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ABSTRACT 

Optimizing Harris Corner Detection on GPGPUs Using CUDA 

Justin Loundagin 

 The objective of this thesis is to optimize the Harris corner detection algorithm 

implementation on NVIDIA GPGPUs using the CUDA software platform and measure the 

performance benefit. The Harris corner detection algorithm—developed by C. Harris and 

M. Stephens—discovers well defined corner points within an image. The corner 

detection implementation has been proven to be computationally intensive, thus realtime 

performance is difficult with a sequential software implementation. This thesis 

decomposes the Harris corner detection algorithm into a set of parallel stages, each of 

which are implemented and optimized on the CUDA platform. The performance results 

show that by applying strategic CUDA optimizations to the Harris corner detection 

implementation, realtime performance is feasible. The optimized CUDA implementation 

of the Harris corner detection algorithm showed significant speedup over several 

platforms: standard C, MATLAB, and OpenCV. The optimized CUDA implementation of 

the Harris corner detection algorithm was then applied to a feature matching computer 

vision system, which showed significant speedup over the other platforms. 

Keywords: Harris Corner Detection, NVIDIA GPGPU, NVIDIA CUDA 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Chapter 1: Introduction 

1.1 Thesis Introduction 

 The goal of computer vision is to model and replicate the human visual system 

through computer software and hardware and build autonomous systems [1]. Replicating 

the human visual system on a computational platform has proven to be inherently 

difficult. Computer vision is the field of understanding the 3D world from 2D images, 

however details of the 3D world are lost during image formation, thus making computer 

vision difficult. High-level computer vision systems rely on low-level processes, such as 

corner detection, to perform accurately [1]. 

 GPUs (graphics processing unit) have become increasingly programmable over 

the past few decades. NVIDIA has led the field in parallel computing with their intuitive 

software, CUDA (Compute Unified Device Architecture), and highly optimized GPGPU 

(general purpose graphics processing unit) hardware. This thesis discusses the 

implementation of the Harris corner detection algorithm on the NVIDIA GPGPU by 

utilizing the CUDA software platform. Corner detection is computationally intensive, thus 

a realtime implementation has proven to be difficult. High-speed corner detection is in 

high demand for computer vision systems in applications such as motion detection, 

video tracking, augmented reality, and object recognition [2]. The objective of this thesis 

is to analyze the performance benefit of implementing and optimizing the Harris corner 

detection algorithm on the NVIDIA GPGPU platform using CUDA. 

1.2 Thesis Organization 

 Chapter 1 introduces the background of the Harris corner detection algorithm and 

the history of the GPGPU computing platform. The chapter discusses the related work of 

utilizing CUDA for Harris corner detection which has been done prior to this work. 
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 Chapter 2 presents an overview of the NVIDIA GPGPU hardware architecture 

and the CUDA architecture. An overview on how the CUDA software architecture runs on 

the GPGPU hardware will be explained, which will later justify parallel optimization 

strategies made to the Harris corner detection implementation. General CUDA and 

GPGPU optimizations will be discussed to provide a basis for general speed 

enhancements for parallel algorithm implementations. 

 Chapter 3 will present an overview of the mathematical representation of the 

Harris corner detection algorithm. The Harris corner detection algorithm will then be 

decomposed into a software architecture representation. Each stage in the software 

architecture will then be briefly discussed, along with its purpose and algorithmic 

function. 

 Chapter 4 will discuss the naive and optimized CUDA implementations of each 

stage in Harris corner detection software architecture: convolution, corner detection, and 

non-maxima suppression. At each stage, different optimization strategies will be 

discussed, and the performance will be compared to other platforms: standard C, 

MATLAB, and naive CUDA. Once each stage has been fully optimized to run on the 

GPGPU hardware, the performance of the overall Harris corner detection 

implementation will be analyzed and compared to other platforms. 

 In Chapter 5, Harris corner detection will be applied to a feature matching 

computer vision system. The performance benefit gained by incorporating the optimized 

CUDA Harris corner detection implementation into the feature matching system will be 

compared against several platforms. 

 Chapter 6 will describe future work for GPGPU Harris corner detection and will 

conclude this thesis. 
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1.3 Related Work 

 A paper published in 2011, “Low Complexity Corner Detector Using CUDA for 

Multimedia Applications”, investigated the performance benefit gained by implementing 

the Harris corner detection algorithm using CUDA [3]. Rajah Phull, Pradip Mainali, and 

Quiong Yang from the Institute of BroadBand Technology optimized the Harris corner 

detection algorithm by utilizing several different optimization strategies: shared memory, 

coalesced memory accesses, and thread occupancy. The paper focused on optimizing 

the LoCoCo (Low Complexity Corner) detector rather than the traditional Harris corner 

detection algorithm for added performance benefit. The LoCoCo detection algorithm 

sacrifices accuracy to increase performance by approximating the Gaussian derivative 

with a box filter. This implies that integral images can be utilized to reduce the number of 

arithmetic operations required for image convolution. 

 The performance results of the CUDA LoCoCo implementation were compared to 

the CPU implementation. The CUDA LoCoCo was designed to run on the NVIDIA 

GeForce 280 GTX GPGPU, specifications shown in Table 1.1. The performance analysis 

revealed that their CUDA LoCoCo implementation had around a 14 times faster speedup 

over the CPU implementation [3]. The paper was the first to report the findings of CUDA 

performance benefit when applied to the corner detection. The paper showed that their 

implementation had a significant performance improvement, however it didn’t not fully 

utilize the GPGPU nor advanced optimizations to further increase performance. This 

thesis will utilize a modern GPGPU (specification located in Appendix A) and the 

algorithm will be tuned for its specification. This thesis will explore in-depth CUDA 

optimization strategies for each stage of the Harris corner detection algorithm to 

maximize performance benefit without compromising precision. 
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Table 1.1: GeForce 280 GTX Specifications 

 A paper published in 2008, “Accelerated Corner-Detector Algorithms”, 

investigated the performance benefit of implementing corner detection algorithms on 

GPGPUs [4]. Lucas Teixeira, Waldemar Celes, and Marcelo Gattass, from Tecgraf 

(Technical Scientific Software Development Institute) designd a template for the KLT and 

Harris corner detector to run on the GPGPU. The paper focused on the GPGPU 

compression of the corner response to reduce memory bandwidth in the non-maxima 

suppression (NMS) algorithm. Their method to increase performance was to reduce the 

number of global memory reads during the NMS process [4]. The corner response 

compression was implemented by performing a reduction on all 2x2 neighborhood in the 

corner response, effectively decreasing the corner response size by a factor of 2. The 

compression was implemented by iterating a 2x2 window over all pixel locations with 

even parity (skipping every other pixel), and executing the neighborhood reduction 

shown in Equation 1.1. The result of the compression is an output image which 

represents all of the 2x2 neighborhood maxima in the original input, example shown in 

Figure 1.1. 

! !  

Equation 1.1: Corner Response Compression Equation 

GeForce 280 GTX Specifications

CUDA Cores 240

Clock Rate 1.40 GHz

SM Count 30

Warp Size 32

Shared Memory 16 KB

Constant Memory 64 KB

p(x, y) = max{p(2x,2y), p(2x +1,2y), p(2x,2y +1), p(2x +1,2y +1)}
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Figure 1.1: Corner Response Compression Example 

 The compression of the corner response reduces the memory bandwidth 

overhead from the GPGPU to the host by a factor of 2, thus increasing performance. 

Their GPGPU implementation was implemented to run on the NVIDIA GeForce 8800 

GTX GPGPU, specifications shown in Table 1.2. Their performance findings for GPGPU 

corner response compression yielded a precision error of roughly 0.02 for Harris corner 

detection [4]; however, their GPGPU speedup resulted in NMS processing times not 

exceeding 6 ms for image dimensions of 1024 x 768. Their implementation achieves 

higher performance by sacrificing precision in the corner response calculation. This 

thesis will investigate alternative optimizations to achieve realtime performance without 

compromising corner response precision. 
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Table 1.2: GeForce 8800 GTX Specifications 

 Both papers proposed CUDA implementations of the Harris corner detection 

algorithm which yielded higher performance over the CPU implementation. This thesis 

will implement more advanced CUDA optimizations to further increase performance 

without compromising precision. 

GeForce 8800 GTX Specifications

CUDA Cores 128

Clock Rate 1.35 GHz

SM Count 16

Warp Size 32

Shared Memory Per SM 16 KB

Constant Memory 64 KB
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Chapter 2: NVIDIA GPGPU and CUDA 

2.1 GPGPU Introduction 

 Beginning in the late 1990’s, the NVIDIA GPU (graphics processing unit) had 

become increasingly programmable. Since the revolution of the GPU platform, many 

developers were adapting GPU hardware into their preexisting graphical systems to 

increase performance. Programmers were also able to achieve performance increases 

on non-graphical systems by embedding their algorithms within the vertex and fragment 

shaders in GPU graphics pipeline. However, this was nontrivial, for programmers had to 

map their non-graphic algorithms into a graphics pipeline which focused primarily on 

triangles and polygons. In 2003, Ian Buck unveiled the first generic extension to C which 

allowed for parallel constructs—the Brooke compiler. NVIDIA coupled the Brooke 

language extension into their specialized hardware and created the first ever solution to 

general purpose parallel computing. 

 Parallel computation has been gaining popularity in the past few decades due to 

the performance benefits over sequential computation. NVIDIA states, “Driven by the 

insatiable market demand for realtime, high-definition 3D graphic, the Graphic Processor 

Unit or GPU has evolved into a highly parallel, multithreaded, manycore processor with 

tremendous computational horsepower” [5]. Massive GPGPU parallelism is achieved 

through the massive replication of simple SIMD (single instruction multiple data) 

processors, known as streaming multiprocessors [6]. NVIDIA was the first to integrate an 

intuitive parallel software model into their highly optimized GPGPU hardware. Alternative 

software parallel constructs exists for parallel computing (openCL, openACC); however, 

CUDA has been the flagship software platform for GPGPU computation due to its 

intuitive nature, and its coupling with optimized NVIDIA hardware. CUDA was developed 

by NVIDIA with several goals in mind: provide a small set of extensions to standard 
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programming languages (C/C++), support heterogenous computation where applications 

can utilize both the CPU and GPGPU hardware [7].  

 NVIDIA GPGPUs are parallel processing units which have the capability of 

running thousands of concurrent threads in parallel. The GPGPU streaming 

multiprocessors (SM) have shared resources and on-chip memory which allows for 

parallel tasks to run with higher performance [7]. The difference between a GPU and 

GPGPU is that a GPU only allows for graphic mono-directional data transfers from the 

host CPU to the GPU. GPGPUs allow for bidirectional data transfers from the host CPU 

to the GPGPU and vice-versa through the PCI express bus to perform generic parallel 

algorithm computations. No prior knowledge of the graphics pipeline is required for 

CUDA programming and general algorithms can be decomposed into thousands of 

concurrent threads, executed in parallel, to achieve a significant performance benefit. 

Section 2.2 will discuss CUDA algorithm scalability between hardware configurations, 

and why it allows for contemporary CUDA implementations. Sections 2.3-2.4 will give an 

introduction into the GPGPU platform and its basic hardware components: streaming 

multiprocessor, and memory types. Section 2.5-2.6 will discuss a CUDA overview and 

the general optimizations which can be applied to all CUDA implementations. 

2.2 GPGPU Scalability 

 The basis for CUDA popularity is due to automatic scaling of threads to GPGPU 

hardware configurations. Rob Farber, CEO of TechEnablement and CUDA expert, states 

that the “software abstraction of thread blocks translates into a natural mapping of the 

kernel onto an arbitrary number of SMs” [6]. The abstraction between thread blocks and 

GPGPU hardware allow CUDA implementations developed today to eventually scale to 

hardware configurations with higher performance specifications. Scalability allows for 

CUDA programmers to create general parallel implementations, and by updating the 

GPGPU hardware, the programmer can expect an improved performance benefit. 
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2.3 GPGPU Streaming Multiprocessor 

 The parallel architectural building block for the NVIDIA GPGPU is the streaming 

multiprocessor (SM), for the number of SMs on a GPGPU determines the degree of 

physical parallelism possible. The massive set of CUDA threads are partitioned into fixed 

sized thread blocks in the execution configuration. CUDA threads are grouped into 

blocks, and CUDA blocks are configured into a grid. Each SM is assigned blocks of 

threads which the SM is responsible for executing. The SM will further partition the 

blocks into warps, where each warp will be scheduled independently to run all of its 

threads with lock-step level parallelism. Threads within a thread block are guaranteed to 

run on the same SM, therefore threads within the same block can utilized local on-chip 

memory types: shared memory, and L1 cache. The scheduling of thread blocks to 

particular SMs is the job of the NVIDIA global scheduler, which will base its scheduling 

on the number of thread blocks, and the number of thread per a single block in the 

execution configuration. Multiple thread blocks can be scheduled to the same SM, if the 

number of thread blocks outweigh the number of SMs on the GPGPU. Figure 2.1 shows 

an example of how CUDA thread blocks are mapped to streaming multiprocessors on 

the NVIDIA GPGPU. 
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Figure 2.1: CUDA Thread Block Configuration on GPGPU 

 The SM contains a large array of SIMD (single instruction multiple data) 

processing cores. SIMD implies that the processing units within an SM will run the same 

instruction in lock-step level parallelism on different data. As stated earlier, the SM 

further partitions the scheduled block of threads into units called warps. A warp is the 

fundamental unit of parallelism defined on NVIDIA GPGPU hardware. Since the CUDA 

cores have an SIMD architecture, each thread within a warp must run the same 

instruction, or have to idle. The GPGPU Kepler architecture uses a quad warp 

scheduling scheme, where each SM is capable of executing four warps, of size 32 

threads, in parallel. This implies a single SM on the Kepler architecture has the capability 

to execute 128 SIMD threads concurrently. Table A.3 in Appendix A shows the specific 

SM architecture for the NVIDIA GeForce 660 Ti—the GPGPU used to conduct this thesis 

research. 
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2.4 GPGPU Memory Types 

 NVIDIA GPGPUs contain various types of memory, each of which have their own 

performance characteristics. The fastest, however least abundant memory types on the 

GPGPU are the L2 cache, shared memory, and registers, for they are embedded directly 

onto the streaming multiprocessors. The slowest memory type on the GPGPU is global 

memory, however it is the most abundant memory on the GPGPU. The memory 

hierarchy shown in Figure 2.2 shows the basic memory layout of a generic NVIDIA 

GPGPU. Memory performance is inversely proportional to the size of the memory on the 

GPGPU, for slower off-chip memory types are more abundant than faster on-chip 

memory types. Table 2.2 shows the characteristics of some of the different memory 

types on the NVIDIA GPGPU, ordered from fastest to slowest performance memory. 

!  

Figure 2.2: NVIDIA GPGPU Memory Hierarchy 
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Table 2.1: Table of Various GPU Memory Characteristics 

 When optimizing parallel CUDA implementations, the programmer should always 

strive to utilize local on-chip memory that is directly integrated onto the streaming 

multiprocessor, specifically shared memory. Farber states, “Managing the significant 

performance difference between on-board and on-chip memory is the primary concern of 

a CUDA programmer” [6]. The avoidance of global memory accesses is typically the first 

optimization when programing NVIDIA GPGPUs. Every CUDA algorithm implementation 

can be benchmarked by its CGMA (compute to global memory access) ratio; thus, 

higher the ratio implies more computation for a single global memory access. 

2.5 CUDA Overview 

 As mentioned in the earlier sections, CUDA is the software platform which allows 

users to interface with the NVIDIA GPGPU hardware. CUDA is not a programming 

language itself, rather it is a C/C++ extension which enables parallel constructs. The 

CUDA platform provides three key abstractions: thread group hierarchy, shared 

memories, and barrier synchronization [5]. CUDA revolves around the idea of a kernel, 

or GPGPU function, which is executed for every thread, in every block, within the 

configured grid. 

Fastest

Slowest

Memory Type Size Cached On Chip Scope

Register 
Count

65536 No Yes Single Thread

L1 Cache 64 KB N/A Yes Single Block

Shared Memory 48 KB No Yes Single Block

L2 Cache 384 KB N/A No All Threads

Global Memory 2048 MB Yes No All threads
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 Invoking a CUDA kernel involves firstly creating a thread hierarchy composed of 

the thread blocks, and threads per a block. As mentioned earlier, threads are grouped 

into what are called thread blocks. A thread grid is formed by first building a N-

dimensional array of blocks, then defining how many threads exist in each block in N-

dimensions. Figure 2.3 shows the typical grid configuration used for image processing (2 

dimensional grid of blocks, 2 dimensional blocks of threads). In the case for image 

processing, the grid size would be dependent on the image’s dimension. For example, if 

an image of size 1024x1024 were to be processed, and the number of threads per a 

block was defined as 32x32 (1024 threads per block), then the CUDA grid would contain 

32x32 thread blocks to process each pixel individually. 

!  

Figure 2.3: Typical CUDA Thread Configuration for Image Processing 

2.6 General CUDA Performance Optimizations 

 Tuning CUDA algorithms for specific hardware configurations that they run on 

can highly improve the performance of the algorithm implementation. The performance 

of NVIDIA GPGPUs can be benchmarked by several specifications, shown in Table 2.2. 
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Table 2.2: GPGPU Hardware Performance Quantities 

By knowing the GPGPU specifications for the hardware being programmed, an 

algorithm’s implementation can be optimized to utilize all resources on the specific 

GPGPU. 

 Optimizing the GPGPU platform naively can sometimes produce worse 

performance over the CPU implementation. Correct optimization strategies must be 

known by the programmer in order to maximize the parallel performance. The purpose of 

running algorithms in parallel is to maximize algorithmic performance; therefore, 

hardware knowledge is imperative. Many factors should be considered when optimizing 

CUDA algorithms: data-bus overhead, memory caching, faster memory utilizations, and 

warp divergence. 

2.6.1 Data-bus Overhead 

 The GPGPU memory is segregated from the host CPU memory space, therefore 

the GPGPU must communicate with the host CPU over the external PCI express bus. 

The overhead between transferring memory between the host CPU to the GPGPU and 

vice-versa can be significant if the data transfers are implemented naively. As the data 

GPGPU Specification How to Increase Performance

SM Count Increase the number of streaming 
multiprocessors to increase the number of 
concurrent threads executing in parallel

Warp Size Increase the warp size to increase the 
number of threads running in parallel 
within a single SM

Shared Memory Size Increase the shared memory size per 
block to allow for higher SM thread 
occupancy

Warps Per SM Increase the number of warps in a SM to 
increase the number of threads executing 
in parallel.
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transfer overhead increases in a parallel implementation, the performance benefit of 

utilizing the GPGPU decreases. 

 Transferring memory between host CPU and GPGPU over the PCI express bus 

is typically the largest bottle neck in GPGPU algorithms. The CUDA driver API can only 

transfer memory from the host CPU to the GPGPU memory and vice-versa if the host 

memory is pinned (non-paged). By default, host memory allocations are pageable, thus 

the host CPU must perform a copy from pageable memory to pinned memory before 

copying the memory to the GPGPU global memory space. The transparent overhead of 

memory transfers can lead to poor performance when dealing with high bandwidth 

memory transfers, such as high resolution images or video processing. 

!  

Figure 2.4: Memory Transfers Form Host to GPGPU and Vice-Versa 

 The CUDA API allows for allocating pinned memory to avoid the implicit host 

internal memory transfers from paged to pinned memory and vice-versa. Pinned 

memory transfers from the host CPU to the GPGPU and vice-versa have the highest 

bandwidth [8]. By avoiding paged host memory, the internal data transfer from paged to 
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pinned and vice-versa is avoided, thus increasing implementation performance. 

However, pinned memory should not be overused, for pinned memory allocations are 

computationally expensive, thus only a single allocation of pinned memory should be 

made and used as a staging area before memory transfers. 

2.6.2 Cache Utilization 

 The L1 and L2 caches presented on the NVIDIA GPGPU hardware are 

transparent to the programmer, thus direct access is not possible. Knowledge of caching 

locality can greatly improve the performance of CUDA algorithms by avoiding global 

memory accesses. The L2 cache is the most abundant cache memory on the GPGPU, 

and it resides a single memory access away from global memory. The L2 cache greatly 

improves global memory access performance if memory accesses are based on spatial 

or temporal locality access pattern. Global memory accesses by threads within a single 

warp can be reduced if all the threads within the warp access spatially near portions of 

the input data [8].  

 Every streaming multiprocessor (SM) has its own dedicated on-chip L1 cache, 

which are exclusively designed for spatial locality. The L1 caches do not utilize an LRU 

(least recently used) caching scheme, and temporal access pattern will invoke cache 

misses, thus decreasing memory performance [6]. If temporal access patterns exists 

within the CUDA software, then memory should reside locally in shared memory on the 

SM in order to guarantee that data is kept on-chip. 

2.6.3 Shared Memory Utilization 

 As mentioned earlier, a CUDA implementation’s memory performance can be 

quantified by its CGMA ratio. The CGMA ratio represents the compute calculations 

compared to the number of global memory accesses. When optimizing CUDA algorithm 

implementations, the global memory bandwidth typically becomes the bottleneck of the 
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performance. Increasing the CGMA ratio will effectively increase the CUDA 

implementation’s performance. The strategy to increase the CGMA ratio involves utilizing 

other types of GPGPU memory, typically shared memory. Shared memory is streaming 

multiprocessor on-chip memory, normally with sizes 16 KB - 64 KB. Each block of 

threads has its own dedicated segment of shared memory since each block is scheduled 

to run exclusively on a particular SM. Shared memory is configured into 32 four-byte 

wide banks on each SM on the GPGPU, thus a 32 thread warp can access shared 

memory in parallel if no threads within the warp access the same bank [6]. Shared 

memory cannot be accessed between SMs, and therefore shared memory cannot be 

shared between thread blocks. The amount of shared memory is orders of magnitude 

smaller than global memory, thus the use of shared memory increases the complexity of 

CUDA implementation. For implementations which cannot utilize shared memory due to 

memory size constraints, or implementation complexity, the GPGPU offers two 

alternative types of memory to further increase performance: constant, and texture 

memory. 

2.6.4 Constant Memory Utilization 

 In situations where the implementation of shared memory becomes overly 

complex, constant memory can be implemented in order to increase the CGMA ratio. 

Constant memory is readonly memory and is located in global memory, however it 

utilizes direct on-chip caching. Constant memory typically has a size of 64 KB for NVIDIA 

GPGPUs with compute capability 1.0-3.0. Constant memory has the performance of 

register accesses, due to caching, as long as the threads within a warp have the same 

memory access pattern. If all threads within a warp access access consecutive word 

addresses spatially, then only a single access transaction will be performed, which will 

increase memory performance and the implementation’s CGMA ratio [9]. 
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2.6.5 Texture Memory Utilization 

 In situations where the use of shared memory and/or constant memory cannot be 

utilized due to size constraints or implementation complexity, texture memory can be 

utilized to increase performance. Texture memory on the GPGPU is memory which is 

normally used for the graphics pipeline, however it is also available for general purpose 

computing. Texture memory is cached on-chip, like constant memory, and has great 

performance benefit when memory accesses exhibit spatial locality. Texture, like 

constant, memory is readonly and is highly optimized for spatial locality due to its design 

for graphics performance. Texture memory offers unique performance benefits that are 

not offered by other memory types: interpolation between values, automatic 

normalization, and automatic boundary handling. Texture readonly memory costs a 

single read from the texture cache on a cache hit, and a global memory read on a cache 

miss. For implementations that have a readonly memory access patterns, with high 

spatial locality, texture memory can be utilized to increase performance by avoiding the 

costs of global memory accesses.  

2.6.6 Avoiding Warp Divergence 

 The GPGPU SIMD streaming multiprocessors (SM) have a performance 

drawback of warp divergence. As stated previously, a warp is the fundamental unit of 

parallelism on the GPGPU. Groups of threads are collected into blocks and partitioned 

into warps based on the architecture fixed warp size. Each block is exclusively assigned 

a SM, where the partitioned warps execute in lockstep level parallelism. Due to the SMs 

having an SIMD architecture, every thread executing in its particular warp must run the 

same instruction; however, in software there are normally conditional branches. If a 

thread in a warp executes a conditional path while another thread within that same warp 

does not execute the same path, then this is what is defined as warp divergence. Warp 

divergence causes all threads to stall for instruction level synchronization, thus “long 
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code paths in a conditional can cause a 2-times slowdown for each conditional within a 

warp and a 2N slowdown for N nested loops” [6]. From the programmers point of view, if 

they know their specific GPGPU warp size, and partition their threads into blocks which 

guaranteed the same conditional paths, they can avoid warp divergence by ensuring that 

each thread within a warp executes the same instruction. This however, like shared 

memory utilization, increases the complexity of the parallel implementation. The code 

shown in Figure 2.5 is an example of warp divergence, for the thread execution is based 

on the parity of the thread ID. This implies that half of the threads within a warp will 

execute different conditional paths, thus introducing a 2 times slowdown in 

implementation performance. Warp divergence can decrease the level of parallelism in 

CUDA implementation due to the nature of SIMD. The CUDA compiler (nvcc) does 

perform conditional branch voting, which determines how to schedule threads based on 

conditional paths, however the programmer is best fit to solve the thread divergence 

problem, or at least minimize the warp divergence within their implementation. 

Figure 2.5: Warp Divergent Example Code 

 1 if(thread_id % 2 == 0)     
 2    data[thread_id] = pow(2.0, 2.0); // Divergence Path #1     
 3 else     
 4    data[thread_id] = sqrt(2.0);     // Divergence Path #2   
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Chapter 3: Harris Corner Detection 

3.1 Corner Detection Introduction 

 The Harris corner detection algorithm, developed by C. Harris and M. Stephens 

in 1988, detects the location of corner points within an image [10]. Corner points are 

used for defining features because they have “well-defined position[s] and can be 

robustly detected” [24]. Corner points are inherently unique and are great interest points 

due to their invariance to translation, rotation, illumination, and noise. Due to the intrinsic 

properties of corner points, the Harris corner detection algorithm has been utilized 

frequently for computer vision system applications, such as motion detection, image 

registration, video tracking, panorama stitching, 3D modeling, and object recognition. 

3.2 Corner Detection Qualitative Description 

 A corner can be considered as the intersection of two well-defined edges. The 

Harris corner detection algorithm searches for corner points by looking at regions within 

an image which contains high gradient values in all directions. A window is iteratively 

scanned across the X and Y gradients of the input image, and if high changes in 

intensity exist in multiple directions, then a corner is inferred to exist within the current 

window. Figure 3.1 shows the different types of regions that can exist within an image. 

Figure 3.1: Directional Intensity Change Types 

  

Flat Region Edge Region Corner Region

! ! !
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3.3 Corner Detection Mathematical Description 

 A corner within a region of interest (ROI) can be identified by calculating the sum 

of squared difference (SSD) between the ROI and shifted nearby regions. The SSD 

formula, shown in Equation 3.1, quantifies the difference between ROI and shifted region 

by summating the squared differences pixel by pixel. The function I, in Equation 3.1, 

represents the input image. The (x,y) coordinates specify the ROI, and the ( ! u,! v) 

coordinate specifies the offset of the shifted region from the ROI. 

!  

Equation 3.1: SSD Equation 

 Figures 3.2-3.4 (a) show the ROI (red box) containing an edge, defined by the 

(x,y) coordinates, and the shifted region (blue dashed box), defined by the ( ! u,! v) 

offset. Consider iterating the shifted region away from the ROI in only the horizontal 

direction, shown in Figure 3.2 (a), thus only varying the ! u coordinate. When the ! u 

coordinate is at zero, the ROI and shifted region are the same region, thus resulting in a 

SSD of zero. As the shifted region iterates farther from the ROI in the horizontal direction 

the SSD increases significantly, shown in Figure 3.2 (b). This implies that the ROI and 

shifted region become more different as the shifted region iterates in the horizontal 

direction. 

Δ Δ

E(Δu,Δv) = I(x + Δu, y + Δv)− I(x, y){ }
(x,y)∈ROI
∑ 2

Δ Δ

Δ Δ
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Figure 3.2: SSD When Shifting Region Horizontally Away From ROI  

 Now consider iterating the shifted region away from the ROI in only the vertical 

direction, shown in Figure 3.3 (a), thus only varying the ! v coordinate. As the shifted 

region iterates farther away from the ROI in the vertical direction, the SSD does not 

increase much, shown in Figure 3.3 (b). This implies that the ROI and shifted region stay 

similar as the shifted region iterates in the vertical direction. 

 Figure 3.3: SSD When Shifting Region Vertically Away From ROI 

(a) Shifted Region Horizontally (b) SSD Increases Significantly

! !

Δ

(a) Shifted Region Horizontally (b) SSD Increases Minimally

! !
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 Now consider iterating the shifted region in all directions away from the ROI, 

shown in Figure 3.4 (a), thus varying both the ! u and ! v coordinates. Figure 3.4 (b) 

shows the SSD surface produced by iterating the shifted region in all directions. Since 

the SSD is only significant when iterating the shifted region way from the ROI in the 

horizontal direction, the SSD surface resembles a canyon shape, which implies the 

existence of an edge within the ROI. 

Figure 3.4: SSD Surface for ROI Containing an Edge 

 If a ROI contains a corner, as shown in Figure 3.5 (a), the SSD will increase 

significantly regardless of the shifted window direction. The SSD for a corner existing 

within the ROI will have the surface shape shown in Figure 3.5 (b). The concave surface 

is zero-valued at the origin and increases in all directions away from the origin. A corner 

can be identified within a ROI based solely on the shape of the SSD surface.  

Δ Δ

(a) Shifted Region in All Directions (b) SSD Increases in Only One Dimension

!
!
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Figure 3.5: SSD Surface for ROI Containing a Corner  

 The shape of the SSD surface can be accurately approximated by its behavior at 

the origin. The Taylor series expansion can be utilized to approximate the surface 

behavior by expanding the SSD equation near the origin. The Taylor series states that a 

function’s behavior at a specific point can be approximated by the infinite sum of that 

function’s derivatives. Equation 3.2 shows the 1D Taylor series expansion about point a. 

!  

Equation 3.2: Taylor Series Expansion Equation 

  

 Under the assumption that the shifted window offsets ! u and ! v are minimal, 

the Taylor series can be utilized to accurately approximate the SSD surface. By utilizing 

Taylor series expansion, the pixel intensities within the shifted region can be 

approximated by the ROI gradients, shown in Equation 3.3. Ix is the partial derivative of 

(a) Shifted Region in All Directions (b) SSD Increases in All Both Dimensions

!
!

f (x) = f (a)+ df
dx
(x − a)+ 1

2!
d 2y
dx2

(x − a)2…

Δ Δ
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the ROI in the X (horizontal) direction, and Iy is the partial derivative of the ROI in the Y 

(vertical) direction. 

!  

Equation 3.3: Shifted Region Approximation Based on Taylor Series 

 The SSD equation can be reduced to only be dependent on the gradients of the 

ROI. Equation 3.4 shows the approximated SSD equation by substituting the Taylor 

series approximation, shown in Equation 3.3, into the SSD Equation 3.1. 

!  

 Equation 3.4: SSD Approximation Equation 

 The SSD approximation only depends on the ROI gradients Ix and Iy, and not the 

ROI’s pixel intensity values. The SSD approximation can be converted to matrix form by 

factoring non-summation dependent variables ! u and ! v (derivation shown in the 

Equation 3.5). 

!  

!  

I(x + Δu, y + Δv) ≈ I(x, y)+ Ix (x, y)Δu + Iy(x, y)Δv

E(Δu,Δv) ≈ Ix (x, y)Δu + Iy(x, y)Δv{ }2
(x,y)∈ROI
∑

Δ Δ

E(Δu,Δv) ≈ Δu2Ix
2 (x, y)+ 2ΔuΔvIx (x, y)Iy(x, y)+ Δv2Iy

2 (x, y){ }
(x,y)∈ROI
∑

≈ Δu Δv⎡
⎣

⎤
⎦

Ix
2 (x, y) Ix (x, y)Iy(x, y)

Ix (x, y)Iy(x, y) Iy
2 (x, y)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Δu
Δv

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(x,y)∈ROI
∑
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!  

!  

Equation 3.5: SSD Equation in Matrix Form 

!  

Equation 3.6: Harris Matrix 

 The 2x2 matrix H—Harris matrix—is defined in Equation 3.6. The Harris matrix 

describes the gradient distribution within the ROI, therefore the Harris matrix can be 

used to classify corner features. The gradient distribution is variant to corner rotation 

within the ROI, therefore the eigenvalues of the Harris matrix are used to create a 

rotationally invariant description of the gradient distribution. The eigenvalues of the 

Harris matrix define the shape of the eclipse which encapsulates the horizontal and 

vertical gradient distribution of the ROI, shown in Figure 3.6. The eigenvalues of the 

Harris matrix are invariant to rotation, intensity scaling, and affine transformations, thus 

the eigenvalues of the Harris matrix are used as the characteristic for detecting corners. 

If a corner exists within a ROI, then both eigenvalues of the Harris matrix will have 

≈ Δu Δv⎡
⎣

⎤
⎦

Ix
2 (x, y) Ix (x, y)Iy(x, y)

Ix (x, y)Iy(x, y) Iy
2 (x, y)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(x,y)∈ROI
∑ Δu

Δv
⎡

⎣
⎢

⎤

⎦
⎥

≈ Δu Δv( )H Δu
Δv

⎛
⎝⎜

⎞
⎠⎟

H =
Ix
2 (x, y) Ix (x, y)Iy(x, y)

Ix (x, y)Iy(x, y) Iy
2 (x, y)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟(x,y)∈ROI

∑
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significant magnitude, which implies a large gradient distribution in the horizontal and 

vertical directions. 

Figure 3.6: Eclipse Representation for Harris Corner Detection 

 Based on the eigenvalues of the Harris matrix, a corner score is assigned to 

identify the likelihood of a corner existing within the ROI. A corner is considered detected 

when the corner score is significantly greater than zero, which implies a large 

encompassing eclipse over the gradient distribution. The corner score equation is 

described in Equation 3.7. 

!

! λ1 ≈ 0 AND λ2 ≫ λ1 => Edge Exists

! λ1 ≫ 0 AND λ2 ≫ 0 => Corner Exists

! λ1 ≈ 0 AND λ2 ≈ 0 => No Feature

!

!
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!  

Equation 3.7: Corner Score Equation 

 The k term is considered the sensitivity parameter of the corner detector, which is 

manually adjusted, however it has been empirically shown that it typically ranges from 

0.04-0.06. Figure 3.7 shows the corner response of an example geometric input image. 

The corner points of the input image in Figure 3.7 (a) produce a significant corner score 

greater than zero, while the edge and flat regions produce a smaller corner score. 

Figure 3.7: Corner Response Example 

 The Harris corner detection algorithm can be used to produce a corner response, 

which is computed by determining the eigenvalues of the Harris matrix at each ROI 

within the image. The Harris matrix is computed for every pixel within in the image, thus 

it is very computationally intensive. Once a corner response is created for an image, the 

R = λ1λ2 − k(λ1 + λ2 )
2

(a) Input Image (b) Corner Response 
Threshold > 0

! !
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corner locations can be extracted as feature locations for higher level computer vision 

algorithms. 

3.4 Corner Detection Algorithm 

3.5 Corner Detection Software Architecture 

 The Harris corner detection algorithm, described in Section 3.4, can be 

partitioned into incremental stages: image convolution, array multiplication, corner 

detection, and non-maxima suppression. Figure 3.8 shows the Harris corner detection 

software architecture and algorithm flow from input image to suppressed corner 

response. The input image is first convolved with a Gaussian smoothing filter in order to 

remove any unwanted noise from the image. The smoothed image is then convolved 

with gradient directional filters in order to calculated the Ix and Iy gradients. The Ix and Iy 

gradients are then element-by-element multiplied to calculate Ix2, Iy2, and IxIy products 

which are used as input for the corner detector stage. The corner detector, at every 

spatial location, calculates the Harris matrix and it’s eigenvalues for the ROI. Based on 

1) Denoise Input Image Using Gaussian Smoothing Filter

2) Compute Image Gradients Ix and Iy 

3) Compute Image Gradient Products Ix2, Iy2, and IxIy

4) For Every Pixel Location

   a) Define ROI Around Pixel

   a) Compute Harris Matrix from Ix2, Iy2, and IxIy for ROI

   b) Compute Eigenvalues of Harris Matrix

   c) Assign Corner Score to Pixel

5) Threshold Corner Response

6) Perform Non-maxima Suppression on Corner Response
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the eigenvalues calculated for a ROI, a corner score is determined and assigned to that 

spatial location. The corner response is then suppressed using non-maxima suppression 

to define a minimum distance between adjacent corner detections in the corner 

response. This section will describe each stage and its description, which will follow into 

optimizing the implementation using CUDA in Chapter 4. 
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!  

Figure 3.8: Harris Corner Detection Software Architecture 
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3.5.1 Image Convolution 

 Image convolution, also known as spatial filtering, is defined as two dimensional 

discrete convolution. Image convolution is the process of sweeping a filter mask, also 

known as convolution kernel, across every pixel in an image while performing a scalar 

product reduction between neighboring pixel and the filter mask coefficients [11]. 

Computing the value of each filtered pixel involves the centering the filter mask at the 

desired pixel, shown in red in Figure 3.9. Once the filter mask is centered over the pixel, 

the neighbors for that pixel are multiplied with the corresponding filter mask coefficients, 

then all values are reduced into a sum that represents the filtered value. Figure 3.9 

visually describes the image convolution process for a single pixel. Based on the filter 

mask coefficients, several different filtering operations can be performed on an input 

image. For the application of Harris corner detection, only Gaussian blurring and Sobel 

gradient filtering will be discussed. The Harris corner detection algorithm requires three 

separate image convolutions for an input image: Gaussian blurring, directional gradient 

X, and directional gradient Y. 

!  

Figure 3.9: Image Convolution Visual Description [12] 
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3.5.1.1 Gaussian Blurring 

 The first stage in the Harris corner detection software architecture is to perform a 

Gaussian smoothing (LPF) operation on the input image in order to reduce noise: 

Gaussian noise is commonly found in digital images due to electrical sensor interference 

[13]. The Gaussian filter mask, shown in Figure 3.10, when convolved with the input 

image, filters out high frequency intensity changes in the image, thus providing a 

smoother output image. Gaussian smoothing is a prerequisite for determining image 

gradients in order to eliminate the false intensity changes when computing the Ix and Iy 

directional gradients. 

!  

Equation 3.10: 2D Gaussian Distribution Equation 

!  

Figure 3.10: 3x3 Gaussian Convolution Filter masks(sigma = .85) 

 The mathematical model of the Harris corner detection algorithm does not 

theoretically require Gaussian filtering, however the presence of noise in digital images 

and video may cause false corner detection; thus, smoothing the image before running 

the detection algorithm is necessary in implementation. 

f (x, y) = e
− (x−xo )

2

2σ x
2

− (y−yo )
2

2σ y
2

1/16 1/ 8 1 /16
1 / 8 1 / 4 1 / 8
1 /16 1 / 8 1 /16

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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3.5.1.2 Image Gradients 

 The image gradients in X and Y directions can be determined by performing 

image convolutions with the Sobel directional filter masks, shown in Figure 3.11. The 

Sobel filter mask, when convolved with the input image, effectively takes the directional 

derivative of the input image and produces an edge map. The Ix and Iy gradients 

produced by convolving the input image with the Sobel filter masks describe the pixel 

intensity changes within a ROI. 

Figure 3.11: 3x3 Sobel Gradient Filter masks 

3.5.2 Array Multiplier 

 Array multiplication, unlike matrix multiplication, is element-wise multiplication 

between two matrices (or images). The array multiplier stage of the Harris corner 

detection software architecture computes Ix2, Iy2, and IxIy products which are used as 

input to he corner detector stage to compute the Harris matrix at every ROI. 

3.5.3 Corner Detector 

 The corner detector stage of the Harris corner detection algorithm calculates the 

unsuppressed corner response based on the image’s gradients and sensitivity 

parameter. The corner detector iterates over every pixel in the image, defines a ROI 

around that pixel, and calculates the Harris matrix for that ROI. The elements of the 

Harris matrix are computed by summing the directional gradient products Ix2, Iy2, and IxIy 

over the ROI. The eigenvalues for the Harris matrix are then calculated using the 

(a) Sobel X Gradient Filter (b) Sobel Y Gradient Filter
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quadratic formula and are used to assign a corner score for every pixel in the corner 

response. 

3.5.4 Non-maxima Suppression (NMS) 

 The non-maxima suppression (NMS) stage of the Harris corner detection 

software architecture can be considered as a non-linear filter which filters out pixel 

values which are non-maximums in local neighborhoods. A well-defined corner response 

for each pixel neighborhood is desired when identifying unique corner feature. NMS 

involves iterating over every pixel in the corner response. For every pixel, the 

neighborhood surrounding the pixel is extracted. If a pixel is not the maximum in its 

neighborhood, then the pixel value is set to zero, otherwise it is left unchanged. The 

NMS effectively defines the minimum distance between features allowed in the image 

based on the neighborhood size. Figure 3.12 shows an example of performing a 3x3 

neighborhood NMS on the corner response image computed from Figure 3.7 (a). 

Figure 3.12: Unsuppressed and Suppressed Corner Responses 

(a) Corner Response (b) Suppressed Corner Response

! !
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Chapter 4: Harris Corner Detection GPGPU Implementation 

4.1 Corner Detection Parallel Software Architecture 

 This section will discuss the CUDA implementations for each of the software 

architecture stages, shown in Figure 3.8, and the necessary CUDA optimizations in 

order to achieve high performance corner detection. Each stage in the Harris corner 

detection software architecture can be implemented to run in parallel using CUDA. The 

software architecture can be further decomposed into a parallel architecture by 

identifying independent stages. Figure 4.1 shows the parallel architecture, for each 

component can be implemented to run in parallel. Each segmented region in Figure 4.1 

identifies a CUDA kernel invocation, where a CUDA kernel is the GPGPU function to 

execute. The dependence of a sequential implementation flow still remain, for the 

execution must start on the left of Figure 4.1 and incrementally finish at the right of the 

parallel software architecture. The following sections will describe the CUDA 

optimizations made for each stage in the Harris corner detection implementation in order 

to achieve high performance. 

!  

Figure 4.1: Harris Corner Detection Parallel Software Architecture 
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4.2 GPGPU Convolution 

 The Harris corner detection implementation requires three separate convolutions 

for each input image: Gaussian smoothing, directional gradient X, and directional 

gradient Y. Image convolution, or spatial filtering, is a natural fit for the CUDA software 

platform. The CUDA image convolution implementation can be intuitively understood by 

defining the CUDA thread configuration grid the same size as the input image, thus each 

thread corresponds to a pixel’s spatial location. Each thread will then perform the 

neighboring reduction within the pixel’s neighborhood and the convolution filter mask. 

The first stage of Harris corner detection implementation is the convolution with a 

Gaussian smoothing filter to remove noise in order to avoid false corner detection. If the 

input image has size MxM and the filter mask has size NxN, then the number of 

multiplications required to convolve the input image with the filter mask is M2 * N2 (where 

M >> N). 

!  

 Figure 4.2: CUDA GPGPU Convolution Algorithm Flow 
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4.2.1 Naive Convolution GPGPU Implementation 

 The naive CUDA implementation of image convolution consists of loading the 

input image and filter mask into global memory (slowest memory) on the GPGPU, then 

spawning a CUDA thread for every pixel in the image. Each thread will then perform a 

reduction with its pixel’s neighborhood and the filter mask. The CUDA image convolution 

implementation can be visually described by Figure 4.2. 

 The GPGPU has a separate memory management system than the host CPU; 

therefore, in order to perform work on the GPGPU, the CPU must first copy the image 

and filter mask to the GPGPU memory. The naive CUDA image convolution 

implementation does not consider data-bus overhead, discussed in Section 2.5.1, and 

has the memory transfer flow shown in Figure 4.3. As discussed in Chapter 2, the host 

CPU can only transfer memory to the GPGPU if the memory is pinned (non-paged). 

Copying the image and filter mask to the GPGPU from the host CPU involves first 

copying the memory to host pinned memory and then copying the memory to the 

GPGPU global memory over the PCI express bus, resulting in poor memory transfer 

performance. 

!  

Figure 4.3: Naive CUDA Convolution Memory Transfers 
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Figure 4.4: Naive Convolution CUDA Kernel Pseudo Code 

 That naive implementation uses the slowest memory type, global memory, on the 

GPGPU device for the input image and filter mask. The pseudo code in Figure 4.4 

shows the CUDA kernel which is executed for every spawned thread. If the filter mask 

has size NxN, then each thread has 2 * N2 global memory access (highlighted in green) 

for every 2 * N2 computations, implying a CGMA ratio of 1. The naive implementation 

performance can by increased by optimizing the memory transfers from the host CPU to 

the GPGPU device, as well as increasing the CGMA ratio by utilizing faster memories on 

the GPGPU device for the input image and filter mask. 

4.2.2 Optimized Convolution GPGPU Implementation 

4.2.2.1 Separable Convolution Filter Masks 

 The total number of multiplications can be decreased by utilizing filter mask 

separability. A filter mask is considered separable if the filter mask can be represented 

by the convolution between a vertical and row vector, as shown in Equation 4.1. If a filter 

mask is separable, the image convolution can be computed by two separate 

convolutions. 

!  

Equation 4.1: Convolution Filter Mask Separability Association 

FOR every thread 
 FOR i=0 to kernel dimension 
  FOR j=0 to kernel dimension 
  value = value + kernel[i][j] * neighborhood[i][j] 
  END FOR 
 END FOR 

 pixels[thread row][thread col] = value 
END FOR

IMxM ∗FNxN = (IMxM ∗CNx1)∗R1xN
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The convolution between a vertical and row vector is equivalent to the outer product of 

the vectors, thus a 2D filter mask can be easily separated into two 1D filter masks. 

Equations 4.2-4.4 shows the separability for the Gaussian and Sobel direction gradient 

filter masks. 

!  

Equation 4.2: Gaussian Separated Filter Mask 

!  

Equation 4.3: Sobel X Gradient Separated Filter Mask 

!  

Equation 4.4: Sobel Y Gradient Separated Filter Mask 
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 The total number of multiplication required to perform the convolution with the 

input image and the two 1D filter masks is M2 * 2N (where M >> N), thus only requiring a 

fraction of 2 / N multiplications. Victor Podlozhnyuk, from NVIDIA, states that separable 

filter masks have the added benefits of “reducing the arithmetic complexity and 

bandwidth usage of the computation for each data point” [9]. The number of 

multiplications avoided by utilizing separable filter masks can be quantified as the 

expression M2 * N(N-2), where M represents the image’s square dimension size, and N 

represents the filter mask’s square dimension size. Figure 4.5 shows the number of 

multiplications avoided by utilizing separable filter masks over traditional convolution 

filters. 

!  

Figure 4.5: Avoided Multiplications by Utilizing Separable Convolution Filters  
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 Implementing separable convolution increases the number convolution CUDA 

kernel invocations, however CUDA kernel invocations are inexpensive. By utilizing 

separable filter masks, the total number of multiplications is greatly reduced and 

performance is increased. 

4.2.2.2 Async Memory Transfers 

 By default, all memory copies to the GPGPU from host CPU and vice-versa are 

synchronized to the host CPU execution. Thus, a copy operation from the host CPU to 

the GPGPU will block the host CPU program execution until the copy is finished. The 

execution timeline for separable CUDA convolution is shown in Figure 4.6. 

!  

Figure 4.6: Separable CUDA Convolution Execution Flow 

 The entire image is first transferred from the host CPU pinned memory to the 

GPGPU over the PCI express bus (Host to Device), the convolution with the 1D row filter 

mask is executed, then the convolution with that 1D column filter mask is executed, in 

sequential order. Host to GPGPU memory transfers and CUDA kernel execution occur 

sequentially, however it is possible to overlap the CUDA kernel execution with the 

memory transfers from the host to the GPGPU [9]. By exploiting separable filter masks, 

and the fact that memory is stored sequentially for row major images, it is possible to 

pipeline the memory transfers from the host to the GPGPU with 1D row convolution 

operations. 

 Since the launch of a CUDA kernel is inexpensive, there will be a CUDA kernel 

specialized to perform a 1D row convolution on a single row of pixels from an image with 

a 1D row filter mask. Once a single row from the input image is loaded onto the GPGPU 
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memory, the 1D convolution CUDA kernel can be executed. With an input image of size 

MxM, there will be total of M separate 1D convolution kernel invocations in order to 

convolve the 1D row filter mask with the entire input image. 

 The asynchronous pipeline parallelism is possible with CUDA streams. A CUDA 

stream “is simply a sequence of operations that are performed in order on the 

device” [9]. The default CUDA stream, used by CUDA’s memory transferring API, blocks 

host CPU execution until finished. CUDA allows for host code to create multiple streams 

which will run asynchronously from the host execution, thus memory transfers and 

CUDA kernels can by performed in parallel. By incorporating the concept of pipelining, 

CUDA convolution kernels can be executing on the GPGPU while the next pixel row is 

being transferring over to the GPGPU. Figure 4.7 shows the execution timeline for the 

asynchronous memory transfers running in parallel with row convolution operations. 

While row N of the image data is being transfer to the GPGPU, convolution of image row 

N-1 is being computed simultaneously.  

!  

Figure 4.7: Pipelined CUDA Separable Convolution Execution Flow  

 Let Ttrans represent the time to transfer the entire image to the GPGPU, TRC 

represent the time to perform row convolution, and TCC represent the total time to 

execute the column convolution. By utilizing asynchronous memory transfers, the entire 
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convolution can be approximated by TCC +(Ttrans +TRC) / 2 units of time, thus saving 

approximately (Ttrans +TRC) / 2 time over the synchronous implementation. 

4.2.2.3 Constant Memory Utilization 

 Since each thread within the GPGPU convolution kernel reads the same filter 

mask with the same access pattern, memory reads to the filter mask can be optimized 

by loading the filter mask into constant memory on the GPGPU. The memory reads to 

the filter mask are coalesced for every block, and therefore for every warp; thus memory 

access performance of the convolution kernel will be improved and the number of global 

memory accesses will be decreased due to the constant memory on-chip cache.  

4.2.2.4 Shared Memory Utilization 

 The final bottleneck in the optimized CUDA convolution implementation is the 

global memory accesses to pixel values. Shared memory has a much higher bandwidth 

and much lower delay access time than global memory [5]. If a 1D filter mask has N 

elements, and the image has size MxM, then there are M*N global memory reads due to 

accessing the pixel data. By utilizing on-chip shared memory, redundant accesses to 

global memory pixel data can be avoided and the total number of global memory access 

for pixel data can be reduced to M. 

 All threads that exist within the same block have a dedicated segment of shared 

memory which is available for use on each streaming multiprocessor. The shared 

memory for a row of pixels from the image can be populated in parallel by having each 

thread load its appropriate pixel data into the shared memory segment before performing 

the 1D row convolution operation. Complications appears when concerning border pixels 

within the thread blocks, for threads that exist on the edge of a thread block needs to 

have access to shared memory segments of neighboring blocks. The solution is to add a 

small amount of redundancy to the shared memory blocks. By creating a shared 
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memory segment that is greater than the dimension size of the thread block, threads 

located at the border of a block can efficiently access the values that extend outside of 

their regular scope. Figure 4.8 shows how shared memory is overlapped between thread 

blocks to allow for shared memory accesses when convolving pixels that are spatially 

located at the edges of blocks. The first row in Figure 4.8 shows the threads configured 

into 4 separate thread blocks, each containing 6 threads, resulting in 24 threads total. 

Each thread block allocates a shared memory segment with 2 extra elements of added 

redundancy. Shared memory blocks now contain pixel information from the their 

neighboring thread blocks. This allows, for example, thread 7 in block 2, to access the 

data from thread 6 in block 1 from directly from its own portion of shared memory. 

!  

Figure 4.8: Shared Memory Overlap Between Thread Blocks 

  

 Once the shared memory is loaded for each block, including the redundant 

overlaps, the 1D row convolution can be performed directly from shared memory. By 
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operating directly from shared memory, the total global memory accesses reduces from 

M*N to M, where M is the image dimension size and N is the length of the 1D filter mask. 

4.2.3 Convolution Performance Results 

 The optimized CUDA implementation of image convolution performance results 

were compared to the standard C, MATLAB, and naive CUDA implementations. The 

performance results were acquired by measuring the elapsed time to perform a single 

image convolution with a fixed 3x3 Gaussian filter mask over several different square 

image dimension sizes. The optimized CUDA implementation incorporates all 

optimization techniques described in Section 4.2.2: separable convolution masks, 

asynchronous memory transfers, constant and shared memory utilization.  

 Figure 4.9 shows how the image convolution process times vary with image size 

for the different implementations. The performance results show that the standard C and 

MATLAB implementations behave parabolically with image dimension size, thus realtime 

performance is not feasible. The optimized CUDA implementation outperformed all of the 

other implementations and platforms by orders of magnitude. Table 4.1 shows the 

speedup factors, ratio of processing times, of the optimized CUDA image convolution 

implementation over the other implementations. 
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Figure 4.9: Image Convolution Performance Results 

Table 4.1: Optimized CUDA Convolution Speedup 
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32x32 0.441 0.551 3.047

64x64 0.342 0.284 5.704

128x128 0.612 0.555 5.95

256x256 1.821 1.714 5.77

512x512 4.123 4.404 5.845

1024x1024 5.921 6.323 5.035
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4.3 GPGPU Corner Detector 

 The corner detection algorithm is a non-linear filtering operation which produces 

a corner response based on the image gradients in the X and Y directions. A pixel’s 

output intensity in the corner response calculation is independent of any other pixel, thus 

a parallel CUDA implementation is the perfect platform for increasing performance. The 

corner response calculation involves calculating the Harris matrix, define in Equation 3.6, 

for each ROI (region of interest) defined around each pixel. Each corner response pixel 

can be calculated in parallel by creating a CUDA thread configuration grid with the same 

size as the image, thus each thread will calculate its appropriate corner score output 

pixel independently. Figure 4.10 shows the parallel implementation for the corner 

response algorithm. 

!  

Figure 4.10: CUDA GPGPU Corner Detector Algorithm Flow 
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4.3.1 Naive Corner Detector GPGPU Implementation 

 The naive CUDA GPGPU implementation of the corner detector algorithm 

involves loading the three product gradient images Ix2, Iy2, and IxIy into GPGPU global 

memory (slowest memory). Each thread will then execute the naive CUDA kernel, which 

will perform a summation of the product gradient images for the input pixel’s ROI. 

Figure 4.11: Naive Corner Detector CUDA Kernel Pseudo Code 

  

 The corner detector’s most computational intensive task is the summations of the 

image gradient products over each ROI. Figure 4.11 shows the pseudo code for the 

CUDA kernel to run for every pixel in the corner detector implementation in parallel. Let 

W define the dimension size of the ROI around the pixel. The number of global memory 

accesses for a ROI summation is W2, thus the total number of global memory accesses 

for a thread will be 3W2, implying a CGMA ratio of 1. The total number of memory 

accesses could be decreased by utilizing shared memory, using the same technique as 

convolution; however, an optimization using integral images will show a constant number 

of global memory accesses regardless of ROI size. 

FOR every thread 
 a = sum neighborhood(dx2, thread row, thread col) 
       b = sum neighborhood(dy2, thread row, thread col) 
       c = sum neighborhood(dxdy, thread row, thread col) 
       M = build matrix [a, c, 
                         c, b] 
       l = compute eigenvalues(M) 
       r = l(0) * l(1) - sensitivity * (l1 + l2)^2 

       corner response[thread row][thread col] = r 

END FOR
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4.3.2 Optimized Corner Detector GPGPU Implementation 

4.3.2.1 Integral Images 

 An integral image can be considered the two dimensional exclusive scan of the 

input image. The integral image at coordinate (x,y) is represented by the summation of 

all pixel values from the point (x,y) to the origin (0,0). Integral images optimize the ROI 

summation calculation, for the “summation of pixel values within the window can be 

calculated in 3 additions and 4 memory accesses” [2]. The summation of a 

neighborhood in an image can be defined as an arithmetic calculation of the integral 

neighborhood corner points. Figure 4.12 overlays the internal image summation areas 

over the original image. The summation of the neighborhood (highlighted in green) in 

Figure 4.12 can be computed in four arithmetic operations using the integral image, 

shown in Equation 4.1. 

!  

Figure 4.12: Integral Image Neighborhood Summation 
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Equation 4.1: Neighborhood Summation Equation Utilizing Integral Image 

  

Equation 4.1 represents the neighborhood summation calculation by utilizing integral 

images, where I represents the original image and A, B, C, D represent the corner points 

in the integral image. 

 To compute the integral image efficiently in CUDA, optimizations should be 

focused towards the exclusive scan operation. Exclusive scanning is defined as the 1D 

accumulation of values in an array, for each value computed is equal to the sum of all 

previous values, excluding the current value. Equation 4.2 shows the relationship 

between the 1D input, and the exclusive scan output. 

!  

Equation 4.2: Exclusive Scan Operation 

  

 The parallel implementation of the exclusive scan operation involves two 

separate phases in order to achieve O(N) work complexity: up-sweep, and down-sweep. 

The up-sweep implementation can be conceptually visualized as overlaying a balanced 

tree over the input data. The up-sweep performs a summation of the children nodes of 

the balanced tree and assigns each summation result to the parents. Figure 4.13 shows 

the visual representation of the parallel up-sweep phase. Each thread performs log2(N) 

iteration where N is the size of the input data. At each iteration, only half of the threads 

are active from the previous iteration. The active threads are highlighted in red in each 

iteration of the up-sweep phase shown in Figure 4.13. 

I(x, y)
(x,y)∈neighborhood

∑ = A(x, y)+ D(x, y)− B(x, y)−C(x, y)

[x0, x1, x2,..., xN ]− > [0, x0,(x0 + x1),...,(0 + x0 + x1 + ...+ xN−1)]
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Figure 4.13: Parallel Up-Sweep Scan Implementation 

  

 After the up-sweep phase has finished on the input data, the down-sweep phase 

must be performed in order to complete the exclusive scan operation. Figure 4.14 shows 

the parallel implementation of the down-sweep phase. Before starting the down-sweep 

operation, the last element from the up-sweep phase is set to zero. At each iteration, 

twice the number of threads are active than the previous iteration. The active threads are 

highlighted in red in Figure 4.14. Once the down-sweep phase is finished, the exclusive 

scan operation is complete. The parallel exclusive scan operation is work efficient and 

has a O(N) work complexity, same as the sequential implementation. 
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Figure 4.14: Parallel Down-Sweep Scan Implementation 

  

 The naive CUDA implementation of the exclusive scan operation loads the entire 

input array into shared memory and performs the entire scan operation within a single 

block of threads. Utilizing only a single thread block limits the maximum input data size 

to the GPGPU maximum threads per a block specification. Since a single block executes 

exclusively on a single SM, utilizing a single block on the GPGPU leaves the rest of the 

SMs idle, yielding poor thread occupancy. A higher degree of parallelism can be 

achieved by incorporating more thread blocks to utilize all SMs on the GPGPU; however, 

this increases the complexity of the implementation since the shared memory segments 

are not shared between thread blocks.  

 The optimized CUDA implementation of the exclusive scan operation can be 

implemented by partitioning the input data, size N, into B thread blocks. The number of 

thread blocks should be partitioned evenly by the number of threads per block; thus, the 
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number of thread blocks should be equal to (N / T), where T is the number of threads per 

a block. The number of thread blocks should at least be equal to the number of 

streaming multiprocessors, S, on the GPGPU to ensure that every SM is performing 

work. Thus, the number of threads per block should be defined as N / S, which creates 

the same number of thread blocks as there are SMs. Table 4.2 shows an example of a 

thread configuration that utilizes all SMs on the GPGPU with a given data input size. 

Table 4.2: Example Thread Configuration For High SM Occupancy 

 Each block of threads will compute its local exclusive scan operation on T 

elements of the input data. Once all of the thread blocks are finished computing the scan 

operation on their portions of the data, the last element of every block will be extracted to 

form an auxiliary array [14]. The same exclusive scan operation will then be performed 

on the the auxiliary array, and once finished, the elements of the auxiliary array will be 

summated back into the segmented scan arrays to complete the exclusive scan 

operation. The CUDA exclusive scan implementation spanning over multiple thread 

blocks is visually represented in Figure 4.15. 

Variable Expression Value

Input Data Size N                       
(independent)

1024

Number of SMs S                       
(independent)

8

Threads Per Block T = (N / S)         
(dependent)

32

Number of Blocks B = (N / T)         
(dependent)

32
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Figure 4.15: Parallel Scan Involving Multiple Thread Blocks 

 The integral image is computed by first scanning the rows of the input image, 

then performing the scan on the columns. In order to utilize spatial locality of the GPGPU 

L1 and L2 caches, as well as code reuse, the result of the exclusive scan on the image’s 

rows will be transposed, then the result will be exclusively scanned again, effectively 

operating on the columns. Once the second exclusive scan operation is completed, the 

image is transposed again in order to obtain the final integral image result. Row major 

images are addressed in memory sequentially, thus the first pixel of row N is addressed 

sequentially in memory after the last pixel in row N-1. Transposing the image in order to 

compute the exclusive scan on the columns will effectively improve the cache hit-ratio 
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and improve the overall performance of the GPGPU integral image implementation. The 

integral image architecture is showing in Figure 4.16. 

!  

Figure 4.16: Integral Image Algorithm Architecture 

  

 By utilizing integral images, only four global memory access are necessary to 

compute the summation of a neighborhood regardless of the neighborhood dimension. 

By creating integral images for Ix2, Iy2, and IxIy gradient products, the total number of 

global memory accesses reduces from 3W2 to a constant of 12 (4 global memory 

accesses per ROI summation). Figure 4.17 shows the comparison of integral image 

processing times over several different platforms: standard C, MATLAB, and optimized 

CUDA. The optimized CUDA implementation showed great performance over the 

standard C and MATLAB implementations due to the optimized parallel up-sweep and 

down-sweep implementations. 

�56



!  

Figure 4.17: CPU vs GPGPU Integral Image Process Time 

4.3.3 Corner Detector Performance Results 

 The corner detector performance results, shown in Figure 4.18, were compared 

over several different platform implementations: standard C, naive CUDA, and optimized 

CUDA. The optimized CUDA implementation utilized all performance optimizations 

discussed in Section 4.3.2. Figure 4.18 shows that the standard C implementation 

processing time has a parabolic relationship with the image dimension size, thus it is not 

suitable for realtime Harris corner detection. The CUDA implementations showed 

significant speedup over the standard C implementation. All implementations show 

equivalent detection accuracy, for the CUDA optimizations do not compromise detection 

precision. The optimized CUDA implementation showed the greatest speedup, with 
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corner detection processing time not exceeding 2.5 ms for all image dimension sizes up 

to 1024x1024 pixels.  

!  

Figure 4.18: Corner Detection Performance Results 

4.4 GPGPU Non-maxima Suppression (NMS) 

 Non-maxima suppression (NMS) is a non-linear filter, which operates by filtering 

non-maxima values within a local neighborhood. NMS effectively attempts to distribute 

the corner feature locations, represented by the corner response, more evenly by 

defining a minimum distance between corner feature points. Since each local 

neighborhood is processed with zero dependence on any other neighborhood in NMS, 

each neighborhood can be processed in parallel on the GPGPU architecture. 
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4.4.1 Naive NMS GPGPU Implementation 

 The naive GPGPU NMS involves spawning a CUDA thread for every pixel in the 

corner response. The entire corner response is first loaded into global memory (slowest 

memory). Each thread will determine if their pixel is the maximum value within its local 

neighborhood. If the pixel is not the maximum, then the output pixel value is set to zero, 

otherwise the pixel value is left unchanged. Each thread iterates over its own local 

neighborhood in raster scan order until a neighboring value greater than the pixel is 

found. Figure 4.19 shows the naive CUDA kernel implementation. 

Figure 4.19: Naive Non-maxima Suppression CUDA Kernel Pseudo Code 

  

 The naive implementation requires W2M2 global memory reads as a worst case 

scenario, where W represents the dimension size of the neighborhood, and M 

represents the image dimension size. Each thread suffers its worst case performance if 

the pixel being considered is a local neighborhood maximum, thus the algorithmic 

complexity for a single thread is O(W2).  

4.4.2 Optimized NMS GPGPU Implementation 

4.4.2.1 Spiral Scanning 

 Every thread has a best case scenario when there is only a single comparison 

within the local neighborhood before breaking its execution. This implies that the first 

FOR every thread 
       FOR neighbor in pixel neighborhood 
              IF neighbor > pixel 
                     pixel = 0 
                     break 
              END IF 
       END FOR 
             
       result[thread row][thread col] = pixel 
END FOR
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neighbor visited has a greater value than the pixel, which further implies that the pixel is 

not a local maximum. The worst case performance is invoked when the pixel is a local 

maximum, thus (W2-1) comparisons are necessary. Förester and Gülch presented the 

idea that the average number of comparisons can be reduced by iterating the 

neighborhood pixels in a spiral scan order, rather than a raster scan order [15]. A corner 

response has zero-valued intensity for the majority of the corner scores; therefore, only a 

smaller percentage of the corner response pixels are neighborhood maximums. A local 

maximum pixel within a W2 sized neighborhood is guaranteed to be the local maximum 

within its (W-1)2, (W-2)2, …, (3)2 sized neighborhoods. By visiting smaller sized local 

neighborhoods in spiral order first, partial neighborhood local maximums can be 

determined before moving onto larger sized neighborhoods [15]. 

 A spiral scan order can be implemented to determine local maximums in smaller 

neighborhoods before scanning neighbors that are farther away from the pixel. Figure 

4.20 shows the difference between the raster and spiral scan order.  

Figure 4.20: Iterative Neighborhood Scanning Orders 

  

(a) Raster Scan Order (b) Spiral Scan Order

! !
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 The spiral scan order will determine non-maximum pixels within the 32 sized 

neighborhoods first, which will break on average since the corner response pixels are on 

average non-local maximums. By failing the first small neighborhood comparison, 

computation can be stopped and larger neighborhood comparisons are not necessary; 

therefore, the number of comparisons for a W2 size neighborhood shows roughly the 

same number of comparisons for a 32 sized neighborhood on average. By utilizing a 

spiral scan order for neighborhood iteration, the number of comparisons can be 

significantly decreased in the NMS implementation. Spiral scanning effectively reduces 

the number of global reads, therefore it increases the CGMA ratio of the CUDA NMS 

implementation.  

4.4.2.2 Corner Segmentation 

 The NMS algorithm effectively erodes low magnitude corner response by 

determine local neighborhood maximums; however, the majority of the corner response 

has zero-valued intensity. A zero intensity value in the corner response has a zero 

probability that it is a local maximum, thus performing NMS on that value is not 

necessary. The NMS algorithm can be optimized by only suppressing pixels with a non-

zero corner score and ignoring all other pixels. This effectively minimizes the number of 

threads running on the GPGPU and allows for more resources per thread. Rather than 

suppressing the corner response directly, the non-zero corner score pixels can be 

segmented from its zero-valued background.  

 The segmentation is done by applying a threshold filter to segment all non-zero 

corner scores away from the background. The non-zero corner scores are then 

extracted from the corner response into an array. Figure 4.21 shows the segmentation of 

the corner response from its zero-valued background. The segmented information is 

compiled into a 1D array, therefore the spatial coordinates from the corner response 

must be extracted along with the corner scores. 
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Figure 4.21: Corner Response Segmentation 

 By utilizing corner response segmentation, each non-zero corner score within the 

segmentation information has a much higher probability that it’s a neighborhood 

maximum. Rather than spawning a thread to perform NMS for every corner score in the 

corner response, a thread only needs to be spawned for every non-zero corner score in 

the corner response segmentation. This results in a significantly less number of threads 

running on the GPGPU, thus increasing performance of the CUDA NMS implementation. 

4.4.2.3 Texture Memory Utilization 

 Each NMS result pixel is computed by performing (W2-1 ) global memory reads, 

worst case, around the each corner score pixel. Due to the corner segmentation, 

explained in Section 4.4.2.2, thread IDs no longer correlate to spatial locations of the 

corner response. This increases the complexity of shared memory usage; however, 

since the memory reads of each thread have spatial locality, texture memory can be 
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utilized to increase memory access performance and increase the CGMA ratio. By 

loading the segmented corner response into texture memory, threads will experience a 

higher cache hit-ratio due to the on-chip texture cache, and therefore will have an 

increase in memory access performance. 

4.4.3 NMS Performance Results 

 The NMS performance results were obtained by performing NMS on several 

different platforms: standard C, MATLAB, naive CUDA, and optimized CUDA. The 

optimized CUDA implementation of NMS takes into account all optimizations discussed 

in Section 4.4.2: spiral scanning, corner segmentation, texture memory utilization. Figure 

4.22 shows the input image used for benchmarking the NMS performance. The 

performance NMS was measured by computing the suppressed corner response of the 

input over several different resolutions and NMS neighborhood dimension sizes. The 

input image was down sampled from 1024x1024 to 32x32 logarithmically, and the 

neighborhood dimension size was iterated from 3 to 7 linearly. Figure 4.23-4.25 shows 

the performance results of the NMS implementations while varying the size of the NMS 

neighborhood. As the NMS neighborhood dimension size increases, the processing 

times for the standard C, MATLAB, and naive CUDA implementations increase; 

however, the optimized CUDA implementation sustains almost constant performance 

due to spiral neighborhood scanning. The standard C and MATLAB implementations 

show that they are not optimal for realtime Harris corner detection due to the rate of 

increase in processing time with image dimension size. The CUDA implementations, 

naive and optimized, show great performance, however the optimized CUDA 

implementation showed the best performance with a computation time under 2 ms for all 

neighborhood dimension sizes. 
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Figure 4.22: NMS Performance Test Input Image 

(a) Input Image

(b) Corner Response of (a) 
      Sensitivity = .04 
      Threshold = 106

(c) NMS of (b) 
     Neighborhood Dimension = 7

!

!!
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Figure 4.23: NMS Process Time With Neighborhood Dimension of 3 

!  

Figure 4.24: NMS Process Time With Neighborhood Dimension of 5 
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!  

Figure 4.25: NMS Process Time With Neighborhood Dimension of 7 

4.5 GPGPU Harris Corner Detection Performance Results 

 The performance results of the Harris corner detection implementations were 

compared for several different platforms: standard C, MATLAB, OpenCV, naive CUDA, 

and optimized CUDA. OpenCV is a cross-platform software library which aims for 

realtime image processing and computer vision performance [16]. OpenCV was 

considered as a benchmark to compare it’s cutting edge Harris corner detection 

implementation, which is commonly used in industry, to the optimized CUDA 

implementation developed in this thesis. The performance results were measured by 

executing the Harris corner detection over a series of image resolutions (32x32 - 

1024x1024), using the input parameters shown in Table 4.3. The NMS threshold was 

manually selected for each input image to yield the best results. 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Table 4.3: Harris Corner Detection Parameters 

  

 The test images used for the performance measurements are shown in Figures 

4.26-4.28. Each image has a starting resolution of 1024x1024 pixels, which were all 

down sampled in increments of 32x32 pixels in order to compare the performance 

results for smaller image resolutions. The optimized CUDA implementation incorporates 

all optimizations discussed in Chapter 4. The CUDA optimizations made to the Harris 

corner detection implementation are summarized by Table 4.4. The optimized CUDA 

performance results are sensitive to the type of input data due to the spiral neighborhood 

iteration for NMS, discussed in Section 4.2.2.1; therefore, the performance results found 

for all platforms were averaged for all images to rightfully compare the implementations. 

Parameter Type Parameter Value

Gaussian Kernel Size 3x3

Sobel Kernel Size 3x3

Corner Detector Sensitive 0.04

NMS Neighborhood Size 5x5
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Figure 4.26: Harris Corner Detection Performed on Image of an F18 

Figure 4.27: Harris Corner Detection Performed on Image of the Eiffel Tower 

Original Image  
1024x1024

Processed 
NMS Threshold = 107

! !

Original Image  
1024x1024

Processed 
NMS Threshold = 1010

! !
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Figure 4.28: Harris Corner Detection Performed on Image of Mt.Whitney CA 

Original Image  
1024x1024

Processed 
NMS Threshold = 20x108

! !
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Table 4.4: GPGPU Harris Corner Detection Optimization Summary 

  

 Figure 4.29 shows the processing time for the Harris corner detection 

implementation running on platforms standard C, MATLAB, OpenCV, naive CUDA, and 

optimized CUDA. The naive and optimized CUDA performance measurements include 

Stage Optimization Description Section

Convolution Separable Filters Reduce 
Multiplications / 
Global Memory 
Reads 

4.2.2.1

Constant Memory 
Utilization

Store Filter in 
Constant Memory to 
Increase CGMA 
Ratio

4.2.2.3

Asynchronous 
Memory Transfers

Pipeline 
Convolution and 
Memory Transfers

4.2.2.2

Shared Memory 
Utilization

Store Image in 
Constant Memory to 
Increase CGMA 
Ratio

4.2.2.4

Corner Detector Integral images Reduce 
Neighborhood 
Summation to 4 
Arithmetic 
Operations

4.3.2.1

Non-Maxima 
Suppression

Spiral Scanning Reduce Number of 
Neighborhood 
Comparisons to 
Increase CGMA 
Ratio

4.4.2.1

Corner 
Segmentation

Increase GPGPU 
Workload 
Efficenency

4.4.2.2

Texture Memory 
Utilizations

Increase CGMA 
Ratio by Exploiting 
Spatial Locality

4.4.2.3
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memory bus transfer time from host CPU memory to GPGPU memory and vice-versa. 

The standard C and MATLAB implementations show processing times greater than 220 

ms for image resolution 1024x1024 pixels, which proves that their implementations for 

realtime Harris corner detection are not feasible. Both the OpenCV and naive CUDA 

implementations show similar processing times of 50 ms for image resolution 1024x1024 

pixels, which is a significant improvement over the standard C and MATLAB 

implementations; however, their processing times yield undesirable results for realtime 

performance. To rightfully compare the processing times against OpenCV, naive CUDA, 

and optimized CUDA, the processing times were re-plotted with different time scale in 

Figure 4.30 to show the performance improvement of the optimized CUDA 

implementation. The optimized CUDA implementation showed a processing time of 11 

ms for image resolution 1024x1024 pixels, thus it was deemed best fit for realtime Harris 

corner detection over the other implementations. Figure 4.31 shows the speedup 

characteristics of the optimized CUDA implementation over the other platforms: standard 

C, MATLAB, OpenCV, and naive CUDA. The optimized CUDA Harris corner detection 

implementation had an average speedup of 14.9 over standard C, 33.8 over MATLAB, 

3.73 over OpenCV, and 6.8 over the naive CUDA implementation. Table 4.5 shows the 

feasible processing FPS (frames per seconds) for the optimized CUDA Harris corner 

detection over several different image resolutions. By utilizing the optimized CUDA 

implementation, realtime corner detection is feasible with a CUDA software solution. 
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Figure 4.29: Harris Corner Detection Process Time For All Platforms 
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Figure 4.30: Harris Process Time For High Performance Platforms 
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Figure 4.31: Optimized CUDA Harris Corner Detection Speedup 

Table 4.5: Optimized CUDA Harris Corner Detection Feasible FPS 

Harris Corner Detection Speedup 
Utilizing Optimized CUDA 
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Image Resolution Optimized CUDA Processing 
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Optimized CUDA  
Feasible Processing FPS (1/s)

32x32 0.246242 4061

64x64 0.247053 4047

128x128 0.536684 1863

512x512 3.27323 305

1024x1024 11.3103 88
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Chapter 5: Feature Matching Application 

5.1 Feature Matching Introduction 

 In a feature matching computer vision system, once features have been detected 

and extracted, they are matched to other features to determine correspondence. Feature 

matching is used extensively in computer vision systems for several applications: motion 

detection, image registration, video tracking, panorama stitching, 3D modeling, and 

object recognition. Feature matching is computationally intensive and can be broken into 

three main processes: feature detection, feature description, and feature matching. 

Feature detection is the process of locating feature points within an image. Feature 

description is the process of describing the located features uniquely. Feature matching 

is the process of determining the correspondence of features between feature sets. 

!   

Figure 5.1: Feature Matching Computer Vision System 

5.2 Feature Matching Implementation 

 The optimized CUDA implementation of the Harris corner detection algorithm, 

discussed in Chapter 4, can be utilized to provide significant performance benefit to the 

feature matching computer vision system shown in Figure 5.1. There are several 

different types of feature detection, descriptions, and matching techniques, show in Table 

5.1. The algorithms used for each stage in the feature matching implementation are 

highlighted in green in Table 5.1. 
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Table 5.1: Feature Matching Stage Types 

5.2.1 SURF Overview 

 The feature description algorithm selected for the feature matching system was 

SURF (Speeded Up Robust Features) [17]. SURF is used to describe the features due 

its high computational performance. The developers of the SURF descriptor—Herber 

Bay, Tinne Tuytelaars, and Luc Van Gool— state that the “SURF descriptor outperforms 

the other descriptors in a systematic and significant way” [17]. The SURF descriptor 

divides the located feature region into 4x4 square subregions. For each subregion, the 

Haar wavelet responses are determined in the X and Y directions and weighted by a 

Gaussian filter to reduce noise [18]. A vector is then formed by summing the Haar 

responses in the X and Y directions, shown in Equation 5.1, to describe the feature. 

SURF provides a robust way for describing features uniquely which are insensitive to 

noise, thus SURF is a good candidate for the feature matching computer vision system. 

Stage Type

Feature Detection HARRIS 
STAR 
SIFT 
SURF 
ORB 
BRISK 
MSER 
GFTT 
DENSE 
SIMPLE BLOB

Feature Description SURF  
SIFT 
BRIEF 
BRISK 
ORB 
FREAK

Feature Matching FLANN BASED (K-NN) 
BRUTE FORCE
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Equation 5.1: SURF Feature Descriptor Vector 

5.2.2 FLANN (K-NN) Overview 

 FLANN (Fast Library for Approximate Nearest Neighbors) was chosen for feature 

matching due to its performance optimizations over linear searching [19]. FL ANN is a 

software library which implements the K-Nearest Neighbor (K-NN) classification 

algorithm. K-NN classification algorithm classifies a feature point to a cluster based on 

the nearest neighbors. The algorithm involves a majority voting scheme which classifies 

a feature point based on the closest neighbors around that feature point [20]. Figure 5.2 

shows an example of K-NN classification, where the circle is the feature to be classified. 

The squares and triangles represent feature clusters which were populated into the 

feature space from predefined training data. The K-NN algorithm’s goal is to determine 

which cluster the circle belongs. The K-NN algorithm looks at the nearest K neighbors of 

the circle and classifies the feature to the most common feature found in the local 

neighborhood. Table 5.2 shows how the circle is classified in Figure 5.2 based on the 

size of K (number of neighbors). The number of neighbors considered is always an odd 

number in order to avoid equal cluster classification. 

v = ( dx, dy, | dx |, | dy |)∑∑∑∑
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Figure 5.2: K-NN Classification Example [20] 

Table 5.2: Circle Classification of Figure 5.2 

5.3 Feature Matching Performance Results 

!  

Figure 5.3: Feature Matching Stage Implementations 

K (Number of 
Neighbors)

Triangles In 
Neighborhood

Squares In 
Neighborhood

Circle Classifcation

1 1 0 Triangle

3 2 1 Triangle

5 2 3 Square

11 5 6 Square
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 The feature describer and matcher stages selected for the feature matching 

computer vision system are shown in Figure 5.3. The describer and matcher stages 

were implement in OpenCV. The feature matching system was executed by first 

providing a training image to establish a feature set basis, then providing scene images 

where the features from the training image were matched to. Figure 5.4 (a) shows the 

training image used, and Figure 5.4 (b,c,d) shows the scene images used for measuring 

the performance of the feature matching computer vision system. 
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Figure 5.4: Training Image and Scene Images 

 The feature matching performance results were analyzed utilizing several Harris 

corner detection implementations discussed in Chapter 4: standard C, MATLAB, 

OpenCV, naive CUDA, and optimized CUDA. The performance results were analyzed by 

feature matching a training image to multiple scene images, shown in Figure 5.4. The 

scene images were sub-sampled from image dimensions 1024x1024 to 32x32 

(a) Training Image (b) Scene 1

(c) Scene 2 (d) Scene 3

!

!

!

!
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logarithmically to measure performance processing time over various image resolutions. 

Figure 5.5 shows the output of the feature matching computer vision system utilizing the 

top 10% best feature matches for each scene image. 

 

Figure 5.5: Feature Matching System Result 

 Figure 5.6 shows the processing times of the feature matching system with the 

corner detection implemented on different platforms: standard C, MATLAB, OpenCV, 

naive CUDA, and optimized CUDA. The feature description and matching algorithms, 

SURF and FLANN, were implemented sequentially in OpenCV on the CPU, with the 

exception of the MATLAB implementation The feature matching system utilizing the 

optimized CUDA Harris corner detection showed the best performance when compared 

(a) Matching to Scene 1 (a) Matching to Scene 2

(a) Matching to Scene 3

! !

!
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against the other platforms. Figure 5.7 shows the performance speedup of utilizing the 

optimized CUDA Harris corner detection implementation over other implementations in 

the feature matching computer vision system. The feature matching system utilizing the 

standard C implementation showed very poor performance for image dimensions above 

256x256 for processing time increased parabolically with image dimension size. The 

feature matching system utilizing OpenCV or the naive CUDA implementation showed 

similar performance with processing times not exceeding 160 ms for all image dimension 

sizes ranging up to 1024x1024. The feature matching system utilizing the optimized 

CUDA implementation showed an average speedup of 3.3 over standard C, 2.0 over 

OpenCV, and 2.1 over naive CUDA. The optimized CUDA implementation did not 

exceed 65 ms for all image dimension sizes ranging up to 1024x1024. The feasible 

image matching realtime frame rates, utilizing different Harris corner detection 

implementations, are shown in Table 5.3. The precision of the feature matching system 

does not vary with platform implementation, for the CUDA optimizations made to the 

Harris corner detection implementation do not compromise precision. 
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Figure 5.6: Feature Matching Processing Times 
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Figure 5.7: Feature Matching Speedup 

Table 5.3: Feature Matching Feasible FPS Processing 

Feature Matching Speedup  
Utilizing Optimized CUDA Harris Corner Detection
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OpenCV  
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Feasable FPS 
 (1/s)

32x32 18 9 36 38 67

64x64 16 9 25 25 52

128x128 15 6 21 19 40

256x256 13 6 15 15 33

512x512 6 4 10 9 20

1024x1024 2 1 7 6 15
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Chapter 6: Conclusion and Future Work 

 This thesis presents modern CUDA optimizations strategies to decrease the 

processing time of the Harris corner detection implementation for realtime performance. 

The CUDA optimization strategies developed for the Harris corner detection 

implementation showed a feasible processing frame rate of 88 FPS for image resolution 

1024x1024, shown in Table 4.5. The processing times of the optimized CUDA 

implementation did not exceed 12 ms for all image dimensions ranging up to 1024x1024. 

The optimized CUDA implementation had an average speedup of 14.9 over standard C, 

33.8 over MATLAB, 3.73 over OpenCV, and 6.8 over the naive CUDA implementation.  

The optimized CUDA implementation did not compromise precision for performance, for 

the implementation has the same precision as the other implementations. This 

concludes that Harris corner detection can be made feasible in computer vision systems 

without the dependence of dedicated hardware.  

 The application of the optimized CUDA Harris corner detection implementation 

towards the feature matching computer vision system showed an average speedup of 

3.3 over standard C, 2.0 over OpenCV, and 2.1 over the naive CUDA implementation. A 

CUDA software implementation of the Harris corner detection provides a cost-effective, 

flexible, and maintainable feature detection system which can be utilized by higher level 

computer vision systems: motion detection, image registration, video tracking, panorama 

stitching, 3D modeling, and object recognition. 

 The optimized CUDA implementation of the Harris corner detection algorithm 

showed significant speedup over all other implementations discussed in this thesis: 

standard C, MATLAB, OpenCV, and naive CUDA. Due to NVIDIA CUDA scalability, 

discussed in Section 2.2, the optimized CUDA implementation will scale to future NVIDIA 

GPGPUs with higher performance specifications. This implies that the same optimized 

CUDA implementation discussed in Chapter 4 is contemporary. Future improvements to 
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NVIDIA GPGPU hardware will effectively improve the performance of the optimized 

CUDA Harris corner detection implementation. 

 The NVIDIA GPGPU and CUDA platform is forever changing and the GPGPU 

performance is always increasing. For example, the GeForce GTX 480 released in 2010 

contains 480 processing cores while the GPGPU used to conduct this thesis research, 

GeForce 660 Ti, released in 2012 contains 1344 processing cores, nearly tripling the 

parallel processing capability over the span of 2 years. Areas of future work in the area 

of GPGPU Harris corner detection include optimizing the algorithm on the most recent 

GPGPU hardware architecture (Maxwell) and scaling the algorithm’s implementation to a 

multi-GPGPU environment. 

 Maxwell is NVIDIAs newest GPGPU architecture release (2014). The Maxwell 

architecture provides dramatic improvements to the streaming multiprocessor design in 

areas of energy efficiency, control logic partitioning (avoids warp divergence), workload 

balancing, instructions executed per clock cycle, and many more. The Maxwell 

architecture supports dynamic parallelism which allows for CUDA kernels to invoke 

kernels themselves. The same implementation discussed throughout this thesis will 

receive a performance benefit when run on Maxwell architecture; however, further 

performance gain can be achieved by reimplementing the algorithm specifically to utilize 

all resources on the NVIDIA Maxwell architecture. 

 CUDA supports the invocation of multiple GPGPU execution asynchronously 

away from the host. Future work for the research discussed in this thesis includes 

scaling the single GPGPU CUDA Harris corner detection implementation to a multi-

GPGPU environment. The existence of multiple GPGPUs in the environment allow for 

optimized load balancing of threads per SM between all GPGPUs, thus increasing 

GPGPU efficiency and performance.  

 In conclusion, this thesis provides a software solution to high performance 

realtime Harris corner detection using CUDA.  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Appendices 

A: Platform Specifications 

Table A.1: Hardware Environment Specifications 

Table A.2: NVIDIA GPGPU Specifications 

Environment Specifications

OS Ubuntu 12.04 LTS 64 Bit

CPU Intel Core i7 920 @ 2.67 GHz x 8

RAM 6 GB DIMM @ 1333 MHz

GPGPU GeForce 660 Ti

GeForce 660Ti Specifications

Architecture Type Kepler

Clock Rate 980 MHz

SM Count 7

Active Warps Per SM 4

Cores Per SM 192

Total CUDA Cores (7 x 192) 1344

Maximum Theads Per SM 2048

Maximum Threads Per Block 1024

Warp Size 32

Global Memory Size 2 GB

Constant Memory Size 64 KB

Shared Memory Per Block 48 KB

Registers Per Block 65536

L2 Cache Size 393216 bytes

Memory Bus Width 192 bit

Memory Clock Rate 3004 MHz

CUDA Capable Version Number 3.0
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Table A.3: Software Specifications 

Software Specifications

CUDA Driver API Version 6.5

GCC Version 4.6.3 64-bit

MATLAB Version R2012a (7.14.0.739) 
64-bit (glnxa64)

OpenCV Version 2.4.9
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B: Standard C Harris Corner Detection Code 

/* File: harris_detector_cpu.cpp 
 * Author: Justin Loundagin 
 * Date: Feburary 5th, 2015 
 * Brief: Standard C functions to perform Harris feature detection 
 */ 
#include "harris_detector_cpu.h" 

using namespace std; 
using namespace cv; 

#define MIN(a, b) ((a) < (b) ? a : b) 

namespace harris_detection { 
    /* Function Name: convolve 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
     * Brief: Performs 2D spatial filter operation on input image with 
     input convolution kernel     
     * Param [in]: image - The image to be convolved 
     * Param [in]: image_rows - The number of rows in the image 
     * Param [in]: image_cols - The number of columns in the image 
     * Param [in]: kernel - The input kernel to convolve with the input 
     image     
     * Param [in]: kernel_dim - The dimension of the kernel 
     * Returns: The result of the convolution with the input image and 
       kernel     
     */ 
    template<typename T> 
    static double *convolve(T *image, unsigned image_rows,  
  unsigned image_cols, double *kernal, int kernal_dim) {     
        unsigned kernal_center = kernal_dim / 2.0f; 
        double *output = new double[image_rows * image_cols]; 

        for(int i=kernal_center; i < image_rows - kernal_center; ++i) { 
            for(int j=kernal_center; j < image_cols - kernal_center;  
   ++j) {     
                double sum = 0.0f; 
                 
                for(int k=0; k < kernal_dim; ++k) { 
                    unsigned image_row = (i - kernal_center) + k; 
                    for(int v=0; v < kernal_dim; ++v) { 
                        unsigned image_col = (j - kernal_center) + v; 

                        sum += kernal[k * kernal_dim + v] *   
     image[image_row * image_cols + image_col];     
                    } 
                } 
                output[i * image_cols + j] = sum; 
            } 
        } 
        return output; 
    } 

    /* Function Name: double_to_image 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
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     * Brief: Cast image from type double to type uint8 
     * Param [out]: dst - The result image 
     * Param [in]: src - The source double image 
     * Param [in]: rows - The number of rows in the image 
     * Param [in]: cols - The number of columns in the image 
     */ 
    static void double_to_image(unsigned char *dst, double *src,  
             int rows, int cols) {     
        for(int i=0; i<rows; ++i) { 
            for(int j=0; j<cols; ++j) { 
                dst[i * cols + j] = (unsigned char)src[i * cols + j]; 
            } 
        } 
    } 

    /* Function Name: array_multiply 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
     * Brief: Performs element by element multiplication between two  
      matrices     
     * Param [in]: a - Input matrix A 
     * Param [in]: b - Input matrix B 
     * Param [in]: rows - The number of rows in the image 
     * Param [in]: cols - The number of columns in the image 
     * Returns: Resultant element by element multiplied matrix 
     */ 
    static double *array_multiply(double *a, double *b, int rows,  
          int cols) {     
        double *product = new double[rows * cols]; 

        for(int i=0; i<rows; ++i) { 
            for(int j=0; j<cols; ++j) { 
                product[i * cols + j] = a[i * cols + j] *  
           b[i * cols +j];     
            } 
        } 
        return product; 
    } 

    /* Function Name: sum_neighbors 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
     * Brief: Sums neighborhood within an image 
     * Param [in]: image - Input image 
     * Param [in]: row - The center row of the neighborhood 
     * Param [in]: col - The center column of the neighborhood 
     * Param [in]: cols - The number of columns in the image 
     * Param [in]: window_dim - The dimension of the neighborhood 
     * Returns: The sum of the neighbors 
     */ 
    static double sum_neighbors(double *image, int row, int col,  
        int cols, int window_dim) {     
        int window_center = window_dim / 2.0f; 
        double sum = 0.0f; 
        for(int i=0; i<window_dim; ++i) { 
            for(int j=0; j<window_dim; ++j) { 
                int image_row = (row - window_center) + i; 
                int image_col = (col - window_center) + j; 
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                sum += image[image_row * cols + image_col]; 
            } 
        } 
        return sum; 
    } 

    /* Function Name: eigen_values 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
     * Brief: Computes the eigen values of a 2x2 matrix 
     * Param [in]: M - The input 2x2 matrix 
     * Param [out]: The first eigen value 
     * Param [out]: The second eigen value 
     */ 
    static void eigen_values(double M[2][2], double &l1, double &l2) { 
        double d = M[0][0]; 
        double e = M[0][1]; 
        double f = M[1][0]; 
        double g = M[1][1]; 

        l1 = ((d + g) + sqrt(pow(d + g, 2.0f) - 4*(d*g - f*e))) / 2.0f; 
        l2 = ((d + g) - sqrt(pow(d + g, 2.0f) - 4*(d*g - f*e))) / 2.0f; 
    } 

    /* Function Name: linear_scale 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
     * Brief: Linearly scales from its domain to a new domain 
     * Param [in/out]: data - Input matrix to scale 
     * Param [in]: rows - The number of rows in the data 
     * Param [in]: cols - The number of columns in the data 
     * Param [in]: The new minimum to scale to 
     * Param [in]: The new maximum to scale to 
     */ 
    static void linear_scale(double *data, int rows, int cols,  
          double new_min, double new_max) {     
        double old_min = *std::min_element(data, data + rows * cols); 
        double old_max = *std::max_element(data, data + rows * cols); 

        for(int i=0; i<rows; ++i) { 
            for(int j=0; j<cols; ++j) { 
                    data[i * cols + j] =  MIN(10 *  
     (((new_max - new_min) * (data[i * cols + j]) /      
     (old_max - old_min)) + new_min), 255);     

            } 
        } 
    } 

    /* Function Name: draw_circles 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
     * Brief: Draws circles over detected corners from suppressed  
     corner response onto RGB image     
     * Param [in/out]: rgb - The image to draw circles on 
     * Param [in]: corner_response - The suppressed corner response of 
          the image     
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     * Param [in]: rows - The number of rows in the data 
     * Param [in]: cols - The number of columns in the data 
     */ 
    static void draw_circles(Mat &rgb, double *corner_response,  
          int rows, int cols) {     

        for(int i=0; i<rows; ++i) { 
            for(int j=0; j<cols; ++j) { 
                if(corner_response[i * cols + j] > 0.0f) { 
                    cv::circle(rgb, Point(j, i), 5,  
      cv::Scalar(0, 0, 255), 2);     
                } 
            } 
        } 
    } 

    /* Function Name: non_maxima_suppression_raster 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
     * Brief: Performs non-maxima suppression on all neighborhoods in  
     raster scan iterative order     
     * Param [in]: input - The input matrix to perform NMS 
     * Param [out]: output - The output suppressed matrix 
     * Param [in]: rows - The number of rows in the input 
     * Param [in]: cols - The number of columns in the input 
     * Param [in]: win_dim - The dimension of the neighborhood 
     */ 
    static void non_maxima_suppression_raster(double *input,  
   double *output, int rows, int cols, int win_dim) {     
        unsigned win_center = win_dim / 2.0f; 
        bool running; 

        for(int i=win_center; i < rows - win_center; ++i) { 
            for(int j=win_center; j < cols - win_center; ++j) { 
                double pixel = input[i * cols + j]; 

                running = true; 
                for(int k=0; running && k < win_dim; ++k) { 
                    for(int v=0; running && v < win_dim; ++v) { 
                        unsigned image_row = (i - win_center) + k; 
                        unsigned image_col = (j - win_center) + v; 

                        // Don't count the center pixel 
                        if(k == win_center && v == win_center) 
                            continue; 

                        if(pixel < input[image_row * cols + image_col]) 
     {     
                            pixel = 0; 
                            running = false; 
                        } 
                    } 
                } 
                output[i * cols + j] = pixel; 
            } 
        } 
    } 
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    /* Function Name: detect_features 
     * Author: Justin Loundagin 
     * Date: February 5th, 2015 
     * Brief: Performs the Harris corner detection algorithm on the 
input       image to find corner features 
     * Param [in]: image - The input in grayscale to perform harris  
     detection     
  * Param [out]: features - Vector containing feature points     
     * Param [out]: image - The input image 
     * Param [in]: rows - The number of rows in the input 
     * Param [in]: cols - The number of columns in the input 
     * Param [in]: k - The Harris corner detection sensitivity 
parameter 
     * Param [in]: thresh - The R score threshold value 
     * Param [in]: nms_dim - The neighborhood dimension for NMS 
     */ 
    void detect_features(std::vector<cv::KeyPoint> &features,  
      unsigned char *image, int rows, int cols,      
      double k, double thresh, int nms_dim) {     

        // De-noise input image 
        double *smoothed = convolve(image, rows, cols, gaussian_3x3,  
       KERNAL_DIM);     

        // Determine x and y gradients 
        double *dx = convolve(smoothed, rows, cols, sobel_x,   
      KERNAL_DIM);     

        double *dy = convolve(smoothed, rows, cols, sobel_y,   
      KERNAL_DIM);     

        // Square gradients for harris matrix calculation 
        double *dx2 = array_multiply(dx, dx, rows, cols); 
        double *dxdy = array_multiply(dx, dy, rows, cols); 
        double *dy2 = array_multiply(dy, dy, rows, cols); 

        int window_center = WINDOW_DIM / 2.0f; 
        double M[2][2] = {0.0f}; 

        double *corner_response = new double[rows * cols](); 

  // Iterate over squared gradients and compute harris matrix R scores 
        for(int i=window_center; i<rows - window_center; ++i) { 
            for(int j=window_center; j<cols - window_center; ++j) { 
                M[0][0] = sum_neighbors(dx2, i, j, cols, WINDOW_DIM); 
                M[0][1] = sum_neighbors(dxdy, i, j, cols, WINDOW_DIM); 
                M[1][0] = M[0][1]; 
                M[1][1] = sum_neighbors(dy2, i, j, cols, WINDOW_DIM); 

                double l1, l2; 

                eigen_values(M, l1, l2); 

                double R = l1 * l2 - k * pow(l1 + l2, 2.0f); 

                // Threshold R score 
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                if(R > thresh) { 
                    corner_response[i * cols + j] = R; 
                } 
            } 
        } 

        double *suppressed = new double[rows * cols](); 
        non_maxima_suppression_raster(corner_response, suppressed,  
         rows, cols, nms_dim);     

        for(int i=0; i < rows; i++) { 
            for(int j=0; j < cols; ++j) { 
                if(suppressed[i * cols + j] > 0.0) { 
                    features.push_back(cv::KeyPoint(j, i, 5, -1)); 
                } 
            } 
        } 
    } 
} 
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C: Naive CUDA Harris Corner Detection Code 

/* File: harris_detector_gpu_naive.cu 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: Naive CUDA functions to perform Harris feature detection 
 */ 

#include "harris_detector_gpu.h" 
#include <iostream> 
#include <limits> 
#include <algorithm> 
#include <cstdio> 

/* Function Name: convolve_kernel 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to perform image convolution with a filter 
 * Param [in]: image - The input image 
 * Param [out]: result - The result image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: kernal - The input filter kernal 
 * Param [in]: kernel_dim: The size of the input filter kernal 
 */ 
template<typename T> 
__global__ void convolve_kernel(T *image, double *result, int rows,  
        int cols, double *kernal,      
        int kernal_dim) {     
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int kernel_offset = kernal_dim / 2.0f; 
    int image_row = ty; 
    int image_col = tx; 

    if(image_row >= kernel_offset && image_row < rows - kernel_offset  
   &&     
       image_col >= kernel_offset && image_col < cols - kernel_offset){ 

        double value = 0.0f; 
        for(int i=0; i<kernal_dim; ++i) { 
            int row = (image_row - kernel_offset) + i; 
            for(int j=0; j<kernal_dim; ++j) { 
                int col = (image_col - kernel_offset) + j; 
                value += kernal[i * kernal_dim + j] * 
                        (double)image[row * cols + col]; 
            } 
        } 
        result[image_row * cols + image_col] = (double)value; 
    } 
} 

/* Function Name: non_maxima_suppresion_kernel 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to perform non-maxima suppression 
 * Param [in]: image - The input image 
 * Param [out]: result - The result image 
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 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: window_dim: The size of NMS window 
 */ 
__global__ void non_maxima_suppression_kernel(double *image,  
            double *result,     
                                              int rows, int cols, 
                                              int window_dim) { 
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int row = ty; 
    int col = tx; 

    int DIM = window_dim; 
    int OFF = DIM / 2; 

    if(row >= OFF && row < rows - OFF && 
       col >= OFF && col < cols - OFF) { 

        double filtered= image[row * cols + col]; 
        bool running = true; 

        for(int i=0; i<DIM && running; ++i) { 
            int r = (row - OFF) + i; 
            for(int j=0; j<DIM && running; ++j) { 
                int c = (col - OFF) + j; 

                if(i == DIM/2 && j == DIM/2) 
                    continue; 

                double temp = image[r * cols + c]; 
                if(temp > filtered) { 
                    filtered = 0; 
                    running = false; 
                } 
            } 
        } 
        result[row * cols + col] =  filtered; 
    } 
} 

/* Function Name: eigen_values 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA/HOST function to calculate the eigenvalues of a 2x2       
      matrix     
 * Param [in]: M - The 2x2 input matrix 
 * Param [out]: l1 - The first eigenvalue 
 * Param [out]: l2 - The second eigenvalue 
 */ 
__host__ __device__ void eigen_values(double M[2][2], double *l1, 
double *l2) { 
    double d = M[0][0]; 
    double e = M[0][1]; 
    double f = M[1][0]; 
    double g = M[1][1]; 
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    *l1 = ((d + g) + sqrt(pow(d + g, 2.0) - 4*(d*g - f*e))) / 2.0f; 
    *l2 = ((d + g) - sqrt(pow(d + g, 2.0) - 4*(d*g - f*e))) / 2.0f; 
} 

/* Function Name: sum_neighbors 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA function to sum a neighborhood within a given image 
 * Param [in]: image - The input image 
 * Param [in]: row - The center row of the neighborhood 
 * Param [in]: col - The center column of the neighborhood 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: window_dim: The size of the neighborhood 
 * Returns: The sum of the neighborhood 
 */ 
__device__ double sum_neighbors(double *image, int row, int col, 
        int cols, int window_dim) {     
    int window_center = window_dim / 2.0f; 
    double sum = 100.0f; 
    for(int i=0; i<window_dim; ++i) { 
        int image_row = (row - window_center) + i; 
        for(int j=0; j<window_dim; ++j) { 
            int image_col = (col - window_center) + j; 
            sum += image[image_row * cols + image_col]; 
        } 
    } 
    return sum; 
} 

/* Function Name: detect_corners_kernel 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to perform the corner detection algorithm 
 * Param [in]: dx2 - The X gradient of the image squared 
 * Param [in]: dy2 - The Y gradient of the image squared 
 * Param [in]: dxdy - The product of the X and Y gradient of the image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: k - The corner detection sensitivity parameter 
 * Param [out]: corner_response: The corner response image 
 * Param [in]: window_dim: Window size of the corner detection 
 */ 
__global__ void detect_corners_kernel(double *dx2, double *dy2,  
            double *dydx, int rows, int cols,     
         double k,      
            double *corner_response,      
         int window_dim) {     
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int window_offset = window_dim / 2.0f; 
    int image_row = ty; 
    int image_col = tx; 
    double M[2][2]; 

    if(image_row < rows - window_offset &&  
    image_col < cols - window_offset &&     
       image_row >= window_offset && image_col >= window_offset) { 
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        M[0][0] = sum_neighbors(dx2, image_row, image_col,  
        cols, window_dim);     
        M[0][1] = sum_neighbors(dydx, image_row, image_col,  
        cols, window_dim);     
        M[1][1] = sum_neighbors(dy2, image_row, image_col,  
        cols, window_dim);     
        M[1][0] = M[0][1]; 

        double l1, l2; 
        eigen_values(M, &l1, &l2); 

        double r = l1 * l2 - k * pow(l1 + l2, 2.0); 
        corner_response[image_row * cols + image_col] = r > 0 ? r : 0; 
    } 
} 

/* Function Name: convolve 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to invoke the CUDA convolution kernel 
 * Param [in]: image - The input image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: kernal - The convolution mask 
 * Param [in]: kernel_size - The size of the convolution kernel 
 * Returns: The convolution output 
 */ 
template<typename T> 
static double *convolve(T *image, int rows, int cols, double *kernal, 
                        int kernal_size) { 
    using namespace harris_detection; 

    double *deviceResult = alloc_device<double>(rows, cols, true); 
    double *deviceKernel = to_device<double>(kernal, kernal_size,  
           kernal_size);     

    T *deviceImage = to_device<unsigned char>(image, rows, cols); 

    dim3 dimGrid(ceil(cols / (double)TILE_DIM),  
        ceil(rows / (double)TILE_DIM));     
    dim3 dimBlock(TILE_DIM, TILE_DIM); 

    convolve_kernel<T> <<< dimGrid, dimBlock >>>(deviceImage,   
          deviceResult,     
                                                 rows, cols,   
          deviceKernel,     
                                                 kernal_size); 

    cudaDeviceSynchronize(); 

    double *host_result = to_host<double>(deviceResult, rows, cols); 

    cudaFree(deviceKernel); 
    cudaFree(deviceImage); 
    cudaFree(deviceResult); 

    return host_result; 
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} 

/* Function Name: non_maxima_supression 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to invoke the CUDA NMS kernel 
 * Param [in]: image - The input image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: window_dim - The size of the NMS window 
 * Returns: The suppressed image 
 */ 
static double *non_maxima_supression(double *image, int rows, int cols, 
                                     int window_dim) { 
    using namespace harris_detection; 

    double *deviceResult = alloc_device<double>(rows, cols, true); 
    double *deviceImage = to_device<double>(image, rows, cols); 

    dim3 dimGrid(ceil(cols / (double)TILE_DIM),  
        ceil(rows / (double)TILE_DIM));     
    dim3 dimBlock(TILE_DIM, TILE_DIM); 

    non_maxima_suppression_kernel <<< dimGrid, dimBlock    
          >>>(deviceImage, deviceResult,     
                                      rows, cols, window_dim); 
    CUDA_SAFE(cudaDeviceSynchronize()); 

    double *host_result = to_host<double>(deviceResult, rows, cols); 

    cudaFree(deviceImage); 
    cudaFree(deviceResult); 

    return host_result; 
} 

/* Function Name: corner_detector 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to invoke the CUDA corner detector kernel 
 * Param [in]: dx2 - The X gradient of the image squared 
 * Param [in]: dy2 - The Y gradient of the image squared 
 * Param [in]: dxdy - The product of the X and Y gradient of the image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: k - The corner detection sensitivity parameter 
 * Param [in]: window_dim: Window size of the corner detection 
 * Returns: The corner response image 
 */ 
static double *corner_detector(double *dx2, double *dy2, double *dxdy, 
       int rows, int cols, double k,      
       int window_dim) {     
    using namespace harris_detection; 

    double *deviceDx2 = to_device<double>(dx2, rows, cols); 
    double *deviceDy2 = to_device<double>(dy2, rows, cols); 
    double *deviceDxDy = to_device<double>(dxdy, rows, cols); 
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    double *deviceCornerResponse = alloc_device<double>(rows, cols,  
            true);     

    dim3 dimGrid(ceil(cols/ (double)TILE_DIM),  
        ceil(rows / (double)TILE_DIM));     
    dim3 dimBlock(TILE_DIM, TILE_DIM); 

    detect_corners_kernel <<< dimGrid, dimBlock >>> (deviceDx2,   
              deviceDy2,     
                                                     deviceDxDy,  
              rows, cols,     
                                                     k,    
         deviceCornerResponse,     
                                                     window_dim); 
    cudaDeviceSynchronize(); 

    double *hostCornerResponse = to_host<double>(deviceCornerResponse, 
         rows,  cols);     

    cudaFree(deviceCornerResponse); 
    cudaFree(deviceDx2); 
    cudaFree(deviceDy2); 
    cudaFree(deviceDxDy); 

    return hostCornerResponse; 
} 

namespace harris_detection { 
    namespace naive{ 
        /* Function Name: detect_features 
         * Author: Justin Loundagin 
         * Date: February 5th, 2015 
         * Brief: HOST function to detect features utilizing the NVIDIA 
    GPGPU     
         * Param [out]: features - Key point spatial coordinates of  
     detected     
         *              features 
         * Param [in]: image - The input image 
         * Param [in]: rows - The number of rows in the input image 
         * Param [in]: cols - The number of columns in the input image 
         * Param [in]: k - Corner detector sensitivity 
         * Param [in]: thresh - NMS threshold 
         * Param [in]: window_dim: Corner detector window size 
         */ 
        void detect_features(std::vector<cv::KeyPoint> &features, 
                             unsigned char *image, int rows, int cols, 
          double k, double thresh, int window_dim) {     
            const int NMS_DIM = 5; 

            double *smoothed = convolve<unsigned char>(image, rows,  
           cols,                                                       
         filters::gaussian_3x3,     
                                                       3); 
            double *dx = convolve<unsigned char>(image, rows, cols, 
                                                 filters::sobel_x_3x3, 
           3);     
            double *dy = convolve<unsigned char>(image, rows, cols, 
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                                                 filters::sobel_y_3x3, 
           3);     

            double *dxdy = new double[rows * cols]; 

            for(int i=0; i<rows * cols; ++i) { 
                dxdy[i] = dx[i] * dy[i]; 
                dx[i] *= dx[i]; 
                dy[i] *= dy[i]; 
            } 

            double *corner_response = corner_detector(dx, dy, dxdy,  
          rows, cols,     
                                                      k, window_dim); 
            double *suppressed = non_maxima_supression(corner_response, 
           rows, cols,      
           NMS_DIM);     

            for(int i=0; i < rows; i++) { 
                for(int j=0; j < cols; ++j) { 
                    if(suppressed[i * cols + j] > 0.0) { 
                        features.push_back(cv::KeyPoint(j, i, 5, -1)); 
                    } 
                } 
            } 

            delete dx; 
            delete dy; 
            delete dxdy; 
            delete corner_response; 
            delete suppressed; 
            delete smoothed; 
        } 
    } 
} 
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D: Optimized CUDA Harris Corner Detection Code 

/* File: harris_detector_gpu_optimized.cu 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: Optimized CUDA functions to perform Harris feature detection 
 */ 
#include "harris_detector_gpu.h" 
#include <iostream> 
#include <limits> 
#include <algorithm> 
#include <thrust/scan.h> 
#include <thrust/functional.h> 
#include <thrust/host_vector.h> 
#include <thrust/device_vector.h> 
#include <thrust/device_ptr.h> 
#include <thrust/sort.h> 

// GPGPU device memory image pool size 
#define DEVICE_RESULT_COUNT 8 

// Global GPGPU device to allocated once for optimization 
double *deviceKernel = NULL; 
unsigned char *deviceImage = NULL; 

// Array of Global GPGPU memory images to be reused 
double *deviceResult[DEVICE_RESULT_COUNT] = {NULL}; 
double *deviceResultTemp = NULL; 

// Pointer to array of CUDA streams 
cudaStream_t *deviceStreams = NULL; 
int deviceStreamCount = 0; 

// Scan keys used for integral image exclusive scan 
int *scanKeys = NULL; 

// Scan keys for transpose exclusive scan 
int *scanKeysT = NULL; 

// Array of scan keys used for spiral neighborhood iteration 
int raster_scan_order_8[8] = {0, 1, 2, 3, 5, 6, 7, 8}; 
int spiral_scan_order_8[8] = {1, 2, 5, 8, 7, 6, 3, 0}; 
int spiral_scan_order_24[24] = {7, 8, 13, 18, 17, 16, 11, 6, 1, 2, 
                                3, 4, 9, 14, 19, 24, 23, 22, 21, 20, 
                                15, 10, 5, 0}; 
int spiral_scan_order_48[48] = {17, 18, 25, 32, 31, 30, 23, 16, 9, 
                                0, 11, 12, 19, 26, 37, 40, 39, 38, 37, 
                                36, 29, 22, 
                                15, 8, 1, 2, 3, 4, 5, 6, 13, 20, 27, 
                                34, 41, 48, 47, 46, 45, 44, 43, 42, 
                                35, 28, 21, 14, 7, 0}; 

// Constant GPGPU memory allocations 
__constant__ double deviceConstKernel[3*3]; 
__constant__ int deviceScanOrder[48]; 

/* Function Name: transpose_kernel 
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 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to transpose an image 
 * Param [out]: result - Result transposed image 
 * Param [in]: input - The input image 
 * Param [in]: rows - The number of rows in the transposed image 
 * Param [in]: cols - The number of columns in the transposed image 
 */ 
__global__ void transpose_kernel(double *result, double *input, 
                                 int rows, int cols) { 
    int row = blockIdx.y * blockDim.y + threadIdx.y; 
    int col = blockIdx.x * blockDim.x + threadIdx.x; 

    if(row < rows && col < cols) { 
        result[row * cols + col] = input[col * rows + row]; 
    } 
} 

/* Function Name: array_multiply_kernel 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to perform array multiplication 
 * Param [in]: a - First input array 
 * Param [in]: b - Second input array 
 * Param [out]: result - Result product array 
 * Param [in]: rows - The number of rows in the result array 
 * Param [in]: cols - The number of columns in the result array 
 */ 
__global__ void array_multiply_kernal(double *a, double *b, 
                                      double *result, int rows, int 
cols) { 
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 

    if(ty < rows && tx < cols) { 
        result[ty * cols + tx] = a[ty * cols + tx] * b[ty * cols + tx]; 
    } 
} 

/* Function Name: convolve_kernel_constant 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to convolve a 3x3 filter held in constant memory 
 * Param [in]: image - The input image 
 * Param [out]: result - The convolution result 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 */ 
__global__ void convolve_kernel_constant(unsigned char *image, 
                    double *result, int rows, int cols) { 
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int kernel_offset = 3.0f/ 2.0f; 
    int image_row = ty + kernel_offset; 
    int image_col = tx + kernel_offset; 

    if(image_row < rows - kernel_offset && 
       image_col < cols - kernel_offset) { 
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        double value = 0.0f; 
        for(int i=0; i<3; ++i) { 
            int row = (image_row - kernel_offset) + i; 
            for(int j=0; j<3; ++j) { 
                int col = (image_col - kernel_offset) + j; 
                value += deviceConstKernel[i * 3 + j] * 
                        (double)image[row * cols + col]; 
            } 
        } 
        result[image_row * cols + image_col] = value; 
    } 
} 

/* Function Name: convolve_kernel_seperable_vertical 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to convolve a 1D 3X1 filter 
 * Param [in]: image - The input image 
 * Param [out]: result - The convolution result 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: a - First value in the filter column vector 
 * Param [in]: b - Second value in the filter column vector 
 * Param [in]: c - Third value in the filter column vector 
 */ 
template<typename T> 
__global__ void convolve_kernel_seperable_vertical(T *image,  
double *result, int rows, int cols, double a, double b, double c) { 
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int kernel_offset = 3.0f/ 2.0f; 
    int image_row = ty; 
    int image_col = tx; 

    if(image_row < rows - kernel_offset && 
       image_col < cols - kernel_offset && 
       image_row >= kernel_offset && 
       image_col >= kernel_offset) { 

        result[image_row * cols + image_col] = a * 
                image[(image_row-1)*cols + image_col] + 
                                               b * 
                image[image_row * cols + image_col] + 
                                               c * 
                image[(image_row +1) * cols + image_col]; 
    } 
} 

/* Function Name: convolve_kernel_seperable_horizontal 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to convolve a 1D 1x3 filter 
 * Param [in]: image - The input image 
 * Param [out]: result - The convolution result 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
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 * Param [in]: a - First value in the filter row vector 
 * Param [in]: b - Second value in the filter row vector 
 * Param [in]: c - Third value in the filter row vector 
 */ 
template<typename T> 
__global__ void convolve_kernel_seperable_horizontal(T *image,  
double *result, int rows, int cols, double a, double b, double c) { 
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int kernel_offset = 3.0f/ 2.0f; 
    int image_row = ty; 
    int image_col = tx; 

    if(image_row < rows - kernel_offset && 
       image_col < cols - kernel_offset && 
       image_row >= kernel_offset && 
       image_col >= kernel_offset) { 

        result[image_row * cols + image_col] = a * 
                image[image_row*cols + image_col - 1] + 
                                               b * 
                image[image_row * cols + image_col] + 
                                               c * 
                image[image_row * cols + image_col + 1]; 
    } 
} 

/* Function Name: convolve_kernel_seperable_horizontal_row 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to convolve a 1D 1x3 filter with a 
 *        single row of the input image 
 * Param [in]: image - The input image 
 * Param [out]: result - The convolution result 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: row - The row of the input image to perform the 1D  
       convolution     
 * Param [in]: a - First value in the filter row vector 
 * Param [in]: b - Second value in the filter row vector 
 * Param [in]: c - Third value in the filter row vector 
 */ 
__global__ void convolve_kernel_seperable_horizontal_row( 
unsigned char *image, double *result, int rows, int cols, int row, 
double a, double b, double c) { 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int kernel_offset = 3.0f/ 2.0f; 
    int image_col = tx + kernel_offset; 

    if(image_col < cols - kernel_offset) { 
        result[row * cols + image_col] = a * 
                image[row * cols + image_col - 1] + 
                                         b * 
                image[row * cols + image_col] + 
                                         c * 
                image[row * cols + image_col + 1]; 
    } 
} 
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/* Function Name: sum_neighbors 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA function to sum a neighborhood within a given image 
 * Param [in]: image - The input image 
 * Param [in]: row - The center row of the neighborhood 
 * Param [in]: col - The center column of the neighborhood 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: window_dim: The size of the neighborhood 
 * Returns: The sum of the neighborhood 
 */ 
__device__ static double sum_neighbors(double *image, int row, int col, 
                                      int cols, int window_dim) { 
    int window_center = window_dim / 2.0f; 
    double sum = 0.0f; 
    for(int i=0; i<window_dim; ++i) { 
        for(int j=0; j<window_dim; ++j) { 
            int image_row = (row - window_center) + i; 
            int image_col = (col - window_center) + j; 

            sum += image[image_row * cols + image_col]; 
        } 
    } 
    return sum; 
} 

/* Function Name: sum_neighbors_integral 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA function to sum a neighborhood within a given image  
      using the integral image (3 arithmetic operations)     
 * Param [in]: image - The input image 
 * Param [in]: row - The center row of the neighborhood 
 * Param [in]: col - The center column of the neighborhood 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: window_dim: The size of the neighborhood 
 * Returns: The sum of the neighborhood 
 */ 
__device__ static double sum_neighbors_integral(double *image, 
             int row, int col, int cols, int window_dim) { 
    int win_off = window_dim / 2.0f; 

    double a = image[(row - win_off - 1) * cols + (col - win_off - 1)]; 
    double b = image[(row - win_off - 1) * cols + (col + win_off)]; 
    double c = image[(row + win_off ) * cols + (col - win_off - 1)]; 
    double d = image[(row + win_off) * cols + (col + win_off)]; 

    return a + d - b - c; 
} 

/* Function Name: eigen_values 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA/HOST function to calculate the eigenvalues of a 2x2 
matrix 
 * Param [in]: M - The 2x2 input matrix 
 * Param [out]: l1 - The first eigenvalue 
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 * Param [out]: l2 - The second eigenvalue 
 */ 
__host__ __device__ static void eigen_values(double M[2][2], 
                                double *l1, double *l2) { 
    double d = M[0][0]; 
    double e = M[0][1]; 
    double f = M[1][0]; 
    double g = M[1][1]; 

    *l1 = ((d + g) + sqrt(pow(d + g, 2.0) - 4*(d*g - f*e))) / 2.0f; 
    *l2 = ((d + g) - sqrt(pow(d + g, 2.0) - 4*(d*g - f*e))) / 2.0f; 
} 

/* Function Name: detect_corners_kernel 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to perform the corner detection algorithm 
 * Param [in]: dx2 - The X gradient of the image squared 
 * Param [in]: dy2 - The Y gradient of the image squared 
 * Param [in]: dxdy - The product of the X and Y gradient of the image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: k - The corner detection sensitivity parameter 
 * Param [out]: corner_response: The corner response image 
 * Param [in]: window_dim: Window size of the corner detection 
 */ 
static __global__ void detect_corners_kernel(double *dx2, double *dy2, 
                 double *dydx, int rows, int cols, double k, 
                 double *corner_response, int window_dim) { 
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int window_offset = window_dim / 2.0f; 
    int image_row = ty; 
    int image_col = tx; 
    double M[2][2]; 

    if(image_row < rows - window_offset && 
       image_col < cols - window_offset && 
       image_row >= window_offset && 
       image_col >= window_offset) { 

        M[0][0] = sum_neighbors(dx2, image_row, image_col, 
                                cols, window_dim); 
        M[0][1] = sum_neighbors(dydx, image_row, image_col, 
                                cols, window_dim); 
        M[1][1] = sum_neighbors(dy2, image_row, image_col, 
                                cols, window_dim); 
        M[1][0] = M[0][1]; 

        double l1, l2; 
        eigen_values(M, &l1, &l2); 

        double r = l1 * l2 - k * pow(l1 + l2, 2.0); 
       corner_response[image_row * cols + image_col] = r > 0? r : 0; 
    } 
} 
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/* Function Name: detect_corners_integral_kernel 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to perform the corner detection algorithm 
utilizing 
 *        integral images 
 * Param [in]: dx2 - The X integral gradient of the image squared 
 * Param [in]: dy2 - The Y integral gradient of the image squared 
 * Param [in]: dxdy - The integral product of the X and Y 
 *                    gradient of the image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: k - The corner detection sensitivity parameter 
 * Param [out]: corner_response: The corner response image 
 * Param [in]: window_dim: Window size of the corner detection 
 */ 
__global__ void detect_corners_integral_kernel(double *dx2,  
double *dy2, double *dydx, int rows, int cols, double k, 
double *corner_response, int window_dim) { 
    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int window_offset = window_dim / 2.0f; 
    int image_row = ty; 
    int image_col = tx; 
    double M[2][2]; 

    if(image_row < rows - window_offset && 
       image_col < cols - window_offset && 
       image_row >= window_offset && 
       image_col >= window_offset) { 

        M[0][0] = sum_neighbors_integral(dx2, image_row, 
                                         image_col, cols, window_dim); 
        M[0][1] = sum_neighbors_integral(dydx, image_row, 
                                         image_col, cols, window_dim); 
        M[1][1] = sum_neighbors_integral(dy2, image_row, 
                                         image_col, cols, window_dim); 
        M[1][0] = M[0][1]; 

        double l1 = 6; 
        double l2 = 7; 
        eigen_values(M, &l1, &l2); 

        double r = l1 * l2 - k * pow(l1 + l2, 2.0); 
        corner_response[image_row * cols + image_col] = r > 0 ? r : 0; 
    } 
} 

/* Function Name: convolve_seperable 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to invoke the separable convolution CUDA   
      kernels     
 * Param [in]: devInput - The device input image 
 * Param [out]: devResult - The device output image 
 * Param [in]: rows - The number of rows in the device input image 
 * Param [in]: cols - The number of columns in the device input image 
 * Param [in]; rx - 1D convolution row element x 
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 * Param [in]; ry - 1D convolution row element y 
 * Param [in]; rz - 1D convolution row element z 
 * Param [in]; vx - 1D convolution column element x 
 * Param [in]; vy - 1D convolution column element y 
 * Param [in]; vz - 1D convolution column element z 
 */ 
template <typename T> 
static double *convolve_seperable(T *devInput, double *devResult,  
  int rows, int cols, double rx, double ry, double rz,     
      double vx, double vy, double vz) { 

        dim3 dimGrid(ceil(cols/ (double)TILE_DIM), 
                     ceil(rows/ (double)TILE_DIM)); 
        dim3 dimBlock(TILE_DIM, TILE_DIM); 

        convolve_kernel_seperable_horizontal<T> <<< dimGrid, dimBlock 
               >>>(devInput, deviceResultTemp, rows, cols, rx, ry, rz); 
        CUDA_SAFE(cudaDeviceSynchronize()); 
        convolve_kernel_seperable_vertical<double> <<< dimGrid, 
dimBlock 
               >>>(deviceResultTemp, devResult, rows, cols, vx, vy, 
vz); 

        return devResult; 
} 

/* Function Name: non_maxima_suppression_pattern_kernel 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: CUDA kernel to perform NMS on a neighborhood iteration     
      defined     
 *        by the pattern held in constant memory 
 * Param [in]: image - The input image 
 * Param [out]: result - The NMS output 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: pattern_size - The size of the neighborhood iteration  
      pattern held in constant memory     
 */ 
__global__ void non_maxima_suppression_pattern_kernel(double *image, 
                 double *result, int rows, int cols, int pattern_size) 
{ 

    int ty = blockIdx.y * blockDim.y + threadIdx.y; 
    int tx = blockIdx.x * blockDim.x + threadIdx.x; 
    int row = ty; 
    int col = tx; 

    int DIM = sqrt((double)pattern_size + 1); 
    int OFF = DIM / 2; 

    if(row >= OFF && row < rows - OFF && 
       col >= OFF && col < cols - OFF) { 

        double pixel = image[row * cols + col]; 

        for(int i=0; i < pattern_size; ++i) { 
            int pr = deviceScanOrder[i] / DIM; 
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            int pc = deviceScanOrder[i] % DIM; 

            int ir = (row - OFF) + pr; 
            int ic = (col - OFF) + pc; 

            if(image[ir * cols + ic] > pixel) { 
                pixel = 0; 
                break; 
            } 
        } 
        result[row * cols + col] = pixel; 
    } 
} 

/* Function Name: array_multiply 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to invoke the CUDA array multiply kernel 
 * Param [in]: devA - Device image A 
 * Param [in]: devB - Device image B 
 * Param [out]: devResult - The device result product array 
 * Param [in]: rows - The number of rows in the result array 
 * Param [in]: cols - The number of columns in the result array 
 */ 
static void array_multiply(double *devA, double *devB, double 
*devResult, 
                           int rows, int cols) { 
    dim3 dimGrid(ceil(cols/ (double)TILE_DIM), ceil(rows/ 
(double)TILE_DIM)); 
    dim3 dimBlock(TILE_DIM, TILE_DIM); 

    array_multiply_kernal<<< dimGrid, dimBlock 
            >>>(devA, devB, devResult, rows, cols); 
    CUDA_SAFE(cudaDeviceSynchronize()); 
} 

/* Function Name: corner_detector 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to invoke the CUDA corner detector kernel 
 * Param [in]: devDx2 - Device image gradient X squared 
 * Param [in]: devDy2 - Device image gradient Y squared 
 * Param [in]: devDxDy - Device image gradient product of X and Y 
 * Param [out]: devCornerResponse - The device corner response 
 * Param [in]: rows - The number of rows in the result array 
 * Param [in]: cols - The number of columns in the result array 
 * Param [in]: k - The sensitivity parameter 
 * Param [in]: window_dim - The window size 
 */ 
static void corner_detector(double *devDx2, double *devDy2,  
 double *devDxDy, double *devCornerResponse, int rows, int cols,     
    double k, int window_dim) { 
    dim3 dimGrid(ceil(cols/ (double)TILE_DIM),  
        ceil(rows / (double)TILE_DIM));     
    dim3 dimBlock(TILE_DIM, TILE_DIM); 
    detect_corners_kernel <<< dimGrid, dimBlock  
    >>> (devDx2, devDy2, devDxDy,     
                       rows, cols, k, devCornerResponse, window_dim); 
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    CUDA_SAFE(cudaDeviceSynchronize()); 

} 

/* Function Name: corner_detector_integral 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to invoke the CUDA corner detector integral  
      kernel     
 * Param [in]: devDx2 - Device image integral gradient X squared 
 * Param [in]: devDy2 - Device image integreal gradient Y squared 
 * Param [in]: devDxDy - Device image integral gradient product of X  
      and Y     
 * Param [out]: devCornerResponse - The device corner response 
 * Param [in]: rows - The number of rows in the result array 
 * Param [in]: cols - The number of columns in the result array 
 * Param [in]: k - The sensitivity parameter 
 * Param [in]: window_dim - The window size 
 */ 
static void corner_detector_integral(double *devDx2, double *devDy2, 
            double *devDxDy, double *devCornerResponse, int rows,  
   int cols, double k, int window_dim) {     
    dim3 dimGrid(ceil(cols/ (double)TILE_DIM), 
                 ceil(rows / (double)TILE_DIM)); 
    dim3 dimBlock(TILE_DIM, TILE_DIM); 

    detect_corners_integral_kernel <<< dimGrid, dimBlock >>> 
   (devDx2, devDy2, devDxDy, rows, cols, k, devCornerResponse,   
 window_dim);     
    CUDA_SAFE(cudaDeviceSynchronize()); 
} 

/* Function Name: inclusive_scan_rows 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to CUDA exclusive scan each row of the input  
      image     
 * Param [out]: devResult - The result of exclusively scanning 
 *                          each row of the input image 
 * Param [in]: devInput - The input image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: keys - The pointer to the exclusive scan keys 
 */ 
static void inclusive_scan_rows(double *devResult, double *devInput, 
                               int rows, int cols, int *keys) { 
    thrust::device_ptr<double> input =                 
thrust::device_pointer_cast(devInput); 
    thrust::device_ptr<double> output = 
thrust::device_pointer_cast(devResult); 
    thrust::device_ptr<int> k = thrust::device_pointer_cast(keys); 
    thrust::exclusive_scan_by_key(k, k + rows * cols, input, output); 
} 

/* Function Name: integral_image 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to compute the integral image on the GPGPU 
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 * Param [out]: devResult - The result integral image 
 * Param [in]: devInput - The input image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: keys - The pointer to the exclusive scan keys 
 */ 
static void integral_image(double *devResult, double *devInput, 
                          int rows, int cols) { 
    dim3 dimBlock(TILE_DIM, TILE_DIM); 
    double *devRotated =  deviceResultTemp; 

    inclusive_scan_rows(devResult, devInput, rows, cols, scanKeys); 

    dim3 dimGridTranspose(ceil(rows/ (double)TILE_DIM), 
                          ceil(cols/ (double)TILE_DIM)); 
    transpose_kernel <<< dimGridTranspose, dimBlock 
            >>> (devRotated, devResult, cols, rows); 
    CUDA_SAFE(cudaDeviceSynchronize()); 

    inclusive_scan_rows(devRotated, devRotated, cols, rows, scanKeysT); 

    dim3 dimGrid(ceil(cols/ (double)TILE_DIM), ceil(rows/ 
(double)TILE_DIM)); 
    transpose_kernel <<< dimGrid, dimBlock >>> (devResult, devRotated, 
                                                rows, cols); 
    CUDA_SAFE(cudaDeviceSynchronize()); 
} 

/* Function Name: non_maxima_supression 
 * Author: Justin Loundagin 
 * Date: February 5th, 2015 
 * Brief: HOST function to invoke the CUDA NMS kernel 
 * Param [in]: image - The input image 
 * Param [in]: rows - The number of rows in the input image 
 * Param [in]: cols - The number of columns in the input image 
 * Param [in]: access_pattern - Pointer to the array of access pattern 
      indices     
 * Param [in]: pattern_size - The size of the neighorhood access   
      pattern     
 * Returns: The suppressed image 
 */ 
static void non_maxima_suppression(double *devResult, double *devInput, 
         int rows, int cols, int *access_pattern, int pattern_size) { 
    dim3 dimGrid(ceil(cols/ (double)TILE_DIM),  
        ceil(rows/ (double)TILE_DIM));     
    dim3 dimBlock(TILE_DIM, TILE_DIM); 

    cudaMemcpyToSymbol(deviceScanOrder, access_pattern, 
                      pattern_size * sizeof(int)); 
    non_maxima_suppression_pattern_kernel <<< dimGrid, dimBlock 
            >>> (devInput, devResult, rows, cols, pattern_size); 
    CUDA_SAFE(cudaDeviceSynchronize()); 
} 

namespace harris_detection { 
    namespace optimized { 
        /* Function Name: detect_features 
         * Author: Justin Loundagin 
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         * Date: February 5th, 2015 
         * Brief: HOST function to detect features utilizing the NVIDIA 
    GPGPU     
         * Param [out]: features - Key point spatial coordinates of  
     detected features     
         * Param [in]: image - The input image 
         * Param [in]: rows - The number of rows in the input image 
         * Param [in]: cols - The number of columns in the input image 
         * Param [in]: k - Corner detector sensitivity 
         * Param [in]: thresh - NMS threshold 
         * Param [in]: window_dim: Corner detector window size 
         */ 
        void detect_features(std::vector<cv::KeyPoint> &features, 
         unsigned char *image, int rows, int cols, double k, 
         double thresh, int window_dim) { 
            double *deviceSmoothed = deviceResult[0]; 
            double *deviceDx = deviceResult[1]; 
            double *deviceDy = deviceResult[2]; 
            double *deviceDxDy = deviceResult[3]; 
            double *deviceDx2Integral = deviceResult[4]; 
            double *deviceDy2Integral = deviceResult[5]; 
            double *deviceDxDyIntegral = deviceResult[7]; 
            double *deviceCornerResponse = deviceResult[7]; 

            cudaMemcpy(deviceImage, image, rows * cols,    
   cudaMemcpyHostToDevice);     

            convolve_seperable<unsigned char>(deviceImage,    
   deviceSmoothed,     
                      rows, cols, 1/16.0f, 2/16.0f, 1/16.0f, 1, 2, 1); 
            CUDA_SAFE(cudaDeviceSynchronize()); 

            convolve_seperable<double>(deviceSmoothed, deviceDx, 
                      rows, cols, -1, 0, 1, 1, 2, 1); 
            CUDA_SAFE(cudaDeviceSynchronize()); 

            convolve_seperable<double>(deviceSmoothed, deviceDy, 
                      rows, cols, 1, 2, 1, -1, 0, 1); 
            CUDA_SAFE(cudaDeviceSynchronize()); 

            array_multiply(deviceDx, deviceDy, deviceDxDy, rows, cols); 
            array_multiply(deviceDx, deviceDx, deviceDx, rows, cols); 
            array_multiply(deviceDy, deviceDy, deviceDy, rows, cols); 

            corner_detector(deviceDx, deviceDy, deviceDxDy, 
                           deviceCornerResponse, rows, cols, k,   
        window_dim);     
            double *deviceSuppressedCornerResponse = deviceResult[0]; 

            non_maxima_suppression(deviceSuppressedCornerResponse, 
            deviceCornerResponse, rows, cols, spiral_scan_order_8, 8); 

            double *hostSuppressedCornerResponse = 
         to_host<double>(deviceSuppressedCornerResponse,  
          rows, cols);     

            for(int i=0; i < rows; i++) { 
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                for(int j=0; j < cols; ++j) { 
                    if(hostSuppressedCornerResponse[i * cols + j]  
     > 0.0) {     
                        features.push_back(cv::KeyPoint(j, i, 5, -1)); 
                    } 
                } 
            } 

        } 

        /* Function Name: initialize_streams 
         * Author: Justin Loundagin 
         * Date: February 5th, 2015 
         * Brief: HOST function to create the CUDA streams used for  
    convolution pipelining     
         * Param [in]: count - The number of streams to create 
         */ 
        void initialize_streams(int count) { 
            deviceStreamCount = count; 
            deviceStreams = new cudaStream_t[deviceStreamCount]; 
            for(int i=0; i<deviceStreamCount; ++i) { 
                cudaStreamCreate(&deviceStreams[i]); 
            } 
        } 

        /* Function Name: initialize_image 
         * Author: Justin Loundagin 
         * Date: February 5th, 2015 
         * Brief: HOST function to create the CUDA image memory pool.  
    Also allocated the scan keys used for integral image      
    calculation     
         * Param [in]: rows - The number of rows in the image 
         * Param [in]: cols - The number of columns in the image 
         */ 
        void initialize_image(int rows, int cols) { 
            deviceImage = alloc_device<unsigned char>(rows, cols); 
            deviceResultTemp = alloc_device<double>(rows, cols, true); 
            int *hscanKeys = new int[rows * cols]; 
            int *hscanKeysT = new int[rows * cols]; 

            for(int i=0; i < rows; ++i) { 
                for(int j=0; j < cols; ++j) { 
                    hscanKeys[i * cols + j] = i; 
                } 
            } 

            int trows = cols; 
            int tcols = rows; 

            for(int i=0; i < trows; ++i) { 
                for(int j=0; j < tcols; ++j) { 
                    hscanKeysT[i * tcols + j] = i; 
                } 
            } 

            scanKeys = to_device<int>(hscanKeys, rows, cols); 
            scanKeysT = to_device<int>(hscanKeysT, rows, cols); 
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            delete hscanKeys; 
            delete hscanKeysT; 

            for(int i=0; i<DEVICE_RESULT_COUNT; ++i) 
                deviceResult[i] =  
    alloc_device<double>(rows, cols, true);     
        } 

        /* Function Name: initialize_kernel 
         * Author: Justin Loundagin 
         * Date: February 5th, 2015 
         * Brief: HOST function to create the CUDA filter memory. 
         * Param [in]: rows - The number of rows in the kernel 
         * Param [in]: cols - The number of columns in the kernel 
         */ 
        void initialize_kernel(int rows, int cols) { 
            deviceKernel = alloc_device<double>(rows, cols); 
        } 
        /* Function Name: clean_up 
         * Author: Justin Loundagin 
         * Date: February 5th, 2015 
         * Brief: HOST function to deallocate any device memory   
   previously allocated     
         */ 
        void clean_up() { 
            if(deviceKernel) { 
                cudaFree(deviceKernel); 
                deviceKernel = NULL; 
            } 
            if(deviceImage) { 
                cudaFree(deviceImage); 
                deviceImage = NULL; 
            } 

            for(int i=0; i<DEVICE_RESULT_COUNT; ++i) { 
                cudaFree(deviceResult[i]); 
            } 

            cudaFree(deviceResultTemp); 
            cudaFree(scanKeys); 
            cudaFree(scanKeysT); 
        } 
    } 
} 
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