
 

 

THE USE OF SPHINGOMYELIN TO PROTECT AGAINST UV INDUCED DNA 

DAMAGE IN HUMAN KERATINOCYTES 

 

 

 

 

A Thesis 

presented to 

the Faculty of California Polytechnic State University, 

San Luis Obispo 

 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Biomedical Engineering 

 

by 

Kevin Campbell 

June 2015 



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2015 

Kevin Campbell 

ALL RIGHTS RESERVED 

 



 

iii 

 

COMMITTEE MEMBERSHIP 

 

 

 

TITLE: The use of Sphingomyelin to protect against UV 

induced DNA damage in Human Keratinocytes 

 

 

 

AUTHOR:     Kevin Campbell 

 

 

 

DATE SUBMITTED:   June 2015 

 

 

 
 
 
 
 

COMMITTEE CHAIR:   Lily Hsu Laiho, Ph.D. 

Associate Professor of Biomedical Engineering 

 
 

COMMITTEE MEMBER:   Rafael Jimenez-Flores, Ph.D. 

Professor of Dairy Science 
 

 

COMMITTEE MEMBER:   David Clague, Ph.D. 

Associate Professor of Biomedical Engineering 

 

 

 

 

 

 

 

 

 
 



 

iv 

 

ABSTRACT 

The use of Sphingomyelin to protect against UV induced DNA damage in Human 

Keratinocytes  

Kevin Campbell 

 

Non melanoma skin cancer (NMSC) is a serious condition caused by chronic 

ultraviolet (UV) exposure that leads to DNA damage in skin. UV radiation has the 

potential to lead to DNA damage, which triggers biochemical pathways within a cell. The 

result is that the cell either undergoes cell cycle arrest, giving the cell time to repair DNA 

damage, or apoptosis. Sunscreen is the most commonly used treatment for preventing UV 

induced skin damage, but it involves a number of undesirable and toxic side effects 

including damaging the dermis, premature aging of skin and underweight child births. 

This has led to interest in finding safer alternatives to prevent UV damage without the 

negative side effects of sunscreen. In particular, bovine milk sphingomyelin (SM) is a 

compound that has the potential to protect against UV damage without any of the 

dangerous side effects of sunscreen. Here we present the use of SM for UV protection of 

human keratinocytes (KRTs) to prevent DNA mutations that result from UV exposure. In 

particular, analysis of the expression of DNA damage biomarkers p21 and p53 was done 

to determine the potential of SM to prevent DNA damage associated with UV exposure. 

Both non-SM treated KRTs and KRTs treated with 0.1% SM media 24 hours prior to UV 

radiation were fixed and IF-stained at 24 hours following 40 mJ/cm
2
 of UV exposure. 

Significant differences in both p21 and p53 were observed between the SM treated and 

non-SM treated cells at the UV dosage level (via t-test; p<0.05). These findings suggest 
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that 0.1% bovine SM treatment may impart photoprotective properties to KRTs and thus 

prevent UV associated DNA damage, which could potentially support further research 

into SM as a treatment to safely prevent the onset of non melanoma skin cancer.   
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Chapter 1: Introduction  

Non melanoma skin cancer (NMSC) is the most prevalent form of cancer and is 

typically caused by ultraviolet (UV) radiation. In the United States alone, NMSC 

constitutes the largest percentage of new cancer cases with nearly 3.5 million new 

patients annually [1, 2]. UV exposure leads to the formation of radical oxygen species, 

which are known to cause DNA damage, and the formation of thymine and pyrimidine 

dimers (See Figure 1.1) [3,4]. Following UV induced DNA damage, the cell will activate 

the DNA damage repair pathway [2]. Additional DNA damage increases the probability 

that DNA repair errors will occur resulting in mutations, potentially leading to the 

formation of NMSC [5]. 

 

Figure 1.1 UV Induced DNA damage. UV radiation causes thymine and 

pyrimidine dimer formation which leads to DNA damage repair [3]. 

 

The two most common forms of skin cancer are basal and squamous cell 

carcinoma. Basal cell carcinoma constitutes nearly 80% of all NMSC cases and nearly 

two and a quarter million new diagnoses of basal skin cancer are expected in the US 

within the next year [6]. Squamous cell carcinoma is the next most common form of 

NMSC, afflicting nearly 20% of all skin cancer patients and this form is much more 

likely to metastasize than basal cell carcinoma [6]. The number of basal and squamous 
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cell carcinoma cases are also increasing, with 350% more diagnosed patients observed 

annually between 1994 and 2006 [7]. The large increase in patients diagnosed with basal 

or squamous cancer now drives new research on how to safely prevent skin cancer. 

One of the most common treatments available to prevent skin cancer formation is 

sunscreen. However, limitations of sunscreen include a number of toxic and undesirable 

side effects. Sunscreen includes heavy metal ions like zinc oxide and titanium 

nanoparticles that cause oxidative damage and can kill healthy cells [3,8]. Furthermore, 

pregnant women using sunscreens with oxybenzone are at risk of giving birth to 

underweight children [4]. These undesirable side effects have sparked interest at looking 

at alternatives to sunscreen. Previous work has shown that sphingomyelin (SM), a bovine 

milk phospholipid, has the potential to protect against UV damage without any of the 

toxic side effects associated with sunscreen [5]. Low concentrations of SM could 

potentially protect against UV damage by binding and dissolving lipid rafts in the plasma 

membrane thereby preventing the formation of radical oxygen species during UV 

exposure, which are carcinogenic and known to cause DNA damage [2, 6]. The negative 

side effects associated with current treatments available to prevent skin cancer and the 

potential of SM has prompted interest in determining if SM can protect skin from UV 

damage. 

Therefore, in this study we examine human keratinocytes (KRT) to determine if 

SM can prevent UV induced DNA damage. Specifically, the cyclin-dependent kinase 

inhibitor p21 and the tumor suppressor gene p53 has been shown to be up-regulated in 

response to DNA damage [7]. Nuclear expression of p53 occurs nearly immediately 

following UV induced DNA damage and increased expression of p53 has been linked to 
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G2-phase arrest preventing the proliferation of potentially cancerous cells [9,10,11].  The 

nuclear expression of the cyclin kinase inhibitor p21 has also been shown to be increased 

in the presence of DNA damage and also leads to cell cycle arrest in cells expressing 

DNA damage, making the p53 and p21 proteins an ideal DNA damage biomarker to 

assess SM’s effectiveness [12,13]. It is hypothesized SM treated KRTs will reduce DNA 

damage following UV exposure, which will lead to a decrease in the expression of p21 

and p53 compared to KRTs without SM in the presence of UV. This study could 

potentially support further research into SM as a treatment to safely prevent the onset of 

NMSC.  Here we studied p21 and p53 expression in KRTs exposed to UV radiation to 

determine the capacity of SM to protect against UV induced DNA damage and potential 

to prevent skin cancer. It is hypothesized that SM treated KRTs will reduce the 

expression of both p21 and p53 compared to KRTs without SM in the presence of UV, 

which could potentially support further research into SM as a treatment to safely prevent 

the onset of NMSC.   
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Chapter 2: Background: 

2.1 Structure and Function of the Epidermis 

 The integument, or skin, is the largest organ in the body, constituting about 7% of 

the total body weight and approaching 2 m
2
 of surface area in a typical adult [14]. Skin is 

composed from a stratified cellular epidermis surface layer, a dermis layer and a layer of 

subcutaneous fat separating striated muscle [14]. These layers provide a mechanical 

barrier against the outside world, preventing materials from entering or leaving the body. 

Skin also is responsible for realizing endogenous antibiotics to protect against microbials, 

production of melanin to prevent UV associated DNA damage, production of vitamin D 

along with other metabolic products and thermoregulation to control heat loss [14]. Each 

layer of skin has a unique composition and is responsible for specific functions to 

maintain homeostasis. 

 The outermost layer of skin is the epidermis layer and consists of keratinocytes 

which provide hydrodynamic regulation, innate immune response and melanin 

production [14]. The epidermis layer consists of multiple layers, including stratum 

corneum, granular layer, spinous layer, basal layer and a basement membrane (See Figure 

2.1) [14]. The stratum corneum and granular layers are comprised of differentiated 

keratinocytes, which form a more flatten like structure due to the cytoskeleton being 

created from keratin intermediate filaments [14]. These differentiated keratinocytes 

within the stratum corneum are called corneocytes and have lost their nuclei and 

cytoplasmic organelles [14]. Corneocytes form a highly insoluble envelope within their 

plasma membranes by cross-linking soluble protein precursors and incorporation several 

lipids released from undifferentiated keratinocytes within lower layers of the epidermis 
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[14]. This hydrophobic region of the stratum corneum helps control water loss or 

absorption through the skin [14]. The epidermis also consists of melanocytes and 

Langerhans’ cells, which are responsible for producing melanin and antibiotics 

respectively [14]. Melanin plays an important role in preventing UV associated DNA 

damage and Langerhans’ cells are antigen presenting cells which have a role in skin’s 

adaptive immune response [14]. The dermis layer is below the epidermis and is 

connected via the basement membrane. 

 

Figure 2.1 Structure of the human epidermis [14]. 

The dermis layer provides structural support for the skin and provides motor control, 

thermoregulation and additional hydration control [14]. The dermis is approximately 0.5 

mm to 5 mm thick and is primarily composed of collagen and elastic tissue [14]. 
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Approximately 80-85% of the weight of the dermis is attributed to collagen [14]. These 

collagen fibrils are extremely durable and provide skin with its tensile strength [14]. 

Elastic fibers account for about 2-4% of the extracellular matrix within the dermis and is 

responsible for the elasticity and resilience of skin [14]. Fibronectins, fibulins and 

integrins are responsible for cell adhesion and motility. The motor innervation is 

controlled automatically within the dermis and allows for control of the sweet glands and 

smooth muscles [14]. Blood vessels and the eccrine sweat glands occupy the dermis, 

which allows for thermoregulation through perspiration and vasodilation/constriction 

[14]. The region between both the collagen and elastic tissue is occupied by 

glycosaminoglycan and proteoglycan macromolecules, which are very hydrophilic and 

provide high regions of water affinity. This helps maintain water within the dermis, 

providing additional hydrodynamic regulation. 

Subcutaneous fat is beneath the dermis and provides support as well energy reserves 

and hormone regulation [14]. Nearly 80% of the total body fat is found in subcutaneous 

tissue in non-obese individuals. This subcutaneous fat provides support against trauma 

related injuries and provides a significant deposit of calorie reserve. In addition to 

preventing injury and energy storage, the subcutaneous fat beneath the dermis also has an 

endocrine function including the release of leptin, which regulates hunger and energy 

metabolism [14].  
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2.2 Non Melanoma Skin Cancer (NMSC)  

2.2.1 Types and Diagnoses 

 NMSC is a serious condition and includes cutaneous lymphomas, Merkel-cell 

carcinoma and adnexal tumors, though basal-cell carcinomas (BCC) and squamous-cell 

carcinomas (SCC) are the primary forms of NMSC [15]. NMSC is the most prevalent 

skin cancer and there are over two million new cases of NMSC each year in the United 

States alone. BCC is the most common form of NMSC, constituting about 70-80% of 

new NMSC cases [15]. SCC cases are less prevalent than BCC, constituting nearly 20-

30% of total NMSC cases, though SCC is much more likely to metastasize than BCC 

[15]. The number of NMSC have been steadily increasing since 1960 worldwide, with an 

average 3-8% increase in incidents per year [15].  

 BCC usually appear as small and translucent discolorations on the skin of patients 

[15]. The head and neck are the most common regions of BCC formation, constituting 

nearly 80% of all BCC cases. Clinical diagnosis is typically straightforward for the head 

and neck region and involves a skin biopsy. Formation of superficial BCC on the trunk of 

patients is rarer, but has been shown be both increasing and harder to diagnosis due to 

difficulty defining boarders of the carcinoma and distinguishing BCC from other possible 

disease [15]. The more common types of BCC include rodent ulcers, nodular, superficial, 

morphoeic and pigmented carcinoma (See Figure 2.2) [15].  
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  Figure 2.2 Clinical cases of BCC. (A) Rodent Ulcer. (B) Nodular. (C) 

Superficial. (D) Morphoeic. (E) Pigmented [15]. 

 SCC are more likely to be malignant and can have precursor legions including 

actinic keratoses and Bowen’s disease [15]. Actinic keratosis are legions that can indicate 

high UV exposure and an increased risk of being diagnosed with SCC (See Figure 2.3) 

[15]. Although the formation of invasive SCC from single actinic keratoses is 

approximately 1-10% over the course of 10 years, the risk of forming SCC increases with 

more actinic keratosis [15]. Lesions from Bowen’s disease usually are present in regions 

of sun exposed areas and are slowly enlarging crusted plaques (See Figure 2.3) [15]. 

These legions are typically hard to define and have a 3-5% chance of progressing to SCC 

[15]. Histopathological examination is the most common method of diagnosing NMSC, 

but non-invasive screening  including dermoscopy, ultrasound, optical coherence 

tomography and in-vivo confocal microscopy have had success diagnosing NMSC [15]. 
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Figure 2.3 Clinical cases of precursor legions and SCC. (A) Actinic Keratosis. (B) 

Bowen’s Disease. (C) Keratoacanthoma. (D) SCC. [15] 

2.2.2 UV Radiation 

 Exposure to the sun’s radiation is the primary cause of NMSC [16]. The solar 

spectrum consists of UV radiation, visible light and infrared, with UV only accounting 

for 5% of the total sunlight reaching earth [16]. UV radiation is split into UVA (320nm-

400nm), UVB (290nm-320nm) and UVC (100nm-290nm). Although the position of the 

sun above the horizon, the time of day, day of the year and geographical location affects 

UV exposure, typically UVA constitutes 94% of total terrestrial UV and UVB constitutes 



 

10 

 

6% [16]. Radical oxygen species, reactive nitrogen species and reactive sulfur species in 

the upper atmosphere are responsible for absorbing all UVC radiation, which is the most 

potent DNA damaging UV region, and most of the UVB region [16]. Even though UVA 

is the most abundant terrestrial UV, UVB is much more likely to lead to DNA damage 

[16]. As a result, UVB has been liked to causing nearly 80% of NMSC and is used in the 

course of this study to induce DNA damage [16].  

 UVB radiation has been linked to causing DNA damage and NMSC. UV 

radiation has been found to cause cyclobutane pyrimidine dimers from adjacent 

pyrimidine bases in DNA strands [17]. In addition, another dimer at the di-pyrimidine 

site, the 6-4 photoproduct, has been identified as a product of UVB radiation [17]. These 

dimers are removed and repaired with a process called nucleotide excision repair, though 

higher frequency of these dimers has been linked to DNA mutations (See Figure 2.4) 

[17]. Frequent exposure to UVB radiation has also been associated with mutations with 

the TP53 tumor gene, which is responsible for the transcription of p53 and later 

downstream cell cycle arrest activating proteins [17]. Mutations with the TP53 tumor 

gene and consequently the p53 protein impedes the cells ability to repair DNA damage, 

increasing the risk of forming NMSC [17].  
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Figure 2.4 Different dimer formations resulting from UVB exposure [18]. 

 Although UVB causes the majority of DNA damage, UVA has also been 

associated to indirectly cause DNA damage. The thiopurine 6-mercaptopurine absorbs in 

the UVA region and forms radical oxygen species [19]. Radical oxygen species have well 

understood mechanism of causing DNA damage, and abrupt increases in these reactive 

species can lead to oxidative stress and mutagenic DNA legions [19]. The cell does have 

pathways to neutralize radical oxygen species, but rapid changes in these radical species 

can cause DNA damage prior to neutralization [19]. UV radiation is a potent cause of 

NMSC through the DNA damage caused directly by UVB and indirectly through the 

formation of radical oxygen species with UVA exposure. 
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2.2.3 Pathogenesis 

 Extensive exposure to the sun’s radiation is linked to causing NMSC [20]. In 

particular, UV radiation from the sun could cause NMSC by causing mutations in the 

DNA, inducing immune-suppression that might inhibit tumor prevention and could also 

lead to persistent infection with Human Papilloma Viruses [20]. Figure 2.5 shows how 

UV exposure can increase the risk of forming NMSC by damaging DNA and activating 

cell cycle arrest/DNA repair and weakening the immune system against subsequent 

infections [20]. Aging was also found to decrease the capacity to repair DNA damage 

[20]. Although the mechanism for the suppression of the immune response is not clearly 

understood, there is strong evidence linking the reduction of the immune response with 

prolonged UV exposure [20]. In addition, the risk for forming NMSC increases with age, 

as the immune system and capacity to repair DNA decreases with older patients [20].  
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Figure 2.5 Potential pathways to the development of NMSC [20] 

 Mutations in specific regions of the genome increase the risk of NMSC. Over half 

of the cases of BCC have been linked with mutations in the Hedgehog pathway related 

genes, especially PTCH1, in animal models [4]. Mutations in the p53 tumor suppressor 

gene are extremely common in animals with precancerous lesions and SCC [4]. These 

mutations have not only been linked to carcinogenesis, but also mutagenesis and 

premature aging [4]. Direct DNA damage is repaired with nucleotide excision repair 

pathway and DNA damage from radical oxygen species are repaired via base excision 

repair [4]. However, mutations in the regulatory genes and a reduction of the immune 

response increases the likelihood of NMSC formation [4]. 
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2.2.4 Prevention 

 There a currently numerous methods for preventing the onset of NMSC. Some of 

these methods include avoiding sun exposure between 10 am  to 4 pm, wearing sun-

protective clothing, using sunscreen with a sun-protection factor greater than 15 and 

avoiding artificial sources of UV [21]. Sunscreen is one of the most common treatments 

available to prevent NMSC, and has been shown to inhibit the transmission of UV by 

absorbing, scattering or reflecting UV radiation depending on the present active 

ingredients [22]. Sunscreens typically contain either organic or inorganic active 

ingredients. Organic sunscreens are usually derivates of salicylates, p-aminobenzoates, 

dibenzoylmethanes, cinnamates, camphors, benzophenones or anthranilates [22]. These 

organic components will absorb the higher energy UV and will undergo a chemical 

reaction releasing heat [22]. Inorganic sunscreens typically include microfine particles of 

titanium dioxide and zinc oxide coated with silicone, fatty acids or oxides of aluminum, 

silicon or zirconium [22]. These particles are designed to scatter and reflect UV radiation 

to prevent UV radiation from reaching skin. Sunscreen has been shown to be effective 

against preventing UVB exposure proportionally to the sun-protection factor. Rodent 

models have shown that sunscreen reduces local immunosuppression, p53 mutations and 

the formation of actinic keratosis, thereby reducing the likelihood of NMSC formation 

[22].  

  A number of toxic and undesirable side effects limit the application of sunscreen. 

A number of active components found in organic sunscreens including p-Aminobenzoic 

acid, benzophenone-9 and 2-phenylbenzimidazole-5-sulfonic acid which were found to 

be potentially carcinogenic [22]. When tested with in vitro cytotoxicity studies they were 
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found to induce cyclobutane dimers in mammalian DNA and adducts with thymine and 

thymidine following UV exposure [23]. In addition, components like oxybenzone are 

commonly used in sunscreens and is listed as very hazardous by the center for disease 

control and prevention [24]. Oxybenzone is also on the registry of toxic effects of 

chemical substances because of the chemicals capacity to absorb through the skin and 

disrupt endocrine function [24]. Mothers with high oxybenzone blood levels are at risk of 

giving birth to underweight children and extended exposure to oxybenzone can also lead 

to the formation of photocontact allergic reactions [25]. Titanium nanoparticles and zinc 

oxide are also commonly used in sunscreens to reflect UV radiation and have also been 

noted to have cytotoxicity and genotoxicity properties [8]. These toxic side effects 

associated with sunscreen usage has prompted interest in finding safer alternatives to 

prevent skin cancer. 

2.3 Sphingomyelin 

 Bovine milk sphingomyelin (SM) is a phospholipid found in bovine milk which is 

believed to have anticarcinogenic properties.  Phospholipids make up a small percentage 

(<1%) of all the lipids found in milk, with SM constituting approximately 18-20% of the 

total phospholipid concentration [26]. SM is also found naturally within the outer leaflet 

of the plasma membrane of cells. When triacylgyerols, including sphingomyelin, are 

exposed to other cell membranes, they are incorporated into the fat globule membrane of 

the cell [26]. Approximately 10% of all digested sphingomyelin is believed to escape 

digestion and is transported throughout the body [27]. The addition of sphingomyelin to 

the plasma membrane has been linked to having anticarcinogenic effects. In particular, 

the use of sphingomyelin has been linked to acting as inhibitors of colon carcinogenesis. 
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In the case of colon cancer, the incorporation of sphingomyelin within the colon was 

found to reduce colon cancer incidents without any evidence of toxic side effects [28]. 

Interest in determining if sphingomyelin is effective against other types of cancers have 

lead to further carcinogenic studies with sphingomyelin. Previous in vitro studies have 

found trends that support sphingomyelin protecting keratinocytes from UV induced DNA 

damage, which could have applications in protecting against skin cancer [28].     

 

Figure 2.6 Structure of SM and ceramide [29]. 

 SM is a polar lipid which constitutes a major component of plasma membranes 

and could have pathways to prevent cancer formation. SM contains a phosphorylcholine 

polar head group, a sphingosine backbone and a short region of paraffinic residues [30]. 

This region of paraffinic residues contain an acyl chain that is typically long and is either 
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saturated or contain many cis double bonds [30]. The structure of SM is composed of 

ceramide, which is a bioactive lipid that is in equilibrium with the synthesis and 

hydrolysis of SM (See figure 2.6) [30]. Ceramide has been shown to have important roles 

in growth arrest, differentiation and apoptosis in many different cell types [30]. In 

particular, human colon cancers have observed significant decreases in the amount of 

available ceramide [30]. Restoration of ceramide in mice transfected with human colon 

cancer found tumor free livers in the mice, while mice with ceramide deficiencies were 

found to develop liver tumors (See figure 2.7) [30]. Increases in the ceramide levels were 

believed to induce apoptosis in cancerous cells, making a ceramide a potential anti-cancer 

therapy. Increases in SM have been linked to increasing ceramide, which could provide a 

mechanism for how SM could impart protection against cancer formation. KRTs were 

found to have a significant increase in ceramide levels after being treated with SM, which 

has prompted further interest in investigating the role SM might have in preventing skin 

cancer [31]. 
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Figure 2.7 Mice colon without ceramide treatment (A,C), mice colon histology with 

Ceramide treatment (B,D) [30]. 

 

 In addition to the protective properties of ceramide, SM is also believed to have 

applications against skin cancer by reducing the formation of radical oxygen species 

following UV exposure. Exogenous SM is believed to be passively incorporated into the 

outer leaflet of the plasma membrane, where SM can provide integrity of the plasma 

membrane [32]. SM is also believed to play a role in degrading GM1 Ganglioside and 

cholesterol-rich microdomains (i.e lipid rafts) found within the plasma membrane (See 

figure 2.8) [32]. These lipid rafts have been found to generate damaging radical oxygen 

species following UVA irradiation [33]. The formation of radical oxygen species has 

been found to cause DNA damage and potentially lead to the progression of cancer [34]. 
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SM capacity to degrade these lipid rafts before the KRTs are exposed to UV radiation 

could potentially decrease the formation of radical oxygen species following UV 

exposure, leading to less UV induced DNA damage. This could support SM as an anti-

cancer therapy by inhibiting the production of these radical oxygen species which should 

lead to less DNA damage following UV radiation [34]. 

 

Figure 2.8 Example of a lipid raft microdomain [35]. 

2.4 Human p21 Protein 

2.4.1 Overview  

 Human p21 protein participates in cell cycle arrest following DNA damage 

allowing for DNA repair or apoptosis. The cyclin-dependent kinase inhibitor 1 protein, 

also known as p21, is mediated by the tumor suppressor gene p53 and inhibits 

cyclin/cyclin-dependent kinase activity [36]. The human ras gene family is composed of 

at least three members, including H-ras, K-ras and N-ras which are responsible for 

encoding closely related proteins called p21 [37]. This p21 gene is believed to be the link 

between the activation of the tumor suppressor gene p53 and the resulting suppression of 

the G1 growth phase [37]. Subsequent studies of inhibiting p21 expression found that the 

G1 growth phase was not inhibited following p53 activation [36]. In addition to the role 

played by p21 in causing cell cycle arrest, p21 has also been attributed to coordinating 

with the DNA repair process. PCNA has been identified to activate the DNA polymerase 

δ, which is involved in both DNA replication and repair [38]. Evidence has been found 
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supporting p21 directly binding to PCNA and blocking the activation of DNA 

polymerase δ [38]. These results provide strong evidence that p21 has an essential role in 

p53 mediated cell cycle arrest and DNA repair, making p21 an ideal DNA damage 

biomarker. 

2.4.2 Interactions with Cyclin-CDKs 

 The cellular growth process of eukaryotic cells involves a growth and replication 

phase, known as interphase, which is responsible for production of new organelles, 

proteins and replication of DNA. This phase is further divided into a G1, S, G2, and M 

phase which are characterized by cell growth, chromosome duplication, further growth 

and division phase respectively. Certain DNA damage checkpoints use damage sensor 

proteins including ATM, ATR, Rad17-RFC complex and the 9-1-1 complex to detect 

DNA damage [39]. Following detection of DNA damage, signal transduction cascades 

employ Chk1, Chk2 and Cdc25 phosphatases, which activate p53 and inactivate cyclin-

dependent kinases to induce cell cycle arrest [39]. Checkpoints include the progression 

from G1 to S phase, the intra-S checkpoint and G2 to M checkpoint [39]. Activation of a 

checkpoint either leads to DNA repair mechanisms, including direct repair, base excision 

repair, double strand break repair, cross link repair and nucleotide excision repair [39]. 

Failure to adequately repair DNA leads to apoptosis, which ensure that sever damage or 

deregulated cells are destroyed [39]. These checkpoints help ensure that DNA replication 

and chromosome segregation are completed with high accuracy [40]. 

The activation of these checkpoints requires a mechanism for inducing cell cycle 

arrest to allow for DNA repair or apoptosis. The p21 protein can bind to certain cyclin 

dependent kinases (Cdks) and can prevent the phosphorylation of Rb by cyclin A-Cdk2, 
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cyclin E-Cdk2, cyclin D1-Cdk4, and cyclin D2-Cdk4 complexes [41]. Further 

experiments with p21 have found that p21 can inhibit nearly every member of the 

cyclin/CDK family [41]. These cyclins are responsible for growth and development 

during cell division. The D-type cyclins are activated due to mitogenic signals, leading to 

the assembling of CDK4 and CDK6 during the G1 phase [42]. CDK activating kinases 

(CAK) are required to activate these CDKs to allow for subsequent downstream 

phosphorylation. Progression to further growth phases requires that cyclin D-CDK 

phosphorylate Rb and sequester cyclin inhibitors including p21 (See figure 2.9) [42]. The 

role of p21 in preventing cyclin kinase activity and Rb phosphorylation provides 

evidence to indicate that p21 has an essential role in controlling cell cycle progression. 

 

Figure 2.9 Roles of CDK, RB and p21 (Cip) in cell cycle progression [42]. 
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2.4.3 Interactions with PCNA 

 The process of DNA replication in eukaryotic cells is an involved process with 

mechanisms to repair DNA errors. DNA replication is typically very accurate and 

proceeds at 2900 base pairs per minute [43]. However, DNA legions can lead to 

replication failure, requiring mechanisms to address these damaged regions [43]. The 

proliferating cell nuclear antigen (PCNA) is a circular protein that encompasses DNA and 

helps ensure genomic integrity by recruiting other factors to regions of DNA instability 

or damage [43]. PCNA is part of the DNA sliding clamps that are composed of two 

similar globular domains, linked by interdomain connecting loops [43]. This PCNA ring 

is recruited in regions of DNA damage and will then attach polymerases, including DNA 

polymerase δ, firmly to DNA thereby increasing the productivity of DNA polymerases 

from dozens to thousands of nucleotides per minute [43]. The role PCNA has on 

recruiting factors and increasing polymerase activity make PCNA an essential factor in 

DNA damage repair.    

 The p21 protein is responsible for regulating PCNA following DNA damage. The 

binding of PCNA to DNA is mediated by the C terminal of the PIP box, where p21 acts 

as a competitive inhibitor thereby blocking the surface of PCNA from recruiting 

polymerases [43]. Factors prohibited from PCNA binding following p21 binding include 

polymerase δ, FEN-1, chromatin remodeling factor WSTF, repair protein XPG and DNA 

methyltransferase [43]. This suggests that high expression of nuclear p21 expression will 

cease DNA repair processes, allowing PCNA is interact with p33 and potentially conduct 

apoptosis [43]. The p33 pathway binds to the N-terminal of PIP box, and has been show 

to increase over tenfold in the presence of UV irradiation and induce apoptosis [43]. The 
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binding of the C terminus of PCNA to inhibit the DNA repair pathway and binding of the 

N terminus to induce apoptosis provide a regulatory means of p21 altering competitive 

binding to determine the cell’s faith [43]. The role p21 has in directly inhibiting cell 

growth and regulating apoptosis through PCNA inactivation make p21 an ideal marker to 

assess UV induced DNA damage. 

2.5 Human p53 Protein 

The tumor suppressor gene p53 is part of the regulation process to prevent 

oncogenesis. This tumor suppressor p53 protein can bind to the T antigen of SV40, which 

has been found to inhibit viral replication, DNA polymerases (including α), and ATP 

activated helicase activity [44]. This p53 protein also binds nonspecifically to DNA-

cellulose [44]. In particular, the p53 interact with PIP boxes on PCNA [44]. Although it’s 

not clear what the nature of the interactions with PCNA, it is clear that p53 does have an 

essential role in preventing genome mutations [44]. Mutations in the p53 gene is the most 

commonly observed genetic deviation noted in human cancers [45]. These mutated p53 

proteins have been found to lose their affinity to binding DNA, which supports the 

premise that the process of p53 binding to DNA is critical to its function as a tumor 

suppressor [45]. In addition, sustained cell cycle arrest of G2 phase of replication could 

only be maintained when p53 was present in the cell and transcriptionally activating p21 

[46]. Knockout of either p53 or p21 has been found to lead to the progression of mitosis 

in cells expressing DNA instability [46]. The significant number of p53 mutations 

associated with cancerous cells, the processes of DNA binding of p53 and the role of 

activating the tumor suppressing p21 make p53 another DNA damage marker that should 

be expressed in the presence of UV induced DNA damage [46].  
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2.6 Overview and Scope of Thesis 

 UV exposure is a serious problem leading to millions of new NMSC cases each 

year. Limitations with sunscreen, including a number of toxic side effects, have sparked 

interest in safer methods to prevent UV induced DNA damage. Previous work done with 

bovine SM have shown great promise in preventing other types of human cancer, with 

particular emphasis on human colon cancer. This has sparked interest if this SM 

component could also provide protection against NMSC. Bovine SM could potentially 

provide UV protection through preventing the formation of DNA damaging radical 

oxygen species during UV exposure, or helping induce apoptosis through the formation 

of the tumor suppressor ceramide. In order to test the efficacy of SM, human KRTs were 

gown in vitro in order to test SM treatment prior to UV exposure. UV induced DNA 

damage was assessed via the expression of two of the most predominant DNA damage 

biomarkers, p21 and p53. The p21 has includes both cyclin kinase inhibiting to prevent 

cell growth and interactions with PCNA to halt DNA repair and induce apoptosis. The 

role p53 has is more ambiguous, though p53 is the most mutation gene in cancerous cells, 

upstream of p21 and believed to interact with DNA to regulate cell cycle. Both p53 and 

p21 are essential to maintaining cell cycle arrest following DNA damage, giving time for 

cell to repair DNA damage or commit to apoptosis, making p21 and p53 ideal markers to 

assess UV induced DNA damage. Both of these DNA damage biomarker nuclear 

expressions are assessed following treatment and UV exposure. The data is then analyzed 

to determine if any evidence exists to support SM as having any potential to protect 

against UV induced NMSC. 
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Chapter 3: Methods for Protocol 

3.1 Summary 

KRTs were cultured using keratinocyte growth media and were plated into 8 well 

plates specifically designed for imaging with an inverted microscope. SM solution was 

added to half of the KRTs and the cells were allowed to incubate for 24 hours in this 

media. A randomized distribution of SM treated groups was used to minimize any effects 

caused between plates. Following the 24 hour incubation, the SM media was removed 

and replaced with SM free media prior to UV exposure. The SM media was removed and 

replacement with a fresh non-SM media prior to UV exposure to ensure that SM still 

present in the media solution wasn’t reflecting the UV radiation. A UV lamp was used in 

a controlled setting using appropriate personal protective equipment to expose KRTs to 

302nm UV radiation. An appropriate time was calculated to expose the KRTs to 

40mj/cm
2
. Following UV exposure, the KRTs were incubated for an additional 24 hours 

prior to fixing the cells. Four KRT groups were tested in the described manner, consisting 

of no SM and no UV (SM (-) UV (-)), no SM and UV (SM (-) UV (+)), SM and no UV 

(SM (+) UV (-)) and SM and UV (SM (+) UV (+)) (See Figure 3.1). 
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Figure 3.1 Flowchart of the KRTs protocol for each treatment group 

KRTs were fixed with 3.7% paraformaldehyde following washing. All washes 

were done three times with PBS. The paraformaldehyde was left in the cells for 15 

minutes. A solution of triton-x was added to the KRTs to permeabilize the plasma 

membrane and allow for the diffusion of reagents into the cell. This solution of triton-x 

was left on for 15 minutes. The desired biomarker of interest determined the following 

blocking, primary and secondary reagents. Procedures used in this experiment included 

staining for p21, p53 and both p21 and p53 simultaneously (dual staining). Blocking was 

added to each well and left on overnight. Removal of the blocking was followed by the 

addition of the primary p21 and/or p53 antibody. This primary was left on for about 9-12 

hours before being washed. Observation of p21 or p53 required the addition of the 
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secondary Alexa Fluor 488 or Alexa Fluor 488 and 647 for dual staining. The secondary 

was removed after an hour in the wells and then Hoechst stain [Life Technologies, 

H21486] was left on for 15 minutes and was used to visualize the nucleus of each cell 

(See Table 3.1). Imaging was performed on a confocal microscope at 40X allowing for 

simultaneous imaging of p21 and Hoechst. Three representative images were taken for 

each well in each of the four plates (total of 32 wells) and nuclear expression of p21 was 

determined by overlapping Hoechst and p21 fluorescence. An automated program 

determined the number of KRTs using the Hoechst stain and ImageJ was used to 

manually count cells with p21 positive expression [2]. The ratio of the number of cells 

with nuclear p21 expression to the total number of cells were taken for each well, and t-

testing was used to determine differences between each group. 

Table 3.1 Summary of reagents and concentrations within these experiments 

Process Reagent Concentration Duration 

Dual or Single 

Staining 

Vendor and 

Catalog No. 

Fixing Paraformaldehyde 3.7% 15 min Both   

Permeabilization Triton-X-100 0.1% 20 min Both 

 Invitrogen 

HFH10 

Blocking  

10% Normal Goat 

Serum 1% Overnight Both 

Life Technologies 

500622 

  

87.5 mg/ml Normal 

Donkey Serum 1% Overnight Dual Abcam ab7475  

Primary p21 1:400 9-12 hours Single Abcam ab18209 

  p21 1:400 9-12 hours Dual Abcam ab184640 

  p53 1:400 9-12 hours Both 

Life Technologies 

710294 

Secondary AF 488 1:400 1 hour Both 

Life Technologies 

A11008 

  AF 647 1:400 1 hour Dual Abcam ab150107 

Hoechst p53 1:400 15 min Both 

Life Technologies 

H21486 
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3.2 Keratinocyte Culturing 

 Aseptic technique was crucial during these experiments and was preformed within 

a sterile hood. These experiments used primary human epidermal KRTs which were 

isolated from normal, neonatal foreskin (PCS-200-010, ATCC Manassas, VA). These 

KRTs were then cultured within a humid incubator. The incubator was set at 37°C with 

approximately 5% carbon dioxide. The growth media used for the control and SM groups 

consisted of a Keratinocyte Growth Kit (PCS-200-040, ATCC, Manassas, VA) mixed 

with one bottle of Dermal Cell Basal Medium (PCS-200-030, ATCC, Manassas, VA), 

0.5mL of Penicillin-Streptomycin-Amphotericin (PCS-999-002, ATCC, Manassas, VA), 

0.5mL of Gentamicin-Amphotericin (PCS-999-025, ATCC, Manassas, VA) and 0.5mL 

of Phenol Red (PCS-999-001, ATCC, Manassas, VA) and passing the mixture through a 

0.22μm filter. KRTs were cultured in 8-well coverglass plates which were specially 

designed for viewing with an inverted microscope. These KRTs were observed every 24 

to 48 hours with a brightfield microscope to assess cell morphology, signs of 

contamination and confluency. The media was also replaced during this period using 

approximately 0.5 ml of media in each well. T-75 flasks of KRTs with approximately 

70% confluency were passed into four of the eight well plates.  

Half of the plates were treated with SM media 24 hours prior to UV exposure. 

Solutions of 0.1% bovine SM were prepared and dissolved within keratinocyte growth 

media for use with KRTs. Stock bovine SM was initially a yellowish powder that was 

removed via tweezers and weighed to obtain the appropriate volume to create a solution 

of 0.1% SM. KRTs media was then added to the weighed SM through a 0.22μm filter and 

the SM was dissolved into the solution via warming and vortexing. This SM media was 
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good for a month before being replaced with new media. This study consisted of four 

treatment groups that were randomized as shown in Figure 3.2. Cells with odd 

morphology or contamination were not used during to acquire data during the course of 

this study. 

SM (+) SM (-) 

SM (-) SM (+) 

SM (+) SM (-) 

SM (-) SM (+) 

Figure 3.2 Randomized group distribution for each plate. Yellow indicates UV. 

 

3.3 UV Treatment 

 UV treatment was performed in the same aseptic hood used to add culture media. 

All of the cells had their current media removed and replaced with SM free media, 

ensuring that any UV protective effects on the SM treated group were the result of SM 

incorporated into the KRTs and not the result of SM in solution. The UV box used to 

safely enclose the plates was created out of black Delrin plastic sheets, which form a 

rectangular box with removable top and bottom. The box is composed of four walls that 

were permanently glued together and a removable top and bottom component. The top 

component had a rectangular hole that allowed for the placement of the UV lamp while 

the bottom component was designed to allow for the sliding of a tray holding a plate 

needing UV exposure. An ABS plastic tray was designed to hold on plate at a time, and 

worked in conjunction with a plate cover that ensures only half the plate receives UV 

radiation (See figure 3.3).  
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Figure 3.3 UV box and lamp (top) and plate tray with and without cover (bottom). 

 The UV box, UV lamp and UV sensor were sterilized with IPA cleaning solution. 

and were brought into the sterile hood. The UV box and lamp were assembled within the 

hood, and the lamp (95-0251-01, UVP, LLC, Upland, CA) was activated to 302nm for 

approximately five minutes. Then the UV sensor (S120UV, ThorLabs, Newton, NJ) was 

connected to the power meter (PM100,ThorLabs, Newton, NJ), was placed under the UV 

lamp and the average UV exposure was calculated. The exposure time was then 

determined from the area of the sensor and the average intensity to expose the cells to 

40mj/cm
2 

of radiation, which prior work found to be the optimum dose to observe 
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differences in DNA damage biomarker expression and simulates typical sunburn 

conditions [7,47]. 

                    
                        

                                          
 

Where irradiance was calculated by taking the average intensity of the UV sensor and 

dividing by the sensor area of 0.7088cm
2
 (diameter of 0.9cm). The exposure time was 

normally around 2 minutes based on the condition of the UV lamp. The sensor was then 

removed, and a plate was placed with the holding tray, a plastic cover was inserted over 

the half of the plate that was not to receive UV radiation and the plate was positioned 

under the lamp for the previously calculated amount of time. This was repeated for each 

plate and the plates were returned to the incubator. The UV box, lamp and sensor were 

disassembled and return to their proper storage area. 

3.4 Fixation and Immunoflourescence Staining 

 Following UV exposure, the KRTs were given 24 hours to begin their DNA 

damage repair pathways. After this 24 hour post-UV incubation period, each of the eight 

well plates had their media contents aspirated out and were gently washed three times 

with PBS. All solutions were added with pipettes by adding solutions drop wise on the 

side of the wells. Then 200µl of 3.7% paraformaldehyde was added to each well to fix 

the cells. The paraformaldehyde was left on each plate for approximately 15 minutes 

before being removed and washed three additional times with PBS. The KRTs were then 

premeabilized by adding 0.1% of the stock triton-x-100 solution diluted in PBS to each 

well. Then 200µl of triton-x working solution was added to each well, left on for about 

20 minutes and was removed and washed three times with PBS. The appropriate blocking 

serum was diluted to 1% in PBS and 200µl of this blocking solution was added to each 
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well. The blocking solution was left on for at least eight hours to help minimize offsite 

binding of the secondary and to ensure the maximum ratio of signal to noise. The 

blocking solution was then removed and washed three times with PBS before primary 

was added. Primary consisted of a 1/400 dilution of desired antibody in PBS and 200µl of 

this solution was left on the cells for about 8-10 hours. The primary was removed washed 

three times with PBS and the appropriate secondary was added at the same 1/400 

dilution. Table 3.2 below lists the primary and secondary antibodies that were used in 

these experiments. Note that the primary and secondary antibodies were different for the 

p21, p53 and both p21 and p53 stains. The antibodies used for p21 were not found to 

react with the p53 antibodies and vice versa. As a result, staining for both p21 and p53, 

referred here as dual staining, had appropriate blocking solutions added simultaneously 

for both p21 and p53 during the blocking step. The primary regents for p21 and p53 were 

added together during the primary phase and both secondary dyes were also added 

together during the secondary step. The secondary was removed following an hour, 

rinsed three times with PBS and Hoechst stain (5µg/ml) was diluted to 0.05% and left on 

the wells for 15 minutes. The wells were then washed three more additional times and 

200µl of PBS were left on each well. 
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Table 3.2 List of Antibodies and Fluorescent Dyes used for each staining procedure. 

Antibodies and 

Fluorescence Dyes 

Staining 

Application 

Antibody 

Concentration Vendor and Catalog No. 

Anti p21 raised in 

Mouse Dual Staining 1:400 Abcam ab184640 

Anti p21 raised in 

Rabbit p21 1:400 Abcam ab18209 

Anti p53 raised in rabbit 

Either p53 or Dual 

Staining 1:400 

Life Technologies 

710294 

Donkey Anti-Mouse 

Alexa Fluor 647 Dual Staining 1:400 Abcam ab150107 

Goat Anti-Mouse Alexa 

Fluor 488 

p21, p53 or Dual 

Staining 1:400 

Life Technologies 

A11008 

Hoechst 

p21, p53 or Dual 

Staining 2µg/ml 

Life Technologies 

H21486 

 

 3.5 Confocal Imaging 

 Images were then obtained for each well following completion of the 

immunofluorescence protocol with an Olympus FluoView FV1000 confocal microscope 

(Olympus America, Centerville, PA). The FluoView Software was configured to apply 

optical filters for DAPI, Alexa Fluor 488 for either p21 or p53 staining. Simultaneous 

staining of p21 and p53 required optical filters for DAPI, Alexa Fluor 488 and Alexa 

Fluor 647. The 40x oil immersion objective was used to image the wells after securing 

the plates within the proper mount on the stage. The cells were then put into focus using 

widefield fluorescence and regions of high confluency near the center of the plates were 

located. This was necessary because most of the 40mj/cm
2 

of UV radiation reached the 

center of the well, while regions of the plate closer to the wall can potentially deflect UV 

radiation lowering the effective UV dose. The speed scan was set to 4µs/pixel and image 

size was set to 512 by 512. After finding a region of interest, the samples were scanned 

using “XY Repeat” and were further focused to find the center plane of the nuclei of the 
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KRTs. The laser power and HV were optimized for each channel to allow for clear 

identification of p21 or p53 positive cells without creating too much background. The 

“Sequential” feature was also used to avoid unnecessary bleed-through of channels. 

Three locations in each well were selected to effectively sample the entire well. Images 

were exported as TIFF files and saved for further image analysis. 

 
Figure 3.4 The Olympus FluoView FV1000 confocal microscope used for imaging. 

 

3.6 Image Analysis 

 In order to determine the ratio of p21 or p53 positive cells within each image, the 

number of total cells and cells expressing nuclear p21 or p53 must be determined. The 

IntenseCount program analyzed merged images and was used to determine the total 

number of cells present in each well [7]. ImageJ was then used to manually place markers 

in each cell that was found to be p21 or p53 positive. A user identified these positive cells 

by visual inspection of the nucleus expression compared to expression within the 

cytoplasm. The cells with clearly higher expression in the nucleus were counted as 

positive cells and the ratio of number of positive to total number of cells in each image is 

calculated. The ratio was averaged over every image taken in the well to create one data 
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point for the well. Difficulties in maintaining confluency within the center of the well 

following UV treatment and the potentially harsh process of staining limited the number 

of samples obtained for the course of these experiments. As a results, the final sample 

size was n=8, which allowed for t-testing between each group (α=0.05) using Microsoft 

excel. In addition, the differences between both UV treated groups are compared via t-

test (α=0.05) to determine if SM imparts any photoprotective effects. Tukey’s test was 

not employed due to the assumption that every treatment group has equal variances, 

which was found to not hold true for the control cases. This could be due to the relatively 

the small sample size of each group and the large variance of KRTs naturally expressing 

p21 and p53 due to DNA damage independent of UV radiation.   
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Chapter 4: Results for Protocol 

4.1 Preliminary Results 

 A number of factors went into optimizing the protocol discussed in the previous 

section in order to obtain data to potentially support SM protecting against UV induced 

DNA damage. The first major difficulty in the protocol was maintaining cell confluency 

in the center of the wells. Harsh treatment while adding reagents or washing during 

staining destroyed KRTs in the center of the well. The center of the well is the most 

exposed, both to UV exposure and staining, making these KRTs the easiest to wash off 

the plate (See Figure 4.1). However, these cells also received 40mj/cm
2 

of UV radiation, 

whereas cells near the edges received less UV exposure, making it necessary to develop 

new methods to maintain higher confluency near the center of the well. As a result, new 

pipette techniques were thoroughly researched to ensure that the KRTs were treated 

gently during staining. The methods adopted included gently dipping solutions on the 

sides of the well when adding liquid, which improved cell viability considerably. 

 
Figure 4.1 Regions of poor confluency near the center of the well. 
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 Maintaining higher confluency of KRTs was a major step towards evaluating UV 

induced DNA damage, but a poor signal to noise contrast further limited the usefulness of 

our data. Pictures obtained with the new methods did increase KRT confluency 

considerably, but each cell was found to have nuclear expression of Alexa Fluor 488 (See 

Figure 4.2). This made identification of positive or negative p21 or p53 expressing KRTs 

impossible, requiring additional work to optimize the stain. Addition research found that 

the blocking step was insufficient, which is why blocking concentration was increased to 

1% and left on overnight. This did increase the signal to noise ratio and allow for 

quantification of KRTs with positive and negative p21 or p53 expression. 

 
Figure 4.2 Regions of poor signal to noise ratio attributed to insufficient blocking. 

 Another serious problem our lab group encountered was that antibodies 

sometimes were deficient or impure. One of the problems encountered during dual 

staining included a bad lot of p21 primary antibody, which required higher laser power to 

visualize the KRTs. However, the high laser power also created background, which made 

identification of p21 positive and negative KRTs difficult (See Figure 4.3). Testing the 
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primary with various known working secondary stains allowed for identification of the 

defect within the primary and a replacement was acquired. 

 
Figure 4.3 Poor binding of the primary antibody. 

 

4.2 The p21 Results 

4.2.1 Representative Images 

Representative images taken by the confocal microscope of the four treatment 

groups are shown in Figure 4.4. The hoechst stain is blue and indicates the location of the 

nucleus of each cell. The Alexa Fluor 488 is green and binds p21. Typically p21 is found 

within the cytoplasm, but will be expressed in the nucleus following DNA damage. 

Therefore, the bright green signal in the nuclear region indicates if the skin cells have 

taken UV damage. The SM (-) UV (+) group appeared to have the highest ratio of nuclear 

p21, followed by SM (+) UV (+) and significantly lower expression in the remaining no 

UV groups. It was also observed that p21 was expressed primarily in the cytoplasm in the 

UV (-) SM (-) group, but had much higher nuclear localization in UV (+) SM (-) group.  
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Figure 4.4 UV Treated Sphingomyelin Groups. No SM and no UV treatment (top 

row), No SM and UV treatment (2
nd

 row), 0.1% Sphingomyelin and no UV treatment (3
rd

 

row), and 0.1% Sphingomyelin and UV treatment (last row).Regions in red are magnified 

KRTs showing p21 positive cells for UV treated KRTs and p21 negative cells for the no 

UV treated KRTs. 

 

4.2.2 Raw Data 

 

 The ratio of KRTs expressing p21 were manually counted using imageJ and the 

IntenseCount program and is shown in table 4.1 below. The same trends noted in the 

representative images above were seen during the data analysis. The highest expression 

of p21 positive KRTs were seen with the SM (-) UV (+) group, followed by the SM (+) 

UV (+), SM (+) UV (-) and SM (-) UV (-) groups. The difference between the both UV 

groups were significantly more than the difference between the no UV groups. 

 

UV (-) SM (-) 

Hoechst Alexa Fluor 488 Merged 

UV (+) SM (-) 

UV (-) SM (+) 

UV (+) SM (+) 
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Table 4.1 The ratio of p21 positive cells being expressed in each treatment group 

Treatment 

Group 

Ratio of p21 Positive 

KRTs Standard Error 

SM (-) UV (-) 0.045311117 0.014518851 

SM (-) UV (+) 0.122167707 0.008970801 

SM (+) UV (-) 0.038690553 0.007467327 

SM (+) UV (+) 0.084221973 0.0092956 

 

4.2.3 Interpretations  

The ratio of cells expressing nuclear p21 for each group is shown in Figure 4.5. 

The SM (-) UV (+) treatment group was found to have the highest ratio of cells 

expressing nuclear p21, followed by SM (+) UV (+), SM (-) UV (-) and SM (+) UV (-). 

The data showed a significant difference in the ratio of p21 expression between both 

groups at the UV dosage level and both groups without UV exposure. This supports the 

initial premise that p21 is an appropriate DNA damage biomarker to observe UV induced 

DNA damage. No difference between the ratios of cells expressing nuclear p21 was 

observed between either groups at the no UV dosage level. This does not provide any 

evidence of SM having any adverse effects on KRTs health, which is important if SM is 

to ever have any therapeutic application. There was a difference between the UV (-) SM 

(-) and the UV (+) SM (-) groups. This indicates that UV radiation did induce DNA 

damage and that p21 was expressed in the nucleus in response to this DNA damage. 

There was a significant difference between the SM (-) UV (+) and SM (+) UV (+) groups 

nuclear p21 expression. This decrease in p21 expression provides evidence of SM 

providing protection against UV induced DNA damage. 
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Figure 4.5 UV Treated Sphingomyelin Results. The ratio of cells expressing nuclear 

p21 compared to the total number of cells in each group is plotted above. (*) p < 0.05; 

significant difference in ratio of cells expressing nuclear p21. 

 

4.3 The p53 Results 

4.3.1 Representative Images 

The results for p53 follow a very similar trend to p21. Representative images 

taken by the confocal microscope of the four treatment groups are shown in Figure 4.6. 

The hoechst stain is blue and indicates the location of the nucleus of each cell. The Alexa 

Fluor 488 is green and binds p53. Typically p53 is found within the cytoplasm, but will 

be expressed in the nucleus following DNA damage. Therefore, the bright green signal in 

the nuclear region indicates if the skin cells have taken UV damage. As shown in the p21 

results, the hoechst stain is blue and the Alexa Fluor 488 is green, with the bright green 

signal in the nuclear region indicating that the skin cells have taken UV damage. The SM 

(-) UV (+) group appeared to have the highest ratio of nuclear p21, followed by SM (+) 

UV (+) and significantly lower expression in the remaining no UV groups.  It was also 

observed that p53 was expressed primarily in the cytoplasm in the UV (-) SM (-) group, 

but had much higher nuclear localization in UV (+) SM (-) group.  
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Figure 4.6 UV Treated Sphingomyelin Groups. No SM and no UV treatment (top 

row), No SM and UV treatment (2
nd

 row), 0.1% Sphingomyelin and no UV treatment (3
rd

 

row), and 0.1% Sphingomyelin and UV treatment (last row). 

 

 

Hoechst Alexa Fluor 488 
Merged 

UV (-) SM (-) 

UV (+) SM (-) 

UV (-) SM (+) 

UV (+) SM (+) 
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4.3.2 Raw Data 

 

 The ratio of KRTs expressing p25 were manually counted using imageJ 

and the IntenseCount program and is shown in table 4.1 below. The highest expression of 

p53 positive KRTs were seen with the SM (-) UV (+) group, followed by the SM (+) UV 

(+), SM (+) UV (-) and SM (-) UV (-) groups. The difference between the both UV 

groups were significantly more than the difference between the no UV groups. 

Table 4.2 The ratio of p53 positive cells being expressed in each treatment group 

Treatment 

Group 

Ratio of P53 Positive 

KRTs 

Standard 

Error 

SM (-) UV (-) 0.047399015 0.015933562 

SM (+) UV (-) 0.034474101 0.00829868 

SM (+) UV (+) 0.057557255 0.006931191 

SM (-) UV (+) 0.082643619 0.010363842 

  

4.3.3 Interpretations 

The ratio of cells expressing nuclear p53 for each group is shown in Figure 4.7. 

Similar to the trends found with p21, the SM (-) UV (+) treatment group was found to 

have the highest ratio of cells expressing nuclear p53, followed by SM (+) UV (+), SM (-

) UV (-) and SM (+) UV (-). The data showed a significant difference in the ratio of p53 

expression between both groups at the UV dosage level and both groups without UV 

exposure. This also supports the initial premise that p53 is an appropriate DNA damage 

biomarker to observe UV induced DNA damage, which is expected due to p53 being 

upstream of p21. No difference between the ratios of cells expressing nuclear p53 was 

observed between either groups at the no UV dosage level. This does not provide any 

evidence of SM having any adverse effects on KRTs health. There was a difference 

between the UV (-) SM (-) and the UV (+) SM (-) groups. This indicates that UV 
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radiation did induce DNA damage and that p53 was expressed in the nucleus in response 

to this DNA damage. There was a significant difference between the SM (-) UV (+) and 

SM (+) UV (+) groups nuclear p53 expression. This decrease in p53 expression provides 

evidence of SM providing protection against UV induced DNA damage, which could 

have applications in preventing the formation of NMSC. 

 

Figure 4.7 UV Treated Sphingomyelin Results. The ratio of cells expressing nuclear 

p53 compared to the total number of cells in each group is plotted above. (*) p < 0.05; 

significant difference in ratio of cells expressing nuclear p53. 

 

4.4 Dual Staining Results 

The results for dual stain show similar trends to both p21 and p53. Representative 

images taken by the confocal microscope of the four treatment groups are shown in 

Figure 4.8. The hoechst stain is blue and indicates the location of the nucleus. The Alexa 

Fluor 488 is green and binds p53. The Alexa Fluor 647 is red and binds p21. As with the 

data for p21 and p53 above, bright green or red signal in the nuclear region indicates if 

the skin cells have taken UV damage. The SM (-) UV (+) group appeared to have the 
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highest ratio of nuclear p53 and p21, followed by significantly lower expression in the 

remaining groups. It was also observed that p53 was expressed primarily in the cytoplasm 

in the UV (-) SM (-) group, but had much higher nuclear localization in UV (+) SM (-) 

group. Only a few wells from each treatment group had images appropriate for 

quantification, which made the number of samples too small for analysis. Further 

optimization of the protocol should allow for more images to be obtained to confirm 

these trends for dual staining. 
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Figure 4.8 UV Treated Sphingomyelin Groups. No SM and no UV treatment (top 

row), No SM and UV treatment (2
nd

 row), 0.1% Sphingomyelin and no UV treatment (3
rd

 

row), and 0.1% Sphingomyelin and UV treatment (last row). 
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Chapter 5: Discussion 

5.1 Overview 

 Identifying safer treatment alternatives to sunscreen has the potential to reduce the 

number of patients diagnosed with skin cancer without the adverse side effects of 

sunscreen. In particular, milk SM has been proposed to help prevent DNA damage 

associated with UV exposure. This study compared the expression of p21 and p53, two 

genes up-regulated by DNA damage, to assess if SM protects KRTs from UV induced 

DNA damage. A monolayer of KRTs were cultured into eight well plates and were 

treated with SM 24 hours prior to being exposed to 40mJ/cm
2
 of UVB radiation. Cells 

were then stained, imaged and analyzed and the ratio of cells expressing nuclear p21 and 

p53 was significantly decreased in the SM (+) UV (+) group compared to the SM (-) UV 

(+) group. This decrease in both DNA damage biomarkers provides evidence to support 

that SM protects KRTs from UV exposure. In addition, a significant increase in the ratio 

of nuclear p21 and p53 expression was observed in the SM (-) UV (+) group when 

compared to the control, which supports the use of both of these markers as an indicator 

of DNA damage. Furthermore, no significant increase in either p21 or p53 intensities 

were found in the SM (+) UV (+) group compared to the SM (-) UV (-) group. This in 

combination with preliminary work with apoptotic and proliferative stains suggest that 

SM has no detrimental effect on cellular proliferation or apoptosis, which also supports 

SM as a safe treatment against DNA damage. These results suggest that SM is a safe 

treatment that can provide some protection against UV exposure, but could be 

insufficient to prevent all UV associated DNA damage. The hypothesis of the study was 

supported by the data. 
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5.2 Statistical Analysis Assumptions 

 The one way ANOVA test was considered for the analysis of these experiments, 

but not all of the assumptions required to use one way ANOVA were met. The three 

assumptions needed include 1) samples are independent, 2) responses for a given group 

are normally distributed and 3) variances of populations between groups are equal. The 

first criteria was addressed by separating groups between different plates and taking 

random images in each well. The normalized responses are shown in the plots below (see 

Figure 5.1 and 5.2). Both p21 or p53 appears to follow normalized distributions within 

the confines of the 95% confidence interval, with p53 having a slightly more normalized 

response due to p53 more closely following the 95% confidence interval. The last criteria 

is that the samples have equal variances. The variances between groups do not appear to 

be equal between every group due to the control group having very large variances 

compared to the other treatment groups. As a consequence, the plots of residual 

frequency also do not appear to follow a normal distribution for either p21 or p53. The 

lack of equal variances might question the use of one way ANOVA and would also 

invalidate the post hoc Tukey’s test. Since the control group’s large variance is 

responsible for invalidating the assumptions underlying ANOVA and Tukey’s test, both 

of the groups are assessed with t-tests to determine if sphingomyelin provides any 

photoprotective effects against UV damage. 
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Figure 5.1 Residuals of p21 positive cells. A) Probability plot of p21 responses. B) 

Histogram of residuals of all treatment groups. 
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Figure 5.2 Residuals of p53 positive cells. A) Probability plot of p53 responses. B) 

Histogram of residuals of all treatment groups. 
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5.3 Observation of p21 and p53 as Biomarkers for DNA Damage 

DNA damage biomarkers p21 and p53 were ideal markers for analyzing DNA 

damage due to their response following UV induced DNA damage. Nuclear expression of 

p53 occurs nearly immediately following UV induced DNA damage and has been 

identified as a protein involved in gene transcription, DNA synthesis and repair [48]. 

Many cancers have been observed to have mutated or inhibited p53 expression, 

suggesting that p53 plays an important role in ensuring correct DNA synthesis and 

preventing the formation of cancer. In addition, increased expression of p53 has been 

linked to G2-phase arrest preventing the proliferation of potentially cancerous cells 

following DNA damage, further supporting the use of p53 as an indicator of DNA 

damage [9,10,11]. The nuclear expression of p21 is activated downstream of p53 

indicative of DNA damage leading to inhibition of the G1 cyclins and kinases, but can 

also be expressed by other pathways (i.e transforming growth factor beta) [12]. The 

expression of both DNA biomarkers p21 and p53 should follow a similar expression if 

DNA damage is triggering the activation of these proteins and the expression of both 

markers should increase in the presence of DNA damaging radiation. The results found 

during the course of this experiment supports both of these suppositions, with both p21 

and p53 following similar trends and UV exposure leading to an increase in expression 

for both markers.  

5.4 Theories on SM Mechanism for UV Protection 

Previous research in the lab suggested that exogenously added SM protects against 

UV induced DNA damage in KRTs potentially through the reduction of ROS formation 

within the cells [7]. This hypothesis would support SM treatment against the formation of 
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NMSC by minimizing DNA damage present following UV exposure. SM is believed to 

be passively incorporated into the outer leaflet of the plasma membrane, where SM can 

interact with sphingomyelinases and provide integrity of the membrane [33]. SM was 

also believed to play a role in degrading lipid rafts found within the plasma membrane 

[33]. GM1 Ganglioside and cholesterol-rich microdomains (i.e lipid rafts) have been 

shown to generate damaging radical oxygen species following UVA irradiation [33]. The 

formation of radical oxygen species has been found to cause DNA damage and 

potentially lead to the progression of cancer. If SM does have the ability to degrade these 

lipid rafts before the KRTs are exposed to UV radiation, then the formation of radical 

oxygen species would subsequently be reduced following UV exposure. This could 

support SM as an anti-cancer therapy by inhibiting the production of these radical oxygen 

species which should lead to less DNA damage following UV radiation [34]. 

Limitations with this theory include the role UVA has on NMSC development and 

the consequences of dissolving lipid rafts. As previously stated, UVB is responsible for 

over 80% of NMSC cases and is typically not associated with radical oxygen species 

formation [34]. Although UVA radiation is primarily responsible for the remaining 20% 

of NMSC cases and is known for developing radical oxygen species in UV exposed cells, 

a treatment targeting UVA exposure would have much more limited application than a 

treatment targeting UVB exposure. In addition, the UV lamp used in these experiments 

was within the UVB range which questions why a significant decrease in both p21 and 

p53 were observed if SM decreases radical oxygen species formation primarily 

associated with UVA. Lipid rafts also are involved in many key physiological processes, 

including regulating chemical activity of cholesterol in membranes and participate in the 
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processes of signal transduction [33]. Depletion of these lipid rafts have been found to 

inhibit cell signaling pathways, which could have a number of undesirable side effects 

associated with this treatment if SM does indeed degrade lipid rafts. The limited 

protection and potential adverse effects imparted by dissolving lipid rafts and preventing 

radical oxygen species has prompted interest in determining other theories explain SM 

observed UV protective properties. 

Another theory on how SM might potentially protect against UV induced NMSC is 

that SM leads to an increase of ceramide, which is proapoptotic factor following UV 

induced cellular damage. SM has been found to increase sphingomyelinase activity, 

which leads to the formation of additional ceramide production within KRTs [49]. 

Ceramide has been shown to be recruited to lipid rafts following cell stress and accelerate 

apoptosis (see Figure 5.3), known as ceramide mediated tumor suppression [49]. 

Increasing the sensitivity of the KRTs to apoptotic signaling and accelerating the 

apoptosis process could help ensure that potentially carcinogenic cells undergo apoptosis 

instead of potentially forming NMSC. Apoptosis rates of KRTs following UVB radiation 

is well documented, with apoptosis initially present eight hours following UV radiation, 

peaking around 24-48 hours past UV exposure and disappears 60-72 hours later [50]. If 

the increase of SM and, consequently, ceramide does indeed accelerate apoptosis of 

severely damaged KRTs, then SM treated KRTs could have had more cells that have 

already undergone apoptosis prior to the 24 hour time point, leading to the reduced DNA 

damage biomarker expression observed here. This could suggest that SM has anti-cancer 

effects by helping ensure potentially cancerous cells undergo apoptosis instead of 
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forming carcinomas and faster removal of these damaged KRTs could also help 

accelerate the repair process. 

 

Figure 5.3 Role of sphingomyelin and ceramide in apoptosis [49]. 

5.5 Limitations and Future Work 

The role of SM in preventing UV induced DNA damage or NMSC is still 

relatively unknown. It is quite possible that the effect of SM is a combination of 

reinforcing the plasma membrane, reducing radical oxygen species and accelerating 

apoptosis of potentially carcinogenic KRTs. Limitations with this study include having 
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obtained no evidence to support a mechanism on how SM provides photoprotective 

properties to KRTs. Additional work with radical oxygen species detection, staining for 

ceramide and the addition of quantum dots to the SM phospholipid could illuminate the 

effect SM has within the cells and could allow for determination of the processes behind 

SM capacity to protect against UV induced DNA damage. Additional limitations with 

this study include not conducting extensive proliferation or apoptotic staining to ensure 

safe use of SM. Although preliminary tests have not observed any adverse effects with 

application of SM, any future therapeutic application of SM will require extensive tests to 

evaluate the safety of exogenous SM. Last, these experiments are only observing DNA 

damage biomarkers on a simple monolayer of KRTs. Future work should include 

analyzing UV induced DNA damage on skin tissue constructs to verify trends found in 

this study. Further work could also involve testing orally administered SM in an animal 

model to determine if SM application actually reduces precursor legions and tumor 

formation following prolonged UV exposure.  

5.6 Conclusions 

 Bovine milk sphingomyelin was found to lead to a decrease in DNA damage 

biomarkers p21 and p53 following UV irradiation in human KRTs, which is indicative of 

preventing UV induced DNA damage. Both p21 and p53 markers showed a significant 

decrease in expression between the SM (+) UV (+) and SM (-) UV (+) groups providing 

evidence of SM imparting photoprotective effects to SM. The no UV groups had no 

significant difference in p21 and p53 expression, which provides no evidence of SM 

having adverse effects on the KRTs. The mechanism of how SM provides UV protection 

is still unknown. Different mechanisms, including preventing radical oxygen species, 
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providing structural support and leading to the increased production of the ceramide 

mediated tumor suppression, have been proposed to support SM as a potential anti-cancer 

treatment. However, additional studies will have to be conducted to determine the 

accuracy of these proposed theories. In addition, more work will have to be conducted to 

ensure that exogenous SM is safe and effective. These tests could include proliferation 

and apoptotic stains on monolayers of KRTs, DNA damage biomarker expression within 

skin tissue constructs and animal models to determine effectiveness. This work found that 

SM treated KRTs reduced the expression of both p21 and p53 compared to KRTs without 

SM in the presence of UV, which could potentially support further research into SM as a 

treatment to safely prevent the onset of NMSC.   
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