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ABSTRACT

ARTS and CRAFTS: Predictive Scaling for Request-based Services in the Cloud

Andrew Guenther

Modern web services can see well over a billion requests per day. This sort of scale,

as well as the advent of “big data,” has created a need for computational resources

like never before. Data and services at such scale require advanced software and

large amounts of computational resources to process requests in reasonable time. Ad-

vancements in cloud computing now allow us to acquire additional resources faster

than ever before. We can scale systems up and down as required, allowing compa-

nies to meet the demand of their customers without having to purchase expensive

hardware of their own. Unfortunately, these now routine scaling operations remain a

primarily manual task. To solve this problem, we present CRAFTS (Cloud Resource

Anticipation For Timing Scaling), a system for automatically identifying application

throughput and predictively scaling cloud computing resources based on historical

data. We also present ARTS (Automated Request Trace Simulator), a request based

workload generation tool for constructing diverse and realistic request patterns for

modern web applications. ARTS allows us to evaluate CRAFTS’ algorithms on a wide

range of scenarios. In this thesis, we outline the design and implementation of both

ARTS and CRAFTS and evaluate the effectiveness of various prediction algorithms

applied to real-world request data and artificial workloads generated by ARTS.
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Chapter 1

Introduction

Modern web services can see well over a billion requests per day. This sort of scale,

as well as the advent of “big data,” has created a need for computational resources

like never before. Data and services at such scale require advanced software and large

amounts of computational resources to process requests in reasonable time.

In the early 2000s, handling a growing user base required the requisitioning of

new hardware based on projected needs. This hardware was either purchased and

maintained directly by the service, or leased on a month-to-month basis from a hosting

provider. The process of predicting this demand is known as “capacity planning [20].”

When planning, resource requirements are based on the maximum utilization a system

will see, plus 15 to 20% to handle future growth and unexpected demand. This model,

however, leads to a problem: much of the service’s resources will be wasted during

non-peak times. For example, let’s say you own an arts and crafts store called Glitter.

Your customers live primarily in the U.S., so you see much more traffic during the

day than you do at night. Additionally, your website can see more than double the

amount of users around Mardi Gras. In order to handle this capacity, you must

carefully plan your resources. Services need enough hardware to handle the demand

at its worst, even though most of that capacity will not be used at non-peak times.

Estimates claim that many services were only using 10-15% of their total capacity on

average [34]. This wasted capacity translates directly to financial waste.

In 2001, VMWare launched ESX and GSX server virtualization software [15].

1



Virtualization allows many operating systems to run in isolation and share the phys-

ical resources of a single machine [14]. This allowed businesses to consolidate many

applications, which would normally be required to run in isolation, to operate on

a single physical machine and make better utilization of resources. In 2006, Ama-

zon changed the IT landscape with the launch of Elastic Compute Cloud (EC2) [1].

“Cloud computing” could be traced back all the way back to time-sharing mainframes

in the 1950s [32], but EC2 truly changed the game. Using virtualization technology,

Amazon allowed customers to start and stop “instances,” virtual machines of varying

sizes, quickly and easily. As other hosting providers quickly followed suit, acquisition

of new computing resources became as easy as the push of a button. Capacity plan-

ning became less about planning and more about optimization. How can we waste

the least amount of resources possible at any given time?

Now, entire applications are hosted in the cloud on these virtualized servers. Many

of the pains of traditional capacity planning have been erased, but optimal utilization

has still not been achieved. Services still see predictable changes in load and will

often deactivate instances which are being underutilized, but this is often done using

scheduling mechanisms that must be manually defined and cannot adapt to changing

user demand and application performance. In order to most effectively utilize cloud

resources, services need to be able to predict future traffic and preemptively scale

their resources accordingly. This would allow capacity to follow demand as closely as

possible.

In this document, we present CRAFTS (Cloud Resource Anticipation For Timing

Scaling), a system for automatically identifying application throughput and predic-

tively scaling cloud computing resources based on historical data. By taking past

monitoring data such as requests per second and request latency, CRAFTS calcu-

lates the optimal throughput of the application it is monitoring and uses this data to

make a direct translation between incoming traffic and the number of servers required

to handle the capacity and maintain availability.

We also present ARTS (Automated Request Trace Simulator), a request-based

workload generation tool for constructing diverse and realistic request patterns for

modern web applications. ARTS allows us to evaluate CRAFTS’ algorithms on a

wide range of scenarios.

2



This document presents the following contributions:

• CRAFTS, a prediction framework for cloud resource needs.

• ARTS, a tool for creating complex simulated request-based workload traces.

• A real world request-based workload based on 2007 Wikipedia traffic.

• A methodology for automatically tuning parameters of prediction algorithms

applied to temporal data.

• An evaluation of several prediction algorithms applied to request-based traffic

patterns.

The remainder of this document is organized as follows. Chapters 2 and 3 describe

necessary background and related work and Chapter 4 provides a high-level overview

of both ARTS and CRAFTS and outlines their respective requirements. Chapters 5

and 6 focus on the design and implementation of CRAFTS with Chapter 8 outlining

the prediction algorithms it implements. Chapter 7 discusses the design of ARTS

and Chapter 9 discusses both the ARTS-generated and real-world workloads used to

evaluate CRAFTS. The remaining chapters explain the results of our evaluation of

CRAFTS and conclusions as well as future work.

3



Chapter 2

Background

The theoretically limitless resources of the cloud and the growing popularity of

modern web applications have created a need for distributed systems on a scale which

has never been seen before. Problems of scale are no longer confined to the supercom-

puting community. In this section, we describe the cloud ecosystem, the challenges

surrounding it, and the tools to manage it.

2.1 The “Cloud”

The term “cloud computing” is used to describe applications or resources which

are managed by an external provider and accessed over a network. In the case of this

work, when we refer to cloud services, we are specifically referring to services which

offer computing resources as their primary product.

2.2 Types of Scaling

Scaling in the cloud can be as simple as the push of a button. It is important to

understand the different ways an application can scale in this environment, as well as

the trade-offs associated with each method.

4



Figure 2.1: Example architecture of a high availability application.

There are two types of scaling, horizontal and vertical [20]. Vertical scaling refers

to increasing the size of the hardware which a system runs on. A simple example

of vertical scaling would be adding more RAM to a machine. In cloud computing,

vertical scaling manifests itself in moving applications onto larger virtual machines.

Horizontal scaling is the addition of more machines to a computing cluster. Pur-

chasing of more servers or launching more VMs are the two most common examples

of horizontal scaling. Although the term “scaling up” seems like it would apply to

vertical scaling, it is most commonly used in reference to horizontal scaling.

Applications often avoid scaling horizontally for as long as possible because the

separation of an application onto more than a single machine introduces another

layer of complexity and need for coordination between machines. However, a single

machine can only scale with demand for so long. Many large modern web services

operate on hundreds of machines. Horizontal scaling is also much more elastic than

vertical scaling; it is much easier to add and remove many VMs quickly than it is to

change the capacity of existing VMs. For this reason, CRAFTS focuses on horizontal

scaling. Unless stated otherwise, it can be assumed that any reference to scaling in

this paper refers to horizontal scaling.

5



2.3 High Availability Applications

Not every system needs to be constantly scaled up and down. Applications that

are not required to produce results in real-time can be scaled in order to produce a

result in a specific amount of time. MapReduce [24] systems are a prime example

of this. Typically, the results produced by these systems are for analytical purposes

and it is not expected for the results to be available immediately. Developers can set

expectations for completion time and scale these systems accordingly. For example,

our arts and crafts store produces a yearly report with detailed information about

our worldwide sales. We could request this report at the end of the work day and

scale our cluster such that a result will be ready by the next morning.

The services that would benefit most from a system which could automatically

scale services are known as “high availability” applications. These are services which

are often expected to produce results in less than a second and need to scale their com-

putational resources based on demand in order to meet these performance goals. A

few recognizable examples of high availability websites include Google [10], Facebook

[7], Wikipedia [18], and Twitter [13]. Each of these web sites must return informa-

tion to the user in a reasonable amount of time or else the user will lose interest

and leave. An example architecture of a high availability application can be seen in

Figure 2.1. We see multiple application servers that host the application code sitting

behind a load balancer. These application servers take requests from users, acquire

the necessary data from the database, perform any required business logic, format a

web page, and send the contend back to the user. All pieces of this system generate

metrics which are then passed to the monitoring server. This data can then be used

by operations engineers in order to make decisions about when to scale the different

components of the system.

2.4 Monitoring

In order to meet the needs of high availability systems, it is important to collect

as many metrics as possible to give insight into its performance. As one can see in

Figure 2.1, every component of the system feeds data into the monitoring server. Just
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as with traditional capacity planning, monitoring tools are used to decide when it is

time to scale.

2.4.1 Measuring Throughput

Of specific interest to this work is the measurement of application throughput.

The throughput of a web application is defined as the number of requests a system

can respond to within the span of a second. This metric is typically calculated using

latency, the amount of time between when a request is made to a server and when it

is responded to.

Services which offer service level agreements (SLAs) on latency measure their

system throughput by finding the maximum number of requests per second a single

node of the system can handle while still responding in less than the agreed upon

time [21]. Maintaining high throughput is important, so many providers, even if not

bound by SLA, set standards for latency in order to optimize cost with customer

satisfaction.

2.5 Load Balancing

If it is necessary for a horizontally scaled system to be public-facing then it is nec-

essary for it to be load-balanced. Load balancers serve as gate keepers to distributed

applications, routing requests to different servers to ensure an even distribution of

load amongst them [31]. You can see a load balancer between the clients and applica-

tion servers in Figure 2.1. Load balancers can also serve other useful functions, such

as geographically distributing load, checking the health of the hosts behind them to

ensure requests aren’t sent to failed hosts, and sending specific percentages of traffic

to certain nodes for testing purposes. Metrics like latency and requests per second

(the metrics necessary to calculate throughput) are most easily captured in the load

balancer.
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2.6 Cloud Scaling Considerations

The cloud is a very different infrastructure than traditionally managed data cen-

ters. While the cloud provides many advantages, there are still important lessons to

be learned from traditional scaling, as well as new challenges which must be taken

under consideration when developing any scaling plan.

Hourly Billing. Most cloud service providers charge based on an hourly cycle.

This means that even if a node is only active for five minutes, it will be charged for

a full hour of use. A good scaling plan should take this into account and should only

shutdown nodes which are closest to a full hour of operation.

Acquisition Delay. While the cloud has made the acquisition of computing power

much faster than it has been in the past, it is still important to consider that nodes

will take time to become operational. Not accounting for this delay can result in lost

availability for a system and possible breach of SLAs. Scaling plans should consider

this delay when requisitioning new nodes, it is important to make these requests

properly in advance.

Diminishing Returns. Adding one node to a single node cluster results in a

roughly 100% increase in resources; however, adding a single node to a cluster of

thousands of nodes will have a much smaller effect. A good scaling plan ensures that

a proper amount of resources is requested relative to the size of a system.

Cloud providers have no vested interest in services using only the optimal resources

required to maintain availability. There is no motivation for them to help these

services create effective scaling strategies which minimize wasteful use of compute

time. The goal of this work is to fulfill this need and allow these systems to scale

more effectively than ever before.
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Figure 2.2: A simplified explanation of MapReduce

2.7 Technologies Used

The work presented in this paper leverages a few key technologies which we will

introduce here and explain their relation to our systems.

2.7.1 MapReduce

MapReduce is a distributed computational framework for easily distributing the

analysis of large data sets [24]. It breaks distributed tasks down into two primary

parts, the map and the reduce steps.The map step reads in one piece of input at a time

(how this data is read is defined by the user) and then emits a series of key-value pairs

which will then be sent to the reduce. The reduce is then run once per unique key

emitted by the map and is passed the key along with all values which were emitted

with that key in order to perform an aggregate calculation. A common example of a

MapReduce application is counting the words in a book. The map takes in one line at

a time and emits the number of occurences of every word on that line. The reduce

then sums the counts for every word and the output is written to a file. A simple

flow diagram explaining MapReduce can be seen in Figure 2.2.

In order to build the Wikipedia traffic data set, we processed a set of raw Wikipedia

request logs using Hadoop [16] hosted on Amazon’s Elastic Map Reduce [3] and wrote

our job in Python using mrjob [12], a library originally developed by Yelp for running
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Python code with Hadoop. For more information, see Chapter 9.

2.7.2 CouchDB

Much of the functionality of ARTS and CRAFTS is built on top of CouchDB [4].

CouchDB is a document store which allows for the storage of schema-less data in

the format of JSON documents. At its core, CouchDB is a powerful key-value store.

Storage of documents is primarily based on the specification of an id field which

is used to retrieve the document later. CouchDB uses a REST API for all of its

operations, so its complete functionality is accessible entirely though HTTP requests.

An important and powerful feature of CouchDB is incremental MapReduce. This

functionality behaves in a fashion similar to what was described in the previous sec-

tion. A user can specify a “view” which is a data transformation (map) and optional

aggregation (reduce) selectively applied to documents in the database. These views

are defined using Javascript or Coffeescript functions which every document is passed

through upon insertion to the database as well as during subsequent updates. The

results of the view are stored in a B+ tree which allows for quick retrieval of all

documents emitted by the view, as well as ranges based on keys.

CouchDB also supports “list” functions. Also specified in Javascript, list func-

tions are used to transform documents based up the method by which they are re-

quested. For example, documents requested through a web browser can be trans-

formed into an HTML document for more friendly viewing by end-users.

CRAFTS uses CouchDB as an intermediate store for metric data between itself

and external monitoring services. CRAFTS leverages the incremental MapReduce

feature to compute aggregates across this data as well. It also uses CouchDB to store

intermediate data produced by the analysis pipeline. The web interface to CRAFTS

uses list functions in order to transform the data into a format which can be used

by the chart library used in the web interface. For more information, see Chapter 5.
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Chapter 3

Related Work

The scaling of hardware and software systems manifests itself in many different

ways. Scaling can include operations such as purchasing of new hardware, the addition

or reductions of resources available to a VM, or the addition or removal of VMs from

a cluster. Since our work is primarily concerned with the automated scaling of virtual

resources, the following sections focus on methods which have been presented in recent

relevant literature.

3.1 Reactive Scaling

Reactive scaling is done in response to an increase in the load on a system. It

requires little historical data and is typically done through threshold limits. A typical

rule would be something of the form: “if the average CPU utilization across all

machines is greater than 75% for more than 5 minutes, add another node to the

cluster.” This makes reactive scaling an invaluable tool for handling sudden load

spikes. Conversely, reactive scaling can remove instances which have been idle for an

extended period of time. Reactive scaling is offered by many cloud hosting providers

including Amazon [2] and Rackspace [6]. The problem with reactive scaling is that

by the time the needed capacity comes online, it is possible that the load will have

made a noticeable performance impact on the system, possibly breaking SLAs.
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3.2 Schedule-based Scaling

In a schedule-based scaling environment, operations engineers define specific, pos-

sibly recurring, times when scaling events must occur. Schedules typically account

for periodic traffic patterns and expected usage surges during holidays. This method,

when used in conjunction with reactive scaling, can maintain availability during nor-

mal operation and handle unforeseen load without requiring constant observation by

engineers. Schedule-based scaling is also a common offering among cloud providers [2]

[6]. However, schedule-based scaling is entirely static. Schedules must be manually

defined by engineers and can often result in wasted capacity or losses in availability

due to their static nature.

3.3 Predictive Scaling

Predictive scaling is a relatively new technique which seeks to solve the pitfalls of

both reactive and schedule-based scaling. With predictive scaling, the system looks at

historical usage patterns and attempts to predict future demand and to automatically

scale accordingly. Predictive scaling is not a replacement for other techniques, but is a

powerful addition to the scaling tool set. Reactive scaling can still handle unforeseen

demand, and schedules can be used to handle events which may not be possible

to derive from historical data. The following sections outline some commonly used

algorithms found in recent predictive scaling literature.

3.3.1 Fast Fourier Transform

Fast Fourier transforms (FFTs) are used by Netflix’s auto-scaling system, Scryer

[35]. It is also used in Google’s PRESS system for scaling the size of VMs on a bare

metal system [25]. The fast Fourier transform is an algorithm which takes in a set of

input points and converts them into the frequency domain. By removing frequencies

which are not dominant and performing the inverse transformation, a smoother line

which is still representative of the original data set can be extracted. This approach

is able to handle prediction of periodic input data, as well as account for anomalous
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traffic like load spikes and averages.

An FFT algorithm is formally defined as any approach which can be used to cal-

culate the result of a discrete Fourier transform (DFT) in O(nlog(n)). The definition

of the DFT can be found in Equation (3.1). The most commonly used FFT algorithm

is the Cooley-Turkey FFT algorithm [29]. This algorithm takes the DFT calculation

for a sample size N and breaks it up into smaller DFTs of size N1 and N2, taking a

divide and conquer approach in order to achieve O(nlog(n)).

Xk =
N−1∑
n=0

xne
−i2πk n

N ∀k ∈ 0, . . . , N − 1 (3.1)

3.3.2 Linear Regression

As a supplement to FFTs, Scryer uses linear regression [29] in its predictions

[35]. Linear regression takes a set of input points and attempts to produce the best-

fit line through them. By selecting multiple points within a window of time on

several different days, Scryer applies linear regression and can produce a prediction

for demand during that window of time in the future. The problem with this approach

is that it is very intolerant to spikes and outages. Removal of outliers can be used to

mitigate this effect. Additionally, Scryer takes fewer samples within the window as it

moves farther back in time in order to weigh recent data more heavily.

Simple Linear Regression

Since the nature of our temporal data is only two-dimensional (value over time)

we can use a simple linear regression [29]. A simple linear regression can be used to

find the slope of the line, β, and the y-intercept, α, as seen in Equation (3.2).

y = α + βx

β =

∑n
i=0(xi − x̄)(yi − ȳ)∑n

i=0(xi − x̄)2

α = ȳ − βx̄

(3.2)
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Cook’s Distance

Although the Scryer paper does not outline the algorithm used for outlier de-

tection, Cook’s distance is an example of one such method. Cook’s distance [29]

measures the influence that any given point has on the regression. By taking the

Cook’s distance of every point in the regression, we can filter the input data based

on a configurable threshold so that outliers can be removed, then re-run our simple

linear regression. Cook’s distance for point i is defined as follows:

Di =

∑n
j=1(ŷj − ŷj(i))2

pMSE
(3.3)

Where:

• yj is the predicted value given by the regression for point j.

• yj(i) is the predicted value given by the regression where point i has been ex-

cluded.

• p is the number of fitted parameters in the model. In our case, p = 2 (time and

value).

• MSE is the average of the squares of the errors, or Mean Squared Error (MSE).

This calculation can be seen in Equation (3.4).

MSE =
1

n

n∑
i=0

(ŷi − yi)2 (3.4)

Theil-Sen Estimator

We are using the Theil-Sen estimator for our own evaluation [29]. The Theil-Sen

estimator differs from a simple linear regression in that it is naturally insensitive to

outliers. The Theil-Sen estimator of a set of points (xi, yi) is defined as the median of

all slopes (yj − yi)/(xj − xi). The y-intercept can be calculated as the median of the

values yi − mxi. The difference between a Theil-Sen estimator and a simple linear

regression (outliers included) can be seen in Figure 3.1, where the solid line with the

weakest slope is the result of a simple linear regression, the solid line with the greater

slope represents the result of the Theil-Sen estimator, and the dashed line represents

the ground truth which was used to generate the input samples.
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Figure 3.1: A comparison of the simple linear regression and Theil-Sen
estimator methods.

3.3.3 Discrete-time Markov Chain

In Google’s PRESS paper, the researchers used discrete-time Markov Chains [29]

to make short-term predictions when scaling VMs, specifically when no periodic trend

can be detected in the input [25]. A discrete-time Markov chain defines a set of states,

and the probabilities of moving between them. PRESS divides resources into equal

width value buckets and generates a probability matrix based on the probability of

moving from one bin to another. This can be done by looking at historical data

and observing past transitions. In order to calculate the probability distribution n

samples in the future, PRESS used the Chapman-Kolmogorov equation [29] seen in

Equation (3.5). By taking the probability matrix and raising it to the t power, where

t is the amount of time into the future which we would like to predict, we are given

a new matrix which represents the probability of moving from any given state to

another state t time in the future.

P (t) = P t (3.5)
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3.3.4 Exponential Smoothing

The AppScale platform uses exponential smoothing in order to make short-term

predictions on load [23]. Exponential smoothing [29] can also be referred to as ex-

ponential moving average. The smoothed value for any time t is a weighted average

between the previously observed value, xt−1, and the previously smoothed value, st−1.

The smoothing factor, α, is a value between 0 and 1 which is used to compute the

weighted average. A smaller α means more smoothing and a larger α means less

smoothing.

s1 = x0

st = αxt−1 + (1− α)st−1

(3.6)

Normal exponential smoothing allows for predicting on observation into the future.

For our purposes, this is not enough. A single observation into the future is unlikely

to account for VM acquisition delay, we require a more powerful forecasting method.

A technique called “double exponential smoothing” [29] allows for predictions further

into the future by adding a second smoothing factor, β, which is intended to account

for trends in the previously observed data. The equation for double exponential

smoothing is as follows:

s1 = x1

b1 = x1 − x0

st = αxt + (1− α)(st−1 + bt−1)

bt = β(st − st−1) + (1− β)bt−1

(3.7)

The principles regarding how β smooths are the same as α. In order to predict values

in the future, the following equation can be used:

Ft+m = st +mbt (3.8)

Where m is the number of observations into the future for which the prediction is

being made.
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3.4 Workload Simulation

Most web workload simulation tools try to simulate a realistic distribution of

operations in order to evaluate the performance of a cluster. Most of these workloads

do not take into account the time-series usage patterns which are the focus of our

research, but some of the concepts used were an important inspiration in building our

own tool.

3.4.1 Rain

The Rain [22] workload generator is a toolkit designed to create realistic workloads

for cloud applications. Users build “generators” which define a set of actions which

a user on the site may take and a probability matrix based on the probability of

one of those actions occurring after another. Using Markov chains, Rain simulates

the sessions of a specified number of users over time. Workload specifications can

fluctuate the number of concurrent users at any given time, but this data cannot be

dynamically generated by Rain.

3.4.2 Xerxes

Xerxes is a resource-load generation tool for job-based workloads [26]. It is de-

signed to stress-test large distributed systems by creating actual resource utilization

on worker nodes. The Xerxes architecture contains a master node which will generate

workloads for the slave nodes to execute based on either an existing resource utiliza-

tion trace or a specified statistical distribution. Statistical workload specifications

can be of either a gaussian or uniform distribution and may also include utilization

spikes of pre-configured durations and magnitudes.

3.4.3 WikiBench

The WikiBench tool most closely aligns with the goals of our own research. Wik-

iBench “allows one to stress-test systems designed to host Web applications (appli-
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Figure 3.2: A time-series plot of Wikipedia input data.

cation servers, load balancers, databases, Cloud computing platforms, etc.). [17]”

By using a real set of traces recorded from Wikipedia in 2007, WikiBench provides

the tools to replay these traces against a working MediaWiki installation. For the

purposes of our work, the most interesting part of WikiBench is the Wikipedia traces

which come with it, two months of real request logs spanning September and October

of 2007. A time-series plot of this data can be seen in Figure 3.2.

3.4.4 Older Datasets

While there are few recent request trace workloads available to researchers, there

are a few historical datasets which can still be applied to modern research. These

datasets have a significantly lower magnitude, but our primary concern is the trends

present in the data which can be measured regardless of magnitude. Google’s PRESS

paper used two historical datasets in their own benchmarks, ClarkNet and the FIFA

’98 website [25].
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Figure 3.3: A time-series plot of ClarkNet input data.

ClarkNet. The ClarkNet dataset is comprised of two weeks of traffic through the

Metro Baltimore Washington DC area ISP ClarkNet. The datset spans from August

28, 1995 to September 10, 1995 and contains a total of 3.3 million requests [5]. A

time-series plot of this data can be seen in Figure 3.3.

FIFA ’98. The 1998 FIFA World Cup took place in Paris, France from June 10th

to July 12th. The FIFA ’98 dataset is comprised of server request logs to the world

cup website between April 30th and July 26th. A total of 1.3 billion requests were

made during this period. This dataset is especially interesting because it contains

not only the expected diurnal traffic patterns, but a large peak during the cup itself.

This kind of dataset would likely throw off predictive mechanisms which rely solely

on periodicity [19]. A time-series plot of this data can be seen in Figure 3.4.
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Chapter 4

System Overview

CRAFTS (Cloud Resource Anticipation For Timing Scaling) is a system for au-

tomatically identifying application throughput and predictively scaling cloud com-

puting resources based on historical data. By taking past monitoring data such as

requests per second and request latency, CRAFTS calculates the optimal throughput

of the application it is monitoring and uses this data to make a direct translation

between incoming traffic and the number of servers required to handle the capacity

and maintain availability.

Since it is uncommon for companies to publish exact numbers about their web

traffic over large periods of time, evaluating the effectiveness of CRAFTS’ prediction

algorithms in a real world scenario is difficult to accomplish. To fill this need, we have

developed ARTS (Automated Request Trace Simulator), a request based workload

generation tool for constructing diverse and realistic request patterns for modern web

applications. ARTS allows us to evaluate CRAFTS’ algorithms on a wide range of

scenarios.

4.1 Requirements

When deployed, CRAFTS would serve a mission-critical function to the service

which it monitors. Because of this, it is important that CRAFTS meet a very strict
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set of requirements to ensure that engineers can be confident in its predictions.

4.1.1 CRAFTS Requirements

Modular. There is no “one size fits all” way to manage a cluster. It is impor-

tant that the different pieces of CRAFTS can act independently of one another so

alternate modules can be swapped in based on the application’s needs. Modular-

ity allows CRAFTS to integrate with many different monitoring systems and cloud

service providers. This also means that CRAFTS can swap in different prediction

methods based on what method would work best for the traffic patterns seen by the

application which it is monitoring.

Available. Because CRAFTS is responsible for the availability of entire systems,

many of which may offer their own service level agreements on performance and

availability, CRAFTS shall support some method of crash recovery which will allow

it to continue to make predictions even in the event of a failure.

Independent. CRAFTS must not require knowledge of application code in order

to make its predictions. While this information can be provided to and used by

CRAFTS, it should only serve to increase the accuracy of CRAFTS predictions. All

of CRAFTS predictions should be made solely based on metrics available through

the monitoring API which it has access to.

Scalable. The services which CRAFTS monitors will likely not be comprised of a

single component type. For example, many web sites have front-end servers which

handle the rendering of HTML templates to be returned to the browser, as well as

application servers which handle the business logic of the application. CRAFTS must

provide a mechanism to scale multiple components independently of one another.

Configurable. CRAFTS will be using throughput to calculate how many nodes are

required to handle load, but requirements for latency vary wildly from application
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to application, it is necessary for CRAFTS to allow for the specification of desired

latency in order to make cost-effective scaling decisions.

Anomalous Load Tolerance. CRAFTS predictions need to tolerate the presence

of anomalies in monitoring data. This includes system outages, usage spikes from

denial of service attacks, and viral traffic. While it is necessary to account for this

data in real-time scaling decisions, it has a negative impact on the quality of historical

data used for making predictions.

Self-tuning. If the throughput of a system component fluctuates, CRAFTS shall

take this information into account in its predictions. Additionally, if CRAFTS detects

that it is consistently over or under allocating capacity, it must take steps to alter

future predictions to better fit actual demand.

User Interface. It should be as simple as possible for engineers to get insight

into the effectiveness of CRAFTS’ predictions. The most straightforward way to

accomplish this is to offer a simple user interface which can chart CRAFTS predicted

demand vs. observed demand.

4.1.2 ARTS Requirements

Reproducible. In order to perform effective benchmarking of CRAFTS’ prediction

techniques, workloads produced by ARTS need to reproducible. This way, prediction

methods can be re-tuned and tested against the same set of test data and allow for a

direct comparison of results.

Realistic. Usage patterns produced by ARTS shall be as representative of real-

world situations as possible. Request-based traffic cannot be realistically modeled

with a continuous curve, minor and even major fluctuations in traffic around a central

curve are inevitable. Patterns also exist over periods larger than a single day. For

example, most applications not only experience traffic periodicity on a daily basis,

but also show patterns in weekly access. Hopefully, these applications are also seeing
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growth over time as well. Being able to handle astronomic rises to popularity is a

staple of the cloud and shall be represented in the workloads used to test CRAFTS.

Comprehensive. ARTS shall be able to test every requirement of CRAFTS. For

example, ARTS must be able to produce workloads which show small changes over

time or changes in underlying application performance which would force CRAFTS

to automatically tune its algorithms. These workloads must also include anomalous

activity like outages and usage spikes to ensure CRAFTS can account for them.
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Chapter 5

CRAFTS Data Pipeline

The goal of the CRAFTS data pipeline design is to be as modular as possible. We

take a page from the Unix philosophy, every component of CRAFTS is designed to

do one thing, do it well, and be easily swappable with alternate modules. A graphical

representation of the CRAFTS data pipeline can be seen in Figure 5.1.

Data which is used for predictions is first passed in through the Monitor Abstrac-

tion Layer (MAL). Here, the data is put into intermediate storage for redundancy and

so that aggregate calculations can be made through CouchDB’s incremental MapRe-

duce views. This data is then used by the predictor in order to predict future demand

for the resource. These results are then also saved back to intermediate storage. Pre-

diction data is then read by the planner which translates this data to a number of

nodes required to maintain availability. The plan generated by the planner is then

carried out by the cluster manager which makes the appropriate external API calls to

acquire the cloud resources. CRAFTS also constantly tests its prediction algorithms

on observed historical data and tunes prediction parameters in order to ensure the

most accurate predictions possible. The rest of this chapter describes each of the data

pipeline components in much greater detail.
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Figure 5.1: Flowchart describing the CRAFTS workflow.

5.1 Monitor Abstraction Layer

Data first enters the CRAFTS pipeline through the Monitoring Abstraction Layer

(MAL). Since CRAFTS does not implement its own monitoring, the MAL is designed

to provide a common API that allows CRAFTS to query external monitoring sources

for cluster performance information. In order to mitigate load on the monitoring

service, the MAL sends bulk requests for data at a configurable interval. This interval

is called the monitoring interval. The data is then stored in an intermediary

CouchDB database which can then be queried by CRAFTS’ other components.

5.2 Intermediate Storage

Here, we describe how CRAFTS represents the monitoring data placed into inter-

mediate storage by the MAL. This data is both inserted and stored as JSON. A dia-

gram describing the different entities and attributes stored can be seen in Figure 5.2.

Since CRAFTS can be implemented as a multi-tenant system, the highest level entity

is that of the tenant. A tenant represents a single “customer” of CRAFTS. Data

26



Figure 5.2: An ER diagram describing how CRAFTS represents monitor-
ing data.

between tenants is isolated and configured independently. Tenants are implemented

as CouchDB users who are given permissions to access the CRAFTS database as well

as custom permissions which specify the roles they control. Roles are independent

components of a system which are scaled independently. The primary data used

by CRAFTS are samples. Samples are metrics collected at a given point in time.

A sample document holds metrics for all the hosts assigned to the parent role at

that timestamp, examples can be seen in Appendix D. Using CouchDB’s incremen-

tal MapReduce, the sample also contains aggregates for each metric among all the

hosts. These aggregates include max, min, average, count, sum, and variance. This

aggregate data serves as the primary input for the predictor.

5.3 Predictor

The purpose of the predictor is to determine the demand for a specific resource over

the next prediction horizon. A prediction horizon is defined as how far into the

future CRAFTS will attempt to make predictions. While which metric is predicted by

the predictor is configurable, it typically is requests per second. Requests per second

is an ideal metric because it is independent of the performance of the cluster (Netflix
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engineers made the same observation when building Scryer [35]). Other useful values

could include total database queries or cache requests. The predictor has no knowledge

of the current state of the cluster, its job is solely to predict demand. The predictions

generated by the predictor are based on a training set called the training window.

The training window is a configurable length of time that the predictor may use in

order to make its predictions. Details of the different prediction algorithms can be

found in Chapter 8.

Predictors may also specify configurable parameters which can be manipulated

by the tuner in order to ensure the most accurate predictions possible. Examples of

such parameters could include threshold values or offsets.

Like the MAL, predictors run at an interval, this interval is called the prediction

interval. Keep in mind that the scaling interval and prediction interval are different

values. A prediction interval should never be longer than the length of a prediction

horizon, as this would cause there to be a period of time for which no prediction has

been made. The predicted demand for the next prediction horizon is then passed to

the planner.

5.4 Planner

The planner takes in the projected resource demand from the predictor and gen-

erates a scaling plan which is stored in the intermediate store and carried out by the

Cluster Manager. Generating a scaling plan involves a number of considerations that

are outlined below.

5.4.1 Throughput

In order to make a translation between the predicted resource utilization and the

number of nodes required to handle the demand, it is necessary for the planner to

know the throughput of the system. To do this, the planner uses request and latency

information acquired from the MAL to calculate throughput. For our purposes, we

define throughput as
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the maximum number of requests per second which can be served while
latency is kept under a configurable value.

Throughput can also be overridden manually if desired.

5.4.2 VM Acquisition Time

Since VMs will not become available the moment they are requested, it is im-

portant that the planner requests new nodes far enough in advance that they are

operational by the time they are needed. Since this value is difficult to determine au-

tomatically, CRAFTS uses a default value of 15 minutes, but this can be overridden

by the user.

5.4.3 Manual Overrides

Sometimes it is necessary to account for events which are difficult to predict. For

example, holiday traffic can cause massive spikes in load, but only for a single day

out of the year. This makes it difficult for CRAFTS to predict these kinds of events.

Because of this, the planner can be overridden and a number of nodes can be specified

manually to ensure that these events are handled properly, without loss to availability.

5.4.4 Linear Transformation

The planner assumes that the predictor’s output is correct and makes no attempt

to detect possible anomalies in the data. It does, however, add a configurable linear

transformation to the prediction data. This is not done to counteract any possible

error on the predictor’s part, but instead to provide a small amount of buffer capacity

in case of an anomalous spike.
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5.5 Cluster Manager

It is the cluster manager’s responsibility to act as a liaison between the planner and

the cloud service which hosts the application. The planner will make direct calls to

the cluster manager to schedule scaling events at certain times. The cluster manager

must then make the appropriate calls to the host service in order to ensure that the

specified number of nodes are launched at the specified time. CRAFTS also supplies

a “null” cluster manager which will carry out no scaling actions. This can be useful

when simply evaluating CRAFTS prediction methods.

5.6 Tuner

It is difficult, if not impossible to assert that one prediction algorithm with one set

of parameters will guarantee optimal predictions for every type of workload. For this

reason, CRAFTS allows prediction algorithms to specify a set of parameters which

may be tuned in order to optimize prediction accuracy. The tuner applies brute-force

optimization to the predictor’s parameters and uses the average of the root-mean

square deviation on a temporal validation as the objective function. The following

sections break down and define the equations used by the tuner.

5.6.1 Brute-force Optimization

Since the predictors which we have implemented in this work have very few pa-

rameters (at most two) we have chosen to simply brute-force the parameter space

rather than opting for a more elegant solution. Brute-force optimization navigates

the parameter space within set bounds and samples at specified intervals. If prediction

methods implemented in the future require more advanced optimizations methods, a

new module can be easily swapped in.
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5.6.2 Temporal Validation

Temporal validation is a technique in which a data set is partitioned into subsets

where analysis is performed on one subset, the training set, and then applied to the

other subset, the validation set. For the purposes of our tuning analysis, we run

temporal validation using a shifting window. This window begins at the start of

our known dataset, runs predictions for the next prediction horizon and then shifts

forward by some interval. The resulting prediction horizons are then evaluated against

the observed data using the methods outlined in the following section.

5.6.3 Average of Root-mean-square Deviation

The resulting prediction horizons are compared to the observed data using Root-

mean-square deviation (RMSD). RMSD is an error measurement which takes the

square root of the sum of the squared difference between the predicted and observed

value divided by the sample size. The equation for RMSD can be seen in Equa-

tion (5.1). The RMSD is then taken for every prediction horizon. The resulting value

forms the output of the objective function used in our optimization.

RSMD =

√∑n
t=1(ŷt − yt)2

n
(5.1)
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Chapter 6

CRAFTS Architecture

CRAFTS is built to be as simple to deploy and configure as possible. The

crafts-cli script provides options for setting up a CRAFTS database within CouchDB,

as well as automatically loading all of the view and list functions CRAFTS requires

to operate.

Once the database is configured, the CRAFTS daemon, craftsd, can be launched.

craftsd is the primary executable for running the CRAFTS service. It takes in

the CouchDB URL, name of the database, and the configuration document ID as

parameters. The rest of this chapter goes into detail about how CRAFTS can be

deployed, how it handles errors, how it can be configured, and how to access its data

through the web UI.

6.1 Deployment

In order to make CRAFTS as accommodating of different system configurations

and workflows as possible, it supports a number of methods of deployment. Detailed

instructions for each method can be found in Appendix A
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6.1.1 Building from Source

CRAFTS uses a Python utility called VirtualEnv which packages all of its depen-

dencies, including a Python binary, together with the source code. Running CRAFTS

from source is as easy as downloading or cloning the source repository, configuring

the database using crafts-cli, and launching the CRAFTS daemon, craftsd.

6.1.2 Installing with Pip

CRAFTS is registered with the Python Package Index (PyPI) and can be installed

on any machine running Python 2.7 using pip. Pip is the recommended Python

packaging manager and can be used to install packages, their dependencies, as well

as set up services.

6.1.3 Docker

Docker is a wrapper around Linux containers, an OS-level virtualization solution

for running isolated Linux systems on a single host. Docker is rapidly growing in

popularity as a deployment tool due to its ease of use and ability to run on almost

any modern Linux based system without the performance overhead of traditional

virtual machines.

CRAFTS can be built as a complete docker container. This container includes a

pre-configured CouchDB instance and only requires the specification of a configura-

tion file to be loaded into Couch on startup.

6.1.4 Vagrant

Vagrant is a headless virtual machine manager which allows for easy creation and

management of development environments. CRAFTS supplies a Vagrantfile for easy

creation of a development environment which includes the CRAFTS source code and

all necessary dependencies, including a running CouchDB instance.
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6.2 Command-line Setup Utility

CRAFTS offers a command-line setup utility called crafts-cli. The utility

provides three commands: init, update, and clear. The init command takes

CouchDB connection information and a configuration file as parameters and creates

a database for CRAFTS in CouchDB. It also automatically creates all of the view and

list functions necessary for CRAFTS to run and upload the specified configuration

document. Mostly for debugging purposes, the update command re-uploads all of

the view and list functions to CouchDB. Finally, the clear command can be used to

remove the CRAFTS database from CouchDB.

6.3 Configuring CRAFTS

All of CRAFTS’ configuration is pulled from the document specified when craftsd

is launched. This means that there can be more than one configuration stored in the

database, but one must be chosen at startup. All instances of craftsd should use

the same configuration in order to avoid undefined behavior. The following sections

discuss some of the more important aspects of configuration. A more detailed ex-

planation of the CRAFTS configuration format and its paramaters can be found in

Appendix B.

6.3.1 Choosing Modules

When craftsd downloads the configuration, it dynamically imports the modules

specified in their respective fields. If a module requires its own additional configura-

tion, this information can be stored under a key of the same name in the configuration.

This is not a required naming convention because the entire configuration is passed

to all modules, but it is a good practice to avoid confusion.
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6.3.2 Logging

craftsd supports Python logging configuration files as attachments to the config-

uration document which will then be read on startup. CRAFTS also offers a special

handler for putting log information back into CouchDB called Glitter. Glitter takes

Python LogRecord objects and puts all of their attributes into a JSON document for

storage in CouchDB. This makes the logs queryable through CouchDB views and easy

to monitor remotely. This is especially useful in the event of a fail-over, all craftsd

logging data stays contained in CRAFTS’ main dependency.

6.4 CRAFTS Web UI

CRAFTS provides a web interface which displays its predictions and scaling plans

laid over observed load. This allows engineers a visual method of validating the

accuracy of CRAFTS decisions. This interface also includes markers for events such

as when a tuning was run, as well as the results of that tuning. The web server is built

in Python using the Flask framework and the charts are built using the Highcharts

Highstocks Javascript library.

The web server serves as a proxy between the user interface and CouchDB. The

server will ensure that the logged-in user has permissions required to view the re-

quested data and to make queries to CouchDB list functions to retrieve the displayed

data.
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Figure 6.1: The CRAFTS web interface
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Chapter 7

ARTS Design

7.1 Layered Design

ARTS uses continuous transformations as well as discrete-time events in order to

generate realistic workloads. To make these workloads more complex, ARTS may use

multiple transformations and apply them on top of each other. The following sections

define the different types of transformations and events supported by ARTS as well

as how they interact.

7.1.1 Workload Base

The base serves to give the other transformations a set of initial values to perform

transformations on. ARTS supports two kinds of bases, file and value. The file base

reads in a newline delimited file of unix timestamp and value pairs. The value base

takes a baseline value and duration as parameters and applies the baseline value

constantly for the entire duration of the workload.
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7.1.2 Continuous Transformations

Continuous transformations are functions which will be applied to the entire gen-

erated dataset. Multiple continuous transformations can be layered on top of each

other in order to obtain more diverse data sets. These layers can be configured to

either be summed with the current workload or be applied as a multiplier.

Sinusoid. Sinusoids are used to represent normal patterns seen in traffic. The

resulting sine wave is centered around positive one and applied as a multiplier to the

existing workload. The sinusoid transform takes an amplitude between zero and one

and a frequency specified in days as parameters.

Linear. In order to represent steady growth (or decay) seen in the real-world traf-

fic, we offer a linear transformation. The linear transformation takes a slope as a

parameter and applies that slope to each point in the workload.

Blur. Real world traffic doesn’t behave like a nice straight line, there are constant

minor fluctuations in traffic patterns. The blur transformation takes the current

workload and adds noise based on the Gaussian distribution. Using the current data

point as the mean and a configurable standard deviation, a new value is generated

and inserted back into the workload.

7.1.3 Discrete-time Events

A discrete-time event represents an anomaly in the input data which can be diffi-

cult to predict and could invalidate historical data. These events can occur multiple

times and are configured with start and end times within the workload. ARTS sup-

ports the following discrete-time events:

• Outages, a period of time in which all generated data is zero.

• Usage spikes, a short period of time when a large multiplier is applied to the

base load.
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7.2 Output

Workloads output by ARTS are passed to handlers. Handlers are called as each

value is generated for processing. For our purposes, we have built a handler which

inserts each data point into the CRAFTS intermediate store. We also provide a file

handler so that workloads may be output to file and run again in the future.

7.3 Reading from File

ARTS can read data from an input file and either directly pass the values to

handlers or use the data as a basis for a new workload, applying continuous transfor-

mations and discrete-time events on top of it. This can be useful if we want to apply

discrete-time events to real-world data sets to see how it might change the accuracy

of our predictions.

7.4 Job Configuration

ARTS takes a JSON configuration file as input. This file specifies the different

layers and events, as well as their parameters, which the job will be comprised of.

The format of this file can be found in Appendix C.

39



Chapter 8

Predictors

CRAFTS is designed to be able to apply a series of different prediction algorithms.

This chapter outlines the predictors we have implemented and intend to evaluate.

8.1 Translation

As a baseline, CRAFTS takes the data from the previous training window and

translates it onto the next scaling cycle. In the context of the Wikipedia workload,

the translation predictor takes the previous week’s traffic and overlays it onto the

next week. Since it assumes the next week’s traffic will be identical to the previous

week, the translation predictor is intolerant to both usage spikes and outages. The

translation predictor has no parameters which are configurable by the tuner.

8.2 Fast Fourier Transform

The fast Fourier transform predictor applies the fast Fourier transform algorithm

specified in Section 3.3.1 to all of the values in the training window and then filters

out the least prominent frequencies. What percentage of frequencies are removed

is a parameter configurable by the tuner. An inverse fast Fourier transform is then
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performed on the data to convert it back from the frequency domain to the time

domain. The result is then used as the prediction for the next prediction horizon.

By filtering out the least prominent frequencies, the FFT predictor is resistant

to both outages and usage spikes. This is because these events should be sparse

and non-repeating, or else they would be part of normal traffic patterns. Since these

events are isolated, their frequencies will not be prominent in the frequency domain

produced by the FFT and are likely to be filtered out.

Data: W = Training window data

Result: P = Prediction horizon data

begin

freqDom = FFT (W );

threshold = sort(freqDom)[len(freqDom)/2];

for freq ∈ freqDom do

if freq < threshold then

freq = 0;

end

end

P = inverseFFT (freqDom);

end

Algorithm 1: FFT predictor

8.3 Linear Regression

The linear regression predictor applies linear regression on data points from pre-

vious days at similar times in the training window in order to predict what traffic

will look like on future days at that time. For each time in the prediction horizon the

linear regression predictor looks back at that time in all previous days in the training

window, samples a set of points around that time, and applies linear regression. The
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number of points sampled around each time is configured by the tuner.

Data: W = Training window data

start = Time of the first prediction

interval = Time between each observation

end = Time of the last prediction

Result: P = Prediction horizon data

begin

for pT ime = start; pT ime < end; time+ = interval do
rWindow = The points surrounding pT ime from the previous weeks in

W ;

slopes = [];

for (valueA, timeA) ∈ rWindow do

for (valueB, timeB) ∈ rWindow do

slopes.append((valueB − valueA)/(timeB − timeA));

end

end

slope = sort(slopes)[len(slopes)/2];

lines = [];

for (value, time) ∈ rWindow do

lines.append(value− time ∗ slope);
end

intercept = sort(lines)[len(lines)/2];

P.append(pT ime ∗ slope+ intercept);

end

end

Algorithm 2: Regression Predictor

8.4 Discrete-time Markov Chain

In order to make predictions using discrete-time Markov chains, Section 3.3.3, this

predictor uses all of the data in the training window in order to build the probability

matrix. The number of buckets in the probability matrix is configured by the tuner.

A data point t time in the future is then estimated. The value of t is configurable,
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but can never be smaller than the amount of time it takes to launch a VM. This

is because predictions must be made far enough into the future that any necessary

nodes can be brought online in time to handle the load at the time predicted.

Data: W = Training window data

t = Number of observations into the future to be predicted

Result: P = Prediction horizon data

begin

pMatrix = [NUM BUCKETS][NUM BUCKETS];

for i = 0; i < len(W )− 1; i+ + do

startBucket = bucket(W [i]);

endBucket = bucket(W [i+ 1]);

pMatrix[startBucket][endBucket]+ = 1;

end

for elem ∈ pMatrix do

elem = elem/len(W );

end

lastBucket = bucket(W [len(w));

P = max(pMatrixt[lastBucket]);

end

Algorithm 3: Markov Predictor

8.5 Exponential Smoothing

The exponential smoothing predictor will take a sample of the data in the training

window and apply exponential smoothing to estimate the next data point. In this
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case, the amount of data sampled from the training window is configured by the tuner.

Data: W = Training window data

t = Number of observations into the future to be predicted

Result: P = Prediction horizon data

begin

st = W [1];

bt = W [1]−W [0];

for elem ∈ W [2 :] do

stp = st;

st = α ∗ elem+ (1− α) ∗ (st + bt);

bt = β ∗ (st − stp) + (1− β) ∗ bt;

end

P = st + (t ∗ bt);

end

Algorithm 4: Exponential Smoothing Predictor
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Chapter 9

Workloads

In order to evaluate the effectiveness of CRAFTS methods, we developed a series

of data sets. The methods by which each of these workloads were generated as well

as any interesting features they posses are outlined below.

As a real-world test, we used the Wikipedia HTTP trace logs published by the

WikiBench researchers [33]. These logs detailed access to Wikipedia for a two month

period spanning September and October of 2007. The format of these logs detailed

a single request per line and included a timestamp and request url. Since CRAFTS

requires input to be given in aggregate, it was necessary to transform the data into

the appropriate format. Additionally, the size of the logs was large enough (almost

1TB) the we decided to use Hadoop to consolidate the request data into five-minute
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Figure 9.1: A time-series plot of Wikipedia input data.

request per second averages. Pseudocode for our MapReduce job can be seen below.

Data: line = A line from the input request logs

begin

time = Extract time from line;

emit(time, 1);

end

Algorithm 5: WikiBench transformation map function

Data: time = A time emitted by the map function

values = All of the values emmited with the given time

begin

emit(time, sum(values));

end

Algorithm 6: WikiBench transformation reduce job

The temporal data generated as a result of our MapReduce job can be seen in

Figure 9.1. This data shows clear diurnal periodicity, as well as a weekly modulation.
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Name Anomaly Type Start End Magnitude

Baseline none

Training outage outage 2007-10-12T17:00 2007-10-12T18:00

Horizon outage outage 2007-10-19T17:00 2007-10-19T18:00

Training spike spike 2007-10-12T17:00 2007-10-12T17:15 2.0

Horizon spike spike 2007-10-19T17:00 2007-10-19T17:15 2.0

Table 9.1: ARTS parameters and titles of our evaluation workloads

This raw Wikipedia workload serves as the baseline for our evaluation. In order

to see how our prediction methods are affected by anomalies in the monitoring data,

we generated four additional workloads using ARTS’ events feature. These workloads

introduce outages and usage spikes into the third and fourth weeks of the workload.

The third and fourth weeks were chosen because they will be in the training window

and prediction horizon, respectively, for our evaluation trials. Table 9.1 shows the

exact parameters used to generate these workloads and the names by which they will

be referred to.

It is important to note that we only use the term “horizon” for simplicity. As

described in Chapter 8, some of our predictors make only short-term predictions,

predicting only one point at a time. Anomalies which are present in the “prediction

horizon” will end up being a part of their training data once the predictor is looking

past that point in time.

47



Chapter 10

Evaluation

In order to evaluate the effectiveness of CRAFTS’ prediction methods, we run

each method on the workloads outlined in Chapter 9. At the beginning of each

experiment, the tuner is run on the baseline workload to tune the parameters of the

prediction algorithm. This is done to ensure that the tuning is done with minimal

anomalies present. Tuning in this way allows us to see how the various algorithms

respond to anomalies after an extended period of “regular” traffic.

Each predictor will attempt to predict traffic for the week of October 14th in each

workload and can use how ever much data it needs before that time for training.

The effectiveness of each algorithm is measured using root mean squared deviation

(RMSD), as discussed in Equation (5.1). We further break the results down into

over-estimations and under-estimations, giving the RMSD for each as well as the

percent of predictions which fell into each category. This is done because, in a real-

world environment, under-estimations are more costly than over-estimations and we

would favor predictors which are more likely to over-estimate than under-estimate.

In workloads which contain anomalies, we analyze how the predictor performs during

the anomaly separately from how it performs during normal traffic. This allows us

to get a more complete view of how a predictor handles anomalies.

In the baseline workload, the goal is to minimize the RMSD for all types. The

same is true for regular traffic in all anomalous workloads. For the anomalous training

workloads, the predictor should ideally minimize RMSD of all types as well. This
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result would mean that the anomaly in the training data did not affect the future

predictions. In the outage horizon workload, we want to see 100% over-estimation

and maximize over-estimation RMSD during this time. This means that the predictor

has successfully ignored the outage. Inversely, we want to see 100% underestimation

and maximize under-estimation RMSD for the spike training workload. These values

indicate that the spike was successfully ignored.

The following sections include the evaluation results for each predictor and an

analysis of those results. In the graphs below, the light blue line represents the

observed data and the black line shows our own predictions.

10.1 Translation

Results for regular traffic show that the translation predictor is prone to under-

estimation. This is likely due to fluctuations in week by week traffic or a linear trend

in the data. In the case of the latter, translation would not be able to account for

this since it has no mechanism to account for trends of any kind.

Training data anomalies seriously impact the effectiveness of translation. Since

the translation predictor makes no attempt to account for any sort of anomalies, these

anomalies are simply preserved and translated into the prediction horizon.

As one would expect, translation is very tolerant to anomalies in the prediction

horizon. Since translation makes a long-term prediction, these anomalies won’t have

an effect on this predictors results until they are part of the training data the next

week.

Type RMSD Percent

Under 143 75.1%

Over 59 24.9%

Total 127

Table 10.1: Translation predictor results for the baseline workload
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Figure 10.1: Translation prediction results for the baseline workload

Type Regular Anomalous

RMSD Percent RMSD Percent

Under 180 75.0% 3047 100.0%

Over 59 25.0% 0 0.0%

Total 158 3047

Table 10.2: Translation predictor results for the training outage workload
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Figure 10.2: Translation prediction results for the training outage work-
load

Type Regular Anomalous

RMSD Percent RMSD Percent

Under 142 74.9% 0 0.0%

Over 187 25.1% 2864 100.0%

Total 155 2864

Table 10.3: Translation predictor results for the horizon outage workload
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Figure 10.3: Translation prediction results for the horizon outage workload

Type Regular Anomalous

RMSD Percent RMSD Percent

Under 143 75.0% 0 0.0%

Over 177 25.0% 2636 100.0%

Total 152 2636

Table 10.4: Translation predictor results for the training spike workload
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Figure 10.4: Translation prediction results for the training spike workload

Type Regular Anomalous

RMSD Percent RMSD Percent

Under 185 75.1% 3260 100.0%

Over 59 24.9% 0 0.0%

Total 163 3260

Table 10.5: Translation predictor results for the horizon spike workload
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Figure 10.5: Translation prediction results for the horizon spike workload

10.2 Fast Fourier Transform

With an optimized smoothing percentage of 96%, the FFT predictor performs

slightly worse than the translation predictor for regular traffic, but sees a 40% decrease

in error for the training outage and an 87% decrease in error for the training spike

workload. While this is a large improvement, the amount of error we observed for

the training anomalies was still higher than expected. In order to further investigate

these results, we ran a second evaluation on the training outage workload, this time

with 99% filtering. This time we observed a 58% decrease in error within the anomaly

space over the 96% smoothing run. We also observed a slight decrease in error for

regular traffic as well.

In this case, it seems that the tuner did not perform as we had hoped it to. Since

there were no anomalies in the data which the tuner was run on, the optimal smoothing

percentage was calculated without being able to take these kinds of anomalies into
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account. Further analysis of the deficiencies in our tuner implementation can be seen

in Chapter 11.

Similarly to the translation predictor, FFT makes long term decisions, so its

predictions are unaffected by anomalies in the prediction horizon.

Type RMSD Percent

Under 140 76.2%

Over 61 23.8%

Total 125

Table 10.6: FFT predictor results for the baseline workload

Figure 10.6: FFT prediction results for the baseline workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 211 74.1% 1741 100.0%

Over 85 25.9% 0 0.0%

Total 186 1741

Table 10.7: FFT predictor results for the training outage workload with
96% filtering

Figure 10.7: FFT prediction results for the training outage workload with
96% filtering
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 195 75.0% 721 100.0%

Over 88 25.0% 0 0.0%

Total 175 721

Table 10.8: FFT predictor results for the training outage workload with
99% filtering

Figure 10.8: FFT prediction results for the training outage workload with
99% filtering

57



Type Regular Anomalous

RMSD Percent RMSD Percent

Under 139 75.9% 0 0.0%

Over 194 24.1% 2869 100.0%

Total 154 2869

Table 10.9: FFT predictor results for the horizon outage workload

Figure 10.9: FFT prediction results for the horizon outage workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 143 74.6% 0 0.0%

Over 86 25.4% 427 100.0%

Total 131 427

Table 10.10: FFT predictor results for the training spike workload

Figure 10.10: FFT prediction results for the training spike workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 181 76.1% 3239 100.0%

Over 61 23.9% 0 0.0%

Total 161 3239

Table 10.11: FFT predictor results for the horizon spike workload

Figure 10.11: FFT prediction results for the horizon spike workload

10.3 Linear Regression

Linear regression performs neck and neck with the translation baseline for regular

traffic, but truly shines when presented with training anomalies. Since the Thiel-

Sen estimator is tolerant to outliers, the anomalies present in the training data are
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largely ignored. We observe RMSD values within the anomaly space smaller than

any predictor evaluated thus far.

Again, as a long-term predictor, anomalies in the prediction horizon have no effect

on the linear regression predictor’s effectiveness.

Type RMSD Percent

Under 138 89.2%

Over 32 10.8%

Total 131

Table 10.12: Regression predictor results for the baseline workload

Figure 10.12: Regression prediction results for the baseline workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 138 89.1% 270 100.0%

Over 32 10.9% 0 0.0%

Total 131 270

Table 10.13: Regression predictor results for the training outage workload

Figure 10.13: Regression prediction results for the training outage work-
load
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 138 89.0% 0 0.0%

Over 274 11.0% 2869 100.0%

Total 159 2869

Table 10.14: Regression predictor results for the horizon outage workload

Figure 10.14: Regression prediction results for the horizon outage work-
load

63



Type Regular Anomalous

RMSD Percent RMSD Percent

Under 138 89.2% 177 100.0%

Over 32 10.8% 0 0.0%

Total 131 177

Table 10.15: Regression predictor results for the training spike workload

Figure 10.15: Regression prediction results for the training spike workload

Type Regular Anomalous

RMSD Percent RMSD Percent

Under 175 89.2% 3260 100.0%

Over 32 10.8% 0 0.0%

Total 166 3260

Table 10.16: Regression predictor results for the horizon spike workload

64



Figure 10.16: Regression prediction results for the horizon spike workload

10.4 Discrete-Time Markov Chain

The Markov predictor produced the best results for most regular traffic scenarios

we have seen so far, but as seen in Figures 10.17 and 10.19 to 10.21, there are some

peculiar anomalies present in its predictions. These sudden dips can likely be at-

tributed to the periodic nature of the data. Since the transition probability matrix is

based on the likelihood of moving between one bucket and another bucket, a perfect

sine wave would produce a transition probability matrix where it is equally likely to

move to a higher bucket or a lower bucket. Similarly, since our data is periodic, it is

likely that in some cases the probability of moving to a lower bucket is more likely

than moving to a higher bucket, even if there is an upwards trend in the observations.

The Markov predictor is also very sensitive to anomalies in the prediction horizon.

Since this predictor makes predictions only a short amount of time into the future, it

is likely that a prediction will be made while an anomaly is occurring and be used as
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the base observation in the transition probability matrix.

The short-term nature of this predictor also has repercussions on the planner’s

ability to do its job properly. This will be discussed further in Chapter 11.

Type RMSD Percent

Under 151 56.9%

Over 62 43.1%

Total 121

Table 10.17: Markov predictor results for the baseline workload

Figure 10.17: Markov prediction results for the baseline workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 80 61.4% 7 18.2%

Over 61 38.6% 13 81.8%

Total 73 13

Table 10.18: Markov predictor results for the training outage workload

Figure 10.18: Markov prediction results for the training outage workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 211 59.4% 0 0.0%

Over 123 40.6% 1325 100.0%

Total 181 1325

Table 10.19: Markov predictor results for the horizon outage workload

Figure 10.19: Markov prediction results for the horizon outage workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 147 64.5% 0 0.0%

Over 62 35.5% 28 100.0%

Total 124 28

Table 10.20: Markov predictor results for the training spike workload

Figure 10.20: Markov prediction results for the training spike workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 231 59.5% 2996 100.0%

Over 160 40.5% 0 0.0%

Total 205 2996

Table 10.21: Markov predictor results for the horizon spike workload

Figure 10.21: Markov prediction results for the horizon spike workload

10.5 Exponential Smoothing

While exponential smoothing produces results for regular traffic which are on par

with the Markov predictor, exponential smoothing does not suffer from the anomalies

seen in the Markov predictions.
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In the anomalous horizon workloads, we can see that not only does the prediction

curve follow the anomalies, it also displays a “bouncing” effect. Since the goal of

exponential smoothing is to produce a smooth curve, the quick turnaround when re-

covering from an outage of spike causes the prediction data to bounce before returning

to a desirable state.

Due to its short-term nature, exponential smoothing also suffers from the same

issues present in the Markov predictor. Again, these issues will be discussed in Chap-

ter 11.

Type RMSD Percent

Under 42 53.2%

Over 48 46.8%

Total 45

Table 10.22: Exponential smoothing predictor results for the baseline
workload

Figure 10.22: Exponential smoothing prediction results for the baseline
workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 42 53.1% 31 72.7%

Over 48 46.9% 22 27.3%

Total 45 29

Table 10.23: Exponential smoothing predictor results for the training out-
age workload

Figure 10.23: Exponential smoothing prediction results for the training
outage workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 165 53.0% 1216 81.8%

Over 159 47.0% 3068 18.2%

Total 162 1709

Table 10.24: Exponential smoothing predictor results for the horizon out-
age workload

Figure 10.24: Exponential smoothing prediction results for the horizon
outage workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 42 53.2% 0 0.0%

Over 48 46.8% 16 100.0%

Total 45 16

Table 10.25: Exponential smoothing predictor results for the training spike
workload

Figure 10.25: Exponential smoothing prediction results for the training
spike workload
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Type Regular Anomalous

RMSD Percent RMSD Percent

Under 129 53.2% 3036 100.0%

Over 277 46.8% 0 0.0%

Total 212 3036

Table 10.26: Exponential smoothing predictor results for the horizon spike
workload

Figure 10.26: Exponential smoothing prediction results for the horizon
spike workload
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Chapter 11

Conclusions

11.1 ARTS Workload Quality

The workloads we attempted to generate through ARTS’ layered transformations

proved to not be as realistic as we had hoped. The transformations implemented

simply could not capture all of the complexities of workloads seen in modern-day web

applications. In our evaluation, even when filtering out 96% of frequencies from the

Wikipedia workload data, this still leaves over 80 dominant frequencies in the data.

Representing this complexity in an ARTS workload using the current architecture

would prove difficult to impossible for an average user.

11.2 Predictor Evaluation

Based on the results of our evaluation, the linear regression proved to be the most

effective method of prediction. The linear regression predictor had the lowest RMSDs

for regular traffic and was tolerant to every anomaly we tested.
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11.3 Short-term Predictors

Both the Markov chain and exponential smoothing predictors can only make pre-

dictions a short amount of time into the future. While this gave them an advantage

when predicting regular traffic, it proved to be a problem when these predictors came

across anomalies. Furthermore, with a prediction horizon so small, it is impossible

for the planner to do its job effectively. The goal of the planner is to group scaling

requests together on an interval to ensure that plans are easy for an engineer to read

and update in the future if necessary.

11.4 Tuner Effectiveness

In our evaluation of the FFT predictor, we found that our tuner implementation

is not effective for all types of parameters. In the case of FFT, we saw that the tuner

optimized parameter values were too low to filter out anomalies in the training data.

There are two deficiencies in our tuning algorithm which caused this problem. First,

since we weight all data equally during tuning, the effects of anomalies can become

muted among the rest of the data. A solution to this would be to implement an al-

gorithm similar to our evaluation methodology which weights error around anomalies

much more heavily than regular traffic. Second, since we only observe a portion of

past data in order to perform our tuning, it is possible that this window will contain

no anomalies. It is also possible that the dataset contains no anomalies at all. Solving

this problem would prove to be much more difficult.
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Chapter 12

Future Work

While we are happy with the results of our evaluation of CRAFTS and its predic-

tion methods, there is much more work which could be done in the future to improve

CRAFTS.

12.1 Real-World Validation

The best way to test CRAFTS would be to integrate it with a real running system.

Not necessarily executing scaling decisions, but running predictions and making them

available through the web UI.

12.2 Larger Real-World Workloads

While we attempted to contact multiple parties in order to acquire further data for

evaluation, most parties were unwilling to release the sort of information we require

because it could potentially be used by competitors to gain insight into revenue and

other derivative metrics. In the future, it would be nice to see companies release this

sort of data anonymously for the purposes of assisting the research community.
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12.3 Fault-Tolerance

Since CRAFTS would form a critical part of a services infrastructure, it is im-

portant that in the event of a node-failure, another node running CRAFTS could

automatically begin making predictions.

12.4 Event Detection

One of the greatest weaknesses of CRAFTS’ methods is the inability to handle

load events which do not occur periodically and are not anomalous. These events

could include posting a breaking story on a news site or the release of a new episode

in a web-series. These sorts of events need to be accounted for when scaling, but do

not show the kind of periodicity which CRAFTS is designed to detect.

In the future, it would be great to see CRAFTS have the ability to detect these

events and be able to recognize them in the future, or to a lesser extent, the ability

for a user to be able to record an event and then initiate that event at a later time.

12.5 Secondary Predictors

Both the Markov chain and exponential smoothing predictors showed positive

results making predictions a small amount of time into the future. If CRAFTS could

support using one of these methods as a form of intelligent reactive scaling alongside

one of its long-term prediction methods, it could improve the handling of anomalous

events.

12.6 Alternative Applications

At its core, CRAFTS is a prediction pipeline. Data comes in, predictions are

made, and actions are taken based on those predictions. This sort of pipeline could

prove useful to other applications where these sort of automated predictions could
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prove useful. For example, in the field of computational finance, CRAFTS could

be used to predict future stock prices and issue buy and sell orders based on its

predictions.
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Appendix A

Running CRAFTS

This appendix outlines instructions on how to install, setup, and run an instance of

CRAFTS. Further details of how to configure CRAFTS can be found in Appendix B.

A.1 Installation

CRAFTS supports a number of methods of installation. Below are detailed in-

structions for each of the deployment methods which CRAFTS offers. This guide

assumes, unless stated otherwise, that a CouchDB instance is already accessible to

the user.

Source. Git is required in order to acquire the CRAFTS source. To download the

source, simply run:

git clone git://github.com/crafts/crafts-core.git

This will create the crafts-core folder which contains all code necessary to run

CRAFTS.

Pip. Installing with pip is quick and easy. Simply run:

pip install crafts-core
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Docker. Launching a Docker container requires a copy of the source code. Inside of

the crafts-core directory is a Dockerfile, build the Docker container by running

the following command:

docker build -t crafts/crafts-core .

The Docker container comes with a CouchDB instance pre-installed and configured.

Vagrant. Launching a VM through Vagrant requires a copy of the source code.

Inside of the crafts-core directory is a Vagrantfile. From within the directory,

run:

vagrant up

to launch the CRAFTS VM. This VM includes a local pre-configured instance of

CouchDB.

A.2 Setup

Setup is as simple as using the crafts-cli utility to configure a running CouchDB

instance. Assuming the CouchDB instance is running locally, this can be done by

running:

crafts-cli init config.json

Further Information about the CRAFTS configuration file can be found in Ap-

pendix B. If CouchDB is installed remotely, run crafts-cli help to see the necessary

flags.

A.3 Running

The primary executable for CRAFTS is the CRAFTS daemon, craftsd. Each

of the installation methods above, except source, will add craftsd to the PATH. If

CRAFTS was installed from source, craftsd can be found in the crafts directory

beneath crafts-core.
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Appendix B

CRAFTS Configuration

Specification

CRAFTS offers a simple and extensible configuration system which exists in a

JSON document stored in CouchDB. The following sections detail each of major

components of CRAFTS configuration and the individual options within them.

B.1 Modules

Individual CRAFTS modules can be swapped out by changing their respective

fields in the configuration file. The values for each module field should be a string

which represents an importable module path. An example module configuration can

be seen below.

B.2 Module-Specific Configurations

While none of the default CRAFTS modules have any additional configuration

options. It is possible for extra configuration data to be passed to a custom module

if necessary. To do this, create a configuration key whose name is the same as the
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class which the option will be passed to. Any data specified under this key will be

passed directly to the module with that name.

B.3 Cycles

Most CRAFTS components are run on a configurable cycle which can be con-

figured. Each of these cycles takes an integer value which represents the interval at

which the component should be run (in seconds). The different cycles are as follows:

• monitoring cycle: The interval at which the MAL will query the monitoring

data source. These requests are made in bulk so that load on the monitoring

system can be kept to a minimum.

• scaling cycle: The amount of time between bulk scaling requests made by

the planner.

• tuning cycle: How often the tuner should be run.

B.4 Other

The VM acquisition delay (vm delay) can also be found in the configuration, as

well as the magnitude of the linear transformation applied by the planner (planner tolerance).

{

"planner ": "crafts.planner.simple.SimplePlanner",

"maldriver ": "crafts.mal.null.NullMAL",

"scaler ": "crafts.scaler.null.NullScaler",

"predictor ": "my.custom.package.MyPredictor",

"tuner": "crafts.tuner.brute.BruteTuner",

"MyPredictor ": {" special_data ": 1234} ,
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"monitoring_cycle ": 86400 ,

"scaling_cycle ": 3600,

"tuning_cycle ": 2592000 ,

"vm_delay ": 900,

"planner_tolerance ": 1.2

}
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Appendix C

ARTS Job Configuration

Specification

ARTS jobs are configured using a JSON document as a job specification. This

section outlines the different configuration options for each of the components of an

ARTS job. The basic outline of a job configuration can be seen below, the individual

sections will be explained in greater depth in the following sections. A complete

example can be seen at the end of this appendix.

{

"base": { ... }

"layers ": [ ... ],

"events ": [ ... ],

"handlers ": [ ... ]

}

C.1 Base

The “base” attribute specifies the initial values which the layers and events will

be applied to.
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C.1.1 File

Read a newline delimited file(s) of tab separated unix timestamp, value pairs.

Arguments:

• filepath: a unix-style glob absolute filepath to the desired input files

C.1.2 Value

Use a specified value as the basis of the workload.

Arguments:

• tnot: The initial unix time where the workload will begin

• duration: The duration of the generated workload (in seconds)

• interval: How often a sample should be generated (in seconds)

• value: The baseline value which should be applied for the duration of the

workload

C.2 Layers

Layers form the core of ARTS workloads. Layers are applied as modifiers to the

base which was described in the previous section.

C.2.1 Sinusoid

Sinusoids are used to represent normal patterns seen in traffic. The resulting

sine wave is centered around positive one and applied as a multiplier to the existing

workload. The sinusoid transform takes an amplitude between zero and one and a

frequency specified in days as parameters.
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Arguments:

• amplitude: Amplitude of the sine wave (between 0.0 and 1.0)

• frequency: The frequency of the sinusoid (in seconds)

• offset: Offset in time from the start of the workload (in seconds)

C.2.2 Linear

In order to represent steady growth (or decay) seen in the real-world traffic, we

offer a linear transformation. The linear transformation takes a slope as a parameter

and applies that slope to each point in the workload.

Arguments:

• slope: Amount of slope to apply to the input data

C.2.3 Blur

Real world traffic doesn’t behave like a nice straight line, there are constant minor

fluctuations in traffic patterns. The blur transformation takes the current workload

and adds noise based on the Gaussian distribution. Using the current data point

as the mean and a configurable standard deviation, a new value is generated and

inserted back into the workload.

Arguments:

• std dev: The standard deviation which should be passed to the Gaussian dis-

tribution

C.3 Events

Events are modifiers applied to the workload over a discrete time. All events take

a start and end time as parameters.
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C.3.1 Outage

A period of time in which all generated data is zero. The outage event takes no

extra arguments.

C.3.2 Spike

A short period of time when a large multiplier is applied to the base load.

Arguments:

• peak: The peak multiplier to be applied to the base workload.

C.4 Handlers

Every output tuple of ARTS can be passed to one or more handlers. Handlers

can be used to store the generated data or feed it directly to another application.

C.4.1 FileHandler

The file handler outputs data to the specified file in a format which it can be read

in again by the file base.

Arguments:

• filename: Name of the output file

C.4.2 CRAFTSHandler

This handler takes the data generated by ARTS and inserts it directly into the

CRAFTS intermediate store.

Arguments:
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• url: The url of the CouchDB instance which holds the target CRAFTS database

• db: The name of the CRAFTS database within CouchDB

C.5 Sample Job Configuration

{

"base": {

"type": "file",

"args": {" filename ": "/data/wikipedia /*"}

}

"layers ": [

{

"type": "linear",

"args": {"slope ": 5}

},

{

"type": "fuzzing",

"args": {"avg": 0.1, "dev": 0.05}

}

],

"events ": [

{

"type": "outage",

"args": {" start": 6, "end": 10}

},

{

"type": "spike",

"args": {" start": 20, "end": 25}
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}

],

"handlers ": [

{

"type": "FileHandler",

"args": {" filename ": "new_wiki.out"}

}

]

}
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Appendix D

Intermediate Storage Format

An example intermediate storage entry can be found at the end of this appendix.

Below is a description of all fields which must be present in a valid sample document.

• id: Uniquely identifies the document within CouchDB. For sample documents,

the id takes the form: “

{role/timestamp/sample}.”

•• rev The revision field. Used by CouchDB for consistency.

• timestamp: The UTC time at which the sample was taken.

• role: The role for which the sample was taken.

• hosts: A list of all hosts within the role and a dictionary of the metrics recorded

and their values.

• type: Identifies the type of document. In this case it will always be “sample.”

{

"_id": "arts /2007 -09 -18 T20 :10:00/ sample",

"_rev": "1-74 ec4360a516ae634edb61f840b12758",

"timestamp ": "2007 -09 -18 T20 :10:00" ,
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"role": "arts",

"hosts": {

"arts -1": {

"requests ": 3025

}

},

"type": "sample"

}
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