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ABSTRACT

Density-Based Clustering of High-Dimensional DNA Fingerprints for

Library-Dependent Microbial Source Tracking

Eric Johnson

As part of an ongoing multidisciplinary effort at California Polytechnic State Uni-

versity, biologists and computer scientists have developed a new Library-dependent

Microbial Source Tracking method for identifying the host animals causing fecal con-

tamination in local water sources. The Cal Poly Library of Pyroprints (CPLOP) is

a database which stores E. coli representations of fecal samples from known hosts

acquired from a novel method developed by the biologists called Pyroprinting. The

research group considers E. coli samples whose Pyroprints match above a certain

threshold to be part of the same bacterial strain. If an environmental sample from

an unknown host matches one of the strains in CPLOP, then it is likely that the host

of the unknown sample is the same species as one of the hosts that the strain was

previously found in. Clustering is a computer science technique for finding groups

of related data (i.e. strains) in a data set. In this thesis, we evaluate the use of

density-based clustering for identifying strains in CPLOP. Density-based clustering

finds clusters of points which have a minimum number of other points within a given

radius. We contribute a clustering algorithm based on the original DBSCAN algo-

rithm which removes points from the search space after they have been seen once. We

also present a new method for comparing pyroprints which is algebraically related to

the current method.The method has mathematical properties which make it possible

to use Pyroprints in a spatial index we designed especially for Pyroprints, which can

be utilized by the DBSCAN algorithm to speed up clustering.
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CHAPTER 1

INTRODUCTION

Clean sources of water are important for preventing the spread of diseases, and for

maintaining the environment. One of the undesirable contaminants often found in

bodies of water is feces[17]. The bacteria found along with fecal matter can make

animals, including humans, sick. Environmental and Resource agencies are interested

in finding the sources of fecal contamination. If the origin of contamination can be

ascertained, then actions can be taken to remove or reduce the amount of fecal matter

in the water.

The study of identifying and discriminating fecal bacteria in the environment

is called Microbial Source Tracking (MST). MST techniques usually look for fecal

indicator bacteria (FIB) in environmental samples[19]. These FIB are bacteria found

in the digestive tracts of animals, called hosts, that sometimes leave the animals along

with fecal matter. Investigators can look at the quantity of FIB in an environmental

sample to estimate the amount of fecal contamination in the sampled environment[17].

Additionally, they can examine individual bacteria found in the sample and try to

determine what host species they came from[17]. Generally, investigators are not

interested in finding the exact individual host from which the bacterium came, but

instead are satisfied with knowing the species of the host.

At the intersection of the fields of Computer Science and Biology lies a method

of MST called library-dependent MST[19]. Library-dependent MST works off the

assumption that there exist subgroups of an FIB species, called strains, which are

only found in certain host species[17]. The method starts with the collection of

a large number of bacteria samples from fecal matter from a known host species.

Representations of these bacteria are stored in a database along with the information
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about their provenance. Once the database is established, MST is performed by

comparing environmental samples from unknown hosts to the samples stored in the

database with the hope of finding a match. If matching bacteria are found, then

researchers can look up the host species of the matching sample in the database and

use that as evidence that the unknown sample came from the same host species.

Simply determining that two bacteria are of the same species is not necessarily

enough to determine that two samples of FIB came from the same host species. In

fact, a common FIB species used for MST, Escherichia coli (E. coli), is found in the

guts and fecal matter of many host animals[17]. Instead, researchers must determine

that the bacteria both came from the same subgroup of the species. The idea is

that the more closely related two individuals are, the more recently they came from

a common ancestor and thus the more likely they came from the same host species.

Any meaningful subdivision of bacteria beyond species like this is called a strain.

MST research groups formally define their notion of a strain by picking a metric of

similarity and a threshold at which they are confident that bacteria are as closely

related as their metric can determine; maximizing the probability that the bacteria

came from a common ancestor and thus the same host.

Many methods can be used to measure the similarity between two bacteria cul-

tures. The methods can be classified by whether they look at the phenotypes of the

bacteria or the genotypes. Phenotypic comparison looks at appearance or behavior of

the bacteria, for example their reaction to a certain chemical[17]. Genotypic compari-

son on the other hand looks at the actual DNA of the bacteria. Comparing genotypes

can be more expensive but is generally more discerning[19], as similar appearance or

behavior can be produced by different sequences of DNA.

As part of an ongoing multidisciplinary effort at California Polytechnic State Uni-

versity, biologists and computer scientists have developed a new library-dependent
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MST method. The Cal Poly Library of Pyroprints (CPLOP) is a database developed

by the computer scientists to support a novel, cost-effective genotype representa-

tion method for bacteria comparison developed by the biologists called Pyroprinting.

CPLOP uses E. coli as it’s FIB, storing representations acquired by running this

Pyroprinting method on E. coli samples. To increase discrimination ability of the

method, each E. coli sample’s DNA is pyroprinted in two separate locations. The

research group considers E. coli samples which match in both locations with a sim-

ilarity above a certain threshold to be part of the same strain. If that strain has

only been seen in one host species then they have good evidence that environmental

samples matching bacteria in that strain are also from the same host species.[20]

The number of samples stored in the database for library-dependent MST in-

fluences the confidence in matches found with unknown samples. As the size of

the database increases, so does the time to search for matches. In the case of the

naive search method, an unknown sample must be compared to every sample in the

database. At the time of this writing, MST in CPLOP[13] still relied on this method.

If the notion of strains were to be stored in the database, then unknown samples

could be compared to groups of bacteria in the database instead of every individual

bacterium, speeding up the search. Storing strains in the database would also facili-

tate other kinds of research. Longitudinal studies, such as that performed by Emily

Neal[15], look at strains observed in an individual over time and look for changes or

patterns. Transference studies, such as that performed by Josh Dillard[7], look at

samples from different hosts for strains found in both hosts.

The desire for a method of identifying strains from the set of bacteria in the

database is clear. Clustering is a computer science technique for finding groups of

related data (i.e. strains) in a data set. There are different definitions of which data

is part of the same group, or cluster. This is similar to the variation in definition of

a strain in biology. Thus the choice of clustering method must match the biologist’s
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idea of what constitutes a strain for their research.

In previous work for CPLOP, Aldrin Montana developed a method of clustering

called OHClust![14]. OHClust! is based on agglomerative hierarchical clustering and

utilizes information about the provenance of samples to allow efficient addition to

the known clusters through incremental updates. Unfortunately, OHClust! cannot

run on the CPLOP servers which have meager memory resources. In addition, in his

evaluation of the clusters identified by OHClust!, Montana was unable to determine

if the clusters matched the biologist’s notion of strains.[14]

The work presented in this thesis provides an alternate solution for identifying

strains which hopes to address the limitations of OHClust!. It evaluates density-based

clustering for the use in identifying E. coli strains from pyroprints. Density-based

clustering, as defined by DBSCAN[9] finds clusters where points have a minimum

number of other points within a given radius. The DBSCAN algorithm can find

clusters like this very efficiently, especially if the points are stored in a spatial index.

The contributions of this thesis are the following:

• A modified DBSCAN algorithm: This is the first time density-based clus-

ters have been tried with CPLOP. The original algorithm for finding density-

based clusters was DBSCAN. Many researchers have provided modified versions

of this algorithm suited for different purposes. This thesis modifies DBSCAN,

allowing for the removal of points from the search space after they have been

seen once. This modification results in a 2x speedup for our use case.

• A faster method for comparing pyroprints: Prior to this work, pyroprints

in CPLOP were compared with Pearson Correlation. Pearson correlation ig-

nores certain differences in the pyroprints which are due to inconsistencies in

the physical pyroprinting process. This thesis presents a new method for com-

paring pyroprints which is algebraically related to the old method, allowing
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reuse of previous statistical analysis. In addition we precomputed some inter-

mediate values which speeds up comparisons with both the old method and

the new method. The new method was chosen such that it has mathematical

properties which make it possible to treat the pyroprints as if they were points

in multidimensional space.

• A spatial index that works with E. coli pyroprints: The DBSCAN al-

gorithm can take advantage of storing data in a special way to increase the

efficiency. If the points being clustered are points in space, then they can be

stored based off their position in space. This is called a spatial index. Spatial in-

dexes can be searched quickly for points near another point. This thesis presents

a spatial index tailored for the needs of the data in CPLOP. It supports dense,

high-dimensional data, by partitioning the search space with multidimensional

planes as well as storing bounding volumes for groups of data. It also supports

multiple regions for each data point with separate search radii.

• Better evaluation metrics of clusters for CPLOP: Finally, this thesis

contributes an evaluation of the clusters generated by this work as well as those

generated by OHClust!. This evaluation was more thorough than that provided

in Montana’s Thesis, and is able to quantify how well the clusters match the

Biologist’s notion of a strain. Unlike Montana’s evaluation, this evaluation

goes beyond measuring the similarity of clusters to those produced by another

clustering method.

The rest of this document is organized as follows. Chapter 2 provides detailed

background information about both the biology and computer science sides of the

problem context. Chapter 3 provides a detailed explanation of the design for the

solution presented along with this thesis, as well as rational for design decisions.

Chapter 4 provides relevant details about the solution implementation along with

5



the benefits or limitations of particular implementation choices. Chapter 5 outlines

the evaluation performed on the solution followed by the results of the tests and

analysis of those results. Finally, Chapter 6 concludes the paper and suggests areas

of improvement as well as ideas for other related avenues of research.
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CHAPTER 2

BACKGROUND

This chapter provides context for the work presented with this thesis. Faculty from

the Biology department at California Polytechnic University (Cal Poly) in conjunc-

tion with Computer Scientists from Cal Poly have developed a new method of mi-

crobial source tracking. This method is library-dependent and utilizes a novel DNA

fingerprinting technique, called pyroprinting, developed at Cal Poly. The Biology de-

partment has a desire to identify bacterial strains in the library. The work presented

in this thesis fulfils that desire using clustering and spatial indexes. It is an alternate

solution to OHClust! created by Aldrin Montana[14].

2.1 Microbial Source Tracking (MST)

The pyroprinting technique was developed by Biologists at Cal Poly as a tool for

microbial source tracking (MST)[5]. MST is the study of identifying and discriminat-

ing bacteria in the environment. Usually, the bacteria in question are found in fecal

matter contaminating environmental resources such as bodies of water. MST tech-

niques usually look for fecal indicator bacteria (FIB) in environmental samples[19].

These FIB are bacterial species found in the digestive tracts of animals, called hosts,

that sometimes leave the animals along with fecal matter. Investigators can look at

the quantity of an FIB in an environmental sample to estimate the amount of fecal

contamination in the sampled environment[17]. Additionally, they can examine indi-

vidual bacteria found in the sample and try to determine what host species they came

from[17]. Generally, investigators are not interested in finding the exact individual

host from which the bacterium came from, but instead are satisfied with knowing the
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species of the host. The waste from a single animal has a minimal impact on the

cleanliness of a body of water, while the waste from a whole group can have a large

impact.

2.1.1 Library-Dependent MST

The MST method developed by the Biologists at Cal Poly is classified as library-

dependent. Library-dependent MST lies at the intersection of the fields of Computer

Science and Biology. Library-dependent MST works off of the assumption that there

exist subgroups of an FIB species which are only found in certain host species[17].

The method starts with the collection of a large number of bacterial samples from

fecal matter of a known host species. Representations of these bacteria are stored

in a database along with the information about the samples provenance. Once the

database is established, MST is performed by comparing environmental samples from

unknown hosts to the samples stored in the database with the hope of finding a match.

If matching bacteria are found, then researchers can look up the host species of the

matching sample in the database and use that as evidence that the unknown sample

came from the same host species.

Library-dependent MST is typically organized as follows:

1. Collection: The first step is to collect microbial samples from fecal matter of

known origin. When collected, the host species of the fecal matter is recorded.

Additional information such as location where the fecal matter was found, and

date of the collection can be recorded if desired for additional analysis oppor-

tunities, but is not necessary for MST.

2. Isolation: A sample of fecal matter contains many individual bacteria. Library-

dependent MST uses individual bacterial cultures, or isolates, taken from these

samples. The process used by the biologists at Cal Poly to isolate E. coli

8



bacteria from the rest of the sample is described by Black et al.[5]. Multiple

isolates can be taken from the same sample. The isolates can be cultured and

frozen to replicate them for future experiments.

3. Digital Representation: After a single bacterium is isolated, researchers must

then obtain a digital representation of the isolate. These representations are

meant to be compared to each other in order to determine whether the isolates

they match can be distinguished from each other. There are many different

methods of obtaining these representations, and different types of represen-

tations that can result. Some examples are discussed in Section 2.1.2. The

pyroprinting technique developed at Cal Poly is one of these methods.

4. Addition to Library: Next, the DNA representation is added to the library

along with metadata about the isolate it represents. The metadata includes

the information recorded in step 1, especially the host species of the origin

sample. Additionally, information about the isolate, and parameters for the

representation can be stored for bookeeping purposes, and to ensure consistency.

5. Forensics: Once the library has grown sufficiently large (through multiple

iterations of the previous steps), the system can then be used for MST. An en-

vironmental sample is collected and processed according to steps 2-3 to produce

an E. coli isolate from an unknown host. The resulting representation of this

isolate is then compared against the representations of isolates in the library.

If it matches any isolates in the library, then researchers look up the metadata

of those isolates. It is up to the researches to come to a conclusion based on

the amount and variety of host information from matching isolates about what

host the environmental isolate likely came from.
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2.1.2 Representations

Many methods can be used to measure the similarity between two bacteria. The

methods can be classified by whether they look at the phenotypes of the bacteria

or the genotypes. Comparing genotypes can be more expensive but is generally

more discerning[19], as similar appearance or behavior can be produced by different

sequences of DNA.

Phenotypic comparison looks at appearance/behavior of the bacteria. The idea

is that bacteria from the same host species have adapted their behavior for survival

in the particular environment encountered in the guts of the host species. Exam-

ple representations that capture these traits include, results from biochemical tests,

antibiotic resistance, and profiles of the proteins found on the outer membrane.[17]

Genotypic comparison on the other hand looks at the DNA sequence from the

bacteria. The idea is that the more closely the DNA of two individuals are, the more

recently they came from a common ancestor and thus the more likely they came from

the same host species. A naive representation would simply be the full DNA sequence

of the bacteria, however that would be expensive and impractical for both creation and

comparison of the representations. Instead, researchers take shortcuts like measuring

the size differences of DNA fragments related to a specific location (ribotyping), or

by sequencing only a small part of the DNA which is highly variable[19].

2.2 Pyroprinting

Pyroprinting is a novel method of bacterial representation developed at Cal Poly

by Michael W. Black, Jennifer VanderKelen, Anya Goodman, and Christopher L.

Kitts[5]. They created the technique to address the problem they saw of researchers

needing to choose between representations with good discrimination, and represen-
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Figure 2.1: A sample pyrogram, the result of pyrosequencing. Values represent

the heights of peaks.

tations that were cheap/convenient to generate. Pyroprinting bridges the gap by

providing both features. They are currently using pyroprints for MST with E. coli.

2.2.1 Pyrosequencing

Cal Poly’s pyroprinting method is based off of the DNA sequencing method called

pyrosequencing. The method is popular because it is a cheap and efficient way to

sequence short DNA fragments.

Pyrosequencing works on short sequences of DNA called regions. The region of

DNA is determined by primers. A primer is a short fragment of DNA that binds to

a specific complimentary DNA sequence, opening up the double helix. Two primers

are needed, one to bind to the start of the region of interest and the other binding

to the end. Once the primers are in place, DNA is copied from only that region.

Pyrosequencing needs lots of copies of this region, so the region is repeatedly copied,

or amplified, using the Polymerase Chain Reaction (PCR)[5].

Pyrosequencing is performed by a pyrosequencer machine which takes an amplified

region of DNA and outputs a vector of data called a pyrogram as shown in Figure

2.1. This pyrogram can be used to reconstruct the sequence of nucleotides present in

the sequenced region.
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Pyrosequencing works by building a copy of the DNA strand and measuring the

light given off by the resulting chemical reactions. Along with the DNA, the re-

searchers provide a primer. The primer binds to a specific part of the DNA, and the

DNA is copied sequentially starting from that location. The DNA is copied in stages

called dispensations. One type of nucleotide is added per dispensation. Machines can

usually run for around 100 dispensations. The machine records the amount of light

emitted which is proportional to the number of nucleotides added to the copy during

that dispensation. The resulting pyrogram is a graph of light emitted at each stage

of the dispensation.

2.2.2 Gene Repetition and ITS regions

In order to be able to use pyrosequencing results to compare pyrograms between

different isolates, the same region needs to be sequenced every time. This means the

same primers need to be used every time. Primers are specific to specific DNA which

means the sequenced region has to start with the same DNA sequence for every

bacteria in the species. These regions exist in the DNA, and are called conserved

regions. They are regions of DNA that are important genes which if mutated would

result in the death of the cell, and thus those mutations would not be passed on to

progeny. However, if only the conserved region is sequenced, all isolates would get

the same representation. Ideally, the sequenced region would be highly variable, one

which has little or no effect on the life of the bacteria. Regions between genes, or

Internal Transcribed Spacers (ITS), as shown in Figure 2.2 fit this criteria. The way

to get a representation from a region that is highly variable but is in the same place

for different isolates is start pyrosequencing at the end of a conserved gene, then

continue sequencing into the ITS region. The research group is interested in 2 ITS

regions: ITS1 and ITS2. In the remainder of the thesis, each ITS region is referred

to as the genes which surround it: ITS1 = 16-23 and ITS2 = 23-5.
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Figure 2.2: The rRNA operons in E. coli are present in seven copies, each

of which has two Internal Transcribed Spacer (ITS) regions. Thus PCR

amplification of an ITS region will generate a population of mixed products to be

pyrosequenced for generating a pyroprint. ITS1 and ITS2 are also referred to as the

genes surrounding them: ITS1 = 16-23 and ITS2 = 23-5. Figure taken from [5].

E. coli, as well as many other bacteria, have multiple copies of certain genes

located throughout their DNA for redundancy. Each copy is located at a specific

location, called a locus (multiple loci). These replications mean that primers binding

to these genes will actually bind to multiple different parts of the DNA. This means

PCR will not replicate a single DNA region, but instead, in the case of E. coli, 7

different regions, as shown in Figure 2.2. While the conserved genes are identical in

each of these loci, the ITS regions can differ between the loci. This means a single

bacterial isolate can have different versions of the ITS mixed together when input to

the pyrosequencer.
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2.2.3 Pyroprints

Pyroprints are what the biologists at Cal Poly call the result of pyrosequencing a

region of DNA with multiple loci. Because pyroprinting uses pryosequencing, the

output of pyroprinting is a pyrogram. These pyrograms have different properties

from pyrograms of true DNA sequences, and so are named pyroprints to differentiate

the two. Specifically, pyroprints cannot be used to determine the DNA sequence

of the region. This is because a pyroprint represents multiple variations (loci) of

a given region. There is no way of knowing with this method whether all loci are

the same, each is different, or something in between. Therefore, when examining a

dispensation of a pyroprint, it is impossible to determine the distribution of added

nucleotides among the loci. This property is why the biologists needed novel software

and algorithms to perform MST with pyroprints.

In order to digitize a pyroprint, the biologists decided to take the maximum peak

height from each dispensation. Other options were peak width and peak area. For-

mally, the result is a vector ~p of length D

~p = (p1, p2, . . . , pD−1, pD)

where D is the number of dispensations of the pyroprint and each pi is a positive real

number.

To increase discrimination ability of the method, each E. coli sample’s DNA is

pyroprinted in two separate locations, 16S-23S and 23S-5S. In order to be considered

indistinguishable, the representations of two isolates must match for both regions.

Formally, an isolate’s representation is:

I = (~p16−23, ~p23−5)
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2.2.4 Pearson Correlation

Because pyroprints don’t translate to a specific DNA sequence, determining if a pair

of pyroprints represents the same DNA is more difficult. Pyrograms have to be

compared to pyrograms instead, and variations in hardware, PCR, and technician all

result in different offsets and scales for each pyrogram. Comparisons require a metric

that normalizes these variations. The metric used for comparing two pyroprints ~x

and ~y is the Pearson Correllation ρ

ρ(~x, ~y) =
1

D

D∑
i=1

(xi − µx)(yi − µy)
σxσy

where D is the number of dispensation, and µx and σx are the mean and standard

deviation of the values of ~x at every dispensation respectively.

µx =
1

D

D∑
i=1

xi

σx =

√√√√ 1

D

D∑
i=1

(xi − µx)2

Pearson correlation returns a value between -1 and 1, where 1 is a perfect match,

-1 is perfectly inverted and 0 means the pair is unrelated. For the purposes of MST,

the research team is only interested in (non-inverted) matches. Because pyroprints

are non-negative, Pearson correlations between them are always ≥ 0.

2.2.5 Statistical Analysis and Strain Definition

Due to noise in the pyrosequencing process, and by variations in the ratio of loci

produced by PCR, two pyroprints will never match exactly. As such, the research

team needed to determine a threshold of Pearson correlation above which 2 pyroprints

are considered a match. Diana Shealy, a statistics student at Cal Poly, performed

statistical analysis to determine thresholds for each ITS region[18].
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In order to get a set of pyroprints which are supposed to match, the biologists made

repetitive pyroprints of multiple isolates. They then took pairwise Pearson correlation

values of pairs of pyroprints from the same isolate. This set of Pearson correlations

was a sample of the distribution of Pearson correlations between pyroprints with the

same DNA in the ITS regions.

First, Shealy analyzed the effect of dispensation count on the Pearson correlation

values. Pyrogram values get more noisy in later dispensations, because in the py-

rosequencer machines, chemicals and proteins are not completely removed between

each dispensation. So on one hand, using more dispensations decreased the Pearson

value for isolates that are supposed to match. On the other hand, using less dispen-

sations decreased the ability of Pearson correlation to capture differences between

pyroprints from truly different sources. The research group decided to only use 95

and 93 dispensations of the pyrogram for the ITS regions 16-23 and 23-5 respectively.

Shealy then fit a beta distribution to the sample distribution. Figure 2.3 shows

the beta distribution fit to the pairwise Pearson correlations of pyroprints of the ITS

region 16-23. From the beta distribution, Shealy calculated the percentages of false

negatives at various Pearson correlation thresholds. Thresholds and false negatives

for pyroprints of 16-23 are shown in Figure 2.3.

The choice of threshold affects the definition of a strain for the research group.

The chance for false negatives (from higher thresholds) needed to be balanced with

the chance for false positives (from lower thresholds). Shealy noted that:

“With pyroprints, we are more concerned with false positives, two pyro-
prints that are said to be from the same E. coli strain when in fact they
are not. We are less concerned with false negatives, or stating two pyro-
prints are from different E. coli strains when they are actually from the
same strain. The reason we are less concerned with false negatives is that
hopefully any false negatives will be caught by a clustering algorithm and
the false negative will then be appropriately classified.”[18]
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Figure 2.3: Beta distribution for pyroprints from the same isolate for ITS

region 16-23. Taken from [18].

Based on this analysis, the biologists chose two thresholds of for pyroprinting. Two

isolates with a Pearson correlation above the α threshold 0.995 in both ITS regions

are considered definitely similar. Two isolates with a Pearson correlation below the β

threshold 0.99 in either ITS region are considered definitely dissimilar. Isolates with

a Pearson correlation between the α and β thresholds may or may not be similar.[14]

2.3 CPLOP: Cal Poly Library of Pyroprints

The MST library created by the Computer Science and Biology departments at Cal

Poly is called the Cal Poly Library of Pyroprints1 (CPLOP)[20]. CPLOP started as

a prototype in a class at Cal Poly. After the class, Kevin Web, one of the students

1www.cplop.org
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from the class, completed CPLOP as his senior project. Later, Jan Soliman made

extensive upgrades to CPLOP dubbed CPLOP 2.0[20].

CPLOP stores pyroprints and the provenance metadata associated with them in

a relational database. The work of this thesis integrates with CPLOP. It takes its

input from the pyroprint database, and stores its output there.

The primary use for CPLOP is microbial source tracking. MST is discussed in

depth in Section 2.1. Other uses for CPLOP include facilitating longitudinal and

transference studies. Longitudinal studies, such as that performed by Emily Neal[15],

look at strains observed in an individual over time and look for changes or patterns.

Transference studies, such as that performed by Josh Dillard[7], look at samples from

different hosts for strains found in both hosts. Currently all use cases can and have

been performed with the help of CPLOP. However, they are not convenient.

The first inconvenience is that MST tasks are slow. The forensics step of library-

dependent MST (see step 5 in Section 2.1.1) requires finding all isolates with rep-

resentations matching that of an isolate of unknown origin. The naive method of

finding these matches compares the representation against every representation in

the database. Pearson correlation is an expensive computation, especially with over

90 dimensions, and there are thousands of isolate representations in CPLOP. At the

time of this writing, the latest MST algorithms used for CPLOP[13], still relied on

this naive matching.

The inconvenience for longitudinal and transference studies is that strains are not

integrated into CPLOP. Every time a researcher wants to look into a certain strain or

a group of strains which are often seen together, the biologists must ask the computer

scientists to run a clustering algorithm for them.

It is clear that storing strains in CPLOP would allow biologists to access them for

longitudinal and transference studies without having to wait for computer scientists.
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Additionally, storing the strains in a relational database (like CPLOP) would allow

researchers to more easily view the isolates and metadata from strains with relational

queries. Finally, storing strains in CPLOP would also enable faster MST forensics.

Strains could have single representation[20] and unknown isolates would only need to

be compared to each strain instead of each isolate, resulting in many fewer expensive

Pearson correlation calculations.

2.4 Clustering

With the desire for storing strains of E. coli in CPLOP established, we now discuss

methods for identifying them. Section 2.2.5 discusses the definition of a strain for

pyroprinted E. coli arrived at through statistical analysis. Isolates whose represen-

tations match above a certain threshold are considered members of the same strain.

However, this threshold has false negatives, so strains must also include some isolates

for which some pairwise comparisons are below the threshold.

Data clustering is the computer science task of grouping similar data together into

clusters. It takes as input a set of data points, in this case pyroprints. The result

of the task is a set of clusters and an N to 1 mapping from the input points to the

resulting clusters. There are many different notions of a cluster and algorithms to

create them.

2.4.1 OHClust!: Ontological Hierarchical Clustering

In previous work, Aldrin Montana created a clustering algorithm called OHClust!

which addressed the need for strain identification[14]. OHClust! is based on agglom-

erative hierarchical clustering. Agglomerative clustering starts with every point as

its own cluster. Then at every step it combines the two closest clusters. This pro-

cess ends when all clusters have been combined into a single cluster. The process
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of combining clusters at each step produces a hierarchical view of the clusters. The

hierarchy is cut at the desired level to determine the final clusters. This algorithm

has O(N2) steps, and depending on the link type used to measure cluster distance,

the overall algorithm can be O(N3). OHClust! uses average-link which uses the av-

erage of all pairwise comparisons between two clusters as the distance between the

clusters[14]. Average link agglomerative clustering is one of the like types that gives

the overall algorithm a complexity of O(N3). OHClust! saw vast improvements in

performance over standard average-link agglomerative clustering, but is still bounded

at O(N3)[14].

The results and future work sections in Montana’s thesis talk about some of the

limitations and issues of OHClust!. The big issue he mentions is a need for more

testing and verification of his algorithm. Montana could not prove that the resulting

clusters from OHClust! were similar to those of standard average-link agglomera-

tive clustering, the algorithm previously used by the research team. Without an-

other method of determine cluster validity, the correctness of OHClust! could not be

determined[14].

Another limitation of Montana’s approach is the lack of integration with CPLOP.

Currently, the biologists require assistance from the computer scientists to perform

the clustering. This is because of performance problems with OHClust!. OHClust!

needs more RAM than CPLOP’s servers can provide. Another limitation is that the

runtime of OHClust! is very long. The work presented in this thesis tries to address

these issues by focusing on performance.

2.4.2 DBSCAN: Density-Based Spatial Clustering of Applications with Noise

The work presented in this thesis uses a density-based notion of clusters and a modi-

fied DBSCAN algorithm to identify strains. The notion of a cluster used by this work
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Figure 2.4: Example density-based cluster with MinPts=3

is defined by DBSCAN[9]. An example of a density-based cluster is shown in Figure

2.4. The DBSCAN definition of a cluster has two parameters, MinPts and Eps. It

defines a neighbor of a point to be another point within a distance of Eps. Points are

classified as either a core point, a border point, or noise. A core point is defined as a

point with at least MinPts neighbors. A border point is defined as a point with less

than MinPts neighbors but within Eps of a core point. All other points are defined

as noise. A DBSCAN cluster is defined as a group of neighboring core points and the

group of border points that neighbor that core.

Pseudocode for the algorithm provided with the original DBSCAN paper is shown

in Figures 2.5 and 2.6. The algorithm takes values for MinPts and Eps as input and

uses that to classify every point into clusters. The algorithm runs in O(N logN)

given an O(logN) RegionQuery()[9].

Since the original paper came out, a few extensions of DBSCAN have been pub-

lished. The OPTICS algorithm[1] provides a hierarchical clustering for density-based

clusters. It generalizes away the Eps argument and only needs the MinPts parame-

ter. Another algorithm, IncrementalDBSCAN[8] significantly speeds up clustering if

most of the points have previously been clustered.
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function DBSCAN(setOfPoints, eps,minPts) . setOfPoints are

UNCLASSIFIED

clusterId← nextId()

for point ∈ setOfPoints do

if point.clId = UNCLASSIFIED then

seeds← RegionQuery(setOfPoints, point, eps)

if seeds.size < minPts then . not core point

point.clId← NOISE

else . all points in seeds are density-reachable from Point

ExpandCluster(setOfPoints, point, seeds, clusterId, eps,minPts)

clusterId← nextId()

end if

end if

end for

end function

Figure 2.5: Pseudocode for the DBSCAN algorithm.

2.5 Spatial Indexes

The clustering algorithm DBSCAN, described in Section 2.4.2, performs better with

a O(logN) neighbor lookup. Such lookups require the points to be organized in an

index optimized for the types of queries. In this case the queries are range-based

which implies the use of a spatial index. Spatial indexes organize data to optimize

for queries spatial in nature. An example of a query on a spatial index is finding all

points within a geometric shape. If the shape is a sphere with radius Eps centered

at one of the points, then the resulting points are all points within a distance Eps of

the point at the center, ie. its neighbors.
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function ExpandCluster(setOfPoints, point, seeds, clId, eps,minPts)

seeds.clId← clId

seeds.delete(point)

while seeds 6= ∅ do

currentP ← seeds.first()

result← RegionQuery(currentP, eps)

if result.size ≥ minPts then

for resultP ∈ result do

if resultP.clId = UNCLASSIFIED‖NOISE then

if resultP.clId = UNCLASSIFIED then

seeds.append(resultP )

end if

resultP.clID ← clId

end if

end for

end if

seeds.delete(currentP )

end while

end function

Figure 2.6: Pseudocode for the DBSCAN algorithm.

Spatial indexes are a special type of search tree. A search tree, as depicted in

Figure 2.7 is composed of nodes. Most nodes have other nodes as children (inner

nodes), but some nodes only contain data (leaf nodes). The nodes are arranged in a

way such that when searching for certain data, only some children of each node need

to be checked. In this case of the example search tree in Figure 2.7, the letter in a

node comes alphabetically after all letters stored in the subtree as its left child, and
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Figure 2.7: Binary Search Tree example. White nodes are inner nodes. Black

nodes are leaf nodes.

alphabetically before all letters stored in the subtree as its right child.

A search is called a traversal and runs in O(logN) time. A traversal of the tree

in Figure 2.7 searching for the letter P proceeds as follows. Traversals start at the

root node of the tree, in this case M . At each step, the search letter is compared

to the letter in the node. P is compared to M , and since P comes after M in the

alphabet, the traversal moves to the node’s right child, V . Again, P is compared to

V , and since P comes before V in the alphabet, the traversal moves to the node’s left

child, R. Then, P is compared to R and since P comes before R in the alphabet, the

traversal moves to the node’s left child, P . Thus P is found after only 3 comparisons,

as opposed to 8 comparisons, one for each leaf node.

Most spatial indexes organize points by their location in a Euclidean space. This

allows for efficient queries based on the Euclidean distance d(~x, ~y) between points.

d(~x, ~y) =

√√√√ D∑
i=1

(xi − yi)2

The math for Euclidean space scales to any positive number D dimensions.

Pyroprints as described in Section 2.2.3 can be thought of as ∼100 dimensional
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points in Euclidean space. However Euclidean distances between these points would

not be comparable to Pearson correlation. Section 3.3.1 explains how we can convert

pyroprints into different ∼100 dimensional points where euclidean distances between

these points are comparable to Pearson correlation of the original pyroprints. This

allows us to store the points in normal spatial indexes in order to efficiently find points

within a certain Pearson correlation threshold.

When choosing spatial indexes for such data, the curse of dimensionality comes

in. Many spatial indexes degenerate into linear searches (searching every point) when

the points have more than a few dimensions. The following sections describe some

indexes designed specifically for high-dimensional data, while giving examples of some

simpler ones.

2.5.1 Space Partitioning

The first class of spatial indexes is space partitioning. The general case is Binary

Space Partitioning (BSP). BSP organizes data in a binary tree splitting the tree in

half with plane (or hyperplane with more dimensions) each time. As implied by the

name, each node of the tree ”partitions” the entire space.

The KD-Tree, depicted in Figure 2.8, is a special case of BSP that partitions

space with axis-perpendicular planes. At each node of the tree it partitions a single

dimension. The dimension used for a node cycles as you move down the tree. KD-

Trees are affected by the curse of dimensionality because partitioning each dimension

x number of times requires a tree x ·D deep where D is the number of dimensions [3].

The PK-Tree is based off the KD-Tree but addresses the issue with a large number

of dimensions. It works like a KD-tree but with unnecessary nodes eliminated. Given

some mild constraints on the data, the expected height of the tree can be bounded[21].
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Figure 2.8: Example KD-Tree.

Figure 2.9: Example R-Tree.
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2.5.2 Bounding Volume Hierarchy

Another class of spatial indexes is a Bounding Volume Hierarchy (BVH). Instead of

partitioning space, a BVH organizes data within bounding volumes. Each node in

the tree is a volume that bounds all volumes and points in its sub tree. Depending on

the shapes used, sibling nodes can have overlapping volumes even if the points they

contain are disjoint.

The R-Tree, depicted in Figure 2.9, is a popular BVH that uses only rectangular

volumes. The construction of an R-Tree allows for lots of overlap. R-Trees are subject

to the curse of dimensionality because overlapping nodes becomes a bigger and bigger

problem with more and more dimensions[10].

The R*-Tree is based on the R-Tree which addresses the issue of overlap. The

construction of an R*-Tree tries to minimize overlap by reinserting points when a

node gets too full[2]. The X-Tree is based on the R*-Tree, and addresses the issue

of overlap a step further. X-Trees use supernodes which allow problematic points to

be stored in internal nodes instead forcing them into a leaf node which would cause

overlap.[4]

An alternative to the R-Tree family is the SR-Tree which uses the intersection of

spheres and rectangles for the volumes of its nodes. This is based off the idea that

volumes that better fit the points they contain are less likely to overlap with each

other[11]. Another alternative is the TV-Tree. TV-Trees address the dimensionality

issue by using only a few of the dimensions. They use the additional dimensions only

when absolutely needed[12].
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2.5.3 Hybrid Spatial Index

Another class of spatial index combines space partitioning and bounding volume

hierarchy. An example of this is the Hybrid-Tree. It is based on the KD-Tree but the

partitions can overlap requiring the subspaces to be treated as bounding volumes for

searching[6].
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CHAPTER 3

DESIGN

This chapter describes the algorithms contributed along with this thesis. The al-

gorithms are the primary contribution of this thesis. The first section outlines the

goals for the solution. Next is an overview of the solution design. Following that is a

detailed look at each part of the solution.

3.1 Motivation And Goals

Chapter 2 describes the origin of the Cal Poly Library of Pyroprints (CPLOP), a

tool for a new method of Microbial Source Tracking (MST) developed by the biology

department at Cal Poly. Section 2.3 explains the benefits of identifying strains of E.

coli among the isolates stored in CPLOP.

The algorithms we contributed identify and analyze strains from the pyroprints

stored in the CPLOP. The goals for the solution were (1) to allow for faster MST,

(2) to allow strain analysis in an easy to understand form, and (3) to scale with the

database as it is incrementally updated with new pyroprints.

The ultimate purpose of this thesis is to provide an alternative solution to that

provided by Aldrin Montana in his thesis[14]. His solution, OHClust!, described

in Section 2.4.1, was motivated by the same original need, and had similar goals.

Unfortunately, the meager computational resources allocated to the CPLOP server

could not run OHClust!. As such, a secondary goal for the design of this thesis was

to have light resource requirements.
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3.2 Overview

We started our design with the desire to try density-based clustering for strain iden-

tification to see how it compares to an agglomerative approach like OHClust! when

applied to the data collected by the biologists at Cal Poly stored in Cal Poly Library

Of Pyroprints. Many of the design decisions revolve around ensuring that we can

leverage the performance benefits of density-based clustering.

3.2.1 Speeding Up MST

The first goal for our solution was to allow for faster MST. This is very useful, because

the naive method of matching isolates for MST, comparing an unknown isolate to

every isolate in the database, scales poorly with the growing library of isolates.

As described in Section 4.8 of Jan Soliman’s thesis[20], it is possible to use iden-

tified strains to speed up the MST process. By using a representative isolate for each

strain, matching an unknown isolate only requires looking at each strain representa-

tive instead of every isolate.

This thesis contributes to this speed up by identifying strains and storing them

in CPLOP. Section 4.7.2 of Soliman’s thesis[20] describes the relational data model

for storing strains in CPLOP.

3.2.2 Allowing Strain Analysis

The second goal for our solution was to provide analysis of strains in an easy to

understand form. The purpose of analyzing bacterial strains in the library is to

find similarities between bacterial representations. These similarities signify pairs of

isolates that have some identical sequences of DNA and likely share a recent common

ancestor. This allows the biologists to look for patterns in the metadata of related
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isolates. With metadata such as time and location of the samples, the biologists can

then ask questions like ”where has this strain of bacteria been seen?” and ”how has

that changed over time?”

OHClust! coupled the identification of strains with their analysis. As such, when

Montana was unable to verify the validity of the identified strains, the analysis could

not be used either. Hoping to avoid a similar fate, and for the sake of simplicity, we

decided to decouple strain identification and analysis in our solution. We designed

a tool that could be used to analyze strains found by any clustering method. Our

solution is to store identified strains in CPLOP, allowing researchers to use SQL

queries on CPLOP to analyze those strains.

3.2.3 Scaling With a Growing Database

The third goal for our solution is to grow with the database. The biologists are

continually gathering new samples and sequencing them into pyroprints which are

added to the database. Montana’s solution for this goal was to make OHClust!

incremental. The time to cluster a few new pyroprints in OHClust! is much faster

than clustering everything from scratch. For our solution however, we decided not to

use an incremental algorithm. This is a simpler solution that we thought would still

scale with the database due to the efficiency of the clustering algorithm we chose,

DBSCAN.

DBSCAN has a runtime complexity of O(N logN) compared to agglomerative

clustering which has complexity of up to O(N3) (as in the case of OHClust!) depend-

ing on the intercluster distance metric used. The O(N logN) complexity of density-

based clustering algorithms depends on the use of spatial indexes with O(logN) range

queries.

Spatial indexes generally operate on points in euclidean space, so in order to use
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a spatial index to store our data, we had to find the relationship between Pearson

correlation and Euclidean distance. In Section 3.3.1 we derive the following relation-

ship:

ρ(~x, ~y) = 1− d(~zx, ~zy)
2

2D

where ~x and ~y are pyroprints, ρ is the Pearson correlation, d is Euclidean distance,

~zx and ~zy are the z-scores of ~x and ~y, and D is the number of dimensions.

Using this formula, we converted our α and β thresholds, described in Section

2.2.5, from Pearson correlation to Euclidean distance of Z-scores. Our solution pre-

computes the z-scores for each pyroprint. Then during clustering, it calculates the

Euclidean distance between pairs of pyroprints and compares the value to the con-

verted thresholds.

The next step was to decide on the spatial index to use for our clustering. Spatial

indexes are notoriously bad at scaling to high-dimensional spaces. Unfortunately,

the 93-95 dispensations of our pyroprints is well within the classification of high-

dimensional. Common aspects of spatial indexes that we needed to avoid for high-

dimensional data were having overlaping nodes, and splitting dimensions indepen-

dently.

The best spatial indexes designed for high-dimensional data we could find are

described in Section 2.5. They were all designed to store that data persistently on

disk. Because all of our data should fit in RAM for the foreseeable future, we decided

not to persist our index. As such, we did not use the previous solutions and instead

designed our own. The index we designed was tailored for our data and the query

pattern of the DBSCAN algorithm. It is described in Section 3.4
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3.3 Isolate Comparison

There are two components to comparing isolates. First is the comparison of pyroprints

from the same DNA region. Second is the way comparisons from all DNA regions are

used to come to a decision on similarity.

3.3.1 Euclidean Distance of Pyroprint Z-Scores

Spatial indexes generally operate on data existing in Euclidean space. The pyroprints

could be thought of as points in an D-dimensional space where D is the number of

dispensations. The distance between two points in Euclidean space can’t be converted

to the Pearson correlation between two points which was previously used by those

working with CPLOP. The calculation of the Pearson correlation uses the average

and standard deviation of the dimensions in a point, but Euclidean distance discards

the information needed to find the average and standard deviation. There is a type

of spatial indexes called a m-tree which can operate on arbitrary metrics[16]. Unfor-

tunately, the Pearson correlation does not fit the criteria of a proper metric which is

required by m-trees. Specifically, Pearson correlation violates the triangle inequality

property.

The reason the biologists use Pearson correlation, as described in Section 2.2.4, is

because it statistically normalizes the data. We needed Euclidean distance for use in a

spatial index, and we needed to use statistical normalization for comparison validity.

Since the biologists had already determined meaningful thresholds for Pearson corre-

lation, we hoped to be able to leverage that by finding a relationship between Pearson

correlation and Euclidean distance with statistical normalization. The following is a

derivation of that relationship.
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We start with the equations for Pearson correlation ρ and Euclidean distance d:

ρ(~x, ~y) =
1

D

D∑
i=1

(xi − µx)(yi − µy)
σxσy

d(~x, ~y) =

√√√√ D∑
i=1

(xi − yi)2

where D is the number of dimensions, and µx and σx are the mean and standard

deviation respectively.

µx =
1

D

D∑
i=1

xi

σx =

√√√√ 1

D

D∑
i=1

(xi − µx)2

We notice that the inner terms of Pearson correlation are z-score normalizations,

z(xi) =
xi − µx
σx

and plug in z(xi) into the distance equation for x and y and simplify.

d(~zx, ~zy) =

√√√√ D∑
i=1

(
xi − µx
σx

− yi − µy
σy

)2

=

√√√√ D∑
i=1

(
xi − µx
σx

)2

− 2

(
xi − µx
σx

)(
yi − µy
σy

)
+

(
yi − µy
σy

)2

=

√√√√( D∑
i=1

(
xi − µx
σx

)2
)

+

(
D∑
i=1

(
yi − µy
σy

)2
)
− 2

D∑
i=1

(
xi − µx
σx

)(
yi − µy
σy

)

=

√√√√∑(xi − µx)2
σx2

+

∑
(yi − µy)2
σy2

− 2
D∑
i=1

(xi − µx)(yi − µy)
σxσy

We notice the the sums look like parts of the equations for σ and ρ. Solving the

equations for the sums gives us:

D∑
i=1

(xi − µx)2 = D · σx2

D∑
i=1

(xi − µx)(yi − µy)
σxσy

= D · ρ(~x, ~y)
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ITS region 23-5 16-23
α β α β

ρ(~x, ~y) 0.995 0.99 0.995 0.99

D 93 95
d(~zx, ~zy) 0.9644 1.3682 0.9747 1.3784

Table 3.1: Converted Thresholds.

and we substitute those back into our d(~zx, ~zy) equation and simplify.

d(~zx, ~zy) =

√
D · σx2
σx2

+
D · σy2
σy2

− 2D · ρ(~x, ~y)

=
√

2D − 2D · ρ(~x, ~y)

=
√

2D(1− ρ(~x, ~y))

Thus the relationship between ρ and d is:

d(~zx, ~zy) =
√

2D(1− ρ(~x, ~y))

or

ρ(~x, ~y) = 1− d(~zx, ~zy)
2

2D

Using this formula, we converted our α and β thresholds from Pearson correlation

to Euclidean distance of Z-scores, shown in Table 3.1. Because the conversion depends

on number of dimensions D, the threshold for distance is different for each region

despite being the same for Pearson correlation.

Our solution precomputes the z-scores for each pyroprint. Then during clustering,

it calculates the Euclidean distance between pairs of pyroprints and compares the

value to the converted thresholds.
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3.3.2 Considering Multiple DNA Regions

The biologists realized that pyroprints from a single region of DNA was not enough

to be able to determine if two isolates are are the same or not. So for each isolate

there are actually two pyroprints, one from each of two different regions. Isolates are

considered equal only if the pyroprints from both regions match under the threshold.

Because the two regions have different thresholds, the distances can’t be combined

into one distance, to be compared against a single threshold. Instead, decisions on

similarity need to take into account the distances between every region.

The first idea we considered was to cluster isolates twice, once for each region,

then to take intersections of the cross product of both sets of clusters. Isolates that

were in the same cluster for each region are in the same cluster of the combined

regions. This design would have a couple benefits. First, it would be simple to

implement because the comparison for two pyroprints is just distance. Second it

could provide additional analysis opportunities for the biologists, who could look for

patterns within a single region, or find relationships between strains based on which

other strains share one of the region clusters. The primary drawback of this design

is additional computation. At first glance, clustering twice would be twice as much

work. But on top of that the clustering itself becomes more expensive because the

range queries on a single region return a significant portion of our data which results

in worst case performance complexity O(N) from the spatial index, making the full

algorithm O(N2) instead of O(NlogN).

The second idea we considered was to combine the regions and do a single cluster-

ing of both regions at the same time. The benefits and drawbacks of this approach are

the inverse of those of the first approach. Performance is better because the spatial

index has more information on which to trim branches of the tree. Design complexity

is higher because calculations and decisions during the query need to take into ac-
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count two independent regions. This also means that the query algorithm takes two

radii as input, one for each region, instead of the normal one radius.

We decided to use the second approach for this work. While the opportunity for

extra analysis would be nice, it wasn’t specifically asked for, while good performance

was. Additionally, the analysis would likely be performed infrequently, and thus the

extra computation would be wasted most of the time. Perhaps in the future the ability

to make such analyses could be added separately from the basic strain identification.

3.4 Spatial Index

All of the design for strain identification revolved around the spatial index. The data

was transformed into z-scores and the thresholds converted for Euclidean distance

so that a spatial index could be used. Density-based clustering gets its performance

from leveraging a spatial index.

Our primary concern with choosing a spatial index is the fact that our data is high-

dimensional. Most spatial indexes scale poorly with dimensions. Common aspects

of spatial indexes that we needed to avoid for high-dimensional data were having

overlapping nodes, and splitting dimensions independently.

The best spatial indexes designed for high-dimensional data we could find are

described in Section 2.5. They were all designed to store that data persistently on

disk. Because all of our data should fit in RAM for the foreseeable future, we decided

not to persist our index. As such, we did not use the previous solutions and instead

designed our own.

Because we decided not to have a persistent index, it must be built from scratch

whenever we want to cluster the data. Therefore, we must choose a spatial index

which can be built quickly. Specifically, the complexity should not be worse than the
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complexity of the clustering, O(N logN), otherwise building the tree would dominate

the total runtime as the dataset scales.

Designing our own spatial index allows us to make some optimizations for its use

in DBSCAN as well as for the specific characteristics of our data.

3.4.1 Optimizations for use with DBSCAN

In order to be used by DBSCAN, the spatial index needed to provide a range query.

A range query takes a query point, and a range as input and returns all data points

within range of the query point. The query can be thought of as a hypersphere with

it’s center at the query point with a radius of the query range. All points that lie

inside that hypersphere are returned.

The DBSCAN algorithm queries the spatial index in a unique pattern. First, all

queries are centered at a point in the database, as opposed to an arbitrary point

with all queries having the same range. Second, each point is only queried once, and

nearby points are processed soon after each other.

Our spatial index query takes some shortcuts by realizing that once a point and

all of its neighbors have been processed, DBSCAN will never make another query

that would return that point. In addition, we modified the DBSCAN algorithm to

keep track of the neighbors seen for each unprocessed point. This means that it will

never need to see any points more than once. These modifications are described in

Section 3.5.1.

By only committing to returning points that have not been previously returned we

can get away with only searching points that haven’t been returned yet. By removing

points from the spatial index after they are returned, future queries will have fewer

points to search through.
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[0.0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1.0) [1.0, 1.25) [1.25,∞)

23-5 37 45 7 0 3 1
16-23 46 39 6 1 0 2

Table 3.2: Number of dimensions with a standard deviation in various

ranges for each ITS region. The deviations are calculated between z-scores, not

the original pyroprints.

3.4.2 Data Characteristics

Our data has some characteristics that make it difficult to use in a spatial index. The

points have very little spread in most dimensions. As shown in Table 3.2, standard

deviations between points in a single dimension are less than 0.5 for most dimensions.

Compared to the range of the query of 0.96 or 0.97 for the α thresholds of 23-5 and

16-23 respectively, the difference between points in a single dimension usually won’t

be enough to exclude a point from the query results. Unfortunately, we can’t ignore

any single dimension because those small differences add up over ∼100 dimensions.

Unfortunately, this means that when traversing the tree, the algorithm will branch

to multiple children to a greater depth, until many dimensions have been looked at.

In order to keep the tree depth low, our design splits points based on multiple

dimensions per level. This is common in spatial indexes such as the popular quadtree

and octree, however, that approach increases the number of children of each node

exponentially (2D) where D is the number of dimensions split at that level. Splitting

all ∼100 dimensions in one node would be impractical with 290 children. We could

instead split only a few different dimensions at each level of the tree, but the tree

would still have the same number of leaves after splitting each dimension once. Since

290 leaves is more than the number of data points we could ever possible hope to add

to the database, the majority of those leaves would be wasted. In addition, the range
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query would intersect many of these children, causing the algorithm to traverse down

exponentially many paths. This is somewhat offset by the reduced depth of the tree,

but it is not ideal. The O(logN) performance of spatial data queries assumes that at

the majority of nodes, only one child is further traversed.

What we decided to do instead was split multiple dimensions dependently. That

is to split once but have that one split cover multiple dimensions. This means that the

split plane won’t be axis aligned. The idea is that by changing the angle of the split

plane the average distance from points on either side to the split plane will increase.

This increase depends on a correlation between dimensions i.e. points with low values

(relative to other points) in one dimension, also tend to have low values (relative to

other points) in another dimension. Inverse correlations work too, as long as most

points with low values in one dimension have high values in another. Fortunately, the

data in our library does exhibit correlations between some dimensions.

3.4.3 Construction

This section describes the remaining details of the design of the spatial index. Since

the tree is not persistent, we can construct the tree with knowledge of all the points.

Instead of constructing the tree by adding one point at a time and splitting nodes

when they get too big (like many bounding volume hierarchy indexes) or picking

arbitrary split criteria ahead of time (like many spatial partitioning indexes), our

design looks at all points in a (sub)tree then partitions them.

As discussed in Section 3.4.2, our spatial index partitions points by finding a plane

that splits the data in multiple correlated dimensions. The dimensions are chosen by

picking the single dimension in which the points are most spread apart, as determined

by standard deviation, and then choosing a number of other dimensions based on a

combination of how correlated they are to the first dimension and how spread those
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dimensions are. Specifically it chooses the N dimensions with the highest values for

|ρ|·σ, where ρ is the Pearson correlation of data values for a dimension with the values

for the dimension with the most spread, σ is the standard deviation for a dimension,

and N is a parameter to the construction algorithm.

Each dimension is only split once per path down the tree. The true distance to

a node is not simply the distance to the split plane of that node, but actually the

distance to the intersection of the planes of all the ancestors of the node. Instead

of finding those intersections and calculating the distance to the complex shape that

results, we can combine the distances to individual planes using Euclidean distance

dcombined =
√
d1

2 + d2
2. In order to combine distances from multiple split planes

during queries (the split planes from a node and all of its ancestors), each of those

planes must be perpendicular to all of the others. The simplest way to guarantee this

is to enforce that no plane shares any dimension with another. Dimensions will be

reused in the planes of nodes that aren’t direct ancestors or descendants as distances

to those planes will not be combined during queries.

After picking the dimensions, our construction algorithm chooses a hyper-plane

using linear regression between each dimension and the dimension with the most

spread. The formula determines the slope b = ρ · σx
σy

and intercept i = sx − b · sy of

the regression line a · x+ b · y+ i = 0 where x is the value of a point in the dimension

with greatest spread, y is the value of the point in the other correlated dimension, and

a := 1. The intercept i determines the position of the split plane, and is calculated for

a point s on the plane. We tried two options for s, the mean of each dimension, and

the median point in relation to the split plane. The mean is less work to calculate,

thus results in faster construction. The median point results in a balanced tree, thus

faster queries. Since the performance of our spatial index is dominated by the queries

and not the construction, we chose to use the median point.
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The algorithm finds an equation of a hyper-plane by combining these linear re-

gression equations into a form a ·x+ b · y+ . . .+ c · z+ i = 0 where x is the dimension

with the most spread (again with a := 1) and each subsequent term is a correlated

dimension multiplied by the slope (b · y) of the linear regression with the first dimen-

sion. The intercept i is simply the sum of the intercepts from the linear regression

for each correlated dimension.

In order to partition the points based on the hyper-plane, we needed a function

that, given a point < x0, y0, · · · , z0 > and the equation for the plane (a · x + b · y +

. . . + c · z + i = 0), would return which side of the plane it was on. We used the

equation for signed distance from a plane for this purpose as well as for the spatial

query algorithm. The formula for the distance is

d =
a · x0 + b · y0 + . . .+ c · z0 + i√

a2 + b2 + . . .+ c2

The result of this equation is signed, and that sign determines which side of the plane

a point is on. For the purpose of partitioning, only the sign matters, so we can ignore

the denominator. Since the plane is only in a subset of the dimensions, the ”point”

we input to the function is made up of only those dimensions from the real data point,

in the same order as they are used in the plane equation.

3.4.4 Storage

After deciding which points go in which child of a tree node, the algorithm has to

encode spatial information about those children for the query to use. The two most

common methods of doing this are (1) storing the plane used to split the data i.e.

spatial partitioning, and (2) storing a bounding volume for each child fit to the data

points within i.e. bounding volume hierarchies. The benefits of storing the split plane

are that it generally takes less storage space, and it guarantees no overlap between

children which can be a problem with bounding volumes. Bounding volumes come
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in many shapes and sizes each with different characteristics, however in general, they

take more storage space and the better they fit the data, the more complex the

comparisons or construction.

We tried both methods for our data, storing the plane as used during construction

and storing axis-aligned bounding boxes for each child. We chose axis aligned bound-

ing boxes for the simplicity of construction and comparison. However, axis-aligned

boxes generally suffer from empty corners and in our case, since the points aren’t

split by axis-aligned planes, those corners could cross over the split plane, making

overlapping children probable. Comparison against bounding spheres would also be

fairly simple and would avoid empty corners, however they lose that simplicity when

scaled in different dimensions, becoming ellipses. Since our data is very skewed, and

since by the nature of spatial partitioning, the data would become more skewed in

lower levels in the tree, using uniform spheres could result in good fit in the most

spread dimensions but lots of extra space on the sides of other dimensions. These

hypotheses were not tested, but the choice of axis aligned bounding boxes was mostly

driven by simplicity of construction. Constructing a minimum bounding sphere is not

nearly as simple as constructing a minimum axis aligned bounding box

Comparing a query range against split planes was more effective than axis aligned

bounding boxes at higher levels in the tree closer to the root. However, deeper into the

tree, the effectiveness of the methods swapped, and the axis aligned bounding boxes

were better at pruning children. This complementary behaviour led to our decision to

use both methods of storage. We considered storing only planes at higher levels and

only bounding boxes at lower levels, however we theorized that extra discrimination

and thus less branching at each level was more important than reduced node storage

and comparison time. This could be something to try in future work.

All of the previous design details involve only a single ITS region. The addition of
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more regions does not affect the design of a single region. While we made an effort to

retain a binary split for a single region by combining multiple dimensions in a single

split plane, we don’t do this for multiple regions. Because of the inability to combine

distances from multiple regions described in Section 3.3.2, we instead decided to add

more children.

For example, with two regions we would have two split planes. Each split plane

uses whichever dimensions it wants (there is no connection between any dimensions

from one region and another). They don’t even need to use the same number of

dimensions, each plane is completely independent. For two regions there will be 4

children like a quad tree. One child is for points with a negative distance to the planes

for both regions. Another child is for points with a positive distance to both. The

other two children are for points with a positive distance to one region’s plane and a

negative one to the other.

3.4.5 Algorithms

Pseudocode for our tree construction algorithm is shown in Figure 3.1. It’s a recursive

algorithm that constructs and returns subtrees of the spatial index. The base case

is determined by the number of points passed to the algorithm. If the number of

points (isolates) passed to the algorithm is less than POINTS PER LEAF variable,

it constructs a new leaf node with those points and returns it. In the general case the

algorithm partitions the points and calls the algorithm recursively to create children

nodes used to construct an inner node which is then returned. Points are partitioned

according to the scheme described in Section 3.4.3 with a plane perpendicular to the

linear correlation between a number of dimensions defined by DIMS PER SPLIT.

Figures 3.2, 3.3 and 3.4 contain pseudocode for the range query algorithm. This

algorithm is also recursive, returning the set of previously unseen points within radius
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function ConstructTree(points, unusedDims)

if points.size ≤ POINTS PER LEAF then

return LeafNode(points)

else

splitP lanes← ∅

for region ∈ REGIONS do

mainDim← dimension with greatest standard deviation

correlatedDims← unused dimensions correlated to mainDim

splitDims← mainDim∪ DIMS PER SPLIT from correlatedDims

splitP lanes← splitP lanes ∪ calculateSplitP lane(splitDims)

end for

children← ∅

for each side of Region1’s split plane do

for each side of Region2’s split plane do

partition points using split planes

children← children∪ ConstructTree(partition, unusedDims)

end for

end for

return InnerNode(children, splitP lanes)

end if

end function

Figure 3.1: Pseudocode for the algorithm that constructs our spatial index.

POINTS PER LEAF is the number of points that can be stored in a leaf node.

DIMS PER SPLIT is the number of dimensions that are used for each partition.

of center. The base case is when the algorithm is called on a leaf node. In this case,

the algorithm simply compares all points stored in that leaf node to the query and
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function RangeQuery(node, center, radii)

result← ∅

switch typeof(node) do

case leafNode

for point ∈ leafNode.points do

if PointInSpheres(point, center, radii) then

result← result ∪ point

remove point from leafNode.points

end if

end for

end case

case innerNode

for childNode ∈ innerNode.children do

if NodeIntersectsSpheres(innerNode, center, radii) then

result← result∪ RangeQuery(childNode, center, radius)

end if

end for

end case

end switch

return result

end function

Figure 3.2: Pseudocode for our range query algorithm.

returns those that match. In the general case, the algorithm is called on an inner

node. The algorithm first determines which nodes might possibly contain points that

match the query. Then it recursively calls the algorithm on each of those children

and combines the results.
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function PointInSpheres(point, center, radii)

for region ∈ REGIONS do

radius← radii[region]

if distance(center[region], point[region]) ≥ radius then

return False

end if

end for

return True

end function

Figure 3.3: Pseudocode for our range query algorithm.

function NodeIntersectsSpheres(node, center, radii)

for region ∈ REGIONS do

planeDist← PlaneDistance(center[region], child.planes[region])

bboxDist← BBoxDistance(center[region], child.bboxes[region])

if max(planeDist, bboxDist) ≥ radii[region] then

return False

end if

end for

return True

end function

Figure 3.4: Pseudocode for our range query algorithm.

3.5 Clustering

The primary reason we chose to use density-based clustering was that it is different

from agglomerative clustering. Of course, there are other clustering methods which
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are different from agglomerative clustering, but density-based clustering offers better

performance and cluster determinism independent of input order. We had to decide

on a specific density-based clustering algorithm from among the options described in

Section 2.4.2.

A hierarchical clustering algorithm could provide extra information for strain anal-

ysis. If isolates in one strain are more similar to each other than isolates in another

strain, a dendrogram would reflect that. However, generating that dendrogram would

come at the cost of performance. The hierarchical density-based clustering algo-

rithm, OPTICS, is more demanding of the spatial index. It requires finding the

distance to the minPtsth closest neighbor for each point instead of just the number

of points within the range. Nearest neighbor searches can actually be faster than

radius searches. However, to get the benefit of hierarchical clusters, the max search

radius would need to be bigger than the radius we would use for normal DBSCAN,

ending up with a net decrease in performance. Finally, finding the nearest neighbors

requires sorting points based on their distance to the query point. However, as men-

tioned in 3.3.2, we cannot combine the distances from multiple DNA regions into one

distance, meaning we would have to cluster each region separately. Because these

new analysis opportunities were not specifically requested and performance was, we

decided OPTICS was not worth the tradeoff and to use DBSCAN instead. Perhaps in

the future, the team could add a standalone tool using OPTICS on individual regions

for infrequent analysis.

Due to the inherent performance gains from switching to a lower algorithmic

complexity, we decided that using an incremental algorithm was not worth the added

responsibility of persisting internal algorithm information and maintaining a list of

new or removed data points between clustering runs. An algorithm with complexity

O(N logN) can scale well with a growing dataset. Upgrading to an incremental

version could be a good avenue for future work.
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3.5.1 Modified DSBCAN Algorithm

In order to take advantage of the shortcut discussed in Section 3.4.1, we needed to

modify the original DBSCAN algorithm. Our spatial index query deletes points as it

returns them, meaning it only returns points that have not been previously seen. In

some cases, this works with the unmodified DBSCAN algorithm, however we had to

modify the algorithm to handle the edge cases.

When a point is processed by the standard DBSCAN algorithm, the spatial index

is queried for the Eps-neighbors of the point. If the number of neighbors for a point

is at least minPts then the point and its neighbors are added to the current cluster

(creating a new cluster if there isn’t one). Then, the algorithm adds each neighbor

to a seeds list. Once a point is done being processed, another point is taken from

the seeds list and that point is processed. If the seeds list is empty, then the current

cluster is completed and the next point to be processed is taken from the set of all

points. When a point is processed, there are two possibilities: Either it is processed

in the outer DBSCAN() function, or in the inner ExpandCluster() function.

If a point is processed in the inner ExpandCluster() function, then by definition

at least one of its neighbors has been seen and the point is being added to a cluster.

We could compensate for this by simply adding one to the points neighbor count,

but there are two edge cases here. First it is possible that (1) the point could have

other neighbors in the same cluster which were already processed. Second, (2) some

of the point’s other neighbors could have be seen by another point in the cluster. In

both cases, the neighbor in question would have been removed from the spatial index

before this point was processed. Neither of these edge cases affect whether or not the

point will be added to the cluster, but the count of neighbors does affect whether the

point’s previously unseen neighbors will also be added to the cluster.

If instead a point is processed in the outer DBSCAN() function, it generally means
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that the point is not a neighbor of any points that have previously been seen; otherwise

it would have likely been added to seeds and queried from ExpandCluster() instead.

This means that the set of previously unseen neighbors is the same as the set of all

neighbors. The edge case here is that (3) one of the point’s neighbors could have

been seen by a non-core point. When this happens, the neighbor would have been

removed from the spatial index but not added to seeds (where it would have queried

the point instead of the other way around).

The first modification we made is that the algorithm now maintains for each

unprocessed point, a list, seenNeighbors of all the processed points who have seen

that point. Then, when a point is processed, the number of points in seenNeighbors

is added to the number of previously unseen neighbors returned by the spatial query.

This combined count is used to determine whether the point is a core point, and if

the combined count is at least minPts, the unseen neighbors are added to seeds like

normal, as well as all of the already seen neighbors (which may or may not already be

in that cluster). Then the algorithm adds the processed point to the seenNeighbors

for each of the previously unseen points. By itself, this modification doesn’t fix any

of the edge cases, as it only accounts for the one neighbor which first saw each point,

but it serves as a platform to address them.

The next modification is that when a point is processed, in addition to querying

the spatial index, the point is compared to every other point in seeds. For each

seed point within eps of the point being processed, the algorithm adds both the seed

point and the point being processed to each other’s seenNeighbor. This modification

mostly solves edge cases 1 and 2. However, the modification itself has an edge case

where (4) one of the point’s neighbors could have been seen by a non-core point.

When this happens, the neighbor would have been removed from the spatial index

but not added to seeds (where it would have been found during this modified point

processing).
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Edge cases 3 and 4 are actually the same problem surfacing in different spots,

and are related to another concern that removing points from the spatial index could

result in some points never being processed. This could happen if a point was seen

by a non-core point in which case it would not have been added to seeds, but was

still deleted from the spatial index. If the spatial index is the source of unprocessed

points used by the outer DBSCAN() function, then the point will never be queried.

We considered two solutions to this problem. The first solution was to decouple

the removal of points in the spatial index from the query, and instead only remove

points if the point being processed turns out to be a core-point (and thus the removed

points will be added to seeds. The second solution was to keep points that have been

seen by non-core points in a noise list like seeds but separate. Then when points are

being processed the algorithm would compare the point to each of the points in noise,

in addition to those in seeds. We chose to use the noise list because it removes points

from the spatial index as soon as possible, hopefully speeding up future queries.

Pseudocode for our modified DBSCAN algorithm is in Figures 3.5 and 3.6. For

reference, the pseudocode for the original DBSCAN can be found in Figure 2.5 and

2.6.
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function ModifiedDBSCAN(setOfPoints, eps,minPts)

. setOfPoints are UNCLASSIFIED

while setOfPoints 6= ∅ do

point← setOfPoints.pop()

neighbors← RegionQuery(setOfPoints, point, eps)

if neighbors.size ≥ minPts then . all neighbors are density-reachable

clId← nextId()

point.clId← clId

neighbors.clId← clId

noise← ∅

seeds← neighbors

else . not core point

clId← −1 . not currently expanding a cluster

noise← neighbors

seeds← ∅

end if

ExpandNeighbors(setOfPoints, point, seeds, noise, clId, eps,minPts)

end while

end function

Figure 3.5: Pseudocode for our modified DBSCAN algorithm.
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function ExpandNeighbors(unseen, point, seeds, noise, clID, eps,minPts)

update seenNeighbors

while seeds 6= ∅‖noise 6= ∅ do

if seeds 6= ∅ then

point← seeds.pop()

else

clId← −1 . not currently expanding a cluster

point← noise.pop()

end if

neighbors← RegionQuery(unseen, point, eps)

update seenNeighbors

if neighbors.size+ seenNeighbors[point].size ≥ minPts then

if clID = −1 then

clId← nextId()

point.clId← clId

end if

move any seenNeighbors[point] from noise to seeds

seeds = seeds ∪ neighbors

neighbors.clId← clId

seenNeighbors[point]← clId

end if

end while

end function

Figure 3.6: Pseudocode for our modified DBSCAN algorithm.

53



CHAPTER 4

IMPLEMENTATION

This chapter describes the implementation of the work contributed with this thesis.

It is intended to serve as a reference for researchers using this work for future work.

The code is accessible from a github repository1.

4.1 Language and Libraries

We implemented the work in Python, and utilized a few third party libraries. We

ran the evaluations with version 3.4.3, but the code should be compatible with any

version 3.X of python. We chose Python originally just to prototype the solution. We

were happy with the performance of the libraries though, so when we went to create

the final implementation we stuck with the same language.

A couple of the packages we used are from the open source library SciPy2. SciPy

is a collection of software packages for math, science, and engineering. We used

version 0.14.0. For evaluating clusters, we used the Statistics package (stats). The

Statistics package provides objects representing statistical distributions and methods

for analysing and comparing random samples or distributions. We used NumPy for

storing and comparing pyroprints. NumPy provides N-dimensional array objects and

efficient vector operations on those arrays. NumPy is maintained by SciPy but is

available standalone, with it’s own versions. We used version 1.8.1.

In order to interface with CPLOP, which is implemented as a MySQL database, we

used the MySQL Connector provided by MySQL3. MySQL Connector, like MySQL

1https://github.com/ejohns32/Thesis-Code
2http://www.scipy.org/install.html
3http://dev.mysql.com/downloads/connector/python/
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is open source. MySQL connector handles connecting to and querying a MySQL

database. It also handles data conversion into standard Python types. We used

version 2.0.3.

Python and all of the libraries we used are available together through Anaconda.

Anaconda is a package manager and Python distribution available from Continuum

Analytics4. This is what we used, although newer versions will come with up to date

Python and libraries that may be incompatible with this code.

4.2 Overview

This section describes how the different modules of the implementation interface with

each other. It does this in the context of a typical run of the program.

First the implementation loads settings from a configuration file. These settings

are described in the sections detailing each module. The configuration file includes

descriptions of each ITS region which are represented by Region objects.

In the pyroprinting module, the program queries pyroprints from CPLOP us-

ing the mysql.connector library. The pyroprints are then organized and stored as

Isolate objects. The Isolate class provides an isWithinRadiiOf() function which

takes another Isolate and a radius for each Region returning a boolean value.

In the spatial and fullsearch modules, the implementation takes a list of

Isolates and constructs a SpatialIndex or FullSearchIndex respectively. SpatialIndex

and FullSearchIndex both provide a getNeighborsOf() and popNeighborsOf()

function, which both take an Isolate and a radius for each region. The functions

return the set of Isolates for which the isWithinRadiiOf() function returns true.

The dbscan module contains two functions for creating clusters: dbscan() and

4https://www.continuum.io/downloads

55



popDBSCAN() which both take an Index and DBSCAN’s eps and minPts parameters.

The functions call the getNeighborsOf() and popNeighborsOf() functions of the

passed Index respectively to determine clusters. The functions both return a list of

clusters, each cluster represented as a set of Isolates.

The clusterEval module is optional. It provides functions which evaluate one or

more lists of clusters as returned by the functions in the dbscan module.

4.3 Data Types

The Region class, defined in module pyroprinting, contains information about a sin-

gle ITS region. Instances are created from the configuration file. The class contains

fields for the name of the ITS region, the dispensation count, a Pearson correlation

similarity threshold (which is converted to zScore distance and used as eps for DB-

SCAN), and parameters for the beta distribution of Pearson correlations between

pyroprint regions of the same strain.

The Isolate class, defined in module pyroprinting, aggregates one pyroprint

from each ITS region. Pyroprints are stored as numpy.arrays of zScores. The class

provides functions for comparing its pyroprints to those of other isolates, namely

isWithinRadiiOf(). Isolates are obtained by querying CPLOP for pyroprints.

The query we used is in Figure 4.1. The query grabs the latest pyroprint from each

region. After the query, we also filter out isolates which don’t have pyroprints for

both regions.

The BoundingBox class, defined in module spatial, represents an N-dimensional

axis aligned bounding box, where N is the number of dispensations for the ITS region

it encloses. It is stored as two numpy.arrays, one contains the minimum values for

each dispensation of every pyroprint contained in the bounding box, and the other

contains the maximum values for each dispensation.
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SELECT p1 . isoID , p1 . appl iedRegion , position , zHeight

FROM zScore s

INNER JOIN pyropr in t s p1 USING( pyroID )

LEFT JOIN pyropr in t s p2 ON p1 . i soID = p2 . i soID

AND p1 . appl iedRegion = p2 . appl iedRegion

AND p2 . i sErroneous IS FALSE AND p1 . pyroID < p2 . pyroID

WHERE p1 . i sErroneous IS FALSE AND p2 . i soID IS NULL

ORDER BY isoID , appl iedRegion , position ;

Figure 4.1: SQL query for extracting isolates from CPLOP. It queries for the

latest pyroprint from each region for every isolate, excluding pyroprints determined

to be erroneous.

The MultiDimPlane class, defined in module spatial, represents an N-dimensional

plane which is non-axis aligned in M dimensions, where M ≤ N , the total number of

dispensations for the ITS region. It is represented as a list of the dimensions which

it splits and plane coefficients for each of those dimensions.

Comparisons between Isolates, BoundingBoxes, and MulitDimPlanes are im-

plemented using operations on numpy.arrays. Element by element arithmetic uses

overloaded operators (+, -, *, and /). More complex calculations require combin-

ing arithmetic operations and sometimes also element by element numpy.maximum(),

numpy.minimum() and numpy.absolute() functions. Various comparisons are im-

plemented as reductions (with numpy.linalg.norm() and numpy.sum()) after cal-

culations, or element by element comparisons (like numpy.greater equal() and

numpy.less equal()) followed by a boolean reduction (like numpy.all()).
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4.4 Indexes

The SpatialIndex class, defined in module spatial, is an implementation of the

data structure designed for this thesis and described in Section 3.4. It provides a

getNeighborsOf() and popNeighborsOf() function, which both take an Isolate

and a radius for each region. The functions return the set of Isolates for which

the isWithinRadiiOf() function returns true. An instance is constructed from a list

of Isolates. The construction algorithm uses some settings from the configuration

file which affect when leaf nodes will be built, or how many dimensions will be used

for MultiDimPlanes. A SpatialIndex is composed of Nodes which are themselves

composed of SpatialFilters and either other Nodes or Isolates.

The SpatialFilter class is a generic representation of methods for determining if

any points in subtree might match the neighbor query. These methods are associated

with Nodes in the SpatialIndex, and are specific to a single ITS region, meaning there

can be one SpatialFilter per filter method per ITS region per Node. Currently we

have 2 methods and 2 ITS regions for a total of 4 SpatialFilters per Node. The

SpatialFilter class is an abstract class providing basic functionality for connecting

SpatialFilters from one Node to the corresponding (same ITS region and method)

SpatialFilters from the Node’s parent and children. It is intended to be extended

for each filtering method with an intersectsQuery() function for checking if a query

intersects with the filter, and an update() / aggregrate() function for updating the

filter when points are removed from the subtrees of the LeafNode / InnerNode the

filter is associated with.

The first filtering method is represented by the PlanePartitionFilter class

which extends the SpatialFilter class. These filters represent a method of fil-

tering using the MultiDimPlanes used to partition points during construction. Its

intersectsQuery() function calculates the distance to the MultiDimPlane associ-
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ated with the filter, and those of all of filters ancestors. The implementation uses the

cached result from parent to speed up its calculation. Then it caches its result for

use by its children. Its update() and aggregrate() are no-ops because updating the

MultiDimPlane implies updating the partition. We would have liked to implement

repartitioning the points to rebalance the spatial index, however we decided to leave

this for future work.

The second filtering method uses the BoundingBoxFilter class which also extends

the SpatialFilter class. These filters represent a bounding volume hierarchy with

axis aligned bounding boxes. Its intersectsQuery() function calculates the distance

to the BoundingBox associated with the filter. Its update() function updates its

BoundingBox to fit the reduced set of points contained by the LeafNode it is associated

with. The aggregrate() function updates its BoundingBox to fit those of its children

filters.

Node is an abstract class which implements the common functionality of InnerNodes

and LeafNodes. The Node class manages the SpatialFilters and logic for determin-

ing if the subtree starting at the Node might contain points matching the query. It

provides a intersectsQuery() function which is used by the InnerNode class to

determine of the query traversal can ignore the Node. The intersectsQuery() calls

the intersectsQuery() function of each of its SpatialFilters, and takes advan-

tage of short circuiting to avoid the expensive caculations of the SpatialFilters

high-dimensional pyroprint comparisons.

The InnerNode class extends Node and represents a node of the search tree which

contains other Nodes instead of points. This class implements the search traversal

logic which decides which of its children Nodes to continue searching.

The LeafNode class extends Node and represents a terminating node in the search

tree. It contains Isolates (or any other object with a isWithinRadiiOf() function).
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This class contains the logic which ultimate decides if a point will be returned and

deletes the points it does return.

The FullSearchIndex class, defined in module fullsearch, is an implementation

of a naive index. Neighbor lookups search every isolate which is O(N) instead of the

O(N logN) of the spatial index. This naive implementation has the same interface as

SpatialIndex, constructed with a list of Isolates and exposing getNeighborsOf()

and popNeighborsOf() functions. This implementation serves as a benchmark for

performance testing SpatialIndex.

The PrecomputedIndex class, defined in module fullsearch, is another imple-

mentation of an index. This index is constructed with a map from every isolate to

the set of isolates which are neighbors of that isolate. The neighbor lookup is O(1),

however the precomputation is as expensive as running a neighbor lookup once for

every isolate in one of the other indexes. Because the precomputation only needs to

be ran once, this index is useful for trying out different clustering parameters quickly.

4.5 DBSCAN

The dbscan module contains two functions for creating clusters: dbscan() and

popDBSCAN() which both take an Index and DBSCAN’s eps and minPts parame-

ters. The DBSCAN parameters are loaded from the configuration file. The functions

call the getNeighborsOf() and popNeighborsOf() functions of the passed Index

respectively to determine clusters. The functions both return a list of clusters, each

cluster represented as a set of Isolates.

The dbscan() function is an implementation of the pseudocode for the original

DBSCAN algorithm described in Section 2.4.2 and shown in Figures 2.5 and 2.6. A

fairly minor change is that unlike the psueduo code which encodes clusters as member

variables of the data points themselves, this implementation collects points into sets
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representing clusters. This actually results in a difference in the output in that border

points can be found in multiple clusters. The original DBSCAN algorithm simply used

the first cluster discovered.

The popDBSCAN() function is an implementation of the pseudocode developed in

the design of this thesis and found in Figures 3.5 and 3.6. As described in Section 3.5.1,

the design of this algorithm works with an Index which removes the points it returns.

Like the dbscan() function, this function collects points into sets representing clusters

and can cluster border points into multiple clusters.

4.6 Evaluation

The clusterEval module is optional. It provides functions which evaluate one or

more lists of clusters as returned by the functions in the dbscan module. Some of the

evaluation methods use statistical methods. We used the kstest() and ks 2samp()

functions from the scipy.stats module to compare samples of pairwise Pearson

correlations from isolates in the same cluster. The kstest() also takes a continuous

distribution function as input. We used the beta distribution from the model to

represent the beta distribution fitted to the data in CPLOP in previous work. We

also queried CPLOP for a more current sample of correct pairwise Pearson correlations

among replicated pyroprints. The query we used is in Figure 4.2.
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SELECT r . appl iedRegion ,

PearsonMatch ( p1 . pyroID , p2 . pyroID , r . pearsonDispLength )

FROM Pyropr ints AS p1

INNER JOIN Pyropr ints AS p2 USING( ‘ isoID ‘ , ‘ appl iedRegion ‘ )

INNER JOIN Regions AS r USING( ‘ appl iedRegion ‘ )

WHERE (

SELECT COUNT(∗ )

FROM Pyropr ints AS pyro

WHERE pyro . i soID = p1 . i soID

AND pyro . appl iedRegion = p1 . appl iedRegion

AND pyro . pyroID > p1 . pyroID

AND pyro . i sErroneous IS FALSE

) < MAX REPLICATES

AND p1 . pyroID < p2 . pyroID

AND p1 . i sErroneous IS FALSE

AND p2 . i sErroneous IS FALSE

ORDER BY p1 . isoID , p1 . appl iedRegion , p1 . pyroID , p2 . pyroID ;

Figure 4.2: SQL query for finding the distribution of pairwise Pearson cor-

relations from replicates in CPLOP. Where MAX REPLICATES limits the

number of replicates that can be taken from a single isolate to prevent bias.
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CHAPTER 5

EVALUATION

Evaluation is a big part of the contribution of our work. The strains our imple-

mentation identifies are only useful to the biologists if we can show that they are

meaningful. One of the original goals of this work was to provide an alternative

method of strain identification for comparison against previous methods. This chap-

ter describes the comparisons we performed between our design, Montana’s OHClust!,

and average-linkage agglomerative hierarchical clustering (hereafter referred to as just

agglomerative clustering).

5.1 Evaluation Plan

This section describes the comparative tests we ran to evaluate DBSCAN against

other clustering methods for our use in strain identification. We performed a few

different tests for our evaluation to better characterize the similarities and differences

between clustering methods as well as to try to identify a ”most correct” method.

The results for these tests are shown and discussed in Section 5.5

5.1.1 Performance Evaluation

The first evaluation we made was a performance comparison. One of the goals for

this work was for it to scale well with a growing database. To determine how well our

spatial index and modified DBSCAN algorithm scales, we compared it to the standard

DBSCAN without a spatial index with different database sizes. In order to isolate the

affects of each contribution, we also ran standard DBSCAN with our spatial index

(without removal of points) and our modified DBSCAN algorithm without a spatial
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index. We created databases of sizes 1000 - 6000 with increments of 1000 by using

random subsets of our current database. The same random subset was used for each

method for a given database size to so that the randomness of the sampling didn’t

affect the relative results.

We measured total runtime, as well as peak memory usage for each test. Both

runtime and peak memory usage were measured with the unix ”time” command with

the ”-v” (or ”-l” depending on the operating system) argument and recording the

”user” and ”maximum resident set size” respectively.

5.1.2 Strain Correctness

The next tests we performed evaluated the correctness of the clusters produced by

each method. We consider these the most important evaluations. Similarity evalu-

ations like Montana performed are only as reliable as the method being compared

against. In addition similarity tests are only useful if the result is that the clustering

methods identify the same strains. If the methods produce different clusters, then we

need a way to determine which clusters are better.

Threshold Correctness

The first correctness evaluation we ran was a rough measure of cluster correctness.

The biologists consider pairs of pyroprints with a distance less than the α threshold

to be ”definitely similar” and pyroprints with a distance greater than the β threshold

to be ”definitely different”. It follows that a pair of isolates are ”definitely similar” if

the pyroprints for all regions are ”definitely similar” or ”definitely dissimilar” if the

pyroprints for any regions are ”definitely dissimilar”.

In this test we evaluated the clustering methods by how they clustered isolate

pairs that are ”definitely similar” and ”definitely dissimilar”. Methods are scored
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according to a threshold correctness score

TC =
sameDS + diffDD

totDS + totDD

where sameDS is the count of pairs of isolates which are ”definitely similar” and were

put in the same cluster, diffDD is the count of pairs of isolates which are ”definitely

dissimilar” and were put in different clusters, totDS is the count of all pairs of isolates

which are ”definitely similar” and totDD is the count of all pairs of isolates which

are ”definitely dissimilar.”

The closer a clustering method’s TC score is to 1, the better it matches the

biologists idea of ”definitely similar” and ”definitely dissimilar” isolates. However,

not all pairs of isolates are either ”definitely similar” or ”definitely dissimilar.” As

such, this measure is incomplete in that it doesn’t take into consideration every pair

of isolates. To give an indication of how incomplete the measure is, we also provided

the fraction of all isolate pairs which are neither ”definitely similar” or ”definitely

dissimilar.”

In addition, we calculated the ratios sameDS
totDS

and diffDD
totDD

to get a better idea of

why a clustering method with a TC score not close to 1 is incorrect. It will also be

able to capture incorrectness if one of the terms is small relative to the others and

thus has little weight in the overall TC calculation.

Pearson Correlation Distribution Correctness

Then we calculated two-sample goodness of fit tests against an expected distribution.

We calculated the two-sample Kolmogorov-Smirnov statistic for the distribution of

Pearson correlations between isolates in the same clusters. For each clustering method

we tested, we ran the evaluation separately for each DNA region.

A two-sample goodness of fit test takes the distributions of two observed samples
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and calculates the likelihood of the two samples coming from the same underlying

distribution. It doesn’t indicate what the distributions of either sample are, just if

they are the same or not. The samples we used for each clustering method being

compared were the Pearson correlations between every pair of isolates which the

method placed in the same cluster.

The equation for the two-sample Kolmogorov-Smirnov statistic is:

KS = max
w
|FX(w)− FY (w)|

where FX and FY are the cumulative distributions of the samples from X and Y

respectively. In our case, X is the set of Pearson correlations drawn from the expected

distribution and Y is the set of Pearson correlations drawn from clusters produced

by each clustering method. The null hypothesis is that the two samples come from

the same underlying distribution and it is rejected at the level α if

KS > c(α)

√
m+ n

m · n

where c(α) is the critical value for the two-sample Kolmogorov-Smirnov test at the

rejection threshold α, and m and n are the total numbers of distances in X and Y

respectively.

The expected distribution we used for the test is similar to the distribution that

Statistics student Diana Shealy used to fit a beta distribution[18]. Because we were

comparing a sample of our data to another sample of our data, there was a concern

that such a comparison would be invalid for evaluating correctness. The expected dis-

tribution came from isolates which were repeatedly pyroprinted, and when clustering,

we only used a single pyroprint for each isolate (for each region). That does mean

that there are some isolates that were used in both. However, since the distributions

we were comparing were of Pearson correlations between pairs of data points, we just

needed to make sure that we didn’t reuse the same pairs for the expected and actual
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distributions. Since all of the Pearson correlations used for the expected distribution

were between pairs of pyroprints of the same isolate, and all of the Pearson correla-

tions used for clustering were between pairs pyroprints from different isolates, we are

guaranteed that none of the Pearson correlations were used in both.

To obtain samples from a set of clusters, we used Pearson correlations between

all pairs of isolates which were placed in the same clusters. The Pearson correlations

came from isolate pairs from every cluster, just without the pairs in which the isolates

were in different clusters. We tested isolates from every cluster together to get an

overall picture of the clusters.

5.1.3 Similarity to Current Method

The last set of evaluations we ran calculated the similarity of a set of clusters to

the clusters produced by the current clustering method used by the research team.

The idea is that if a clustering method produces clusters similar to those of another

method which is already considered acceptable, then the new method is also accept-

able. Alternatively, if two clustering methods differ, these tests can be useful by

measuring in what ways the two methods are not similar.

Cluster Similarity Indexes

Montana compared OHClust! to agglomerative clustering using similarity indexes.

These indexes take two sets of clusters X and Y and calculated a value indicating

how similar they are. The indexes use counts of the number of isolate pairs (oi, oj)
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which are either in the same cluster or different clusters in each set as follows:

n11 = |S11|, where S11 = {(oi, oj) : oi, oj ∈ Xk, oi, oj ∈ Ym}

n10 = |S10|, where S10 = {(oi, oj) : oi, oj ∈ Xk, oi ∈ Ym, oj ∈ Yn}

n01 = |S01|, where S01 = {(oi, oj) : oi ∈ Xk, oj ∈ Xl, oi, oj ∈ Ym}

n00 = |S00|, where S00 = {(oi, oj) : oi ∈ Xk, oj ∈ Xl, oi ∈ Ym, oj ∈ Yn}

The similarity indexes we used were the Rand Index, the Jaccard Index, and

another similar index as follows

Rand =
n00 + n11

n00 + n10 + n01 + n11

Jaccard =
n11

n10 + n01 + n11

Different =
n00

n00 + n10 + n01

For each index, values closer to 1 mean the clustering methods are more similar

with a value of 0 meaning they are completely different and a value of 1 meaning they

are the same. The Rand Index gives a complete view of how similar 2 sets of clusters

are. The Jaccard Index ignores pairs of isolates which are in different clusters for both

methods and thus indicates how similar the methods are at classifying isolates as the

same strain. The third index ignores pairs of isolates which are in the same cluster for

both methods and thus indicates how similar the methods are at classifying isolates

as different strains.

Pearson Correlation Distribution Similarity

The next evaluation we ran was a two sample goodness of fit test. We calculated the

two-sample Kolmogorov-Smirnov statistic for the distribution of Pearson correlations

between isolates in the same clusters We compared distributions from both DBSCAN

and OHClust! to the distribution from agglomerative clustering.
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This test was similar to two-sample goodness of fit test for similarity used in

Section 5.1.2, except instead of comparing the distribution from a single clustering

method to an expected distribution, it compares two sets of clusters against each

other. We ran the test for each of the clustering methods under comparison using the

two-sample Kolmogorov-Smirnov statistic.

Because there isn’t an accepted way of mapping clusters from two different sets of

clusters, we couldn’t test if a single cluster from one clustering method had a similar

distribution to a single cluster from the other clustering method. Instead, we tried to

assess the overall quality of the clusters by using the same Pearson correlation sample

used in the goodness of fit test described in Section 5.1.2. Again, every test was run

separately for each DNA region.

5.2 Isolate Sets

The sets of isolates used for each clustering method were not exactly the same. We

used Montana’s implementation of OHClust! and Agglomerative clustering, which

uses a different method for querying isolates from CPLOP then the implementation

of DBSCAN presented with this thesis. OHClust! and Agglomerative clustering

were run on a set of isolates which included 230 isolates that the isolate set used for

DBSCAN did not have.

The query we used, shown in Figure 4.1, gets the most recent pyroprint which has

not been marked as erroneous from each ITS region for each isolate. After the query,

we filter out isolates which do not have pyroprints for both ITS regions. The query

Montana used also filters isolates without pyroprints for both ITS regions, however

it does not filter pyroprints which are marked as erroneous.

For the most part, both queries get the same isolates. However for some isolates,

all of the pyroprints for an ITS region are marked as erroneous. In this case, the
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implementation we provide will not return that isolate, but Montana’s implementation

will return it. All but 29 of the extra isolates were because of this difference in queries.

The 201 isolates clustered with erroneous pyroprints likely wont affect the clusters.

Because of their erroneous nature, those isolates likely won’t match anything enough

to be added to any clusters and thus would be noise.

Of the 29 extra isolates which have pyroprints for both ITS regions not marked as

erroneous, 26 of them didn’t actually have any data in the pyroprints, just metadata.

We aren’t certain how they were compared to other isolates, but we assume that it

would default to a Pearson correlation of 0, and thus not be added to any clusters.

After removing those 230 isolates from the clusters produced by OHClust! and

Agglomerative clustering, the two sets still have 6093 isolates in common, so we

consider differences caused by clustering with extra isolates to be negligible.

5.3 Clustering Parameters

This section describes the parameters used for each clustering method which affect

the clusters produced.

5.3.1 DBSCAN

DBSCAN has two parameters: Eps, which is the distance at which two points are

considered neighbors, and MinPts, which is the minimum number of neighbors a

point must have before they are all considered a cluster. For our purpose, we actually

need two Eps parameters, one for each region. We used the α Pearson Correlation

threshold of 0.995 for Eps for both regions because it is a semantic value meaning

that the two isolates are definitely similar. Technically, we used distances to cluster

thus the thresholds we used were the converted values found in Table 3.1.
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For MinPts, we tried two values, 1 and 3, for all of the tests. For the purpose

of evaluation, we consider these two separate clustering methods denoted DBSCAN 1

and DBSCAN 3. With a MinPts value of 1, DBSCAN produces the same clusters as

minimum/single-link Agglomerative clustering (not to be confused with average-link

Agglomerative clustering which is the method currently used by the research group).

A value of 2 also produces the same clusters except that the minimum cluster size

is 3 as opposed to 2. At MinPts = 3, DBSCAN starts producing ”density-based”

clusters, and as such, is the second value we chose to evaluate.

5.3.2 Agglomerative Clustering and OHClust!

Agglomerative Clustering doesn’t technically need parameters, but since it produces

a dendrogram, in order to get clusters we need to pick a cutoff value for cluster

similarity. We used the β Pearson Correlation threshold of 0.99 for the cutoff of the

average pairwise Pearson correlation between points of two clusters

OHClust! is based on Agglomerative clustering and thus needs a cutoff value as

well. We used the same cutoff of 0.99 for OHClust!. In addition, OHClust! uses an

ontology to guide the order of comparisons. The ontology definition we used is shown

in Figure 5.1.

5.4 Clusters Statistics

We start by providing descriptive statistics on the number and sizes of the clusters

produced by each method. Table 5.1 shows the number of isolates which were not

clustered (noise), the number of clusters, and statistics about the size of the clusters

produced by each method. The DBSCAN methods leave the most isolates unclus-

tered and have fewer number of clusters than the average-link Agglomerative-based

methods. The DBSCAN methods have larger maximum cluster size and mean cluster
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Samples . da t eCo l l e c t ed ( ) : ;

I s o l a t e s . userName ( ) : ;

Samples . l o c a t i o n ( ) : ;

Samples . hostID ( ) : ;

Figure 5.1: The ontology definition used by OHClust! to generate clusters

for the evaluation. The format for defining an ontology for OHClust! is described

in Section 4.2.1 of Montana’s thesis[14].

noise number minsize maxsize µsize σsize

DBSCAN 1 1849 495 2 473 8.57 33.8
DBSCAN 3 2672 162 4 399 21.2 49.3
OHClust! 1550 1076 2 62 4.22 5.21

Agglomerative 1547 1054 2 65 4.31 5.47

Table 5.1: Various statistics about the clusters produced by each method.

size, compared to the other methods. The difference between these statistics is minor

between OHClust! and Agglomerative clustering. However, between DBSCAN 1 and

DBSCAN 3, there is a bigger difference. DBSCAN 3 has many more unclustered

isolates, much fewer number of clusters, and a much higher mean cluster size.

Table 5.2 gives a better indication of the distribution of cluster sizes for each

method by counting the number of clusters with sizes in different ranges. It seems

that all of the extra clusters that the Agglomerative-based methods found have sizes

less than 16. Also, the DBSCAN methods have more clusters with sizes greater than

or equal to 64. There is little difference between the distribution of cluster sizes

produced by OHClust! and Agglomerative clustering. The DBSCAN methods are

even more similar, with the only large difference being that DBSCAN 3 does not

produce any clusters with size less than 4. The 331 clusters found by DBSCAN 1 in
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[2, 4) [4, 8) [8, 16) [16, 32) [32, 64) [64, 128) [128,∞)

DBSCAN 1 331 90 38 17 10 4 5
DBSCAN 3 0 86 38 18 10 5 5
OHClust! 693 282 78 12 11 0 0

Agglomerative 668 279 82 15 9 1 0

Table 5.2: Distribution of cluster sizes for each clustering method.

this range account for almost all of the diffence in total number of clusters between

DBSCAN 1 and DBSCAN 3.

An additional factor to consider is that, unlike Agglomerative clustering, density-

based clustering has the possibility of clustering one isolate in multiple clusters. This

can only occur for border points because if a point with enough neighbors to be

considered a core point is found between two clusters, then clusters will combine

into one. With a MinPts value of 1, all points are either noise or core points thus

there cannot be points in multiple clusters. DBSCAN 3 however, clustered 9 isolates

in multiple clusters for the full dataset. This is a small enough number that we

don’t think it will have a noticeable effect on the results. It is unclear what the

interpretation of an isolate in multiple clusters would be when clusters are considered

strains for our use case. It could suggest that the two strains should be combined into

a single strain. Alternatively, the fact that it is possible could mean density-based

clustering is not a good match for identifying strains in pyroprinted isolates.

5.5 Evaluation Results

This section presents the results from each of the evaluations we ran and gives an

analysis of these results. The evaluations are described in Section 5.1
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index cluster 1000 2000 3000 4000 5000 6000

spatial PopDBSCAN 4.22 12.39 23.57 37.77 56.37 76.72
spatial DBSCAN 6.36 19.91 38.09 61.10 89.21 122.43

fullsearch PopDBSCAN 15.86 62.41 140.82 252.48 387.40 570.37
fullsearch DBSCAN 31.28 126.17 283.96 503.86 784.58 1147.72

Table 5.3: Running times of clustering methods for increasing dataset sizes

in seconds. Times do not include time to query isolates from CPLOP and convert

them to python objects. For spatial index runs, the times do include the time to

build the index.

5.5.1 Performance Evaluation

One of the big goals for the work implemented with this thesis was to be fast and use

a small amount of RAM. As described in Section 5.1.1, we compared various combi-

nations of indexes and dbscan implementations on datasets of increasing sizes. The

results are shown in Tables 5.3 and 5.4. For reference, OHClust! and Agglomerative

clustering took approximately 1 and 1.5 hours to run respectively and used around

4GB of RAM. However, OHClust! and Agglomerative clustering were implemented

in another language and were run on a different machine, so performance comparisons

between them and the implementation presented in this thesis are not fair.

Table 5.3 shows the runtime in seconds of each implementation combination for

each dataset size. The times do not include the time to query isolates from CPLOP

and convert them to python objects (∼60 seconds for 6000 isolates). For combinations

including the spatial index, the times do include the time to build the index(∼10

seconds for 6000 isolates). The fullsearch index is a naive index which represents the

worst case performance of the spatial index by searching every isolate. Theoretically,

a spatial index could perform on the order of 100x faster than fullsearch on a dataset

of our size. Unfortunately, what we see is a 5-10x speedup. The speedup factor does
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index cluster 1000 2000 3000 4000 5000 6000

spatial popdbscan 30.1 35.5 40.2 46.0 50.5 55.8
spatial dbscan 29.7 35.6 40.2 45.8 50.8 58.2

fullsearch popdbscan 28.9 33.8 38.9 43.9 49.1 54.6
fullsearch dbscan 29.0 33.9 38.8 43.5 48.7 53.6

Table 5.4: RAM usage of clustering methods for increasing dataset sizes in

MB.

increase as the the database grows, so we did achieve an implementation that scales

better with a growing database. However there is certainly room for improvement.

We implemented the DBSCAN method based on the original DBSCAN algorithm[9]

as shown in Figures 2.5 and 2.6. PopDBSCAN is an implementation of the modified

algorithm we designed for this thesis. The results show a consistent 2x speedup of

PopDBSCAN over DBSCAN for when using the fullsearch index, and a consistent

1.5x speedup when using the spatial index. It is possible that with better balancing

after deletion, a different spatial index could see higher speedups.

Table 5.4 shows the maximum RAM usage of each implementation combination for

each dataset size. The results show that the fullsearch index consistently uses around

2MB less than the spatial index. The results show little difference in RAM usage

between PopDBSCAN and DBSCAN. For every implementation combination, there

seems to be a consistent difference of around 5MB between results from increasing

dataset sizes, implying that the RAM usage scales linearly with the dataset size.

Most importantly, the RAM usage for our current dataset size of ∼6000 is far below

the 3GB of RAM available on CPLOP’s server, which also needs to run MySQL and

Apache web server.
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1D plane 10D plane

94.6 97.2
95D bbox 39.8 46.0 44.1
10D bbox 69.3 — 80.5

Table 5.5: Time in seconds to perform a neighbor query for all isolates with

different spatial storage types. The dataset used contained 3000 isolates.

Performance Tuning

The spatial index we designed has a specific partitioning scheme and supports multiple

ITS regions. It supports combinations of different types of spatial storage for the

points in the index. Table 5.5 shows the relative performance results of different

spatial storage options. The 10D plane is a non-axis-aligned plane like those used in

BSP-trees, and is what is used to partition the points in the index. The 1D plane is

an axis-aligned plane like those used in KD-trees. The 95D bbox is a normal axis-

aligned bounding-box with separate bounds for every dimension (93 for ITS region

23-5) like used in R-trees. The 10D bbox is a non-axis-aligned bounding-box made

up of perpendicular 10D planes (the same ones used to partition the index). Using

a normal axis-aligned bounding-box by itself gave us the fastest neighbor queries so

that is the spatial storage we used during the prior performance testing.

5.5.2 Strain Correctness

This section describes the results from tests attempting to evaluate the correctness

the clusters produced by DBSCAN, OHClust! and Agglomerative clustering. The

problem with evaluating the absolute correctness of clusters however is in defining

what it means for clusters to be correct. We present results for 2 tests which evaluate

two different notions of cluster correctness for their use as strains of pyroprinted E.

coli as discussed in Section 5.1.2.
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αCorrect βCorrect Average TC

DBSCAN 1 1.00000 0.989815 0.99491 0.98984
DBSCAN 3 0.98982 0.993463 0.99164 0.99345
OHClust! 0.32368 0.999983 0.66183 0.99809

Agglomerative 0.35644 0.999981 0.67821 0.99818

Table 5.6: Correctness of clustering methods with respect to the α and β

thresholds. The percentage of pairs matching above α which were placed in the

same cluster, and the percentage of pairs matching below β which were placed in the

different clusters. Only 0.4% of the comparisons were between the thresholds.

Threshold Correctness

The first test considered the correctness of clusters based on their adherence to the

notion of isolate pairs which are definitely similar or dissimilar based on the Pearson

correlation thresholds of α and β respectively. The metrics we used look at the Pear-

son correlations between pairs of isolates and whether or not the clustering method

placed the pair in the same cluster. Table 5.6 shows the results of this evaluation.

αCorrect denotes the percentage of isolate pairs with a Pearson correlation above

the α threshold which were placed in the same cluster. This tries to measure of the

maximality, or usefulness of the identified strains. The more pairs of isolates which

are considered the same strain, the more information the biologists get. This metric

attempts to expose clustering methods which are too conservative in the attempt

to avoid false positives. The DBSCAN methods score highly in this metric, while

OHClust! and Agglomerative have scores around 33%.

βCorrect denotes the percentage of isolate pairs with a Pearson correlation below

the β threshold which were placed in different clusters. This tries to measure the

amount of false positives in strains. This metric should expose clustering methods

which are too inclusive in the attempt to maximize αCorrect. All of the clustering
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methods scored high on this, although OHClust! and Agglomerative clustering scored

higher.

Threshold correctness, denoted TC, combines αCorrect and βCorrect weighted

based on the number of isolate pairs with corresponding Pearson correlations. Because

the majority of isolate pairs in the dataset have a pearson correlation below β, the

TC is highly biased and very similar to βCorrect.

As an unbiased alternative to the TC score, we also calculated the average of

αCorrect and βCorrect. The relative usefulness of each score in determining the

correctness of the strains depends on the research group’s value of strain maximal-

ity/usefulness vs a low chance of false positives. The absolute usefulness of these

scores depends on the research group’s confidence in the α and β thresholds.

Pearson Correlation Distribution Correctness

The second test we performed for cluster correctness was a two-sample Kolmogorov-

Smirnov goodness of fit test. As described in Section 5.1.2, we performed a two-sample

Kolmogorov-Smirnov goodness of fit test. This tests whether two samples came from

the same distribution. We used pairwise Pearson Correlations from isolates within

the same clusters as samples for each clustering method. Then we used to goodness

of fit test to see if the methods produce clusters with the same Pearson correlation

distribution as the expected distribution. The results of these tests are shown in

Table 5.7.

The Kolmogorov-Smirnov test computes a statistic, denoted KSstat. This statistic

is then converted to a pValue, or the probability of a false negative, i.e rejecting the

null hypothesis that two samples were drawn from the same distribution when in fact

they were. The results show that none of the methods have more than a remote chance

of matching the expected distribution. The probabilities are so small that relative
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ITS region 23-5 16-23
KSstat pValue KSstat pValue

DBSCAN 1 0.496 0.00000 0.484 4.7e-174
DBSCAN 3 0.435 0.00000 0.374 6.1e-104
OHClust! 0.109 2.0e-31 0.121 7.27e-11

Agglomerative 0.117 2.9e-36 0.141 1.12e-14

Table 5.7: Results from 2-Sample Kolmogorov-Smirnov Goodness of Fit

against distribution of Pearson Correlations between replicated isolates.

comparisons between the scores of the clustering methods are likely not meaningful.

More analysis is required to determine if the Pearson correlations we used as

the expected sample do in fact represent the distribution of Pearson correlations of

isolates from the same strain. This would be good area for future work, in addition

to finding other methods for evaluating cluster correctness.

5.5.3 Similarity to Current Method

This section describes the results from evaluating the similarity of the clusters pro-

duced by DBSCAN and OHClust! to average-link Agglomerative clustering. As

discussed in Section 5.1.3, Agglomerative clustering is the method currently being

used by the research group. If another method were similar enough to Agglomerative

clustering, than the research group would consider it a suitable replacement. If the

method is different than Agglomerative clustering, these tests can also show in what

ways the methods are not similar.

Cluster Similarity Indexes

Table 5.8 shows various cluster similarity indexes. All of the indexes look at which

pairs of isolates a clustering method classified as part the same cluster, or different
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Jaccard Different Average Rand

DBSCAN 1 0.07442 0.985084 0.52975 0.985102
DBSCAN 3 0.09427 0.988740 0.54150 0.988753
OHClust! 0.46700 0.999113 0.73306 0.999114

Table 5.8: Similarity Metrics of clusters compared to those of Agglomerative

clustering.

clusters. If the classification of a pair of isolates is the same for both methods being

compared, then it is counted towards the similarity index score.

The Rand index gives the percentage of all isolate pairs which were classified

the same. Every method scores well with the Rand index, but this score is biased

because the majority of isolate pairs from every clustering method are classified as

different clusters because of isolates which aren’t placed any cluster (noise). As such,

disagreements in which pairs are classified as the same cluster are not reflected in the

Rand index.

An alternative metric, the Jaccard index, tries to solve this problem. This index

looks at the percentage of isolate pairs that either method classified as the same cluster

which both methods classified as the same cluster. None of the clustering methods

scored well on this index. Both DBSCAN methods have less than 10% agreement

with Agglomerative clustering on which isolate pairs are in the same cluster. Most of

this is likely because the DBSCAN methods had larger clusters and thus had many

more isolate pairs classified as the same cluster than Agglomerative clustering.

We also looked at another index which is similar to the Jaccard index except it

looks at isolate pairs which either method classified as different clusters. These scores

are very close to the Rand index scores which seems to confirm the idea that the

Rand index was dominated by isolate pairs that both clustering methods classified as

different.
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ITS region 23-5 16-23
KSstat pValue KSstat pValue

DBSCAN 1 0.551 0.0000 0.577 0.0000
DBSCAN 3 0.462 0.0000 0.492 0.0000
OHClust! 0.013 0.0563 0.021 9.2e-5

Table 5.9: Results from 2-Sample Kolmogorov-Smirnov Goodness of Fit

against Agglomerative clustering.

As an alternate score to the Rand index which reflects disagreements of both kinds

of classification, we looked at the average of the difference index and the Jaccard index.

The relative usefulness of all these scores depend on how we weight the importance

of agreement for each type of classification. For this evaluation, the research group

wants the methods to be similar in both types of classifications, thus the average of

the different and Jaccard indexes is the single most useful score. OHClust! is the most

similar method to Agglomerative clustering. However, just as Montana discovered in

his thesis[14], it is not similar enough to be considered a suitable replacement.

Pearson Correlation Distribution Similarity

This section discusses the results from another evaluation of the similarity between

cluster methods and average-link Agglomerative clustering. This was another two-

sample Kolmogorov-Smirnov goodness of fit test. Similar to the distribution test for

correctness, we used all pairwise Pearson correlations between isolates in the same

cluster as the samples in the goodness of fit test. Instead of comparing each method

to an expected sample of pairwise Pearson correlations drawn from a set of replicate

pyroprints from the same isolates though, we compared them to the samples from

Agglomerative clustering. Table 5.9 shows the results of this test for each ITS region.

The Kolmogorov-Smirnov test computes a statistic, denoted KSstat. This statistic
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is then converted to a pValue, or the probability of a false negative, i.e rejecting the

null hypothesis that two samples were drawn from the same distribution when in fact

they were. The results show that the DBSCAN methods produce clusters with a

different distribution than Agglomerative clustering with practically no chance of a

false negative for both ITS regions. OHClust! on the other hand, while it rejects the

null hypothesis for the 16-23 region, it cannot reject the null hypothesis for the 23-5

region with a confidence of 95%. Unfortunately, the research team would need it to

fail to reject for both ITS regions in order to consider the methods similar.
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CHAPTER 6

CONCLUSION

The work described in this thesis provides the Cal Poly Library Of Pyroprints (CPOLP)

research group with an alternative method of strain identification. Identifying strains

speeds up Microbial Source Tracking comparisons and allows researchers to perform

longitudinal and transference studies.

The contributions of this thesis are the following:

• A modified DBSCAN algorithm: We presented a clustering method based

on DBSCAN which allows for the removal of points from the search space after

they have been seen once. For the CPLOP dataset, This modification results

in up to a 2x speedup over the original DBSCAN algorithm.

• A faster method for comparing pyroprints: This thesis presented a new

method for comparing pyroprints, Euclidean distance of Z-Scores. This new

method is algebraically related to Pearson correlation (the current method),

allowing reuse of previous statistical analysis. We precomputed Z-Score values

for every pyroprint which speeds up comparisons with both the current method

and the new method. We showed that we can store pyroprint Z-Scores in a

spatial index to speed up clustering.

• A spatial index that works with E. coli pyroprints: This thesis pre-

sented a spatial index tailored for the characteristics of the CPLOP dataset.

It supports dense, high-dimensional data by partitioning the search space with

multidimensional planes and storing bounding volumes for subgroups of data.

The index also supports multiple regions for each data point with separate

search radii.

83



• Better evaluation metrics of clusters for CPLOP: Finally, this thesis

contributed methods for evaluating the correctness of identified strains. We ran

these methods on clusters generated by this work as well as those generated by

previous clustering methods OHClust! and Agglomerative clustering. We were

able to characterize some of the differences between all of the clustering methods

that have been tried to this date for identifying strains of E. coli pyroprints.

6.1 Future Work

There are many avenues of future work. First, defining strains in CPLOP is still

an open problem. Next, researchers could try to improve the performance of our

design/implementation. Another option would be to try clustering in a way that

creates extra information for the biologists to analyse. Other work could try to

provide alternatives to this work that are more correct. Finally, researchers could

look into other applications for the algorithms developed for this thesis.

6.1.1 E. coli Strains

The research group wants to answer the question: which clustering method gives the

best definition of a strain for pyroprinted E. coli? This thesis attempted to answer

part of the question by evaluating if density-based clusters are a suitable replacement

for the current clustering method. Answering this question will require more analysis

of the results presented in this thesis, and may also require further testing.

The research group also wants to determine the usefulness of identified strains for

MST. Future work could look at the purity of strains, the amount of agreement on

host species between isolates in the same strains. If a strain has been seen in many

different host species, then researchers won’t have a way to know which of those host
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species an unknown isolate matching that strain came from, and the strain would not

be useful for MST.

6.1.2 Performance

The first area for future work is improving the performance of the algorithms pre-

sented in this thesis. This is the area that we have the most ideas for, and because

of the genericy of our implementation, many of them would be easy to try.

One option would be to try persisting data and try incremental clustering. We are

already persisting the clusters in CPLOP, so we are partway there, but the limiting

factor to clustering is the neighbor lookups. Researchers could look into persisting

the spatial index or even persisting a map of isolates to their neighbors. Our current

tree construction algorithm runs fairly fast and it’s the querying that takes most of

the runtime. Researchers could also try caching all pairwise distance computations

between pyroprints, however since this would not all fit in RAM on our current server,

they would need to keep most of it in disk and load it dynamically which could offset

the benefits of precomputing. Another option would be to try using another clustering

algorithm like incDBSCAN which performs less neighbor lookups in the first place,

given some previously discovered clusters.

Other ideas to try would be using different filtering methods for determining if the

isolates in a subtree possibly match a neighbor query. This would include trying using

only the split plane at higher levels in the tree and only the bounding box in lower

levels of the tree. Or researchers could try having some nodes only filter on a single

region, perhaps alternating between regions on successive levels. Finally, they could

of course try different filtering methods such as bounding spheres. Our spatial index

implementation is generic enough to support all of these possibilities. The neighbor

query will work unmodified; all that the researchers need to do is implement any new
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filters and modify the construction of the index to add whichever filters they want to

each node in the tree.

Another idea to look as is using different partitioning methods to construct the

spatial index. The tree implementation is generic in how many children are at each

level and the information on how the parent was split is encoded in the children

themselves, so it should support many different partitioning schemes.

An idea that the implementation does not generically support is rebalancing the

tree after points are removed. Currently empty nodes are removed from the tree and

bounding volumes updated to fit the data of only the remaining points, which would

be fine if the queries were balanced. However the query pattern of DBSCAN will

query points near each other one after another and when points are removed in this

fashion, it will result in a lopsided tree. The solution would be to repartition the

points every once in a while, perhaps more often in subtrees.

Finally, the implementation itself has lots of room for improvement from a per-

formance aspect. The current implementation introduces lots of overhead in the tree

traversal, some of which could be better implemented. An example would be using

array indexing instead of hashmap lookups for getting the pyroprint from a particular

region. However, traversal is currently a small part of the runtime which is domi-

nated by pyroprint and filter comparisons. The library we used for these comparisons

is highly optimized, but perhaps there are faster libraries out there for our purposes.

In addition, rewriting the codebase in a faster language could also help.

6.1.3 Additional Analysis Opportunities

Another avenue of future work would be to provide more information for the biologists

to analyze. Strains give the biologists a lot of opportunities for analysis because they

can look for patterns between isolates in the same strain. We have some ideas for
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finding other relationships between isolates, which the biologists might be interested

in.

The first idea is to cluster isolates twice, once for each region. Isolates that were

in the same cluster for both regions will also be is the same strain. This design would

allow the biologists to look for patterns within isolates that are indistinguishable in

one ITS region but not the other, implying some relationship but not as strongly as

the full strain. Additionally, it finds relationships between pairs of strains where their

isolates match in one of the ITS regions.

A hierarchical clustering algorithm would provide new information for strain anal-

ysis. It could be used to look for strains that are close to each other, or to look for

subgroups within a strain. Additionally it could be used to see if different strains have

different amounts of spread. Perhaps some clusters are formed at higher thresholds

while others would form if the threshold was just a little bit more lax.

6.1.4 Correctness

Another avenue of future research is in trying to find a method the produces clusters

that better match the Biologist’s notion of strains for pyroprints.

First of all, a method of evaluating the correctness of clusters is needed. This

paper presented two possible methods, but more analysis is needed to determine how

well those methods are at determining strain correctness. Testing other correctness

measures could also be useful.

One option is the same idea that inspired this thesis. There are other cluster-

ing methods which have not yet been tried with pyroprints and evaluated on their

similarity to the Biologist’s notion of strains. A method that would likely do very

well on our pairwise Pearson correlation distribution evaluation is distribution-based

clustering.
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Another idea to consider is slightly changing what is considered correct by trying

out different metrics for comparing isolates/pyroprints. Perhaps there are other ways

to normalize the pyroprints that better account for the noise in the pyroprinting

process. An example of a different but similar normalization would be to normalize

the pyroprint by the mean and standard deviation of the first ∼10 dispensations

which sequence conserved DNA (so every isolate and every locus will have the same

DNA), instead of the mean and standard deviation of every dispensation.

6.1.5 Applications

The last avenue of future research would be to determine how well the algorithms

presented in this thesis apply to other applications.

The modified DBSCAN algorithm should easily work for normal DBSCAN ap-

plications. All it needs is a spatial index with the ability to quickly remove points.

A limitation of the modified DBSCAN algorithm though is that if there are lots of

noise in the dataset and most of the points would be part of the same cluster if

minPts = 1, then the performance could degrade to O(N2) even with a O(N logN)

neighbor lookup.

Other applications for the spatial index developed for this thesis are less obvious.

The multi-region aspect of the index was designed for the unique problem of spatially

indexing pyroprints from the same isolate. The design works with a single region

though in which case the index is basically a hybrid Binary Space Partitioning tree

and Bounding Volume Hierarchy. This could potentially be applicable to many of the

same uses as other spatial indexes, especially those with high-dimensional data.
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