
OPTIMIZING HARRIS CORNER DETECTION ON GPGPUs USING CUDA

A Thesis

presented to

The Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Masters of Science in Electrical Engineering

by

Justin Loundagin

March 2015

© 2015

 Justin Loundagin

ALL RIGHTS RESERVED  

�ii

COMMITTEE MEMBERSHIP

TITLE: Optimizing Harris Corner Detection on GPGPUs

 Using CUDA

AUTHOR: Justin Loundagin

DATE SUBMITTED: March 2015

COMMITTEE CHAIR: Jane Zhang, PhD

 Professor of Electrical Engineering, Associate Dept. Chair

COMMITTEE MEMBER: Lynne Slivovsky, PhD

 Professor of Computer Engineering

COMMITTEE MEMBER: Dennis Derickson, PhD

 Professor of Electrical Engineering, Department Chair 

�iii

ABSTRACT

Optimizing Harris Corner Detection on GPGPUs Using CUDA

Justin Loundagin

 The objective of this thesis is to optimize the Harris corner detection algorithm

implementation on NVIDIA GPGPUs using the CUDA software platform and measure the

performance benefit. The Harris corner detection algorithm—developed by C. Harris and

M. Stephens—discovers well defined corner points within an image. The corner

detection implementation has been proven to be computationally intensive, thus realtime

performance is difficult with a sequential software implementation. This thesis

decomposes the Harris corner detection algorithm into a set of parallel stages, each of

which are implemented and optimized on the CUDA platform. The performance results

show that by applying strategic CUDA optimizations to the Harris corner detection

implementation, realtime performance is feasible. The optimized CUDA implementation

of the Harris corner detection algorithm showed significant speedup over several

platforms: standard C, MATLAB, and OpenCV. The optimized CUDA implementation of

the Harris corner detection algorithm was then applied to a feature matching computer

vision system, which showed significant speedup over the other platforms.

Keywords: Harris Corner Detection, NVIDIA GPGPU, NVIDIA CUDA 

�iv

ACKNOWLEDGMENTS

 I would like to express my gratitude towards my thesis advisor and committee

member Dr. Zhang for her knowledge and guidance. This thesis would not have been

possible without the knowledge I have acquired from her expertise in the fields of image

processing and computer vision. I would like to thank Dr.Derickson and Dr.Slivovsky for

serving as members on my thesis committee.

 I would like to thank my family, especially my father James Loundagin, who

helped me discover my passion for electrical engineering. My family has always pushed

me to go farther with my education—for that I can never thank them enough.

�v

TABLE OF CONTENTS

LIST OF TABLES viii
LIST OF FIGURES ix
Chapter 1: Introduction 1

1.1 Thesis Introduction 1
1.2 Thesis Organization 1
1.3 Related Work 3

Chapter 2: NVIDIA GPGPU and CUDA 7
2.1 GPGPU Introduction 7
2.2 GPGPU Scalability 8
2.3 GPGPU Streaming Multiprocessor 9
2.4 GPGPU Memory Types 11
2.5 CUDA Overview 12
2.6 General CUDA Performance Optimizations 13

2.6.1 Data-bus Overhead 14
2.6.2 Cache Utilization 16
2.6.3 Shared Memory Utilization 16
2.6.4 Constant Memory Utilization 17
2.6.5 Texture Memory Utilization 18
2.6.6 Avoiding Warp Divergence 18

Chapter 3: Harris Corner Detection 20
3.1 Corner Detection Introduction 20
3.2 Corner Detection Qualitative Description 20
3.3 Corner Detection Mathematical Description 21
3.4 Corner Detection Algorithm 29
3.5 Corner Detection Software Architecture 29

3.5.1 Image Convolution 32
3.5.1.1 Gaussian Blurring 33
3.5.1.2 Image Gradients 34

3.5.2 Array Multiplier 34
3.5.3 Corner Detector 34
3.5.4 Non-maxima Suppression (NMS) 35

Chapter 4: Harris Corner Detection GPGPU Implementation 36
4.1 Corner Detection Parallel Software Architecture 36
4.2 GPGPU Convolution 37

�vi

4.2.1 Naive Convolution GPGPU Implementation 38
4.2.2 Optimized Convolution GPGPU Implementation 39

4.2.2.1 Separable Convolution Filter Masks 39
4.2.2.2 Async Memory Transfers 42
4.2.2.3 Constant Memory Utilization 44
4.2.2.4 Shared Memory Utilization 44

4.2.3 Convolution Performance Results 46
4.3 GPGPU Corner Detector 48

4.3.1 Naive Corner Detector GPGPU Implementation 49
4.3.2 Optimized Corner Detector GPGPU Implementation 50

4.3.2.1 Integral Images 50
4.3.3 Corner Detector Performance Results 57

4.4 GPGPU Non-maxima Suppression (NMS) 58
4.4.1 Naive NMS GPGPU Implementation 59
4.4.2 Optimized NMS GPGPU Implementation 59

4.4.2.1 Spiral Scanning 59
4.4.2.2 Corner Segmentation 61
4.4.2.3 Texture Memory Utilization 62

4.4.3 NMS Performance Results 63
4.5 GPGPU Harris Corner Detection Performance Results 66

Chapter 5: Feature Matching Application 75
5.1 Feature Matching Introduction 75
5.2 Feature Matching Implementation 75

5.2.1 SURF Overview 76
5.2.2 FLANN (K-NN) Overview 77

5.3 Feature Matching Performance Results 78
Chapter 6: Conclusion and Future Work 85
Bibliography 87
Appendices

A: Platform Specifications 91
B: Standard C Harris Corner Detection Code 93
C: Naive CUDA Harris Corner Detection Code 99
D: Optimized CUDA Harris Corner Detection Code 106

�vii

LIST OF TABLES

Table 1.1: GeForce 280 GTX Specifications 4
Table 1.2: GeForce 8800 GTX Specifications 6
Table 2.1: Table of Various GPU Memory Characteristics 12
Table 2.2: GPGPU Hardware Performance Quantities 14
Table 4.1: Optimized CUDA Convolution Speedup 47
Table 4.2: Example Thread Configuration For High SM Occupancy 54
Table 4.3: Harris Corner Detection Parameters 67
Table 4.4: GPGPU Harris Corner Detection Optimization Summary 70
Table 4.5: Optimized CUDA Harris Corner Detection Feasible FPS 74
Table 5.1: Feature Matching Stage Types 76
Table 5.2: Circle Classification of Figure 5.2 78
Table 5.3: Feature Matching Feasible FPS Processing 84
Table A.1: Hardware Environment Specifications 91
Table A.2: NVIDIA GPGPU Specifications 91
Table A.3: Software Specifications 92

�viii

LIST OF FIGURES

Figure 1.1: Corner Response Compression Example 5
Figure 2.1: CUDA Thread Block Configuration on GPGPU 10
Figure 2.2: NVIDIA GPGPU Memory Hierarchy 11
Figure 2.3: Typical CUDA Thread Configuration for Image Processing 13
Figure 2.4: Memory Transfers Form Host to GPGPU and Vice-Versa 15
Figure 2.5: Warp Divergent Example Code 19
Figure 3.1: Directional Intensity Change Types 20
Figure 3.2: SSD When Shifting Region Horizontally Away From ROI 22
Figure 3.3: SSD When Shifting Region Vertically Away From ROI 22
Figure 3.4: SSD Surface for ROI Containing an Edge 23
Figure 3.5: SSD Surface for ROI Containing a Corner 24
Figure 3.6: Eclipse Representation for Harris Corner Detection 27
Figure 3.7: Corner Response Example 28
Figure 3.8: Harris Corner Detection Software Architecture 31
Figure 3.9: Image Convolution Visual Description [12] 32
Figure 3.10: 3x3 Gaussian Convolution Filter masks(sigma = .85) 33
Figure 3.11: 3x3 Sobel Gradient Filter masks 34
Figure 3.12: Unsuppressed and Suppressed Corner Responses 35
Figure 4.1: Harris Corner Detection Parallel Software Architecture 36
Figure 4.2: CUDA GPGPU Convolution Algorithm Flow 37
Figure 4.3: Naive CUDA Convolution Memory Transfers 38
Figure 4.4: Naive Convolution CUDA Kernel Pseudo Code 39
Figure 4.5: Avoided Multiplications by Utilizing Separable Convolution Filters 41
Figure 4.6: Separable CUDA Convolution Execution Flow 42
Figure 4.7: Pipelined CUDA Separable Convolution Execution Flow 43
Figure 4.8: Shared Memory Overlap Between Thread Blocks 45
Figure 4.9: Image Convolution Performance Results 47
Figure 4.10: CUDA GPGPU Corner Detector Algorithm Flow 48
Figure 4.11: Naive Corner Detector CUDA Kernel Pseudo Code 49
Figure 4.12: Integral Image Neighborhood Summation 50
Figure 4.13: Parallel Up-Sweep Scan Implementation 52
Figure 4.14: Parallel Down-Sweep Scan Implementation 53
Figure 4.15: Parallel Scan Involving Multiple Thread Blocks 55
Figure 4.16: Integral Image Algorithm Architecture 56

�ix

Figure 4.17: CPU vs GPGPU Integral Image Process Time 57
Figure 4.18: Corner Detection Performance Results 58
Figure 4.19: Naive Non-maxima Suppression CUDA Kernel Pseudo Code 59
Figure 4.20: Iterative Neighborhood Scanning Orders 60
Figure 4.21: Corner Response Segmentation 62
Figure 4.22: NMS Performance Test Input Image 64
Figure 4.23: NMS Process Time With Neighborhood Dimension of 3 65
Figure 4.24: NMS Process Time With Neighborhood Dimension of 5 65
Figure 4.25: NMS Process Time With Neighborhood Dimension of 7 66
Figure 4.26: Harris Corner Detection Performed on Image of an F18 68
Figure 4.27: Harris Corner Detection Performed on Image of the Eiffel Tower 68
Figure 4.28: Harris Corner Detection Performed on Image of Mt.Whitney CA 69
Figure 4.29: Harris Corner Detection Process Time For All Platforms 72
Figure 4.30: Harris Process Time For High Performance Platforms 73
Figure 4.31: Optimized CUDA Harris Corner Detection Speedup 74
Figure 5.1: Feature Matching Computer Vision System 75
Figure 5.2: K-NN Classification Example [20] 78
Figure 5.3: Feature Matching Stage Implementations 78
Figure 5.4: Training Image and Scene Images 80
Figure 5.5: Feature Matching System Result 81
Figure 5.6: Feature Matching Processing Times 83
Figure 5.7: Feature Matching Speedup 84

�x

Chapter 1: Introduction

1.1 Thesis Introduction

 The goal of computer vision is to model and replicate the human visual system

through computer software and hardware and build autonomous systems [1]. Replicating

the human visual system on a computational platform has proven to be inherently

difficult. Computer vision is the field of understanding the 3D world from 2D images,

however details of the 3D world are lost during image formation, thus making computer

vision difficult. High-level computer vision systems rely on low-level processes, such as

corner detection, to perform accurately [1].

 GPUs (graphics processing unit) have become increasingly programmable over

the past few decades. NVIDIA has led the field in parallel computing with their intuitive

software, CUDA (Compute Unified Device Architecture), and highly optimized GPGPU

(general purpose graphics processing unit) hardware. This thesis discusses the

implementation of the Harris corner detection algorithm on the NVIDIA GPGPU by

utilizing the CUDA software platform. Corner detection is computationally intensive, thus

a realtime implementation has proven to be difficult. High-speed corner detection is in

high demand for computer vision systems in applications such as motion detection,

video tracking, augmented reality, and object recognition [2]. The objective of this thesis

is to analyze the performance benefit of implementing and optimizing the Harris corner

detection algorithm on the NVIDIA GPGPU platform using CUDA.

1.2 Thesis Organization

 Chapter 1 introduces the background of the Harris corner detection algorithm and

the history of the GPGPU computing platform. The chapter discusses the related work of

utilizing CUDA for Harris corner detection which has been done prior to this work.

�1

 Chapter 2 presents an overview of the NVIDIA GPGPU hardware architecture

and the CUDA architecture. An overview on how the CUDA software architecture runs on

the GPGPU hardware will be explained, which will later justify parallel optimization

strategies made to the Harris corner detection implementation. General CUDA and

GPGPU optimizations will be discussed to provide a basis for general speed

enhancements for parallel algorithm implementations.

 Chapter 3 will present an overview of the mathematical representation of the

Harris corner detection algorithm. The Harris corner detection algorithm will then be

decomposed into a software architecture representation. Each stage in the software

architecture will then be briefly discussed, along with its purpose and algorithmic

function.

 Chapter 4 will discuss the naive and optimized CUDA implementations of each

stage in Harris corner detection software architecture: convolution, corner detection, and

non-maxima suppression. At each stage, different optimization strategies will be

discussed, and the performance will be compared to other platforms: standard C,

MATLAB, and naive CUDA. Once each stage has been fully optimized to run on the

GPGPU hardware, the performance of the overall Harris corner detection

implementation will be analyzed and compared to other platforms.

 In Chapter 5, Harris corner detection will be applied to a feature matching

computer vision system. The performance benefit gained by incorporating the optimized

CUDA Harris corner detection implementation into the feature matching system will be

compared against several platforms.

 Chapter 6 will describe future work for GPGPU Harris corner detection and will

conclude this thesis.

�2

1.3 Related Work

 A paper published in 2011, “Low Complexity Corner Detector Using CUDA for

Multimedia Applications”, investigated the performance benefit gained by implementing

the Harris corner detection algorithm using CUDA [3]. Rajah Phull, Pradip Mainali, and

Quiong Yang from the Institute of BroadBand Technology optimized the Harris corner

detection algorithm by utilizing several different optimization strategies: shared memory,

coalesced memory accesses, and thread occupancy. The paper focused on optimizing

the LoCoCo (Low Complexity Corner) detector rather than the traditional Harris corner

detection algorithm for added performance benefit. The LoCoCo detection algorithm

sacrifices accuracy to increase performance by approximating the Gaussian derivative

with a box filter. This implies that integral images can be utilized to reduce the number of

arithmetic operations required for image convolution.

 The performance results of the CUDA LoCoCo implementation were compared to

the CPU implementation. The CUDA LoCoCo was designed to run on the NVIDIA

GeForce 280 GTX GPGPU, specifications shown in Table 1.1. The performance analysis

revealed that their CUDA LoCoCo implementation had around a 14 times faster speedup

over the CPU implementation [3]. The paper was the first to report the findings of CUDA

performance benefit when applied to the corner detection. The paper showed that their

implementation had a significant performance improvement, however it didn’t not fully

utilize the GPGPU nor advanced optimizations to further increase performance. This

thesis will utilize a modern GPGPU (specification located in Appendix A) and the

algorithm will be tuned for its specification. This thesis will explore in-depth CUDA

optimization strategies for each stage of the Harris corner detection algorithm to

maximize performance benefit without compromising precision.

�3

Table 1.1: GeForce 280 GTX Specifications

 A paper published in 2008, “Accelerated Corner-Detector Algorithms”,

investigated the performance benefit of implementing corner detection algorithms on

GPGPUs [4]. Lucas Teixeira, Waldemar Celes, and Marcelo Gattass, from Tecgraf

(Technical Scientific Software Development Institute) designd a template for the KLT and

Harris corner detector to run on the GPGPU. The paper focused on the GPGPU

compression of the corner response to reduce memory bandwidth in the non-maxima

suppression (NMS) algorithm. Their method to increase performance was to reduce the

number of global memory reads during the NMS process [4]. The corner response

compression was implemented by performing a reduction on all 2x2 neighborhood in the

corner response, effectively decreasing the corner response size by a factor of 2. The

compression was implemented by iterating a 2x2 window over all pixel locations with

even parity (skipping every other pixel), and executing the neighborhood reduction

shown in Equation 1.1. The result of the compression is an output image which

represents all of the 2x2 neighborhood maxima in the original input, example shown in

Figure 1.1.

! !

Equation 1.1: Corner Response Compression Equation

GeForce 280 GTX Specifications

CUDA Cores 240

Clock Rate 1.40 GHz

SM Count 30

Warp Size 32

Shared Memory 16 KB

Constant Memory 64 KB

p(x, y) = max{p(2x,2y), p(2x +1,2y), p(2x,2y +1), p(2x +1,2y +1)}

�4

!

Figure 1.1: Corner Response Compression Example

 The compression of the corner response reduces the memory bandwidth

overhead from the GPGPU to the host by a factor of 2, thus increasing performance.

Their GPGPU implementation was implemented to run on the NVIDIA GeForce 8800

GTX GPGPU, specifications shown in Table 1.2. Their performance findings for GPGPU

corner response compression yielded a precision error of roughly 0.02 for Harris corner

detection [4]; however, their GPGPU speedup resulted in NMS processing times not

exceeding 6 ms for image dimensions of 1024 x 768. Their implementation achieves

higher performance by sacrificing precision in the corner response calculation. This

thesis will investigate alternative optimizations to achieve realtime performance without

compromising corner response precision.

�5

Table 1.2: GeForce 8800 GTX Specifications

 Both papers proposed CUDA implementations of the Harris corner detection

algorithm which yielded higher performance over the CPU implementation. This thesis

will implement more advanced CUDA optimizations to further increase performance

without compromising precision. 

GeForce 8800 GTX Specifications

CUDA Cores 128

Clock Rate 1.35 GHz

SM Count 16

Warp Size 32

Shared Memory Per SM 16 KB

Constant Memory 64 KB

�6

Chapter 2: NVIDIA GPGPU and CUDA

2.1 GPGPU Introduction

 Beginning in the late 1990’s, the NVIDIA GPU (graphics processing unit) had

become increasingly programmable. Since the revolution of the GPU platform, many

developers were adapting GPU hardware into their preexisting graphical systems to

increase performance. Programmers were also able to achieve performance increases

on non-graphical systems by embedding their algorithms within the vertex and fragment

shaders in GPU graphics pipeline. However, this was nontrivial, for programmers had to

map their non-graphic algorithms into a graphics pipeline which focused primarily on

triangles and polygons. In 2003, Ian Buck unveiled the first generic extension to C which

allowed for parallel constructs—the Brooke compiler. NVIDIA coupled the Brooke

language extension into their specialized hardware and created the first ever solution to

general purpose parallel computing.

 Parallel computation has been gaining popularity in the past few decades due to

the performance benefits over sequential computation. NVIDIA states, “Driven by the

insatiable market demand for realtime, high-definition 3D graphic, the Graphic Processor

Unit or GPU has evolved into a highly parallel, multithreaded, manycore processor with

tremendous computational horsepower” [5]. Massive GPGPU parallelism is achieved

through the massive replication of simple SIMD (single instruction multiple data)

processors, known as streaming multiprocessors [6]. NVIDIA was the first to integrate an

intuitive parallel software model into their highly optimized GPGPU hardware. Alternative

software parallel constructs exists for parallel computing (openCL, openACC); however,

CUDA has been the flagship software platform for GPGPU computation due to its

intuitive nature, and its coupling with optimized NVIDIA hardware. CUDA was developed

by NVIDIA with several goals in mind: provide a small set of extensions to standard

�7

programming languages (C/C++), support heterogenous computation where applications

can utilize both the CPU and GPGPU hardware [7].

 NVIDIA GPGPUs are parallel processing units which have the capability of

running thousands of concurrent threads in parallel. The GPGPU streaming

multiprocessors (SM) have shared resources and on-chip memory which allows for

parallel tasks to run with higher performance [7]. The difference between a GPU and

GPGPU is that a GPU only allows for graphic mono-directional data transfers from the

host CPU to the GPU. GPGPUs allow for bidirectional data transfers from the host CPU

to the GPGPU and vice-versa through the PCI express bus to perform generic parallel

algorithm computations. No prior knowledge of the graphics pipeline is required for

CUDA programming and general algorithms can be decomposed into thousands of

concurrent threads, executed in parallel, to achieve a significant performance benefit.

Section 2.2 will discuss CUDA algorithm scalability between hardware configurations,

and why it allows for contemporary CUDA implementations. Sections 2.3-2.4 will give an

introduction into the GPGPU platform and its basic hardware components: streaming

multiprocessor, and memory types. Section 2.5-2.6 will discuss a CUDA overview and

the general optimizations which can be applied to all CUDA implementations.

2.2 GPGPU Scalability

 The basis for CUDA popularity is due to automatic scaling of threads to GPGPU

hardware configurations. Rob Farber, CEO of TechEnablement and CUDA expert, states

that the “software abstraction of thread blocks translates into a natural mapping of the

kernel onto an arbitrary number of SMs” [6]. The abstraction between thread blocks and

GPGPU hardware allow CUDA implementations developed today to eventually scale to

hardware configurations with higher performance specifications. Scalability allows for

CUDA programmers to create general parallel implementations, and by updating the

GPGPU hardware, the programmer can expect an improved performance benefit.

�8

2.3 GPGPU Streaming Multiprocessor

 The parallel architectural building block for the NVIDIA GPGPU is the streaming

multiprocessor (SM), for the number of SMs on a GPGPU determines the degree of

physical parallelism possible. The massive set of CUDA threads are partitioned into fixed

sized thread blocks in the execution configuration. CUDA threads are grouped into

blocks, and CUDA blocks are configured into a grid. Each SM is assigned blocks of

threads which the SM is responsible for executing. The SM will further partition the

blocks into warps, where each warp will be scheduled independently to run all of its

threads with lock-step level parallelism. Threads within a thread block are guaranteed to

run on the same SM, therefore threads within the same block can utilized local on-chip

memory types: shared memory, and L1 cache. The scheduling of thread blocks to

particular SMs is the job of the NVIDIA global scheduler, which will base its scheduling

on the number of thread blocks, and the number of thread per a single block in the

execution configuration. Multiple thread blocks can be scheduled to the same SM, if the

number of thread blocks outweigh the number of SMs on the GPGPU. Figure 2.1 shows

an example of how CUDA thread blocks are mapped to streaming multiprocessors on

the NVIDIA GPGPU.

�9

!

Figure 2.1: CUDA Thread Block Configuration on GPGPU

 The SM contains a large array of SIMD (single instruction multiple data)

processing cores. SIMD implies that the processing units within an SM will run the same

instruction in lock-step level parallelism on different data. As stated earlier, the SM

further partitions the scheduled block of threads into units called warps. A warp is the

fundamental unit of parallelism defined on NVIDIA GPGPU hardware. Since the CUDA

cores have an SIMD architecture, each thread within a warp must run the same

instruction, or have to idle. The GPGPU Kepler architecture uses a quad warp

scheduling scheme, where each SM is capable of executing four warps, of size 32

threads, in parallel. This implies a single SM on the Kepler architecture has the capability

to execute 128 SIMD threads concurrently. Table A.3 in Appendix A shows the specific

SM architecture for the NVIDIA GeForce 660 Ti—the GPGPU used to conduct this thesis

research.

�10

2.4 GPGPU Memory Types

 NVIDIA GPGPUs contain various types of memory, each of which have their own

performance characteristics. The fastest, however least abundant memory types on the

GPGPU are the L2 cache, shared memory, and registers, for they are embedded directly

onto the streaming multiprocessors. The slowest memory type on the GPGPU is global

memory, however it is the most abundant memory on the GPGPU. The memory

hierarchy shown in Figure 2.2 shows the basic memory layout of a generic NVIDIA

GPGPU. Memory performance is inversely proportional to the size of the memory on the

GPGPU, for slower off-chip memory types are more abundant than faster on-chip

memory types. Table 2.2 shows the characteristics of some of the different memory

types on the NVIDIA GPGPU, ordered from fastest to slowest performance memory.

!

Figure 2.2: NVIDIA GPGPU Memory Hierarchy

P
erform

ance inversely proportional to m
em

ory size

�11

!

Table 2.1: Table of Various GPU Memory Characteristics

 When optimizing parallel CUDA implementations, the programmer should always

strive to utilize local on-chip memory that is directly integrated onto the streaming

multiprocessor, specifically shared memory. Farber states, “Managing the significant

performance difference between on-board and on-chip memory is the primary concern of

a CUDA programmer” [6]. The avoidance of global memory accesses is typically the first

optimization when programing NVIDIA GPGPUs. Every CUDA algorithm implementation

can be benchmarked by its CGMA (compute to global memory access) ratio; thus,

higher the ratio implies more computation for a single global memory access.

2.5 CUDA Overview

 As mentioned in the earlier sections, CUDA is the software platform which allows

users to interface with the NVIDIA GPGPU hardware. CUDA is not a programming

language itself, rather it is a C/C++ extension which enables parallel constructs. The

CUDA platform provides three key abstractions: thread group hierarchy, shared

memories, and barrier synchronization [5]. CUDA revolves around the idea of a kernel,

or GPGPU function, which is executed for every thread, in every block, within the

configured grid.

Fastest

Slowest

Memory Type Size Cached On Chip Scope

Register
Count

65536 No Yes Single Thread

L1 Cache 64 KB N/A Yes Single Block

Shared Memory 48 KB No Yes Single Block

L2 Cache 384 KB N/A No All Threads

Global Memory 2048 MB Yes No All threads

�12

 Invoking a CUDA kernel involves firstly creating a thread hierarchy composed of

the thread blocks, and threads per a block. As mentioned earlier, threads are grouped

into what are called thread blocks. A thread grid is formed by first building a N-

dimensional array of blocks, then defining how many threads exist in each block in N-

dimensions. Figure 2.3 shows the typical grid configuration used for image processing (2

dimensional grid of blocks, 2 dimensional blocks of threads). In the case for image

processing, the grid size would be dependent on the image’s dimension. For example, if

an image of size 1024x1024 were to be processed, and the number of threads per a

block was defined as 32x32 (1024 threads per block), then the CUDA grid would contain

32x32 thread blocks to process each pixel individually.

!

Figure 2.3: Typical CUDA Thread Configuration for Image Processing

2.6 General CUDA Performance Optimizations

 Tuning CUDA algorithms for specific hardware configurations that they run on

can highly improve the performance of the algorithm implementation. The performance

of NVIDIA GPGPUs can be benchmarked by several specifications, shown in Table 2.2.

�13

Table 2.2: GPGPU Hardware Performance Quantities

By knowing the GPGPU specifications for the hardware being programmed, an

algorithm’s implementation can be optimized to utilize all resources on the specific

GPGPU.

 Optimizing the GPGPU platform naively can sometimes produce worse

performance over the CPU implementation. Correct optimization strategies must be

known by the programmer in order to maximize the parallel performance. The purpose of

running algorithms in parallel is to maximize algorithmic performance; therefore,

hardware knowledge is imperative. Many factors should be considered when optimizing

CUDA algorithms: data-bus overhead, memory caching, faster memory utilizations, and

warp divergence.

2.6.1 Data-bus Overhead

 The GPGPU memory is segregated from the host CPU memory space, therefore

the GPGPU must communicate with the host CPU over the external PCI express bus.

The overhead between transferring memory between the host CPU to the GPGPU and

vice-versa can be significant if the data transfers are implemented naively. As the data

GPGPU Specification How to Increase Performance

SM Count Increase the number of streaming
multiprocessors to increase the number of
concurrent threads executing in parallel

Warp Size Increase the warp size to increase the
number of threads running in parallel
within a single SM

Shared Memory Size Increase the shared memory size per
block to allow for higher SM thread
occupancy

Warps Per SM Increase the number of warps in a SM to
increase the number of threads executing
in parallel.

�14

transfer overhead increases in a parallel implementation, the performance benefit of

utilizing the GPGPU decreases.

 Transferring memory between host CPU and GPGPU over the PCI express bus

is typically the largest bottle neck in GPGPU algorithms. The CUDA driver API can only

transfer memory from the host CPU to the GPGPU memory and vice-versa if the host

memory is pinned (non-paged). By default, host memory allocations are pageable, thus

the host CPU must perform a copy from pageable memory to pinned memory before

copying the memory to the GPGPU global memory space. The transparent overhead of

memory transfers can lead to poor performance when dealing with high bandwidth

memory transfers, such as high resolution images or video processing.

!

Figure 2.4: Memory Transfers Form Host to GPGPU and Vice-Versa

 The CUDA API allows for allocating pinned memory to avoid the implicit host

internal memory transfers from paged to pinned memory and vice-versa. Pinned

memory transfers from the host CPU to the GPGPU and vice-versa have the highest

bandwidth [8]. By avoiding paged host memory, the internal data transfer from paged to

�15

pinned and vice-versa is avoided, thus increasing implementation performance.

However, pinned memory should not be overused, for pinned memory allocations are

computationally expensive, thus only a single allocation of pinned memory should be

made and used as a staging area before memory transfers.

2.6.2 Cache Utilization

 The L1 and L2 caches presented on the NVIDIA GPGPU hardware are

transparent to the programmer, thus direct access is not possible. Knowledge of caching

locality can greatly improve the performance of CUDA algorithms by avoiding global

memory accesses. The L2 cache is the most abundant cache memory on the GPGPU,

and it resides a single memory access away from global memory. The L2 cache greatly

improves global memory access performance if memory accesses are based on spatial

or temporal locality access pattern. Global memory accesses by threads within a single

warp can be reduced if all the threads within the warp access spatially near portions of

the input data [8].

 Every streaming multiprocessor (SM) has its own dedicated on-chip L1 cache,

which are exclusively designed for spatial locality. The L1 caches do not utilize an LRU

(least recently used) caching scheme, and temporal access pattern will invoke cache

misses, thus decreasing memory performance [6]. If temporal access patterns exists

within the CUDA software, then memory should reside locally in shared memory on the

SM in order to guarantee that data is kept on-chip.

2.6.3 Shared Memory Utilization

 As mentioned earlier, a CUDA implementation’s memory performance can be

quantified by its CGMA ratio. The CGMA ratio represents the compute calculations

compared to the number of global memory accesses. When optimizing CUDA algorithm

implementations, the global memory bandwidth typically becomes the bottleneck of the

�16

performance. Increasing the CGMA ratio will effectively increase the CUDA

implementation’s performance. The strategy to increase the CGMA ratio involves utilizing

other types of GPGPU memory, typically shared memory. Shared memory is streaming

multiprocessor on-chip memory, normally with sizes 16 KB - 64 KB. Each block of

threads has its own dedicated segment of shared memory since each block is scheduled

to run exclusively on a particular SM. Shared memory is configured into 32 four-byte

wide banks on each SM on the GPGPU, thus a 32 thread warp can access shared

memory in parallel if no threads within the warp access the same bank [6]. Shared

memory cannot be accessed between SMs, and therefore shared memory cannot be

shared between thread blocks. The amount of shared memory is orders of magnitude

smaller than global memory, thus the use of shared memory increases the complexity of

CUDA implementation. For implementations which cannot utilize shared memory due to

memory size constraints, or implementation complexity, the GPGPU offers two

alternative types of memory to further increase performance: constant, and texture

memory.

2.6.4 Constant Memory Utilization

 In situations where the implementation of shared memory becomes overly

complex, constant memory can be implemented in order to increase the CGMA ratio.

Constant memory is readonly memory and is located in global memory, however it

utilizes direct on-chip caching. Constant memory typically has a size of 64 KB for NVIDIA

GPGPUs with compute capability 1.0-3.0. Constant memory has the performance of

register accesses, due to caching, as long as the threads within a warp have the same

memory access pattern. If all threads within a warp access access consecutive word

addresses spatially, then only a single access transaction will be performed, which will

increase memory performance and the implementation’s CGMA ratio [9].

�17

2.6.5 Texture Memory Utilization

 In situations where the use of shared memory and/or constant memory cannot be

utilized due to size constraints or implementation complexity, texture memory can be

utilized to increase performance. Texture memory on the GPGPU is memory which is

normally used for the graphics pipeline, however it is also available for general purpose

computing. Texture memory is cached on-chip, like constant memory, and has great

performance benefit when memory accesses exhibit spatial locality. Texture, like

constant, memory is readonly and is highly optimized for spatial locality due to its design

for graphics performance. Texture memory offers unique performance benefits that are

not offered by other memory types: interpolation between values, automatic

normalization, and automatic boundary handling. Texture readonly memory costs a

single read from the texture cache on a cache hit, and a global memory read on a cache

miss. For implementations that have a readonly memory access patterns, with high

spatial locality, texture memory can be utilized to increase performance by avoiding the

costs of global memory accesses.

2.6.6 Avoiding Warp Divergence

 The GPGPU SIMD streaming multiprocessors (SM) have a performance

drawback of warp divergence. As stated previously, a warp is the fundamental unit of

parallelism on the GPGPU. Groups of threads are collected into blocks and partitioned

into warps based on the architecture fixed warp size. Each block is exclusively assigned

a SM, where the partitioned warps execute in lockstep level parallelism. Due to the SMs

having an SIMD architecture, every thread executing in its particular warp must run the

same instruction; however, in software there are normally conditional branches. If a

thread in a warp executes a conditional path while another thread within that same warp

does not execute the same path, then this is what is defined as warp divergence. Warp

divergence causes all threads to stall for instruction level synchronization, thus “long

�18

code paths in a conditional can cause a 2-times slowdown for each conditional within a

warp and a 2N slowdown for N nested loops” [6]. From the programmers point of view, if

they know their specific GPGPU warp size, and partition their threads into blocks which

guaranteed the same conditional paths, they can avoid warp divergence by ensuring that

each thread within a warp executes the same instruction. This however, like shared

memory utilization, increases the complexity of the parallel implementation. The code

shown in Figure 2.5 is an example of warp divergence, for the thread execution is based

on the parity of the thread ID. This implies that half of the threads within a warp will

execute different conditional paths, thus introducing a 2 times slowdown in

implementation performance. Warp divergence can decrease the level of parallelism in

CUDA implementation due to the nature of SIMD. The CUDA compiler (nvcc) does

perform conditional branch voting, which determines how to schedule threads based on

conditional paths, however the programmer is best fit to solve the thread divergence

problem, or at least minimize the warp divergence within their implementation.

Figure 2.5: Warp Divergent Example Code

 1 if(thread_id % 2 == 0)
 2 data[thread_id] = pow(2.0, 2.0); // Divergence Path #1
 3 else
 4 data[thread_id] = sqrt(2.0); // Divergence Path #2

�19

Chapter 3: Harris Corner Detection

3.1 Corner Detection Introduction

 The Harris corner detection algorithm, developed by C. Harris and M. Stephens

in 1988, detects the location of corner points within an image [10]. Corner points are

used for defining features because they have “well-defined position[s] and can be

robustly detected” [24]. Corner points are inherently unique and are great interest points

due to their invariance to translation, rotation, illumination, and noise. Due to the intrinsic

properties of corner points, the Harris corner detection algorithm has been utilized

frequently for computer vision system applications, such as motion detection, image

registration, video tracking, panorama stitching, 3D modeling, and object recognition.

3.2 Corner Detection Qualitative Description

 A corner can be considered as the intersection of two well-defined edges. The

Harris corner detection algorithm searches for corner points by looking at regions within

an image which contains high gradient values in all directions. A window is iteratively

scanned across the X and Y gradients of the input image, and if high changes in

intensity exist in multiple directions, then a corner is inferred to exist within the current

window. Figure 3.1 shows the different types of regions that can exist within an image.

Figure 3.1: Directional Intensity Change Types

Flat Region Edge Region Corner Region

! ! !

�20

3.3 Corner Detection Mathematical Description

 A corner within a region of interest (ROI) can be identified by calculating the sum

of squared difference (SSD) between the ROI and shifted nearby regions. The SSD

formula, shown in Equation 3.1, quantifies the difference between ROI and shifted region

by summating the squared differences pixel by pixel. The function I, in Equation 3.1,

represents the input image. The (x,y) coordinates specify the ROI, and the (! u,! v)

coordinate specifies the offset of the shifted region from the ROI.

!

Equation 3.1: SSD Equation

 Figures 3.2-3.4 (a) show the ROI (red box) containing an edge, defined by the

(x,y) coordinates, and the shifted region (blue dashed box), defined by the (! u,! v)

offset. Consider iterating the shifted region away from the ROI in only the horizontal

direction, shown in Figure 3.2 (a), thus only varying the ! u coordinate. When the ! u

coordinate is at zero, the ROI and shifted region are the same region, thus resulting in a

SSD of zero. As the shifted region iterates farther from the ROI in the horizontal direction

the SSD increases significantly, shown in Figure 3.2 (b). This implies that the ROI and

shifted region become more different as the shifted region iterates in the horizontal

direction.

Δ Δ

E(Δu,Δv) = I(x + Δu, y + Δv)− I(x, y){ }
(x,y)∈ROI
∑ 2

Δ Δ

Δ Δ

�21

Figure 3.2: SSD When Shifting Region Horizontally Away From ROI

 Now consider iterating the shifted region away from the ROI in only the vertical

direction, shown in Figure 3.3 (a), thus only varying the ! v coordinate. As the shifted

region iterates farther away from the ROI in the vertical direction, the SSD does not

increase much, shown in Figure 3.3 (b). This implies that the ROI and shifted region stay

similar as the shifted region iterates in the vertical direction.

 Figure 3.3: SSD When Shifting Region Vertically Away From ROI

(a) Shifted Region Horizontally (b) SSD Increases Significantly

! !

Δ

(a) Shifted Region Horizontally (b) SSD Increases Minimally

! !

�22

 Now consider iterating the shifted region in all directions away from the ROI,

shown in Figure 3.4 (a), thus varying both the ! u and ! v coordinates. Figure 3.4 (b)

shows the SSD surface produced by iterating the shifted region in all directions. Since

the SSD is only significant when iterating the shifted region way from the ROI in the

horizontal direction, the SSD surface resembles a canyon shape, which implies the

existence of an edge within the ROI.

Figure 3.4: SSD Surface for ROI Containing an Edge

 If a ROI contains a corner, as shown in Figure 3.5 (a), the SSD will increase

significantly regardless of the shifted window direction. The SSD for a corner existing

within the ROI will have the surface shape shown in Figure 3.5 (b). The concave surface

is zero-valued at the origin and increases in all directions away from the origin. A corner

can be identified within a ROI based solely on the shape of the SSD surface.

Δ Δ

(a) Shifted Region in All Directions (b) SSD Increases in Only One Dimension

!
!

�23

Figure 3.5: SSD Surface for ROI Containing a Corner

 The shape of the SSD surface can be accurately approximated by its behavior at

the origin. The Taylor series expansion can be utilized to approximate the surface

behavior by expanding the SSD equation near the origin. The Taylor series states that a

function’s behavior at a specific point can be approximated by the infinite sum of that

function’s derivatives. Equation 3.2 shows the 1D Taylor series expansion about point a.

!

Equation 3.2: Taylor Series Expansion Equation

 Under the assumption that the shifted window offsets ! u and ! v are minimal,

the Taylor series can be utilized to accurately approximate the SSD surface. By utilizing

Taylor series expansion, the pixel intensities within the shifted region can be

approximated by the ROI gradients, shown in Equation 3.3. Ix is the partial derivative of

(a) Shifted Region in All Directions (b) SSD Increases in All Both Dimensions

!
!

f (x) = f (a)+ df
dx
(x − a)+ 1

2!
d 2y
dx2

(x − a)2…

Δ Δ

�24

the ROI in the X (horizontal) direction, and Iy is the partial derivative of the ROI in the Y

(vertical) direction.

!

Equation 3.3: Shifted Region Approximation Based on Taylor Series

 The SSD equation can be reduced to only be dependent on the gradients of the

ROI. Equation 3.4 shows the approximated SSD equation by substituting the Taylor

series approximation, shown in Equation 3.3, into the SSD Equation 3.1.

!

 Equation 3.4: SSD Approximation Equation

 The SSD approximation only depends on the ROI gradients Ix and Iy, and not the

ROI’s pixel intensity values. The SSD approximation can be converted to matrix form by

factoring non-summation dependent variables ! u and ! v (derivation shown in the

Equation 3.5).

!

!

I(x + Δu, y + Δv) ≈ I(x, y)+ Ix (x, y)Δu + Iy(x, y)Δv

E(Δu,Δv) ≈ Ix (x, y)Δu + Iy(x, y)Δv{ }2
(x,y)∈ROI
∑

Δ Δ

E(Δu,Δv) ≈ Δu2Ix
2 (x, y)+ 2ΔuΔvIx (x, y)Iy(x, y)+ Δv2Iy

2 (x, y){ }
(x,y)∈ROI
∑

≈ Δu Δv⎡
⎣

⎤
⎦

Ix
2 (x, y) Ix (x, y)Iy(x, y)

Ix (x, y)Iy(x, y) Iy
2 (x, y)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Δu
Δv

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(x,y)∈ROI
∑

�25

!

!

Equation 3.5: SSD Equation in Matrix Form

!

Equation 3.6: Harris Matrix

 The 2x2 matrix H—Harris matrix—is defined in Equation 3.6. The Harris matrix

describes the gradient distribution within the ROI, therefore the Harris matrix can be

used to classify corner features. The gradient distribution is variant to corner rotation

within the ROI, therefore the eigenvalues of the Harris matrix are used to create a

rotationally invariant description of the gradient distribution. The eigenvalues of the

Harris matrix define the shape of the eclipse which encapsulates the horizontal and

vertical gradient distribution of the ROI, shown in Figure 3.6. The eigenvalues of the

Harris matrix are invariant to rotation, intensity scaling, and affine transformations, thus

the eigenvalues of the Harris matrix are used as the characteristic for detecting corners.

If a corner exists within a ROI, then both eigenvalues of the Harris matrix will have

≈ Δu Δv⎡
⎣

⎤
⎦

Ix
2 (x, y) Ix (x, y)Iy(x, y)

Ix (x, y)Iy(x, y) Iy
2 (x, y)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(x,y)∈ROI
∑ Δu

Δv
⎡

⎣
⎢

⎤

⎦
⎥

≈ Δu Δv()H Δu
Δv

⎛
⎝⎜

⎞
⎠⎟

H =
Ix
2 (x, y) Ix (x, y)Iy(x, y)

Ix (x, y)Iy(x, y) Iy
2 (x, y)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟(x,y)∈ROI

∑

�26

significant magnitude, which implies a large gradient distribution in the horizontal and

vertical directions.

Figure 3.6: Eclipse Representation for Harris Corner Detection

 Based on the eigenvalues of the Harris matrix, a corner score is assigned to

identify the likelihood of a corner existing within the ROI. A corner is considered detected

when the corner score is significantly greater than zero, which implies a large

encompassing eclipse over the gradient distribution. The corner score equation is

described in Equation 3.7.

!

! λ1 ≈ 0 AND λ2 ≫ λ1 => Edge Exists

! λ1 ≫ 0 AND λ2 ≫ 0 => Corner Exists

! λ1 ≈ 0 AND λ2 ≈ 0 => No Feature

!

!

�27

!

Equation 3.7: Corner Score Equation

 The k term is considered the sensitivity parameter of the corner detector, which is

manually adjusted, however it has been empirically shown that it typically ranges from

0.04-0.06. Figure 3.7 shows the corner response of an example geometric input image.

The corner points of the input image in Figure 3.7 (a) produce a significant corner score

greater than zero, while the edge and flat regions produce a smaller corner score.

Figure 3.7: Corner Response Example

 The Harris corner detection algorithm can be used to produce a corner response,

which is computed by determining the eigenvalues of the Harris matrix at each ROI

within the image. The Harris matrix is computed for every pixel within in the image, thus

it is very computationally intensive. Once a corner response is created for an image, the

R = λ1λ2 − k(λ1 + λ2)
2

(a) Input Image (b) Corner Response
Threshold > 0

! !

�28

corner locations can be extracted as feature locations for higher level computer vision

algorithms.

3.4 Corner Detection Algorithm

3.5 Corner Detection Software Architecture

 The Harris corner detection algorithm, described in Section 3.4, can be

partitioned into incremental stages: image convolution, array multiplication, corner

detection, and non-maxima suppression. Figure 3.8 shows the Harris corner detection

software architecture and algorithm flow from input image to suppressed corner

response. The input image is first convolved with a Gaussian smoothing filter in order to

remove any unwanted noise from the image. The smoothed image is then convolved

with gradient directional filters in order to calculated the Ix and Iy gradients. The Ix and Iy

gradients are then element-by-element multiplied to calculate Ix2, Iy2, and IxIy products

which are used as input for the corner detector stage. The corner detector, at every

spatial location, calculates the Harris matrix and it’s eigenvalues for the ROI. Based on

1) Denoise Input Image Using Gaussian Smoothing Filter

2) Compute Image Gradients Ix and Iy

3) Compute Image Gradient Products Ix2, Iy2, and IxIy

4) For Every Pixel Location

 a) Define ROI Around Pixel

 a) Compute Harris Matrix from Ix2, Iy2, and IxIy for ROI

 b) Compute Eigenvalues of Harris Matrix

 c) Assign Corner Score to Pixel

5) Threshold Corner Response

6) Perform Non-maxima Suppression on Corner Response

�29

the eigenvalues calculated for a ROI, a corner score is determined and assigned to that

spatial location. The corner response is then suppressed using non-maxima suppression

to define a minimum distance between adjacent corner detections in the corner

response. This section will describe each stage and its description, which will follow into

optimizing the implementation using CUDA in Chapter 4.

�30

!

Figure 3.8: Harris Corner Detection Software Architecture

�31

3.5.1 Image Convolution

 Image convolution, also known as spatial filtering, is defined as two dimensional

discrete convolution. Image convolution is the process of sweeping a filter mask, also

known as convolution kernel, across every pixel in an image while performing a scalar

product reduction between neighboring pixel and the filter mask coefficients [11].

Computing the value of each filtered pixel involves the centering the filter mask at the

desired pixel, shown in red in Figure 3.9. Once the filter mask is centered over the pixel,

the neighbors for that pixel are multiplied with the corresponding filter mask coefficients,

then all values are reduced into a sum that represents the filtered value. Figure 3.9

visually describes the image convolution process for a single pixel. Based on the filter

mask coefficients, several different filtering operations can be performed on an input

image. For the application of Harris corner detection, only Gaussian blurring and Sobel

gradient filtering will be discussed. The Harris corner detection algorithm requires three

separate image convolutions for an input image: Gaussian blurring, directional gradient

X, and directional gradient Y.

!

Figure 3.9: Image Convolution Visual Description [12]

�32

3.5.1.1 Gaussian Blurring

 The first stage in the Harris corner detection software architecture is to perform a

Gaussian smoothing (LPF) operation on the input image in order to reduce noise:

Gaussian noise is commonly found in digital images due to electrical sensor interference

[13]. The Gaussian filter mask, shown in Figure 3.10, when convolved with the input

image, filters out high frequency intensity changes in the image, thus providing a

smoother output image. Gaussian smoothing is a prerequisite for determining image

gradients in order to eliminate the false intensity changes when computing the Ix and Iy

directional gradients.

!

Equation 3.10: 2D Gaussian Distribution Equation

!

Figure 3.10: 3x3 Gaussian Convolution Filter masks(sigma = .85)

 The mathematical model of the Harris corner detection algorithm does not

theoretically require Gaussian filtering, however the presence of noise in digital images

and video may cause false corner detection; thus, smoothing the image before running

the detection algorithm is necessary in implementation.

f (x, y) = e
− (x−xo)

2

2σ x
2

− (y−yo)
2

2σ y
2

1/16 1/ 8 1 /16
1 / 8 1 / 4 1 / 8
1 /16 1 / 8 1 /16

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

�33

3.5.1.2 Image Gradients

 The image gradients in X and Y directions can be determined by performing

image convolutions with the Sobel directional filter masks, shown in Figure 3.11. The

Sobel filter mask, when convolved with the input image, effectively takes the directional

derivative of the input image and produces an edge map. The Ix and Iy gradients

produced by convolving the input image with the Sobel filter masks describe the pixel

intensity changes within a ROI.

Figure 3.11: 3x3 Sobel Gradient Filter masks

3.5.2 Array Multiplier

 Array multiplication, unlike matrix multiplication, is element-wise multiplication

between two matrices (or images). The array multiplier stage of the Harris corner

detection software architecture computes Ix2, Iy2, and IxIy products which are used as

input to he corner detector stage to compute the Harris matrix at every ROI.

3.5.3 Corner Detector

 The corner detector stage of the Harris corner detection algorithm calculates the

unsuppressed corner response based on the image’s gradients and sensitivity

parameter. The corner detector iterates over every pixel in the image, defines a ROI

around that pixel, and calculates the Harris matrix for that ROI. The elements of the

Harris matrix are computed by summing the directional gradient products Ix2, Iy2, and IxIy

over the ROI. The eigenvalues for the Harris matrix are then calculated using the

(a) Sobel X Gradient Filter (b) Sobel Y Gradient Filter

!

−1 0 1
−2 0 2
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ !

−1 −2 −1
0 0 0
1 2 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

�34

quadratic formula and are used to assign a corner score for every pixel in the corner

response.

3.5.4 Non-maxima Suppression (NMS)

 The non-maxima suppression (NMS) stage of the Harris corner detection

software architecture can be considered as a non-linear filter which filters out pixel

values which are non-maximums in local neighborhoods. A well-defined corner response

for each pixel neighborhood is desired when identifying unique corner feature. NMS

involves iterating over every pixel in the corner response. For every pixel, the

neighborhood surrounding the pixel is extracted. If a pixel is not the maximum in its

neighborhood, then the pixel value is set to zero, otherwise it is left unchanged. The

NMS effectively defines the minimum distance between features allowed in the image

based on the neighborhood size. Figure 3.12 shows an example of performing a 3x3

neighborhood NMS on the corner response image computed from Figure 3.7 (a).

Figure 3.12: Unsuppressed and Suppressed Corner Responses

(a) Corner Response (b) Suppressed Corner Response

! !

�35

Chapter 4: Harris Corner Detection GPGPU Implementation

4.1 Corner Detection Parallel Software Architecture

 This section will discuss the CUDA implementations for each of the software

architecture stages, shown in Figure 3.8, and the necessary CUDA optimizations in

order to achieve high performance corner detection. Each stage in the Harris corner

detection software architecture can be implemented to run in parallel using CUDA. The

software architecture can be further decomposed into a parallel architecture by

identifying independent stages. Figure 4.1 shows the parallel architecture, for each

component can be implemented to run in parallel. Each segmented region in Figure 4.1

identifies a CUDA kernel invocation, where a CUDA kernel is the GPGPU function to

execute. The dependence of a sequential implementation flow still remain, for the

execution must start on the left of Figure 4.1 and incrementally finish at the right of the

parallel software architecture. The following sections will describe the CUDA

optimizations made for each stage in the Harris corner detection implementation in order

to achieve high performance.

!

Figure 4.1: Harris Corner Detection Parallel Software Architecture

�36

4.2 GPGPU Convolution

 The Harris corner detection implementation requires three separate convolutions

for each input image: Gaussian smoothing, directional gradient X, and directional

gradient Y. Image convolution, or spatial filtering, is a natural fit for the CUDA software

platform. The CUDA image convolution implementation can be intuitively understood by

defining the CUDA thread configuration grid the same size as the input image, thus each

thread corresponds to a pixel’s spatial location. Each thread will then perform the

neighboring reduction within the pixel’s neighborhood and the convolution filter mask.

The first stage of Harris corner detection implementation is the convolution with a

Gaussian smoothing filter to remove noise in order to avoid false corner detection. If the

input image has size MxM and the filter mask has size NxN, then the number of

multiplications required to convolve the input image with the filter mask is M2 * N2 (where

M >> N).

!

 Figure 4.2: CUDA GPGPU Convolution Algorithm Flow

�37

4.2.1 Naive Convolution GPGPU Implementation

 The naive CUDA implementation of image convolution consists of loading the

input image and filter mask into global memory (slowest memory) on the GPGPU, then

spawning a CUDA thread for every pixel in the image. Each thread will then perform a

reduction with its pixel’s neighborhood and the filter mask. The CUDA image convolution

implementation can be visually described by Figure 4.2.

 The GPGPU has a separate memory management system than the host CPU;

therefore, in order to perform work on the GPGPU, the CPU must first copy the image

and filter mask to the GPGPU memory. The naive CUDA image convolution

implementation does not consider data-bus overhead, discussed in Section 2.5.1, and

has the memory transfer flow shown in Figure 4.3. As discussed in Chapter 2, the host

CPU can only transfer memory to the GPGPU if the memory is pinned (non-paged).

Copying the image and filter mask to the GPGPU from the host CPU involves first

copying the memory to host pinned memory and then copying the memory to the

GPGPU global memory over the PCI express bus, resulting in poor memory transfer

performance.

!

Figure 4.3: Naive CUDA Convolution Memory Transfers

�38

Figure 4.4: Naive Convolution CUDA Kernel Pseudo Code

 That naive implementation uses the slowest memory type, global memory, on the

GPGPU device for the input image and filter mask. The pseudo code in Figure 4.4

shows the CUDA kernel which is executed for every spawned thread. If the filter mask

has size NxN, then each thread has 2 * N2 global memory access (highlighted in green)

for every 2 * N2 computations, implying a CGMA ratio of 1. The naive implementation

performance can by increased by optimizing the memory transfers from the host CPU to

the GPGPU device, as well as increasing the CGMA ratio by utilizing faster memories on

the GPGPU device for the input image and filter mask.

4.2.2 Optimized Convolution GPGPU Implementation

4.2.2.1 Separable Convolution Filter Masks

 The total number of multiplications can be decreased by utilizing filter mask

separability. A filter mask is considered separable if the filter mask can be represented

by the convolution between a vertical and row vector, as shown in Equation 4.1. If a filter

mask is separable, the image convolution can be computed by two separate

convolutions.

!

Equation 4.1: Convolution Filter Mask Separability Association

FOR every thread
 FOR i=0 to kernel dimension
 FOR j=0 to kernel dimension
 value = value + kernel[i][j] * neighborhood[i][j]
 END FOR
 END FOR

 pixels[thread row][thread col] = value
END FOR

IMxM ∗FNxN = (IMxM ∗CNx1)∗R1xN

�39

The convolution between a vertical and row vector is equivalent to the outer product of

the vectors, thus a 2D filter mask can be easily separated into two 1D filter masks.

Equations 4.2-4.4 shows the separability for the Gaussian and Sobel direction gradient

filter masks.

!

Equation 4.2: Gaussian Separated Filter Mask

!

Equation 4.3: Sobel X Gradient Separated Filter Mask

!

Equation 4.4: Sobel Y Gradient Separated Filter Mask

1
16

1 2 1
2 4 2
1 2 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

1
16

×
1
2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
× (1 2 1)

−1 0 1
−2 0 2
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

1
2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
× (−1 0 1)

−1 −2 −1
0 0 0
1 2 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

−1
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
× (1 2 1)

�40

 The total number of multiplication required to perform the convolution with the

input image and the two 1D filter masks is M2 * 2N (where M >> N), thus only requiring a

fraction of 2 / N multiplications. Victor Podlozhnyuk, from NVIDIA, states that separable

filter masks have the added benefits of “reducing the arithmetic complexity and

bandwidth usage of the computation for each data point” [9]. The number of

multiplications avoided by utilizing separable filter masks can be quantified as the

expression M2 * N(N-2), where M represents the image’s square dimension size, and N

represents the filter mask’s square dimension size. Figure 4.5 shows the number of

multiplications avoided by utilizing separable filter masks over traditional convolution

filters.

!

Figure 4.5: Avoided Multiplications by Utilizing Separable Convolution Filters

�41

 Implementing separable convolution increases the number convolution CUDA

kernel invocations, however CUDA kernel invocations are inexpensive. By utilizing

separable filter masks, the total number of multiplications is greatly reduced and

performance is increased.

4.2.2.2 Async Memory Transfers

 By default, all memory copies to the GPGPU from host CPU and vice-versa are

synchronized to the host CPU execution. Thus, a copy operation from the host CPU to

the GPGPU will block the host CPU program execution until the copy is finished. The

execution timeline for separable CUDA convolution is shown in Figure 4.6.

!

Figure 4.6: Separable CUDA Convolution Execution Flow

 The entire image is first transferred from the host CPU pinned memory to the

GPGPU over the PCI express bus (Host to Device), the convolution with the 1D row filter

mask is executed, then the convolution with that 1D column filter mask is executed, in

sequential order. Host to GPGPU memory transfers and CUDA kernel execution occur

sequentially, however it is possible to overlap the CUDA kernel execution with the

memory transfers from the host to the GPGPU [9]. By exploiting separable filter masks,

and the fact that memory is stored sequentially for row major images, it is possible to

pipeline the memory transfers from the host to the GPGPU with 1D row convolution

operations.

 Since the launch of a CUDA kernel is inexpensive, there will be a CUDA kernel

specialized to perform a 1D row convolution on a single row of pixels from an image with

a 1D row filter mask. Once a single row from the input image is loaded onto the GPGPU

�42

memory, the 1D convolution CUDA kernel can be executed. With an input image of size

MxM, there will be total of M separate 1D convolution kernel invocations in order to

convolve the 1D row filter mask with the entire input image.

 The asynchronous pipeline parallelism is possible with CUDA streams. A CUDA

stream “is simply a sequence of operations that are performed in order on the

device” [9]. The default CUDA stream, used by CUDA’s memory transferring API, blocks

host CPU execution until finished. CUDA allows for host code to create multiple streams

which will run asynchronously from the host execution, thus memory transfers and

CUDA kernels can by performed in parallel. By incorporating the concept of pipelining,

CUDA convolution kernels can be executing on the GPGPU while the next pixel row is

being transferring over to the GPGPU. Figure 4.7 shows the execution timeline for the

asynchronous memory transfers running in parallel with row convolution operations.

While row N of the image data is being transfer to the GPGPU, convolution of image row

N-1 is being computed simultaneously.

!

Figure 4.7: Pipelined CUDA Separable Convolution Execution Flow

 Let Ttrans represent the time to transfer the entire image to the GPGPU, TRC

represent the time to perform row convolution, and TCC represent the total time to

execute the column convolution. By utilizing asynchronous memory transfers, the entire

�43

convolution can be approximated by TCC +(Ttrans +TRC) / 2 units of time, thus saving

approximately (Ttrans +TRC) / 2 time over the synchronous implementation.

4.2.2.3 Constant Memory Utilization

 Since each thread within the GPGPU convolution kernel reads the same filter

mask with the same access pattern, memory reads to the filter mask can be optimized

by loading the filter mask into constant memory on the GPGPU. The memory reads to

the filter mask are coalesced for every block, and therefore for every warp; thus memory

access performance of the convolution kernel will be improved and the number of global

memory accesses will be decreased due to the constant memory on-chip cache.

4.2.2.4 Shared Memory Utilization

 The final bottleneck in the optimized CUDA convolution implementation is the

global memory accesses to pixel values. Shared memory has a much higher bandwidth

and much lower delay access time than global memory [5]. If a 1D filter mask has N

elements, and the image has size MxM, then there are M*N global memory reads due to

accessing the pixel data. By utilizing on-chip shared memory, redundant accesses to

global memory pixel data can be avoided and the total number of global memory access

for pixel data can be reduced to M.

 All threads that exist within the same block have a dedicated segment of shared

memory which is available for use on each streaming multiprocessor. The shared

memory for a row of pixels from the image can be populated in parallel by having each

thread load its appropriate pixel data into the shared memory segment before performing

the 1D row convolution operation. Complications appears when concerning border pixels

within the thread blocks, for threads that exist on the edge of a thread block needs to

have access to shared memory segments of neighboring blocks. The solution is to add a

small amount of redundancy to the shared memory blocks. By creating a shared

�44

memory segment that is greater than the dimension size of the thread block, threads

located at the border of a block can efficiently access the values that extend outside of

their regular scope. Figure 4.8 shows how shared memory is overlapped between thread

blocks to allow for shared memory accesses when convolving pixels that are spatially

located at the edges of blocks. The first row in Figure 4.8 shows the threads configured

into 4 separate thread blocks, each containing 6 threads, resulting in 24 threads total.

Each thread block allocates a shared memory segment with 2 extra elements of added

redundancy. Shared memory blocks now contain pixel information from the their

neighboring thread blocks. This allows, for example, thread 7 in block 2, to access the

data from thread 6 in block 1 from directly from its own portion of shared memory.

!

Figure 4.8: Shared Memory Overlap Between Thread Blocks

 Once the shared memory is loaded for each block, including the redundant

overlaps, the 1D row convolution can be performed directly from shared memory. By

�45

operating directly from shared memory, the total global memory accesses reduces from

M*N to M, where M is the image dimension size and N is the length of the 1D filter mask.

4.2.3 Convolution Performance Results

 The optimized CUDA implementation of image convolution performance results

were compared to the standard C, MATLAB, and naive CUDA implementations. The

performance results were acquired by measuring the elapsed time to perform a single

image convolution with a fixed 3x3 Gaussian filter mask over several different square

image dimension sizes. The optimized CUDA implementation incorporates all

optimization techniques described in Section 4.2.2: separable convolution masks,

asynchronous memory transfers, constant and shared memory utilization.

 Figure 4.9 shows how the image convolution process times vary with image size

for the different implementations. The performance results show that the standard C and

MATLAB implementations behave parabolically with image dimension size, thus realtime

performance is not feasible. The optimized CUDA implementation outperformed all of the

other implementations and platforms by orders of magnitude. Table 4.1 shows the

speedup factors, ratio of processing times, of the optimized CUDA image convolution

implementation over the other implementations.

�46

!

Figure 4.9: Image Convolution Performance Results

Table 4.1: Optimized CUDA Convolution Speedup

Image Convolution Process Time

P
ro

ce
ss

in
g

Ti
m

e
(m

s)

0

2.75

5.5

8.25

11

Square Image Size (pixels)
32 96 160 224 288 352 416 480 544 608 672 736 800 864 928 992

Standard C
MATLAB
Naive CUDA
Optimized CUDA

Image Size
Speedup Over
C Sequential (s/s)

Speedup Over
MATLAB (s/s)

Speedup Over
Naive CUDA (s/s)

32x32 0.441 0.551 3.047

64x64 0.342 0.284 5.704

128x128 0.612 0.555 5.95

256x256 1.821 1.714 5.77

512x512 4.123 4.404 5.845

1024x1024 5.921 6.323 5.035

�47

4.3 GPGPU Corner Detector

 The corner detection algorithm is a non-linear filtering operation which produces

a corner response based on the image gradients in the X and Y directions. A pixel’s

output intensity in the corner response calculation is independent of any other pixel, thus

a parallel CUDA implementation is the perfect platform for increasing performance. The

corner response calculation involves calculating the Harris matrix, define in Equation 3.6,

for each ROI (region of interest) defined around each pixel. Each corner response pixel

can be calculated in parallel by creating a CUDA thread configuration grid with the same

size as the image, thus each thread will calculate its appropriate corner score output

pixel independently. Figure 4.10 shows the parallel implementation for the corner

response algorithm.

!

Figure 4.10: CUDA GPGPU Corner Detector Algorithm Flow

�48

4.3.1 Naive Corner Detector GPGPU Implementation

 The naive CUDA GPGPU implementation of the corner detector algorithm

involves loading the three product gradient images Ix2, Iy2, and IxIy into GPGPU global

memory (slowest memory). Each thread will then execute the naive CUDA kernel, which

will perform a summation of the product gradient images for the input pixel’s ROI.

Figure 4.11: Naive Corner Detector CUDA Kernel Pseudo Code

 The corner detector’s most computational intensive task is the summations of the

image gradient products over each ROI. Figure 4.11 shows the pseudo code for the

CUDA kernel to run for every pixel in the corner detector implementation in parallel. Let

W define the dimension size of the ROI around the pixel. The number of global memory

accesses for a ROI summation is W2, thus the total number of global memory accesses

for a thread will be 3W2, implying a CGMA ratio of 1. The total number of memory

accesses could be decreased by utilizing shared memory, using the same technique as

convolution; however, an optimization using integral images will show a constant number

of global memory accesses regardless of ROI size.

FOR every thread
 a = sum neighborhood(dx2, thread row, thread col)
 b = sum neighborhood(dy2, thread row, thread col)
 c = sum neighborhood(dxdy, thread row, thread col)
 M = build matrix [a, c,
 c, b]
 l = compute eigenvalues(M)
 r = l(0) * l(1) - sensitivity * (l1 + l2)^2

 corner response[thread row][thread col] = r

END FOR

�49

4.3.2 Optimized Corner Detector GPGPU Implementation

4.3.2.1 Integral Images

 An integral image can be considered the two dimensional exclusive scan of the

input image. The integral image at coordinate (x,y) is represented by the summation of

all pixel values from the point (x,y) to the origin (0,0). Integral images optimize the ROI

summation calculation, for the “summation of pixel values within the window can be

calculated in 3 additions and 4 memory accesses” [2]. The summation of a

neighborhood in an image can be defined as an arithmetic calculation of the integral

neighborhood corner points. Figure 4.12 overlays the internal image summation areas

over the original image. The summation of the neighborhood (highlighted in green) in

Figure 4.12 can be computed in four arithmetic operations using the integral image,

shown in Equation 4.1.

!

Figure 4.12: Integral Image Neighborhood Summation

�50

!

Equation 4.1: Neighborhood Summation Equation Utilizing Integral Image

Equation 4.1 represents the neighborhood summation calculation by utilizing integral

images, where I represents the original image and A, B, C, D represent the corner points

in the integral image.

 To compute the integral image efficiently in CUDA, optimizations should be

focused towards the exclusive scan operation. Exclusive scanning is defined as the 1D

accumulation of values in an array, for each value computed is equal to the sum of all

previous values, excluding the current value. Equation 4.2 shows the relationship

between the 1D input, and the exclusive scan output.

!

Equation 4.2: Exclusive Scan Operation

 The parallel implementation of the exclusive scan operation involves two

separate phases in order to achieve O(N) work complexity: up-sweep, and down-sweep.

The up-sweep implementation can be conceptually visualized as overlaying a balanced

tree over the input data. The up-sweep performs a summation of the children nodes of

the balanced tree and assigns each summation result to the parents. Figure 4.13 shows

the visual representation of the parallel up-sweep phase. Each thread performs log2(N)

iteration where N is the size of the input data. At each iteration, only half of the threads

are active from the previous iteration. The active threads are highlighted in red in each

iteration of the up-sweep phase shown in Figure 4.13.

I(x, y)
(x,y)∈neighborhood

∑ = A(x, y)+ D(x, y)− B(x, y)−C(x, y)

[x0, x1, x2,..., xN]− > [0, x0,(x0 + x1),...,(0 + x0 + x1 + ...+ xN−1)]

�51

!

Figure 4.13: Parallel Up-Sweep Scan Implementation

 After the up-sweep phase has finished on the input data, the down-sweep phase

must be performed in order to complete the exclusive scan operation. Figure 4.14 shows

the parallel implementation of the down-sweep phase. Before starting the down-sweep

operation, the last element from the up-sweep phase is set to zero. At each iteration,

twice the number of threads are active than the previous iteration. The active threads are

highlighted in red in Figure 4.14. Once the down-sweep phase is finished, the exclusive

scan operation is complete. The parallel exclusive scan operation is work efficient and

has a O(N) work complexity, same as the sequential implementation.

�52

!

Figure 4.14: Parallel Down-Sweep Scan Implementation

 The naive CUDA implementation of the exclusive scan operation loads the entire

input array into shared memory and performs the entire scan operation within a single

block of threads. Utilizing only a single thread block limits the maximum input data size

to the GPGPU maximum threads per a block specification. Since a single block executes

exclusively on a single SM, utilizing a single block on the GPGPU leaves the rest of the

SMs idle, yielding poor thread occupancy. A higher degree of parallelism can be

achieved by incorporating more thread blocks to utilize all SMs on the GPGPU; however,

this increases the complexity of the implementation since the shared memory segments

are not shared between thread blocks.

 The optimized CUDA implementation of the exclusive scan operation can be

implemented by partitioning the input data, size N, into B thread blocks. The number of

thread blocks should be partitioned evenly by the number of threads per block; thus, the

�53

number of thread blocks should be equal to (N / T), where T is the number of threads per

a block. The number of thread blocks should at least be equal to the number of

streaming multiprocessors, S, on the GPGPU to ensure that every SM is performing

work. Thus, the number of threads per block should be defined as N / S, which creates

the same number of thread blocks as there are SMs. Table 4.2 shows an example of a

thread configuration that utilizes all SMs on the GPGPU with a given data input size.

Table 4.2: Example Thread Configuration For High SM Occupancy

 Each block of threads will compute its local exclusive scan operation on T

elements of the input data. Once all of the thread blocks are finished computing the scan

operation on their portions of the data, the last element of every block will be extracted to

form an auxiliary array [14]. The same exclusive scan operation will then be performed

on the the auxiliary array, and once finished, the elements of the auxiliary array will be

summated back into the segmented scan arrays to complete the exclusive scan

operation. The CUDA exclusive scan implementation spanning over multiple thread

blocks is visually represented in Figure 4.15.

Variable Expression Value

Input Data Size N
(independent)

1024

Number of SMs S
(independent)

8

Threads Per Block T = (N / S)
(dependent)

32

Number of Blocks B = (N / T)
(dependent)

32

�54

!

Figure 4.15: Parallel Scan Involving Multiple Thread Blocks

 The integral image is computed by first scanning the rows of the input image,

then performing the scan on the columns. In order to utilize spatial locality of the GPGPU

L1 and L2 caches, as well as code reuse, the result of the exclusive scan on the image’s

rows will be transposed, then the result will be exclusively scanned again, effectively

operating on the columns. Once the second exclusive scan operation is completed, the

image is transposed again in order to obtain the final integral image result. Row major

images are addressed in memory sequentially, thus the first pixel of row N is addressed

sequentially in memory after the last pixel in row N-1. Transposing the image in order to

compute the exclusive scan on the columns will effectively improve the cache hit-ratio

�55

and improve the overall performance of the GPGPU integral image implementation. The

integral image architecture is showing in Figure 4.16.

!

Figure 4.16: Integral Image Algorithm Architecture

 By utilizing integral images, only four global memory access are necessary to

compute the summation of a neighborhood regardless of the neighborhood dimension.

By creating integral images for Ix2, Iy2, and IxIy gradient products, the total number of

global memory accesses reduces from 3W2 to a constant of 12 (4 global memory

accesses per ROI summation). Figure 4.17 shows the comparison of integral image

processing times over several different platforms: standard C, MATLAB, and optimized

CUDA. The optimized CUDA implementation showed great performance over the

standard C and MATLAB implementations due to the optimized parallel up-sweep and

down-sweep implementations.

�56

!

Figure 4.17: CPU vs GPGPU Integral Image Process Time

4.3.3 Corner Detector Performance Results

 The corner detector performance results, shown in Figure 4.18, were compared

over several different platform implementations: standard C, naive CUDA, and optimized

CUDA. The optimized CUDA implementation utilized all performance optimizations

discussed in Section 4.3.2. Figure 4.18 shows that the standard C implementation

processing time has a parabolic relationship with the image dimension size, thus it is not

suitable for realtime Harris corner detection. The CUDA implementations showed

significant speedup over the standard C implementation. All implementations show

equivalent detection accuracy, for the CUDA optimizations do not compromise detection

precision. The optimized CUDA implementation showed the greatest speedup, with

Integral Image Process Time

P
ro

ce
ss

 T
im

e
(m

s)

0

3

6

9

12

Square Image Size (pixels)
32 96 160 224 288 352 416 480 544 608 672 736 800 864 928 992

Standard C
Optimized CUDA
MATLAB

�57

corner detection processing time not exceeding 2.5 ms for all image dimension sizes up

to 1024x1024 pixels.

!

Figure 4.18: Corner Detection Performance Results

4.4 GPGPU Non-maxima Suppression (NMS)

 Non-maxima suppression (NMS) is a non-linear filter, which operates by filtering

non-maxima values within a local neighborhood. NMS effectively attempts to distribute

the corner feature locations, represented by the corner response, more evenly by

defining a minimum distance between corner feature points. Since each local

neighborhood is processed with zero dependence on any other neighborhood in NMS,

each neighborhood can be processed in parallel on the GPGPU architecture.

Corner Detector Process Time

P
ro

ce
ss

 T
im

e
(m

s)

0

8.25

16.5

24.75

33

Square Image Size (pixels)
32 96 160 224 288 352 416 480 544 608 672 736 800 864 928 992

Standard C
Naive CUDA
Optimized CUDA

�58

4.4.1 Naive NMS GPGPU Implementation

 The naive GPGPU NMS involves spawning a CUDA thread for every pixel in the

corner response. The entire corner response is first loaded into global memory (slowest

memory). Each thread will determine if their pixel is the maximum value within its local

neighborhood. If the pixel is not the maximum, then the output pixel value is set to zero,

otherwise the pixel value is left unchanged. Each thread iterates over its own local

neighborhood in raster scan order until a neighboring value greater than the pixel is

found. Figure 4.19 shows the naive CUDA kernel implementation.

Figure 4.19: Naive Non-maxima Suppression CUDA Kernel Pseudo Code

 The naive implementation requires W2M2 global memory reads as a worst case

scenario, where W represents the dimension size of the neighborhood, and M

represents the image dimension size. Each thread suffers its worst case performance if

the pixel being considered is a local neighborhood maximum, thus the algorithmic

complexity for a single thread is O(W2).

4.4.2 Optimized NMS GPGPU Implementation

4.4.2.1 Spiral Scanning

 Every thread has a best case scenario when there is only a single comparison

within the local neighborhood before breaking its execution. This implies that the first

FOR every thread
 FOR neighbor in pixel neighborhood
 IF neighbor > pixel
 pixel = 0
 break
 END IF
 END FOR

 result[thread row][thread col] = pixel
END FOR

�59

neighbor visited has a greater value than the pixel, which further implies that the pixel is

not a local maximum. The worst case performance is invoked when the pixel is a local

maximum, thus (W2-1) comparisons are necessary. Förester and Gülch presented the

idea that the average number of comparisons can be reduced by iterating the

neighborhood pixels in a spiral scan order, rather than a raster scan order [15]. A corner

response has zero-valued intensity for the majority of the corner scores; therefore, only a

smaller percentage of the corner response pixels are neighborhood maximums. A local

maximum pixel within a W2 sized neighborhood is guaranteed to be the local maximum

within its (W-1)2, (W-2)2, …, (3)2 sized neighborhoods. By visiting smaller sized local

neighborhoods in spiral order first, partial neighborhood local maximums can be

determined before moving onto larger sized neighborhoods [15].

 A spiral scan order can be implemented to determine local maximums in smaller

neighborhoods before scanning neighbors that are farther away from the pixel. Figure

4.20 shows the difference between the raster and spiral scan order.

Figure 4.20: Iterative Neighborhood Scanning Orders

(a) Raster Scan Order (b) Spiral Scan Order

! !

�60

 The spiral scan order will determine non-maximum pixels within the 32 sized

neighborhoods first, which will break on average since the corner response pixels are on

average non-local maximums. By failing the first small neighborhood comparison,

computation can be stopped and larger neighborhood comparisons are not necessary;

therefore, the number of comparisons for a W2 size neighborhood shows roughly the

same number of comparisons for a 32 sized neighborhood on average. By utilizing a

spiral scan order for neighborhood iteration, the number of comparisons can be

significantly decreased in the NMS implementation. Spiral scanning effectively reduces

the number of global reads, therefore it increases the CGMA ratio of the CUDA NMS

implementation.

4.4.2.2 Corner Segmentation

 The NMS algorithm effectively erodes low magnitude corner response by

determine local neighborhood maximums; however, the majority of the corner response

has zero-valued intensity. A zero intensity value in the corner response has a zero

probability that it is a local maximum, thus performing NMS on that value is not

necessary. The NMS algorithm can be optimized by only suppressing pixels with a non-

zero corner score and ignoring all other pixels. This effectively minimizes the number of

threads running on the GPGPU and allows for more resources per thread. Rather than

suppressing the corner response directly, the non-zero corner score pixels can be

segmented from its zero-valued background.

 The segmentation is done by applying a threshold filter to segment all non-zero

corner scores away from the background. The non-zero corner scores are then

extracted from the corner response into an array. Figure 4.21 shows the segmentation of

the corner response from its zero-valued background. The segmented information is

compiled into a 1D array, therefore the spatial coordinates from the corner response

must be extracted along with the corner scores.

�61

!

Figure 4.21: Corner Response Segmentation

 By utilizing corner response segmentation, each non-zero corner score within the

segmentation information has a much higher probability that it’s a neighborhood

maximum. Rather than spawning a thread to perform NMS for every corner score in the

corner response, a thread only needs to be spawned for every non-zero corner score in

the corner response segmentation. This results in a significantly less number of threads

running on the GPGPU, thus increasing performance of the CUDA NMS implementation.

4.4.2.3 Texture Memory Utilization

 Each NMS result pixel is computed by performing (W2-1) global memory reads,

worst case, around the each corner score pixel. Due to the corner segmentation,

explained in Section 4.4.2.2, thread IDs no longer correlate to spatial locations of the

corner response. This increases the complexity of shared memory usage; however,

since the memory reads of each thread have spatial locality, texture memory can be

�62

utilized to increase memory access performance and increase the CGMA ratio. By

loading the segmented corner response into texture memory, threads will experience a

higher cache hit-ratio due to the on-chip texture cache, and therefore will have an

increase in memory access performance.

4.4.3 NMS Performance Results

 The NMS performance results were obtained by performing NMS on several

different platforms: standard C, MATLAB, naive CUDA, and optimized CUDA. The

optimized CUDA implementation of NMS takes into account all optimizations discussed

in Section 4.4.2: spiral scanning, corner segmentation, texture memory utilization. Figure

4.22 shows the input image used for benchmarking the NMS performance. The

performance NMS was measured by computing the suppressed corner response of the

input over several different resolutions and NMS neighborhood dimension sizes. The

input image was down sampled from 1024x1024 to 32x32 logarithmically, and the

neighborhood dimension size was iterated from 3 to 7 linearly. Figure 4.23-4.25 shows

the performance results of the NMS implementations while varying the size of the NMS

neighborhood. As the NMS neighborhood dimension size increases, the processing

times for the standard C, MATLAB, and naive CUDA implementations increase;

however, the optimized CUDA implementation sustains almost constant performance

due to spiral neighborhood scanning. The standard C and MATLAB implementations

show that they are not optimal for realtime Harris corner detection due to the rate of

increase in processing time with image dimension size. The CUDA implementations,

naive and optimized, show great performance, however the optimized CUDA

implementation showed the best performance with a computation time under 2 ms for all

neighborhood dimension sizes.

�63

Figure 4.22: NMS Performance Test Input Image

(a) Input Image

(b) Corner Response of (a)
 Sensitivity = .04
 Threshold = 106

(c) NMS of (b)
 Neighborhood Dimension = 7

!

!!

�64

!

Figure 4.23: NMS Process Time With Neighborhood Dimension of 3

!

Figure 4.24: NMS Process Time With Neighborhood Dimension of 5

NMS Process Time  
(Neighborhood Dimension = 3)

P
ro

ce
ss

 T
im

e
(m

s)

0

3.75

7.5

11.25

15

Square Image Size (pixels)
32 64 128 256 512 1024

Standard C
MATLAB
Naive CUDA
Optimized CUDA

NMS Process Time  
(Neighborhood Dimension = 5)

P
ro

ce
ss

 T
im

e
(m

s)

0

3.75

7.5

11.25

15

Square Image Size (pixels)
32 64 128 256 512 1024

Standard C
MATLAB
Naive CUDA
Optimized CUDA

�65

!

Figure 4.25: NMS Process Time With Neighborhood Dimension of 7

4.5 GPGPU Harris Corner Detection Performance Results

 The performance results of the Harris corner detection implementations were

compared for several different platforms: standard C, MATLAB, OpenCV, naive CUDA,

and optimized CUDA. OpenCV is a cross-platform software library which aims for

realtime image processing and computer vision performance [16]. OpenCV was

considered as a benchmark to compare it’s cutting edge Harris corner detection

implementation, which is commonly used in industry, to the optimized CUDA

implementation developed in this thesis. The performance results were measured by

executing the Harris corner detection over a series of image resolutions (32x32 -

1024x1024), using the input parameters shown in Table 4.3. The NMS threshold was

manually selected for each input image to yield the best results. 

NMS Process Time  
(Neighborhood Dimension = 7)

P
ro

ce
ss

 T
im

e
(m

s)

0

3.75

7.5

11.25

15

Square Image Size (pixels)
32 64 128 256 512 1024

Standard C
MATLAB
Naive CUDA
Optimized CUDA

�66

Table 4.3: Harris Corner Detection Parameters

 The test images used for the performance measurements are shown in Figures

4.26-4.28. Each image has a starting resolution of 1024x1024 pixels, which were all

down sampled in increments of 32x32 pixels in order to compare the performance

results for smaller image resolutions. The optimized CUDA implementation incorporates

all optimizations discussed in Chapter 4. The CUDA optimizations made to the Harris

corner detection implementation are summarized by Table 4.4. The optimized CUDA

performance results are sensitive to the type of input data due to the spiral neighborhood

iteration for NMS, discussed in Section 4.2.2.1; therefore, the performance results found

for all platforms were averaged for all images to rightfully compare the implementations.

Parameter Type Parameter Value

Gaussian Kernel Size 3x3

Sobel Kernel Size 3x3

Corner Detector Sensitive 0.04

NMS Neighborhood Size 5x5

�67

Figure 4.26: Harris Corner Detection Performed on Image of an F18

Figure 4.27: Harris Corner Detection Performed on Image of the Eiffel Tower

Original Image
1024x1024

Processed
NMS Threshold = 107

! !

Original Image
1024x1024

Processed
NMS Threshold = 1010

! !

�68

Figure 4.28: Harris Corner Detection Performed on Image of Mt.Whitney CA

Original Image
1024x1024

Processed
NMS Threshold = 20x108

! !

�69

Table 4.4: GPGPU Harris Corner Detection Optimization Summary

 Figure 4.29 shows the processing time for the Harris corner detection

implementation running on platforms standard C, MATLAB, OpenCV, naive CUDA, and

optimized CUDA. The naive and optimized CUDA performance measurements include

Stage Optimization Description Section

Convolution Separable Filters Reduce
Multiplications /
Global Memory
Reads

4.2.2.1

Constant Memory
Utilization

Store Filter in
Constant Memory to
Increase CGMA
Ratio

4.2.2.3

Asynchronous
Memory Transfers

Pipeline
Convolution and
Memory Transfers

4.2.2.2

Shared Memory
Utilization

Store Image in
Constant Memory to
Increase CGMA
Ratio

4.2.2.4

Corner Detector Integral images Reduce
Neighborhood
Summation to 4
Arithmetic
Operations

4.3.2.1

Non-Maxima
Suppression

Spiral Scanning Reduce Number of
Neighborhood
Comparisons to
Increase CGMA
Ratio

4.4.2.1

Corner
Segmentation

Increase GPGPU
Workload
Efficenency

4.4.2.2

Texture Memory
Utilizations

Increase CGMA
Ratio by Exploiting
Spatial Locality

4.4.2.3

�70

memory bus transfer time from host CPU memory to GPGPU memory and vice-versa.

The standard C and MATLAB implementations show processing times greater than 220

ms for image resolution 1024x1024 pixels, which proves that their implementations for

realtime Harris corner detection are not feasible. Both the OpenCV and naive CUDA

implementations show similar processing times of 50 ms for image resolution 1024x1024

pixels, which is a significant improvement over the standard C and MATLAB

implementations; however, their processing times yield undesirable results for realtime

performance. To rightfully compare the processing times against OpenCV, naive CUDA,

and optimized CUDA, the processing times were re-plotted with different time scale in

Figure 4.30 to show the performance improvement of the optimized CUDA

implementation. The optimized CUDA implementation showed a processing time of 11

ms for image resolution 1024x1024 pixels, thus it was deemed best fit for realtime Harris

corner detection over the other implementations. Figure 4.31 shows the speedup

characteristics of the optimized CUDA implementation over the other platforms: standard

C, MATLAB, OpenCV, and naive CUDA. The optimized CUDA Harris corner detection

implementation had an average speedup of 14.9 over standard C, 33.8 over MATLAB,

3.73 over OpenCV, and 6.8 over the naive CUDA implementation. Table 4.5 shows the

feasible processing FPS (frames per seconds) for the optimized CUDA Harris corner

detection over several different image resolutions. By utilizing the optimized CUDA

implementation, realtime corner detection is feasible with a CUDA software solution.

�71

!

Figure 4.29: Harris Corner Detection Process Time For All Platforms

Harris Corner Detection Process Time

P
ro

ce
ss

 T
im

e
(m

s)

0

82.5

165

247.5

330

Square Image Size (pixels)
32 96 160 224 288 352 416 480 544 608 672 736 800 864 928 992

Standard C
MATLAB
OpenCV
Naive CUDA
Optimized CUDA

�72

!

Figure 4.30: Harris Process Time For High Performance Platforms

Harris Corner Detection Process Time

P
ro

ce
ss

 T
im

e
(m

s)

0

12.5

25

37.5

50

Square Image Size (pixels)
32 96 160 224 288 352 416 480 544 608 672 736 800 864 928 992

OpenCV
Naive CUDA
Optimized CUDA

�73

!

Figure 4.31: Optimized CUDA Harris Corner Detection Speedup

Table 4.5: Optimized CUDA Harris Corner Detection Feasible FPS

Harris Corner Detection Speedup 
Utilizing Optimized CUDA

S
pe

ed
up

 (s
/s

)

0

11

23

34

46

57

69

80

Square Image Size (pixels)
32 96 160 224 288 352 416 480 544 608 672 736 800 864 928 992

Over Standard C Over MATLAB
Over OpenCV Over Naive CUDA

Image Resolution Optimized CUDA Processing
Time (ms)

Optimized CUDA
Feasible Processing FPS (1/s)

32x32 0.246242 4061

64x64 0.247053 4047

128x128 0.536684 1863

512x512 3.27323 305

1024x1024 11.3103 88

�74

Chapter 5: Feature Matching Application

5.1 Feature Matching Introduction

 In a feature matching computer vision system, once features have been detected

and extracted, they are matched to other features to determine correspondence. Feature

matching is used extensively in computer vision systems for several applications: motion

detection, image registration, video tracking, panorama stitching, 3D modeling, and

object recognition. Feature matching is computationally intensive and can be broken into

three main processes: feature detection, feature description, and feature matching.

Feature detection is the process of locating feature points within an image. Feature

description is the process of describing the located features uniquely. Feature matching

is the process of determining the correspondence of features between feature sets.

!

Figure 5.1: Feature Matching Computer Vision System

5.2 Feature Matching Implementation

 The optimized CUDA implementation of the Harris corner detection algorithm,

discussed in Chapter 4, can be utilized to provide significant performance benefit to the

feature matching computer vision system shown in Figure 5.1. There are several

different types of feature detection, descriptions, and matching techniques, show in Table

5.1. The algorithms used for each stage in the feature matching implementation are

highlighted in green in Table 5.1.

�75

Table 5.1: Feature Matching Stage Types

5.2.1 SURF Overview

 The feature description algorithm selected for the feature matching system was

SURF (Speeded Up Robust Features) [17]. SURF is used to describe the features due

its high computational performance. The developers of the SURF descriptor—Herber

Bay, Tinne Tuytelaars, and Luc Van Gool— state that the “SURF descriptor outperforms

the other descriptors in a systematic and significant way” [17]. The SURF descriptor

divides the located feature region into 4x4 square subregions. For each subregion, the

Haar wavelet responses are determined in the X and Y directions and weighted by a

Gaussian filter to reduce noise [18]. A vector is then formed by summing the Haar

responses in the X and Y directions, shown in Equation 5.1, to describe the feature.

SURF provides a robust way for describing features uniquely which are insensitive to

noise, thus SURF is a good candidate for the feature matching computer vision system.

Stage Type

Feature Detection HARRIS
STAR
SIFT
SURF
ORB
BRISK
MSER
GFTT
DENSE
SIMPLE BLOB

Feature Description SURF
SIFT
BRIEF
BRISK
ORB
FREAK

Feature Matching FLANN BASED (K-NN)
BRUTE FORCE

�76

!

Equation 5.1: SURF Feature Descriptor Vector

5.2.2 FLANN (K-NN) Overview

 FLANN (Fast Library for Approximate Nearest Neighbors) was chosen for feature

matching due to its performance optimizations over linear searching [19]. FL ANN is a

software library which implements the K-Nearest Neighbor (K-NN) classification

algorithm. K-NN classification algorithm classifies a feature point to a cluster based on

the nearest neighbors. The algorithm involves a majority voting scheme which classifies

a feature point based on the closest neighbors around that feature point [20]. Figure 5.2

shows an example of K-NN classification, where the circle is the feature to be classified.

The squares and triangles represent feature clusters which were populated into the

feature space from predefined training data. The K-NN algorithm’s goal is to determine

which cluster the circle belongs. The K-NN algorithm looks at the nearest K neighbors of

the circle and classifies the feature to the most common feature found in the local

neighborhood. Table 5.2 shows how the circle is classified in Figure 5.2 based on the

size of K (number of neighbors). The number of neighbors considered is always an odd

number in order to avoid equal cluster classification.

v = (dx, dy, | dx |, | dy |)∑∑∑∑

�77

!

Figure 5.2: K-NN Classification Example [20]

Table 5.2: Circle Classification of Figure 5.2

5.3 Feature Matching Performance Results

!

Figure 5.3: Feature Matching Stage Implementations

K (Number of
Neighbors)

Triangles In
Neighborhood

Squares In
Neighborhood

Circle Classifcation

1 1 0 Triangle

3 2 1 Triangle

5 2 3 Square

11 5 6 Square

�78

 The feature describer and matcher stages selected for the feature matching

computer vision system are shown in Figure 5.3. The describer and matcher stages

were implement in OpenCV. The feature matching system was executed by first

providing a training image to establish a feature set basis, then providing scene images

where the features from the training image were matched to. Figure 5.4 (a) shows the

training image used, and Figure 5.4 (b,c,d) shows the scene images used for measuring

the performance of the feature matching computer vision system.

�79

Figure 5.4: Training Image and Scene Images

 The feature matching performance results were analyzed utilizing several Harris

corner detection implementations discussed in Chapter 4: standard C, MATLAB,

OpenCV, naive CUDA, and optimized CUDA. The performance results were analyzed by

feature matching a training image to multiple scene images, shown in Figure 5.4. The

scene images were sub-sampled from image dimensions 1024x1024 to 32x32

(a) Training Image (b) Scene 1

(c) Scene 2 (d) Scene 3

!

!

!

!

�80

logarithmically to measure performance processing time over various image resolutions.

Figure 5.5 shows the output of the feature matching computer vision system utilizing the

top 10% best feature matches for each scene image.

Figure 5.5: Feature Matching System Result

 Figure 5.6 shows the processing times of the feature matching system with the

corner detection implemented on different platforms: standard C, MATLAB, OpenCV,

naive CUDA, and optimized CUDA. The feature description and matching algorithms,

SURF and FLANN, were implemented sequentially in OpenCV on the CPU, with the

exception of the MATLAB implementation The feature matching system utilizing the

optimized CUDA Harris corner detection showed the best performance when compared

(a) Matching to Scene 1 (a) Matching to Scene 2

(a) Matching to Scene 3

! !

!

�81

against the other platforms. Figure 5.7 shows the performance speedup of utilizing the

optimized CUDA Harris corner detection implementation over other implementations in

the feature matching computer vision system. The feature matching system utilizing the

standard C implementation showed very poor performance for image dimensions above

256x256 for processing time increased parabolically with image dimension size. The

feature matching system utilizing OpenCV or the naive CUDA implementation showed

similar performance with processing times not exceeding 160 ms for all image dimension

sizes ranging up to 1024x1024. The feature matching system utilizing the optimized

CUDA implementation showed an average speedup of 3.3 over standard C, 2.0 over

OpenCV, and 2.1 over naive CUDA. The optimized CUDA implementation did not

exceed 65 ms for all image dimension sizes ranging up to 1024x1024. The feasible

image matching realtime frame rates, utilizing different Harris corner detection

implementations, are shown in Table 5.3. The precision of the feature matching system

does not vary with platform implementation, for the CUDA optimizations made to the

Harris corner detection implementation do not compromise precision.

�82

!

Figure 5.6: Feature Matching Processing Times

Feature Matching Process Time

P
ro

ce
ss

 T
im

e
(m

s)

0

50

100

150

200

Square Image Size (pixels)
32 64 128 256 512 1024

Standard C MATLAB
OpenCV Naive CUDA
Optimized CUDA

�83

!

Figure 5.7: Feature Matching Speedup

Table 5.3: Feature Matching Feasible FPS Processing

Feature Matching Speedup  
Utilizing Optimized CUDA Harris Corner Detection

S
pe

ed
up

 (s
/s

)

0

1.8

3.6

5.4

7.2

9

Square Image Size (pixels)
32 64 128 256 512 1024

Over Standard C Over MATLAB
Over OpenCV Over Naive CUDA

Image Size
(pixels)

Standard C
Feasible
FPS (1/s)

MATLAB
Feasible
FPS (1/s)

OpenCV
Feasable FPS
(1/s)

Naive CUDA
Feasable FPS
(1/s)

Optimized CUDA
Feasable FPS
 (1/s)

32x32 18 9 36 38 67

64x64 16 9 25 25 52

128x128 15 6 21 19 40

256x256 13 6 15 15 33

512x512 6 4 10 9 20

1024x1024 2 1 7 6 15

�84

Chapter 6: Conclusion and Future Work

 This thesis presents modern CUDA optimizations strategies to decrease the

processing time of the Harris corner detection implementation for realtime performance.

The CUDA optimization strategies developed for the Harris corner detection

implementation showed a feasible processing frame rate of 88 FPS for image resolution

1024x1024, shown in Table 4.5. The processing times of the optimized CUDA

implementation did not exceed 12 ms for all image dimensions ranging up to 1024x1024.

The optimized CUDA implementation had an average speedup of 14.9 over standard C,

33.8 over MATLAB, 3.73 over OpenCV, and 6.8 over the naive CUDA implementation.

The optimized CUDA implementation did not compromise precision for performance, for

the implementation has the same precision as the other implementations. This

concludes that Harris corner detection can be made feasible in computer vision systems

without the dependence of dedicated hardware.

 The application of the optimized CUDA Harris corner detection implementation

towards the feature matching computer vision system showed an average speedup of

3.3 over standard C, 2.0 over OpenCV, and 2.1 over the naive CUDA implementation. A

CUDA software implementation of the Harris corner detection provides a cost-effective,

flexible, and maintainable feature detection system which can be utilized by higher level

computer vision systems: motion detection, image registration, video tracking, panorama

stitching, 3D modeling, and object recognition.

 The optimized CUDA implementation of the Harris corner detection algorithm

showed significant speedup over all other implementations discussed in this thesis:

standard C, MATLAB, OpenCV, and naive CUDA. Due to NVIDIA CUDA scalability,

discussed in Section 2.2, the optimized CUDA implementation will scale to future NVIDIA

GPGPUs with higher performance specifications. This implies that the same optimized

CUDA implementation discussed in Chapter 4 is contemporary. Future improvements to

�85

NVIDIA GPGPU hardware will effectively improve the performance of the optimized

CUDA Harris corner detection implementation.

 The NVIDIA GPGPU and CUDA platform is forever changing and the GPGPU

performance is always increasing. For example, the GeForce GTX 480 released in 2010

contains 480 processing cores while the GPGPU used to conduct this thesis research,

GeForce 660 Ti, released in 2012 contains 1344 processing cores, nearly tripling the

parallel processing capability over the span of 2 years. Areas of future work in the area

of GPGPU Harris corner detection include optimizing the algorithm on the most recent

GPGPU hardware architecture (Maxwell) and scaling the algorithm’s implementation to a

multi-GPGPU environment.

 Maxwell is NVIDIAs newest GPGPU architecture release (2014). The Maxwell

architecture provides dramatic improvements to the streaming multiprocessor design in

areas of energy efficiency, control logic partitioning (avoids warp divergence), workload

balancing, instructions executed per clock cycle, and many more. The Maxwell

architecture supports dynamic parallelism which allows for CUDA kernels to invoke

kernels themselves. The same implementation discussed throughout this thesis will

receive a performance benefit when run on Maxwell architecture; however, further

performance gain can be achieved by reimplementing the algorithm specifically to utilize

all resources on the NVIDIA Maxwell architecture.

 CUDA supports the invocation of multiple GPGPU execution asynchronously

away from the host. Future work for the research discussed in this thesis includes

scaling the single GPGPU CUDA Harris corner detection implementation to a multi-

GPGPU environment. The existence of multiple GPGPUs in the environment allow for

optimized load balancing of threads per SM between all GPGPUs, thus increasing

GPGPU efficiency and performance.

 In conclusion, this thesis provides a software solution to high performance

realtime Harris corner detection using CUDA.  

�86

Bibliography

[1] “3D Vision Introduction”. n.d. Web. February 2015.

 <http://www.ecse.rpi.edu/Homepages/qji/CV/3dvision_intro.pdf>

[2] Mainali, Pradip, Qiong Yang, Gauthier Lafruit, Rudy Lauwereins, and Luc Van

 Gool. “LOCOCO: Low Complexity Corner Detector”. Leuven, Belguim:

 Interuniversitair Micro-electrinica Centrum Vzw. 2011. Web. February 2015.

 <http://www.pds.ewi.tudelft.nl/pubs/papers/mmedia2011.pdf>

[3] Sips, Henk. “Low Complexity Corner Detector Using CUDA for Multimedia

 Applications”. CD Delft, The Netherlands: Delft University of Technology. 2010.

 Web. February 2015.

 <http://www.researchgate.net/profile/Rudy_Lauwereins/publication/

220735342_Lococo_low_complexity_corner_detector/links/

0deec52660d789c6e6000000.pdf >

[4] Lucas Teixeira, Waldemar Celes and Marcelo Gattass. “Accelerated Corner-

 Detector Algorithms”. Tecgraf PUC-Rio, Brazil. n.d. Web. February 2015.

 <http://www.comp.leeds.ac.uk/bmvc2008/proceedings/papers/45.pdf>

[5] NVIDIA Corporation. “CUDA C Programming Guide”, August 2014. Web.

 February 2015.

 <http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf>

[6] Farber, Rob. “CUDA Application Design and Development”. Waltham, MA:

 Elsevier, 2011. Print. February 2015.

�87

http://www.ecse.rpi.edu/Homepages/qji/CV/3dvision_intro.pdf
http://www.pds.ewi.tudelft.nl/pubs/papers/mmedia2011.pdf
http://www.researchgate.net/profile/Rudy_Lauwereins/publication/220735342_Lococo_low_complexity_corner_detector/links/0deec52660d789c6e6000000.pdf
http://www.comp.leeds.ac.uk/bmvc2008/proceedings/papers/45.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[7] NVIDIA Cooperation. “NVIDIA CUDA Getting Started Guide For Linux”, August

 2014. Web. February 2015.

 <http://docs.nvidia.com/cuda/pdf/CUDA_Getting_Started_Linux.pdf>

[8] NVIDIA Corporation. “CUDA C Best Practices Guide”. August 2014. Web.

 February 2015.

 <http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf>

[9] Podlozhnyuk, Victor. “Image Convolution with CUDA”. Santa Clara, CA: NVIDIA

 Corporation, June 2007. Web. February 2015.

 <http://www-igm.univ-mlv.fr/~biri/Enseignement/MII2/Donnees/

convolutionSeparable.pdf>

[10] C. Harris, M. Stephens. “A Combined Corner and Edge Detector. Proceedings of

the 4th Alvey Vision Conference”. 1988. Web. February 2014.

 <http://www.bmva.org/bmvc/1988/avc-88-023.pdf>

[11] Rafael Gonzalez, Richard Woods, “Digital Image Processing. Upper Saddle

 River”, NJ: Pearson Prentice Hall, 2008. Print. February 2015.

[12] Kernel Convolution. “Digital image. Performing Convolution Operations”. Apple,

n.d. Web. February 2014.

 <https://developer.apple.com/library/ios/documentation/Performance/Conceptual/

vImage/Art/kernel_convolution.jpg>

�88

http://docs.nvidia.com/cuda/pdf/CUDA_Getting_Started_Linux.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://www-igm.univ-mlv.fr/~biri/Enseignement/MII2/Donnees/convolutionSeparable.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf

[13] Tian, Hui, “Noise Analysis In CMOS Image Sensors. Dissertation”, Stanford

 University. August 2000. Web. February 2015.

 <http://www-isl.stanford.edu/~abbas/group/papers_and_pub/hui_thesis.pdf>

[14] Bilgic, B, B K P Horn, and I Masaki. “Efficient Integral Image Computation on the

 GPU”. IEEE, 2010. 528-533. n.d. Web. February 2015.

 <http://dspace.mit.edu/handle/1721.1/71883>

[15] Forster, W, Gulch, E: “A fast operator for detection and precise locations of

 distinct points, corners, and centre of circular features”. In: Proc. of

 Intercommission Conf. on Fast Processing of Photogrammetic Data, 1987. Web.

 February 2015.

 <http://www.ipb.uni-bonn.de/uploads/tx_ikgpublication/foerstner87.fast.pdf>

[16] Wikipedia contributors. “OpenCV” . Wikipedia, January 2015. Web. February

2015. <http://en.wikipedia.org/wiki/OpenCV>

[17] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Robust

 Features”. Katholieke Universiteit Leuven. n.d. Web. February 2015.

 <http://www.vision.ee.ethz.ch/~surf/eccv06.pdf>

[18] Wikipedia contributors. “SURF.” Wikipedia, January 2015. Web. February 2015.

 <http://en.wikipedia.org/wiki/SURF>

[19] OpenCV. “Feature Matching with FLANN”. n.d. Web. February 2015.

 <http://docs.opencv.org/doc/tutorials/features2d/feature_flann_matcher/

feature_flann_matcher.html>

�89

http://www-isl.stanford.edu/~abbas/group/papers_and_pub/hui_thesis.pdf
http://dspace.mit.edu/handle/1721.1/71883
http://www.ipb.uni-bonn.de/uploads/tx_ikgpublication/foerstner87.fast.pdf
http://en.wikipedia.org/wiki/OpenCV
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
http://en.wikipedia.org/wiki/SURF
http://docs.opencv.org/doc/tutorials/features2d/feature_flann_matcher/feature_flann_matcher.html

[20] Wikipedia contributors. “K-nearest neighbors algorithm”. Wikipedia, January

2015. Web. February 2015.

 <http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm>

[21] Harris, Mark. “Parallel Prefix Sum (Scan) with CUDA”. Santa Clara, CA: NVIDIA

 Corporation, Apr 2007. Web. February 2015.

 <http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf>

[22] “GeForce GTX 660 Ti GPGPU Specification”. Web. February 2015.

 <www.geforce.com/hardare/desktop-gpus/geforce-gtx-660ti/specifications>

[23] NVIDIA Corporation. “Tuning CUDA Applications for Kepler”, August 2014. Web.

 February 2015. <http://docs.nvidia.com/cuda/pdf/Kepler_Tuning_Guide.pdf>

[24] Wikipedia contributors. "Corner detection." Wikipedia, 26 Jan. 2015. Web. 4 Mar.

 2015. <http://en.wikipedia.org/wiki/Corner_detection>

�90

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf
http://www.geforce.com/hardare/desktop-gpus/geforce-gtx-660ti/specifications
http://docs.nvidia.com/cuda/pdf/Kepler_Tuning_Guide.pdf
http://en.wikipedia.org/wiki/Corner_detection

Appendices

A: Platform Specifications

Table A.1: Hardware Environment Specifications

Table A.2: NVIDIA GPGPU Specifications

Environment Specifications

OS Ubuntu 12.04 LTS 64 Bit

CPU Intel Core i7 920 @ 2.67 GHz x 8

RAM 6 GB DIMM @ 1333 MHz

GPGPU GeForce 660 Ti

GeForce 660Ti Specifications

Architecture Type Kepler

Clock Rate 980 MHz

SM Count 7

Active Warps Per SM 4

Cores Per SM 192

Total CUDA Cores (7 x 192) 1344

Maximum Theads Per SM 2048

Maximum Threads Per Block 1024

Warp Size 32

Global Memory Size 2 GB

Constant Memory Size 64 KB

Shared Memory Per Block 48 KB

Registers Per Block 65536

L2 Cache Size 393216 bytes

Memory Bus Width 192 bit

Memory Clock Rate 3004 MHz

CUDA Capable Version Number 3.0

�91

Table A.3: Software Specifications 

Software Specifications

CUDA Driver API Version 6.5

GCC Version 4.6.3 64-bit

MATLAB Version R2012a (7.14.0.739)
64-bit (glnxa64)

OpenCV Version 2.4.9

�92

B: Standard C Harris Corner Detection Code

/* File: harris_detector_cpu.cpp
 * Author: Justin Loundagin
 * Date: Feburary 5th, 2015
 * Brief: Standard C functions to perform Harris feature detection
 */
#include "harris_detector_cpu.h"

using namespace std;
using namespace cv;

#define MIN(a, b) ((a) < (b) ? a : b)

namespace harris_detection {
 /* Function Name: convolve
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Performs 2D spatial filter operation on input image with
 input convolution kernel
 * Param [in]: image - The image to be convolved
 * Param [in]: image_rows - The number of rows in the image
 * Param [in]: image_cols - The number of columns in the image
 * Param [in]: kernel - The input kernel to convolve with the input
 image
 * Param [in]: kernel_dim - The dimension of the kernel
 * Returns: The result of the convolution with the input image and
 kernel
 */
 template<typename T>
 static double *convolve(T *image, unsigned image_rows,
 unsigned image_cols, double *kernal, int kernal_dim) {
 unsigned kernal_center = kernal_dim / 2.0f;
 double *output = new double[image_rows * image_cols];

 for(int i=kernal_center; i < image_rows - kernal_center; ++i) {
 for(int j=kernal_center; j < image_cols - kernal_center;
 ++j) {
 double sum = 0.0f;

 for(int k=0; k < kernal_dim; ++k) {
 unsigned image_row = (i - kernal_center) + k;
 for(int v=0; v < kernal_dim; ++v) {
 unsigned image_col = (j - kernal_center) + v;

 sum += kernal[k * kernal_dim + v] *
 image[image_row * image_cols + image_col];
 }
 }
 output[i * image_cols + j] = sum;
 }
 }
 return output;
 }

 /* Function Name: double_to_image
 * Author: Justin Loundagin
 * Date: February 5th, 2015

�93

 * Brief: Cast image from type double to type uint8
 * Param [out]: dst - The result image
 * Param [in]: src - The source double image
 * Param [in]: rows - The number of rows in the image
 * Param [in]: cols - The number of columns in the image
 */
 static void double_to_image(unsigned char *dst, double *src,
 int rows, int cols) {
 for(int i=0; i<rows; ++i) {
 for(int j=0; j<cols; ++j) {
 dst[i * cols + j] = (unsigned char)src[i * cols + j];
 }
 }
 }

 /* Function Name: array_multiply
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Performs element by element multiplication between two
 matrices
 * Param [in]: a - Input matrix A
 * Param [in]: b - Input matrix B
 * Param [in]: rows - The number of rows in the image
 * Param [in]: cols - The number of columns in the image
 * Returns: Resultant element by element multiplied matrix
 */
 static double *array_multiply(double *a, double *b, int rows,
 int cols) {
 double *product = new double[rows * cols];

 for(int i=0; i<rows; ++i) {
 for(int j=0; j<cols; ++j) {
 product[i * cols + j] = a[i * cols + j] *
 b[i * cols +j];
 }
 }
 return product;
 }

 /* Function Name: sum_neighbors
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Sums neighborhood within an image
 * Param [in]: image - Input image
 * Param [in]: row - The center row of the neighborhood
 * Param [in]: col - The center column of the neighborhood
 * Param [in]: cols - The number of columns in the image
 * Param [in]: window_dim - The dimension of the neighborhood
 * Returns: The sum of the neighbors
 */
 static double sum_neighbors(double *image, int row, int col,
 int cols, int window_dim) {
 int window_center = window_dim / 2.0f;
 double sum = 0.0f;
 for(int i=0; i<window_dim; ++i) {
 for(int j=0; j<window_dim; ++j) {
 int image_row = (row - window_center) + i;
 int image_col = (col - window_center) + j;

�94

 sum += image[image_row * cols + image_col];
 }
 }
 return sum;
 }

 /* Function Name: eigen_values
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Computes the eigen values of a 2x2 matrix
 * Param [in]: M - The input 2x2 matrix
 * Param [out]: The first eigen value
 * Param [out]: The second eigen value
 */
 static void eigen_values(double M[2][2], double &l1, double &l2) {
 double d = M[0][0];
 double e = M[0][1];
 double f = M[1][0];
 double g = M[1][1];

 l1 = ((d + g) + sqrt(pow(d + g, 2.0f) - 4*(d*g - f*e))) / 2.0f;
 l2 = ((d + g) - sqrt(pow(d + g, 2.0f) - 4*(d*g - f*e))) / 2.0f;
 }

 /* Function Name: linear_scale
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Linearly scales from its domain to a new domain
 * Param [in/out]: data - Input matrix to scale
 * Param [in]: rows - The number of rows in the data
 * Param [in]: cols - The number of columns in the data
 * Param [in]: The new minimum to scale to
 * Param [in]: The new maximum to scale to
 */
 static void linear_scale(double *data, int rows, int cols,
 double new_min, double new_max) {
 double old_min = *std::min_element(data, data + rows * cols);
 double old_max = *std::max_element(data, data + rows * cols);

 for(int i=0; i<rows; ++i) {
 for(int j=0; j<cols; ++j) {
 data[i * cols + j] = MIN(10 *
 (((new_max - new_min) * (data[i * cols + j]) /
 (old_max - old_min)) + new_min), 255);

 }
 }
 }

 /* Function Name: draw_circles
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Draws circles over detected corners from suppressed
 corner response onto RGB image
 * Param [in/out]: rgb - The image to draw circles on
 * Param [in]: corner_response - The suppressed corner response of
 the image

�95

 * Param [in]: rows - The number of rows in the data
 * Param [in]: cols - The number of columns in the data
 */
 static void draw_circles(Mat &rgb, double *corner_response,
 int rows, int cols) {

 for(int i=0; i<rows; ++i) {
 for(int j=0; j<cols; ++j) {
 if(corner_response[i * cols + j] > 0.0f) {
 cv::circle(rgb, Point(j, i), 5,
 cv::Scalar(0, 0, 255), 2);
 }
 }
 }
 }

 /* Function Name: non_maxima_suppression_raster
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Performs non-maxima suppression on all neighborhoods in
 raster scan iterative order
 * Param [in]: input - The input matrix to perform NMS
 * Param [out]: output - The output suppressed matrix
 * Param [in]: rows - The number of rows in the input
 * Param [in]: cols - The number of columns in the input
 * Param [in]: win_dim - The dimension of the neighborhood
 */
 static void non_maxima_suppression_raster(double *input,
 double *output, int rows, int cols, int win_dim) {
 unsigned win_center = win_dim / 2.0f;
 bool running;

 for(int i=win_center; i < rows - win_center; ++i) {
 for(int j=win_center; j < cols - win_center; ++j) {
 double pixel = input[i * cols + j];

 running = true;
 for(int k=0; running && k < win_dim; ++k) {
 for(int v=0; running && v < win_dim; ++v) {
 unsigned image_row = (i - win_center) + k;
 unsigned image_col = (j - win_center) + v;

 // Don't count the center pixel
 if(k == win_center && v == win_center)
 continue;

 if(pixel < input[image_row * cols + image_col])
 {
 pixel = 0;
 running = false;
 }
 }
 }
 output[i * cols + j] = pixel;
 }
 }
 }

�96

 /* Function Name: detect_features
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Performs the Harris corner detection algorithm on the
input image to find corner features
 * Param [in]: image - The input in grayscale to perform harris
 detection
 * Param [out]: features - Vector containing feature points
 * Param [out]: image - The input image
 * Param [in]: rows - The number of rows in the input
 * Param [in]: cols - The number of columns in the input
 * Param [in]: k - The Harris corner detection sensitivity
parameter
 * Param [in]: thresh - The R score threshold value
 * Param [in]: nms_dim - The neighborhood dimension for NMS
 */
 void detect_features(std::vector<cv::KeyPoint> &features,
 unsigned char *image, int rows, int cols,
 double k, double thresh, int nms_dim) {

 // De-noise input image
 double *smoothed = convolve(image, rows, cols, gaussian_3x3,
 KERNAL_DIM);

 // Determine x and y gradients
 double *dx = convolve(smoothed, rows, cols, sobel_x,
 KERNAL_DIM);

 double *dy = convolve(smoothed, rows, cols, sobel_y,
 KERNAL_DIM);

 // Square gradients for harris matrix calculation
 double *dx2 = array_multiply(dx, dx, rows, cols);
 double *dxdy = array_multiply(dx, dy, rows, cols);
 double *dy2 = array_multiply(dy, dy, rows, cols);

 int window_center = WINDOW_DIM / 2.0f;
 double M[2][2] = {0.0f};

 double *corner_response = new double[rows * cols]();

 // Iterate over squared gradients and compute harris matrix R scores
 for(int i=window_center; i<rows - window_center; ++i) {
 for(int j=window_center; j<cols - window_center; ++j) {
 M[0][0] = sum_neighbors(dx2, i, j, cols, WINDOW_DIM);
 M[0][1] = sum_neighbors(dxdy, i, j, cols, WINDOW_DIM);
 M[1][0] = M[0][1];
 M[1][1] = sum_neighbors(dy2, i, j, cols, WINDOW_DIM);

 double l1, l2;

 eigen_values(M, l1, l2);

 double R = l1 * l2 - k * pow(l1 + l2, 2.0f);

 // Threshold R score

�97

 if(R > thresh) {
 corner_response[i * cols + j] = R;
 }
 }
 }

 double *suppressed = new double[rows * cols]();
 non_maxima_suppression_raster(corner_response, suppressed,
 rows, cols, nms_dim);

 for(int i=0; i < rows; i++) {
 for(int j=0; j < cols; ++j) {
 if(suppressed[i * cols + j] > 0.0) {
 features.push_back(cv::KeyPoint(j, i, 5, -1));
 }
 }
 }
 }
}

�98

C: Naive CUDA Harris Corner Detection Code

/* File: harris_detector_gpu_naive.cu
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Naive CUDA functions to perform Harris feature detection
 */

#include "harris_detector_gpu.h"
#include <iostream>
#include <limits>
#include <algorithm>
#include <cstdio>

/* Function Name: convolve_kernel
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to perform image convolution with a filter
 * Param [in]: image - The input image
 * Param [out]: result - The result image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: kernal - The input filter kernal
 * Param [in]: kernel_dim: The size of the input filter kernal
 */
template<typename T>
__global__ void convolve_kernel(T *image, double *result, int rows,
 int cols, double *kernal,
 int kernal_dim) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int kernel_offset = kernal_dim / 2.0f;
 int image_row = ty;
 int image_col = tx;

 if(image_row >= kernel_offset && image_row < rows - kernel_offset
 &&
 image_col >= kernel_offset && image_col < cols - kernel_offset){

 double value = 0.0f;
 for(int i=0; i<kernal_dim; ++i) {
 int row = (image_row - kernel_offset) + i;
 for(int j=0; j<kernal_dim; ++j) {
 int col = (image_col - kernel_offset) + j;
 value += kernal[i * kernal_dim + j] *
 (double)image[row * cols + col];
 }
 }
 result[image_row * cols + image_col] = (double)value;
 }
}

/* Function Name: non_maxima_suppresion_kernel
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to perform non-maxima suppression
 * Param [in]: image - The input image
 * Param [out]: result - The result image

�99

 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: window_dim: The size of NMS window
 */
__global__ void non_maxima_suppression_kernel(double *image,
 double *result,
 int rows, int cols,
 int window_dim) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int row = ty;
 int col = tx;

 int DIM = window_dim;
 int OFF = DIM / 2;

 if(row >= OFF && row < rows - OFF &&
 col >= OFF && col < cols - OFF) {

 double filtered= image[row * cols + col];
 bool running = true;

 for(int i=0; i<DIM && running; ++i) {
 int r = (row - OFF) + i;
 for(int j=0; j<DIM && running; ++j) {
 int c = (col - OFF) + j;

 if(i == DIM/2 && j == DIM/2)
 continue;

 double temp = image[r * cols + c];
 if(temp > filtered) {
 filtered = 0;
 running = false;
 }
 }
 }
 result[row * cols + col] = filtered;
 }
}

/* Function Name: eigen_values
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA/HOST function to calculate the eigenvalues of a 2x2
 matrix
 * Param [in]: M - The 2x2 input matrix
 * Param [out]: l1 - The first eigenvalue
 * Param [out]: l2 - The second eigenvalue
 */
__host__ __device__ void eigen_values(double M[2][2], double *l1,
double *l2) {
 double d = M[0][0];
 double e = M[0][1];
 double f = M[1][0];
 double g = M[1][1];

�100

 l1 = ((d + g) + sqrt(pow(d + g, 2.0) - 4(d*g - f*e))) / 2.0f;
 l2 = ((d + g) - sqrt(pow(d + g, 2.0) - 4(d*g - f*e))) / 2.0f;
}

/* Function Name: sum_neighbors
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA function to sum a neighborhood within a given image
 * Param [in]: image - The input image
 * Param [in]: row - The center row of the neighborhood
 * Param [in]: col - The center column of the neighborhood
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: window_dim: The size of the neighborhood
 * Returns: The sum of the neighborhood
 */
__device__ double sum_neighbors(double *image, int row, int col,
 int cols, int window_dim) {
 int window_center = window_dim / 2.0f;
 double sum = 100.0f;
 for(int i=0; i<window_dim; ++i) {
 int image_row = (row - window_center) + i;
 for(int j=0; j<window_dim; ++j) {
 int image_col = (col - window_center) + j;
 sum += image[image_row * cols + image_col];
 }
 }
 return sum;
}

/* Function Name: detect_corners_kernel
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to perform the corner detection algorithm
 * Param [in]: dx2 - The X gradient of the image squared
 * Param [in]: dy2 - The Y gradient of the image squared
 * Param [in]: dxdy - The product of the X and Y gradient of the image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: k - The corner detection sensitivity parameter
 * Param [out]: corner_response: The corner response image
 * Param [in]: window_dim: Window size of the corner detection
 */
__global__ void detect_corners_kernel(double *dx2, double *dy2,
 double *dydx, int rows, int cols,
 double k,
 double *corner_response,
 int window_dim) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int window_offset = window_dim / 2.0f;
 int image_row = ty;
 int image_col = tx;
 double M[2][2];

 if(image_row < rows - window_offset &&
 image_col < cols - window_offset &&
 image_row >= window_offset && image_col >= window_offset) {

�101

 M[0][0] = sum_neighbors(dx2, image_row, image_col,
 cols, window_dim);
 M[0][1] = sum_neighbors(dydx, image_row, image_col,
 cols, window_dim);
 M[1][1] = sum_neighbors(dy2, image_row, image_col,
 cols, window_dim);
 M[1][0] = M[0][1];

 double l1, l2;
 eigen_values(M, &l1, &l2);

 double r = l1 * l2 - k * pow(l1 + l2, 2.0);
 corner_response[image_row * cols + image_col] = r > 0 ? r : 0;
 }
}

/* Function Name: convolve
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to invoke the CUDA convolution kernel
 * Param [in]: image - The input image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: kernal - The convolution mask
 * Param [in]: kernel_size - The size of the convolution kernel
 * Returns: The convolution output
 */
template<typename T>
static double *convolve(T *image, int rows, int cols, double *kernal,
 int kernal_size) {
 using namespace harris_detection;

 double *deviceResult = alloc_device<double>(rows, cols, true);
 double *deviceKernel = to_device<double>(kernal, kernal_size,
 kernal_size);

 T *deviceImage = to_device<unsigned char>(image, rows, cols);

 dim3 dimGrid(ceil(cols / (double)TILE_DIM),
 ceil(rows / (double)TILE_DIM));
 dim3 dimBlock(TILE_DIM, TILE_DIM);

 convolve_kernel<T> <<< dimGrid, dimBlock >>>(deviceImage,
 deviceResult,
 rows, cols,
 deviceKernel,
 kernal_size);

 cudaDeviceSynchronize();

 double *host_result = to_host<double>(deviceResult, rows, cols);

 cudaFree(deviceKernel);
 cudaFree(deviceImage);
 cudaFree(deviceResult);

 return host_result;

�102

}

/* Function Name: non_maxima_supression
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to invoke the CUDA NMS kernel
 * Param [in]: image - The input image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: window_dim - The size of the NMS window
 * Returns: The suppressed image
 */
static double *non_maxima_supression(double *image, int rows, int cols,
 int window_dim) {
 using namespace harris_detection;

 double *deviceResult = alloc_device<double>(rows, cols, true);
 double *deviceImage = to_device<double>(image, rows, cols);

 dim3 dimGrid(ceil(cols / (double)TILE_DIM),
 ceil(rows / (double)TILE_DIM));
 dim3 dimBlock(TILE_DIM, TILE_DIM);

 non_maxima_suppression_kernel <<< dimGrid, dimBlock
 >>>(deviceImage, deviceResult,
 rows, cols, window_dim);
 CUDA_SAFE(cudaDeviceSynchronize());

 double *host_result = to_host<double>(deviceResult, rows, cols);

 cudaFree(deviceImage);
 cudaFree(deviceResult);

 return host_result;
}

/* Function Name: corner_detector
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to invoke the CUDA corner detector kernel
 * Param [in]: dx2 - The X gradient of the image squared
 * Param [in]: dy2 - The Y gradient of the image squared
 * Param [in]: dxdy - The product of the X and Y gradient of the image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: k - The corner detection sensitivity parameter
 * Param [in]: window_dim: Window size of the corner detection
 * Returns: The corner response image
 */
static double *corner_detector(double *dx2, double *dy2, double *dxdy,
 int rows, int cols, double k,
 int window_dim) {
 using namespace harris_detection;

 double *deviceDx2 = to_device<double>(dx2, rows, cols);
 double *deviceDy2 = to_device<double>(dy2, rows, cols);
 double *deviceDxDy = to_device<double>(dxdy, rows, cols);

�103

 double *deviceCornerResponse = alloc_device<double>(rows, cols,
 true);

 dim3 dimGrid(ceil(cols/ (double)TILE_DIM),
 ceil(rows / (double)TILE_DIM));
 dim3 dimBlock(TILE_DIM, TILE_DIM);

 detect_corners_kernel <<< dimGrid, dimBlock >>> (deviceDx2,
 deviceDy2,
 deviceDxDy,
 rows, cols,
 k,
 deviceCornerResponse,
 window_dim);
 cudaDeviceSynchronize();

 double *hostCornerResponse = to_host<double>(deviceCornerResponse,
 rows, cols);

 cudaFree(deviceCornerResponse);
 cudaFree(deviceDx2);
 cudaFree(deviceDy2);
 cudaFree(deviceDxDy);

 return hostCornerResponse;
}

namespace harris_detection {
 namespace naive{
 /* Function Name: detect_features
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to detect features utilizing the NVIDIA
 GPGPU
 * Param [out]: features - Key point spatial coordinates of
 detected
 * features
 * Param [in]: image - The input image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: k - Corner detector sensitivity
 * Param [in]: thresh - NMS threshold
 * Param [in]: window_dim: Corner detector window size
 */
 void detect_features(std::vector<cv::KeyPoint> &features,
 unsigned char *image, int rows, int cols,
 double k, double thresh, int window_dim) {
 const int NMS_DIM = 5;

 double *smoothed = convolve<unsigned char>(image, rows,
 cols,
 filters::gaussian_3x3,
 3);
 double *dx = convolve<unsigned char>(image, rows, cols,
 filters::sobel_x_3x3,
 3);
 double *dy = convolve<unsigned char>(image, rows, cols,

�104

 filters::sobel_y_3x3,
 3);

 double *dxdy = new double[rows * cols];

 for(int i=0; i<rows * cols; ++i) {
 dxdy[i] = dx[i] * dy[i];
 dx[i] *= dx[i];
 dy[i] *= dy[i];
 }

 double *corner_response = corner_detector(dx, dy, dxdy,
 rows, cols,
 k, window_dim);
 double *suppressed = non_maxima_supression(corner_response,
 rows, cols,
 NMS_DIM);

 for(int i=0; i < rows; i++) {
 for(int j=0; j < cols; ++j) {
 if(suppressed[i * cols + j] > 0.0) {
 features.push_back(cv::KeyPoint(j, i, 5, -1));
 }
 }
 }

 delete dx;
 delete dy;
 delete dxdy;
 delete corner_response;
 delete suppressed;
 delete smoothed;
 }
 }
}

�105

D: Optimized CUDA Harris Corner Detection Code

/* File: harris_detector_gpu_optimized.cu
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: Optimized CUDA functions to perform Harris feature detection
 */
#include "harris_detector_gpu.h"
#include <iostream>
#include <limits>
#include <algorithm>
#include <thrust/scan.h>
#include <thrust/functional.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/device_ptr.h>
#include <thrust/sort.h>

// GPGPU device memory image pool size
#define DEVICE_RESULT_COUNT 8

// Global GPGPU device to allocated once for optimization
double *deviceKernel = NULL;
unsigned char *deviceImage = NULL;

// Array of Global GPGPU memory images to be reused
double *deviceResult[DEVICE_RESULT_COUNT] = {NULL};
double *deviceResultTemp = NULL;

// Pointer to array of CUDA streams
cudaStream_t *deviceStreams = NULL;
int deviceStreamCount = 0;

// Scan keys used for integral image exclusive scan
int *scanKeys = NULL;

// Scan keys for transpose exclusive scan
int *scanKeysT = NULL;

// Array of scan keys used for spiral neighborhood iteration
int raster_scan_order_8[8] = {0, 1, 2, 3, 5, 6, 7, 8};
int spiral_scan_order_8[8] = {1, 2, 5, 8, 7, 6, 3, 0};
int spiral_scan_order_24[24] = {7, 8, 13, 18, 17, 16, 11, 6, 1, 2,
 3, 4, 9, 14, 19, 24, 23, 22, 21, 20,
 15, 10, 5, 0};
int spiral_scan_order_48[48] = {17, 18, 25, 32, 31, 30, 23, 16, 9,
 0, 11, 12, 19, 26, 37, 40, 39, 38, 37,
 36, 29, 22,
 15, 8, 1, 2, 3, 4, 5, 6, 13, 20, 27,
 34, 41, 48, 47, 46, 45, 44, 43, 42,
 35, 28, 21, 14, 7, 0};

// Constant GPGPU memory allocations
__constant__ double deviceConstKernel[3*3];
__constant__ int deviceScanOrder[48];

/* Function Name: transpose_kernel

�106

 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to transpose an image
 * Param [out]: result - Result transposed image
 * Param [in]: input - The input image
 * Param [in]: rows - The number of rows in the transposed image
 * Param [in]: cols - The number of columns in the transposed image
 */
__global__ void transpose_kernel(double *result, double *input,
 int rows, int cols) {
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;

 if(row < rows && col < cols) {
 result[row * cols + col] = input[col * rows + row];
 }
}

/* Function Name: array_multiply_kernel
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to perform array multiplication
 * Param [in]: a - First input array
 * Param [in]: b - Second input array
 * Param [out]: result - Result product array
 * Param [in]: rows - The number of rows in the result array
 * Param [in]: cols - The number of columns in the result array
 */
__global__ void array_multiply_kernal(double *a, double *b,
 double *result, int rows, int
cols) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;

 if(ty < rows && tx < cols) {
 result[ty * cols + tx] = a[ty * cols + tx] * b[ty * cols + tx];
 }
}

/* Function Name: convolve_kernel_constant
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to convolve a 3x3 filter held in constant memory
 * Param [in]: image - The input image
 * Param [out]: result - The convolution result
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 */
__global__ void convolve_kernel_constant(unsigned char *image,
 double *result, int rows, int cols) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int kernel_offset = 3.0f/ 2.0f;
 int image_row = ty + kernel_offset;
 int image_col = tx + kernel_offset;

 if(image_row < rows - kernel_offset &&
 image_col < cols - kernel_offset) {

�107

 double value = 0.0f;
 for(int i=0; i<3; ++i) {
 int row = (image_row - kernel_offset) + i;
 for(int j=0; j<3; ++j) {
 int col = (image_col - kernel_offset) + j;
 value += deviceConstKernel[i * 3 + j] *
 (double)image[row * cols + col];
 }
 }
 result[image_row * cols + image_col] = value;
 }
}

/* Function Name: convolve_kernel_seperable_vertical
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to convolve a 1D 3X1 filter
 * Param [in]: image - The input image
 * Param [out]: result - The convolution result
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: a - First value in the filter column vector
 * Param [in]: b - Second value in the filter column vector
 * Param [in]: c - Third value in the filter column vector
 */
template<typename T>
__global__ void convolve_kernel_seperable_vertical(T *image,
double *result, int rows, int cols, double a, double b, double c) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int kernel_offset = 3.0f/ 2.0f;
 int image_row = ty;
 int image_col = tx;

 if(image_row < rows - kernel_offset &&
 image_col < cols - kernel_offset &&
 image_row >= kernel_offset &&
 image_col >= kernel_offset) {

 result[image_row * cols + image_col] = a *
 image[(image_row-1)*cols + image_col] +
 b *
 image[image_row * cols + image_col] +
 c *
 image[(image_row +1) * cols + image_col];
 }
}

/* Function Name: convolve_kernel_seperable_horizontal
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to convolve a 1D 1x3 filter
 * Param [in]: image - The input image
 * Param [out]: result - The convolution result
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image

�108

 * Param [in]: a - First value in the filter row vector
 * Param [in]: b - Second value in the filter row vector
 * Param [in]: c - Third value in the filter row vector
 */
template<typename T>
__global__ void convolve_kernel_seperable_horizontal(T *image,
double *result, int rows, int cols, double a, double b, double c) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int kernel_offset = 3.0f/ 2.0f;
 int image_row = ty;
 int image_col = tx;

 if(image_row < rows - kernel_offset &&
 image_col < cols - kernel_offset &&
 image_row >= kernel_offset &&
 image_col >= kernel_offset) {

 result[image_row * cols + image_col] = a *
 image[image_row*cols + image_col - 1] +
 b *
 image[image_row * cols + image_col] +
 c *
 image[image_row * cols + image_col + 1];
 }
}

/* Function Name: convolve_kernel_seperable_horizontal_row
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to convolve a 1D 1x3 filter with a
 * single row of the input image
 * Param [in]: image - The input image
 * Param [out]: result - The convolution result
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: row - The row of the input image to perform the 1D
 convolution
 * Param [in]: a - First value in the filter row vector
 * Param [in]: b - Second value in the filter row vector
 * Param [in]: c - Third value in the filter row vector
 */
__global__ void convolve_kernel_seperable_horizontal_row(
unsigned char *image, double *result, int rows, int cols, int row,
double a, double b, double c) {
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int kernel_offset = 3.0f/ 2.0f;
 int image_col = tx + kernel_offset;

 if(image_col < cols - kernel_offset) {
 result[row * cols + image_col] = a *
 image[row * cols + image_col - 1] +
 b *
 image[row * cols + image_col] +
 c *
 image[row * cols + image_col + 1];
 }
}

�109

/* Function Name: sum_neighbors
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA function to sum a neighborhood within a given image
 * Param [in]: image - The input image
 * Param [in]: row - The center row of the neighborhood
 * Param [in]: col - The center column of the neighborhood
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: window_dim: The size of the neighborhood
 * Returns: The sum of the neighborhood
 */
__device__ static double sum_neighbors(double *image, int row, int col,
 int cols, int window_dim) {
 int window_center = window_dim / 2.0f;
 double sum = 0.0f;
 for(int i=0; i<window_dim; ++i) {
 for(int j=0; j<window_dim; ++j) {
 int image_row = (row - window_center) + i;
 int image_col = (col - window_center) + j;

 sum += image[image_row * cols + image_col];
 }
 }
 return sum;
}

/* Function Name: sum_neighbors_integral
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA function to sum a neighborhood within a given image
 using the integral image (3 arithmetic operations)
 * Param [in]: image - The input image
 * Param [in]: row - The center row of the neighborhood
 * Param [in]: col - The center column of the neighborhood
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: window_dim: The size of the neighborhood
 * Returns: The sum of the neighborhood
 */
__device__ static double sum_neighbors_integral(double *image,
 int row, int col, int cols, int window_dim) {
 int win_off = window_dim / 2.0f;

 double a = image[(row - win_off - 1) * cols + (col - win_off - 1)];
 double b = image[(row - win_off - 1) * cols + (col + win_off)];
 double c = image[(row + win_off) * cols + (col - win_off - 1)];
 double d = image[(row + win_off) * cols + (col + win_off)];

 return a + d - b - c;
}

/* Function Name: eigen_values
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA/HOST function to calculate the eigenvalues of a 2x2
matrix
 * Param [in]: M - The 2x2 input matrix
 * Param [out]: l1 - The first eigenvalue

�110

 * Param [out]: l2 - The second eigenvalue
 */
__host__ __device__ static void eigen_values(double M[2][2],
 double *l1, double *l2) {
 double d = M[0][0];
 double e = M[0][1];
 double f = M[1][0];
 double g = M[1][1];

 l1 = ((d + g) + sqrt(pow(d + g, 2.0) - 4(d*g - f*e))) / 2.0f;
 l2 = ((d + g) - sqrt(pow(d + g, 2.0) - 4(d*g - f*e))) / 2.0f;
}

/* Function Name: detect_corners_kernel
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to perform the corner detection algorithm
 * Param [in]: dx2 - The X gradient of the image squared
 * Param [in]: dy2 - The Y gradient of the image squared
 * Param [in]: dxdy - The product of the X and Y gradient of the image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: k - The corner detection sensitivity parameter
 * Param [out]: corner_response: The corner response image
 * Param [in]: window_dim: Window size of the corner detection
 */
static __global__ void detect_corners_kernel(double *dx2, double *dy2,
 double *dydx, int rows, int cols, double k,
 double *corner_response, int window_dim) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int window_offset = window_dim / 2.0f;
 int image_row = ty;
 int image_col = tx;
 double M[2][2];

 if(image_row < rows - window_offset &&
 image_col < cols - window_offset &&
 image_row >= window_offset &&
 image_col >= window_offset) {

 M[0][0] = sum_neighbors(dx2, image_row, image_col,
 cols, window_dim);
 M[0][1] = sum_neighbors(dydx, image_row, image_col,
 cols, window_dim);
 M[1][1] = sum_neighbors(dy2, image_row, image_col,
 cols, window_dim);
 M[1][0] = M[0][1];

 double l1, l2;
 eigen_values(M, &l1, &l2);

 double r = l1 * l2 - k * pow(l1 + l2, 2.0);
 corner_response[image_row * cols + image_col] = r > 0? r : 0;
 }
}

�111

/* Function Name: detect_corners_integral_kernel
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to perform the corner detection algorithm
utilizing
 * integral images
 * Param [in]: dx2 - The X integral gradient of the image squared
 * Param [in]: dy2 - The Y integral gradient of the image squared
 * Param [in]: dxdy - The integral product of the X and Y
 * gradient of the image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: k - The corner detection sensitivity parameter
 * Param [out]: corner_response: The corner response image
 * Param [in]: window_dim: Window size of the corner detection
 */
__global__ void detect_corners_integral_kernel(double *dx2,
double *dy2, double *dydx, int rows, int cols, double k,
double *corner_response, int window_dim) {
 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int window_offset = window_dim / 2.0f;
 int image_row = ty;
 int image_col = tx;
 double M[2][2];

 if(image_row < rows - window_offset &&
 image_col < cols - window_offset &&
 image_row >= window_offset &&
 image_col >= window_offset) {

 M[0][0] = sum_neighbors_integral(dx2, image_row,
 image_col, cols, window_dim);
 M[0][1] = sum_neighbors_integral(dydx, image_row,
 image_col, cols, window_dim);
 M[1][1] = sum_neighbors_integral(dy2, image_row,
 image_col, cols, window_dim);
 M[1][0] = M[0][1];

 double l1 = 6;
 double l2 = 7;
 eigen_values(M, &l1, &l2);

 double r = l1 * l2 - k * pow(l1 + l2, 2.0);
 corner_response[image_row * cols + image_col] = r > 0 ? r : 0;
 }
}

/* Function Name: convolve_seperable
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to invoke the separable convolution CUDA
 kernels
 * Param [in]: devInput - The device input image
 * Param [out]: devResult - The device output image
 * Param [in]: rows - The number of rows in the device input image
 * Param [in]: cols - The number of columns in the device input image
 * Param [in]; rx - 1D convolution row element x

�112

 * Param [in]; ry - 1D convolution row element y
 * Param [in]; rz - 1D convolution row element z
 * Param [in]; vx - 1D convolution column element x
 * Param [in]; vy - 1D convolution column element y
 * Param [in]; vz - 1D convolution column element z
 */
template <typename T>
static double *convolve_seperable(T *devInput, double *devResult,
 int rows, int cols, double rx, double ry, double rz,
 double vx, double vy, double vz) {

 dim3 dimGrid(ceil(cols/ (double)TILE_DIM),
 ceil(rows/ (double)TILE_DIM));
 dim3 dimBlock(TILE_DIM, TILE_DIM);

 convolve_kernel_seperable_horizontal<T> <<< dimGrid, dimBlock
 >>>(devInput, deviceResultTemp, rows, cols, rx, ry, rz);
 CUDA_SAFE(cudaDeviceSynchronize());
 convolve_kernel_seperable_vertical<double> <<< dimGrid,
dimBlock
 >>>(deviceResultTemp, devResult, rows, cols, vx, vy,
vz);

 return devResult;
}

/* Function Name: non_maxima_suppression_pattern_kernel
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: CUDA kernel to perform NMS on a neighborhood iteration
 defined
 * by the pattern held in constant memory
 * Param [in]: image - The input image
 * Param [out]: result - The NMS output
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: pattern_size - The size of the neighborhood iteration
 pattern held in constant memory
 */
__global__ void non_maxima_suppression_pattern_kernel(double *image,
 double *result, int rows, int cols, int pattern_size)
{

 int ty = blockIdx.y * blockDim.y + threadIdx.y;
 int tx = blockIdx.x * blockDim.x + threadIdx.x;
 int row = ty;
 int col = tx;

 int DIM = sqrt((double)pattern_size + 1);
 int OFF = DIM / 2;

 if(row >= OFF && row < rows - OFF &&
 col >= OFF && col < cols - OFF) {

 double pixel = image[row * cols + col];

 for(int i=0; i < pattern_size; ++i) {
 int pr = deviceScanOrder[i] / DIM;

�113

 int pc = deviceScanOrder[i] % DIM;

 int ir = (row - OFF) + pr;
 int ic = (col - OFF) + pc;

 if(image[ir * cols + ic] > pixel) {
 pixel = 0;
 break;
 }
 }
 result[row * cols + col] = pixel;
 }
}

/* Function Name: array_multiply
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to invoke the CUDA array multiply kernel
 * Param [in]: devA - Device image A
 * Param [in]: devB - Device image B
 * Param [out]: devResult - The device result product array
 * Param [in]: rows - The number of rows in the result array
 * Param [in]: cols - The number of columns in the result array
 */
static void array_multiply(double *devA, double *devB, double
*devResult,
 int rows, int cols) {
 dim3 dimGrid(ceil(cols/ (double)TILE_DIM), ceil(rows/
(double)TILE_DIM));
 dim3 dimBlock(TILE_DIM, TILE_DIM);

 array_multiply_kernal<<< dimGrid, dimBlock
 >>>(devA, devB, devResult, rows, cols);
 CUDA_SAFE(cudaDeviceSynchronize());
}

/* Function Name: corner_detector
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to invoke the CUDA corner detector kernel
 * Param [in]: devDx2 - Device image gradient X squared
 * Param [in]: devDy2 - Device image gradient Y squared
 * Param [in]: devDxDy - Device image gradient product of X and Y
 * Param [out]: devCornerResponse - The device corner response
 * Param [in]: rows - The number of rows in the result array
 * Param [in]: cols - The number of columns in the result array
 * Param [in]: k - The sensitivity parameter
 * Param [in]: window_dim - The window size
 */
static void corner_detector(double *devDx2, double *devDy2,
 double *devDxDy, double *devCornerResponse, int rows, int cols,
 double k, int window_dim) {
 dim3 dimGrid(ceil(cols/ (double)TILE_DIM),
 ceil(rows / (double)TILE_DIM));
 dim3 dimBlock(TILE_DIM, TILE_DIM);
 detect_corners_kernel <<< dimGrid, dimBlock
 >>> (devDx2, devDy2, devDxDy,
 rows, cols, k, devCornerResponse, window_dim);

�114

 CUDA_SAFE(cudaDeviceSynchronize());

}

/* Function Name: corner_detector_integral
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to invoke the CUDA corner detector integral
 kernel
 * Param [in]: devDx2 - Device image integral gradient X squared
 * Param [in]: devDy2 - Device image integreal gradient Y squared
 * Param [in]: devDxDy - Device image integral gradient product of X
 and Y
 * Param [out]: devCornerResponse - The device corner response
 * Param [in]: rows - The number of rows in the result array
 * Param [in]: cols - The number of columns in the result array
 * Param [in]: k - The sensitivity parameter
 * Param [in]: window_dim - The window size
 */
static void corner_detector_integral(double *devDx2, double *devDy2,
 double *devDxDy, double *devCornerResponse, int rows,
 int cols, double k, int window_dim) {
 dim3 dimGrid(ceil(cols/ (double)TILE_DIM),
 ceil(rows / (double)TILE_DIM));
 dim3 dimBlock(TILE_DIM, TILE_DIM);

 detect_corners_integral_kernel <<< dimGrid, dimBlock >>>
 (devDx2, devDy2, devDxDy, rows, cols, k, devCornerResponse,
 window_dim);
 CUDA_SAFE(cudaDeviceSynchronize());
}

/* Function Name: inclusive_scan_rows
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to CUDA exclusive scan each row of the input
 image
 * Param [out]: devResult - The result of exclusively scanning
 * each row of the input image
 * Param [in]: devInput - The input image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: keys - The pointer to the exclusive scan keys
 */
static void inclusive_scan_rows(double *devResult, double *devInput,
 int rows, int cols, int *keys) {
 thrust::device_ptr<double> input =
thrust::device_pointer_cast(devInput);
 thrust::device_ptr<double> output =
thrust::device_pointer_cast(devResult);
 thrust::device_ptr<int> k = thrust::device_pointer_cast(keys);
 thrust::exclusive_scan_by_key(k, k + rows * cols, input, output);
}

/* Function Name: integral_image
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to compute the integral image on the GPGPU

�115

 * Param [out]: devResult - The result integral image
 * Param [in]: devInput - The input image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: keys - The pointer to the exclusive scan keys
 */
static void integral_image(double *devResult, double *devInput,
 int rows, int cols) {
 dim3 dimBlock(TILE_DIM, TILE_DIM);
 double *devRotated = deviceResultTemp;

 inclusive_scan_rows(devResult, devInput, rows, cols, scanKeys);

 dim3 dimGridTranspose(ceil(rows/ (double)TILE_DIM),
 ceil(cols/ (double)TILE_DIM));
 transpose_kernel <<< dimGridTranspose, dimBlock
 >>> (devRotated, devResult, cols, rows);
 CUDA_SAFE(cudaDeviceSynchronize());

 inclusive_scan_rows(devRotated, devRotated, cols, rows, scanKeysT);

 dim3 dimGrid(ceil(cols/ (double)TILE_DIM), ceil(rows/
(double)TILE_DIM));
 transpose_kernel <<< dimGrid, dimBlock >>> (devResult, devRotated,
 rows, cols);
 CUDA_SAFE(cudaDeviceSynchronize());
}

/* Function Name: non_maxima_supression
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to invoke the CUDA NMS kernel
 * Param [in]: image - The input image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: access_pattern - Pointer to the array of access pattern
 indices
 * Param [in]: pattern_size - The size of the neighorhood access
 pattern
 * Returns: The suppressed image
 */
static void non_maxima_suppression(double *devResult, double *devInput,
 int rows, int cols, int *access_pattern, int pattern_size) {
 dim3 dimGrid(ceil(cols/ (double)TILE_DIM),
 ceil(rows/ (double)TILE_DIM));
 dim3 dimBlock(TILE_DIM, TILE_DIM);

 cudaMemcpyToSymbol(deviceScanOrder, access_pattern,
 pattern_size * sizeof(int));
 non_maxima_suppression_pattern_kernel <<< dimGrid, dimBlock
 >>> (devInput, devResult, rows, cols, pattern_size);
 CUDA_SAFE(cudaDeviceSynchronize());
}

namespace harris_detection {
 namespace optimized {
 /* Function Name: detect_features
 * Author: Justin Loundagin

�116

 * Date: February 5th, 2015
 * Brief: HOST function to detect features utilizing the NVIDIA
 GPGPU
 * Param [out]: features - Key point spatial coordinates of
 detected features
 * Param [in]: image - The input image
 * Param [in]: rows - The number of rows in the input image
 * Param [in]: cols - The number of columns in the input image
 * Param [in]: k - Corner detector sensitivity
 * Param [in]: thresh - NMS threshold
 * Param [in]: window_dim: Corner detector window size
 */
 void detect_features(std::vector<cv::KeyPoint> &features,
 unsigned char *image, int rows, int cols, double k,
 double thresh, int window_dim) {
 double *deviceSmoothed = deviceResult[0];
 double *deviceDx = deviceResult[1];
 double *deviceDy = deviceResult[2];
 double *deviceDxDy = deviceResult[3];
 double *deviceDx2Integral = deviceResult[4];
 double *deviceDy2Integral = deviceResult[5];
 double *deviceDxDyIntegral = deviceResult[7];
 double *deviceCornerResponse = deviceResult[7];

 cudaMemcpy(deviceImage, image, rows * cols,
 cudaMemcpyHostToDevice);

 convolve_seperable<unsigned char>(deviceImage,
 deviceSmoothed,
 rows, cols, 1/16.0f, 2/16.0f, 1/16.0f, 1, 2, 1);
 CUDA_SAFE(cudaDeviceSynchronize());

 convolve_seperable<double>(deviceSmoothed, deviceDx,
 rows, cols, -1, 0, 1, 1, 2, 1);
 CUDA_SAFE(cudaDeviceSynchronize());

 convolve_seperable<double>(deviceSmoothed, deviceDy,
 rows, cols, 1, 2, 1, -1, 0, 1);
 CUDA_SAFE(cudaDeviceSynchronize());

 array_multiply(deviceDx, deviceDy, deviceDxDy, rows, cols);
 array_multiply(deviceDx, deviceDx, deviceDx, rows, cols);
 array_multiply(deviceDy, deviceDy, deviceDy, rows, cols);

 corner_detector(deviceDx, deviceDy, deviceDxDy,
 deviceCornerResponse, rows, cols, k,
 window_dim);
 double *deviceSuppressedCornerResponse = deviceResult[0];

 non_maxima_suppression(deviceSuppressedCornerResponse,
 deviceCornerResponse, rows, cols, spiral_scan_order_8, 8);

 double *hostSuppressedCornerResponse =
 to_host<double>(deviceSuppressedCornerResponse,
 rows, cols);

 for(int i=0; i < rows; i++) {

�117

 for(int j=0; j < cols; ++j) {
 if(hostSuppressedCornerResponse[i * cols + j]
 > 0.0) {
 features.push_back(cv::KeyPoint(j, i, 5, -1));
 }
 }
 }

 }

 /* Function Name: initialize_streams
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to create the CUDA streams used for
 convolution pipelining
 * Param [in]: count - The number of streams to create
 */
 void initialize_streams(int count) {
 deviceStreamCount = count;
 deviceStreams = new cudaStream_t[deviceStreamCount];
 for(int i=0; i<deviceStreamCount; ++i) {
 cudaStreamCreate(&deviceStreams[i]);
 }
 }

 /* Function Name: initialize_image
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to create the CUDA image memory pool.
 Also allocated the scan keys used for integral image
 calculation
 * Param [in]: rows - The number of rows in the image
 * Param [in]: cols - The number of columns in the image
 */
 void initialize_image(int rows, int cols) {
 deviceImage = alloc_device<unsigned char>(rows, cols);
 deviceResultTemp = alloc_device<double>(rows, cols, true);
 int *hscanKeys = new int[rows * cols];
 int *hscanKeysT = new int[rows * cols];

 for(int i=0; i < rows; ++i) {
 for(int j=0; j < cols; ++j) {
 hscanKeys[i * cols + j] = i;
 }
 }

 int trows = cols;
 int tcols = rows;

 for(int i=0; i < trows; ++i) {
 for(int j=0; j < tcols; ++j) {
 hscanKeysT[i * tcols + j] = i;
 }
 }

 scanKeys = to_device<int>(hscanKeys, rows, cols);
 scanKeysT = to_device<int>(hscanKeysT, rows, cols);

�118

 delete hscanKeys;
 delete hscanKeysT;

 for(int i=0; i<DEVICE_RESULT_COUNT; ++i)
 deviceResult[i] =
 alloc_device<double>(rows, cols, true);
 }

 /* Function Name: initialize_kernel
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to create the CUDA filter memory.
 * Param [in]: rows - The number of rows in the kernel
 * Param [in]: cols - The number of columns in the kernel
 */
 void initialize_kernel(int rows, int cols) {
 deviceKernel = alloc_device<double>(rows, cols);
 }
 /* Function Name: clean_up
 * Author: Justin Loundagin
 * Date: February 5th, 2015
 * Brief: HOST function to deallocate any device memory
 previously allocated
 */
 void clean_up() {
 if(deviceKernel) {
 cudaFree(deviceKernel);
 deviceKernel = NULL;
 }
 if(deviceImage) {
 cudaFree(deviceImage);
 deviceImage = NULL;
 }

 for(int i=0; i<DEVICE_RESULT_COUNT; ++i) {
 cudaFree(deviceResult[i]);
 }

 cudaFree(deviceResultTemp);
 cudaFree(scanKeys);
 cudaFree(scanKeysT);
 }
 }
}

�119

