IMD Device and the IMD Programmer. The BLE Cloaker consists of

three distinct pieces of hardware. The NRF51422 IC broken out onto the nrf51

Development Kit by Nordic Semiconductor is again the master and commander of this

component. Attached to it as slave devices are the RFID module for OOB transfers, and

an LCD display for both status messages as well as displaying the passkey for securely

pairing with the IMD Programmer.

The Nordic S130 SoftDevice was used in conjunction with user application code.

The S130 SoftDevice is unique because it allows a single device to act as the Central and

the Peripheral simultaneously. This was necessary as the BLE Cloaker needs to be able to

scan for and connect to the IMD Device as a Central and then be able to advertise and be

connected to by the IMD Programmer as a Peripheral. The downside to using the S130

SoftDevice is that up until recently it was only available as an Alpha build, meaning that

it was somewhat difficult to use and there was only a small amount of example code

available. Another difficulty is that the S130 has only been tested to run on version 3

boards and for some reason does not appear to play nicely with C++, which was why C

was used for coding the BLE Cloaker instead. At any given time, the BLE Cloaker is in

one of three overarching modes of operation. These are described below.

4.3.3.1 No devices connected

 Before any devices are connected, the BLE Cloaker runs through its initialization

routines and sets up the important BLE parameters in a similar fashion as the IMD

Device. In addition it adds the BLE Cloaker Service and Characteristic for later discover

47

by the IMD Programmer. One feature of note pointed out in the Cloaker model is the

presence of a biometric indicator that determines whether or not the BLE Cloaker is

attached to a person or not. When this biometric indicates that the BLE Cloaker isn’t

attached to the patient anymore, it immediately disconnects itself from the IMD Device.

The reason for this is so that if an emergency situation occurs, doctors can simply remove

the BLE Cloaker to gain emergency access to the IMD Device as it fails open in the

absence of the BLE Cloaker. To simulate this biometric reading, a simple GPIO line was

added. If it is plugged in, it means that the BLE Cloaker is attached to a person and can

be connected to the IMD Device. Otherwise, no connections are possible and any current

connections will be severed.

 Assuming the presence of the simulated biometric indicator, the BLE Cloaker will

exit this mode once it detects the RF field of the IMD Device and will transfer its OOB

data and its randomly generated BLE address. The BLE Cloaker actually generates the

OOB data and its random BLE address using a built in thermal noise random number

generator. After the IMD Device’s BLE address has been transferred, the BLE Cloaker

attempts to connect to it and sends the required security requests. The pairing sequence

ends with the reception of the LTK.

4.3.3.2 IMD Device connected

 Now that a secure connection has been formed with the IMD Device, the BLE

Cloaker will use the LCD screen to prompt the user if they would like to start advertising.

If they accept by pressing a button, the BLE Cloaker begins advertising and will display

its BLE address on the LCD. This address will be entered in by the user of the IMD

Programmer to ensure a proper connection is made. Once connected to the IMD

48

Programmer, the LCD will display a 6 digit key. If this key is entered correctly by the

IMD Programmer, the LTK is transferred and the connection is secured.

4.3.3.3 IMD Programmer and IMD Device connected

 Now that the three devices have been connected together, the BLE Cloaker can

act as a data proxy between the IMD Programmer and the IMD Device. In the case of a

data write, the IMD Programmer sends an encrypted write request to the BLE Cloaker

who then sends another encrypted write request to the IMD Device. Performing an

encrypted read is slightly more complicated. The reason for this is that because the IMD

Programmer initiates the read, the BLE Cloaker needs to first read the value from the

IMD Device before it replies to the IMD Programmer. To accomplish this, the BLE

Cloaker Characteristic was setup to require authorization before being read. This way the

IMD Programmer is expecting an intermediary reply to tell it if it was granted access or

not. Before this reply is sent, the BLE Cloaker sends the read request to the IMD Device

and gets the value. Then it authorizes the IMD Programmer’s read request and sends back

the most current data.

4.3.4 IMD Programmer

 The purpose of the IMD Programmer is to emulate the functions of a Clinical

Programmer by sending commands and receiving responses back from the IMD Device

either directly when it is in emergency mode or indirectly when connected to it through

the BLE Cloaker. Like the IMD Device, the brain of the IMD Programmer is an

NRF51822 IC and corresponding breakout board. It is also connected to a PC through a

UART connection to display commands and gather user input through the terminal. It is

using the Nordic S120 SoftDevice, which is their proprietary Central BLE stack. The

49

IMD Programmer is either scanning for or connected to a BLE Cloaker, or scanning for

or connected to an IMD Device in emergency mode.

4.3.4.1 Scanning for the BLE Cloaker

 In this mode the IMD Programmer first waits for the user to input the BLE

address of the BLE Cloaker they wish to connect to. After the address is inputted

correctly, the user is prompted to enter the 6 digit security code displayed on the LCD

screen of the BLE Cloaker. After this number is inputted, the IMD Programmer and the

BLE Cloaker are in a secure connection. The user will now be prompted to either write or

read from the IMD Device through the BLE Cloaker, or disconnect from it altogether.

4.3.4.2 Scanning for the IMD Device in emergency mode

 When scanning for IMD Devices, the IMD Programmer will asynchronously

intercept any incoming advertising packets from BLE devices in close proximity.

However it won’t connect to any of these devices unless their advertising packet contains

the UUID of the IMD emergency Characteristic. Once the IMD Device has been found

using this method, the IMD Programmer connects to it. The user is then immediately

asked if they wish to resolve the emergency. After the user accepts, the IMD emergency

Characteristic is reset and this triggers the IMD Device to disconnect from the IMD

Programmer to prevent further unsecured access.

50

CHAPTER 5 – Issues, Assumptions, and Limitations

5.1 Issues and Assumptions

5.1.1 BLE Issues and Assumptions

The general communication scheme for Bluetooth Low Energy (BLE) devices is a

Star topology in which a single master is connected to one or more slave devices. For this

work however, it is necessary to use what is known as a Scatternet topology. Previous

versions of the Bluetooth specification supported this topology, but the BLE specification

has deemed this an atypical use case and as such it is not widely supported by BLE

device manufacturers. Because of this fact Nordic, the manufacturer of the BLE ICs that

will be used, has only recently come out with a production version of their software stack

that supports the Scatternet topology. As it is such a premature version of the code, there

are various bugs that remain to be worked out that make it difficult to use.

5.1.2 RFID Issues and Assumptions

Modern IMDs are equipped with RF induction technology that allows them to

communicate with external Clinical Device Programmers. These programmers require

the use of a strong inductive wand in order to be able to penetrate the tissue of the human

body and communicate reliably with the IMD. The RFID microcontrollers used in this

work were designed to communicate with passive RFID cards and mobile devices. As

such the inductive field generated is not strong enough to communicate with an

implanted IMD. This work is meant as a proof of concept with the assumption that future

work would overcome this problem. An obvious solution would be to manufacture a

device that generated a field that was indeed strong enough to penetrate human tissue and

communicate with an IMD. Another possible scenario to explore is the notion that future

51

IMDs may be equipped with some form of subcutaneous RFID technology that would not

require as strong of an inductive field as in past devices.

5.2 Current Limitations and Future work

5.2.1 BLE 4.1

 The Nordic BLE IC’s used in this project only support version 4.1 of the BLE

standard. This version of BLE has known security issues, mainly the lack of protection

against passive eavesdroppers. Pairing phases one and two are both done in the clear,

meaning that it is possible for adversaries to listen in and obtain the TK and random

numbers during this time frame. This information would make it trivial to determine the

STK and use that to obtain the LTK. Future work would be to upgrade the current system

to a BLE IC that has support for version 4.2 of the BLE standard. This version of BLE is

both FIPS and NIST compliant, and it uses Elliptical Curve Diffie-Hellman (ECDH)

public key cryptography to provide protection against passive eavesdroppers.

5.2.2 NFC/RFID Encryption

 The current means of transferring OOB data using NFC is not secure against

MITM attacks. Currently no methods of securing and encrypting this data as it is

transmitted have been implemented. Future work would be to research and implement an

appropriate encryption scheme.

5.2.3 IMD Device Emulation

 Both the Nordic IC as well as the RFID module draw too much current to be

feasibly used within an IMD of any kind. The RFID module itself draws 20mA of current

after it has been initialized, which is much too high for this application. Future work will

involve researching and selecting more power efficient devices.

52

CHAPTER 6 – Key Contributions and Conclusions

This work furthered the research of Kevin Fu et al. by implementing and looking

into the feasibility of their Cloaker model using actual hardware and the ubiquitous BLE

protocol as the wireless medium. This work also points out both the strengths and

weaknesses of using BLE 4.1 as a wireless protocol for IMD’s. It also provides a good

baseline as well as suggestions as to where future researchers should focus their efforts in

this new and emerging field of medical device security.

53

REFERENCES

1. Ali, Mai, Lutfi Albasha, and Hasan Al-Nashash. "A Bluetooth low energy

implantable glucose monitoring system." Microwave Conference (EuMC), 2011 41st

European. IEEE, 2011.

2. Chae, Hee-Jin, et al. "Maximalist cryptography and computation on the WISP UHF

RFID tag." Wirelessly Powered Sensor Networks and Computational RFID. Springer

New York, 2013. 175-187.

3. Denning, Tamara, Kevin Fu, and Tadayoshi Kohno. "Absence Makes the Heart Grow

Fonder: New Directions for Implantable Medical Device Security." HotSec. 2008.

4. Greatbotch, Wdson, and Curtis F. Holmes. "History of implantable devices." (1991).

5. Halperin, Daniel, et al. "Pacemakers and implantable cardiac defibrillators: Software

radio attacks and zero-power defenses." Security and Privacy, 2008. SP 2008. IEEE

Symposium on. IEEE, 2008.

6. Halperin, Daniel, et al. "Security and privacy for implantable medical devices."

Pervasive Computing, IEEE 7.1 (2008): 30-39.

7. Omre, Alf Helge, and Steven Keeping. "Bluetooth low energy: wireless connectivity

for medical monitoring." Journal of diabetes science and technology 4.2 (2010): 457-

463.

8. Rieback, Melanie R., Bruno Crispo, and Andrew S. Tanenbaum. "RFID Guardian: A

battery-powered mobile device for RFID privacy management." Information Security

and Privacy. Springer Berlin Heidelberg, 2005.

9. Scarfone, Karen, and John Padgette. "Guide to bluetooth security." NIST Special

Publication 800 (2008): 121.

54

10. Yu, Bin, Lisheng Xu, and Yongxu Li. "Bluetooth low energy (BLE) based mobile

electrocardiogram monitoring system." Information and Automation (ICIA), 2012

International Conference on. IEEE, 2012.

	LIST OF FIGURES
	CHAPTER 1 – Introduction
	1.1 Statement of Research Question
	1.2 General Approach

	CHAPTER 2 – Background and Related Work
	2.1 Background
	2.2 Related Work

	CHAPTER 3 – System Design
	3.1 System Overview
	3.1.1 System Diagram
	3.1.2 BLE Overview
	3.1.3 BLE Scatternet Topology

	3.2 System Components
	3.2.1 The IMD Device
	3.2.1.1 IMD Device Software Flow Diagram
	3.2.1.2 IMD Device UML Diagram

	3.2.2 The BLE Cloaker
	3.2.2.1 BLE Cloaker Software Flow Diagram
	3.2.2.2 BLE Cloaker State Diagram

	3.2.3 The IMD Programmer
	3.2.3.1 IMD Programmer Software Flow Diagram
	3.2.3.2 IMD Programmer UML Diagram

	3.3 Security Model
	3.3.1 Adversary Threat Models
	3.3.1.1 Passive Adversaries
	3.3.1.2 Active Adversaries
	3.3.1.3 Denial of Service

	3.3.2 BLE Link Security
	3.3.3 Known Limitations

	CHAPTER 4 – System Implementation
	4.1 BLE Security
	4.1.1 Security Modes and Levels
	4.1.2 Pairing Phases
	4.1.2.1 Pairing Phase 1
	4.1.2.2 Pairing Phase 2
	4.1.2.3 Pairing Phase 3

	4.1.3 Message Encryption

	4.2 IMD Services and Characteristics
	4.3 System Components
	4.3.1 RFID Slave Device
	4.3.2 IMD Device
	4.3.2.1 Normal Operation with the BLE Cloaker
	4.3.2.2 Emergency mode operation without the BLE Cloaker

	4.3.3 BLE Cloaker
	4.3.3.1 No devices connected
	4.3.3.2 IMD Device connected
	4.3.3.3 IMD Programmer and IMD Device connected

	4.3.4 IMD Programmer
	4.3.4.1 Scanning for the BLE Cloaker
	4.3.4.2 Scanning for the IMD Device in emergency mode

	CHAPTER 5 – Issues, Assumptions, and Limitations
	5.1 Issues and Assumptions
	5.1.1 BLE Issues and Assumptions
	5.1.2 RFID Issues and Assumptions

	5.2 Current Limitations and Future work
	5.2.1 BLE 4.1
	5.2.2 NFC/RFID Encryption
	5.2.3 IMD Device Emulation

	CHAPTER 6 – Key Contributions and Conclusions
	REFERENCES

