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ABSTRACT 

Virulence gene expression of Vibrio parahaemolyticus in the viable but nonculturable 

state 

 

 Vibrio parahaemolyticus is a food-borne pathogen commonly associated with the 

consumption of raw or undercooked seafood resulting in primary infections of the human 

gastrointestinal tract. It is estimated to cause about 4500 illnesses each year in the 

United States. However, infection from this food-borne pathogen can be avoided if this 

organism is detected in the implicated food, prior to consumption. Current standard 

methods of detecting this organism are dependent on the culturability of the bacteria. 

Detection based on an organism’s culturability may be problematic as V. 

parahaemolyticus has been known to exist in a viable but nonculturable (VBNC) state. 

Bacteria in the VBNC state are characterized by low levels of metabolic activity and the 

inability to be cultured by standard laboratory practices. When bacteria enter the VBNC 

state, their gene expression profile may be different than the culturable counterpart. We 

were interested in comparing the expression of two virulence-associated genes between 

VBNC and culturable cells of V. parahaemolyticus. V. parahaemolyticus RIMD2210633 

was incubated at 4°C in modified Morita mineral salt solution supplemented with 0.5% 

NaCl (MMS) or trypticase soy broth supplemented with 2% NaCl (TSBS), which 

represented nutrient poor and rich conditions, respectively. The number of VBNC and 

culturable cells were determined by standard plate count and fluorescence microscopy. 

The expression levels of virulence-associated genes tdh2 and escU, were measured 

relative to the housekeeping gene, pvsA, by qRT-PCR. Nutrient availability and 

temperatures exerted variable effects on the virulence gene expression. It is possible 

that VBNC V. parahaemolyticus cells may retain their pathogenicity potential.  
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I. Introduction 

Vibrio parahaemolyticus is a halophilic, Gram-negative bacterium. As a natural 

inhabitant of estuarine environments, it is frequently found in marine organisms, 

including plankton, fish, and shellfish (Lopatek et al., 2011; Yeung and Boor, 2004). V. 

parahaemolyticus is a prevalent food-borne pathogen in Japan, Taiwan, and other 

coastal countries (Yeung and Boor, 2004). It primarily causes disease through the 

consumption of raw, undercooked, or contaminated seafood resulting in primary 

infections of the human gastrointestinal tract (Yeung and Boor, 2004). Symptoms include 

watery diarrhea, abdominal pain, nausea, vomiting, fever, and chills (Levin, 2006; 

Pazhani et al., 2014; Yeung and Boor, 2004). These signs usually occur within 24 hours 

of consumption and the illness is self-limited within three days (Chowdhury et al., 2013; 

Yeung and Boor, 2004).  

Since the first United States FoodNet surveillance began in 1996, the incidence 

of Vibrio infections (0.51 per 1000,000 population) has continued to rise in 2013 as 

compared to 2010-2012 and 2006-2008 (Crim et al., 2014). Among the infections 

associated with the genus Vibrio, the majority was caused by V. parahaemolyticus (Crim 

et al., 2014). While most foodborne pathogens (i.e., Listeria, Campylobacter, and 

Escherichia coli O157) have shown a decrease in incidence from 1998 to 2008, V. 

parahaemolyticus has increased 47% within this time period (Banerjee et al., 2014). 

Additionally, many cases likely go unreported due to limitations of foodborne disease 

investigation and data acquisition (Scallan et al, 2011). Underreporting can be attributed 

by the lack of awareness of the disease, the self-limiting nature of the infection, and the 

lack of urgency to visit physicians (Banerjee et al., 2014). 
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Conventional isolation and detection methods of V. parahaemolyticus involve 

cultivating the bacteria followed by biochemical and molecular tests. These methods 

were used to determine the total number of V. parahaemolyticus, which were then used 

to estimate the numbers of the pathogenic subtype (Di et al., 2015; Malcolm et al., 

2015). Molecular techniques such as gene-specific probe and PCR are increasingly 

used to detect pathogenic V. parahaemolyticus defined by the presence of certain 

virulence markers (Malcolm et al., 2015). A loop-mediated isothermal amplification 

method has been recently developed and has since been coupled with other molecular 

techniques (Di et al., 2015; Malcolm et al., 2015; Notomi et al., 2015). These newer 

DNA-based methods, in conjunction with the conventional biochemical tests often 

require the bacterial cells to be cultured on typical growth media first. Detection based on 

an organism’s culturability can overlook a significant portion of V. parahaemolyticus cells 

as they have been found to exist in the viable but nonculturable (VBNC) state under 

some conditions.  

Viable but Nonculturable (VBNC) 

 Bacteria in the VBNC state are viable but exhibit very low levels of metabolic 

activity (Jones et al., 2008; Roszak et al., 1984; Shleeva et al., 2004). VBNC, known as 

“conditionally viable environmental cells (CVEC)” in some literature for V. cholerae, do 

not form colonies in common laboratory growth media since they are incapable of 

undergoing sustained cellular division, and hence, cannot be propagated using routine 

laboratory practices employing culturing techniques (Baffone et al., 2003; Jones et al., 

2012a; Jones et al., 2012b; Oliver and Bockian, 1995; Vora et al., 2005). Under 

unfavorable conditions such as low temperature and low nutrients, Gram-negative 

bacteria were found to persist in the VBNC state, possibly as a survival mechanism 
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(Colwell et al., 1996). The leading hypothesis suggests that this may be an adaptive 

strategy for long-term survival of bacteria under unfavorable environmental conditions. 

For example, some bacteria in the VBNC state form novel starvation and cold shock 

proteins (Oliver, 2005). VBNC V. parahaemolyticus cells are more resistant to acidity 

allowing them to survive in lower pH conditions (Wong and Want, 2004). Various Gram-

negative bacteria have also been shown to express virulence genes in the VBNC state 

(Fischer-Le Saux et al., 2002; Nilsson et al., 2002; Yaron and Matthews, 2002). Yaron 

and Matthews (2002) found that a variety of genes, including the virulence gene stx1 

(encodes Shiga toxin 1), were expressed in VBNC E. coli O157:H7. Since virulence gene 

expression had been detected in other VBNC Gram-negative bacteria, it is therefore 

likely that V. parahaemolyticus could express its major virulence gene in the VBNC state. 

On the other hand, VBNC cells exist in a state typically perceived to have low metabolic 

activity; thus, it is intriguing that VBNC cells would express energetically expensive 

virulence genes. To reconcile this difference, we speculated that some virulence genes 

may be essential for survival ex vivo.  

VBNC induction: environmental factors 

The VBNC state was initially discovered in Salmonella Enteritidis in 1984 by 

Roszak (Coutard et al., 2005; Roszak et al., 1984). Since then, over 60 species were 

confirmed to have the ability to enter the VBNC state, including a large number of human 

pathogens (Oliver, 2005). Many Vibrio species were found to enter the VBNC state as a 

response to stresses related to temperature, salinity, and nutrient. For instance, V. 

harveyi SF1 entered into the VBNC state upon incubation in seawater at 4°C for 60 days 

(Jia et al., 2013). Ramaiah et al (2002) reported that V. harveyi ATCC 14126 and V. 

fischeri UM1373 could enter the VBNC state in response to both low nutrient (artificial 
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sea water, ASW, to impose carbon starvation condition) and different salinities (35 ppt 

and 10 ppt) at 22°C. Other studies showed that low temperature alone was the main 

factor of VBNC induction for V. parahaemolyticus (Jiang and Chai, 1996; Mizunoe et al., 

2000; Wong et al., 2004). However, Coutard et al (2005) showed both decreased 

temperature and low nutrient availability were needed. In this previous study, V. 

parahaemolyticus Vp4 could not reach the VBNC state when cells were maintained in 

ASW at room temperature for over 21 days, but VBNC cells were induced when 

downshifting the temperature to 4°C for 42 days. 

Virulence genes in Vibrio parahaemolyticus 

Known and putative virulence factors are identified for V. parahaemolyticus. The 

widely recognized virulence factor, thermostable direct hemolysin (TDH), is almost 

exclusively found in clinical isolates (Miyamoto et al., 1969; Wong et al., 2004; Yeung 

and Boor, 2004). Thus, it is believed to be a major contributor to the pathogenesis 

(Makino et al., 2003). TDH is a pore-forming toxin composed of 165 amino acid residues 

(Park et al., 2004). It alters ion flux on intestinal cell membranes and ultimately results in 

diarrhea (Takahashi et al., 2000; Yeung and Boor, 2004). TDH is an enterotoxin whose 

action is mediated by intracellular calcium (Raimondi et al., 2000). This toxin has been 

demonstrated to increase fluid accumulation in rabbit ileal mucosa, which can result in 

secretory diarrhea in the intestine (Nishibuchi et al., 1992). Rabbit ileal mucosal tissue 

inoculated with TDH-positive strains stimulated a gradual production of enterotoxins 

measured in Ussing chambers 20 to 80 minutes post-inoculation as compared to those 

inoculated with a TDH-negative strain (Nishibuchi and Kaper, 1995). TDH is encoded by 

tdh gene(s), which are embedded in the pathogenicity island on one of the two 

chromosomes (chromosome 2) in V. parahaemolyticus RIMD2210633 (Makino et al., 
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2003). There are five variants of the tdh gene (tdh1 to tdh5) sharing >97% similarity 

(Baba et al., 1991). Of those genes, only tdh1 and tdh2 appear to be responsible for the 

beta-hemolysis on Wagatsuma blood agar, known as the Kanagawa phenomenon (KP) 

(Nishibuchi et al., 1992; Nishibuchi and Kaper, 1995). The tdh2 gene accounted for 

>90% of the total TDH protein production and the tdh1 gene accounted for about 9% 

(Nishibuchi and Kaper, 1995). The high expression level of tdh2 relative to tdh1 (and the 

other tdh genes) is due to differences in the basal-level production of mRNA and in the 

degree of transcriptional activation by ToxRS, a global regulator of many V. 

parahaemolyticus genes (Nishibuchi and Kaper, 1995).  

The other putative virulence factor is the type III secretion system (T3SS), which 

was discovered from a pathogenic V. parahaemolyticus O3:K6 strain following genome 

sequencing (Makino et al., 2003). T3SS is thought to be triggered when the bacteria 

come in close contact with the host. Effector proteins, such as VopT (involved in 

cytotoxicity) and VopZ (enables intestinal colonization and diarrheagenesis) are injected 

directly into host cells via its needle-like structures spanning the bacterial inner and outer 

membrane (Kumar et al., 2014; Zhou et al., 2013). T3SS is found in both chromosomes 

of V. parahaemolyticus: abbreviated as T3SS1 (on chromosome 1) and T3SS2 (on 

chromosome 2) (Makino et al., 2003). T3SS1 is found in many V. parahaemolyticus 

strains, while T3SS2 is exclusively present in the TDH-producing strains (Makino et al., 

2003; Park et al., 2004). Therefore the presence of T3SS2 is strongly related to the 

pathogenicity of V. parahaemolyticus to humans. T3SS2 promotes bacterial cell 

invasion, inactivation of the host immune pathway, and disruption of the gut epithelial 

barrier (Ritchie et al., 2012; Zhang et al., 2012; Zhou et al., 2013), resulting in 

enterotoxicity in infant rabbit models (Ritchie et al., 2012). T3SS1 is associated with 

killing host cells through autophagy, membrane blebbing, and finally cell lysis (Burdette 
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et al., 2008). V. parahaemolyticus mutants lacking T3SS2 exhibited poorer survival in the 

presence of the predator, marine bacterivorous protists, than mutants lacking TDH or 

T3SS1 (Matz et al., 2011).  This implied T3SS2 plays a key role in environmental fitness 

of V. parahaemolyticus. The seven protist species exhibited positive growth in the 

presence of T3SS1 or T3SS2 defective mutants.  On the other hand, the wild types kill 

50% of the initial protist population in as few as 12±1.6 hours (Matz et al., 2011). 

Therefore, some virulence genes of V. parahaemolyticus, particularly T3SS, likely play a 

role in the environmental fitness (Jones et al., 2012a).  

Virulence gene expression in VBNC state 

Entering into the VBNC state may represent an adaptive response of the bacteria 

that are under conditions when metabolism is significantly compromised (Shleeva et al., 

2004). Bacteria in the VBNC state are reported to have a lower metabolic rate. VBNC 

cells of Micrococcus luteus showed weak fluorescence signal after staining with 

Rhodamine-123, indicating poor membrane energization (Kaprelyants and Kell, 1992).  

The endogenous respiratory rate of VBNC Mycobacterium smegmatis was negligible 

when measured polarographically (Shleeva et al., 2004). Despite exhibiting low 

metabolic activity, some VBNC Gram-negative bacteria have been shown to express 

virulence factors. VBNC Helicobacter pylori expressed key toxins, VacA (vacuolating 

cytoxin A) and UreA (urease A), when cells became VBNC after starvation for >28 

months (Nilsson et al., 2002). Temperature (4oC) stressed VBNC E. coli expressed 

shiga-like toxin 1 gene, stx1, as detected by RT-PCR (Yaron and Matthews, 2002). 

VBNC V. vulnificus expressed its cytotoxin-hemolysin virulence gene, vvhA (Fischer-Le 

Saux et al., 2002; Vora et al., 2005). Since these Gram-negative bacteria have been 

shown to express virulence markers or genes when the cells are in VBNC state, VBNC 
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V. parahaemolyticus would also likely express virulence-associated genes. Current 

knowledge regarding virulence gene expression of VBNC V. parahaemolyticus is limited 

and contradictory. The most recognized virulence gene, tdh, was not detected via RT-

PCR by Coutard et al (2005), but was detected via microarray by Vora et al (2005). Most 

studies investigating VBNC V. parahaemolyticus cells and their virulence tend to focus 

on gene expression after resuscitation, i.e., after VBNC cells return to culturable state, 

instead of during the VBNC state. Not surprisingly, VBNC cells may resuscitate and 

regain virulence under suitable conditions in the human gastrointestinal tract (Oliver and 

Bockian, 1995). V. harveyi was shown to retain pathogenic potential following a lethal 

inoculation (2.8 x 104 CFU/mL) of VBNC cells in zebra fish after 7 days (Sun et al., 

2008). Oliver and Bockian (1995) demonstrated that VBNC V. vulnificus retained its 

pathogenicity after resuscitation within 24 hours in the peritoneal cavity of mice resulting 

in lethality. VBNC V. parahaemolyticus and V. alginolyticus cells were inoculated 

intragastrically and resuscitated in rat ileal loop assays, where the cells were able to 

reactivate their pathogenic potential within 48 hours and to cause disease (Baffone et al., 

2003). With much of the focus on virulence gene expression after resuscitation, V. 

parahaemolyticus virulence gene expression in the VBNC state remains insufficiently 

understood. 

It is expected that virulence genes are normally expressed when the pathogen 

resides in conditions resembling the host environment. Stronger tdh expression in V. 

parahaemolyticus was detected at 37°C compared to 28°C (Mahoney et al., 2010). V. 

parahaemolyticus also displayed greater cytotoxicity to CaCo-2 cells at 37°C than 28°C 

(Mahoney et al., 2010). Although the expression of virulence genes by culturable V. 

parahaemolyticus under normal conditions has been well studied, there is conflicting 
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data on the virulence of V. parahaemolyticus in the VBNC state as mentioned above. In 

a study by Coutard et al (2005), neither virulence gene, tdh1 nor tdh2, was detected by 

RT-PCR in V. parahaemolyticus Vp4 when it reached VBNC state after 42 days 

maintained in ASW at 4°C. The cells were monitored over time and the VBNC state was 

reached when viable cells, confirmed with fluorescence microscopy, yielded less than 

one CFU on heart infusion (0.5% NaCl) agar from 20 mL of ASW cell suspension. In 

contrast, Vora et al (2005) demonstrated expression of virulence genes, tdh and VP1696 

(yscC; a T3SS1 marker), in VBNC V. parahaemolyticus O3:K6 (F5828). They used 

temperature stress (4°C for 76 days) in ASW (1% salinity) to induce the cells into VBNC. 

They defined the cells were in the VBNC state when <0.3 CFU/mL was yielded on tryptic 

soy agar. To detect viability and virulence, they combined an oligonucleotide microarray 

with a modified amplification protocol to target mRNA. They acknowledged a 

contradiction with Coutard et al (2005), attributing the discrepancies to experimental 

factors (e.g., assay sensitivity, VBNC induction period) and biological variations (strain, 

gene copy number, regulation of expression). Interestingly, Coutard et al (2007b) 

conducted another study using a different strain, Vp5, and detected the presence (but 

not upregulation) of virulence genes, tdh2 and escU.  The latter gene encodes inner 

membrane proteins of T3SS2. Interestingly, the VBNC state was reached after merely 

15 days following inoculation at 4°C in ASW (Coutard et al., 2007b). This newer study, 

however, focused on recovery or resuscitation of VBNC cells. Resuscitation of bacteria 

require the cells to be reintroduced to their favorable conditions, where stress is no 

longer a factor, thus altering their gene expression profiles. Taken together, there are 

very limited studies on virulence gene expression of V. parahaemolyticus in the VBNC 
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state, in which cells are under stressful conditions. The virulence gene expression profile 

likely shows a marked difference than culturable cells or cells after resuscitation.  

Hypothesis and Objectives 

Many Gram-negative bacterial cells enter the VBNC state when they are 

stressed. Similarly, the food-borne pathogen, V. parahaemolyticus, enters the VBNC 

state upon encountering low temperatures and low nutrients. VBNC cells are thought to 

exhibit low metabolic activity; hence, genes that are nonessential for basic survival are 

expected to be downregulated or not expressed at all (Oliver, 2005). Although previous 

studies showed some virulence genes were expressed in the VBNC cells of other Gram 

negative bacteria, expression levels of TDH and T3SS of V. parahaemolyticus was found 

to be temperature-dependent (Matz et al., 2011). As virulence gene expression can be 

energetically expensive, we hypothesized that VBNC V. parahaemolyticus cells – usually 

maintained at low temperature – decrease expression for tdh and T3SS-related genes.  

Specifically for this study, VBNC V. parahaemolyticus cells were predicted to decrease 

tdh2 and escU expression, when they were subjected to stressful conditions of cold 

temperatures and limited nutrient availability. The objectives of this study were to induce 

V. parahaemolyticus into VBNC state, and to compare the relative expression of these 

two genes between VBNC and culturable V. parahaemolyticus. To this end, V. 

parahaemolyticus cells were subjected to different temperature and growth media for 

varying amount of time. Enumeration methods were optimized to quantify viable cells – 

culturable and nonculturable. Total and nascent RNA was extracted from cells subjected 

to different treatments, followed by conversion to cDNA, and then qRT-PCR. A 

housekeeping gene, pvsA, was used to normalize qRT-PCR data. The expression level 

of tdh2 and escU was compared to pvsA, yielding relative expression ratio (RER). In 
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addition to comparing VBNC with culturable cells, our experiments also shed light on the 

effects of environmental factors on expression of these genes in culturable cells.  
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II. Methods 

Cultures and Media 

 A TDH-positive, V. parahaemolyticus serotype O3:K6 strain was isolated at the 

Kansai International Airport quarantine station in 1996 from a patient with traveler’s 

diarrhea (Makino et al., 2003). The strain was named RIMD2210633. We acquired the 

strain from the Research Institute for Microbial Diseases, Osaka University. A complete 

genome sequence of this strain is available, showing this strain harbors tdh2 and escU.  

The frozen stock, which was kept at -80°C, was subcultured on trypticase soy broth or 

agar supplemented with 2% NaCl (TSBS and TSAS, respectively) at least three times 

prior to all experiments. Both solutions were made with a TSB stock concentration of 30 

g/L. Some cultures were also incubated in a defined medium named modified Morita 

mineral salt solution (MMS-0.5% NaCl). The composition was described by Jiang and 

Chai (1996), which consisted of 5 g NaCl, 0.8 g KCl, 5.6 g MgCl2-6H2O, 7.6 g MgSO4-

7H2O, 0.9 mg FeSO4-7H2O, 1.54 g CaCl2-2H2O, 0.1 g Na2HPO4, 1.21 g Tris buffer (pH 

7.8) in one liter of deionized water.  

Experimental treatments  

 V. parahaemolyticus was simultaneously exposed to an array of culture and 

temperature conditions (Table 1). Cultures were subjected to combinations of nutrient 

conditions (TSBS or MMS-0.5% NaCl), temperature conditions (4, 25, or 37°C), and 

incubation times (1, 2, 7, or ≥14 days). Five separate trials were conducted. 
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Table 1. Media and incubation conditions in the experimental treatments.   

Treatment Medium Temperature (°C) Time 
# 1 TSBS 4 ≥14 days 
# 2 TSBS 25 7 days 
# 3 TSBS 37 7 days 
# 4 MMS-0.5%NaCl 4 ≥21 days 
# 5 MMS-0.5%NaCl 25 7 days 
# 6 MMS-0.5%NaCl 37 7 days 
# 7 TSBS 25 2 days 
# 8 TSBS à MMS-0.5%NaCl 37 à 4 1 day à 1 hr 
 

Enumeration of viable cells – culturable or nonculturable 

At various times, cultures were monitored by standard plate count (SPC) and 

viability stain followed by direct microscopic count (DMC). Viability was evaluated based 

on cell membrane integrity, which is a well-accepted criterion for distinguishing viable 

cells from dead cells. The LIVE/DEAD® BacLightTM Bacterial Viability Kit L7012 

(Invitrogen, Grand Island, NY, USA) was used to determine cell viability (Figure 1). V. 

parahaemolyticus cells were considered to be in the VBNC state when <1 CFU was 

detected upon plating 100 µL on a nonselective medium (TSAS) while >99.99% cells are 

viable based on DMC method. 
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Figure 1. Fluorescent images of V. parahaemolyticus at 400X. The LIVE/DEAD® BacLightTM 
bacterial viability kit uses two fluorescent dyes based on the integrity of the bacterial membrane. 
Syto9 has excitation/emission maxima of 480/500 nm and stains all bacteria green. Propidium 
iodide has excitation/emission maxima of 490/635 nm and penetrates bacteria with damaged 
membranes. Longpass and dual emission filters were used for simultaneous viewing of both 
stains.  The green cells represent those with an intact cell membrane, considered viable. Red or 
red-yellow cells represent those with an injured or compromised cell membrane, considered 
nonviable.  

 

LIVE/DEAD® BacLightTM bacterial viability kit detects live cells with an intact 

membrane stained green by SYTO9 and dead cells with a damaged membrane stained 

red by propidium iodide. Using known amount of live and dead cells, our preliminary 

work showed that staining with a 1:1 ratio of Syto9:propidium iodide, as suggested by 

manufacturing protocols, yielded an overestimate of live cells. A 1:3 ratio of 

Syto9:propidium iodide was found to yield more accurate results. After 30 minutes of 

incubation in the dark with AntiQuench at room temperature, the stained samples were 

spread with 5 μL of 80% glycerol onto a 0.22 μm-pore size polycarbonate black filter 

overlaid with a 22 mm2 cover slip. The samples were viewed at 400X in a dark room. A 
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filter cube encompassing the excitation/emission maxima of both stains was used to 

visualize both green and red cells simultaneously. Staining of the cells with Syto9 and 

propidium iodide simultaneously allows for the visualization of viable and nonviable cells 

based on fluorescent emissions. Green cells represent those with an intact cell 

membrane, considered viable. Red or red-yellow cells represent those with an injured or 

compromised cell membrane, considered nonviable. The viable and nonviable cells were 

counted from at least ten different fields of vision. The DMC/mL of viable and nonviable 

cells was determined by the following equation: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑒𝑙𝑙𝑠  𝑝𝑒𝑟  𝑓𝑖𝑒𝑙𝑑  𝑜𝑓  𝑣𝑖𝑠𝑖𝑜𝑛  ×  𝑀𝑖𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐  𝐹𝑎𝑐𝑡𝑜𝑟  ×    !
!"#$%"&'  !"#$%&

  

 

The Microscopic Factor (MF) was determined by dividing the area of the stain (22 mm2) 

by the area of the field of vision (0.0043225 mm2) and then multiplying it with the 

reciprocal of the volume of the stain (0.010 mL). Trial 1 and parts of Trial 2 contained 3 

µL of BacLight dyes in 1 mL of sample, and was not further diluted in slide preparation. 

Thus, the dilution factor was 1000/1003. Parts of Trial 2, and all of Trials 3, 4, and 5 

contained 3 µL of BacLight dye and 5 µL AntiQuench in 1 mL of sample. When 

spreading onto the membrane filter, 5 µL of sample was diluted further with 5 µL 

glycerol. Thus, the dilution factor was !"#
!"!

.  
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The standard plate count was conducted to determine the culturability of cells. 

Ten-fold serial dilutions were made, followed by plating on TSAS. The CFU/mL was 

determined by dividing the average number of CFU per plate by the dilution factor of the 

plate. In addition, 0.1 mL of the undiluted sample was streaked on TSAS. The number of 

VBNC cells was the difference between culturable cell count (i.e., CFU/mL) and viable 

cell count  (i.e., DMC/mL).  

Preparation of template for qRT-PCR 

 RNA was extracted from all treatments using a TRIzol method with PureLink RNA 

Mini Kit (Invitrogen, Grand Island, NY, USA). One volume of DNase (10 µL DNase stock 

in 190 µL RDD buffer) was added to 1 volume of RNA extract, followed by DNase 

inactivation with 0.5 mM EDTA heat-treated for 10 minutes at 65°C. RNA and/or DNA 

were quantified spectrophotometrically.  

One µg RNA extract was reverse transcribed to cDNA using 50 ng/µL random 

nonspecific hexamers from the commercial kit – SuperScript II First Strand Synthesis 

System for RT-PCR or SuperScript III First-Strand Synthesis SuperMix for qRT-PCR 

(Life Technologies, Carlsbad, CA, USA). RNase H was added to remove the RNA from 

the cDNA:RNA hybrid. RNA and ssDNA were quantified by NanoPhotometer (Implen 

GmbH, Muchen, Germany) to determine the purity of the cDNA.  

Nucleic acid labeling 

To confirm RNA was synthesized by viable cells, nascent RNA was labeled using 

the Click-iT® Nascent RNA Capture Kit prior to RNA extraction. Four milliliters overnight 

cultures and 4 mL VBNC cells (obtained from treatments #1-TSBS/4°C and #4-

MMS/4°C) each were incubated overnight at 25°C with 5-ethynyl uridine (EU) at a final 
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concentration of 0.2 mM. EU was incorporated into the nascent RNA. Total labeled RNA 

was extracted with the same TRIzol method described above. The extract was then 

biotinylated to an azide-modified biotin, bound to Dynabeads® MyOneTM Streptavidin T1 

magnetic beads, and washed thoroughly. These transcripts were quantified and used to 

construct cDNA as described above. 

Primers and qRT-PCR conditions 

Primers for the housekeeping and virulence-associated genes were selected 

according to Coutard et al (2007a) (Table 2). The gene, pvsA, was reported to have the 

most stable transcriptional expression levels among four housekeeping gene candidates 

(rpoS, pvsA, fur, and pvuA) in RT-PCR (Coutard et al., 2007b). Analysis for the stability 

of gene expression was evaluated with by geNorm software, resulting with pvsA and 

pvuA having the most stable transcriptional expression genes and a high level of 

regulation of the rpoS gene. Involved in the iron uptake pathway, pvsA, is responsible for 

the biosynthesis and transport of siderophore vibrioferrin in V. parahaemolyticus 

(Tanabe et al., 2003). Used as a positive control for the reverse transcription process 

and qRT-PCR, 1 ng of MS2 RNA (Roche Diagnostics, Indianapolis, Indiana) was 

included in most qRT-PCR runs to amplify oco gene (Coutard et al., 2007b). The two 

virulence genes, tdh2 and escU, were the target genes.  
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Table 2. Primers used in this study (Coutard et al., 2007a) 

Gene Primer sequence (5’ to 3’) Primer 
length 
(base) 

G+C 
content 
(%) 

Melt 
temp 
(°C) 

Amplicon 
length 
(bp) 

pvsA F2-pvsA: CTC CTT CAT CCA ACA CGA T 
R2-pvsA: GGG CGA GAT AAT CCT TGT 

19 
18 

47.4 
50.0 

58.3 
58.4 

104 

tdh2 F-tdh2: CAA CTT TTA ATA CCA ATG CAC 
R2-tdh2: GCC ATT TAG TAC CTG ACG 

21 
18 

33.3 
50.0 

55.6 
58.4 

129 

escU F1-escU: TAA CCC GAC ACA TAT TCT GG 
R-escU: CAT GGC TCT TGC TAA CGG 

20 
18 

45.0 
55.6 

58.4 
60.7 

163 

MS2 
RNA 

Oco-1: GCT CTG AGA GCG GCT CTA TTG 
Oco-2: CGT TAT AGC GGA CGT 

21 
18 

57.1 
61.1 

65.3 
63.0 

69 
 

 

 

In most trials, RNA extract or cDNA was normalized to similar concentration prior 

to qRT-PCR. The cDNA template and primer set was mixed with reagents from a 

commercial kit, DyNAmo ColorFlash SYBR Green qPCR kit (Thermo Fisher Scientific, 

Waltham, WA, USA). cDNA template and 0.3 μM of each primer were added to the kit’s 

master mix which contained hot-start version of a modified Thermus brockianus DNA 

polymerase, SYBR® Green I, PCR buffer, MgCl2 (2.5 mM final conc) and dNTP mix.  

Each qRT-PCR reaction was performed in 20 μL running on 7300 Real-Time PCR 

system (Applied Biosystems). The thermal cycling conditions were adapted from 

(Coutard et al., 2007b): a denaturation program (95°C for 10 min), an amplification 

program repeated 40 times (95°C for 15 s and 60°C for 1 min), and a melting-curve 

program (55°C to 95°C). Positive control (MS2) and negative controls (no templates and 

RNA from treatment cells) were included in each run. All standards, controls, and 

samples were run in triplicate wells in each microplate. Standard curves for each gene 

(pvsA, tdh2, escU) were constructed using DNA extract of 10-mL overnight V. 

parahaemolyticus cultures. A 5-fold dilution was performed, with the highest DNA 

concentration adjusted to be 200 ng/μL. The standard curve slopes ranged from -3.1 to -

3.5, which corresponded to 90-110% PCR efficiency.  
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Relative quantification and statistical analysis of virulence genes 

The expression of tdh2 and escU was determined relative to that of pvsA 

according to (Pfaffl, 2001). The following relative expression ratio (RER) equation was 

calculated for each gene of interest by using a mathematical model as described by 

(Pfaffl, 2001). This method is commonly used to investigate the physiological changes in 

gene expression (Coutard et al., 2007b; Delcenserie et al., 2012). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑟𝑎𝑡𝑖𝑜   =   
(𝐸!"#$%!)∆!!(!"#$%!)

(𝐸!"#)∆!!(!"#)
 

Real-time PCR efficiency (E) was calculated as 10(-1/slope). Eref was the reference, 

or housekeeping, gene, pvsA. Etarget was either of the target genes, tdh2 and escU. The 

slope is derived from the standard curve. ∆CT(target) is the difference between two 

treatments of a single virulence gene. ∆CT(reference) is the difference between two 

treatments of the reference (i.e., housekeeping) gene. Thus, RER indicated up- or down-

regulation of virulence gene in certain treatment (such as #1 or #4 that yielded VBNC) 

relative to control (such as #8 that yielded culturable cells).   
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III. Results 

Conditions to obtain VBNC cells 

Bacterial cells from all eight treatments were enumerated on the initial and final 

days of treatment. On the initial days of treatment, SPC and DMC (viability stain) were 

performed. On the final days of treatment, both enumeration methods and RNA 

extraction were performed. In all treatments, virtually 100% of cells were culturable on 

the day of the experiment (Table 3). As described in Chapter II, viability of the cells was 

assessed by using membrane permeable (Syto9) and impermeable (PI) stains. The 

injured cells appeared as red or reddish yellow, thus were counted as nonviable cells.  

Indeed, viable cells consist of VBNC cells, as well as injured cells that are often 

nonculturable on selective media (Ducret et al. 2014).  It was expected that injured cells 

would be formed following exposure to some treatments.  These cells, however, should 

grow on non-selective media at typical incubating temperature.  In our experiments, CFU 

results were obtained by plating all samples on non-selective, complex medium TSAS 

followed by incubation at 35oC for ~48 h.  These plates were further incubated at room 

temperature for additional 3-5 days before they were disposed of.  The V. 

parahaemolyticus strain used in this study can grow at both temperatures.  We did not 

detect additional CFU after the incubation period at room temperature.  Specifically, no 

CFU was observed from treatments that yielded VBNC cells.  Therefore, the presence of 

injured cells was insignificant and gene expression of these cells, if any, was negligible.  
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Table 3. Means and SDs of SPC and DMC of viable and nonviable cells on Day=0 and on 

the final day (i.e., day of RNA extraction). Five replicates were conducted per treatment. 

Treatment Day 0 Final Day 
 CFU/mL  DMC/mL of 

viable cells  
CFU/mL  DMC/mL of 

viable cells  
#1 trials 1 to 3 (TSBS, 

4°C, 14 d)* 
(5.1 ± 1.6) x108 (4.1 ± 1.3) x108 (8.3 ± 1.4) x107  (4.6 ± 2.2) x108  

#1 trials 4 and 5 
(TSBS, 4°C, 25 d) 

(8.2 ± 3.6) x108 (2.9 ± 2.6) x108 <10 (1.3 ± 0.3) x108  

#2 (TSBS, 25°C, 7 d) (2.9 ± 2.2) x108 (3.1 ± 2.2) x108 (6.0 ± 1.2) x106 (3.8 ± 3.2) x108  

#3 (TSBS, 37°C, 7 d) (4.3 ± 1.4) x108 (4.0 ± 1.2) x108 (1.0 ± 0.6) x107  (6.0 ± 4.2) x108  

#4 (MMS, 4°C, ≥21 d) (5.2 ± 1.7) x108 (4.7 ± 1.3) x108 <10 (4.5 ± 2.2) x108  

#5 (MMS, 25°C, 7 d) (3.9 ± 2.8) x108 (4.1 ± 1.2) x108 (8.4 ± 6.9) x106  (4.9 ± 4.4) x108  

#6 (MMS, 37°C, 7 d) (4.7 ± 1.9) x108 (2.7 ± 1.8) x108 (9.7 ± 1.3) x106  (3.8 ± 2.7) x108  

#7 (TSBS, 25°C, 2 d) (4.7 ± 4.1) x108 (2.7 ± 0.6) x108 (7.9 ± 7.3) x107  (4.9 ± 0.9) x108  

#8 (TSBS, 37°C, 1 d 
à MMS, 4°C, 1 h) 

(6.6 ± 3.8) x108 (3.5 ± 1.8) x108 (3.7 ± 2.3) x107  (1.7 ± 1.7) x108  

*The first three trials of treatment #1 did not yield VBNC cells. 

 

As shown in Table 3, a loss of culturability was observed over time, especially 

when cells were incubated at 4°C. V. parahaemolyticus cells were defined to have 

reached VBNC state when no CFU was obtained after 100 µL was inoculated on TSAS, 

and thus <10 CFU/mL was culturable, whereas >99.99% of the cell population exhibited 

green fluorescence.  Among the five trials in treatment #1 (TSBS at 4°C), the first three 

did not yield VBNC cells following 14 days of incubation.  After maintaining the cells in 

the medium for 25 days, VBNC cells were obtained in trials 4 and 5. On the other hand, 

all trials in treatment #4 (MMS at 4°C) yielded VBNC cells. Therefore, we successfully 

obtained >99.99±0.68% VBNC cells by maintaining V. parahaemolyticus in MMS (all 

trials in treatment #4) or TSBS (two trials in treatment #1) at 4°C for ≥21 days (Figure 2). 
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The number of viable cells as detected by DMC was fairly consistent between the initial 

and the final day of treatment.  

 

 

 

 

 

 
Figure 2. Entry of V. parahaemolyticus into the VBNC state in different media maintained 
at 4°C. The culturable cells (•) were enumerated by standard plate count on TSAS. Viable (♦) 
and nonviable cells were enumerated by direct microscopic method following viability staining. 
Total count (n) includes viable and nonviable cells. The blue solid line represents the detection 
limit of the SPC method (10 cfu/mL). 

 

As the other treatments did not yield sufficient amount of VBNC cells, qRT-PCR 

data from these treatments were not used to determine gene expression of VBNC cells. 

Nevertheless, they were used to examine the effects of temperature and nutrient 

availability on gene expression of culturable cells. 

 

qRT-PCR using EU-labeled RNA 

As cells in the VBNC state exhibit low metabolic activity and thus are believed to 

transcribe only genes necessary for immediate survival, we wanted to confirm that the 

virulence genes detected were de novo. Therefore, we focused on the two treatments 

(#1 and #4) that resulted in cells successfully reaching the VBNC state (i.e., TSBS at 

4°C and MMS at 4°C) to test for newly synthesized RNA.  After confirming cells are in 

≥21 ≥21 
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VBNC state, samples (109 cells) were incubated with an analog of uridine, EU, which 

was incorporated into the newly synthesized RNA. This EU-labeled RNA was then 

isolated and quantified spectrophotometrically.  The mean±SD RNA concentration for 

treatment #1 (TSBS) and treatment #4 (MMS) was 27.5±1.7 ng/µL and 27.7±7.0 ng/µL, 

respectively (n=3). The purity was good because A260/A280 of these six samples of 

labeled-RNA extracts was no lower than 1.8. In comparison, a culture grown in TSBS at 

25oC for 24 h had an RNA concentration of 49 ng/µL and A260/A280 of ~2.0. A negative 

control using only dead cells was unfortunately not included in this analysis.  These 

results tentatively suggest that VBNC cells were active in expressing RNA at about half 

the rate of overnight culturable cells.  The next step was to convert these labeled-RNA 

extracts into cDNA, normalized to ~200 ng/µL, prior to qPCR.  

As shown in Figure 3, MMS-induced VBNC cells yielded Ct values of 38.6±0.3, 

36.3±0.1, and 36.4±1.2 for pvsA, tdh2, and escU, respectively. TSBS-induced VBNC 

cells yielded Ct values of 37.2±0.3, 35.8±1.2, and 36.1±1.5 for pvsA, tdh2, and escU, 

respectively.  The two negative controls (no templates and no RT) were both undetected 

(i.e., no amplification).  These preliminary results suggested that VBNC cells expressed 

these genes, if any, in small quantities.   
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Figure 3. Mean Ct values of nascent RNA from VBNC cells and overnight cultures.  VBNC 
cells were induced after maintaining V. parahaemolyticus in MMS or TSBS at 4°C for ≥21 days.  
Overnight (o/n) cultures were prepared by incubating the same strain in TSBS at 25oC for 24 h.  
Newly synthesized RNA was used in the qRT-PCR to detect for the expression of two virulence 
markers (tdh2 and escU) and a housekeeping gene (pvsA). 

 

On the other hand, after comparing the Ct values between different types of 

culturable cells, it appeared that labeled RNA was not a good template for qRT-PCR.  

Overnight cultures yielded Ct values of 36.6±0.3, 33.3±0.2, and 34.1±0.2 for pvsA, tdh2, 

and escU, respectively.  The overnight cultures used in this qRT-PCR were 24 h-old 

cultures, which yielded good amount of growth as reflected by the turbidity of the broth.  

The Ct values from these cultures, however, were much higher than those obtained 

using total RNA extracts of similar cultures grown for 48 h instead of 24 h (treatment #7).  

These 48-h old cultures yielded Ct values of 24.6±4.0, 23.3±3.9, and 24.7±6.9 for pvsA, 

tdh2, and escU, respectively (Fig 5).  
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The experimental melting temperatures for the pvsA, tdh2, and escU amplicons 

showed target melting temperatures at 79.2, 77.0, and 78.5°C, respectively.  Using the 

uMELTSM Melting Curve Predictions Software (https://www.dna.utah.edu/umelt/umelt.html#), the 

predicted melting temperatures for these genes are 80.0, 78.5, and 79.5°C. The 

prediction was based on the assumption that the concentration of monovalent ions in the 

PCR reaction was 20 mM, which might be different than the actual concentration.   

 

 

Figure 4. Derivative melting curve for tdh2 using EU-labeled RNA. The profile was obtained 
using TSBS-induced VBNC cells of V. parahaemolyticus.  The peaks to the left of 65oC are likely 
associated with primer-dimers or other non-specific amplification as they were present in all 
melting curve analyses.  The peak at ~77oC was expected for tdh2.  The additional peak at ~74oC 
was only seen in qRT-PCR using labeled RNA. 

 

However, unlike qRT-PCR using total RNA extracts, the derivative melting curve 

using nascent RNA sometimes showed additional peaks (Figure 4) suggesting that 1) 

there might be non-specific amplification, or 2) the labeled RNA affected the cDNA 

products resulting in a different melting profile.  Together with higher than expected Ct 
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values, the EU-labeled RNA likely was not a good template for qRT-PCR.  

Consequently, total RNA extracts were used in further qRT-PCR experiments. 

 

Expression of virulence factors in VBNC cells 

Owing to questionable template quality of the EU-labeled RNA, total RNA of 

VBNC and culturable cells were extracted to determine the expression levels of virulence 

associated genes relative to the housekeeping gene under various conditions. Total 

RNA may contain residual RNA in addition to nascent RNA (Table 4).  RNA was not 

quantified in the first trials.  Concentrations of the cDNA template were normalized in the 

last two trials. 

Table 4. Concentration and purity of nucleic acid from all treatment. 

 Trial 2* Trial 3* Trial 4** Trial 5** 

 ng/µL A260/ 
A280 

ng/µL A260/ 
A280 

ng/µL A260/ 
A280 

ng/µL A260/ 
A280 

#1 (TSBS, 4°C, 25 d) 290 2.0 190 2.0 201 1.9 201 1.9 

#2 (TSBS, 25°C, 7 d) 547 2.0 492 1.9 203 1.8 199 1.9 

#3 (TSBS, 37°C, 7 d) 188 1.8 165 2.0 196 1.9 201 1.9 

#4 (MMS, 4°C, ≥21 d) 254 2.0 278 1.9 203 1.9 206 1.9 

#5 (MMS, 25°C, 7 d) 74.5 1.9 51 1.9 203 1.9 206 1.9 

#6 (MMS, 37°C, 7 d) 78.4 2.0 70.6 1.9 201 1.8 206 1.9 

#7 (TSBS, 25°C, 2 d) 171 2.0 406 2.0 203 1.8 199 1.8 

#8 (TSBS, 37°C, 1 d à 
MMS, 4°C, 1 h) 

457 2.0 751 1.9 199 1.9 206 1.9 

* Concentrations of trials 2 and 3 are for RNA. 
** Concentrations of trials 4 and 5 are for cDNA. 
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Checking for data quality 

The means and standard deviations of Ct for all genes were shown in Figure 5. 

All qPCR runs (15 total) included a positive control and two negative controls, which are 

no template and RNA as template (Appendix B).  These controls helped us determine 

the qPCR run performance and if there was a contamination issue.  There was an 

occasion where one microplate was likely contaminated due to the Ct values of negative 

controls being slightly lower than Ct values of the genes.  These Ct values were 

eliminated prior to RER analyses.  In most of the qPCR runs, the triplicate wells returned 

similar Ct values, which were expected.  In a few occasions, one well returned 

“undetermined” which was likely due to pipetting error.  To verify that elimination of this 

replicate well would not affect the conclusion, we compared results from RER analyses 

that did or did not include this undetermined Ct.  For the analysis that included this well, 

a Ct of 45 was assumed to enable calculation.  The presumed number was chosen 

because some negative controls yielded Ct of ~45.  The RER results were either no 

change or only differed minimally between these analyses.  In a few instances the RER 

varied but the overall conclusion remained unchanged.  For example, when comparing 

treatment #6 vs #5 (MMS, 37oC vs 25oC), tdh2 was upregulated 20.8 fold at 37oC when 

the RER analysis included the assumed number of 45.  Eliminating the undetermined Ct 

value from the analysis (i.e., did not use assumption) yielded an upregulation of 5.2 fold 

instead. 

Ideally the initial template concentrations should be similar across all qPCR runs.  

Otherwise, a treatment that generates higher amount of cells (and thus initial template) 

would likely produce a lower Ct value for the amplicon than a treatment that has a lower 

template yield, even when in fact the former treated cells do not upregulate the 
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expression of the target gene.  In this study, cDNA was normalized for the last two trials 

of all treatments.  After closely examining all data, no particular trend was identified 

between these two trials and other trials using varying amount of templates.  On the 

other hand, it appeared that expression of all genes was affected by the treatments 

(Figure 5).  

 

 
Figure 5. Mean Ct values of the housekeeping gene, pvsA, and virulence genes, tdh2 and 
escU, from the various treatments. Treatment #1(TSBS, 4°C, 14-25d) is divided into trials 1 to 
3, and 4 to 5, because the first three trials did not yield VBNC cells. Treatment #2 (TSBS, 25°C, 
7d).  Treatment #3 (TSBS, 37°C, 7d).  Treatment #4 (MMS, 4°C, ≥21d). Treatment #5 (MMS, 
25°C, 7d). Treatment #6 (MMS, 37°C, 7d).  Treatment #7 (TSBS, 25°C, 2d).  Treatment #8 
(TSBS, 37°C, 24h à MMS, 4°C, 1h). 

 

In addition to Ct values, specific amplification of the genes was indicated by 

melting curve analysis that was performed in each qPCR run (Figure 6). Amplification of 

a single target gene usually exhibits one peak in a derivative melting curve.  As 

mentioned in the previous section, the empirical melting temperatures for the pvsA, tdh2, 
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and escU amplicons were found to be 79.2, 77.0, and 78.5°C, respectively.  These 

numbers are very close to the predicted ones.   

 

Figure 6. A representative derivative melting curve of tdh2 using total RNA. 

A standard curve was included in each qPCR run using DNA from overnight 

cultures of V. parahaemolyticus. The average slope of pvsA, tdh2, and escU was -3.17, -

3.19, and -3.31. The range was -3.6 to -3.1 representing 90-110% amplification 

efficiency. The average R2 of pvsA, tdh2, and escU was 0.93, 0.91, and 0.97, 

respectively (Appendixes A and C). The R2 values show how well the standard curve fits 

its measured data therefore the reliability of the assay. With the values of both the slope 

and R2 within the ideal range, the amplification efficiency of our qPCR assays was good.  

Establishing a reference treatment or baseline 

The mean RERs of the gene of interest, tdh2 and escU, were calculated for each 

treatment using total RNA. The reference gene, pvsA, was used to normalize the raw 
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expression levels of the genes of interest. Therefore, each RER shows the expression 

levels of tdh2 or escU relative to pvsA between two treatments. We were interested in 

finding the expression levels of tdh2 and escU in VBNC cells relative to culturable cells. 

Therefore, the mean RER for these genes from VBNC cells obtained from treatment #1 

(TSBS/4°C) and #4 (MMS/4°C) was compared against the culturable cells obtained from 

treatment #8 (TSBS/37°C à MMS/4°C). It is important to have a legitimate control that 

provides a more representative baseline. Typical overnight cultures in TSBS at 25 or 

37°C may not be a good control in VBNC experiment because they negate the effect of 

temperature shock experienced by the treated cells. Similarly, typical overnight cultures 

also do not take into account the nutrient shock experienced by cells such as those in 

treatment #4.  

Table 5. RERs of virulence markers in VBNC cells compared to different overnight 
cultures. 

 Reference treatment: cells grown in 
TSBS at 25oC for 48 h (treatment #7) 

Reference treatment: cells grown in 
TSBS at 37oC for 24 h then switched 
to MMS at 4oC for 1 h (treatment #8) 

 TSBS-induced 
VBNC cells 

(treatment #1) 

MMS-induced 
VBNC cells 

(treatment #4) 

TSBS-induced 
VBNC cells 

(treatment #1) 

MMS-induced 
VBNC cells 

(treatment #4) 

tdh2 0.48 0.49 1.05 0.85 

escU 13.02 11.72 1.19 2.08 

 

Evaluating the RER obtained using different overnight controls may result in 

vastly different values that can lead to overreaching conclusions of virulence expression. 

The RER obtained from overnight cultures accounting for environmental variations led to 

a more conservative conclusion than using cultures that had not experienced the 

variations (Table 5). Since RNA expression is activated upon changes in the 

environment, we reasoned that some RNA species produced by VBNC cells were in 
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response to temperature and nutrient shock which might not be specific to the VBNC 

state. For example, the two recently discovered T6SSs in V. parahaemolyticus 

expressed under different environmental conditions.  T6SS2 was expressed at all tested 

temperatures (23°C, 30°C, and 37°C) by Salomon et al. (2013).  In low (0.5%) salt 

conditions, T6SS2 was most active at cold and warm temperatures.  In contrast, T6SS1 

was active under marine-like conditions (23 and 30°C, but not 37°C; higher expression in 

3% salt conditions).  In E. coli O157:H7, low doses of glucose (0.1 to 0.5%) were able to 

downregulate genes involved in the production of Shiga toxin (Delcenserie et al., 2012). 

Therefore, V. parahaemolyticus cells obtained from treatment #8, which experienced 

similar environmental variations as the VBNC cells, would serve a better control 

treatment in our RER analyses.  

RER analyses 

RER was obtained by comparing target gene expression with reference gene 

expression within the treatment, and then comparing the test treatment with the control 

treatment. In this study, the gene expression of the two virulence genes, tdh2 and escU, 

were calculated relative to that of the housekeeping gene, pvsA. Encompassed by this 

analysis was the change in Ct, which was obtained by comparing the treatment of 

interest (#1 or #4) to the control (#8). For example, to get the RER of tdh2 in TSBS-

induced VBNC cells from treatment #1, the calculation would be (Etdh2)Δ
CT(#8-#1) / 

(EpvsA)Δ
CT(#8-#1). Our results suggested that VBNC cells expressed tdh2 and escU at a 

similar or higher level than culturable cells (Figure 7).  This is a tentative conclusion 

because total RNA was used.  Analysis of gene expression between VBNC (treatment 

#4) and culturable (treatment #8) cells suggests that escU was significantly upregulated 

(> 2-fold change) in MMS-induced VBNC cells.  The expression level of escU was lower 



 

31 

in TSBS-induced VBNC cells (1.19-fold). The mean RER of tdh2 in MMS-induced and 

TSBS-induced VBNC cells was 0.85 and 1.05, respectively, indicating a similar level of 

expression to the culturable cells.  On the other hand, when comparing the first three vs 

the last two trials of treatment #1, the RER in VBNC of tdh2 was 0.80 and escU was 

0.03, indicating similar relative expression level of tdh2 between VBNC and culturable 

cells but significantly downregulation of escU in VBNC cells.  

 
Figure 7. Mean RER of tdh2 and escU in TSBS- or MMS-induced VBNC cells compared to 
culturable cells.  Culturable cells were initially grown in TSBS at 37°C for 24 h, then switched to 
MMS at 4°C for one hour (treatment #8). VBNC cells were maintained in TSBS at 4°C for ≥21 
days (treatment #1) or in MMS at 4°C for ≥25 days (treatment #4).  

 

Effect of temperature and media on virulence gene expression in culturable cells 

The relative virulence gene expression of escU in VBNC cells varied depending 

on media or nutrient availability (Figure 7). Expression levels of escU increased when 

cells were in MMS.  Relative expression of escU in TSBS, and tdh2 in MMS and TSBS, 

were similar to that for culturable cells.  It appears that, VBNC cells in nutrient rich 

0.000

0.500

1.000

1.500

2.000

2.500

 TSBS/4C  MMS/4C

R
el

at
iv

e 
Ex

pr
es

si
on

 R
at

io

tdh2

escU



 

32 

conditions (TSBS) showed little RER fluctuation, whereas VBNC cells in nutrient poor 

conditions (MMS) showed greater RER variation.   

 

To determine if gene expression in culturable cells also varied depending on 

environmental conditions, qRT-PCR data from other treatments (#2, 3, 5, 6) that yielded 

culturable cells were analyzed.  In these treatments, cells were incubated in either TSBS 

or MMS at 25 or 37oC. When examining the effects on culturable cells, escU had overall 

higher expression levels than tdh2 at these temperatures.  Relative expression of escU 

was 3.6- and 8.6-fold higher in TSBS than MMS at 25 and 37 oC, respectively (Figure 8, 

Appendix D3). This observation was consistent using VBNC cells that escU expressions 

tend to be higher in TSBS.  

 

 
Figure 8. Mean RER of virulence genes in VBNC or culturabe cells of V. parahaemolyticus 
incubated in different media. The RER of escU was calculated by comparing expression in 
TSBS relative to MMS at three different temperatures.  The housekeeping gene (pvsA) 
expression was normalized to RER of 1. 
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The effect of temperature of gene expression was also determined for culturable 

cells.  Relative expressions of tdh2 were consistently higher at 37oC regardless of media 

(Figure 9, Appendix D2).  . 

 
Figure 9. Mean RER of virulence genes in culturabe cells of V. parahaemolyticus 
incubated at different temperatures. RER of tdh2 was calculated by comparing expression at 
37°C relative to 25 or 4°C in TSBS or MMS. The housekeeping gene (pvsA) expression was 
normalized to RER of 1. 
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IV. Discussion 

Determination of VBNC state 

By definition, cells in the VBNC state are non-culturable in standard growth 

media, yet still viable. This phenomenon was observed in this study – V. 

parahaemolyticus cells were culturable at the beginning for all treatments but became 

non-culturable after extended incubation at 4°C in either nutrient rich or poor 

environments (Figure 2). Viable cells becoming nonculturable at 4°C in both nutrient 

conditions show that low temperature in conjunction with long incubation period is 

sufficient in inducing V. parahaemolyticus to enter the VBNC state. This is in agreement 

with some previous studies, which showed that a decrease in temperature was the main 

factor to induce VBNC cells formation provided that cold temperatures were held for at 

least 12 to 49 days (Jiang and Chai, 1996; Mizunoe et al., 2000; Wong et al., 2004). It 

appears that nutrient starvation alone was not sufficient to activate VBNC state. Coutard 

et al (2005) demonstrated the VBNC state of V. parahaemolyticus could only be reached 

when cells were maintained in ASW (carbon starvation) at 4°C, but not at room 

temperature.  Our treatments #5 and #6 (MMS at 25 or 37oC for 7 d) also did not yield 

sufficient VBNC cells. 

In this study, VBNC cells were only stained with Syto 9 because viable cells were 

impermeable to PI.  Therefore these cells exhibited green fluorescence under 

fluorescence microscopy. On the other hand, nonviable cells would fluoresce red due to 

compromised membranes allowing diffusion of PI.  The use of these two nucleic acid 

stains is a common method for assessing the viability of bacterial cells. Rao et al., 

(2014) used similar microscopic method, with Syto9, to check for viability of VBNC V. 

vulnificus cells following treatments with both low nutrient (ASW) and low temperature 
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(4°C). Mishra et al. (2012) confirmed cell viability of V. cholerae by using the same 

commercial kit (LIVE/DEAD® BacLightTM) after the cells were induced into the VBNC 

state under low nutrient (sterilized lake water) and low temperature (4°C).   

It appears that LIVE/DEAD® BacLightTM is among the most common methods to 

confirm cell viability.  There are other methods also based on cell membrane integrity. 

The use of 6-CFDA (6-carboxyfluorescein diacetate) assesses esterase activity 

indicating viability (Na et al., 2006). Live cells with intact cell membranes can be 

somewhat quantified by measuring the intracellular esterase activity. A direct 

microscopic count method was used to detect viable cells by their abilities to enlarge in 

the presence of nalidixic acid (Kogure et al., 1979). Other methods detect for respiratory 

activities such as the reduction of INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl 

tetrazolium chloride) (Zimmermann et al., 1978) or CTC (5-cyano-2,3-ditolyl tetrazolium 

chloride) (Rodriguez et al., 1992). As VBNC cells are metabolically active, and thus have 

electron transport chain activity. Both INT and CTC are soluble tetrazolium salts that 

compete with oxygen as the final electron acceptor, which are then reduced to insoluble 

formazan in metabolically active cells. Thus, the accumulation of formazan in viable cells 

would cause the cells to appear dark red under microscopy (Zimmermann et al., 1978). 

Most of the above methods, however, are more time consuming and potential less 

sensitive.  After preliminary trials with 6-CFDA and the LIVE/DEAD® BacLightTM kit, we 

selected the latter as it was easier to call the results, less time consuming, and appeared 

to give more consistent results.  
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Rationale of test and control treatments 

In V. cholerae, ToxT, a transcriptional activator protein of virulence factors for 

cholera toxin and toxin-coregulated pilus, was shown to be controlled by temperature-

sensing RNA sequences located in the 5’ UTR of mRNA (Weber et al., 2014). Under 

lower temperature of 25°C, this region folds into a structure to prevent access of the 

ribosome, thus reducing translation of toxT by ~150% as measured by β-galactosidase 

levels and qRT-PCR (Weber et al., 2014). As temperature increases the structure 

unfolds by a zipper mechanism, allowing for ToxT translation and subsequent virulence 

factor expression at 37°C (Weber et al., 2014). These studies demonstrate the 

significant impact different environmental conditions can have on gene expression within 

a relatively short amount of time.  

Treatment #8, which accounted for the potential confounding effects of 

temperature and media, was used as the control to investigate gene expression specific 

to VBNC state. In this control treatment, cells were initially grown in TSBS at 37°C for 24 

hours and then switched to MMS at 4°C for one hour.  If typical culturable cells were 

used as control, such as treatment #7, relative expression of tdh2 would be off ~2-fold 

and that of escU would be off ~10 (Table 5). The large discrepancy observed, especially 

for escU, showed that environmental conditions exert a great impact on gene 

expression.  Thus, our control (treatment #8) was likely a more legitimate control than 

typical overnight cultures used in previous VBNC studies.  Though the cultures were 

shifted to MMS at 4oC for only one hour, it accounted for partial expression in response 

to environmental changes, which ultimately leads to a more accurate conclusion.  In 

future experiments, extending the transitional time from one hour to a few more hours 

might be better as previous studies noted that RNA expression profiles changed after 
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exposing cells to the experimental conditions for a few hours.  For instance, a low 

concentration of glucose (0.1 and 0.5%) downregulated various virulence genes of E. 

coli O157:H7 (expression ratios of -3.27 and -2.66, respectively) after 4 hours of 

incubation, including those involved in attaching effacing lesions (Delcenserie et al., 

2012).  

Evaluation of EU-labeled RNA 

Results from the preliminary experiment extracting EU-labeled RNA suggested 

that overnight cultures incubated in TSBS at 25°C produced double the amount of 

nascent RNA than VBNC cells. However, in order to verify, additional controls using only 

dead cells and mixture of viable and dead cells must be included.  Ct values using EU-

labeled RNA of VBNC and culturable cells were unexpectedly high.  For VBNC cells, it 

might mean that they did not express the target genes.  However, the culturable cells 

should have expressed the genes, as shown by the results obtained from treatment #7.  

This suggests the labeled RNA was not a good template to be converted to cDNA.  

Inhibitors may be inadvertently included in the qPCR run when reagents from the Click-

iT® RNA labeling/isolation was transferred to the template.   

Despite the high Ct values, the target genes were apparently amplified after 

examining the melting curve analyses more closely.  However, non-specific amplification 

might also occur.  Several peaks were observed in most of the derivative melting curves; 

these were likely due to inter- and intra-primers annealing.  It is important to note that 

although some derivative melting curves showed two distinct peaks, it is not necessarily 

the result of multiple products. Generally, DNA exists in two states, ssDNA and dsDNA. 

When temperature slowly increases, the two strands of the amplicon separate into 
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ssDNA, and the melting curves show this transitional change. An amplicon with varying 

concentrations of G-C rich regions could result in more than one melting temperatures.  

Future studies, therefore, should confirm the presence of amplicon by running the 

PCR products on agarose gels followed by staining with ethidium bromide and visualized 

by UV transillumination.  To confirm the presence of RNA before qPCR, Northern Blot 

using specific probe targets can be performed. Furthermore, different primer sets may be 

designed to confirm the results.  As of early 2015, a newer version of Click-It Nascent 

RNA Capture Kit was available that appeared to be compatible with qRT-PCR.  In 

summary, though we have some evidences to tentatively show VBNC cells synthesized 

new RNA and expressed the target genes, the level of expression was not known.   

Impact of nascent and residual RNA on virulence gene expression in VBNC cells  

Ideally, newly transcribed mRNA are used in all gene expression analyses, as 

this would be a bona fide measurement of metabolic activity in VBNC cells.  However 

our labeled nascent RNA was not a reliable template and hence total RNA was used in 

all subsequent qRT-PCR.  Therefore, gene expression could be a result of a combination 

of nascent and residual RNA in the template.  To interpret the results, it is necessary to 

assume the two extreme scenarios: the template contained either exclusively 1) nascent 

RNA from VBNC cells, or 2) residual RNA from previously culturable cells.   

Scenario 1: Nascent RNA 

In this scenario, virulence and housekeeping gene expression of VBNC V. 

parahaemolyticus cells was due to the result of de novo mRNA synthesis.  This was 

possible because we had observed the predicted melting temperatures of the three 

genes using EU-labeled RNA.  A serendipitous finding that treatment #1 yielded both 
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VBNC and culturable cells allowed us to further speculate VBNC cells continued to 

express tdh2.  In particular, VBNC cells (after 25 d of incubation) expressed similar level 

(RER = 0.8) of tdh2 compared to culturable cells (after 14 d of incubation).  On the other 

hand, escU expression was drastically reduced in 25-d old cells, reaching RER of 0.03.  

These results must be interpreted carefully, however, due to the smaller sample size.  

The half-life of tdh2 and escU RNA is also different (Coutard et al., 2007b). 

Coutard et al (2005) observed expression of both housekeeping 16S-23S rDNA 

and rpoS genes, but not virulence gene, tdh1, via RT-PCR in the VBNC V. 

parahaemolyticus Vp4, indicating that there is still active transcriptional activity in the 

VBNC state.  Other previous studies used mRNA half-life information as a marker for 

viability (Lleo et al, 2000; Fisher-Le Saux et al., 2002; Yaron and Matthews, 2002; and 

Coutard et al 2005). Coutard et al (2007b) quantified mRNA decay following the addition 

of rifampin to halt new RNA synthesis of V. parahaemolyticus cells in ASW at 4°C.  They 

found that half-lives of mRNA were 5.1±0.54, 3.3±0.62, and 2.1±0.04 days for pvsA, 

tdh2, and escU, respectively.  Fischer-Le Saux et al. (2002) could still detect mRNA of 

the cytotoxin hemolysin (vvhA) in VBNC V. vulnificus after maintaining the cells in ASW 

at 4oC for 133 days.  They concluded that mRNA was synthesized by viable cells 

because no RT-PCR band was detected after boiling the cells for 10 min.  On the other 

hand, amplification was detected using the total RNA extracted before the heat 

treatment, and interesting, after boiling these purified RNA extracts.  Thus, this previous 

study showed that VBNC V. vulnificus cells actively transcribe virulence genes. In 

another study, Dinu and Bach (2011) detected the presence of Vero (Shiga) toxins 1 

(Stx1) and 2 (Stx2) in VBNC E. coli O157:H7 in the phyllosphere of lettuce.  The 

verotoxin proteins were detected for 3 days in samples that contained 104 to 105 VBNC 
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cells using Ridascreen verotoxin enzyme immunoassay kit.  This enzyme assay had a 

high detection limit.  Therefore the authors concluded that E. coli O157:H7 were induced 

on lettuce plants and the production of virulence factor by these VBNC cells had food 

safety implications. 

Under the assumption that gene amplification was a result of de novo mRNA 

synthesis, our results show that VBNC V. parahaemolyticus cells express virulence 

genes, some maybe even upregulated.  If this is true, this suggests that some virulence 

factors may be essential for survival in conditions that do not supporting growth.  The 

virulence gene involved in T3SS, escU, exhibited upregulation in the MMS-induced 

VBNC cells compared to the culturable cells.  The elevated level of escU may be 

correlated to the expression of other genes involved in T3SS apparatus, which overall 

suggests T3SS may be required for fitness in addition to virulence.  Further experiments 

are needed to determine the expression of other T3SS genes including those encoding 

the effectors secreted through T3SS.  On the other hand, TSBS-induced VBNC cells 

showed similar escU expression to culturable cells.  These results corroborate a 

previous study by Coutard et al (2007b) in which escU was detected by RT-PCR, but 

was not significantly upregulated in VBNC V. parahaemolyticus. However, this Coutard 

study induced VBNC formation by maintaining the cells in ASW at 4oC which was 

considered a nutrient poor condition similar to MMS.  It is well known that environmental 

conditions, such as temperature and nutrient availability, serve as triggers to alter 

virulence gene expression (Delcenserie et al., 2012; Mahoney et al., 2010; Salomon et 

al., 2013a).  Hence, it is not surprising that V. parahaemolyticus cells exposed to 

different conditions may have varying effects on virulence gene expression. 
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Expression levels of tdh2, which encode the thermostable direct hemolysin, were 

similar between the VBNC and culturable state, regardless of the type of media to induce 

VBNC formation.  These results are consistent with Vora et al (2005) in which the 16S-

23S rDNA housekeeping gene and tdh gene were examined by microarray-based assay.  

The Vora study considered the cells of V. parahaemolyticus F5052 had reached the 

VBNC state when <0.3 CFU/mL could be detected, which were attained by maintaining 

the cells in ASW at 4°C for 76 days.  Similarly, Coutard et al. (2007b) found that tdh2 

was expressed but not upregulated.  On the contrary, Coutard et al. (2005) detected the 

expression of two housekeeping genes (16S-23S rDNA and rpoS) using RT-PCR, but 

not tdh1 and tdh2.  The Coutard et al. (2005) study considered the cells to have reached 

the VBNC state when ≤0.05 CFU/mL could be detected, which were attained by 

maintaining the cells in ASW at 4°C for 42 days. The conflicting results between Vora et 

al (2005) and Coutard et al (2005) could be due to different strains (F5052 vs IF Vp18), 

VBNC induction periods (76 vs 42 days), and the sensitivity of the assays (microarray vs 

RT-PCR). 

VBNC cells that actively transcribe virulence genes can have implications in 

pathogenesis because they pose a human health risk.  Expression levels of tdh2 in 

VBNC cells are comparable to those in culturable cells, suggesting that the TDH proteins 

may be translated at similar levels.  In addition, the upregulation of escU in MMS-

induced VBNC suggests that VBNC cells may have enhanced virulence.  Currently, 

there are very few studies examining the role of escU in V. parahaemolyticus 

pathogenesis.  More is known regarding other T3SS associated genes.  Many T3SS1 

and T3SS2 associated genes (translocator genes and their chaperones, regulators, 

structural, and effector proteins) showed substantial increases over the course of 
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infection in HeLa cells (Hiyoshi et al., 2010; Nydam et al., 2014; Zhou et al., 2009). 

T3SS1 appeared to be responsible for the cytotoxicity to several mammalian cell lines 

(Burdette et al., 2008; Hiyoshi et al., 2010; Nydam et al., 2014; Zhou et al., 2009) and 

mortality in a mouse model (Hiyoshi et al., 2010; Pineyro et al., 2010). 

Scenario 2: Residual RNA 

 In this scenario, virulence and housekeeping gene expression of VBNC cells are 

entirely due to the presence of residual mRNA, which were synthesized by previously 

culturable cells (e.g., before 14 day of incubation).  These residual RNA could be 

protected from nuclease degradation and thus remained in the sample (Yaron and 

Matthews, 2002).  It is plausible that VBNC cells do not actively synthesize mRNA pf 

certain genes because gene expression is energetically expensive.  These cells would 

express only those necessary for survival until they are once again in appropriate 

conditions.  In this scenario, VBNC cells would resemble a “spore-like” state, in which 

they strive to survive stressful conditions until they are exposed to a more favorable 

environmental, such as the gastrointestinal tract of human.  Once in favorable 

conditions, VBNC V. parahaemolyticus cells resuscitate and regain the culturability. 

MMS-induced VBNC cells of V. parahaemolyticus were shown to resuscitate 

after an upshift in temperature (Wong et al., 2004).  Nalidixic acid was added to inhibit 

bacterial cell multiplication.  Therefore, the authors concluded that the presence of 

culturable cells after the temperatures shift was due to resuscitation of VBNC cells 

instead of regrowth of a few culturable cells that may have not been detected.  VBNC 

cells have also been shown to regain virulence after resuscitation in the human 

gastrointestinal tract (Sun et al., 2008; Oliver and Bockian, 1995). Baffone et al. (2003) 

confirmed the resuscitation of VBNC V. parahaemolyticus cells in rat ileal loop assays. 
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Following two consecutive passages of various strains of VBNC V. parahaemolyticus in 

the ileal loops, accumulation of fluid in rat ileal loops was noted.  Several assays were 

performed by Baffone et al. (2003), including hemolysis on Wagatsuma agar (indicate 

TDH production), adhesion assay using Hep-2 cells, and cytotoxicity assay using CHO, 

to verify the reactivation of virulence characteristics of the VBNC strains.  Colwell et al. 

(1996) also showed that pathogenic VBNC V. cholerae O1 resuscitated in the human 

intestine following oral administration by volunteers.  In this Colwell study, an attenuated 

recombinant vaccine strain CVD 101, which did not express cholera toxin, was 

maintained at VBNC cells for 3 and 7 weeks before the human study.  The subject’s 

stool samples were evaluated.  Culturable cells of V. parahaemolyticus were recovered 

on the selective medium, TCBS, in subject infected with 3-week old VBNC cells, 

indicating resuscitation in the gut.  On the other hand, only VBNC cells were recovered 

in subjects infected with 7-week old VBNC cells.  These results show that the age of 

VBNC cells affect their resuscitation ability. 

The above studies show that VBNC cells, though unable to transcribe virulence 

genes, still pose a threat due to their ability to resuscitate to culturable state under 

appropriate conditions and become pathogenic (Roszak et al., 1984; Bates and Oliver, 

2004; Colwell et al. 1996; Oliver and Bockian 1995). 

In this study, RER of tdh2 and escU in VBNC cells range from 0.85 to 2.08 

compared to a control culture that experienced a temperature and nutrient shift.  The 

range is 0.48 to 13.02 if the control culture is a 2-day old culture grown at 25oC.  This 

suggests the presence of a fairly significant amount of residual RNA in VBNC cells, 

which can be translated into proteins if there is no active degradation by RNAse or other 

means of mRNA decay. Virulence proteins can be detected and semi-quantified by 
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Western Blot analysis. Unfortunately, antibodies against TDH and EscU are not 

commercially available and will require expensive custom production. 

Effects of environmental factors on virulence gene expression 

The virulence of a pathogen is intricately linked to the environmental factors, 

especially in stressful conditions.  Expression of virulence genes had been shown to be 

influenced by environmental conditions (Delcenserie et al., 2012; Mahoney et al., 2010; 

Salomon et al., 2013b). In E. coli O157:H7, a low concentration of glucose (decreased 

from 20% to 0.1-1%) downregulated various virulence genes, including those involved in 

attaching effacing lesions (Delcenserie et al., 2012). Salomon et al (2013) showed that 

the expression of T6SS1 and T6SS2 was activated in different conditions (in seawater 

versus inside a marine animal).  Therefore, it is a challenge to determine changes in 

gene expression between VBNC and culturable state solely, without taking 

environmental factors into consideration.   

As mentioned in previous sections, the control treatment (#8) helped reduce the 

effects caused by these potential confounding factors.  With the partial background 

expression levels corrected for, and assuming the presence of nascent RNA in VBNC 

cells, escU appeared to be upregulated in MMS compared to TSBS.  Expression of tdh2 

in VBNC did not appear to be influenced by the media type.   

We were able to determine the effects of temperature on gene expression in 

culturable cells.  Consistent with previous studies, tdh2 expression was higher at 37oC.  

In contrast to VBNC cells, culturable cells exhibited higher escU expression when cells 

were grown in TSBS than MMS. Interestingly, consistently increased levels of escU 

expression were observed in culturable cells grown in TSBS across all temperatures.  
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Thus, future research direction may examine if T3SS is activated without interaction with 

the host, and the specific role of T3SS inducing and maintaining VBNC cells.   

In general, escU expression in culturable cells is higher in nutrient rich media, 

whereas tdh2 expression is higher at warmer temperatures. These genes are under 

multiple and overlapping transcriptional controls.  The expression of T3SS2-related 

genes and tdh are regulated by VtrA (VPA 1332) and VtrB (VPA 1348) (Kodama et al., 

2010). Immunoblotting of vtrA- and/or vtrB-deleted mutant of V. parahaemolyticus 

RIMD2210633 showed a marked decrease in T3SS2-related proteins and TDH 

production (Kodama et al., 2010). Furthermore, the VtrB expression is directly controlled 

by VtrA (Gotoh et al., 2010; Kodama et al., 2010). Although the exact molecular control 

is not yet elucidated, these previous studies suggest VtrB and VtrA regulate expression 

of genes found in the pathogenicity island region of V. parahaemolyticus in a highly 

specific manner. Understanding the components involved in activation and regulation of 

both TDH and T3SS is critical to understand the expression of these genes in culturable 

and VBNC cells.   
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V. Conclusions and Significance  

In summary, we found that temperature and time appeared to be the most 

important factors to induce V. parahaemolyticus cells into the VBNC state. Nutrient 

availability has variable effects on the degree of virulence gene expression in both VBNC 

and culturable cells.  VBNC cells of V. parahaemolyticus induced under nutrient poor 

condition appeared to upregulate escU, a gene involved in T3SS apparatus. VBNC cells 

also expressed (but not upregulate) similar levels of tdh2 than culturable cells.  

Nevertheless, these interpretations are preliminary because residual RNA might be 

present in the RNA template.  Since VBNC cells of V. parahaemolyticus may actively 

transcribe virulence genes, and have shown to resuscitate in human host, they pose a 

risk for human health.  Consequently, there is a need to enumerate the pathogenic V. 

parahaemolyticus, whether it is culturable or VBNC.  However, the number would be 

underestimated using the conventional methods relying on culturing techniques.  Hence, 

culture-independent methods must be incorporated to screen for the presence of 

pathogenic subtypes of V. parahaemolyticus in food products and environmental 

samples. 
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APPENDICES 

Appendix A: Standard Curves 

Table A1. Standard curve construction for trial 1 (n=3) 

Gene cDNA (ng/µL) Avg Ct StdDev Ct 

pvsA 182.5 14.59 0 

36.5 16.03 0.13 

7.3 18.44 0.26 

1.46 20.93 0.13 

0.292 23.00 0.13 

0.0584 25.46 0.12 

0.01168 27.96 0.14 

tdh2 182.5 14.30 0.11 

36.5 15.76 0.18 

7.3 17.97 0.09 

1.46 20.41 0.06 

0.292 22.97 0.03 

0.0584 25.07 0.15 

0.01168 27.92 0.11 

escU 182.5 15.25 0.10 

36.5 17.11 0.09 

7.3 19.34 0.25 

1.46 22.03 0.10 

0.292 24.65 0.11 

0.0584 26.88 0.03 

0.01168 28.60 0.25 
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Table A2. Standard curve construction for trial 2 (n=3) 

Gene cDNA (ng/µL) Avg Ct StdDev Ct 

pvsA 1.668 19.97 0.05 

0.002668 31.03 0.08 

0.005337 34.38 1.53 

0.00010675 37.44 1.22 

0.0000213504 35.72 2.00 

tdh2 41.7 14.11 0.01 

0.0026688 27.08 0.01 

0.0053376 29.66 0.42 

0.0000213504 35.67 2.10 

escU 41.7 14.40 0.04 

1.668 17.22 0.05 

0.06672 23.02 0.07 

0.0026688 27.93 0.07 

 



 

55 

Table A3. Standard curve construction for trial 3 (n=3) 

Gene cDNA (ng/µL) Avg Ct StdDev Ct 

pvsA 8.34 18.58 0.43 

0.013344 30.13 0.07 

0.000106752 36.20 0.27 

0.0000213504 34.25 0.24 

tdh2 8.34 18.21 0.09 

0.06672 27.87 0.38 

0.0053376 34.92 0.37 

0.0000213504 35.39 0.58 

escU 41.7 13.85 0 

1.668 15.30 0.09 

0.013344 24.32 0.20 

0.000106752 31.47 1.28 
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Table A4. Standard curve construction for trial 4 (n=3) 

Gene cDNA (µL/mL) Avg Ct StdDev Ct 

pvsA 235 13.93 0.01 

1.88 19.15 0.07 

0.0752 24.59 0.05 

0.0006016 32.45 0.41 

0.000024064 35.90 0.17 

tdh2 235 13.77 0.01 

1.88 17.51 0.06 

0.0752 22.99 0.14 

0.0006016 31.57 0.68 

0.000024064 Undetermined - 

escU 235 18.11 0.95 

1.88 25.39 0.37 

0.0752 30.50 0.16 

0.0006016 38.67 0.47 

0.000024064 39.21 0.04 
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Table A5. Standard curve construction for trial 5 (n=3) 

Gene cDNA (ng/µL) Avg Ct StdDev Ct 

pvsA 275 16.20 0.57 

2.2 22.24 0.33 

0.0176 30.26 0.07 

0.0001408 39.93 0 

0.000005632 37.27 0.57 

tdh2 275 14.8 0.33 

2.2 20.93 0.13 

0.0176 29.18 0.10 

0.0001408 39.57 0.40 

0.000005632 36.33 0.56 

escU 275 14.28 0 

2.2 19.58 0.06 

0.0176 28.34 0.41 

0.0001408 37.47 0.60 

0.000005632 36.98 1.05 
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Appendix B: Ct Values 

The two negative controls were NTC and RT (no reverse transcriptase). The positive 

control was MS2. “Und." means undetermined.   

Table B1. Individual Ct for each treatment in triplicate for gene, pvsA. 

 #1 #2 #3 #4 #5 #6 #7 #8 (-) 
NTC 

(-) RT (+) 
MS2 

Trial 
1 

23.1 

23.2 

23.2 
 

20.9 

21.4 

21.1 
 

27.8 

27.5 

27.4 
 

24.9 

25.1 

25.1 
 

29.7 

29.5 

29.4 
 

29.9 

30.2 

30.2 
 

19.2 

19.3 

19.2 
 

24.4 

24.2 

24.2 
 

33.7 

33.1 
 

Und. 

18.1 
 

- 

- 

Trial 
2 

28.0 

28.1 

28.2 
 

26.9 

27.0 

27.1 
 

31.1 

31.4 

31.3 
 

32.3 

32.5 

33.1 
 

34.9 

35.2 

34.5 
 

37.5 

38.4 

Und. 
 

24.2 

24.5 

24.4 
 

27.3 

27.6 

27.7 
 

Und. 

Und. 

Und. 

Und. 

32.9 

33.1 
 

Trial 
3 

29.6 

30.1 

29.6 
 

27.6 

27.7 

28.0 
 

35.4 

36.0 

36.0 
 

36.1 

35.4 

36.7 
 

32.8 

32.9 

32.7 
 

37.1 

38.4 

35.9 
 

24.7 

24.9 

24.9 
 

36.9 

36.0 

36.2 
 

36.9 

33.4 
 

Und. 

Und. 

35.6 

35.9 
 

Trial 
4 

23.6 

23.6 

23.7 
 

27.1 

27.2 

27.4 
 

24.8 

25.2 

24.9 
 

27.2 

27.4 

27.2 
 

33.5 

34.6 

34.2 
 

32.1 

31.7 

31.4 
 

23.3 

23.2 

23.2 
 

25.1 

25.1 

25.1 
 

36.2 

Und. 
 

Und. 

Und. 

13.5 

13.5 

13.5 
 

Trial 
5 

27.1 

27.1 

27.1 
 

30.9 

30.7 

31.0 
 

29.8 

30.1 

29.9 
 

34.8 

34.9 

34.4 
 

39.3 

39.1 

37.9 
 

39.1 

Und. 

39.2 
 

31.1 

31.1 

31.8 
 

29.9 

29.9 

29.7 
 

Und. 

Und. 

Und. 

Und. 

16.4 

17.3 
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Table B2. Individual Ct for each treatment in triplicate for gene, tdh2. 

 #1 #2 #3 #4 #5 #6 #7 #8 (-) 
NTC 

(-) RT (+) 
MS2 

Trial 
1 

22.1 

22.3 

22.1 
 

21.6 

21.3 

21.3 
 

28.9 

27.1 

26.9 
 

24.7 

24.5 

24.4 
 

28.5 

29.1 

28.3 
 

29.1 

29.7 

29.6 
 

18.4 

18.3 

18.3 
 

24.0 

24.3 

24.4 
 

34.1 

31.6 
 

Und. 

26.3 

- 

- 

Trial 
2 

25.1 

25.1 

25.2 
 

24.6 

25.1 

24.7 
 

31.5 

31.5 

33.4 
 

32.6 

31.5 

30.6 
 

30.6 

32.2 

32.1 
 

44.3 

Und. 

34.2 
 

22.0 

21.8 

22.1 
 

24.3 

24.8 

24.7 
 

Und. 

44.2 
 

Und. 

Und. 

44.4 

35.7 
 

Trial 
3 

29.6 

29.9 

29.7 
 

29.0 

29.0 

29.1 
 

35.8 

35.9 

37.1 
 

35.5 

38.7 

38.8 
 

32.8 

32.3 

32.5 
 

36.1 

35.7 

36.6 
 

25.4 

25.6 

25.5 
 

36.0 

35.6 

35.5 
 

37.7 

37.8 
 

Und. 

Und. 

35.8 

35.1 
 

Trial 
4 

22.3 

22.1 

22.3 
 

26.0 

26.5 

26.3 
 

24.2 

24.2 

24.2 
 

26.1 

26.3 

26.0 
 

31.9 

32.2 

Und. 
 

30.9 

30.8 

Und. 
 

21.3 

21.2 

21.4 
 

24.1 

24.2 

24.3 
 

Und. 

Und. 

 

39.5 

39.2 
 

13.3 

13.4 
 

Trial 
5 

26.3 

26.5 

26.4 
 

30.3 

30.2 

30.1 
 

29.6 

29.4 

29.4 
 

34.9 

35.0 

34.4 
 

37.1 

37.1 

38.8 
 

35.9 

35.7 

36.2 
 

29.1 

29.3 

29.0 
 

28.8 

29.0 

28.6 
 

39.3 

38.4 
 

Und. 

Und. 

14.5 

14.6 

 14.4 
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Table B3. Individual Ct for each treatment in triplicate for gene, escU. 

 #1 #2 #3 #4 #5 #6 #7 #8 (-) 
NTC 

(-) RT (+) 
MS2 

Trial 
1 

25.0 

24.9 

24.6 
 

23.5 

23.5 

23.8 
 

29.2 

29.3 

29.2 
 

26.9 

26.8 

27.2 
 

29.8 

30.1 

30.5 
 

30.4 

30.3 

30.3 
 

20.5 

20.3 

20.8 
 

26.8 

26.5 

26.8 
 

29.7 

30.3 
 

Und. 

Und. 

- 

- 

Trial 
2 

27.6 

27.6 

27.7 
 

27.6 

27.6 

27.7 
 

31.7 

33.1 

32.8 
 

31.7 

32.4 

31.9 
 

33.4 

32.5 

32.4 
 

31.8 

34.3 

33.9 
 

24.3 

24.4 

24.6 
 

28.1 

28.2 

28.3 
 

35.4 

31.6 
 

Und. 

Und. 

31.6 

32.4 
 

Trial 
3 

20.1 

20.0 

20.3 
 

19.3 

19.3 

19.5 
 

28.9 

28.4 

29.6 
 

31.1 

31.7 

31.4 
 

23.9 

23.7 

24.1 
 

30.1 

31.5 

31.1 
 

16.2 

16.1 

16.4 
 

30.1 

Und. 

32.5 
 

33.3 

Und. 
 

Und. 

44.8 
 

25.9 

27.2 
 

Trial 
4 

30.3 

29.8 

29.8 
 

34.3 

34.6 

34.2 
 

31.5 

31.4 

31.2 
 

33.2 

32.8 

32.3 
 

39.1 

39.5 

37.5 
 

37.3 

36.9 

32.5 
 

29.1 

28.4 

Und. 
 

32.1 

32.1 
 

Und. 

Und. 

Und. 

Und. 

15.7 

15.6 

15.7 
 

Trial 
5 

24.9 

25.1 

25.1 
 

29.3 

29.2 

29.1 
 

28.5 

28.7 

28.3 
 

32.4 

32.3 

32.4 
 

36.2 

35.6 

36.0 
 

34.2 

35.7 

Und. 
 

28.1 

28.3 

28.1 
 

27.6 

28.2 

27.4 
 

Und. 

39.6 
 

Und. 

Und. 

14.1 

14.1 

14.1 
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Appendix C: qRT-PCR Reaction Efficiencies 

Table C. qRT-PCR reaction efficiencies for all reference and virulence genes per trial 

 Slope R2 

Trial 1 escU -3.316586 0.995883 

Trial 1 pvsA -3.31789 0.996829 

Trial 1 tdh2 -3.331476 0.994968 

Trial 2 escU -3.321648 0.982943 

Trial 2 pvsA -3.442745 0.855803 

Trial 2 tdh2 -3.409674 0.954814 

Trial 3 escU -3.326275 0.968216 

Trial 3 pvsA -3.023706 0.925927 

Trial 3 tdh2 -3.149312 0.83158 

Trial 4 escU -3.255825 0.969571 

Trial 4 pvsA -3.321061 0.991446 

Trial 4 tdh2 -3.32172 0.962236 

Trial 5 escU -3.332287 0.954455 

Trial 5 pvsA -2.901851 0.946757 

Trial 5 tdh2 -3.102449 0.923261 

Click it Trial 1 escU -2.508219 0.947679 

Click it Trial 1 pvsA -2.600221 0.954532 

Click it Trial 1 tdh2 -3.121318 0.992153 

Click it Trial 2&3 escU -3.3 0.977556 

Click it Trial 2&3 pvsA -3.317447 0.97257 

Click it Trial 2&3 tdh2 -3.319398 0.975202 
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Appendix D: RER Analysis of Culturable Cells 

Table D1. RER of virulence genes in VBNC cells compared to culturable cells (treatment 

#8) in each trial. 

 Genes VBNC (TSBS 4°C) 
vs Culturable Cells  

VBNC (MMS 4°C) vs 
Culturable Cells 

Trial 1 tdh2 
escU 

- 
- 

1.384 
1.415 

Trial 2 tdh2 
escU 

- 
- 

0.274 
2.175 

Trial 3 tdh2 
escU 

- 
- 

- 
- 

Trial 4 tdh2 
escU 

1.414 
1.635 

1.176 
2.803 

Trial 5 tdh2 

escU 

0.679 

0.738 

0.567 

1.935 

Overall mean tdh2 
escU 

1.05 ±  0.54 

1.19 ±  0.60 

0.85 ±  0.52 

2.08 ±  0.58 

The RER means of each trial was provided. The first three trials in treatment #1 (TSBS 4°C) did 

not yield VBNC cells, and thus were excluded from the VBNC analysis. Trial 3 was not included 

in the analysis due to contamination issues.  
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Table D2. RER of virulence genes at 37oC compared to 4oC or 25oC in culturable cells 

grown in TSBS or MMS. 

 Genes 37°C vs 4°C in 
TSBS 

(#3 vs #1) 

37°C vs 25°C in 
TSBS 

(#3 vs #2) 

37°C vs 25°C in 
MMS 

(#6 vs #5) 

Trial 1 tdh2 
escU 

2.06 
1.00 

0.86 
0.57 

1.20 
0.17 

Trial 2 tdh2 
escU 

13.59 
3.59 

8.16 
1.72 

79.50 
0.19 

Trial 3 tdh2 
escU 

- 
- 

- 
- 

- 
- 

Trial 4 tdh2 
escU 

1.55 
1.07 

1.15 
0.58 

2.25 
0.56 

Trial 5 tdh2 
escU 

1.03 
1.16 

1.22 
1.29 

0.31 
0.37 

Overall 

mean 

tdh2 
escU 

7.83 ±  8.15 

2.30 ±  1.83 

2.84 ±  3.54 

1.04 ±  0.57 

20.81 ±  39.13 

0.33 ±  0.18 

The RER means of each trial was provided for culturable cells at 37°C relative to 25°C and 4°C 

in both nutrient conditions, TSBS and MMS. In the 4oC analysis, only culturable cells were used 

(first three trials of treatment #1). Trial 3 was not included in the analysis due to contamination 

issues.  
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Table D3. RER of virulence genes in TSBS compared to MMS at different temperatures. 

 Gene 4°C TSBS vs MMS 

(#1 vs #4) 

25°C TSBS vs 

MMS (#2 vs #5) 

37°C TSBS vs 

MMS (#3 vs #6) 

Trial 1 tdh2 
escU 

0.71 
0.83 

2.29 
3.66 

1.63 
2.71 

Trial 2 tdh2 
escU 

0.27 
1.01 

1.91 
5.49 

0.20 
50.17 

Trial 3 tdh2 
escU 

- 
- 

3.58 
2.00 

- 
- 

Trial 4 tdh2 
escU 

0.83 
1.71 

2.12 
5.45 

1.09 
5.59 

Trial 5 tdh2 
escU 

0.84 
2.62 

2.07 
1.29 

12.35 
17.40 

Overall 

mean 

tdh2 
escU 

0.83 ±  0.00 

2.17 ±  0.64 

2.39 ±  0.67 

3.58 ±  1.93 

0.97 ±  0.73 

8.57 ±  7.79 

The cells were VBNC at 4°C. The RER means of each trial was provided for VBNC cells (4oC) 

and culturable cells (25 and 37oC).  Trial 3 was not included in the analysis due to contamination 

issues.  Expression of tdh2 was similar or higher in TSBS relative to MMS across all 

temperatures.  Expression of escU was significantly upregulated in TSBS relative to MMS 

across all temperatures.    


