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Abstract

Reduced-Order Reference Models for Adaptive Control of Space Structures

Alexander I. Scherling

In addition to serving as a brief overview of aspects relevant to reduced-

order modeling (in particular balanced-state and modal techniques) as applied

to structural finite element models, this work produced tools for visualizing the

relationship between the modes of a model and the states of its balanced repre-

sentation.

Specifically, percent error contour and mean percent error plots were devel-

oped that provide a designer with frequency response information absent from

a typical analysis of a balanced model via its Hankel singular values. The plots

were then used to analyze the controllability and observability aspects of finite

element models of an illustrative system from a modal perspective – this aided

in the identification of computational artifacts in the models and helped predict

points at which to halt the truncation of balanced states.

Balanced reduced-order reference models of the illustrative system were imple-

mented as part of a direct adaptive control algorithm to observe the effectiveness

of the models. It was learned that the truncation point selected by observing

the mean percent error plot produced the most satisfactory results overall – the

model closely approximated the dominant modes of the system and eliminated

the computational artifacts.

The problem of improving the performance of the system was also considered.

The truncated balanced model was recast in modal form so that its damping could

be increased, and the settling time decreased by about eighty percent.
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Chapter 1

Introduction

1.1 Background and Motivation

Cameras, telescopes, laser communications links and other vibration-sensitive

payloads pose a unique problem in the design of spacecraft. Disturbances due to

thermal expansions, spacecraft maneuvers, and other phenomena may interfere

with the devices operation. Additionally, due to the extreme expense of launch-

ing even the smallest amount of mass into orbit, space structures are designed to

minimize weight, and consequently vibrations can be easily excited by any me-

chanical motion that may take place during normal operation of the spacecraft

or its sensors.

Structural vibration is modeled by a partial differential equation, the wave

equation, with exact solutions known for certain special cases with simple ge-

ometries. Techniques for producing approximate solutions are used in most engi-

neering applications. One of the most popular classes of these are finite element

methods, which are advantageous since they can easily model bodies with com-
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plicated geometries. In a finite element model, the structure is discretized into

finitely many parts, or elements, that connect a discrete set of points referred to

as nodes. The interactions between nodes follow from the physical laws chosen to

govern the elements linking them. The global behavior of the model is found by

computing the physical interactions between the elements after the application

of the relevant boundary and initial conditions, as well as external forces.

The accuracy of a finite element model can be increased by using a finer dis-

cretization, and accurate finite element models of structures can contain many

thousands of dynamical states. These models can be wasteful however, in the

sense that they are often created in a form that requires the storage of much more

information than is necessary to capture the behavior of the physical systems they

represent. The large size of these models can also make them unattractive for

use in some engineering processes, such as controller design. Additionally the

possibility exists that the model may include some erroneous dynamical phenom-

ena that do not correspond to reality, in which case removing these dynamics

will increase the model’s accuracy. It follows that reducing a model to a smaller

one that still retains desired system dynamics can be useful in many engineering

applications.

1.2 Relevant Literature

This project builds off of the 2003 dissertation of Mehiel [16], who applied bal-

anced model reduction and Direct Model Reference Adaptive Control (DMRAC)

to the problem of controlling a deployable optical telescope. Mehiel developed

a controller design strategy, which included the production of a reduced-order

model of the telescope for use as the DMRAC reference model.
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A variety of methods exist for computing reduced-order approximations of

finite element models. In particular, since finite element models of structures

are second-order systems of linear ordinary differential equations, there are ap-

proaches that leave the model in second-order form, and those that convert it to

a first-order form. Since model-reduction methods that rely on first-order forms

usually do not guarantee preservation of an underlying second-order form, there

is interest in methods that do conserve second-order dynamics, as in [22]. It is

also important to note that some methods specifically for obtaining reduced-order

finite element models of structures are concerned with the response of a structure

to low-frequency and static loads, as opposed to vibrations, which will be more

of the focus of this work. A comparison of several methods, some of which are for

models for use in low-frequency and static responses can be found in [9]. Of the

approaches that work well with vibration dynamics, however, the class of modal

methods is particularly notable.

Finite element analysis is linked with modal analysis in a mathematical sense;

given a finite element model of a structure, one can compute coordinate transfor-

mations that place the structure in modal forms, allowing the designer to view the

structure’s dynamics as a superposition of all of its modes of vibration. This ap-

proach can also be reversed to build structural models from experimental modal

data, Iwaniec did in [8]. The modal form of a finite element model also allows

for a modal truncation method of model reduction.

In standard approaches to modal truncation, first a model is transformed to

a modal form, allowing a designer to choose which structural modes to eliminate

from the model. The remaining modes can be preserved with zero approximation

error individually. Some approaches to modal truncation differ, however, such

as approaches involving specialized eigenvalue algorithms that were the focus of
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Kürschner [10] and others. Specifically, the goal of the eigenvalue algorithm in

[10] is to compute a modal form that incorporates only the dominant modes

of a finite element model, leaving the rest of the modes truncated by virtue of

their non-inclusion. Standard modal approaches can be very effective when it is

known that the model itself is accurate. Certain modes occur at frequencies well

outside of the system’s domain of operating frequencies – these modes can be

safely removed from the model with minimal approximation error since they did

not contribute much to the relevant dynamics of the system. Modal data does not

immediately provide insight into the accuracy of a model, however, motivating

Iwaniec [8] and others to consider approaches such as balanced model reduction

methods.

Balanced model reduction can be traced to a paper by Moore [18], in which

principal component analysis was applied to find a generalized representation for

first-order systems that would be convenient for model-order reduction – the bal-

anced representation. In this form, the model’s controllability and observability

gramians are equal and diagonal, with the diagonal entries referred to as Hankel

singular values (or HSV’s). The system states are eigenvectors of the gramians,

allowing a ranking of the states with respect to their controllability/observability

based on the magnitudes of their corresponding HSV’s, and subsequent elimina-

tion of relatively uncontrollable/observable parts of the model.

Algorithms for obtaining a balanced representation from a first-order repre-

sentation of a system without directly computing its controllability and observ-

ability gramians were found by Laub et al. in [12] – work that presented great

gains towards making balanced model reduction approaches more feasible from

a computation standpoint. Since then, balanced model reduction has solidified

itself as a popular model reduction strategy due to its favorable results. Easy
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to compute error bounds for balanced and truncated models, such as those de-

scribed by Glover in [6] are also partly responsible for the popularity of this

method. These error bounds can guide the designer when they are deciding how

many balanced states to truncate if they know how much error they are willing to

accept in the reduced-order model. One standard approach to halting the trun-

cation of balanced states relies on the designer visually inspecting a log-scale plot

of the HSV’s. Other approaches have also been put forward, such an approach

suggested by Iwaniec in [8] that relies on the approximate rate of change of the

sequence formed by the differences of consecutive HSV’s.

Many variations of balanced model reduction techniques have been proposed,

in particular approximate balancing methods for systems in both first-order forms

as in [23] and second-order forms as in [17] and [7]. Approximate balancing is

often presented as an option to the designer for easing the computational bur-

den associated with ordinary balancing. Note that the balancing of systems in

second-order form is always approximate, however, in the sense that the tra-

ditional controllability and observability gramians are only defined for systems

in first-order form. Some investigation also appears to have been done towards

achieving a hybrid balanced/modal model reduction scheme similar to the ap-

proaches utilizing specialized eigenvalue algorithms, with the goal being to pro-

duce a computationally-efficient model reduction algorithm while drawing on the

benefits of both approaches to reduce approximation error, as in [2].

Another area of interest in balanced model reduction strategies are approaches

that modify the balanced truncation to account for expected input and output

frequencies, an approach first considered by Enns [3], with others following such

Lin and Chiu [14]. In a sense, these approaches are trying to bring to balanced

model reduction an important benefit of modal approaches – their ability to
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retain only the modes that will be most relevant across the range of operating

frequencies of the model. By applying input and output filters to the model,

inputs and outputs at some frequencies can be made more controllable/observable

than others to highlight the ranges of operating frequencies; the controllability

and observability gramians then take the effect of the filters into account, altering

balancing transformation accordingly. Some ongoing work on this approach has

been aimed at reducing the approximation error, with recent gains apparently

being made by some, such as Muda et al. in [19].

We will briefly comment that although in this work we will implicitly assume

that all models we encounter will be continuous-time systems, some methods and

techniques involving discrete-time systems are also interesting and relevant. For

example, as discussed by Wang and Safonov in [24], truncating states from a

discrete-time model in balanced form results in a reduced-order model that is no

longer balanced; considering this, they proposed a “one-step-at-a-time” method in

which the system is re-balanced after each state is truncated. This example serves

as a reminder for using caution when trying to make generalizations between

continuous-time and discrete-time systems.

1.3 This Work

This project will introduce, summarize and explore a few methods for and

aspects of reduced-order modeling, applied to finite element models of space

structures. Specifically, modal truncation and balanced truncation methods will

be focused on. Methods for computing modal forms of systems are discussed

along with their relevance in system modeling and model reduction. The gen-

eral theory of balanced model reduction is presented, including the properties of
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the controllability and observability gramians, and a derivation of the balancing

transformation.

A tool for use in balanced truncation model reduction is developed that aides

in visualizing the relationship between system states in a balanced realization and

structural modes, namely a contour plot of percent errors associated with each

mode as states are truncated from a balanced model. By its construction, the

plot inherently provides a designer with some information regarding the frequency

responses the various reduced-order models that can be produced using the usual

balanced truncation algorithm. This tool is also used to explore the controllability

and observability properties associated with various finite element models of an

illustrative system.

Additionally, the basic controller architecture and governing equations for the

DMRAC algorithm used by Mehiel in [16] are presented with a short discussion

of the relevance of adaptive control methods to the reduced-order finite element

models considered in this work. Utilizing the DMRAC algorithm, reduced-order

models of the illustrative system were applied to the problem of reducing the

settling time and vibration present in a plant subjected to a step input command,

with modal methods utilized to enact changes in the system performance.

7



Chapter 2

State Space Forms of Finite

Element Models

2.1 Finite Element Models

When viscous damping is assumed, a continuous-time finite element model can

be presented as a linear system of second-order ordinary differential equations:

M~̈q +D~̇q +K~q = F~u (2.1)

where M , D, K and F are the mass, damping, stiffness, and actuator matrices

respectively, ~q is the vector of node displacements, qi, and ~u is the command

vector of input signals to the actuators. Additionally, sensors can be placed on

the structure to measure linear combinations of node displacements and velocities,

producing an output signal, ~y :

M~̈q +D~̇q +K~q = F~u

~y = G~q +H~̇q

(2.2)
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where G and H are the measurement matrices for position and velocity respec-

tively. In structural finite element models without free-floating members or non-

conservative forces, the mass and stiffness matrices M and K are symmetric and

positive definite. M and K can be formed element-by-element by additively su-

perimposing elemental mass and stiffness matrices Mi and Ki for each ith element

incorporated into the model.

In the following example, we consider the mass and stiffness element matrices

for a beam element derived using Euler-Bernoulli beam theory. These elemental

matrices can be found in [11], and have the following forms:

Ki =
IiIi
l3i



12 6li −12 6li

6li 4l2i −6li 2l2i

−12 −6li 12 −6li

6li 2l2i −6li 4l2i



Mi =
mi

420



156 22li 54 −13li

22li 4l2i 13li −3l2i

54 13li 156 −22li

−13li −3l2i −22li 4l2i



(2.3)

where Ei and Ii are the Young’s modulus of the ith element’s material and second

moment of the area for the cross section respectively, and mi and li are the mass

and length of the element. The beam elements will be assembled linearly and

end-to-end, with consecutive elements sharing the same node at which they are

joined. We will take the convention that the ith beam element connects the ith

and (i + 1)th nodes of a beam model. The corresponding state vector for the

element matrices alternates linear and angular displacements so that the force-

displacement relationship is the following for a joined pair of stiffness elements:
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

fi

mi

fi+1

mi+1

fi+2

mi+2


=
IiIi
l3i



12 6li −12 6li 0 0

6li 4l2i −6li 2l2i 0 0

−12 −6li 24 0 −12 6li

6li 2l2i 0 8l2i −6li 2l2i

0 0 −12 −6li 12 −6li

0 0 6li 2l2i −6li 4l2i





xi

θi

xi+1

θi+1

xi+2

θi+2


(2.4)

where fi and mi are the forces and moments at the ith node, and xi and θi

are corresponding linear and angular displacements at that node, with the same

directionality conventions. The ith element and its nodal forces and moments is

depicted in figure 2.1.

Figure 2.1: Diagram of Euler-Bernoulli beam element. Forces and
moments are labeled at the endpoint nodes. The corresponding linear
and angular displacements take the same directionality convention as
the forces and moments.

The damping matrix D can be a further approximation that is added in

later. This is particularly true for lightly-damped structures, such as those in

spacecraft. One method for introducing damping into a finite element model

involves transforming the equations in (2.2), with the damping term excluded,
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to an equivalent system of equations – specifically, the usual second-order modal

form.

2.2 Second-Order Modal Form

We will present a technique for computing the standard modal form of an

undamped finite element model in second-order form. Given that the mass and

stiffness matrices are symmetric and positive definite, the pair (M , K) can be

simultaneously diagonalized by a bilinear coordinate transformation:

Mm = TMT>

Km = TKT>.

(2.5)

When the coordinate transformation matrix T is selected such that Mm is the

identity matrix, the representation is said to be modal. The diagonal entries of

Km are the squares of the natural frequencies ωj of the structure, so the structural

modes of the system in (2.2) are presented in a decoupled fashion – each mode is

represented as a single degree of freedom harmonic oscillator with sensors added:

ẍj + ω2
jxj = ~φ>j ~u

~yj = ~γjxj + ~ηjẋj

(2.6)

where the modal displacement xj describes the net displacement of the jth mode

with time, ~φ>j is the actuation input vector for the jth mode and ~γj and ~ηj are

the measument vectors for the modal position and velocity repsectively. Note

that the subscripts reference indices, but this is not meant to indicate they are

summed over. Together ~γj and ~ηj produce the output signal ~yj for this mode,

with the system output ~y formed from the sums of all ~yj (via a sum of two matrix

11



products) as depicted in the following n-mode system:
ẍ1
...

ẍn

+


ω2
1 . . . 0

...
. . .

...

0 . . . ω2
n



x1
...

xn

 =


~φ>1
...

~φ>n

 ~u

~y =

[
~γ1 . . . ~γn

]
x1
...

xn

+

[
~η1 . . . ~ηn

]
ẋ1
...

ẋn

 .
(2.7)

The system in (2.2) is converted to this modal form by the coordinate trans-

formation matrix T (which is sometimes called the modal matrix) as follows:

TMT>~̈q + TKT>~q = TF~u(t)

~y = GT>~q +HT>~̇q.

(2.8)

Many variations on the computation of such a coordinate transformation matrix,

T exist, but we will use an approach that requires only the ordinary eigenvalue

decomposition of a symmetric matrix. This method can be found in [4] and

begins with computing the following eigendecomposition:

M−1/2KM−1/2 = V ΩV >. (2.9)

In (2.9) we multiplied K on both sides by M−1/2 (the symmetric square root

of M−1) for ease of presentation, but in practice one could use two halves of a

Cholesky factorization of M−1 instead. Each column of the orthogonal matrix

V in (2.9) is an eigenvector of the (symmetric) matrix quantity formed on the

left-hand side, and Ω is a diagonal matrix of corresponding eigenvalues. The

coordinate transformation matrix T can take the form:

T = V >M−1/2 (2.10)
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with the mass and stiffness matrices transforming as follows:

TMT> = V >(M−1/2MM−1/2)V = V >IV = I

TKT> = V >(M−1/2KM−1/2)V = V >(V ΩV >)V = Ω.

(2.11)

Note that the eigenvalues on the diagonal of Ω are the squares of the natural

frequencies of the structure.

After the mass and stiffness matrices have been transformed, damping can

be easily introduced into the model. Specifically, the harmonic oscillator corre-

sponding to the jth structural mode can be given a damping coefficient, 2ζjωj,

so that its damping is proportional to the modal velocity, ẋj:

ẍj + 2ζjωjẋj + ω2
jxj = ~φ>j ~u

~yj = ~γjxj + ~ηjẋj

(2.12)

where ζj is the damping ratio of the mode. Damping ratios less than one corre-

spond to underdamped modes, i.e. modes of vibration. Due to the lack of fluid

damping in space and the light weight of space structures, we will be primarily

concerned with underdamped systems.

When damping is introduced into a model as in (2.12), we are implicitly

assuming that the form of the system’s damping matrix D is such that it will be

simultaneously diagonalized along with the mass and stiffness matrices in (2.11).

As noted by Garvey et al. in [5] there is considerable disagreement about what to

call the type of damping that adheres to this constraint on the damping matrix.

Common names for this damping model are sometimes conflated with the more

restrictive Rayleigh damping condition. In this work we will refer to damping

that satisfies this constraint as modal damping.
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2.3 Conversion to First-Order Form

In control engineering, first-order state space is the standard form in which

problems are cast:

~̇x = A~x+B~u

~y = C~x+D~u

(2.13)

where ~u and ~y are the input and output respectively, ~x is the system state, A is the

state transition matrix, and B and C are the actuator and sensor matrices. The

feedforward matrix D (which is not a damping matrix) is included in equation

(2.13) for completeness but will not be utilized in this work.

Given the second-order matrix ordinary differential equation (2.2) we can

convert it to a first-order form by first dividing through by the mass matrix and

then combining the node displacements and velocities into a block-form state

vector as in the following block matrix equation:

~̇x =

 ~̇q

~̈q

 =

 0 I

−M−1K −M−1D


 ~q

~̇q

+

 0

M−1F

 ~u
~y =

[
G H

] ~q

~̇q


(2.14)

where the square matrices 0 and I are zero and identity matrices respectively

that conform to the dimensions of this block matrix. Similarly, the harmonic

oscillator in equation (2.12) can be cast in a first-order form: ẋj

ẍj

 =

 0 1

−ω2
j −2ζjωj


 xj

ẋj

+

 ~0>

~φ>j

 ~u
~y =

[
~γj ~ηj

] xj

ẋj


(2.15)
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where the ~0> in the rightmost block matrix of the above is a zero column vector

of conformable size. Utilizing (2.15), a system in a second-order modal form can

be rewritten as a first-order state space form in which the state-transition matrix

A is block-diagonal, with each entry a two-by-two matrix. Furthermore, these

blocks can be arranged so that the jth structural mode of the system corresponds

to the jth two-by-two block on the diagonal.

2.4 First-Order Equivalent Representations

As we have already seen through the example of the second-order modal form

of a model, state space representations of linear systems are not unique. Two

equivalent systems will have identical output values for a given input value and

initial conditions – the only difference is in the coordinates used for viewing the

internal system state. Note that two first-order system forms are equivalent if

they are related to each other by an invertible linear coordinate transformation.

Any equivalent representation of a given state space model as in (2.13) can be

reached by transforming the original model as follows:

~̇xT = (TAT−1)~xT + (TB)~u

~y = (CT−1)~xT +D~u

(2.16)

where T is any invertible coordinate transformation matrix and ~xT is the system

state in the coordinate system induced by T . For example, as described earlier we

know that the first-order form in (2.14) has an equivalent representation that is

block-diagonal, with each block of taking the form of the state transition matrix

in (2.15). It then follows that some coordinate transformation matrix T relates

these two forms via (2.16). Although we know such a transformation matrix

exists, computing it is another matter – even when a matrix is found that correctly
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converts the state transition matrix A to the desired block-diagonal form, there is

no guarantee that the actuator and sensor matrices B and C will be transformed

appropriately as well.

2.5 Modalization of Models in First-Order Form

The eigenvalue decomposition applied to a model in first-order form is an-

other example of both an equivalent system and a modalization procedure. Each

mode of vibration in a second-order system gives rise to a pair of complex-valued

eigenvalues of the same system in first-order form, with the system state be-

coming complex-valued as well. We will begin our discussion of modal forms

for first-order systems by re-examining (2.15) and noting that the eigenvalues

corresponding to the jth mode are the roots of the characteristic polynomial:

λj
2 + 2ζjωjλj + ω2

jλj = 0 (2.17)

where 2ζjωj is the negative of the trace of the matrix, and ω2
j is its determinant.

The complex eigenvalues are solved for using the quadric formula to be:

λj,1 = −ζjωj + îωj
√

1− ζ2

λj,2 = −ζjωj − îωj
√

1− ζ2
(2.18)

where î is the imaginary unit. The eigenvalues of the state transition matrix

in (2.14) will be the union of the eigenvalues of the individual modes, where the

eigenvalues of the jth mode have the form shown in (2.18). Note that the natural

frequency ωj is the absolute value of either λj since:

|λj| =
√

(−ζjωj)2 + (ωj
√

1− ζ2)2 = ωj

√
ζ2j + (1− ζ2j ) = ωj. (2.19)

It is tempting to think that one can alter the damping ratio and natural fre-

quency of the jth mode via the eigenvalue decomposition, using (2.18) and (2.19).
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For example, after computing the eigenvalue decomposition, the desired eigen-

values could be substituted for the old ones, and the system back-transformed to

the original real-valued coordinate system. Note, however, that doing so is not

equivalent to adding modal damping via the second-order modal decomposition,

and unrealistic system dynamics can result. Continuing, we will derive a process

for obtaining the usual second-order form with modal damping as in (2.12) for

any single-input system (A, B, C) in which all complex eigenvalues of A come in

unique conjugate pairs. The general method is a variation on the ideas presented

by Patil in [20]. We will start by showing how to obtain a real-valued modal form

for any such system.

First we will note that any two-by-two real-valued matrix J that takes the

following form:

J =

 α −β

β α

 (2.20)

will have eigenvalues:

κ1,2 = α± îβ (2.21)

with corresponding eigenvectors:

~u1,2 =

 1

∓î

 . (2.22)

We can now calculate a coordinate transformation mapping a real matrix A with

conjugate pairs of complex eignvalues to a real-valued form that is block-diagonal,

with each block of the form (2.20). If we are given an eigendecomposition of A,

then for each pair of complex conjugate eigenvalues we can scale the corresponding

eigenvectors to ensure they also come in conjugate pairs. After doing so we can use

(2.22) to calculate a real-valued transformation mapping A to a block-diagonal

real matrix with each block of the form of J in (2.20). Observe that the matrix
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U of the eigenvectors ~u1,2 of J and its inverse U−1 are:

U =

 1 1

−î î


U−1 =

 1 î

1 −î

 1

2
.

(2.23)

Examining U−1, we see that multiplying any matrix W , formed from two column

vectors that are each other’s complex conjugates by U−1, is equivalent to forming

a new matrix from the real and imaginary parts of one column of W. For example,

let ~p and ~q be real-valued vectors so that the first column of W is the vector

quantity (~p− î~q), and then multiply W by U−1 as follows:

WU−1 =

[
~p− î~q ~p+ î~q

] 1 î

1 −î

 1

2

=

[
~p+ ~p ~q + ~q

]
1

2
=

[
~p ~q

]
.

(2.24)

If we let W̃ be a matrix whose columns are eigenvectors of a real state-transition

matrix A, ordered so that conjugate pairs of eigenvectors are adjacent, and let

Ũ−1 be a matrix that is block-diagonal, with a two-by-two block identical to

U−1 at each location corresponding to a pair of complex-conjugate eigenvectors,

then a real-valued coordinate transformation matrix TR mapping the system to

a modal form is:

TR = (W̃ Ũ−1)−1. (2.25)

Using (2.24) the matrix quantity (W̃ Ũ−1) can be created filling in its columns a

pair at a time for each pair of complex eigenvectors, with the first column being

the real part and the second column the imaginary part of an eigenvector of one

of the complex eigenvalues in each conjugate pair. This can be done for all the
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eigenvalues whose imaginary part is positive, for example. Doing so also allows

us to drop the requirement of finding an entire eigendecomposition.

Given a single-input system that has been transformed to a real-valued modal

form, with the block-diagonal consisting entirely of two-by-two blocks as in (2.20),

we can take the process one step further and compute a modal form equivalent

to the usual second-order one. First observe that an eigenvector ~v of the two-by-

two matrix in (2.15) can be written in terms of its corresponding eigenvalue λ as

follows:

~v =

 1

λ

 (2.26)

so that a matrix V of such eigenvectors (as would be computed in an eigende-

composition) could be:

V =

 1 1

λ1 λ2

 . (2.27)

Using (2.27) we will compute a coordinate transformation that takes a single-

input system with two-by-two state transition matrix of the form in (2.20) to

the form of a harmonic oscillator, as in (2.15). The obvious extension of this

is our desired method for conversion of a block-diagonal system whose block

diagonal consists entirely of two-by-two blocks as in (2.20) to a modal form that

is equivalent to the usual second-order one, one block at a time.

Let (A,B,C) be a single-input system where A takes the exact form of the

two-by-two matrix J in (2.20) and has κ1,2 as its eigenvalues as in (2.21). Let the

matrix V in (2.27) be defined so that:

λ1,2 = κ1,2 = α± îβ. (2.28)

Applying (2.24) with V substituted for W , we get that the matrix quantity

(V U−1) is real-valued, with its first column being the real part of the second
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column of (2.27) and the second column its imaginary part, so that:

V U−1 =

 1 0

Real(λ2) Imag(λ2)

 =

 1 0

α −β

 . (2.29)

In order for the transformation given by (V U−1) to convert our system (A,B,C)

to the form in (2.15), it would have to be the case that:

(V U−1)B =

 0

φ

 (2.30)

or equivalently:  1 0

α −β


 b1

b2

 =

 b1

αb1 − βb2

 =

 0

φ

 (2.31)

where φ is the actuator input term as in (2.15) and is real-valued as opposed to

vector-valued since we assumed a single-input system, and bi are the components

of B, which in this case is a column vector for the same reason. Note that

(2.30) is easily resolved if both bi are zero, since this implies φ is zero and the

system is uncontrollable. Similarly the problem can be solved via a simple scaling

if b1 is zero. We will assume that at least one bi is non-zero and seek a new

transformation to sidestep the constraints posed by (2.31).

Fortunately, since all matrices of the form in (2.20) will have the same eigen-

vectors, namely (2.22), any two such matrices will commute. This implies that A

is invariant under any coordinate change by such a matrix, so we can extend the

transformation in (2.30) to include such a coordinate transformation by a matrix

R as follows:

(V U−1)RB =

 0

φ

 . (2.32)
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Equivalently:

R

 b1

b2

 = (V U−1)−1

 0

φ

 =
1

β

 β 0

α −1


 0

φ

 =
1

β

 0

−φ

 (2.33)

so that R takes the form:

R =

 −b2 b1

−b1 −b2

 φ

β(b21 + b22)
. (2.34)

It follows that the entire coordinate transformation T represented by the matrix

quantity (V U−1R) is:

T = (V U−1)R =

 1 0

α −β


 −b2 b1

−b1 −b2

 φ

β(b21 + b22)

=

 −b2 b1

βb1 − αb2 αb1 + βb2

 φ

β(b21 + b22)
.

(2.35)

Note that if the first-order system (A,B,C) with A identical to J in (2.20)

is instead assumed to be multi-input, but is known to be constrained such that

it has an equivalent second-order form with modal damping, we can compute T

in (2.35) using any non-zero column of B to obtain the bi. In this case T will

transform the system to a second-order equivalent form because the constraint

eliminated the extra degrees of freedom. There are some instances, however,

when we may want to obtain an approximation for a second-order equivalent

form of (A,B,C) with modal damping when none exists. For example, we may

have applied a model reduction technique to the first-order form of a second-

order system, and in the process rendered it no longer second-order equivalent.

The desire to avoid this situation is one reason why there is interest in model

reduction techniques that preserve second-order forms, as in [22].
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To assess the “damage” done to a formerly second-order system with modal

damping, we can compute an approximate version of T in which the matrix R is

defined to minimize the ratio of the 2-norms of the two rows of the transformed

actuator matrix, (TB). A pair of R matrices, R1,2, one of which will maximize

the ratio of the norms, with the other minimizing it were found to be:

R1,2 =

 cos θ1,2 − sin θ1,2

sin θ1,2 cos θ1,2


θ1 =

1

2
arg (~b>1 − î~b>2 )(~b1 − î~b2)

θ2 = θ1 +
π

2

(2.36)

where the ~b>i are the two rows of B.

If the desired form of the transformed sensor matrix (CT−1) is similarly known

to measure only velocity states (or if it measures only position states, swap the

two columns of C before continuing) we can alter (2.36) to give the option of

accounting for this, by forming a matrix B′ that is substituted for B when com-

puting R1,2:

B′ =

[
µB νC>

]
(2.37)

where µ and ν are weighting parameters.

In closing, we will note that although the formulas presented here relied on the

modes of interest having pairs of complex conjugate eigenvalues, pairs of stable

real eigenvalues can also be converted to modal blocks, but with ambiguity present

when more than one pair of real eigenvalues can be formed. When a system has a

single real eigenvalue, however, we must either leave it be as we partially modalize

the system, or alternatively perform modal truncation model reduction on this

single state to eliminate it from the model.
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Chapter 3

Model Reduction

3.1 Modal Truncation

Modal truncation is a model reduction technique that has the advantage of

being easily understood and implemented. First a system is transformed to a

modal form. This could be a real-valued modal representation of a system in

first-order form, the usual second-order modal form of a finite element model with

modal damping, or even a complex-valued modal form, amongst other options.

After transforming the system, the designer chooses which modes to truncate

from the model. The rows and columns of the system matrices whose dynamical

states correspond to these modes are then truncated from the model. Consider

the example below in which the following two-mode system in second-order modal
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form has its second mode truncated: ẍ1

ẍ2

+

 2ζ1ω1 0

0 2ζ2ω2


 ẋ1

ẋ2

+

 ω2
1 0

0 ω2
2


 x1

x2

 =

 ~φ>1

~φ>2

 ~u
~y =

[
~γ1 ~γ2

] x1

x2

+

[
~η1 ~η2

] ẋ1

ẋ2


(3.1)

resulting in a single harmonic oscillator corresponding to the first mode:

ẍ1 + 2ζ1ω1ẋ1 + ω2
1x1 = ~φ>1 ~u

~y = ~γ1x1 + ~η1ẋ1.

(3.2)

Perhaps somewhat intuitively, usually the modes with the highest natural

frequencies are truncated first. This makes sense because modal damping for a

mode is proportional to its natural frequency. The contribution of highly-damped

modes to the overall system dynamics is usually minimal due to their high decay

rates. The designer may also consider truncating modes from a model that have

resonances occurring at frequencies far outside of the range of operating frequen-

cies of the plant. Additionally, the frequency-response information of a model

may be considered to help either a designer or an automated model reduction

algorithm distinguish between high-gain and low-gain modes, with the goal of

preserving the dominant system dynamics. Specialized algorithms for computing

the eigenvalues of dominant modes, as in [10] are an interesting example.

3.2 Controllability and Observability Gramians

One drawback of “blind” modal truncation methods (i.e. approaches that do

not incorporate frequency-response information into the model reduction process)

is that they do not account for the effects of the sensors and actuators represented
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by the B and C matrices of a first-order representation. For example, there

may be some modes that are very difficult to excite due to the configuration of

the actuators, or others that make a negligible contribution to the output signal

based on the placement of the sensors. Such modes would be referred to as nearly

uncontrollable/observable respectively. Information regarding the controllability

and observability of a system’s states is conveniently encapsulated by a pair of

matrices known as the controllability and observability gramians. These matrices

are defined for any first-order representation of a stable linear system, and are

symmetric and positive-semidefinite. Specifically, for a given time interval from

zero to τ and system state ~x, the controllability and observability gramians answer

the following questions respectively: 1) how much signal energy is required at the

control input ~u to drive the system state from the coordinate origin to ~x, over

the time interval from zero to τ ; 2) how much signal energy passes through the

output ~y, over the time interval from zero to τ , given an initial state of ~x and

no control input? As in [12], we will define the controllability and observability

gramians for a system (A, B, C) over a time interval from zero to τ as follows:

Lc =

∫ τ

0

eAtBB>eA
>tdt (3.3)

Lo =

∫ τ

0

eA
>tC>CeAtdt. (3.4)

According to [13] the input and output signal energies are:

E~u = ~x>L−1c ~x (3.5)

E~y = ~x>Lo~x. (3.6)
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Note that when Lc is not full-rank, the system is not controllable, and the gramian

is not invertible. If we view attempts to compute the inverse of Lc from an

eigenvalue-eigenvector perspective, we see that any eigenvalues of the gramian

that are zero will have corresponding eigenvectors that represent subspaces of

states that are unreachable – that is, it would require an infinite amount of input

signal energy to force the system into such a state. Similarly, when Lo is not

full-rank, the system is not observable, and there exist subspaces of states (which

are formed from the eigenvectors of Lo that correspond to null eigenvalues) whose

signal energies will not contribute to the output signal energy .

To solve for the minimum required input signal energy to reach a state ~x

and maximum possible output signal energy obtainable from ~x we carry out the

computation of the gramians in the limit as τ goes to infinity. This results in the

pair of infinite gramians Wc and Wo:

Wc = lim
τ→∞

∫ τ

0

eAtBB>eA
>tdt (3.7)

Wo = lim
τ→∞

∫ τ

0

eA
>tC>CeAtdt. (3.8)

As noted in [12], the infinite gramians can also be computed by solving the

Lyapunov matrix equation:

PX +XP> +Q = 0 (3.9)

as shown in (3.10) and (3.11):

AWc +WcA
> +BB> = 0 (3.10)

A>Wo +WoA+ C>C = 0. (3.11)
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Note that we can also use the Lyapunov matrix equation to show how the

infinite gramians transform when the state space representation is written in a

different coordinate system as in equation (2.16). Using (2.16) the Lyapunov

matrix equations for the transformed gramians, W ′
o and W ′

c, are:

TAT−1W ′
c +W ′

cT
−>A>T> + TBB>T> = 0 (3.12)

T−>A>T>W ′
o +W ′

oTAT
−1 + T−>C>CT−1 = 0. (3.13)

To solve for W ′
c and W ′

o we rederive (3.12) and (3.13), starting from the Lyapunov

equations in the previous coordinate system, (3.10) and (3.11), for which we have

the solutions Wc and Wo respectively:

0 = T (0)T> = T (AWc +WcA
> +BB>)T>

= TAWcT
> + TWcA

>T> + TBB>T>

= TA(T−1T )WcT
> + TWc(T

>T−>)A>T> + TBB>T>

= TAT−1(TWcT
>) + (TWcT

>)T−>A>T> + TBB>T>

(3.14)

0 = T−>(0)T−1 = T−>(A>Wo +WoA+ C>C)T−1

= T−>A>WoT
−1 + T−>WoAT

−1 + T−>C>CT−1

= T−>A>(T>T−>)WoT
−1 + T−>Wo(T

−1T )AT−1 + T−>C>CT−1

= T−>A>T>(T−>WoT
−1) + (T−>WoT

−1)TAT−1 + T−>C>CT−1

(3.15)

and notice that:

W ′
c = TWcT

> (3.16)

W ′
o = T−>WoT

−1. (3.17)
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3.3 Balanced Truncation

When a state space representation of a linear system has controllability and

observability gramians that are equal and diagonal, with the diagonal terms or-

dered from greatest to least, the representation is said to be balanced. Because

the gramians are diagonal, the choice of coordinates in a balanced representation

is such that the system’s states are eigenvectors of the gramians. The diagonal

entries, σi,i, of the balanced gramians are positive, and are called Hankel singular

values (HSV’s). The Hankel singular values carry with them a useful interpre-

tation – small HSV’s correspond to states that are relatively uncontrollable and

unobservable, that is, they correspond to system states that require large signal

input energy to excite, and which return very little of this energy to the output

signal. It thus makes sense to truncate such states from a model, since they

contribute very little to the system dynamics. As described by Mehiel in [16], a

common procedure for determining how many states to truncate involves plotting

the HSV’s on a log scale and looking for a “knee in the curve” that separates

larger magnitude HSV’s from smaller ones. Examining figure 3.1 for example,

we see that about eight states would be kept in the model, corresponding to the

eight HSV’s above the “knee.”

To compute a balancing transformation using the infinite gramians, we seek

a coordinate transformation matrix T satisfying:

TWcT
> = T−>WoT

−1 (3.18)

with the additional constraint that the transformed gramians are diagonal. If

we are given a system (A, B, C) and its gramians Wc and Wo that are known

to be positive-definite – i.e. the system is stable, controllable and observable,

then finding a balancing transformation from the gramians is not too difficult.
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Figure 3.1: Log-scale plot of Hankel singular values for an 8-mode
model. The Hankel Singular Values of the balanced gramians are plot-
ted on log scale to find a “knee in the curve,” below which the states
with small HSV’s are truncated.

Gramian-free methods such as the one presented in [12] are recommended in

practice, however – the following derivation is for illustrative purposes only.

The main idea of the computation involves finding the singular value decom-

position of a matrix quantity formed as the product of two matrices. Let P and

Q be two matrices, and let U and V be matrices whose column vectors are the

left and right singular vectors of the matrix quantity (PQ) so that the singular

value decomposition of (PQ) is:

(PQ) = UΣV >. (3.19)

Then each of the possible products of (PQ) with its transpose are diagonalizable

by U or V and the diagonal matrices are equal to the square of the diagonal
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matrix of singular values, Σ2:

U>(PQ)(PQ)>U = U>(UΣV >)(V ΣU>)U = Σ2

V >(PQ)>(PQ)V = V >(V ΣU>)(UΣV >)V = Σ2.

(3.20)

If we suppose P and Q are symmetric, then we obtain:

U>PQ2PU = Σ2

V >QP 2QV = Σ2.

(3.21)

Observing this, we let P and Q be the symmetric square roots of the infinite

observability and controllability gramians, so that (3.21) becomes:

U>W 1/2
o WcW

1/2
o U = Σ2

V >W 1/2
c WoW

1/2
c V = Σ2.

(3.22)

Notice that (3.22) can be interpreted as a method for transforming the grami-

ans Wc and Wo to be equal and diagonal by two separate bilinear coordinate

transformations since:

U>W 1/2
o = (W 1/2

o U)>

(W 1/2
c V )> = V >W 1/2

c .

(3.23)

The only remaining issue to resolve is that the coordinate transformation matrices

for the bilinear coordinate transformations in (3.22) need to be inverses of each

other, as in equation (3.18). Fortunately, this problem has a resolution – it relies

on the fact that the singular value decomposition can be used to compute the

matrix inverse. If we apply this technique for computing a matrix inverse to the

singular value decomposition of the matrix quantity in equation (3.19) with P

and Q being the symmetric square roots of Wo and Wc respectively, we get:

(W 1/2
o W 1/2

c )−1 = V Σ−1U>. (3.24)
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Notice then that:

I = (I)(I) = (W 1/2
c W−1/2

c )(W−1/2
o W 1/2

o ) = W 1/2
c (W 1/2

o W 1/2
c )−1W 1/2

o

= W 1/2
c (V Σ−1U>)W 1/2

o = (W 1/2
c V Σ−1/2)(Σ−1/2U>W 1/2

o )

(3.25)

where I is an appropriately-sized identity matrix. Notice that the two matrix

quantities in the last equality in (3.25) can be obtained by appropriately multi-

plying the transformation matrices of the bilinear coordinate transformations in

(3.22) by the square root of the multiplicative inverse of the Σ matrix. It follows

that the transformation matrix (and its inverse) that place a given first-order

state space representation into balanced coordinates can be computed as:

T = Σ−1/2U>W 1/2
o

T−1 = W 1/2
c V Σ−1/2

(3.26)

so the gramians are transformed as:

TWcT
> = Σ−1/2U>W 1/2

o WcW
1/2
o UΣ−1/2 = Σ−1/2Σ2Σ−1/2 = Σ

T−>WoT
−1 = Σ−1/2V >W 1/2

c WoW
1/2
c V Σ−1/2 = Σ−1/2Σ2Σ−1/2 = Σ.

(3.27)

As (3.27) shows, the Hankel singular values are actually the singular values of

the matrix quantity (W
1/2
o W

1/2
c ).

The Hankel singular values can be used in simple calculations of error bounds

for approximate models generated via balanced model reduction methods. As an

example, we will consider an error bound proved by Glover in [6] for balanced

truncation model reduction. Let σi,i denote the ith Hankel singular value of an

n-state system (A, B, C), and let (Ã, B̃, C̃) be a reduced-order model obtained

by truncating the last k HSV’s (with k less than n). Specifically, Glover’s error

bound is a bound on the infinity norm of the difference of the transfer function

matrices corresponding to the full-order and reduced-order models. Let H(s) and

H̃(s) be the transfer function matrices of the system and a stable reduced-order
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model obtained by truncating balanced states corresponding to the last k HSV’s

of the gramians. As noted by Mehiel [16], these transfer function matrices can

be computed as follows:

H(s) = C(sI − A)−1B

H̃(s) = C̃(sI − Ã)−1B̃.

(3.28)

The error bound is then defined as:

‖H(s)− H̃(s)‖∞ ≤ 2
n∑

i=n−k+1

σi,i. (3.29)

One key quality of reduced order models computed via modal truncation, as

opposed to a balanced reduction, is that the modes the designer chooses to retain

in the modal approach are preserved completely – there is no approximation error

with respect to these modes individually. It is this property that guarantees the

preservation of system stability in a reduced-order modal model. We have not

discussed the stability of truncated balanced models, but fortunately there is a

proof by Pernebo and Silverman [21] that guarantees the stability of such a model,

based on one condition: if two or more Hankel singular values of the full-order

system are equal, then either all or none of the balanced states corresponding to

these HSVs must be truncated when forming the reduced-order model. The next

section focuses on addressing the issues posed by the degradation of the system

modes in balanced truncation.

3.4 Modes in the Balanced Truncation

If we follow the standard balanced truncation algorithm, we don’t have control

over which modes we keep in the model – the algorithm eliminates states with

the smallest corresponding Hankel singular values first, and we do not know a
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priori the relationships between the balanced states and the structural modes.

Moreover, truncating the rows and columns corresponding to a single balanced

state from the model introduces approximation error into all modes that are

linked to that state – the approximate model will have altered eigenvalues and

resonant frequencies, and every mode in the model can potentially be impacted.

One approach to establishing the relationship between the states of the bal-

anced representation and the structural modes of the system is to back-project

the image of the truncated balanced model into the modal coordinates of the

full-order model, and then compute an approximation error with respect to each

mode individually. Let Am be the state-transition matrix of a first-order state

space with n states, in modal form, so that it is block diagonal with entries as in

equation (2.12), with the jth two-by-two block corresponding to the jth struc-

tural mode of the system. Let T be the coordinate transformation matrix that

converts this state space to an equivalent balanced representation with state tran-

sition matrix Ab. We will view T and T−1 as block matrices of row and column

vectors respectively as follows:

T =


~u>1
...

~u>n


T−1 =

[
~v1 . . . ~vn

]
.

(3.30)

where ~u>i is the ith row of T and ~vi is the ith column of T−1. Let Ãb be the

balanced reduced-order model’s state-transition matrix, obtained by removing

the states corresponding to the k smallest HSV’s from Ab. Let Ãm be the image

(in modal coordinates) of Ãb. Ãm is obtained by first truncating the last k rows
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of T and the last k columns of T−1 to obtain T̃ and T̃+ respectively:

T̃ =


~u>1
...

~u>n−k


T̃+ =

[
~v1 . . . ~vn−k

] (3.31)

and then computing the projection:

Ãm = T̃+ÃbT̃ . (3.32)

Continuing, we will define the total approximation error associated with Ãm

to be the Frobenius norm of the difference of Am and Ãm, so that the total percent

error, Ptot, is:

Ptot =
‖Am − Ãm‖F
‖Am‖F

× 100% (3.33)

where ‖ ‖F is the Frobenius norm. We will then define the error with respect

to the jth mode of Am as the Frobenius norm of the difference between the jth

two-by-two block on the diagonal of Am and the corresponding two-by-two block

of Ãm. Note that by this definition, the total approximation error cannot be

obtained by summing the approximation errors of the modes individually, since

Ãm is not guaranteed to be block-diagonal; the sum of the individual errors can

be less than the total error since there is a potential for non-zero entries to occur

in the off-block-diagonal rows and columns. However, the error due to these off-

block-diagonal terms is shared amongst multiple modes, and we decide to omit

it – doing so also reduces the computational burden of the approach.

We can compute the two-by-two block, Ãmj
of Ãm, corresponding to the two-

by-two block Amj
of the jth mode on the diagonal of Am by viewing T̃+ and T̃
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as block matrices of row and column vectors respectively:

T̃+ =


~p>1
...

~p>n


T̃ =

[
~q1 . . . ~qn

] (3.34)

where ~p>i is the ith row of T̃+ and ~pi is the ith column of T̃ . Ãmj
is computed by

a projection using only the (2j)th and (2j− 1)th rows and columns of T̃+ and T̃

respectively, as follows:

Ãmj
=

 ~p>2j−1

~p>2j

 Ãb [ ~q2j−1 ~q2j

]
. (3.35)

The percent error associated with the jth mode is then:

Pj =
‖Amj

− Ãmj
‖F

‖Amj
‖F

× 100%. (3.36)

When the percent error associated with the jth mode (after k states have

been truncated from the model) is computed over all possible j and k, we can

obtain a table of percent error data with k columns and j rows. Although this

data is discrete, for visualization purposes it can be plotted as a contour map

in MATLAB [15] with the contour() function, as in figure 3.2 which uses the

eight-mode model whose HSV’s are displayed in figure 3.1.

The percent error contour plot is a key finding in this work – it provides a way

of visualizing the relationship between the states of a balanced representation

and the modes of a system. It is also structured so that it serves as both a

frequency-response type plot (by virtue of associating each mode with its natural

frequency) and as a predictive plot of which modes should be well-represented in

a reduced-order model obtained by via balanced truncation. In the next chapter
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Figure 3.2: Percent error contour plot for an 8-mode model. Contours
for the 1, 2, 3, and 5 percent error levels are plotted for each of the 8
modes as the number of balanced states truncated from the model is
varied.

the percent error contour plot will be employed in the investigation of finite

element models of an illustrative system, in conjunction with a parametric study.

Balanced truncation will be applied to generate reduced-order reference models

for use in an adaptive control law, and the performance of the closed-loop system

observed.
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Chapter 4

Parametric Studies of Illustrative

Systems

4.1 Control Law

The adaptive control law used for demonstrating the dynamic performance of

reduced-order reference models in this work was Direct Model Reference Adap-

tive Control (DMRAC). Since the aim of this work is to focus on model reduction

techniques rather than control algorithms, the fundamental derivations regarding

the convergence and stability of the DMRAC method will be omitted, but can

be found in Mehiel’s dissertation [16]. As its name indicates, DMRAC belongs

to a class of adaptive control laws known as direct control methods (as opposed

to indirect control). DMRAC uses a set of adaptive gains to modify the behavior

of the plant so that it tracks a predetermined mathematical model called the

reference model. For example, the plant could be an optical telescope, and the

reference model a reduced-order finite element model representative of its struc-
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ture. Note that indirect control methods differ from direct control methods in

that indirect control instead focuses on system identification – an indirect control

law seeks to continually refine and improve a model in the loop so that it comes

to closely approximate the plant.

When a physical system’s dynamics are either not fully known, or not well-

represented by available mathematical models, adaptive control laws can be quite

useful – they can accommodate a high degree of modeling error between the plant

and an approximate model, unlike other approaches such as state-feedback. This

makes DMRAC in particular very useful for our purposes, since we can use it

to test a variety of reference models. A reference model that is a close fit to

the plant will minimize the amount of controller effort that DMRAC must put

forth, however, since less gain will be required to force the plant to conform to

the model’s behavior. This aspect of DMRAC serves as motivation to obtain

accurate models of the plant.

When there is a desire to change the plant’s dynamics (such as in the usual

control design case – to reach certain performance objectives), a reference model

with dynamics that differ from that of the plant can be utilized. To minimize

the controller effort in such a case, it again makes sense to start with an accurate

model of the plant. The model can then be precisely altered to change only

the dynamics of the plant that need tuning, while still conforming to the plant’s

dynamics as closely as possible. From this perspective, an accurate reduced-order

model of the plant can be desirable since its dynamics are ideally boiled down

to those fundamental to the plant. In principle such a model is easy to tune,

and allows a designer to efficiently modify the plant’s behavior while keeping the

amount of controller effort required low.

The DMRAC algorithm is applied to a system in a first-order state space
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form, with an optional disturbance term added:

~̇xp = Ap~xp +Bp~up + Γ~ud

~y = Cp~xp

(4.1)

where Γ is the input matrix for the disturbance vector ~ud, each entry of which is

a (bounded) disturbance function. DMRAC uses a reference model in first-order

state space form, so subscripts have been introduced to distinguish between the

matrices and dynamical states of the plant and reference model when necessary.

The reference model has the following form:

~̇xm = Am~xm +Bm~u

~ym = Cm~xm.

(4.2)

Note that the plant (4.1) produces the system output ~y, while the reference model

(4.2) accepts the control input ~u.

A central quantity of the DMRAC algorithm is the output error, ~ey, which is

defined as the difference of the outputs of the plant and reference model:

~ey = ~y − ~ym. (4.3)

DMRAC utilizes four adaptive gains: the error, input, state, and disturbance

gains. In Mehiel’s notation these are: Ge, S22, S21, and Hd respectively. The

control law for DMRAC is given in [16] as:

~up = Ge~ey + S21~xm + S22~um +Hd~ud. (4.4)

The gains evolve over time according to the following adaptive gain laws:

Ṡ12 = −~ey~x>mH1

Ṡ22 = −~ey~u>H2

Ġe = −~ey~e>yH3

Ḣd = −~ey~u>dH4

(4.5)
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where H1, H2, H3 and H4 are referred to as the adaptive parameters, and are pos-

itive definite matrices of the appropriate sizes (or alternatively, non-negative real

constants). The structure of the DMRAC algorithm is depicted in figure 4.1 as a

control diagram, reproduced from Mehiel’s disseration [16]. In our work, we will

Figure 4.1: Control diagram for DMRAC.

eliminate the use of the adaptive state gain because it depends on the coordinate

system of the reference model – that is, two equivalent reference models will pro-

duce different dynamics in the DMRAC algorithm. This would be unacceptable

in comparing the performance of reference models since some performance gains

and losses could be due solely to the choice of coordinates. We will also not make

use of the adaptive disturbance gain, since this adapts to reject disturbances fed

into the plant without considering the choice of reference model. In the existing

DMRAC structure this can be accomplished by setting the H1 and H4 adaptive
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parameters to zero.

One additional nuance of the DMRAC algorithm is that proofs of stability

and convergence as in [16] require that the plant satisfy a certain condition –

namely that it be strictly positive real (SPR). Note that while the SPR condition

is required in some proofs of convergence and stability, it is not a statement that

DMRAC will absolutely not work if the plant is not SPR. Following Mehiel, we

will define a system (A, B, C) to be SPR if it is controllable (i.e. its controllability

gramian is full-rank) and there exist square matrices P and Q so that it satisfies

the Kalman-Yacubovic conditions:

A>P + PA = −Q>Q− L

PB = C>
(4.6)

where P is symmetric and positive definite, and L is positive definite.

4.2 Modeling an Illustrative System

Many, if not most, vibration control problems in space structures are in some

way related to optical devices due to the extreme motion-sensitivity of such sys-

tems. Examples include the deployable optical telescope that Mehiel [16] was

concerned with controlling, and the optical communications link design presented

by Adolph et al. [1] amongst many others. We will consider the problem of con-

trolling an optical mirror segment. To simplify the analysis of this illustrative

system, we will assume the mirror can be modeled as a cantilever beam of constant

rectangular cross section. The mirror segment will be made out of beryllium, and

be one hundred millimeters long, ten millimeters wide, and one millimeter thick.

The mirror segment will be both sensed and actuated by a linear electric motor,

modeled as providing a point force applied to the center of the tip of the can-
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tilever. It is assumed that the velocity of the cantilever tip can be measured by

the back electromotive force (back-emf) of the motor. A sketch of the model is

presented in figure 4.2. The damping ratio was assumed to be 0.09 for all modes.

Figure 4.2: Diagram of a beryllium mirror segment.

The boundary conditions (which are due to the built-in end) were enforced by

truncating the rows and columns corresponding to that endpoint node.

4.3 Investigation of Illustrative System

In beginning our investigation of the finite element models of the cantilevered

mirror segment structure, we will first consider how a contour map of the per-

cent error with respect to its various modes (as in figure 3.2) changes as the

discretization of the model is made coarser or finer. Finite element models of

the mirror segment were constructed using five, ten, fifteen, and twenty Euler-

Bernoulli beam elements respectively. Contour maps for these four finite element

models of the structure are displayed in the figure 4.3. In these contour maps,

42



the one, two, three, and five percent error contour levels have been plotted. For

comparison, their log-scale plots of Hankel singular values are displayed in figure

4.4.

Figure 4.3: Percent error contour plots of beam models. Counterclock-
wise from the top right: the percent error contour plots of the 5, 10,
15, and 20 element models of the mirror segment.

Some interesting patterns are revealed in the percent error contour figures.

Firstly, notice that (particularly in the fifteen and twenty element cases) a kink

occurs after which the slope of the percent error contour becomes relatively shal-

low for the highest-order modes. Apparently the modes can be separated into a

group of low-order modes that are persistent as states are truncated, and another
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Figure 4.4: Log-scale HSV lots of beam models. Counterclockwise
from the top right: log-scale plots of HSV’s for the 5, 10, 15, and 20
element models of the mirror segment.

group of high-order modes that vanish quickly from the model. This seems to

suggest that the low-order modes are among the most physically meaningful ones

that the model captured, with the rest potentially being computational artifacts.

The great degree of interrelation between the high-order modes with respect to

the states of the balanced coordinate system suggests that they all have similarly

low measures of controllability and observability.

Also present in the percent error contours is a quirk that shows up in all

of the models; the highest-order is very highly ranked in terms of its control-
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lability/observability. This is not a peculiarity of the contour map method or

the balancing algorithm, but of the finite element model itself – the same phe-

nomenon is very pronounced in the Bode plots (figure 4.5) of the four systems,

produced by MATLAB’s [15] bode() function. A closer inspection of the Bode

Figure 4.5: Bode plots of beam models. Counterclockwise from the
top right: the Bode plots of the 5, 10, 15, and 20 element beam models.
Units are in dB, degrees, and radians per 10−4 seconds.

plots of the systems shows that they appear to represent the behavior one might

expect from a cantilever beam, until the frequency exceeds a certain limit in

each case. Adding more elements to the model is seen to increase this limit, ex-

tending the range of frequencies with realistic behavior. This coincides with our
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physical intuition, since adding more elements allows the beam model to deflect

into higher-frequency mode-shapes. In the ten-element model realistic behavior

is lost at frequencies higher than about 3.2 × 105 radians per second (3.2 × 101

on the Bode plot scale), whereas in the twenty-element model the limit is nearly

an order of magnitude higher at 1.4× 106 radians per second. Observing this, it

appears that a preliminary modal truncation of the highest-frequency modes of a

model can sometimes be beneficial from a modeling standpoint. Such modes are

unlikely to be physically meaningful, and when one or more of them also have

unrealistically high gain they can introduce error to the model and complicate the

process of computing a reduced-order balanced model. Other model reduction

approaches that account for sensors and actuators may be similarly affected.

Further inspection of Bode plots (with the models altered to incorporate a

near-zero damping ratio to sharpen peaks due to resonance) reveals that a dis-

cernible gap in resonant frequency exists between exactly the first half of the

modes and the second half in all four models. Figure 4.6 shows the Bode plot for

the 20-element model, with damping ratio reduced to 1× 10−12 for the purposes

of visualizing its resonant frequencies. The phenomenon exemplified in figure 4.6

suggests that our finite element model construction method consistently produces

dynamical behavior corresponding to what we would expect from a physical can-

tilever beam in exactly the first half of its modes of vibration, with the rest of

the modes being computational artifacts. Reviewing figure 4.3, notice that as

the number of elements in the model is increased, the plots come to reflect this

phenomenon more closely – a vertical line separating the first half of the modes

from the second half would intersect the plotted percent error contours very near

the point at which the slope of the contours flattens in the fifteen and twenty

element cases.
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Figure 4.6: Bode plot with gap. The arrow indicates a gap in frequency
between the first and last 20 modes of the model.

Examining the log-scale plots of the HSV’s in figure 4.4, we see that a similar

flattening occurs somewhat after the halfway point along the HSV index, sug-

gesting that this may be a good place to truncate the model (under the HSV

plot method). This reaffirms that that the model’s states can be partitioned into

high-gain and low-gain classes of roughly equal size. Unlike the Bode diagrams

and percent error contour plots, however, frequency data is missing from the HSV

plot approach. As such, the HSV’s corresponding to the balanced states of the

erroneous high-order mode are indistinguishable from other high-gain balanced

states.

Continuing forward, we will select the fifteen-element model as our system for

further study. Enough elements were included in this model for the percent error
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contour plot to be clearly defined relative to the other cases. Considering the plot

it appears that truncating thirty-six states is a good option – below this point the

slope of the percent error contour is quite steep, indicating that these states can

be truncated without greatly effecting the modal characteristics of the model.

The truncation point is shown by the black line in figure 4.7. Note however,

that this truncation point still includes effects due to the high-gain high-order

modes, in particular, the highest-order mode. We are also not completely sure at

this point whether truncating even further would be an acceptable proposition.

Motivated by our desire to eliminate the high-order mode, we will also take a

slightly different approach.

Figure 4.7: Percent error contour plot with truncation line. The trun-
cation point for the 15-element model was chosen using the geometry
of the percent error contour plot, as indicated by the black horizontal
line.

The contour plot is not the only way to make use of the percent error data –
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another plot can be constructed to help identify instances where the truncation

of balanced states in the usual order results in the loss of structural modes in

an order different than one would expect from their mode numbers (with high-

order modes being truncated first). Since we know a state-transition matrix with

(2n+ 1) states can have at most n conjugate pairs of eigenvalues, it follows that

if we can truncate k states to a point where the mean percent error of the first

b(n−k)/2c modes is small, we will have successfully eliminated the contributions

of the high-gain high-order modes from the model. Conversely, if as we truncate

balanced states the mean percent error associated with the first b(n−k)/2cmodes

grows, then we are either imparting large amounts of error to multiple modes

through the truncation of only a couple states, or we are effectively truncating

modes in an order that does not respect their mode numbers. A plot of the mean

percent error levels is shown in figure 4.8.

Like the percent error contour plot, the mean percent error plot also gives us

an idea of how well the modes are represented in the balanced truncated model.

In the plot we notice that as we truncate though the last few modes, the mean

percent error steadily decreases until it reaches its smallest value when it becomes

the error with respect to the fundamental mode alone. We are effectively seeing

that as we truncate through the lowest-order modes, the balanced truncation

is behaving more and more like a modal truncation, as one might expect – the

lowest order modes clearly dominate the dynamics of this system.

Observing figure 4.8, we conclude that truncating the first fifty states of the

model is a reasonable proposition – it is at this point that the mean percent

error first becomes less than any of its previous values. We have also eliminated

the contributions of the high-gain, high-order modes from the model, but at the

cost of additional modeling error due to the truncation of more states. In the
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Figure 4.8: Plot of mean percent error versus states truncated. The
plot depicts the mean percent error for the first b(n−k)/2c modes after
k states have been truncated from the 15-element model.

next section we will investigate the dynamic behavior of a (DMRAC) controlled

system using both the twenty-four state and ten-state balanced truncated models

as reference models.

4.4 Parametric Study

If the mirror segment in the illustrative system is commanded to deflect to a

new position, the force input excites structural modes and causes vibration. In

this study we will implement DMRAC on the illustrative system and then modify

the reference model to change the dynamic response, with the goal of attenuating

vibration and decreasing the settling time. The plant in the DMRAC algorithm
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was chosen to be the fifteen-element model of the cantilevered mirror segment,

with the last fifteen modes truncated via modal truncation – these modes are

almost undoubtedly computational artifacts and would not correspond to the

dynamics of a physical system, which the plant would be in practice.

The full-order finite element model and the twenty-four state and ten-state

balanced truncated models were used as reference models to observe the resulting

performance. To achieve a faster settling time, a second ten-state model was

produced with altered modal damping. This was accomplished by transforming

the model to the usual modal form via the method discussed in chapter 2. The

first and second modes of this model then had their damping ratios increased to

0.5 from their original values.

The governing equations for DMRAC, (4.1) through (4.5), were implemented

in a MATLAB script and were numerically integrated using the default settings

on MATLAB’s ode45() function. To ease the numerical integration process, the

system units were carefully scaled. The mass, length and time units used in the

computation were 10−6 kilograms, 10−2 meters, and 10−4 seconds respectively.

A ten Newton step input was used as the input command, and the adaptive

parameters for the adaptive error and adaptive input gains were both set to a

value of one hundred.

The simulations computed the system response over a duration of 0.05 seconds

in each case, with the ode45() function instructed to return the integration values

at 216 evenly spaced time steps for plotting purposes. In particular, the number of

points was chosen to be a power of two for the generation of amplitude spectrum

plots. Plots of the output signals of the controlled system and its reference model

are presented in figure 4.9 for each of the four cases, and figure 4.10 displays the

corresponding output errors.
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Figure 4.9: Output signals of controlled systems, with 15-mode plant.
Counterclockwise from the top right: output signals of the controlled
system and its reference model, using full-order, 24-state, and 10-state
reference models.

As we can see in figure 4.9, the artificially-damped reference model produced

the most noticeable effect on the controlled system – the increase in damping con-

siderably reduced the vibration and maximum velocity attained. The differences

between the other three cases are too small to be visually distinctive.

Regarding the plots of the output errors in figure 4.10, not much can be gained

from a glance, except that the settling time for the fourth case with increased

damping is slightly longer than the others. This follows our expectations, since

the heavily-damped model presents a significant departure from the dynamics of

the plant that DMRAC must accommodate for. Regardless, the settling times for

the output error are visibly much smaller than the settling times for the system
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output – DMRAC successfully conforms the behavior of the plant to match that

of the reference models long before the model’s vibrations settle.

Figure 4.10: Output error signals of controlled systems, with 15-mode
plant. Counterclockwise from the top right: output error signals of the
controlled system and its reference model, using full-order, 24-state,
and 10-state reference models.

Table 4.1 summarizes some of the dynamic behavior of the systems, and

includes the five percent settling times, maximum and minimum values, and final

values of the four cases. Note that since the system output is a velocity signal

and the initial plant velocity is zero, the settling time is the time it takes for the

system to return to within five percent of zero velocity.

One effect immediately noticeable in table 4.1 is what appears to be an in-

crease in steady-state error as more states are truncated from the balanced ref-

erence model. Because the output signal is supposed to be the velocity of the
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Signal States 5 % Settling Time Min. Value Max. Value Final Value
~y 60 2.64E-02 -1.14E+01 1.62E+01 7.05E-03

24 2.67E-02 -1.12E+01 1.62E+01 1.63E-01
10 2.92E-02 -1.18E+01 1.60E+01 -3.35E-01
10 5.51E-03 -1.93E+00 9.29E+00 -3.42E-01

~ym 60 2.65E-02 -1.14E+01 1.59E+01 6.95E-03
24 2.67E-02 -1.12E+01 1.60E+01 1.64E-01
10 2.93E-02 -1.18E+01 1.58E+01 -3.38E-01
10 5.56E-03 -1.89E+00 9.22E+00 -3.45E-01

~y − ~ym 60 1.97E-03 -1.79E+00 6.98E-01 9.44E-05
24 1.98E-03 -1.79E+00 7.04E-01 -1.01E-03
10 1.66E-03 -1.86E+00 7.04E-01 2.46E-03
10 2.57E-03 -1.81E+00 8.26E-01 2.44E-03

Table 4.1: Performance data for controlled systems, with 15-mode
plant. Units are in seconds and meters per second.

tip of a cantilever under a constant load, the signal should converge to zero as

an equilibrium is reached; instead a small constant signal is observed in the out-

put. When we consider, however, that balanced truncation does not preserve the

second-order form of a finite element model, this constant signal makes sense – it

is actually part of a position-related signal being fed back through the truncated

sensor matrix. When the ten-state system was converted to modal form so that

modal damping could be added, this effect was clearly seen in the transformed

sensor matrix.

Table 4.1 also reflects the small settling times for the output error in com-

parison with that of the system output. Interestingly, the settling time for the

unaltered ten-state model’s output error is the fastest of all four models, at about

1.7 milliseconds, suggesting that this model has captured the fundamental dy-

namics of the plant quite well. We also see that adding damping to the model

increased the setting time for the output error by about fifty percent, but in the

process the settling time for the system output was decreased by about eighty
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percent.

The amplitude spectrums of the output signals of the system and its reference

model were computed using MATLAB’s discrete Fourier transform, fft(), to show

how the choice of reference model affected the frequency response of the closed-

loop system. The data obtained from fft() is displayed on a log-scale plot in figure

4.11.

Figure 4.11: Amplitude spectrums of system outputs, with 15-mode
plant. Counterclockwise from the top right: amplitude spectrums of
the output signals of controlled systems using full-order, 24-state, and
10-state reference models.

Amplitude spikes in the highest frequencies of the reference model output

signal are visible in the first and second cases. This is undoubtedly due to the

inclusion of some erroneous high-order modes in these models, in particular the

high-gain highest-degree mode of the system, as identified in the analysis of chap-
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ter 3. As predicted by the percent error contour plots, the ten-state models did

not include any of these high frequency modes, as can clearly be seen in their

amplitude spectra. It is interesting to note that the high-frequency behavior of

the reference model was not correspondingly observed in the system output. Ap-

parently the DMRAC algorithm could not force the plant to oscillate at such

high frequencies.

Figure 4.12: Amplitude spectrums of system outputs, with 30-mode
plant. Counterclockwise from the top right: amplitude spectrums of
the output signals of controlled systems using full-order, 24-state, and
10-state reference models.

The amplitude spectrum also illustrates the effects of the increased modal

damping in the frequency response of the controlled system – the response of the

system at its first two resonant frequencies is attenuated as expected, with the

resonances due to other modes being relatively unaffected.

56



The case in which the full-order finite element model was chosen to be the

plant was also considered. The resulting plots of system outputs and output

errors did not vary appreciably from the cases employing the truncation of the

last half of the full-order system’s modes, except in the case of the amplitude

spectrum plots. In figure 4.12 we see that amplitude spikes at high frequencies in

the system output due to the erroneous high-order modes are now visible. The

inclusion of the high-order modes in the plant model was apparently necessary

before we could observe their dynamics in the system output, as can be seen in

the contrast between figures 4.10 and 4.12. In the first case displayed in figure

4.12, high frequency noise due to the coupling between the plant and reference

model (which were identical) is evident.

Signal States 5 % Settling Time Min. Value Max. Value Final Value
~y 60 2.64E-02 -1.14E+01 1.62E+01 7.10E-03

24 2.67E-02 -1.12E+01 1.62E+01 1.63E-01
10 2.92E-02 -1.18E+01 1.60E+01 -3.35E-01
10 5.51E-03 -1.93E+00 9.29E+00 -3.42E-01

~ym 60 2.65E-02 -1.14E+01 1.59E+01 7.05E-03
24 2.67E-02 -1.12E+01 1.60E+01 1.64E-01
10 2.93E-02 -1.18E+01 1.58E+01 -3.38E-01
10 5.56E-03 -1.89E+00 9.22E+00 -3.45E-01

~y − ~ym 60 1.97E-03 -1.79E+00 6.98E-01 5.46E-05
24 1.98E-03 -1.79E+00 7.03E-01 -1.01E-03
10 1.67E-03 -1.86E+00 7.03E-01 2.45E-03
10 2.57E-03 -1.81E+00 8.26E-01 2.50E-03

Table 4.2: Performance data for controlled systems, with 30-mode
plant. Units are in seconds and meters per second.

As summarized in table 4.2, the performance of the system was quite com-

parable to the earlier case in which a more realistic plant was used. The data

sets in tables 4.1 and 4.2 are nearly identical, suggesting that the presence of the

erroneous high-order modes in the plant turned out to have had a near-negligible
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effect on the system performance as a whole, likely due to the transient nature

of the dynamics.

Reviewing the results of the simulations, overall it seems that the mean per-

cent error plot best predicted the appropriate place to truncate the model –

unlike the percent error contour and HSV plots, it’s output is a single quantity

with a simple interpretation, as opposed to a diagram possibly subject to multiple

interpretations.
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Chapter 5

Conclusion

This work produced some useful tools for visualizing how the modes of a

model in first-order form can be related to its balanced states – the percent

error contour and mean percent error plots. In the percent error contour plot,

we also found a way to provide a designer with frequency response information

that is usually absent from balanced model reduction approaches. The structure

of the percent error contour plots developed in chapter 3 is such that frequency

information is displayed simultaneously for the various reduced-order models that

can be produced using the usual balanced truncation algorithm. When frequency

information is important to the problem at hand, this can give a designer more

information about where to truncate the model than simply analyzing the Hankel

singular values would provide.

The mean percent error plot furthered our knowledge of how the balanced

states were related to the modes, and allowed us to select a truncation point

that eliminated computational artifacts from the model while capturing the fun-

damental dynamics of the system well. It should be noted that although in our

case, simply ensuring the first few modes remained well-represented in the model
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was sufficient, other problems may feature more complicated objectives, such as

representing a different subset of the modes. Similar ideas can be used in such

problems, such as computing the mean percent error over a fixed subset of modes,

possibly using a weighted mean.

In addition to demonstrating the effectiveness of various reference models,

the simulations using DMRAC provided an opportunity to improve the system

performance. After the reduced-order balanced model was converted to modal

form using the methods of chapter 2, and its modal damping increased, vibration

in the system was reduced and the settling time reduced by about eighty percent.

5.1 Future Work

Although the focus of this work was on balanced reduced-order modeling,

some limitations and drawbacks of balanced model reduction were noted in addi-

tion to its obvious computational demands. For example, a balanced truncated

model is not guaranteed to retain its underlying second-order structure. Conse-

quently the position and velocity states internal to the model can become blurred,

as was observed in the output dynamics of the reduced-order models. When the

balanced reduced-order model was modalized, this change manifested itself as

position-measurement terms in a sensor matrix that previously sensed only ve-

locity.

No model reduction method is without such drawbacks, but these in partic-

ular make balanced model reduction rather unappealing for use on second-order

systems. Future work to either remedy some of these problems, or work that

focuses on improving modal methods would be quite beneficial to the modeling

and control problems considered in this work.
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