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ABSTRACT 

The BLE Cloaker: Securing Implantable Medical Device Communication over Bluetooth 

Low Energy Links 

Taylor Anthony Nesheim  

 

 Historically Implantable Medical Devices (IMDs) such as pacemakers have only 

been able to communicate to external devices through close proximity means of 

communication, primarily through inductive telemetry. Because of the unlikelihood of an 

adversary being able to gain access to an IMD through this type of communication, these 

devices were never designed with security in mind. However the recent advent of IMDs 

that are equipped with long-range wireless capabilities has made it necessary to consider 

how to secure these devices from malicious attacks.  

 This work presents an implementation of prior work that developed a theoretical 

security model whose specific intent was to secure IMDs with long-range wireless 

capabilities against both passive and active adversaries, while also ensuring the safety of 

the patient. This implementation is known as the Bluetooth Low Energy (BLE) Cloaker 

model and provides a prototype system that uses BLE as the long-range communication 

medium between an emulated IMD, an external programmer, and the BLE Cloaker 

device itself. The BLE Cloaker acts as a secure data proxy between the IMD and the 

external programmer. This prototype shows the benefits and drawbacks of this theoretical 

model when used in a real world system as well as the security strengths and weaknesses 

of using BLE as the wireless link in a medical application.   
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CHAPTER 1 – Introduction 

 Until recently, Implantable Medical Devices (IMDs) were only able to 

communicate to external devices through close-proximity methods such as RF inductive 

telemetry. The necessity of being in such close-proximity made the possibility of a 

malicious adversary attacking these devices extremely unlikely. As such, the security of 

IMDs was never considered when they were originally designed. Modern IMDs however 

are equipped with long-range wireless communication that ranges from a few feet to 

across the room. Because of the swiftness of this change coupled with the previous lack 

of a need for it, IMDs are now completely unsecured against both passive and active 

adversaries. The purpose of this work is to provide a communications protocol for 

securing IMDs against cyberattacks. It additionally aims to provide and test an 

implementation of this communications protocol using off-the-shelf hardware.  

1.1 Statement of Research Question 

 This work aims to answer the following research questions: what kind of 

communication protocol is needed for an Implantable Medical Device (IMD) equipped 

with Bluetooth Low Energy and RFID technology to be secured against malicious 

intrusion? Because of the current lack of security present in these IMDs combined with 

the life threatening consequences of device failure, ongoing research to find a solution to 

this problem is both important as well as urgent. There are several important criteria that 

need to be kept in mind when developing this kind of protocol. This protocol needs to 

provide protection from passive adversaries that have the ability to eavesdrop on wireless 

communications from the IMD, thereby gaining access to private patient data. It also 

needs to provide protection from active adversaries that have the ability to employ Denial 
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of Service attacks, Replay attacks, and device spoofing that could lead to improper 

functionality that could be harmful or fatal to the patient. It needs to ensure that the IMD 

is able to be accessed immediately by medical practitioners in a medical emergency, but 

is secured against malicious adversaries during all other times. Any protocol 

implemented needs to ensure proper device operation in a low power and low resource 

environment. This means that the battery life of the IMD must be conserved as much as 

possible as the replacement of depleted devices poses a significant risk to the well-being 

of the patient. 

1.2 General Approach 

 The general approach that will be used to address this problem will be to design 

and develop a communications protocol that meets the above requirements based on a 

review of what the current best practices are for security in terms of encryption and 

authentication. Once the design has been completed, it will be implemented in an 

iterative process on actual hardware. The first iteration will consist of getting the various 

components setup and talking to each other with a focus on function rather than on 

security. The next iteration will involve refactoring the implementation to incorporate the 

aforementioned security including communication encryption and device authentication. 

The final iteration will refine the previous iterations as needed in order to achieve the 

constraints that will be present in an actual IMD. The implementation will then be put 

through various experiments to test and verify that it is conforming to the real world 

constraints while maintaining the necessary level of security. 
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CHAPTER 2 – Background and Related Work 

2.1 Background 

 The notion of the development and use of Implantable Medical Devices is not a 

new concept. Doctors first considered the idea in the early 50s, and in 1952 the first 

external pacemaker was developed [4]. It was wall powered and caused a painful burning 

of the skin when in use, but it was a first step towards the devices that are commonplace 

today. With the advent of the transistor and the lithium battery, much smaller devices 

were possible and the further development of printed circuit boards and microchips in the 

1980s led to the widespread development and implantation of pacemakers and other 

IMDs that closely resemble those that are seen today [4]. 

 Historically, the primary method of communications of these devices with 

external programmers has been through RF inductive telemetry. Security was never an 

issue nor a primary concern of medical device companies because the only means for 

interfering with the device was through close proximity to the patient using the RF 

inductive telemetry mentioned above. Now however, more and more devices are being 

equipped with long-range wireless capabilities. This fact has substantially increased the 

possibility for adversaries with malicious intent to interfere with the proper functioning of 

these devices. When combining this with the knowledge that security has never been a 

primary concern of medical device companies, the potential for current and future device 

failures due to adversarial attacks is a huge concern. This also justifies the need for both 

the research in the area of IMD security and the subsequent implementation of this 

research by medical device companies in their products. 
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 There have been several research papers written in recent years that specifically 

highlight the inherent security vulnerabilities in currently used models of IMDs. One 

such paper written by Halperin, Daniel, et al. shows that they were able to both read from 

and modify settings of an Implantable Cardioverter Defibrillator (ICD) using an off-the-

shelf RF Commodity Software Radio [5]. The method they employed was simply to use 

this RF Radio to attempt to passively eavesdrop on known commands between the ICD 

and an external programmer, and then try to replay these communications back to the 

ICD and verify whether or not the ICD accepted or rejected the command. While doing 

this they found several worrisome results. The first was that both the eavesdropped 

patient and medical data being transmitted were completely in plaintext, making it 

straightforward to decode the information without even needing to know anything about 

the underlying structure of the communication packets. The second was that they were 

able to successfully replay previously eavesdropped packets and have the ICD accept 

these commands within several attempts. With just these two simple attacks, they were 

able to make both small changes such as modifying the patient name stored in the device, 

and much more devastating changes including disabling device therapies and inducing 

fibrillation that would send shocks of approximately 138V to a patient. 

 At first glance, the obvious solution is for medical device companies to simply 

adopt the industry best practices for security and apply them to all of their medical 

devices. Unfortunately, medical devices have significantly different requirements than 

most other software and hardware systems on the market. Because of this, industry best 

practices are either not applicable or need to be modified in order to be feasible in IMDs. 

In another paper written by Halperin, Daniel, et al., they examine the various system 
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requirements inherent to IMDs as well as go through the tradeoffs between these 

requirements and enforcing security [6]. These tradeoffs are summarized as follows: 

 Security vs. Accessibility: IMDs need to be made secure against all unauthorized 

users. However these devices need to be made available to surgeons and healthcare 

professionals during critical and emergency situations. Failure to do so could cause 

harm or death to the patient or those attempting to operate on the patient. Adding a 

software back door is one possible solution to this, however this means intentionally 

adding an exploitable security vulnerability to the IMD. 

 Security vs. Device Resources: The large majority of IMD devices are extremely 

resource limited due to their size and battery longevity requirements. Standard 

cryptographic methods of security are computationally expensive and are therefore 

not practical for use in resource constrained devices such as IMDs. Protecting against 

Denial of Service (DoS) attacks are of the utmost importance in these devices 

especially those relating to battery depletion and buffer overflow attacks. Any DoS 

attack could necessitate the explanting of the IMD from the patient, which increases 

the likelihood of infection and patient injury. 

 Security vs. Usability: The user interfaces associated with Clinical Programmers and 

the devices themselves need to maintain security while also ensuring usability. If the 

usability of a programmer is such that a doctor or patient is unable to properly update 

or change settings on the IMD, it limits accessibility to that device and can again lead 

to adverse consequences for the patient. Likewise, although patient comfort and 

convenience is a priority, it can also come at the cost of security. Long range RF 

wireless capable IMDs for example allow patients a greater sense of comfort and 
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freedom as they are able to move about their home or doctor’s office unconstrained. 

But this wireless capability comes at the cost of increasing the likelihood of passive 

and active attacks from adversaries. 

 Because of these and other issues uniquely attributed to the requirements of 

IMDs, securing these devices against malicious attacks is by no means a straightforward 

or trivial task. Each class of IMD has their own set of unique requirements and 

constraints that need to be considered separately when determining how to secure a 

particular device. There are no shortcuts or silver bullets in security, and when lives are at 

stake software developers need to do their due diligence to ensure that they have done all 

they can to protect patients against security vulnerabilities.    

2.2 Related Work 

 This research is based upon previous work in which the authors outlined an IMD 

security model that incorporates a new type of device they deemed The Cloaker [3]. The 

model they put forth was mostly theoretical and involved only a simulation in software. 

Although this is a good first step, their work would benefit from an actual 

implementation under realistic hardware and software constraints found in typical IMD 

systems. The goal of this work is to provide this implementation and determine the 

feasibility of using The Cloaker model in practice. The primary concern of the authors 

when designing the security model of The Cloaker was that it adhere to the following 

design criteria: 

1. The system should be safe and provide open access in emergencies. 

2. Security and privacy needs to be maintained under adversarial conditions. 

3. Battery life of the device needs to be maintained. 
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4. The system should respond to both the patient and the doctors within a reasonable 

and safe amount of time. 

 Modern IMD systems typically involve two devices: (1) the IMD device itself that 

is implanted in the patient, and (2) the Clinical Programmer that communicates to the 

IMD either to change settings or read important patient information from the IMD. In 

contrast, their system involves the addition of a third intermediate device. This third 

device, The Cloaker, acts as a proxy between the IMD and the Clinical Programmer to 

support the design goals that were outlined above. The Cloaker is foreseen as being a 

device very much like current wearable health devices in terms of scale and 

computational power and would be worn by the patient. In this model there are two use 

cases that need to be considered separately.  

 The first is when The Cloaker is present. When this is the case, all communication 

between the IMD and the Clinical Programmer must go through The Cloaker. There are 

several advantages to this setup. Since power consumption is a primary concern of IMD 

design, The Cloaker allows a means to use more computationally expensive 

cryptographic methods to pair with external Clinical Programmers without depleting the 

IMD device. The IMD and The Cloaker can be considered to be in a long-term 

relationship, so encrypted symmetric key protocols can be used to pair the two devices 

together and not attempt to pair with other devices. This shift of authenticating external 

devices through The Cloaker prevents Denial of Service attacks specifically targeting 

battery life through repeated authentication attempts. 

 The second use case to be considered is when The Cloaker is not present. As a 

means to fulfill their first design goal, the authors suggest that the IMD “fail open” in the 
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absence of The Cloaker. In an emergency situation this allows doctors to gain full access 

to the device by either removing or destroying the device. They suggest using biometric 

information such as the patient’s pulse to indicate whether or not The Cloaker is present. 

This prevents against the possibility of The Cloaker being lost but still locking the device 

in the case of an emergency.  

 This work will provide an implementation of their proposed system called the 

BLE Cloaker that will use Bluetooth Low Energy (BLE) as the long-range wireless 

communication medium in conjunction with Out-of-Band (OOB) pairing through RFID 

to provide additional security. BLE is a good candidate for medical wireless 

transmissions due to its low power, compatibility with other sources of Electromagnetic 

Interference (EMI), and data transmission confidentiality [7]. If configured, BLE also 

supports 128-bit encryption as well as periodically changing the device address to a 

random value. There has been research that has shown the feasibility of using BLE 

directly in IMDs such as the BLE enabled Implantable Glucose Monitor [1]. There are 

also numerous examples of BLE being used as a means to connect wireless body sensors 

that take biometrics such as ECG to external devices including cell phones [10]. One 

reason that BLE is so appealing is that it has already been widely adopted by mobile 

phone developers, so in the future there is the potential for IMDs to directly use the 

patient’s cellphone to upload medical information.  

 An RFID link will be used between the BLE Cloaker device and the IMD device 

to initiate the BLE pairing procedure using OOB. Although it won’t be addressed in this 

implementation, the security of this link is also a concern and should be considered. 

There are several papers which outline methods for securing RFID links. Many of these 
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could be considered RFID versions of The Cloaker whose purpose is to act as an 

authenticated proxy between a resource constrained device and that of an external device 

attempting to read or update that constrained device. Some examples of these include the 

RFID Guardian which is a proposed device that is supposed to be kept near the person 

and block unauthorized access to a person’s RFID enabled devices that are within range 

[8]. There has also been research that has shown that it is possible to implement RC5 on a 

resource constrained RFID microcontroller that performed relatively well in terms of 

both needed computational power and energy consumption [2]. It should be noted that all 

of the above research was geared towards developing cryptography methods for passive 

RFID tags whose goal was to keep the device as inexpensive as possible to make 

widespread manufacturing of these devices on household items economically feasible. 

Because IMDs are not produced in quite the ubiquitous scale as passive RFID tags, 

reducing cost in this manner is not a primary concern so it is reasonable to assume that 

there will be at least a marginal improvement in the amount of computational power 

available in IMDs for cryptographic purposes.  
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CHAPTER 3 – System Design 

 The overarching computing ecosystem of a patient using an IMD is complex and 

expands across multiple platforms and devices, as well as between multiple parties 

including doctors, clinicians, and software developers. The IMD directly connects to a 

Clinical Programmer or base station through either close proximity RF telemetry or long-

range wireless techniques. In the case of a Clinical Programmer, a clinician or 

manufacturer technician will be present to update settings and take patient measurements. 

For home use, an IMD may connect to an external base station that will send patient data 

through the phone line to a backend database for future analysis by a doctor. In the future, 

it is possible that a mobile device using either a GSM or Wi-Fi network could replace this 

base station. Figure 1 shows what an example system might look like.   
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Figure 1: Typical IMD Ecosystem 
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3.1 System Overview 

 The security model presented in this work focuses on only a portion of the 

ecosystem outlined in Figure 1. Specifically it is concerned with the security of the direct 

link between the IMD Device and the external devices, both authorized and unauthorized, 

who wish to connect to it. This system has three parts: (1) the IMD device itself, (2) the 

BLE Cloaker, and (3) the external IMD programmer which could be any one of the three 

devices mentioned above, namely a Clinical Programmer, base station, or mobile device. 

Figure 2 presents a diagram of the various components of this system. Two different 

scenarios are outlined which were discussed in the Related Works section, one in which 

the BLE Cloaker is present and the other in which it is not. Each component will be 

discussed in more detail in the subsequent sections. 
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3.1.1 System Diagram 

IMD Device: 
Nordic 

microcontroller

The IMD 
Programmer: PC 

with Attached 
Bluegiga BLE Dongle

Scenario A: Cloaker not present. All communication is in the clear.

RFID Module: Unused in 
this scenario

SP
I

BLE: Unencrypted Data Transfer

IMD Device: 
Nordic 

microcontroller

The IMD 
Programmer: PC 

with Attached 
Bluegiga BLE Dongle

Scenario B: Cloaker is present. All communication is encrypted 
and authenticated.

RFID Module: Out of 
Band connection for 

Cloaker Authentication

SP
I

RFID Module: Out of 
Band connection for 
IMD Authentication

SP
I

Cloaker Device: Nordic 
microcontroller

LCD Display: Passkey 
display for Programmer 

Authentication
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for Cloaker 

Authentication
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this scenario

BLE: Encrypted Data 
Transfer

NFC Communication

 

Figure 2: System Diagram outlining major components  
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3.1.2 BLE Overview 

 BLE follows a simple model that contains two different types of devices: a 

Central and one or more Peripheral devices. The Central device can also be referred to as 

the Master device, and is responsible for scanning for and connecting to Peripheral 

devices. Peripheral devices in a similar fashion are also known as Slave devices. They are 

responsible for advertising themselves and allowing Central devices to connect to them. 

Peripherals also have what are known as Services and Characteristics.  

A Service is represented by a 128 bit Universally Unique Identifier (UUID) and is 

a way to create logical separations between the functionalities of a given Peripheral 

device. Each of these Services may have one or more Characteristic values that are also 

represented by 128 bit UUID’s. Characteristics are a further way to separate different 

types of data within a Service. Each Characteristic has its own properties including 

whether it is allowed to be written or read to, as well as how many bytes of data a 

Characteristic can hold. An example of this is the Blood Pressure Service defined by the 

Blueooth Special Interest Group (Bluetooth SIG). This Service has several 

Characteristics including the “Blood Pressure Measurement” Characteristic and the 

“Intermediate Cuff Pressure” Characteristic. After a Central device connects to a 

Peripheral device, there is a standard method known as service discovery in which the 

Central discovers all of the Peripherals Services and Characteristics. Depending on the 

properties of each Characteristic, the Central will then be able to read and write to these 

Characteristics.  
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3.1.3 BLE Scatternet Topology 

 The Star topology is the most common and most supported configuration in which 

BLE is used today. This topology, described in the previous section, is where there is one 

master node that connects to one or more slave devices. In BLE the master is the only 

role which can initiate a connection request to other slave devices. Because of the 

inclusion of the BLE Cloaker node, what is known as a Scatternet topology will need to 

be used. The BLE Cloaker needs to be able to both connect to the IMD Device as well as 

be connected to by the IMD Programmer. A Scatternet topology allows the BLE Cloaker 

to act as both a master and a slave simultaneously, therefore making this dual 

connectivity requirement possible. Figure 3 shows what this Scatternet topology looks 

like in practice. 

IMD Device: 

Slave

IMD 

Programmer: 

Master

BLE Cloaker

Slave

Master

BLE Connection Request

BLE Connection Request

  

Figure 3: Diagram of the BLE Scatternet 

 

 

 

 

 

 

 



16 

3.2 System Components 

 Each of the three components, although related, have their own distinct 

responsibilities and roles within the system. The design of each of these components will 

be given in detail below. Software flow diagrams are provided for all three components 

outlining the order of code execution. Additionally, the IMD Device and the IMD 

Programmer were both written in C++ and as such have corresponding UML class 

diagrams. For technical reasons described later, the BLE Cloaker was written in C and a 

state diagram is provided instead. The BLE Programmer and the BLE Device 

components follow the State design pattern outlined in “Design Patterns: Elements of 

Reusable Object-Oriented Software”, and the BLE Cloaker follows it to a lesser extent 

due to it not being written in an Object-Oriented language. 

3.2.1 The IMD Device 

 In a real system the IMD Device would be responsible for taking patient 

measurements and providing necessary medical treatments. Since this is not a real IMD, 

dummy data will be sent across the BLE link. The IMD Device component is responsible 

for generating and providing this simulated data when it is requested by the IMD 

Programmer. The IMD Programmer will either request this information directly or 

indirectly through the BLE Cloaker depending on the current usage scenario. It is also 

responsible for responding to connection requests from the BLE Cloaker that are initiated 

by the RFID module as well as advertising itself openly to the IMD Programmer when 

the Cloaker is not present. See Figure 4 and Figure 5 respectively for the IMD Device’s 

Software flow and UML diagrams. Note that the UML diagrams do not show all 
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functions prototypes as it would be impractical to do so in a diagram. They will be 

explained in the System Implementation section.  
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3.2.1.1 IMD Device Software Flow Diagram 

Device Power On

Run Init:
-Set Device Name
-Set Role to Peripheral
-Set Advertising/Connection parameters
-Add services/characteristics
-Start Scanning for Advertisement 
packets

Is Cloaker RFID field 
Present?

Yes

-Use RFID to transfer 
authentication 

information

Able to connect with 
received key?

No

Yes
Cloaker 

Heartbeat 
Detected?

No

Yes

Data Request/
Settings change?

No

Yes

-Send/receive 
encrypted data

No

-Change settings to allow 
unencrypted/

unauthenticated requests 
from Programmers

Is Cloaker RFID field 
Present?

Yes

Connection 
Request?

Yes

-Connect to Device
-Send/Receive data

-Start Advertising

No

No

Is Cloaker Present?

Yes

No

Disconnected

Emergency 
Situation?

Yes

 

Figure 4: IMD Device Software flow diagram 
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3.2.1.2 IMD Device UML Diagram 

IMDDevice

-IMDDevice(ble_evts_t ble_evt_struct)
-void Initialize()
-void InitRFID()
..... [Note: See each substate for further 
methods that aren't duplicated here] ...

_state

Public Methods

-void ChangeState(IMDDeviceState*)

Private Members

-IMDDeviceState* _state

Private Methods

<<Interface>>
IMDDeviceState

-virtual void Initialize(IMDDevice* p)
-virtual void Advertise(IMDDevice* p)
..... [Note: See each substate for further methods 
that aren't duplicated here] ...

Public Methods

-void ChangeState(IMDDevice *, IMDDeviceState*)

Protected Methods

IMDDeviceInit

-static IMDDeviceState* Instance()
-void Initialize(IMDDevice*)

Public Methods

-IMDDeviceInit()

Private Members

-static IMDDeviceInit* _instance

Protected Methods

IMDDeviceAdvertise

-static IMDDeviceState* Instance()
-void Advertise(IMDDevice*)
-void StoreConnectionHandle(...)

Public Methods

-IMDDeviceAdvertise()

Private Members

-static IMDDeviceAdvertise* _instance

Protected Methods

IMDDeviceOOBTransfer

-static IMDDeviceState* Instance()
-void InitRFID(IMDDevice*)
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-RFIDStatusCode WaitForInitiator(IMDDevice*)
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-void StoreImdDeviceKeys(...)
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Private Members

-static IMDDeviceEmergency* _instance
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Figure 5: IMD Device UML Diagram
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3.2.2 The BLE Cloaker 

 The role of the BLE Cloaker is to detect the RFID field from the IMD Device and 

subsequently transfer the appropriate keys and connect to it over BLE. Once connected, it 

is then responsible to advertise itself to the IMD Programmer and display its key on the 

attached LCD screen. From this point on it mediates the data transfer between the IMD 

Device and the IMD Programmer. If it loses the “heartrate” reading from the patient, it 

will disconnect from both the IMD Device and the IMD Programmer. See Figure 6 and 

Figure 7 for the BLE Cloaker’s Software flow and State diagrams.  
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3.2.2.1 BLE Cloaker Software Flow Diagram 
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Figure 6: BLE Cloaker Software Diagram
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3.2.2.2 BLE Cloaker State Diagram 
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Figure 7: BLE Cloaker State Diagram 
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3.2.3 The IMD Programmer 

 The IMD Programmer needs to scan for the availability of both the BLE Cloaker 

and the IMD Device. The user, either a clinician or other authorized user, will then select 

which device to connect to. If the selection is the IMD Device and that device is in a state 

of emergency, it will connect without any security protocols used. If the BLE Cloaker is 

chosen, the IMD Programmer will send out a request to the BLE Cloaker to display its 

key on the LCD display. The user will then input this key into the IMD Programmer and 

the devices will be connected. After a connection is established to either device, settings 

can be updated and patient data can be received either directly from the IMD Device 

itself or indirectly through the BLE Cloaker’s encrypted link again depending on the 

current use case. Figure 8 and Figure 9 show the Software flow and UML diagrams of the 

IMD Programmer. 
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3.2.3.1 IMD Programmer Software Flow Diagram 
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Figure 8: IMD Programmer Software Flow Diagram
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3.2.3.2 IMD Programmer UML Diagram 

IMDProgrammer

-IMDProgrammer(...)
-void Initialize()
-void ScanForIMD()
-uint32_t StopIMDScan()
-uint32_t ConnectToIMD()
-uint32_t DiscoverIMDServices(uint16_t conn_handle)
-uint32_t SetIMDCharacteristic(uint8_t led_state)
....[Note: Not all methods shown here]....

_state

Public Methods

-void ChangeState(IMDProgrammerState*)

Public Members

-static const ble_gap_addr_t imd_peripheral_addr
-dm_handle_t dm_handle
-ble_db_discovery_t ble_db_discovery
-bool memory_access_in_progress
-ble_imd_t imd_char_led
-void (*ble_evt_dispatch)(ble_evt_t* p_ble_evt)
-void (*sys_evt_dispatch)(uint32_t sys_evt)
-void (*db_discovery_evt_handler)(ble_db_discovery_evt_t * p_evt)
-api_result_t (*device_manager_event_handler)(const dm_handle_t* 
    p_handle, const dm_event_t* p_event, const api_result_t event_result)

Private Members

-IMDProgrammerState* _state
-dm_application_instance_t p_appl_instance
-uint8_t base_uuid_type
-ble_gap_scan_params_t scan_params
-ble_gap_conn_params_t connection_params

Private Methods

<<Interface>>
IMDProgrammerState

-virtual void Initialize(IMDProgrammer* p)
-virtual void ScanForIMD(IMDProgrammer* p);
-virtual uint32_t StopIMDScan(IMDProgrammer*)
-virtual uint32_t ConnectToIMD(IMDProgrammer*)
-virtual uint32_t DiscoverIMDServices(IMDProgrammer*, uint16_t)
-virtual uint32_t SetIMDCharacteristic(IMDProgrammer*, uint8_t led_state)
...[Note: Not all methods shown here]...

Public Methods

-void ChangeState(IMDProgrammer *, IMDProgrammerState*)

Protected Methods

IMDProgrammerInit

-static IMDProgrammerState* Instance()
-void Initialize(IMDProgrammer*)

Public Methods

-IMDProgrammerInit()

Private Methods

-void ble_stack_init(IMDProgrammer* p)
-void device_manager_init(IMDProgrammer *p)
-void db_discovery_init(void)
-void ble_uuid_discovery_init(IMDProgrammer* p)

Private Members

-static IMDProgrammerInit* _instance

Protected Methods

IMDProgrammerScanIMD

-static IMDProgrammerState* Instance()
-virtual void ScanForIMD(IMDProgrammer*)
-virtual uint32_t StopIMDScan(IMDProgrammer*)
-virtual uint32_t ConnectToIMD(IMDProgrammer*)

Public Methods

-IMDProgrammerScanIMD()

Private Members

-static IMDProgrammerScanIMD* _instance

Protected Methods

IMDProgrammerConnected

-static IMDProgrammerState* Instance()
-uint32_t SendSecuritySetupRequest(IMDProgrammer*, uint16_t)
-uint32_t SendSecurityPasskeyReply(IMDProgrammer*)
-uint32_t CheckSecurityStatus(IMDProgrammer*)

Public Methods

-IMDProgrammerConnected()

Private Members

-static IMDProgrammerConnected* _instance

Protected Methods

IMDProgrammerEmergency

-static IMDProgrammerState* Instance()
-void DiscoverIMDEmergencyCharacteristic(..)
-void SetIMDEmergencyCharacteristic(...)
-void ConfirmEmergencyWrite(...)

Public Methods

-IMDProgrammerEmergency()

Private Members

-static IMDProgrammerEmergency* _instance

Protected Methods

IMDProgrammerSecured

-static IMDProgrammerState* Instance()
-uint32_t DiscoverIMDServices(...)
-uint32_t SetIMDCharacteristic(...)
-uint32_t ReadIMDCharacteristic(...)
-uint32_t DisconnectIMDCloaker(...)

Public Methods

-IMDProgrammerScanIMD()

Private Members

-static IMDProgrammerScanIMD* _instance

Protected Methods

 

Figure 9: IMD Programmer UML Diagram
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3.3 Security Model 

 In any software system that is hoping to implement security in some form or 

another, it is important to recognize the limitations of that system as well as define what 

type of adversaries it is designed to protect against. This is important for the purposes of 

both testing and practicality. The following sections will describe the particular types of 

adversaries that this protocol aims to protect against and what parts of the overall IMD 

ecosystem will be protected through the use of our protocol. 

3.3.1 Adversary Threat Models 

 In general there are passive adversaries and active adversaries. Passive 

adversaries simply try to see what types of information they can obtain from a particular 

software system, whereas active adversaries, as the name suggests, actively try and 

manipulate the data they gather or try to exploit security vulnerabilities. Denial of Service 

(DoS) is another form of attack which attempts to deny a user or group of users’ access to 

part or all of the functionality of a system. All of these attacks can be harmful and there 

are many different types of attacks that are possible. It should also be noted that it is 

assumed that any adversaries attacking this system are considered to be computationally 

bound, meaning that they do not have infinite resources in terms of computational power 

and time. The types of attacks that this protocol will provide protection against are 

detailed below. 

3.3.1.1 Passive Adversaries 

 An adversary shall not be able to gain any useful information from passively 

eavesdropping on the BLE communication happening between the three components of 
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the system. Although it will be apparent that communication is happening, the adversary 

won’t be able to tell the difference between what it is seeing and random data. 

3.3.1.2 Active Adversaries 

 It will also protect against replay attacks in which the adversary attempts to replay 

back previous communications in the hopes that the receiving system will accept it as a 

new request. Authentication shall be provided, preventing an adversary from either 

performing the replay attacks noted above or other attempts at Spoofing the system using 

known plaintext or known ciphertext attacks.  

3.3.1.3 Denial of Service 

 Adversaries will be prevented from carrying out DoS attacks that are aimed at 

draining the IMD battery life. The main method for doing this would be repeated 

attempts to authenticate with the IMD Device through the BLE connection procedure, 

thereby continually waking up the microprocessor and draining the battery. This will be 

prevented through the use of the BLE Cloaker. The IMD Device will not advertise itself 

and will only connect to the BLE Cloaker once the two devices have transferred keys 

through the RFID link.  

3.3.2 BLE Link Security 

 There are two separate BLE links within this system that will both have different 

security schemes. Both BLE links use what is known as Secure Simple Pairing (SSP), 

however they each use a different method of passing their link keys. The first BLE link is 

between the IMD Device and the BLE Cloaker. These two devices will use what is 

known as Out-of-band (OOB) pairing to pass their link keys to each other through an 

RFID connection and finish the connection process. The second is the BLE link between 
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the BLE Cloaker and the IMD Programmer. This uses a passkey entry system in which 

the IMD Programmer requests the BLE Cloaker to display a 6-digit key to its LCD 

screen. The operator of the IMD Programmer then inputs this key. If the key matches, the 

two devices will successfully connect. Both of these pairing methods lower the likelihood 

of Man-in-the-middle (MITM) attacks as the keys are not directly transferred through 

BLE at any time under the two schemes, but instead rely on proximity and human 

interaction to transfer the keys.    

3.3.3 Known Limitations 

 This work is primarily focused on the security of the BLE links between the 

devices as well as the general security of the system as it pertains to ensuring patient 

safety. As such, the security of the RFID link used for OOB pairing has not been 

enforced. This is not a trivial concern and needs to be addressed in future work. One 

common misconception is that the sheer proximity of RFID is enough to make it secure 

against both eavesdroppers and active adversaries attempting either passive or active 

attacks such as replay or MITM attacks. This is not true as it has been shown that by 

using relatively inexpensive equipment one can create an RF sniffer that can arbitrarily 

extend the communication distance of RFID devices. 
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CHAPTER 4 – System Implementation 

 This section outlines in detail how each portion of the BLE Cloaker model works 

in practice. This includes an in-depth overview of how BLE security has been 

implemented according to the BLE specification and what that looks like when using 

actual BLE hardware. In addition an explanation of how the IMD Device, BLE Cloaker, 

and the IMD Programmer along with their associated peripherals has been programmed 

will also be written up in this section.  

4.1 BLE Security  

 As mentioned in the previous sections, the wireless communication link between 

the IMD and the outside world is the primary weak spot that an adversary can take 

advantage of if they wish to tamper with one of these devices. The wireless 

communication that is used in this implementation to connect the IMD to an external 

device is BLE. Aside from being significantly more energy efficient than previous 

versions of Bluetooth, one of the major design goals of BLE was to adhere to a higher 

standard of security. This work uses off-the-shelf BLE radios from Nordic 

Semiconductor in conjunction with some additional peripherals to implement the highest 

level of security that is possible using the BLE specification. This section gives an 

overview of how security is implemented in the BLE protocol.   

4.1.1 Security Modes and Levels 

 The BLE specification outlines two different modes of security: mode one and 

mode two. Each of these modes has several levels of security associated with them. 

Security mode one has three different levels. Level one means that there is no security 

present at all, level two requires unauthenticated pairing with encryption thereafter, and 
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level three requires authenticated pairing with encryption. Mode two has two levels of 

security. Level one requires unauthenticated pairing with data signing and level two 

requires authenticated pairing with data signing. As security mode one level three 

requires both authentication during pairing as well as an encrypted connection thereafter, 

the National Institute of Standards and Technology (NIST) considers it to be the most 

secure option that the BLE standard provides [9]. This is the security mode and level that 

will be used in this project. 

4.1.2 Pairing Phases 

 The BLE pairing process contains three distinct phases to create a secure 

connection between two different devices. In Phase 1, the Central device sends an initial 

pairing request and the Peripheral responds to this request. This is also when the 

Temporary Key (TK), which will be described later, is transferred between the two 

devices. In Phase 2, a Short Term Key (STK) is generated. The STK is generated using 

the TK that was transferred earlier along with randomly generated numbers. An 

encrypted link is temporarily started using the STK. Phase 3 is when the Long Term Key 

(LTK) is generated and exchanged between the BLE devices using the link that was 

encrypted using the STK. In addition to this, an Identity Resolving Key (IRK) as well as 

a Connection Signature Resolving Key (CSRK) may or may not also be generated and 

exchanged. Figure 10 shows the various steps involved in each phase.   
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Figure 10: Phases 1 through 3 of the BLE pairing and encryption process  
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4.1.2.1 Pairing Phase 1 

 The primary purpose of pairing Phase 1 is to transfer the Temporary Key (TK). 

The TK is the primary component of what all of the keys that are created and transferred 

in the second and third phases are based off of. There are three different means of 

transferring the TK, and these variations are known as Secure Simple Pairing (SSP). All 

three of these variations are used at different points in the project.  

 The first variation for transferring the TK is known as Out of Band (OOB) 

pairing. As the name implies, a communications method that is different from BLE is 

used to transfer the TK between the Central and the Peripheral. This method provides 

protection against MITM attacks insofar as the OOB medium that is used is resistant to 

them. Near Field Communication (NFC), a close proximity version of RFID 

communication will be used in this project to perform OOB pairing as will be described 

later. 

 The second variation for transferring the TK is Passkey Entry. This is a common 

form of pairing that has been used by previous versions of Bluetooth. In order for it to 

work, at a minimum one device needs to have display capability and the other needs to 

have input capability such as through a keyboard. One device displays a randomly 

generated 6 digit numeric key and the other device types this displayed key in. If the key 

was input properly, the TK is generated from this 6 digit key and the devices move on to 

the second phase. 

 The final variation for transferring the TK is known as Just Works, and it should 

not be considered as an actual secure method of pairing. When Just Works pairing is 

used, the TK is set to all zeroes and the second and third phases carry on from there. This 
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is clearly not secure as the STK can easily be determined by an adversary since it is based 

off of the TK, which is known in this scenario. This model should not be used unless it is 

desirable to have an insecure link, which as will be explained does serve a purpose in the 

BLE Cloaker model.  

4.1.2.2 Pairing Phase 2 

 After Phase 1 has completed and TK has been transferred, the process of 

generating and transferring the STK begins in Phase 2. There are several steps in this 

phase, the first of which is to authenticate each device using a verifier function to ensure 

that each device is using the same TK. This verifier function is defined in the BLE 

specification document and is known as the “Confirm value generation” function, or c1 

for short. It uses 128-bit AES encryption under the hood and takes the following 

parameters: 

 Mconfirm = c1(TK, Mrand, Pairing Request command, Pairing Response 

command, initiating device address type, initiating device address, responding 

device address type, responding device address) 

 Aside from TK and Mrand which are randomly generated the other parameters are 

static to each device. The exception is the Pairing Request and Response commands, 

which are always the same. Each device generates starts off the process by generating a 

128 bit random number, known as Mrand in the case of the Central and Srand in the case 

of the Peripheral device. Then each device uses c1 to generate Mconfirm and Sconfirm 

respectively. The two devices exchange Mconfirm and Sconfirm, and then the Central 

transmits Mrand to the Peripheral. The Peripheral uses c1 to recalculate Mconfirm using 

Mrand, TK, and the other parameters. If the received Mconfirm and the generated 
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Mconfirm match, then the process continues with the Peripheral transmitting Srand and 

the central device recalculating Sconfirm. Assuming both Mconfirm and Sconfirm are 

successfully verified, each device uses the “Key generation function” s1 to generate the 

STK. This function takes the following parameters: 

 STK = s1(TK, Srand, Mrand) 

This function also uses 128 bit AES encryption as its basis for key generation. At this 

point, the two devices use the STK to create a temporary encrypted link to transfer the 

remaining keys. Figure 11 shows this verification process more clearly.  
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Figure 11: Diagram of the STK generation process in Phase 2  
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4.1.2.3 Pairing Phase 3 

 The third and final phase, Phase 3, is when the Long Term Key (LTK) is 

generated and distributed over the STK encrypted BLE link. The LTK is generated from 

yet another 128 bit AES based function known as the “Diversifying function” or d1. It 

has the following signature: 

 LTK = d1(ER, DIV, 0) 

 ER is the Encryption Root which is a static and random 128 bit number. DIV is a 

16 bit diversifier that is unique to each trusted device. In addition to the LTK, the IRK 

(Identity Resolving Key) and the CRSK (Connection Signature Resolving Key) can be 

generated in this phase. However for this application neither of these keys are necessary. 

The IRK is needed when the BLE privacy setting is enabled. When this feature is active, 

an advertising device will periodically change its publicly visible address so that it can’t 

be followed by an unwanted adversary. In addition, this address can only be resolved 

using the IRK. This implies that devices need to have been previously bonded in order for 

this privacy feature to be used, which is not the case for this implementation. The CRSK 

is used for data signing, which is also not a feature that is being used in this project. 

4.1.3 Message Encryption 

 The BLE specification makes use of the industry standard Advanced Encryption 

Standard-Counter with CBC-MAC (AES-CCM) algorithm for encryption. AES-CCM is a 

mode of operation for blocks of 128 bits in length. AES-CCM provides both 

authentication as well as encryption and uses an “authenticate-then-encrypt” scheme. It is 

used as would be expected to encrypt messages being sent over the BLE link, and the key 

to be used for AES-CCM is generated as follows: 
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 h4(LTK, KeyID, BD_ADDR_M, BD_ADDR_S) = HMAC-SHA-256(KeyID || 

BD_ADDR_M || BD_ADDR_S) / 2128 

KeyID is set to the string “btdk” which stands for “Bluetooth Device Key” and 

BD_ADDR_M and BD_ADDR_S are the Central and Peripheral addresses respectively. 

4.2 IMD Services and Characteristics 

 For this work it was necessary to define two Services and three Characteristics to 

be used by each of the BLE components within the system. When creating “vendor 

specific” BLE Services and Characteristics rather than those that are predefined by the 

Bluetooth SIG, it is customary to use a common 128 bit base UUID for all of the 

necessary Services and Characteristics. The way this is done in the Nordic chipset is that 

the base UUID is given first, and then a different two byte value is then given for each 

Service and Characteristic that is to be used. When added, these two bytes take the place 

of bytes 12 and 13 of the base UUID. The 16 bit values used and their corresponding 

Services and Characteristics are outlined below. Each Service and Characteristic will be 

discussed in later sections: 

 IMD_DEVICE_SERVICE_ENCRYPTED: 0x1701 

o IMD_DEVICE_CHARACTERISTIC: 0x1702 

o IMD_DEVICE_EMERGENCY_CHARACTERISTIC: 0x1703 

 IMD_CLOAKER_SERVICE_ENCRYPTED: 0x1704 

o IMD_CLOAKER_CHARACTERISTIC: 0x1705 

4.3 System Components 

 The picture in Figure 12 shows what the system looks like and highlights which 

microcontrollers and peripherals are a part of each of the three system components of the 
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BLE Cloaker model. The diagram in Figure 13 gives an overview of the communication 

protocols that each of these components uses to talk to their respective peripherals. This 

section will describe in detail how each of these components work both individually and 

together. 
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Figure 12: Picture showing an overview of the whole system 
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Figure 13: Overview of the various communication protocols used between the master and slave devices 
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4.3.1 RFID Slave Device 

 A pair of off-the-shelf NFC/RFID breakout boards designed by Adafruit were 

used as the means for transferring OOB data between the IMD Device and the BLE 

Cloaker. At the core of this board is the PN532 IC that acts as a slave device and supports 

SPI, I2C, and UART commands. A SPI interface was used for both devices. These 

commands are used to setup the board for sending and receiving data between RFID 

enabled devices. Additionally there is an interrupt line available on the board so that the 

master microcontroller can be notified when new data has been received. 

 In addition to transferring OOB data, it is also used to transfer the BLE addresses 

of the IMD Device and BLE Cloaker back and forth. As a means to save power, the IMD 

Device doesn’t start advertising until the RFID field of the BLE Cloaker’s RFID device is 

within range and the OOB data has been transferred. The hardware within the PN532 IC 

takes care of the timing and protocol requirements of several different types of RFID 

protocols. The Near Field Communication Interface and Protocol (NFCIP-1) was used as 

it is one of the simplest schemes available. A transfer speed of 106 kbits/s was used as 

well as passive communication. Passive communication means that only the Initiator of 

the connection powers its RF field during communication, whereas the Target simply 

uses the power from the generated field for data transmission. By strategically making the 

IMD Device act as the Target, this allows for potential current savings.  

After both the Initiator and the Target have been initialized, they wait until they 

are within range of each other. When this happens, further information is transferred and 

the Initiator decides on the baud rate and communication protocol to be used. After this, 

data can be repeatedly transferred back in forth. Figure 14 shows these steps.   



42 

 

Figure 14: Diagram showing the necessary steps in an RFID setup and data transfer  
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4.3.2 IMD Device 

 The purpose of the IMD Device in this system is to emulate the wireless 

communication frontend of an actual IMD as closely as possible. There were two pieces 

of hardware that make up the IMD Device. The first is an NRF51822 IC on the mbed kit, 

a breakout board manufactured by Nordic Semiconductor. This is the primary device and 

contains a standalone processor as well as a BLE radio. Attached to it through a SPI 

connection is one of the two RFID slave devices for receiving OOB data from the BLE 

Cloaker. The software is split into two distinct sections on the flash memory: the Nordic 

S110 SoftDevice and the application code. The S110 SoftDevice is Nordic’s proprietary 

Peripheral BLE stack that handles all BLE related operations as required by the BLE 

specification. The application code makes function calls into the SoftDevice to control 

the BLE radio and to carry out the IMD Devices two primary functions.  

 In its idle state, the IMD Device makes a call to sd_app_evt_wait(). This function 

call puts the IC into a low power state until either a BLE or other event happens. The 

IMD Device has two modes. The normal case is it enters into an encrypted connection 

with the BLE Cloaker. The other case is when it enters into emergency mode and can 

enter into an unencrypted connection with anyone who is scanning for it. The 

circumstances that cause both of these modes to occur as well as a detailed description of 

these modes is described below. Prior to either of these modes occurring however, the 

IMD Device enters the IMDDeviceInit state. In this state the IMD Device initializes the 

S110 BLE stack, sets up the Device Manager, and sets up the General Access Protocol 

(GAP) settings required for a BLE connection to occur. The Device Manager is 

responsible for such tasks as intercepting incoming BLE events and managing peer 
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connections and their corresponding security keys. Additionally it adds the IMD Device 

encrypted BLE Service and both the encrypted Characteristic for normal operation and 

the unencrypted Characteristic to be used in emergency mode. Finally it sets the 

connection security parameters to require bonding, MITM protection, and states that it 

supports OOB and has no I/O capabilities.  

4.3.2.1 Normal Operation with the BLE Cloaker 

 The IMD Device enters into normal operation when the RFID field of the BLE 

Cloaker is detected. When this happens, the IMD Device enters the 

IMDDeviceOOBTransfer state and the OOB data as well as the BLE address of itself and 

the BLE Cloaker are transferred. For security purposes, these BLE addresses are set to 

random values every time a new connection is formed between the IMD Device and the 

BLE Cloaker. This helps to ensure that an adversary is not able to continually have access 

to a device even if a successful attempt was made in the past.  

After the OOB transfer completes, the IMD Device goes into the 

IMDDeviceAdvertise state. The advertising settings are set to connectable directed. What 

this means is that the IMD Device will only attempt to connect one device, namely the 

BLE Cloaker whose BLE address was transferred during the OOB link. This mode allows 

for a very fast connection with a 1.28 second advertising period. This short amount of 

advertising helps to reduce power consumption.  

Once connected, the IMD Device enters the IMDDeviceConnected state, at which 

time it replies to a request made by the BLE Cloaker regarding what its BLE security 

requirements and abilities are. In this case, OOB security with MITM protection is 

required so the IMD Device responds with the TK it received over the OOB connection. 



45 

The second and third phases of the pairing sequence are done by the SoftDevice without 

the need for user intervention. Once this process completes, the LTK is stored and 

encrypted reads and writes from the IMD encrypted Characteristic are now possible.  

4.3.2.2 Emergency mode operation without the BLE Cloaker 

 Prior to being connected to the BLE Cloaker, an IMD emergency can be 

simulated through a button press on the board. When this happens, the IMD Device goes 

into the IMDDeviceEmergency state and begins to advertise using the connectable and 

undirected settings. This means that any device who is listening will be able to connect to 

the IMD Device. In this scenario, the unencrypted IMD emergency Characteristic is 

added to the advertising data. The reason for this is so that the IMD Programmer will be 

able to parse the advertising packet for the emergency Characteristic UUID and thereby 

be able to find IMD Devices in emergency mode. If a connection request comes in from 

the IMD Programmer, the IMD Device will immediately connect using the Just Works 

pairing scheme. From here, the IMD Programmer can write to the unencrypted 

emergency Characteristic and resolve the “emergency”. Something of note is that 

although no security is required to access the emergency Characteristic, the application 

does need to internally authorize access to it. This is so that in normal operation, although 

the emergency Characteristic is visible to the Central device, the application can refuse it 

access to reading or writing to it inappropriately. The motivation for this lack of security 

is that during a life threatening emergency, it would be better to have the IMD fail open 

and be accessible so that a medical practitioner may be able to help the patient more 

efficiently.  
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4.3.3 BLE Cloaker 

 The purpose of the BLE Cloaker is to act as an intermediary communications 

device between the IMD Device and the IMD Programmer. The BLE Cloaker consists of 

three distinct pieces of hardware. The NRF51422 IC broken out onto the nrf51 

Development Kit by Nordic Semiconductor is again the master and commander of this 

component. Attached to it as slave devices are the RFID module for OOB transfers, and 

an LCD display for both status messages as well as displaying the passkey for securely 

pairing with the IMD Programmer.  

The Nordic S130 SoftDevice was used in conjunction with user application code. 

The S130 SoftDevice is unique because it allows a single device to act as the Central and 

the Peripheral simultaneously. This was necessary as the BLE Cloaker needs to be able to 

scan for and connect to the IMD Device as a Central and then be able to advertise and be 

connected to by the IMD Programmer as a Peripheral. The downside to using the S130 

SoftDevice is that up until recently it was only available as an Alpha build, meaning that 

it was somewhat difficult to use and there was only a small amount of example code 

available. Another difficulty is that the S130 has only been tested to run on version 3 

boards and for some reason does not appear to play nicely with C++, which was why C 

was used for coding the BLE Cloaker instead. At any given time, the BLE Cloaker is in 

one of three overarching modes of operation. These are described below. 

4.3.3.1 No devices connected 

 Before any devices are connected, the BLE Cloaker runs through its initialization 

routines and sets up the important BLE parameters in a similar fashion as the IMD 

Device. In addition it adds the BLE Cloaker Service and Characteristic for later discover 
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by the IMD Programmer. One feature of note pointed out in the Cloaker model is the 

presence of a biometric indicator that determines whether or not the BLE Cloaker is 

attached to a person or not. When this biometric indicates that the BLE Cloaker isn’t 

attached to the patient anymore, it immediately disconnects itself from the IMD Device. 

The reason for this is so that if an emergency situation occurs, doctors can simply remove 

the BLE Cloaker to gain emergency access to the IMD Device as it fails open in the 

absence of the BLE Cloaker. To simulate this biometric reading, a simple GPIO line was 

added. If it is plugged in, it means that the BLE Cloaker is attached to a person and can 

be connected to the IMD Device. Otherwise, no connections are possible and any current 

connections will be severed. 

 Assuming the presence of the simulated biometric indicator, the BLE Cloaker will 

exit this mode once it detects the RF field of the IMD Device and will transfer its OOB 

data and its randomly generated BLE address. The BLE Cloaker actually generates the 

OOB data and its random BLE address using a built in thermal noise random number 

generator. After the IMD Device’s BLE address has been transferred, the BLE Cloaker 

attempts to connect to it and sends the required security requests. The pairing sequence 

ends with the reception of the LTK.   

4.3.3.2 IMD Device connected 

 Now that a secure connection has been formed with the IMD Device, the BLE 

Cloaker will use the LCD screen to prompt the user if they would like to start advertising. 

If they accept by pressing a button, the BLE Cloaker begins advertising and will display 

its BLE address on the LCD. This address will be entered in by the user of the IMD 

Programmer to ensure a proper connection is made. Once connected to the IMD 
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Programmer, the LCD will display a 6 digit key. If this key is entered correctly by the 

IMD Programmer, the LTK is transferred and the connection is secured. 

4.3.3.3 IMD Programmer and IMD Device connected 

 Now that the three devices have been connected together, the BLE Cloaker can 

act as a data proxy between the IMD Programmer and the IMD Device. In the case of a 

data write, the IMD Programmer sends an encrypted write request to the BLE Cloaker 

who then sends another encrypted write request to the IMD Device. Performing an 

encrypted read is slightly more complicated. The reason for this is that because the IMD 

Programmer initiates the read, the BLE Cloaker needs to first read the value from the 

IMD Device before it replies to the IMD Programmer. To accomplish this, the BLE 

Cloaker Characteristic was setup to require authorization before being read. This way the 

IMD Programmer is expecting an intermediary reply to tell it if it was granted access or 

not. Before this reply is sent, the BLE Cloaker sends the read request to the IMD Device 

and gets the value. Then it authorizes the IMD Programmer’s read request and sends back 

the most current data.  

4.3.4 IMD Programmer 

 The purpose of the IMD Programmer is to emulate the functions of a Clinical 

Programmer by sending commands and receiving responses back from the IMD Device 

either directly when it is in emergency mode or indirectly when connected to it through 

the BLE Cloaker. Like the IMD Device, the brain of the IMD Programmer is an 

NRF51822 IC and corresponding breakout board. It is also connected to a PC through a 

UART connection to display commands and gather user input through the terminal. It is 

using the Nordic S120 SoftDevice, which is their proprietary Central BLE stack. The 
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IMD Programmer is either scanning for or connected to a BLE Cloaker, or scanning for 

or connected to an IMD Device in emergency mode.  

4.3.4.1 Scanning for the BLE Cloaker 

 In this mode the IMD Programmer first waits for the user to input the BLE 

address of the BLE Cloaker they wish to connect to. After the address is inputted 

correctly, the user is prompted to enter the 6 digit security code displayed on the LCD 

screen of the BLE Cloaker. After this number is inputted, the IMD Programmer and the 

BLE Cloaker are in a secure connection. The user will now be prompted to either write or 

read from the IMD Device through the BLE Cloaker, or disconnect from it altogether. 

4.3.4.2 Scanning for the IMD Device in emergency mode 

 When scanning for IMD Devices, the IMD Programmer will asynchronously 

intercept any incoming advertising packets from BLE devices in close proximity. 

However it won’t connect to any of these devices unless their advertising packet contains 

the UUID of the IMD emergency Characteristic. Once the IMD Device has been found 

using this method, the IMD Programmer connects to it. The user is then immediately 

asked if they wish to resolve the emergency. After the user accepts, the IMD emergency 

Characteristic is reset and this triggers the IMD Device to disconnect from the IMD 

Programmer to prevent further unsecured access.    
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CHAPTER 5 – Issues, Assumptions, and Limitations 

5.1 Issues and Assumptions 

5.1.1 BLE Issues and Assumptions 

The general communication scheme for Bluetooth Low Energy (BLE) devices is a 

Star topology in which a single master is connected to one or more slave devices. For this 

work however, it is necessary to use what is known as a Scatternet topology. Previous 

versions of the Bluetooth specification supported this topology, but the BLE specification 

has deemed this an atypical use case and as such it is not widely supported by BLE 

device manufacturers. Because of this fact Nordic, the manufacturer of the BLE ICs that 

will be used, has only recently come out with a production version of their software stack 

that supports the Scatternet topology. As it is such a premature version of the code, there 

are various bugs that remain to be worked out that make it difficult to use. 

5.1.2 RFID Issues and Assumptions 

Modern IMDs are equipped with RF induction technology that allows them to 

communicate with external Clinical Device Programmers. These programmers require 

the use of a strong inductive wand in order to be able to penetrate the tissue of the human 

body and communicate reliably with the IMD. The RFID microcontrollers used in this 

work were designed to communicate with passive RFID cards and mobile devices. As 

such the inductive field generated is not strong enough to communicate with an 

implanted IMD. This work is meant as a proof of concept with the assumption that future 

work would overcome this problem. An obvious solution would be to manufacture a 

device that generated a field that was indeed strong enough to penetrate human tissue and 

communicate with an IMD. Another possible scenario to explore is the notion that future 
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IMDs may be equipped with some form of subcutaneous RFID technology that would not 

require as strong of an inductive field as in past devices. 

5.2 Current Limitations and Future work 

5.2.1 BLE 4.1 

 The Nordic BLE IC’s used in this project only support version 4.1 of the BLE 

standard. This version of BLE has known security issues, mainly the lack of protection 

against passive eavesdroppers. Pairing phases one and two are both done in the clear, 

meaning that it is possible for adversaries to listen in and obtain the TK and random 

numbers during this time frame. This information would make it trivial to determine the 

STK and use that to obtain the LTK. Future work would be to upgrade the current system 

to a BLE IC that has support for version 4.2 of the BLE standard. This version of BLE is 

both FIPS and NIST compliant, and it uses Elliptical Curve Diffie-Hellman (ECDH) 

public key cryptography to provide protection against passive eavesdroppers. 

5.2.2 NFC/RFID Encryption 

 The current means of transferring OOB data using NFC is not secure against 

MITM attacks. Currently no methods of securing and encrypting this data as it is 

transmitted have been implemented. Future work would be to research and implement an 

appropriate encryption scheme. 

5.2.3 IMD Device Emulation 

 Both the Nordic IC as well as the RFID module draw too much current to be 

feasibly used within an IMD of any kind. The RFID module itself draws 20mA of current 

after it has been initialized, which is much too high for this application. Future work will 

involve researching and selecting more power efficient devices.  
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CHAPTER 6 – Key Contributions and Conclusions 

This work furthered the research of Kevin Fu et al. by implementing and looking 

into the feasibility of their Cloaker model using actual hardware and the ubiquitous BLE 

protocol as the wireless medium. This work also points out both the strengths and 

weaknesses of using BLE 4.1 as a wireless protocol for IMD’s. It also provides a good 

baseline as well as suggestions as to where future researchers should focus their efforts in 

this new and emerging field of medical device security. 
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