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ABSTRACT

HEIDE: An IDE for the Homomorphic Encryption Library HElib

Grant Frame

Work in the field of Homomorphic Encryption has exploded in the past 5 years, after

Craig Gentry proposed the first encryption scheme capable of performing Homomor-

phic Encryption. Under the scheme one can encrypt data, perform computations on

the encrypted result (without needing the original data), and then decrypt the data

to get the result as if the computations had been run on the unencrypted data.

Such a scheme has wide reaching implications for cloud computing. Computations

on sensitive data, just like regular data, could now be performed in the cloud with

the added security that even the cloud service provider couldn’t “see” the secure

data. With such a benefit one might ask why the encryption scheme is not used

currently? It is because, while Craig Gentry’s scheme was theoretically sound, it was

not quick. As such, recent work has been in finding ways to speed up the scheme.

Several improvements in speed have been made and several implementations of those

improved schemes have been developed: one being HElib.

As of now HElib is self described as an “assembly language for HE”. Our work

focused on creating HEIDE, a Homomorphic Encryption IDE, where researchers could

write tests at a high-level. This high-level code is then “compiled” into the operations

provided by HElib. HElib, like most encryption schemes, can be configured using

di↵erent setup parameters. These parameters change the run-time and security of the

scheme. As such we have also provided an easy way for researchers to simultaneously

run their tests using di↵erent setup parameters. To support that, timing and memory

metrics are provided for each test so that researchers can determine which parameters

worked best.
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CHAPTER 1

Introduction

In the past 30 years the world has become digital. Data that was stored previously

on paper is being converted to a digital file. Additionally, data is being collected and

created by almost everyone with a link to the Internet. However, not all of that data

is meant for public consumption. Some data needs to be kept secret. Several cloud

services allow one to securely upload private data. This security can guarantee an

outsider cannot see your data while it is being sent to the cloud service. In many

cases, once the data is uploaded, the cloud service can decrypt the data. It does

this because most encryption schemes no longer produce the correct decrypted value

once computations have been performed on the data. This is not the case with

Homomorphic Encryption schemes.

Homomorphic Encryption was first proposed in the same year RSA was devel-

oped [28]. Homomorphic Encryption schemes allow one to perform computations on

encrypted data with a guarantee that the decrypted result will match the result, had

the computations been performed on the plaintext. This can be done without needing
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the unencrypted data. Thus, users could encrypt their private data locally; send it to

some cloud service along with the computations they would like performed; have the

cloud service perform the computations and send back the result; and then decrypt

the result with high certainty that no one saw their private data. With such high

benefits one might ask why such a scheme is not widely used? The answer is that a

viable scheme was not created until 2009.

Prior to 2009, the security community was still uncertain that Homomorphic

Encryption could be achieved. Several cryptosystems where found to be partially

homomorphic. Such systems could only perform addition of ciphertexts, or only per-

form multiplication of ciphertexts, but none could support arbitrary computations on

ciphertexts. Such a scheme that could perform arbitrary computations on ciphertexts

is considered to be a Fully Homomorphic Encryption Scheme (FHE). Craig Gentry,

in 2009, was the first to propose a viable FHE scheme [17].

Gentry’s scheme was an asymmetric encryption scheme which used ideal lattices.

Essentially one generates a secret key and then a number of public keys, each contain-

ing “noise”. This was done in such a way that it was hard for an attacker to generate

the secret key from the public keys. The public keys were then used to encrypt data.

From there computations could be performed on the encrypted data. However, the

“noise” in the ciphertext grew with each additional computation. At a certain point

the secret key could no longer be used to decrypt because the “noise” had grown
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to large. Such a scheme was called a Somewhat Homomorphic Encryption (SWHE)

scheme. In order to make his scheme a FHE scheme Gentry developed a technique

called bootstrapping.

Once the “noise” in a ciphertext grows too large it is no longer able to be de-

crypted properly. Bootstrapping solves this problem. It does so by homomorphically

decrypting the ciphertext, performing a single computation on it, and then recrypt-

ing under a di↵erent public key. After adding bootstrapping Gentry had achieved

an FHE scheme. Unfortunately, the bootstrapping procedure was not very fast and

had to be performed on every computation after the one where the “noise” grew too

large.

Since Gentry’s initial scheme several others have been developed [33, 31, 32,

13, 14]. These schemes have increased performance. One scheme even managed to

avoid requiring bootstrapping be used. Such a scheme is called Leveled FHE scheme.

Essentially if one knows the number of levels within their computation beforehand

they can avoid using bootstrapping. This scheme is referred to as the BGV scheme,

after its creators, Brakerski, Gentry, and Vaikuntanathan.

Several implementations have been developed for the individual schemes. The pri-

mary implementations at present are HElib and FHEW. HElib is a an implementation

of the BGV scheme and as of early 2015 supports bootstrapping [5, 25, 23]. FHEW is

an implementation which sought to optimize the bootstrapping procedure as uymuch
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as possible [2, 16]. To do so they used the FFTW (Fastest Fourier Transform in the

West) library, which is where they derived their own name, Fastest Homomorphic

Encryption in the West (FHEW). For our work, we have solely worked with HElib.

HElib is self described as “assembly language for HE”. It is a C++ library that is

rather robust even though it is in its infancy. It is not the easiest to use, unfortunately.

There is no key generation method and instead key generation takes multiple steps.

Several other minor issues also are present with HElib that could be easily solved. As

such, we have developed a C++ wrapper class BGV HE which sits on top of HElib

and provides a cleaner interface for users.

We have also developed an Integrated Development Environment (IDE) to be used

with HElib. This IDE is called HEIDE (pronounced ‘hide’). The IDE is written in

Python and allows researchers the ability to easily alter setup parameters to see how

runtime and memory usage are a↵ected. In addition, we have developed a Python

module, PyHE, which allows users to write Python code that interacts directly with

the BGV HE class. Users write Python code within the IDE and then for each setup

configuration the algorithm they define is run. We have also developed a convenient

syntax that can be used within HEIDE to write code that makes the code easier to

read and shorter overall.

The rest of this paper is formatted as follows. We begin with relevant background

information in Chapter 2. We discuss relevant related work in Chapter 3. Then

4



we outline our design and implementation in Chapter 4 and Chapter 5, respectively.

Next, we present an evaluation of our implementation in Chapter 6. After that, we

discuss some possible future work in Chapter 7. We then finish with some concluding

thoughts in Chapter 8.
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CHAPTER 2

Background

2.1 Notation

The following notation will be used throughout the paper. Assignment of variable x

to variable y will be denoted x  y. If A is a set then x
R � A means that x was

selected from A using the uniform distribution. If A is an algorithm then x  A

means that x is assigned the output that resulted from running A. For integers x, d

we denote the reduction of x modulo d as [x]
d

. The result of [x]
d

is an element of

the interval
�
�d

2 ,
d

2

⇤
. If y is a vector then we let y

i

denote the ith component of y.

Polynomials over an indeterminate X will be (except for the cyclotomic polynomials)

denoted by uppercase letters, e.g. F (X). The mth cyclotomic polynomial will be

denoted as usual as �
m

(X). Elements of finite fields and number fields defined by

a polynomial F (X), i.e. elements of F2 [X] /F (X) and Q [X] /F (X), can also be

represented as polynomials in some fixed root of F (X) in the algebraic closure of

the base field. Such polynomials are denoted using lower case Greek letters, with the

6



fixed root also a lower case Greek letter. For instance � (✓), where F (✓) = 0. If fields

F and F 0 are isomorphic, we denote that as F ⇠= F 0.

2.2 Relevant Mathematical Background

In section 2.3.3 the BGV homomorphic encryption scheme, upon which HElib is

based, is discussed. Within that section we will mention that the BGV scheme is

considered to be SIMD. In order to understand why the scheme is considered SIMD,

some mathematical concepts must be first understood. Those concepts are discussed

in the following subsections.

2.2.1 Fields

Understanding fields is very important to the construction of a ciphertext within the

BGV scheme. In order to understand fields, we first need to define and understand a

couple of simpler concepts. We will use these simpler concepts to describe the more

complex concept of a field.

The first concept to understand is a group. A group hG, ⇤i is a set G together

with a binary operator ⇤ such that the following axioms hold:

1. ⇤ is associative. That is, for all a, b, c 2 G,

(a ⇤ b) ⇤ c = a ⇤ (b ⇤ c) .
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2. There exists an identity element e for ⇤. If e is the identity element for ⇤ then,

e 2 G and for all x 2 G,

e ⇤ x = x ⇤ e = x.

3. Inverses exist. Formally, if a 2 G then there exists a element a0 2 G such that

a ⇤ a0 = a0 ⇤ a = e.

If the binary operator is commutative, then G is called an abelian group. One such

group that is abelian is Z
n

. While one might think that all groups are abelian, a

counter example is the dihedral group of order 6.

Building o↵ the definition of a group we can define a ring. A ring hR,+, ·i is a set

R with the two binary operations + and ·; more commonly referred to as, respectively,

addition and multiplication. The two binary operations are defined on R such that

the following axioms hold:

1. hR,+i is an abelian group.

2. Multiplication is associative.

3. For all a, b, c 2 R, the left distributive law,

a · (b+ c) = (a · b) + (a · b)

and right distributive law,

(a+ b) · c = (a · c) + (b · c)

8



hold.

Multiplication in a ring is traditionally written by omitting the ·, e.g. a · b is written

ab.

The following paragraph will introduce many terms, which will be used to define a

field. If in a ring multiplication is commutative, then that ring is called a commutative

ring. If a ring has a multiplicative identity element e, i.e. if a 2 R, then ae = ea = a,

then that ring is a ring with unity. The multiplicative identity element of a ring R

is denoted as 1
R

and is called “unity”. The additive identity element of a ring is

denoted as 0
R

. The multiplicative inverse of an element a in a ring R with unity

1
R

6= 0
R

, is the element a�1 2 R such that aa�1 = a�1a = 1
R

. A couple examples of

commutative rings with unity are Z and Q[x]. The unity element in Z is 1, while it

is 1 + 0x in Q[x].

The last piece of the puzzle in defining a field is a division ring. Let R be a

ring with unity 1 6= 0. If u 2 R has a multiplicative inverse in R, then u is a

unit. If every nonzero element of R is a unit, the R is a division ring. A field is

a commutative division ring. We mentioned before that Z was a commutative ring

with unity, however it is not a field. This is because for all a 2 Z where a 6= 1 or �1,

there does not exist a multiplicative inverse for a in Z. R however is a field because

all nonzero elements are have inverses in R.
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2.2.2 Algebraic Closure

In order to define the algebraic closure we first must define some preliminary topics.

A field E is an extension field of a field F if F is a subfield of E, denoted F  E.

An element ↵ of an extension field E of a field F is algebraic over F if f (↵) = 0 for

some nonzero f (x) 2 F [x]. The algebraic closure of F in E is the set

F
E

= {↵ 2 E : ↵ is algebraic over F} .

The algebraic closure is a subfield of E. The field C, containing the complex numbers,

is the algebraic closure of R.

2.2.3 Polynomials

Let R be a ring. A polynomial f(x) with coe�cients in R is an infinite formal sum

1X

i=0

a
i

xi = a0 + a1x+ · · ·+ a
n

xn + . . . ,

where a
i

2 R and a
i

= 0 for all but a finite number of the i’s. The largest such i where

a
i

6= 0 is the degree of f(x). An element in R is called a constant polynomial. For

simplicity, if the degree of f(x) is d then we may write f(x) = a0+a1x+· · ·+a
n

xn+. . .

as f(x) = a0 + a1 + · · · + a
d

xd. Addition and multiplication of polynomials with

coe�cients in a ring R are defined in the usual way. If

f(x) = a0 + a1x+ · · ·+ a
n

xn + . . .

10



and

g(x) = b0 + b1x+ · · ·+ b
n

xn + . . .

then for polynomial addition, we have

f(x) + g(x) = c0 + c1x+ · · ·+ c
n

xn + . . . ,

where c
n

= a
n

+ b
n

. For polynomial multiplication, we have

f(x)g(x) = d0 + d1x+ · · ·+ d
n

xn + . . . ,

where d
n

=
P

n

i=0 aibn�i

.

Now that we have seen the formal definition of a polynomial, some special polyno-

mials used in the BGV scheme need to be defined. If a polynomial f has degree d and

the coe�cient on the xd term of f is 1, then f is called a monic polynomial. For a ring

R, the set R[x], is the set of all polynomials with coe�cients in R. It is important to

note that x in this case is called an indeterminate and not a variable. A non-constant

polynomial f(x) 2 F [x] is irreducible over F if f(x) cannot be expressed as the prod-

uct g(x)h(x), where g(x) and h(x) are both polynomials in F [x] of lower degree than

f(x). It is important to note here that f(x) may be irreducible over F , but might not

be in some larger field containing F . For example, consider f(x) = x2+1 2 R[x]. This

polynomial is irreducible over the real numbers but not over the complex numbers.

It factors in C to become f(x) = g(x)h(x) = (x+
p
�1)(x�

p
�1).
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2.2.4 Ideals

An additive subgroup N of a ring R that satisfies the properties

aN ✓ N and Nb ✓ N for all a, b 2 R

is an ideal. The additive cosets of N form a ring R/N with the binary operations

defined by

(a+N) + (b+N) = (a+ b) +N

and

(a+N) (b+N) = ab+N.

The ring R/N is called the factor ring (or quotient ring) of R by N . One such factor

ring is Z/nZ = {0 + nZ, . . . , (n� 1) + nZ}.

Two ideals A and B in commutative ring R are considered coprime if A+B = R.

Also, if A and B are coprime then AB = A \B.

Let I be an ideal in a commutative ring with unity R. Let B
I

= {b1, · · · , br} be

a subset of I. If I = hb1, · · · , bki then B
I

is a basis of I.

2.2.5 Homomorphisms and Isomorphisms

For rings R and R0 and a map � : R ! R0, � is a homomorphism if for all a, b 2 R

the following hold:

1. � (a+ b) = � (a) + � (b), and

12



2. � (ab) = � (a)� (b).

3. �(0
R

) = 0
R

0

Usually �(1
R

) = 1
R

0 as well. If � is one-to-one and onto R0 then � is an isomorphism,

and R and R0 are said to be isomorphic. One can see that Z
n

⇠= Z/nZ because for

a 2 Z
n

, a �! a+ nZ

2.2.6 Chinese Remainder Theorem

We begin this section by presenting the Chinese Remainder Theorem (CRT) with

respect to integers so that those unfamiliar with the theorem can get an idea for what

is happening. We then introduce the Chinese Remainder Theorem for Commutative

Rings.

Let n1, · · · , nk

be positive integers that are pairwise coprime, i.e. for i 6= j,

gcd (n
i

, n
j

) = 1. Then for any finite sequence of integers a1, · · · , ak, there exists an

integer x which solves the system of simultaneous congruences below.

8
>><

>>:

x ⌘ a1 (mod n1)

· · ·
x ⌘ a

k

(mod n
k

)

For example, consider the small system

8
>><

>>:

x ⌘ 1 (mod 2)

x ⌘ 0 (mod 3)

x ⌘ 4 (mod 5)

13



In this example the solution is x = 9 + 30r, where r 2 Z.

One can extend this idea to create the more algebraic theorem, the Chinese

Remainder Theorem for Commutative Rings. Let R be a commutative ring and

I1, · · · , Ik be ideals, see section 2.2.4, that are pairwise coprime (see section 2.2.4 for

what it means for ideals to be coprime). Then the CRT states that the product I of

these ideals is equal to their intersection and the quotient ring R/I is isomorphic to

the product ring R/I
i

⇥ · · ·⇥R/I
k

, via the isomorphism � defined below.

� :

(
R/I �! R/I1 ⇥ · · ·⇥R/I

k

(x+ I) 7�! (x+ I1, ..., x+ I
k

)

2.3 Homomorphic Encryption Timeline and Background

The idea of creating a fully homomorphic encryption scheme was first introduced in

1978 by Rivest, Adelman, and Dertouzos [28] shortly after the creation of RSA. RSA

is what’s known as a partially homomorphic scheme. It only contains the multiplica-

tive homomorphic property. Given an RSA public key pk = (N, e) and ciphertexts

{c
i

 pe
i

mod N}, one can compute
Q

i

c
i

= (
Q

i

p
i

)e mod N . The LHS product is a

ciphertext that is the encryption of the product of the original plaintexts. Naturally

Rivest et al. [28] wondered if there was a scheme which was fully homomorphic. A

scheme where an e�cient algorithm Eval could, for a valid public key pk, boolean

14



circuit C, and ciphertexts {c
i

 Encrypt (pk, p
i

)}, output

c Eval (pk, C, c
i

, · · · , c
n

) ,

where it was also the case that

c Encrypt (pk, C (p
i

, · · · , p
n

)) .

Such a scheme was not introduced, at least not a viable one, until 2009.

2.3.1 Gentry’s Initial Construction

Craig Gentry was the first to propose a viable fully homomorphic scheme [17].

His scheme could perform the addition and multiplication operations on ciphertexts.

From this one could construct circuits to perform arbitrary computations. The scheme

has four main algorithms (described below): KeyGen, Encrypt, Decrypt, and

Evaluate. Below we describe Gentry’s initial construction abstractly just as he did.

This description uses rings and ideals, instead of ideal lattices. For those interested,

the more precise construction using ideal lattices can be found in [17].

We begin the description by making some assumptions. Assume that one has a

fixed ring R that is set according to a security parameter � and one also has a fixed

basis B
I

of an ideal I ⇢ R. In all algorithms assume the plaintext space P is (a

subset of) R mod B
I

. The notation R mod B
I

is used, as in [17], to denote the set

of distinguished representatives of r + I over r 2 R, with respect to the particular

basis B
I

of I. Also let there be an algorithm IdealGen(R,B
I

) that outputs public
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and secret bases Bpk

j

and Bsk

j

of some variable ideal J, where I and J are relatively

prime. Finally assume that there exists another algorithm Samp
⇣
x,B

I

, R,Bpk

J

⌘
that

samples from the coset x+ I.

KeyGen(R,B
I

):

The input parameters are a ring R and a basis B
I

of I. It sets

⇣
Bpk

J

, Bsk

J

⌘
 IdealGen (R,B

I

) .

The public key pk includes R, B
I

, Bsk

J

, and Samp. The secret key sk also includes

Bsk

J

. It outputs (pk, sk).

Encrypt(pk, p):

The input parameters are the public key pk and a plaintext p 2 P . It sets

c0  Samp
⇣
p,B

I

, R,Bpk

j

⌘

and then outputs

c c0 mod Bpk

j

.

Decrypt(sk, c):

The input parameters are the secret key sk and a ciphertext c. It outputs

p 
�
c mod Bsk

J

�
mod B

I

.
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Evaluate(pk, C, {c1, · · · , cn}):

The input parameters are the public key pk, a permitted circuit C of addition and

multiplication gates, and a set of ciphertexts. It calls Add and Mult in accordance

with C’s sequence to compute the output ciphertext c.

Add(pk, c1, c2). Output c1 + c2 mod Bpk

J

.

Mult(pk, c1, c2). Output c1 ⇥ c2 mod Bpk

J

.

Gentry showed that his initial abstract scheme was semantically secure using the

Ideal Coset Problem (ICP).

Definition 1 (ICP). Fix R, B
I

, algorithm IdealGen, and an algorithm Samp1,

that e�ciently samples R. The challenger sets b
R � {0, 1} and

⇣
Bpk

j

, Bsk

J

⌘
 IdealGen (R,B

I

).

If b = 0, the challenger sets r  Samp1 (R) and t  r mod Bpk

J

. If b = 1 the chal-

lenger samples t uniformly from R mod Bpk

j

. The problem: guess b given
⇣
t, Bpk

j

⌘
.

An attacker cannot determine the original message because “noise” has been added

to the message to make it a secret. As messages are added and multiplied this

“noise” grows. Gentry noted that the “noise” might grow too large and stop the

decryption algorithm from working properly. Schemes which could only evaluate low

degree polynomials, to avoid the “noise” from growing too large, are called somewhat

homomorphic encryption (SWHE) schemes. Gentry’s main contribution was finding a
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way to “refresh” a “noisy” ciphertext so that further computations could be performed

on it.

Gentry called this method of “refreshing” a ciphertext bootstrapping. For (an

albeit simplified) example, suppose we have a SWHE scheme E , plaintext space P =

{0, 1}, and the circuits E accepts are boolean. Suppose we have a ciphertext c1 that

encrypts p under pk1 that needs to be refreshed. Suppose we also have sk1, which is

the encryption of secret key sk1, for public key pk1, under pk2. Let hsk1ji be a vector

of the bits of sk1. Let DE be the decryption circuit for E . The following algorithm

will allow us to “refresh” the ciphertext.

Recrypt
⇣
pk2, DE , hsk1ji, c1

⌘
:

Set c1j  Encrypt (pk2, c1j)

Output c2  Evaluate
⇣
pk2, DE , hhsk1ji, hc1jii

⌘

One can see that Evaluate takes the bits of sk1 (encrypted under pk2) and c1

and runs the decryption circuit on them. This produces a new ciphertext c2 which is

the encryption of the original message p1 under pk2. Running the decryption in this

way removed the “noise” in the ciphertext, however Evaluate introduced some new

“noise”. As long as the new “noise” is smaller than the old “noise” then progress has

been made. It is also important to note that if we can run Recrypt on a circuit which

is the decryption circuit augmented with another operation and still have the new

“noise” be less than the original, then one can process any circuit. Evaluation of such
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circuits would take a very long time however because Recrypt would have to be used

for every computation after the first time the “noise” grew too large. Gentry showed

that one could in fact add bootstrapping to the SWHE scheme he had described to

create a fully homomorphic encryption (FHE) scheme.

In 2010, Smart and Vercaunteren were the first to attempt an implementation

of Gentry’s scheme [31]. They implemented a variant of the scheme which used

principal-ideal lattices and required the determinant of the lattice to be a prime

number. They were only able to implement the SWHE scheme. They could not

support large enough parameters so that the decryption circuit could be squashed to

one that would allow for bootstrapping. This was because the key generation process

was rigorous and as a result they could only generate keys with dimensions < 2048.

In order to get a lattice with a prime determinant many lattices had to be generated.

After finding one, still more computations needed to be done in order to compute

the secret key. They estimated that the squashed decryption procedure would be a

several-hundred-degree polynomial and require a lattice of dimension 227, which was

well beyond what they could generate.

Later in 2010, Gentry and Halevi presented another implementation of Gentry’s

original scheme [18]. This implementation was the first one to support bootstrapping.

They achieved this by dropping the prime determinant requirement. They also found

a quicker way of computing the secret key. On top of this they also found many
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optimizations that squashed the decryption procedure into a much more manageable,

degree 15 polynomial.

To evaluate their implementation they used a IBM System x3500 server. It had

a 64-bit quad-core Intel Xeon E5450 processor, running at 3 GHz, with 12MB L2

cache and 24GB of RAM. They used Shoup’s NTL library [3] and GNU’s GMP

library [30]. They tested their implementation with lattices of dimension 512, 2048,

8192, and 32768. The public key sizes were, respectively, 17MB, 69MB, 284MB, and

2.25GB. Key generation took 2.5 sec, 41 sec, 8.4 min, and 2.2 hours. The time it took

to run bootstrapping was 6 sec, 32 sec, 2.8 min, and 31 min.

2.3.2 A second FHE scheme

In mid 2010 the second FHE encryption scheme was introduced by Dijk, et al. [33].

This scheme provided fully homomorphic encryption over the integers, rather than

ideal lattices over a ring. Its main appeal was that it was conceptually simpler to

understand then Gentry’s initial scheme. Below we present the construction of their

SWHE scheme for the plaintext space P = {0, 1}. The construction of their FHE

scheme is slightly di↵erent, as there are additional constraints that need to be met

in order to allow bootstrapping, but it retains the same basic concepts as the SWHE

construction. Below we outline the same four algorithms used by Gentry to build his

scheme. The following parameters, in relation to the security parameter �, are used

in the scheme:
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1. ⇢ = ! (log �), where ! is the Wright Omega Function.

2. ⌘ � ⇢·⇥
�
� log2 �

�
, where ⇥(n) means the computational complexity is bounded

below and above by n.

3. � = ! (⌘2 log �)

4. ⌧ � � + ! (log �)

KeyGen(�)

Take as input the security parameter, �. The secret key, sk, is an odd ⌘-bit inte-

ger sk
R � (2Z+ 1) \ [2⌘�1, 2⌘). For the ⌘-bit odd positive integer p, the following

distribution over the �-bit integers is used:

D
�,⇢

(p) =

⇢
choose q

R � Z \

0,

2�

p

◆
, r

R � Z \ (�2⇢, 2⇢) : output x = pq + 2r

�
.

To generate the public key sample x
i

R � D
�,⇢

(sk) for i = 0, · · · , ⌧ . Relabel so that

x0 is the largest. Restart unless x0 is odd and [x0]
p

is even. The public key is

pk = hx0, · · · , x⌧

i.

Encrypt(pk,m)

Take as input the public key, pk, and a message, m 2 P . Choose a random subset

S ✓ {1, · · · , ⌧} and r
R �

�
�22�, 22�

�
. Output

c 
"
m+ 2r +

X

i2S

x
i

#

x0

.
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Evaluate(pk, C, c1, · · · , ct)

Take as input the public key, pk, a circuit, C, and t ciphertexts. Apply the addition

and multiplication gates of C to the ciphertexts and return the resulting integer.

Decrypt(sk, c)

Takes as inputs the secret key, sk, and a ciphertext, c. Output

m0  (c mod p) mod 2.

The security of this scheme comes from the approximate GCD problem. Simply,

this problem says that it is hard to guess sk from the x
i

. This scheme, while concep-

tually simpler, still was not very e�cient. Subsequent work in the field has been in

attempting to create an e�cient scheme.

2.3.3 Second Generation

The second generation FHE schemes sought to be more e�cient than those that had

come before. The first systems were slow. In order for an FHE scheme to be deployed

on a massive scale it needs to become “usable”. There are three main improvements

made in the second generation: a new construction that allowed for SIMD operations

on ciphertexts; a new technique called modulus switching which replaced the slow

bootstrapping process; and a new scheme which only required polylog overhead.
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SIMD Operations

Smart and Vercaunteren introduced a scheme which had smaller key and ciphertext

size than previous schemes [31]. They noted that their scheme could support SIMD

operations. Their scheme however had a slow key generation process, which Gen-

try and Halevi addressed in their implementation of Gentry’s original scheme [18].

However, Gentry and Halevi didn’t include the SIMD style operations mentioned. As

such, Smart and Vercaunteren detailed the SIMD operations in full [32].

To understand the SIMD operations they first set up a number of finite fields and

homomorphisms. They let F (X) 2 F2 [X] be a monic polynomial of degree N that

splits into r distinct irreducible factors of degree d = N

r

. Thus,

F (X) =
rY

i=1

F
i

(X) .

This polynomial defines a number field K = Q (✓) ⇠= Q [X] /hF i, where ✓ is some

fixed root in the algebraic closure of Q. Let A = F2 [X] /hF i, then by the CRT there

exists natural isomorphisms

A ⇠= F2 [X] /hF1i ⇥ · · ·⇥ F2 [X] /hF
r

i

⇠= F2d ⇥ · · ·⇥ F2d .
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Let ✓
i

be a fixed root of F
i

(X) in the algebraic closure of F2. Define L
i

=

F2 [X] /F
i

. Note that all the L
i

are isomorphic under the isomorphism

�
i,j

:

(
L

i

�! L
j

↵ (�
i

) 7�! ↵ (⇢
i,j

(✓
j

)) ,

where ⇢
i,j

(✓
j

) is a fixed root of F
i

in L
j

, i.e. F
i

(⇢
i,j

(X)) ⌘ 0 mod F
j

(X).

For each divisor n of d, the finite field K
n

:= F2n is contained in F2d . Assume

a fixed representation for K
n

as F2 [X] /K
n

(X), for some irreducible polynomial

K
n

(X) 2 F2 [X] of degree n. Let  denote a fixed root of K
n

(X) in the alge-

braic closure of F2. Clearly K
n

is contained in each of the L
i

, which allows for the

homomorphic embeddings given by

 
n,i

:

(
K

n

�! L
i

↵ ( ) 7�! ↵ (�
n,i

(✓
i

)) ,

where K
n

(�
n,i

(X)) ⌘ 0 mod F
i

(X).

Combining the above homomorphism with the Chinese Remainder Theorem we

obtain the homomorphic embedding of l  r copies of K
n

into A by

�
n,l

:

(
Kl

n

�! A

(1 ( ) , · · · ,l ( )) 7�!
P

l

i=1  (�n,i (X)) ·H
i

(X) ·G
i

(X) ,

where the polynomials H
i

(X) and G
i

(X) are given by the Chinese Remainder The-

orem and defined as

H
i

(X) F (X) /F
i

(X)
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and

G
i

(X) 1/H
i

(X) mod F
i

(X) .

Under this construction there are two ways to compute on elements of Kl

n

:

1. Compute component wise on the vectors of l elements in K
n

.

2. Begin by mapping all inputs to A using �
n,l

, then perform computations in A,

and finally map back to Kl

n

using ��1
n,l

.

Smart and Vercaunteren provide a concrete example to give one a better idea of

what this construction allows for. Let F (X) be the 3485-th cyclotomic polynomial,

which means F (X) is of degree N = � (3485) = 2560. Modulo two, it factors into 64

polynomials, each of degree 40. This means that one can compute in parallel on up

to 64 elements of any subfield of F240 . In particular if we let n = 8 and l = 16, one

can perform SIMD operations on 16 elements of F28 , which is basically an AES state

matrix.

Under their construction one creates a plaintext vector which consists of “plaintext

slots”. O↵ of this one can create a “packed” ciphertext which encrypts the messages

in the “plaintext slots”. Then if one adds or multiplies two ciphertexts together, they

have essentially component-wise added or multiplied the elements in the “plaintext

slots”.
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Modulus Switching

In all scheme presented above for deep circuits bootstrapping had to be used. How-

ever, bootstrapping was slow. Brakerski, Gentry, and Vaikuntanathan developed a

scheme, the BGV scheme, which could perform fully homomorphic operations on

arbitrary polynomial-size circuits without the use of bootstrapping [13, 12]. Their

scheme switched to a new infeasible problem to provide security: the ring learning

with error (RLWE) problem.

The RLWE problem was introduced by Lyubaskevsky, Peikert, and Regev [26].

The BGV scheme uses a simplified version of the problem, which is intended for use

in a special case [14, 27]. The problem is defined:

Definition 2 (RLWE). For security parameter �, let f(x) = xd+1 where d = d(�) is

a power of 2. Let q = q(�) � 2 be an integer. Let R = Z[x]/(f(x)) and let R
q

= R/qR.

Let � = �(�) be a distribution over R. The RLWE
d,q,�

problem is to distinguish the

following two distributions: In the first distribution, one samples (a
i

, b
i

) uniformly

from R2
q

. In the second distribution, one first draws s  R
q

uniformly and then

samples (a
i

, b
i

) 2 R2
q

by sampling a
i

2 R
q

uniformly, e
i

 �, and setting b
i

= a
i

·s+e
i

.

The RLWE
d,q,�

assumption is that RLWE
d,q,�

problem is infeasible.

It has been shown that the already-proven infeasible shortest vector problem (SVP)

over ideal lattices can be reduced to the RLWE problem. Using this infeasible problem

allows the BGV scheme to have 2� security against known attacks.
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In addition to switching the hard problem on which the scheme was built they also

introduced the process of modulus switching, which was first developed by Brakerski

and Vaikuntanathan [15]. This allowed them to not need to use bootstrapping in

their scheme, but they noted that bootstrapping could be used as an optimization.

We first define modulus switching and then describe how bootstrapping can be used

as an optimization.

Definition 3 (Modulus Switching). Let R be a ring. Let c 2 Rn be a ciphertext

integer vector (where n is its dimension) which encrypts the message m. Let sk 2 Rn

be the secret key. Let q be an odd modulus such that m =
h
[hc, ski]

q

i

2
. Let p be an

odd modulus. Define c0 to be the integer vector closest to (p/q) · c such that c0 ⌘ c

mod 2. As long as
���[hc, ski]

p

��� < (q/2)� (q/p) · l1(sk), we know

[hc, ski]
p

=
h
[hc, ski]

q

i

2

and
���[hc, ski]

p

��� < (p/q) ·
���[hc, ski]

q

���+ l1(sk),

where l1(sk) is the l1-norm of sk.

Using modulus switching one can reduce the “noise” of the ciphertext without

knowing the secret key or using bootstrapping. In order to evaluate an L-level circuit

one has to first create a modulus chain q1, · · · , qL, where q
i

> q
j

when i < j. Brak-

erski et al. showed that this scheme could evaluate an L-level circuit with eO(� · L3).

However, if one wants to evaluate very deep circuits many moduli must be generated
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during the setup phase, which can make the scheme ine�cient. As such bootstrap-

ping was reintroduced as an optimization. Using bootstrapping one could evaluate

arbitrary depth circuits and require the largest modulus to be eO(�) bits in length.

Using bootstrapping the per-gate computation becomes eO(�2). We describe the BGV

bootstrapping procedure in more detail in section 2.3.4.

Gentry, Halevi, and Smart developed an implementation of the BGV scheme and

reran tests to see how long it would take to perform the homomorphic evaluation of

an AES circuit [21]. They detailed two di↵erent test cases. First they processed 54

blocks in each evaluation, which took a little over 36 hours in total running time.

This resulted in an amortized rate of around 40 minutes per block. The second test

processed 720 blocks in each evaluation and took a little over two and a half days. This

leads to an amortized rate of around 5 min per block. Thus the BGV implementation

was getting closer to becoming “usable”.

Polylog Overhead

Building o↵ the SIMD work of Smart and Vercaunteren and the BGV scheme, Gentry,

Halevi, and Smart showed that homomorphic evaluation of wide arithmetic circuits

could be accomplished with only polylog overhead [20]. Concretely they presented a

scheme which for the security parameter � could evaluate width-⌦ (�) circuits with

t gates in time t · polylog (�). Their scheme used “packed ciphertexts”. A main

problem with “packed ciphertexts”, that they solved was: what if someone wanted to
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add the ith “plaintext slot” of one vector to the jth “plaintext slot” of another vector?

Previously the way to do this was to “unpack” the slots in separate ciphertexts

so that the operation could be performed and then “repack” the ciphertext. This

approach however would not yield an e�cient FHE scheme. They introduced the

idea of constructing a permutation network. This would allow them to permute data

within the “plaintext slots”, so that one could add the ith “plaintext slot” of one

vector with the jth “plaintext slot” of another vector without needing to “unpack”

and then “repack” the ciphertexts.

2.3.4 HElib

A few implementations of FHE scheme have been built, but for our work we looked

primarily at an implementation of the BGV encryption scheme. The implementation

was developed by Shai Halevi and Victor Shoup and is called HElib [5]. HElib is

written in C++ and uses the NTL mathematical library [3] as well as the GMP

library [30]. HElib is uses the BGV encryption scheme and the Smart-Vercaunteren

ciphertext packing techniques. There are several other optimizations and improve-

ments made to decrease run time. Initially bootstrapping was not included in HElib

but was added in December of 2014 (and is described below). As of March 2015,

HElib also supports multi-threading.

Halevi and Shoup have detailed the numerous algorithms within HElib [24, 25, 23].

In this section we will primarily focus on the parameters involved during the setup

29



stages (as those are the ones that the user of HEIDE will we playing with), and the

functions available in HElib to perform the low level operations which we will use

after “compiling” the higher level algorithms written in HEIDE.

Shortly after bootstrapping was included in HElib, Gentry, Halevi, and Smart

revisited their tests involving the AES circuit [22]. HElib was able to process 180

blocks in about 4 minutes. This lead to an amortized rate of 6 seconds per block.

Setup Parameters

HElib uses the BGV ring-LWE SWHE scheme, described in section 2.3.3. This scheme

is defined over a ring R = Z[X]/�
m

(X). A user can provide there own value for m.

If they do not, then the HElib provided method FindM is used, see Appendix A for

function definition. If FindM is used an additional parameter, d, must be provided.

It corresponds to the degree of the field extension used when trying to find m. It is

required that d | ord(p) in Z⇤
m

and �(m)/ord(p) � s, where s is the least number of

plaintext slots and ord(p) is the multiplicative order of p mod m.

The plaintext space in HElib is R
p

r , where p is a prime and r is a small positive

integer. Both p and r are required parameters.

Recall that the BGV scheme is a (leveled) fully homomorphic scheme. By this

we mean that the scheme consists of a sequence of decreasing moduli q
L

� · · ·� q0
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which are used for modulus switching in order to decrease the “noise” at each level

of the circuit so that bootstrapping is not needed. As such, the user must provide L.

There are also several parameters that have recommended values, but they can be

altered. They are c, w, and security, which have recommended values 2 or 3, 64, and

128. c represents the number of columns in the key switching matrix, a tool used to

switch from one key to another. w represents the Hamming weight of the secret key,

which is used when estimating the “noise” in a ciphertext. security represents the

security parameter and controls how many bits of security the encrypted ciphertext

has. Two lists gens and ords can be given. They correspond to a vector of generators

and vector of orders that will be used during key generation.

Low Level Operations

At the moment HElib only provides several low-level functions: set, addition, multi-

plication, shift, rotate, negate. There are several variations of each function, in case

the input data is of two di↵erent forms. For our construction we made sure that

all input data was of the same form. As such we only use specific variations of the

provided functions. A complete list of the operations, along with their function defi-

nitions can be found in Appendix A. The algorithm written in HEIDE is “compiled”

into these low level operations.
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Bootstrapping

Bootstrapping within HElib follows the same basic structure described in [19, 11].

First we will present the structure as described in [19] and then discuss the structure

used in HElib, which uses an optimization.

Let level-i ciphertext ct = (c0, c1) be the encryption of a plaintext message m 2

R
p

r with respect to secret key sk = (1, s) such that [hsk, cti]
qi = [c0+s ·c1]qi ⌘ m mod

pr. Since one has to define the number of levels prior to computation it might be the

case that the circuit is deeper than the number of levels given. In that case one will

have a level-0 ciphertext and need to use bootstrapping as it was originally defined

to “recrypt” the ciphertext, ct, to get a new ciphertext, ct0. The new ciphertext is

the encryption of the original message with respect to some level-i > 0 modulus.

To begin the recryption procedure from [19], where the plaintext space is R
p

2

we first use modulus switching to compute a new ciphertext, ct0. A specially chosen

modulus, eq = 2e + 1 (where e is an integer), is used for this modulus switching

procedure. In order to perform the recryption, an encryption of the secret key, sk,

with respect to a modulus Q � eq, is added to the public key to produce ect. This is

done is such a way so that [hsk, ecti]
Q

= s mod 2e+1. One then computes

ect0  c01 · ect+ (c00, 0)
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which is the encryption of

u c01 · s+ c00 mod 2e+1.

To decrypt and get the message m back one computes

m uhei � uhe� 1i � uh0i.

However we want to be able to still work with an encryption of m so we must perform

some operations on ect0 in order to change it into an encryption of m and not of u.

This involves first converting ect0 into ciphertexts where the coe�cients of u are in the

plaintext slots. Then one uses a bit extraction procedure to compute two ciphertexts

which are made up of the top and bottom bits of slots. Then, finally, recombine the

ciphertexts into a single ciphertext, ct⇤, which is the encryption of m.

HElib expands upon this to allow this procedure to be run for arbitrary prime

power plaintext spaces. A special recryption key, fsk = (1, es) is used (specifics about es

can be found in Appendix A of [23]). The special secret key is encrypted with respect

to a modulus Q and plaintext space mod pe+r where e > r. The special modulus is

now eq = pe + 1. From this, to decrypt, one computes u  [hsk, ct0i]
p

e+r and then

m uhr � 1, · · · , 0i
p

� he+ r � 1, · · · , ei
p

mod pr.

To continue the recryption procedure one adds multiples of eq and pr to the coe�-

cients of ct0 to make them divisible by pe
0
, where r  e0 < e. The resulting ciphertext

is denoted ct00 = (c000, c
00
1). One then computes

ect0  (c01/p
e

0
) · ect+ (c00/p

e

0
, 0)
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which is the encryption of

u0  (c01 · s+ c00)/p
e

0
mod pe�e

0+r.

Again one splits up u0 into multiple ciphertexts which have the coe�cients of u0 in their

plaintext slots. One then computes r ciphertexts that contain the digits e� e0+ r� 1

through e� e0 of the integers in the slots. Finally the ciphertexts are combined back

to create ciphertext ct⇤, which is the encryption of plaintext message m.
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CHAPTER 3

Related Work

As homomorphic encryption is a relatively new field there is not an overabundance of

related work, but there is some. HElib [5, 25, 23] is not the only implementation of

one of the FHE schemes that arose during the second generation. Scarab and FHEW

are a couple other open source implementations.

Scarab [9] is part of the hcrypt (https://www.hcrypt.com) project, which de-

scribes its mission as a “Secret program execution through homomorphic encryption”.

Hcrypt also contains projects related to Secure Function Evaluation (SFE), which al-

lows one to obfuscate the function within which data is being computed upon. As a

complementary piece Scarab will allow operations to be performed on encrypted data.

Thus if a third party is used for computation they will gain no knowledge of the data

or the overall computations being done on the data. Scarab is an implementation of

a fully homomorphic encryption scheme using large integers. Overall, Scarab follows

Gentry’s initial construction but, instead of using ideal lattices, uses the approach
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described by Smart and Vercaunteren. Smart and Vercaunteren’s scheme was an

integer based approach, and reduced the key and ciphertext sizes.

FHEW [2, 16] is another implementation of an FHE scheme, which sought to

create a very time e�cient bootstrapping procedure. FHEW uses the FFTW (Fastest

Fourier Transform in the West) library, from which it derives its own name, Fastest

Homomorphic Encryption in the West (FHEW). FHEW only encrypts a single bit at

a time, unlike HElib which can support larger plaintext spaces. FHEW reported that

with their scheme one could perform a NAND operation followed by a recryption in

less than a second. This is a better recryption time than that of HElib. However,

because HElib can support larger plaintext spaces, HElib can achieve a faster overall

recryption time than FHEW when they both are given the same large input.

One main issue with the above mentioned schemes is that they are all single

threaded. Many of the operations performed within each of the FHE schemes could

be performed in parallel, which would greatly speed up performance. One such

scheme [29] was written about in early 2014. Kurt Rohlo↵ and David Cousins from

Raytheon BBN Technologies discuss their design of an NTRU-like cryptosystem.

NTRU is a cyrptosystem that uses lattice based cryptography to perform encryp-

tion and decryption. It has been shown to be resistant to attacks that use Shor’s

algorithm. Rohlo↵ and Cousins system was built to run in a commodity CPU-based

computing environment and take advantage of multi-core processors. They ran their
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implementation on a 64 core server with 2.1GHz Intel Xeon processors and 1TB of

RAM in a CentOS environment. However, they noted that at most they only used

10GB of memory and 20 cores during testing. They reported that their implementa-

tion provided at least an order of magnitude speedup when compared to the publicly

known evaluation times of other FHE schemes.
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CHAPTER 4

Design

Homomorphic Encryption saw its first viable scheme in 2009 thanks to Craig Gentry.

That scheme consisted of four main algorithms: KeyGen, Encrypt, Decrypt, and

Evaluate. All current implementations have built o↵ of that original scheme. For our

project we solely worked with the implementation HElib. As of the time of writing,

HElib claims to be an “assembly language for HE”. As a result, their implementation

was not as straightforward as the original scheme. We wanted to design a system

that would match, within reason, the original scheme’s four algorithms.

Since HElib is written in C++, we sought to write a wrapper class around HElib

that would be easy to use while still being useful in most situations. We also sought to

create an Integrated Development Environment (IDE) where researchers could easily

create tests that used HElib.

The rest of this chapter is organized as follows. We start by describing what

features we wanted to incorporate into the C++ wrapper class that we would develop.
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Then we discuss the design decisions that went into creating the IDE. Chapter 5

describes in detail how we implemented our design.

4.1 C++ Wrapper Class

The first thing one must do to perform computations on encrypted data using HElib is

generate the public and secret keys. Within HElib there is no singular key generation

method. First, a user would have to generate an “FHE context”, used to create the

secret key. since HElib is an implementation of the BGV scheme, one then builds a

modulus chain. Next the secret key is built. Then the public key is built. Finally an

“encrypted array”, used to encrypt plaintext data, is constructed. The average user

won’t want to do this every time, so a single method must be added to the wrapper

class to perform all these steps at once. All the user would need to do is pass in the

setup parameters used by these functions and then public and secret keys would be

generated for them. The next step is to encrypt data.

Currently HElib has an overloaded encrypt method, which can accept plaintext

data in varying forms. While useful, a user could easily convert one type of data into

another before encryption. So, we decided that having only one encrypt method

would be the most beneficial for our wrapper class. In HElib when one calls encrypt

a Ctxt object is created and then passed back to the user. Users generally will not

be interacting with any of the internal data within the Ctxt object and only with the
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object as a whole. As such, our wrapper class should not pass back the Ctxt object,

but instead store it internally and pass back a key which they can use to access it.

If there is some method within HElib that we have not supported we should allow a

user to request a Ctxt. After they receive that ciphertext they will most likely alter

it. So, we must provide a way for users to update an already stored ciphertext object.

As this is a FHE scheme we must allow users to perform computations on ciphertexts.

In order for our wrapper method to be useful, with regards to computing on

ciphertexts, we need to support the major operators. Currently HElib supports only

the destructive numerical operators and as such so do we. Thus users should be able

to add, subtract, and multiply one ciphertext to another. In addition, just like HElib,

users should be able to compare one ciphertext to another to see if they are equal.

After all computations are done a user must decrypt all the data. HElib’s decrypt

method returns the plaintext representation of the ciphertext it decrypted. Nothing

else can be done and so our class should mimic the already existing method.

HElib currently provides nice timing functionality. Users can measure how long

each function was running. They also keep track of how many times the function was

called so timing information on a single execution of a function can be seen. This

way users can see how functions compare with each other and where the bottlenecks

are occurring. Our wrapper method should allow users to call these methods to get

timing information as well.
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4.2 Integrated Development Environment

In support of our easier to use wrapper method we also wanted to develop an In-

tegrated Development Environment (IDE) where users could easily do research. To

make the IDE as easy to use as possible the user should be able to write their tests

in a high level language. This high level language will then call the lower level HElib

C++ wrapper methods.

There are three parts to conduct a test within an FHE scheme: one must outline

the setup parameters to be used, one must outline data is to be encrypted, and

finally one must outline the algorithm which computes on the encrypted data. As

such, our IDE should separate each of these parts. The IDE should allow users to

define each of these parts in some high level language. In addition our IDE should

allow users to specify multiple sets of setup parameters and then run the algorithm

they constructed for each of those setup parameters. This will allow users to see

which setup parameters work and which don’t.

In addition the IDE should allow users the ability to see the memory usage related

to each of the di↵erent runs. This will allow them to see which setup parameters

provided the best overall performance. Some users might want to make changes to

the underlying functions within HElib and then test them out using the IDE. Thus

the IDE needs to allow users to specify which version of HElib to use when running

their tests.
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CHAPTER 5

Implementation

Homomorphic Encryption is still in its early stages. Researchers are the ones who

largely work with it. Currently there are only a couple of implementations, the most

well developed of which is HElib. HElib is quite robust for being so new; however, its

barrier to entry is high. As such we developed an environment within which new, and

experienced, researchers could play around with HElib without necessarily needing

as much background knowledge as one would need to use HElib by itself.

Our design considerations and choices made are detailed in more depth in Chap-

ter 4, but here is a quick outline of what we wanted to achieve. Gentry’s original

homomorphic encryption scheme contained four main algorithms: KeyGen, Encrypt,

Decrypt, and Eval. HElib is an implementation of a scheme which evolved out of

that original scheme. The scheme that HElib implements is much quicker than the

original. However, it lost some ease of use. Our design allowed users to define which

parameters to use during key generation, define the data to encrypt, and define an

algorithm over the data. Towards this goal we have created a wrapper class around
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HElib that has a simpler interface. This class is detailed in more depth in Section

5.1.

For our implementation we wanted users to be able to write their algorithms in a

high level language which was easy to use and understand. We choose the high level

language Python. We chose Python because of its ease of readability, which will allow

researchers to write simple (or possibly complex) algorithms easily. Since HElib is

written in C++ we developed a couple Python modules that interact directly with

the wrapper class that we created. These Python modules are detailed in Section 5.2.

To further aid researchers we have also developed a Homomorphic Encryption

IDE (HEIDE), which uses the wrapper class and allows researchers to easily inter-

act with HElib. We detail the specific tools used and the ways in which the user

actually uses HEIDE in Section 5.3. Validation and evaluation testing for our im-

plementation is detailed in Chapter 6. All the code for this project can be found at

https://github.com/heide-support/HEIDE.

5.1 Wrapper For HElib

In order to make HElib easier to use we developed a C++ class, BGV HE, that is

a wrapper around HElib. It not as robust as HElib, but allows an easier interface

for users. There are keyGen, encrypt, and decrypt methods. keyGen takes in setup

parameters and then calls a number of HElib functions that setup the public and
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secret keys. encrypt takes in a vector and then calls HElib’s encrypt method. To

ensure that the vector they are trying to encrypt does not have more entries than the

number of plaintext slots, a method, numSlots, is provided. The resultant ciphertext

is then stored in an unordered map object using a string representation of the current

time as the key. The key is then passed back to the user. Should a user want to get

the HElib ciphertext object from the unordered map so they can apply other HElib

methods not supported by BGV HE to it, the method retrieve has been provided.

Another function, replace, has been provided so an updated ciphertext object can

be put back into the unordered map. decrypt takes in a key and then calls HElib’s

decrypt on the ciphertext stored in the unordered map at the passed in key. The

decrypted vector is then passed back to the user. If the user no longer needs an entry

in the unordered map they can call the method erase. erase takes in a key and then

removes the entry in the unordered map at that key.

So far we have only described the ways in which users can encrypt and decrypt

data, but the real benefit of FHE is that computations can be done on the encrypted

data. As such we have provided wrapper methods around a number of HElib’s meth-

ods which allow one to compute on ciphertexts. These wrapper methods take in keys

and then call the corresponding HElib method with the ciphertext that is stored in

the unordered map at the passed in keys. A complete list of the methods we have

implemented can be found in Appendix A.
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We have also included wrapper methods around the timing methods that HElib

has provided. The header file for BGV HE can be found in B and provides the exact

method declarations.

5.2 Python Homomorphic Encryption Modules

As mentioned before we wanted one to be able to write Python code and then have

that code run the underlying HElib functions. In order to do this we used Cython [1].

Cython allows one to write Python code that can call C++ code natively. This

allowed us to write the Python module PyHE which talks directly with BGV HE. This

module has the exact same methods as BGV HE. As with HElib, encryption must

happen on a plaintext object; computations and decryption happen on ciphertext

objects. As such two other modules, PyPtxt and PyCtxt have been developed and

represent plaintext and ciphertext objects within PyHE.

5.2.1 PyPtxt

PyPtxt is the plaintext object in PyHE. A PyPtxt object is initialized with a Python

list of numbers and a PyHE object. Each element in the list is moded by the modulus

provided during setup. The passed in list is broken into multiple smaller lists based

on the number of plaintext slots associated with the passed in PyHE object. This

means a user need not know the number of plaintext slots beforehand to create and

encrypt a plaintext object. Thus one can see how changing the setup parameters for
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HElib might a↵ect runtime and memory usage. PyHE expects a PyPtxt object to be

passed for encryption. When encrypting a PyPtxt object PyHE calls encrypt on each

of the sublists that were created during creation of the plaintext object. PyHE then

creates a PyCtxt object and stores the result of each encrypted sublist.One can also

perform operations on PyPtxt objects in the same way as they would on ciphertext

objects. All resultant values are moded by the modulus provided during setup.

5.2.2 PyCtxt

PyCtxt is the ciphertext object in PyHE. A PyCtxt object is initialized with a PyHE

object and the length of the original list used to create the plaintext which has

been encrypted into this ciphertext. The PyCtxt object stores the keys passed back

from BGV HE after calling encrypt. When decryption is performed PyHE performs

decryption for each of the keys in the PyCtxt object and then returns a Python list

which is the same length as the original plaintext associated with this ciphertext. As

this is FHE one needs to be able to perform computations with ciphertext objects.

For computations to be performed on ciphertexts users need to be able to add,

subtract, multiply, negate, and compare ciphertexts. Python allows one to override

the operators within the language so that one can define what it means to, for example,

“add” two objects. We have overridden the add (‘a + b’), subtract (‘a - b’), multiply

(‘a * b’), negate (‘-a’), destructive add (‘a += b’), destructive subtract (‘a -= b’),

destructive multiply (‘a *= b’), equal (‘a == b’), and not equal (‘a != b’) operators.
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FIGURE 5.1: Code Hierarchy

The non destructive numerical operators return a new PyCtxt object, and the equality

operators return boolean values. We have also provided the method set which allows

one to write c new = c old.set() and acts as an assignment. The end result of this

will be that c new is assigned the value of c old.

Figure 5.1 shows how each of the pieces of code described interact with each other.

5.3 HEIDE

HEIDE was written in Python 3.0 [8] and uses Python’s Tkinter package [4]. Tk-

inter is self described as “Python’s de-facto standard GUI package” and is an object

oriented layer on top of Tcl/Tk [10]. Tcl (Tool Command Language) is a dynamic

programming language used for a variety of applications and Tk is a graphical user

interface toolkit used to develop desktop applications.
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The rest of this section is outlined as follows. We discuss the settings that are

read in by HEIDE upon start-up and then discuss the key windows of HEIDE.

5.3.1 HEIDE Start-up Settings

There are several configuration parameters that can be set for HEIDE. As it is a

research tool to be used with HElib, the HElib implementation to be used when

performing homomorphic encryption tasks must be provided. This can be the latest

released version of HElib or a user modified one.

Researchers will want to test out multiple configurations of the setup parameters

used for key generation to see how they a↵ect run-time and memory usage. If each

configuration was run only after the previous was complete the researcher’s tests might

take a long time to complete. Since modern computers allow multiple processes to be

run at once, HEIDE will start a new process for each configuration. Depending on

one’s system the maximum number of processes that should be spawned might di↵er.

Thus the user can define the maximum number of processes that can be started. If

the maximum number is less than the number of tests being run, then the maximum

number is started. Once they all finish, more are started.

When designing our system we wanted a way for users to get time and memory

usage data about each run. HElib already provides timing information. Thus we

added to our wrapper class ways for the user to call HElib’s timing functions directly
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so they could obtain timing information. In order to get memory usage we used the

Python library psutil v2.2.1 [7]. Psutil allows one to query the operating system and

ask for memory usage of a running process. The user can choose if the memory usage

data is collected and displayed. If they choose to have it collected then memory usage

data is collected every num running processes * 50ms. This data is then displayed

using matplotlib v1.4.3 [6]. Matplotlib is a 2D plotting library written in Python.

Each configuration gets its own plot. Matplotlib natively provides users the ability

to save plots.

These three initial configuration parameters are stored in the file HEIDE/heide.config.

Data in the configuration file is stored as a JSON object. On start-up HEIDE will

use Python’s json decoder to get the parameter values from HEIDE/heide.config

and then run the makefile in the source folder to make sure that it is up to date and

can actually be run. If the implementation fails to build the error encountered by

make will be displayed to the user and the IDE will not start. If everything compiles

correctly then the main IDE window will open.

5.3.2 Main IDE Window

The main IDE window can be seen in Figure 5.2. This window contains the editors

where the user will define the setup parameters for key generation, the data to be

used in the algorithm, and the algorithm itself. This window also contains a menubar

where users can (among other things) create, open, and save HEIDE projects.

49



FIGURE 5.2: HEIDE main window.

Menubar Options

The menubar has two drop down menu options: File, and Run. Select options within

these two menu options have key bindings and those bindings are detailed in Appendix

C. Under File there are several things a user can do relating to a HEIDE project. A

user can create a new HEIDE project. When this option is selected the New Project

window will be displayed, see Figure 5.3. This window will allow the user to define

several settings about this project. The first setting the user will be able to set is the

HElib implementation to be used by this project. The second setting is the project

name. Next is where the project will be saved. Default project save location is

HEIDE/HEIDE projects. Then there are options that allow the user to use existing
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FIGURE 5.3: HEIDE new project window

files as the parameter, data, or algorithm files. If an existing file is provided then

the contents of that file will be read and put into the appropriate project file. The

original file will not be a↵ected by future changes. When a project is created a file

<proj-name>.heide is created in the project save location specified by the user. In

this is stored the project settings, name, location, and links to files which contain the

editor contents. The data is stored in a JSON object. Internally in the IDE, variables

are set to keep track of the project’s HE implementation. Other variables are also set

to keep track of the open project, parameter, data, and algorithm files.

The next options in File are Open, Save, and Save As which can be seen in figures

5.4, 5.5, and 5.6 respectively. They all allow the user to work with a whole project or

an individual editor. They all open a tkinter FileDialog window which allows the

user to choose where to open, or save a file.
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FIGURE 5.4: HEIDE open options FIGURE 5.5: HEIDE save options

FIGURE 5.6: HEIDE save as options

Next there is an Import option. This allows the user to import an existing file into

one of the editors. After that option there is the Close Project option. If selected,

the contents of the editors are saved and the project is closed. If the editors don’t

currently link to files where the content should be saved the user will be asked where

to save the contents of each editor.

The next option is Settings. This will open the Settings window, see Figure 5.7,

which allows the user to set the IDE’s default HE implementation, maximum number

of sub-processes to run, and whether or not memory usage information should be

collected and stored. When new settings are applied the IDE will run the makefile

of the new HE implementation to make sure that the code can compile and is up to

date. Lastly there is a Quit option which shuts down the IDE. The currently open

project is saved before shutdown in the same manner as if one called Close Project.

In the menubar there is also a Run option. When this is chosen the IDE will

open the Console window, see Figure 5.8. A python script is created based o↵ the
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FIGURE 5.7: HEIDE settings window

FIGURE 5.8: HEIDE Ouput Console

code in the algorithm editor and takes two arguments: a parameter configuration

argument and a data argument. The data argument is created using the contents of

the data editor and is the same for every configuration. The parameter configurations

are computed based on the code in the parameter editor. The python script is then

started and passed the data and the current parameter configuration.

When a subprocess finishes successfully the configuration details and stdout are

saved internally and when all the subprocesses finish the contents are printed to the
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console window in order. If the user has chosen to have memory usage displayed then

a plot for each of the subprocesses started is displayed. If the user tries to close the

output window before all the configurations are run the remaining configurations will

not be run and any running configuration will be terminated. A user can then save

the output if they would like.

Parameter Editor

The parameter editor window is a Tkinter ScrolledText widget. The ScrolledText

widget allows for basic text editing. By default the contents of the parameter editor

window are stored in <path to proj>/<proj name>.heide params. The code within

the parameter editor must be written in Python.

The code within the parameter editor should create a list of dictionaries. This

list must have the name RUN PARAMS. Each dictionary within the list corresponds to a

di↵erent configuration to be used during key generation. To add a new dictionary to

the RUN PARAMS list one can use the standard Python commands or the ones we de-

veloped specifically for HEIDE. If the user types %+<id>, that code is converted into

RUN PARAMS.append(<id>). For an error to not occur, <id> should be a dictionary

consisting of only valid parameters. Optional parameters can be omitted and will be

added internally before execution. When a new project is created and no existing

parameter file is chosen the parameter editor is filled with a generic dictionary con-

taining all required parameters, see Appendix D for a complete list of configuration
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parameters. An example, using the HEIDE specific syntax, of what could be in the

parameter editor is shown in Listing E.1.

Data Editor

The data editor, like the parameter editor, is a Tkinter ScrolledText widget. By

defualt the contents of the data editor window are stored in

<path to proj>/<proj name>.heide data. The code within the data editor must

be written in Python.

The code within the data editor should create a dictionary of lists. This dictionary

must have the name DATA. Each list corresponds to a plaintext array. This plaintext

array is what will be encrypted and computed on. There are three ways in which to

add lists to the dictionary. The first is using standard Python commands. The second

is by writing $.<key> = <list> which is converted into DATA["<key>"] = <list>.

Using this second way, one must provide a new key every time they want to add a

new list to the dictionary. If they would like to do this more pragmatically we have

provided a third means for adding lists to the dictionary, $+<key>. The command

$+<key> = <list> is converted into DATA[<key>] = <list>. These commands can

be used together. Below is an example of what might be written in the data editor.

Listing E.2 uses the $.<key> = <list> syntax only while E.3 uses the $+<key> =

<list> syntax only.
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Algorithm Editor

The contents of the algorithm editor are what will be run using the current configu-

ration in RUN PARAMS and the data in DATA. The code in the algorithm editor must be

written in Python. When the user runs the algorithm the contents are read and any

conversions that need to take place are made. There are several syntactical additions

made specifically for the algorithm editor. They are listed in the Table 5.1. After all

conversions are made, HEIDE creates a Python script called alg run file.py and

places it in the HEIDE/tmp folder. An example entry in the algorithm editor is shown

in Listing E.5.

HEIDE syntax Python Equivalent syntax

<var1> := <var2> # see Listing E.4 for definition of set
<var1> = set (<var1>)

&<var> <var> = HE.encrypt(<var>)

&$
for key in DATA:

DATA[key] = HE.encrypt(DATA[key])
*<var> HE.decrypt(<var>)

*$
for key in DATA:

DATA[key] = HE.decrypt(DATA[key])
$.<var> DATA["<var>"]

$@<ref> DATA[DATA.keys()[<ref>]]

$ DATA

%.<var> RUN PARAMS["<var>"]

TABLE 5.1: HEIDE algorithm editor syntax additions and their equivalent
Python syntax statements. Note that in all cases h var i cannot include
any spaces.

The script created is shown in Listing E.4. For each configuration the script is run

as a subprocess using Python’s built in subprocess module. The current RUN PARAMS
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and DATA are converted to their string forms and passed as command line arguments

to the script. The script then converts them back to Python objects. Next, the script

creates a PyHE object and calls PyHE.keyGen() using the passed in RUN PARAMS.

From there the contents of the algorithm editor are run.

If an error occurs during the execution of a subprocess, that error is printed

to the console window. If an internal error occurs, then it will be appended in

HEIDE/logs/error log. For each error while running the date and time the error

occurred, stdout, and stderr is logged. For each error that occurs while running

HEIDE, the date, time, a stack-trace, and the error message are logged. Execution

of any remaining parameter configurations is abandoned and all currently running

processes are terminated.
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CHAPTER 6

Evaluation

Our work consists of three main contributions: BGV HE, PyHE, and HEIDE. Testing

was done in two regards. First, validation testing was done. This was done to ensure

that computations on encrypted data could still be performed using the BGV HE

class and PyHE module. Those tests are detailed more in Section 6.1. Second, timing

tests were done. We timed how long it took to perform key generation, encrypt data,

perform a particular computation on said encrypted data, and then decrypt that data.

These tests where run using and HElib code only implementation, using a BGV HE

code implementation, and using a PyHE code implementation in HEIDE. Those tests

are detailed in Section 6.2. Along with the timing tests we also include the average

number of lines of code required to write the test. This was done to verify that our

work met its goal of providing a simpler way to perform FHE using HElib.

All our testing was done on a Mid 2014 Macbook Pro laptop. It has a 2.5 GHz

Intel Core i7 processor and 16GB 1600 Mhz DDR3 RAM. We were testing using
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VMware Fusion on a virtual machine, running 64-bit Ubuntu, which was not limited

in processor or RAM usage.

6.1 Validation Testing

Both BGV HE and PyHE are building o↵ of HElib. As such, we have run tests for

both to ensure that computations on encrypted data are in fact still producing the

correct results. For BGV HE that requires testing the following: addCtxt (with nega-

tion set to false), addCtxt (with negation set to true), multiplyBy, multiplyBy2,

square, cube, negate, equalsTo, rotate, and shift. For PyHE that required

testing addition (‘a + b’), destructive addition (‘a += b’), addition by a constant

(‘a + [int]’), subtraction (‘a - b’), destructive subtraction (‘a -= b’), subtraction by

a constant (‘a - [int]’), multiplication (‘a * b’), destructive multiplication (‘a *= b’),

multiplication by a constant (‘a * [int]’), negation (‘-a’), equality (‘a == b’), and

non equality (‘a != b’). We ran each of these tests using randomly generated plain-

text values. We performed the computations first on the generated plaintexts; then

encrypted the plaintexts and performed the computations; and then decrypted and

compared the result to the plaintext values. We successfully passed all tests. From

this we concluded that our implementation were correctly implementing the levelled

BGV FHE scheme.
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6.2 Timing Tests

All the timing tests we performed were done using HElib’s built in timing func-

tions. We timed how long it took to: perform key generation, encrypt a plaintext (or

plaintexts) that was exactly numSlots in size, perform a single computation on the

encrypted ciphertext (or ciphertexts), and then decrypt the result. We tested addi-

tion, subtraction, multiplication, squaring a ciphertext, cubing a ciphertext, negation,

and equality. For squaring and cubing, because no specific methods are provided in

PyHE, we wrote out the equivalent circuit and timed it. As we didn’t provide rotation

and shifting in PyHE, those tests have not been done. We ran each test five times

and averaged the results. For PyHE we ran two separate timing tests. One test only

allowed a single process to run at a time and the other allowed 5 to run. HElib’s tim-

ing functions provide feed back about specific functions. The timing functions keep

track of the overall time spent in a particular function as well as the number of times

that function was entered. From those two numbers they output the averaged time

spend in each function. Some tests call functions that are not called in other tests.

So we have selected the functions that were common to all tests. Timing breakdowns

per function can be seen in Figure 6.1 through Figure 6.10. The time it took to run

all five tests can be seen in Figure 6.11.

From the results one will notice that the BGV HE implementation and the HE-

lib implementation took almost the exact same amount of time regardless of the
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FIGURE 6.1: Average time running BluesteinFFT

FIGURE 6.2: Average time running CRT reconstruct

61



FIGURE 6.3: Average time running decode

FIGURE 6.4: Average time running Decrypt
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FIGURE 6.5: Average time running DoubleCRT

FIGURE 6.6: Average time running embedInSlots
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FIGURE 6.7: Average time running Encrypt

FIGURE 6.8: Average time running FFT
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FIGURE 6.9: Average time running GenKeySWmatrix

FIGURE 6.10: Average time running toPoly
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operation. From this we can conclude our implementation is not adding any extra

computational time to the operations. When running only a single process, PyHE

performs slightly slower than the BGV HE and HElib implementations. As PyHE is

a Python module interacting with a C++ class this is to be expected. Since we built

PyHE on top of BGV HE, it makes sense that it would be slower. When running

multiple processes however, it is clear that the individual time spent in the functions

is greater. This is to be expected as the CPU can only do so much at one time. On

average, with 5 processes running, we saw a slightly less then double runtime when

compared to the other tests.

For each of the tests it is also important to note the number of lines of code

required to write each test. For the HElib implementation the average was around

35 to 40 lines of code. For the BGV HE implementation the average was around 25

to 30 lines of code. This decrease was due to the number steps required to perform

key generation. Our PyHE tests averaged around 15 to 20 lines of code. This was

due to the way in which one can create lists in Python (which is our plaintext). In

HEIDE these tests required 10 to 15 lines of code. The various conversions that are

done within HEIDE are what decreased the number of lines required here. For each

of the test run in HEIDE we also looked at the memory required for the operation.

Every operation used about 325MBs. The number of slots in the plaintext vector was

around 250, so the plaintext was rather small. The memory consumption is coming

from the key generation process.
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FIGURE 6.11: Total time to run each test

From Figure 6.11 one can see where using HEIDE has its benefits. The runtime

required for each operation across the board remained relatively constant for all tests.

The single process PyHE instance was the most erratic. It was also the slowest. This,

again, is to be expected. However, the runtime for the multiple process PyHE instance

was nearly half that of the BGV HE and HElib implementations.
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CHAPTER 7

Future Work

There exist several areas where future work could be done. We’ll start with BGV HE.

It would be helpful to provide a ciphertext class that would be used by BGV HE so

that one could simply use, for example ’+=’, on two ciphtertext objects. Currently

this is supported in HElib, but because we are not sending their ciphertext object

back, only a string, we cannot perform such operations. This probably wouldn’t be

too hard to do but it was not attempted due to time constraints. Also in need of

support are all the recently added recryption methods. We didn’t have enough time

to go through and add the recryption methods added to HElib. All this requires of

one is to understand how to do recryption using HElib and work out if it can be

simplified any. As a possibly crazy idea, one might also look at using a key-value

database to store ciphertext objects instead of the unordered map we are currently

using. This will really only be useful if the user wants to store a large amount of

ciphertexts or have them persist outside of the program they are running.
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There is some future work that exists with PyHE. Currently PyHE does not

support rotation or shifting. This is because rotation and shifting only happen on

each individual ciphertext. A PyCtxt could represent multiple ciphertexts. The

easiest solution would be to say each ciphertext within the PyCtxt object is rotated

or shifted as currently happens using HElib. One could explore the possibility of

performing rotation and shifting as though it were happening on the original list used

to create the PyPtxt object which the PyCtxt object is the encryption of.

Lastly we do think there are some useful tools that could be added to HEIDE.

A debugger would be useful, but was not implemented. A way for users to link to a

git repository so they can push and pull code, would be helpful. Currently HEIDE

al lows one to have a single HEIDE project open at once. It might be useful to allow

multiple projects to be open at once. From a code writing standpoint we would liked

to have put in syntax highlighting and block commenting, but didn’t have enough

time to do so.
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CHAPTER 8

Conclusion

Homomorphic Encryption is highly useful. It allows one to perform computations

on a ciphertext without the need of the original plaintext. Since the first viable

scheme was proposed by Gentry in 2009 there has been a large amount of research

done in the area. The reason Gentry’s scheme is not widely used currently is that

Gentry’s original scheme was slow. As such, the schemes that have been developed

in the intermediate time sought to be quicker. The process of bootstrapping was

the largest bottleneck in such schemes. However, with the introduction of a levelled

fully homomorphic scheme it seemed as though we were one step closer to FHE being

widely used.

Several implementations of FHE schemes have been developed. The one we have

primarily focused on here is HElib. HElib is an implementation of the levelled BGV

Fully Homomorphic Encryption scheme. HElib is a very robust library given its in its

infancy. However, it does not have the cleanest user interface. As such, we developed

a wrapper class around HElib that would abstract away some of the things required
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by HElib. We designed this class to reduce the number of lines necessary to write

tests that perform homomorphic encryption computations. We also wanted to ensure

that the running time of our wrapper class was not far o↵ from that of a pure HElib

implementation. From our results we can see that we succeeded in created a wrapper

class that wasn’t noticeably slower at performing operations on ciphertexts when

compared to HElib.

We also sought to create a way for researchers to write homomorphic encryption

code in a high level language. PyHE accomplished just that. Researchers can use

PyHE to write Python code that then calls the underlying functions found in BGV HE

and HElib’s. We additionally added some functionality not found in HElib. One

doesn’t need to call the destructive version of an operator to perform computations

on ciphertexts. From our results we can see that PyHE is slightly slower than a

straight HElib implementation. However, not noticeably. Where PyHE does excel is

in ease of use. PyHE is much more flexible to use than HElib. One can call encrypt on

a list of any length, not just one of size less than or equal to the number of plaintext

slots. In other areas as well it is much easier to write tests than if one where strictly

using HElib.

In support of PyHE we have also developed an IDE, the Homomorphic Encryption

IDE (HEIDE). HEIDE allows users to write Python code and directly use PyHE

methods. In addition HEIDE also allows one to write specific commands, that are

71



then converted into the appropriate PyHE method. This makes writing code in

HEIDE easy to do and read. HEIDE also allows one to start up multiple processes,

so that users can easily play around with the setup parameters. From our tests, one

can see that if multiple processes are started the runtime of a single operation is

e↵ected quite a bit. The runtime is slightly less than double that of the equivalent

BGV HE and HElib implementations. However, overall runtime is greatly decreased.

From our tests one could see that it took only half the time to run the five tests when

running multiple processes at once as it did when only a single at a time. In addition

we have provided researchers with the ability to see the memory usage of each of their

tests.
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APPENDIX A

HElib Method Definitions

Listing A.1: FindM Method Definition

/⇤⇤
⇤ @br ie f Returns sma l l e s t parameter m s a t i s f y i n g var ious

⇤ c on s t r a i n t s :

⇤ @param k s e c u r i t y parameter

⇤ @param L number o f l e v e l s

⇤ @param c number o f columns in key sw i t ch ing matr ices

⇤ @param p c h a r a c t e r i s t i c o f p l a i n t e x t space

⇤ @param d embedding degree (d ==0 or d==1 => no con s t r a i n t )

⇤ @param s at l e a s t t h a t many p l a i n t e x t s l o t s

⇤ @param chosen m p r e s e l e c t e d va lue o f m (0 => not

,! p r e s e l e c t e d )

⇤ Fa i l s wi th an error message i f no s u i t a b l e m i s found

⇤ p r i n t s an in fo rmat i v e message i f verbose == true

⇤⇤/
long FindM( long k , long L , long c , long p , long d , long s ,

long chosen m ,

bool verbose=fa l se ) ;

Listing A.2: HElib Operation Methods

/⇤⇤
⇤ Operators

⇤ Only the ” d e s t r u c t i v e ” v e r s i on s are suppor ted .

⇤⇤/
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// Ari thmet ic opera tor s

AltCRT& operator+=(const AltCRT &other ) ;

AltCRT& operator�=(const AltCRT &other ) ;

AltCRT& operator⇤=(const AltCRT &other ) ;

// Set opera tor

AltCRT& operator=(const AltCRT &other ) ;

// Equa l i t y opera tor s

AltCRT& operator !=(const AltCRT &other ) ;

AltCRT& operator==(const AltCRT &other ) ;

/⇤⇤
⇤ Functions

⇤⇤/

// Add/ su b t r a c t another c i p h e r t x t ( depending on the

// nega t i v e f l a g )

void addCtxt ( const Ctxt& other , bool negat ive )

// Higher� l e v e l mu l t i p l y r ou t i n e s

void multiplyBy ( const Ctxt& other ) ;

void multiplyBy2 ( const Ctxt& other1 , const Ctxt& other2 ) ;

void square ( ) ;

void cube ( ) ;

// Negate

void negate ( ) ;

// Equa l i t y f unc t i on

// a procedura l va r i an t wi th an add i t i o n a l parameter

// performs a ” sha l l ow ” e q u a l i t y check
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bool equalsTo ( const Ctxt& other , bool comparePkeys=true )

const ;

// Manipulat ion f unc t i on s

void r o t a t e ( Ctxt& ctxt , long k ) ;

void s h i f t ( Ctxt& ctxt , long k )
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APPENDIX B

BGV HE Method Definitions

Listing B.1: BGV HE Method Definitions

#ifndef BGV HE H

#define BGV HE H

#include <f stream>

#include <sstream>

#include <c s t d l i b>

#include <boost /unordered map . hpp>

#include <boost / l e x i c a l c a s t . hpp>

#include <sys / time . h>

#include ” . . / HElib/ s r c /FHE. h”

#include ” . . / HElib/ s r c /EncryptedArray . h”

#include ” . . / HElib/ s r c /PAlgebra . h”

class BGV HE {
public :

BGV HE( ) ;

virtual ˜BGV HE( ) ;

/⇤⇤
⇤ @br ie f Performs Key Generation us ing HElib f unc t i on s

⇤ @param p p l a i n t e x t base

⇤ @param r l i f t i n g
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⇤ @param L # of l e v e l s in modulus chain

⇤ @param c # of columns in key sw i t ch ing matrix

⇤ @param w Hamming weigh t o f s e c r e t key

⇤ @param d degree o f f i e l d ex t ens i on

⇤ @param s e c u r i t y s e c u r i t y parameter

⇤ @param m ( op t i ona l parameter ) use m’ th cyc lo tomic

,! po lynomia l

⇤ @param gens ( op t i ona l parameter ) v e c t o r o f g enera tor s

⇤ @param ords ( op t i ona l parameter ) v e c t o r o f orders

⇤/
void keyGen ( long p , long r , long L , long c ,

long w, long d , long s e cu r i t y , long m =

,! �1,
const vector<long>& gens = vector<long>()

,! ,

const vector<long>& ords = vector<long>()

,! ) ;

/⇤⇤
⇤ @br ie f Ca l l s HElib encrypt f unc t i on f o r prov ided

,! p l a i n t e x t v e c t o r and

⇤ then s t o r e s the c i p h e r t e x t in the unordered map and

,! r e turns the key

⇤ @param p t x t v e c t p l a i n t e x t v e c t o r to encrypt

⇤ @return key where c i p h e r t e x t s t o r ed in unordered map

⇤/
s t r i n g encrypt ( vector<long> ptx t ve c t ) ;

/⇤⇤
⇤ @br ie f Ca l l s HElib decryp t f unc t i on f o r c i p h e r t e x t

,! t h a t i s found in

⇤ unordered map at key

⇤ @param key the key which corresponds to the c i p h e r t e x t

,! to decryp t
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⇤ @return the decryp ted c i p h e r t e x t

⇤/
vector<long> decrypt ( s t r i n g key ) ;

/⇤⇤
⇤ @br ie f Create a new c i p h e r t e x t and s e t i t e qua l to the

,! c i p h e r t e x t

⇤ s t o r ed in unordered map under key

⇤ @param key c i p h e r t e x t key in unordered map

⇤ @return key corresponding to new c i p h e r t e x t

⇤/
s t r i n g s e t ( s t r i n g key ) ;

/⇤⇤
⇤ @br ie f Add c i p h e r t e x t a t key to c i p h e r t e x t a t

,! o th e r k ey and s t o r e r e s u l t

⇤ back in unordered map at key

⇤ @param key key in unordered map

⇤ @param o the r k ey key in unordered map

⇤ @param nega t i v e i f True then perform sub t r a c t i on

⇤/
void addCtxt ( s t r i n g key , s t r i n g other key , bool negat ive )

,! ;

/⇤⇤
⇤ @bre i f Mu l t i p l y c i p h e r t e x t a t key by c i p h e r t e x t a t

,! o th e r k ey and s t o r e

⇤ r e s u l t in unordered map at key

⇤ @param key key in unordered map

⇤ @param o the r k ey key in unordered map

⇤/
void multiplyBy ( s t r i n g key , s t r i n g other key ) ;

/⇤⇤
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⇤ @br ie f Mu l t i p l y c i p h e r t e x t a t key by c i p h e r t e x t a t

,! o the r key1 and

⇤ o the r key2

⇤ @param key key in unordered map

⇤ @param othe r key1 key in unordered map

⇤ @param othe r key2 key in unordered map

⇤/
void multiplyBy2 ( s t r i n g key , s t r i n g other key1 , s t r i n g

,! other key2 ) ;

/⇤⇤
⇤ @br ie f Square c i p h e r t e x t a t key

⇤ @param key key in unordered map

⇤/
void square ( s t r i n g key ) ;

/⇤⇤
⇤ @br ie f Cube c i p h e r t e x t a t key

⇤ @param key key in unordered map

⇤/
void cube ( s t r i n g key ) ;

/⇤⇤
⇤ @br ie f Mu l t i p l y c i p h e r t e x t a t key by �1
⇤ @param key

⇤/
void negate ( s t r i n g key ) ;

/⇤⇤
⇤ @br ie f Return t rue i f the c i p h e r t e x t a t key and

,! c i p h e r t e x t a t o t h e r k ey

⇤ are equa l

⇤ @param key key in unordered map

⇤ @param o the r k ey key in unordered map

⇤ @param comparePkeys i f t rue then pkeys w i l l be

,! compared
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⇤ @return True i f c i p h e r t e x t s are equa l

⇤/
bool equalsTo ( s t r i n g key , s t r i n g other key , bool

,! comparePkeys ) ;

/⇤⇤
⇤ @br ie f Rotate c i p h e r t e x t a t key by k spaces

⇤ @param key key in unordered map

⇤ @param k number o f spaces to r o t a t e by

⇤/
void r o t a t e ( s t r i n g key , long k ) ;

/⇤⇤
⇤ @br ie f S h i f t c i p h e r t e x t a t key by k spaces

⇤ @param key key in unordered map

⇤ @param k number o f spaces to s h i f t by

⇤/
void s h i f t ( s t r i n g key , long k ) ;

/⇤⇤
⇤ @br ie f Number o f p l a i n t e x t s l o t s

⇤ @return number o f p l a i n t e x t s l o t s

⇤/
long numSlots ( ) ;

/⇤⇤
⇤ Replace the c i p h e r t e x t a t key wi th the new one

,! prov ided

⇤ @param key key in unordered map

⇤ @param new c tx t new Ctxt o b j e c t to s t o r e in the

,! unordered map

⇤/
void r ep l a c e ( s t r i n g key , Ctxt new ctxt ) ;

/⇤⇤
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⇤ @br ie f Re t r i eve the c i p h e r t e x t o b j e c t from the

,! unordered map

⇤ @param key key in unordered map

⇤ @return the c i p h e r t e x t corresponding to the passed in

,! key

⇤/
Ctxt r e t r i e v e ( s t r i n g key ) ;

/⇤⇤
⇤ @br ie f De le t e from the unordered map the entry at key

⇤ @param key key in unordered map

⇤/
void e r a s e ( s t r i n g key ) ;

/⇤⇤
⇤ @br ie f Ca l l HElib t imers on method

⇤/
void timersOn ( ) ;

/⇤⇤
⇤ @br ie f Ca l l HElib t imers o f f method

⇤/
void t imer sOf f ( ) ;

/⇤⇤
⇤ @br ie f Ca l l HElib t imers r e s e t method

⇤/
void re se tTimers ( ) ;

/⇤⇤
⇤ @br ie f Ca l l HElib t imers p r i n t method

⇤/
void pr intTimers ( ) ;

private :

EncryptedArray⇤ ea ;

FHEcontext⇤ context ;
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FHESecKey⇤ secretKey ;

const FHEPubKey⇤ publicKey ;

/⇤⇤
⇤ Unordered map which s t o r e s the c i p h e r t e x t s

⇤/
boost : : unordered map<s t r i ng , Ctxt> ctxt unord map ;

/⇤⇤
⇤ @br ie f Store the c i p h e r t e x t in the unordered map and

,! re turn key where

⇤ i t was s t o r ed

⇤ @param c t x t C iphe r t e x t to s t o r e in unordered map

⇤ @return the key used to l o c a t e t h i s c i p h e r t e x t in the

,! unordered map

⇤/
s t r i n g s t o r e ( Ctxt⇤ c tx t ) ;

} ;

#endif /⇤ BGV HE H ⇤/
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APPENDIX C

HEIDE Key Bindings

Key Binding HEIDE Command
Ctrl+n Create a new project
Ctrl+o Open project
Ctrl+s Save project
Ctrl+p Save parameter editor contents
Ctrl+d Save data editor contents
Ctrl+a Save algorithm editor contents
Ctrl+P Save As parameter editor contents
Ctrl+D Save As data editor contents
Ctrl+A Save As algorithm editor contents
Ctrl+C Close project
Ctrl+q Quit HEIDE
F1 Run Project

TABLE C.1: HEIDE key bindings
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APPENDIX D

Key Generation Parameters

Required Parameters
p plaintext base
r lifting
L # of levels in modulus chain
c # of columns in key switching matrix
w Hamming weight of secret key
d degree of field extension
security security parameter

Optional Parameters
m use m’th cyclotomic polynomial
gens vector of generators
ords vector of orders

TABLE D.1: Key Generation Parameters (more detailed descriptions can
be found in Section 2.3.4)
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APPENDIX E

Example HEIDE Code

Listing E.1: Example parameter editor entry using HEIDE syntax

# parameter d i c t i ona r y

pd = { ’ p ’ : 65537 ,

’ r ’ : 1 ,

’L ’ : 15 ,

’w ’ : 64 ,

’d ’ : 0 ,

’ s e c u r i t y ’ : 128}

# add current parameter d i c t i ona r y to RUNPARAMS

%+pd

Listing E.2: Example data editor entry using $.<key> = <list> syntax

# crea t e two p l a i n t e x t arrays and add them to DATA

$ . p0 = [ 1 , 2 , 3 , 4 ]

$ . p1 = [ 5 , 6 , 7 , 8 ]

Listing E.3: Example data editor entry using $+<key> = <list> syntax

from random import randrange

# crea t e 5 l i s t s o f random numbers and add them to DATA

for i in range (5 ) :

$+i = [ randrange ( j + 1) for j in range (100) ]

Listing E.4: Example run alg file.py file
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import sys

import as t

sys . path . append ( ’ . . / . . / PyHE/ ’ )

from PyHE import PyHE

from PyPtxt import PyPtxt

from PyCtxt import PyCtxt

s e t = lambda c : c . set ( )

def r un he i d e a l g (RUNPARAMS, DATA) :

HE = PyHE( )

HE. keyGen (RUNPARAMS)

for key in DATA:

DATA[ key ] = PyPtxt (DATA[ key ] , HE)

# algor i thm ed i t o r content which conta ins the a l gor i thm

# to be run

<a lg ed i t content>

i f name == ’ ma in ’ :

r un he i d e a l g ( a s t . l i t e r a l e v a l ( sys . argv [ 1 ] ) ,

a s t . l i t e r a l e v a l ( sys . argv [ 2 ] ) )

Listing E.5: Example Algorithm Editor Entry

# encrypt a l l e lements in DATA

&$

# crea t e a c i p h e r t e x t c tx t sum and s e t i t e qua l to

# the f i r s t t h in g in data . Then add up the r e s t o f the

# elements in DATA

ctxt sum := $@0

for i in range (1 , len ( $ ) ) :

ctxt sum += $@i
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# decryp t c tx t sum and p r i n t out the p l a i n t e x t r e s u l t

print (⇤ ctxt sum )
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