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ABSTRACT 

Combination of a Probabilistic-Based and a Rule-Based Approach for 

Genealogical Record Linkage 

Pooja Shah 

 

Record linkage is the task of identifying records within one or multiple databases 

that refer to the same entity. Currently, there exist many different approaches for 

record linkage. Some approaches incorporate the use of heuristic rules, 

mathematical models, Markov models, or machine learning. This thesis focuses 

on the application of record linkage to genealogical records within family trees. 

Today, large collections of genealogical records are stored in databases, which 

may contain multiple records that refer to a single individual. Resolving duplicate 

genealogical records can extend our knowledge on who has lived and more 

complete information can be constructed by combining all information referring to 

an individual. Simple string matching is not a feasible option for identifying 

duplicate records due to inconsistencies such as typographical errors, data entry 

errors, and missing data. 

Record linkage algorithms can be classified under two broad categories, a 

rule-based or heuristic approach, or a probabilistic-based approach. The Cocktail 

Approach, presented by Shirley Ong Ai Pei, combines a probabilistic-based 

approach with a rule-based approach for record linkage. This thesis discusses a 

re-implementation and adoption of the Cocktail Approach to genealogical 

records. 
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CHAPTER 1 

Introduction 

 
The amount of data being stored in databases is increasing. Large databases of 

records may contain multiple records that refer to the same entity, and each of 

these records may contain identical, similar, or unique information. Therefore it is 

important for computers to have an efficient and accurate method of 

automatically detecting two records that refer to the same entity. Record linkage 

is the task of identifying records in one or multiple databases that refer to the 

same entity. It is used to find and remove duplicates, or merge records together. 

Record attributes and common identifiers are used to identify matches/duplicates 

[23]. Record linkage is applicable to many different domains, including 

genealogy. With an increased interest in family history research, the need for 

improvement in genealogical record linkage has risen [13]. Today, large 

collections of genealogical data are stored in databases, allowing genealogists to 

search large quantities of data instantaneously. Computers have greatly helped 

to gather and organize genealogical information. This thesis focuses on the 

application of record linkage to genealogical records within family trees. By 

finding duplicate records, previously unknown links between different family trees 

may be discovered, allowing the trees to be merged together. In addition, more 

complete information can be constructed by combining all records referring to a 

sole individual [13]. 

Information from genealogical records is used to build family trees that 

represent family relationships. Each record has several attributes that provide 
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additional information about an individual. Information about family trees is 

usually stored in Genealogical Data Communication (GEDCOM) files, an industry 

standard data format for genealogical information [4]. GEDCOM files uses a 

standard ASCII format and contain metadata linking the records together. It was 

developed for exchanging genealogical data among different genealogy 

software. Several different software products are available on the market to help 

one track their family history, build trees, and find duplicates records. 

Unfortunately, many software products suffer from weak merging algorithms and 

are error prone due to slight differences in records, making collaboration difficult. 

One technique is to assign unique identifiers to each individual however, unique 

identifiers are not support by or standardized among all software products. 

In the past, genealogical record linkage has been done manually, which is 

very time consuming. Automating the process of identifying duplicate records 

reduces the burden on users and genealogists when merging family trees [21]. 

Computers have the advantage of better quality control, speed, consistency, 

reproducibility of results, and significant reduction of human error [23]. It also 

makes it easier for genealogists to collaborate during their research. The hardest 

part of automating the process is finding all the duplicate records. Genealogical 

record linkage is a hard problem due to many inconsistencies among the data 

and common naming conventions within a society and/or family.  

Records about an individual that are spread across different genealogical 

databases may not be identical due to human error such as misspellings or data 

entry errors. Records may also have missing data, lexical heterogeneity, or 
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structural heterogeneity. Structural heterogeneity refers to records with different 

domain structures. For example, an individual’s full address may be stored in the 

‘address’ attribute in one record, but stored in multiple different attributes, such 

as ‘city’, ‘state’, and ‘zip code’ in another record. Structural heterogeneity will not 

be addressed in this thesis. Lexical heterogeneity refers to records with similar 

structure but different representations of data, such as ‘A. Hall’ and ‘Ann Hall’ 

[17]. Table 1.1 shows three non-matching records that refer to the same 

individual. These records contain missing fields, misspelled names, or data entry 

errors. The last name in the third record is different from the other two records 

and may be due to a name change. These are all common problems found within 

genealogical records. Due to inconsistencies between records, simple string 

matching is not a feasible option for genealogical record linkage. A genealogist 

may be able to compare these records and conclude that they refer to the same 

individual. However, it is much harder for a computer to make these conclusions. 

First Name Middle Name Last Name Birth Date Death Date 

Ann Mae Hall  26 SEP 1954 

Ann  Hal 18 MAY 1902  

Ann M. Smith 18 MAY 1902 20 SEP 1954 

Table 1.1 Three non-matching records that refer to the same individual. 

 

In order for a genealogist to identify duplicate records, he/she needs to 

carefully analyze the dataset to understand how the records behave and 
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understand the domain. For example, early civil and church records may use 

different spellings of names in different records of the same individual. 

Nicknames may be used, dates may be misreported, or day and month may be 

interchanged [13]. Genealogical records are very different for each region and 

time period. The goal of this thesis is to find an efficient record linkage algorithm 

that reduces the need of human intervention and has a high accuracy of finding 

duplicate genealogical records within family trees. The Cocktail Approach is a 

general record matching approach presented by Shirley Ong Ai Pei that yielded 

high recall, precision, and f-scores [17]. The Cocktail Approach uses statistics 

about a dataset to generate a ruleset to find duplicate records. This thesis 

discusses a re-implementation and adoption of the Cocktail Approach to 

genealogical records. My contributions include: 

• The adaption and evaluation of the Cocktail Approach in the 

genealogical domain.  

• Modifying the Cocktail Approach to also analyze relationships 

among individuals. 

• Incorporating general domain metarules to the generated ruleset. 

Chapter 2 reviews related work and Chapter 3 explains the mathematical 

model used in this thesis. Chapter 4 presents additional components needed in 

record linkage and Chapter 5 give a high level overview of the Cocktail 

Approach. Chapter 6 give an overview of my implementation of the Cocktail 

Approach and Chapter 7 presents the testing results and evaluation. Finally, 

Chapter 8 concludes the thesis and Chapter 9 discusses future work. 
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CHAPTER 2 

Related Work 

 
There has been plenty of research into record linkage, which is also sometimes 

called object identification [20], data cleaning [19], approximate matching [9], 

fuzzy matching [1], or entity resolution [3]. Many different approaches have been 

presented for solving the problem. Tejada presents an approach that learns to 

simultaneously create both mapping rules and a set of general transformations to 

a specific application domain through limited user input [20]. Winkler 

demonstrated how Markov Chains and ideas from Fellegi and Sunter could be 

used to improve the learnability of Bayesian Networks. Winkler also used ideas 

from machine learning to show how record linkage classifiers can make better 

use of training data [24]. Other researches have incorporated techniques from 

machine learning, data mining, and artificial intelligence. Many of these 

approaches are based on supervised learning techniques and require training 

data [8]. However, training data may not always be available in real world 

situations due to privacy concerns. Alternatively, some approaches do not 

require training data to achieve high accuracies. The Cocktail Approach is one 

such approach. This approach makes use of statistics obtained from the dataset 

to gain a better understanding of the behavior of the data and to generate a 

ruleset used to match duplicate records, or matching ruleset. 

Although there exist several approaches for record linkage, most 

approaches are not built for any specific domain. Records in different domains 

may behave differently. Existing algorithms/systems may not work optimally on 
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records having characteristics significantly different from those on which it was 

developed [23]. Therefore record linkage algorithms will have to be slightly 

altered for each domain. This thesis focuses specifically on genealogical record 

linkage. 

Genealogical records tend to have several attributes that describe an 

individual such as: first name, last name, middle name, address, birth and death 

dates, and relatives. One technique for genealogical record linkage is to first 

assign weights (positive and negative) to each attribute to account for missing 

entries. A training set of records must be used to estimate the weights for each 

attribute [13]. When comparing two records, the positive weight for an attribute is 

added to the total sum if the attributes match, and the negative weight is added if 

the attributes do not match. A zero weight is used if the attribute is blank in one 

or both records. The total sum, or score, for each record pair is compared against 

a predefined threshold to determine if the records match or not.  

Many record linkage algorithms can be classified under two broad 

categories: a rule-based approach and a probabilistic-based approach. Matching 

rulesets are created by expert genealogists through substantial effort and time, 

and tend to obtain high accuracies [17]. The probabilistic approach does not 

need substantial human effort, but it relies on training data to compute the 

maximum likelihood to determine whether or not two records match. 

2.1 Rule-Based Approach 

 
Rule-based approaches use a set of heuristic rules to determine if two records 

match or not. They have the potential of reaching high accuracies because they 
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capture the heuristic knowledge from experts while probabilistic-based 

approaches capture casual dependencies based on statistics. The weakness 

with a rule-based approach lies in the manual tuning of rules, which requires a 

deep understanding and analysis of the domain and behavior of the data itself 

[17]. In addition, a matching ruleset may not be applicable to a pair a records, or 

dataset, that are different than those used in defining the ruleset [23]. Behaviors 

of genealogical records are significantly different for each region and time period. 

Therefore a new ruleset would have to be created for each dataset. 

2.1.1 Equational Theory Ruleset 

 
Hernandez and Stolfo [10] stated that the fundamental problem of record 

linkage is that the data supplied by various sources typically include string data 

that are different among different datasets. They suggested that the equality of 

two values should be specified by an equational theory, or a set of equational 

axioms that define equivalence. An approach to defining an equational theory for 

practical uses is through a ruleset [10]. Figure 2.1 shows an example of an 

equational theory rule for finding duplicate records. The idea is to define an 

equational theory that dictates the logic of domain equivalence, and not just 

string equivalence [10]. Calculating similarities among strings can be done by 

some distance function. The score is compared against a predefined threshold 

value to account for any typographical errors in the data. 
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Figure 2.1 An example equational theory rule used to determine if two records, A 
and B, refer to the same individual. 
 

2.2 Probabilistic-Based Approach 

 
Probabilistic-based record linkage links records that are not necessarily identical 

but close in some fields. It is a way for a computer to mimic some of the decision-

making processes a genealogist may use to recognize valid variations in the data 

[13]. Many probabilistic-based approaches need training data to receive high 

accuracy rates. However, it is possible for similar databases in the same domain 

to behave differently. Thus, using one database of records as training data may 

not give accurate information on how another database of records behave. An 

alternative method is to use unsupervised probabilistic methods such as the 

Expectation Maximization (EM) algorithm, which is a means of obtaining 

maximum likelihood estimates for incomplete data [17]. 

In 1969, Fellegi and Sunter [7] introduced a mathematical model based on 

the concepts by Newcombe [16]. The ideas of Fellegi and Sunter became the 

basis of modern probabilistic record linkage because they introduced many ways 
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of computing key parameters needed for the matching process [23]. The Fellegi-

Sunter model and the EM algorithm are discussed in Chapter 3. 

2.3 Graph-Based Remerging of Genealogical Databases 

 
Dr. Randall Wilson presented an algorithm that takes into account the 

relationships of individuals in a database when merging two genealogical 

databases together. The algorithm first attempts to identify all individuals that 

appear in both databases that can be assumed with a high probability to be 

matches. The algorithm then presents any conflicts to the user so they can 

incorporate new data into the database. The key to this algorithm is to use the 

relationships among individuals to increase the confidence in matches. The idea 

is that it is unlikely that two different records will have the same relationship to 

dozens of other people unless they actually refer to the same individual [21]. 
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CHAPTER 3 

Fellegi-Sunter Model and the EM Algorithm 

 
3.1 Fellegi-Sunter Model 

 

Modern probabilistic record linkage began with the work from Newcombe [16]. 

The Fellegi-Sunter model was created in 1969 based off the ideas of Newcombe, 

and is now the basis for modern record linkage. The idea is to classify pairs in a 

product space, A×B, from two datasets, A and B, into a set of true matches, M, 

and a set of true non-matches, U [26]. The set of ordered pairs is represented by: 

  

𝐴×𝐵 = 𝑎, 𝑏 ;𝑎  𝜖  𝐴, 𝑏  𝜖  𝐵          (3.1) 

The set of pairs is the union of two disjoint sets:    

𝑀 = 𝑎, 𝑏 ;𝑎 = 𝑏,𝑎  𝜖  𝐴, 𝑏  𝜖  𝐵                     (3.2) 

and 

 𝑈 = 𝑎, 𝑏 ;𝑎 ≠ 𝑏, 𝑎  𝜖  𝐴, 𝑏  𝜖  𝐵          (3.3) 

Record pairs are represented by comparison vectors, 

𝛾[𝛼(𝑎),𝛽(𝑏)]   =    {𝛾![𝛼(𝑎),𝛽(𝑏)], . . . , 𝛾![𝛼(𝑎),𝛽(𝑏)]}    (3.4) 

 

where α(a) correspond to members of set A and β(b) correspond to members of 

set B [17]. In the comparison vectors, 𝛾i,  i  =  1,...,K represents a specific 

comparison between the same i-‐th attribute of record a and record b.  Γ is defined 

as the comparison subspace that represents the set of all possible vectors 
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patterns γ. A linkage rule, L, is defined as a mapping from Γ onto a set of random 

decision functions D  =  {d(𝛾)} [17].  

𝑑(𝛾)   =    {𝑃(𝐴!|𝛾),𝑃(𝐴!|𝛾),𝑃(𝐴!|𝛾)};   𝛾   ∈   𝛤   (3.5) 

and 

𝑃(𝐴!   |𝛾)   =   1!
!!!         (3.6)  

A record pair is considered a match if the probability that it is a match, 

P(M|γ[α(a),  β(b)]), is greater that the probability that it is a non-match, 

P(U|γ[α(a),β(b)]). Bayes decision rule for minimum error is used to determine the 

probabilities. These values can be computed using a training set of pre-labeled 

record pairs or using the EM algorithm. The likelihood ratio is defined as  

  𝑅   =   𝑅[𝛾(𝑎, 𝑏)]   =   !(!)
!(!)

     (3.7) 

where the conditional probability of 𝛾(a,  b)  if  (a,  b)  ∈  M is given by 

  𝑚(𝛾)   =   𝑃{𝛾[𝛼(𝑎),𝛽(𝑏)]|(𝑎, 𝑏)   ∈   𝑀}   = 𝑃{𝛾[𝛼(𝑎),𝛽(𝑏)]}    ·   𝑃[(𝑎, 𝑏)|𝑀](!,!)!  !  

(3.8) 

and the conditional probability of 𝛾(a, b) if (a, b) ∈ U is given by  

𝑢(𝛾)   =   𝑃{𝛾[𝛼(𝑎),𝛽(𝑏)]|(𝑎, 𝑏)   ∈   𝑈  }   = 𝑃{𝛾[𝛼(𝑎),𝛽(𝑏)]}    ·   𝑃[(𝑎, 𝑏)|𝑈  ](!,!)!  !  

(3.9) 

The decision rule is given by [25]:  

• If R  >  Tµμ, then designate the pair as a match.  

• If Tλ  ≤  R  ≤  Tµμ, then designate the pair as a possible match and hold for 

clerical review. 

• If R  <  Tλ, then designate the pair as a non-match.  
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The cutoff thresholds Tµμ and Tλ are determined by a priori error bounds on 

false matches and false non-matches [25]. The idea behind this is if γ  ∈  Γ 

consists primarily of agreements, then it is intuitive that γ  ∈  Γ would be more likely 

to occur among matches than non-matches and the ratio would be large. On the 

other hand, if γ  ∈  Γ consists primarily of disagreements, then the ratio would be 

small [26]. 

3.2 Expectation Maximization Algorithm 

 
The Expectation Maximization (EM) algorithm finds the maximum likelihood that 

different records refer to the same individual where data is incomplete. The EM 

algorithm is a good alternative in situations where training data is unavailable 

[17]. The algorithm is divided into two steps: The E-step and the M-step. The E-

step calculates the expected likelihood that the records are a match and provides 

estimates for the missing data. The M-step sets the derivative of the data’s log-

likelihood to zero and updates the estimates of the unknown parameters. 

The EM algorithm generates a parameter set ϕ=(m,  u,  p). The steps to 

generate ϕ are: 

1. Give initial estimated values of ϕ. 

2. Compute E-step using the values of ϕ. 

3. Compute M-step to re-estimate the values ϕ using the values from the E-

step. 

4. Repeat steps 2 and 3 until the convergence of ϕ. 
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Both Pei [17] and Jaro [12] used a binary model for comparison vector γ such 

that 𝛾ji  =  1  if attribute i agrees for record pair j, and 𝛾ji  =  0  if attribute i  disagrees 

for record pair j, for i  =  1,  …,  n attributes and j  =  1,  …,  N record pairs. The mi and ui  

probabilities can be defined as:        

mi    =  P{𝛾ji  =  1|rj    ∈  M}    (3.10) 

and  

ui  =P{𝛾ji    =  1|rj    ∈U}      (3.11) 

p is defined as the proportion of matched pairs. 

p  =   !
!∪!

      (3.12) 

Let x be the complete data vector equal to ⟨𝛾,g⟩, where gj  =  (1,  0) if and only if rj  ∈  

M and g  j    =  (0,  1) if and only if r  j    ∈  U . The complete data log-likelihood is [17, 

22]:  

𝑙𝑛  𝑓 𝑥 𝜙 =    𝑔!

!

!!!

⋅ (𝑙𝑛  𝑃{𝛾!|𝑀}, 𝑙𝑛  𝑃 𝛾! 𝑈 )! +    𝑔!
!

!!!
   ⋅ (𝑙𝑛  𝑝, 𝑙𝑛   1− 𝑝 )! 

 (3.13)  

Replacing gj with (gm(𝛾j),gu(𝛾j)) where 

𝑔! 𝛾! =   
𝑝 𝑚!

!!
!

(1−𝑚!)!!!!
!!

!!!

𝑝 𝑚!
!!
!

!
!!! (1−𝑚!)!!!!

!
+ 1− 𝑝 𝑢!

!!
!

!
!!! (1− 𝑢!)!!!!

!
 

   (3.14) 

𝑔! 𝛾! =   
(1− 𝑝) 𝑢!

!!
!

(1− 𝑢!)!!!!
!!

!!!

𝑝 𝑚!
!!
!

!
!!! (1−𝑚!)!!!!

!
+ 1− 𝑝 𝑢!

!!
!

!
!!! (1− 𝑢!)!!!!

!
 

   (3.15) 
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The values of (gm(𝛾j),gu(𝛾j)) are used in the M-step to calculate the values of ϕ. 

The equations are:  

𝑚! =
!!
!∙!! !!!

!!!

!! !!!!!
!

     (3.16) 

𝑢! =   
!!
!∙!! !!!

!!!

!! !!!!!
!

     (3.17) 

𝑝 =
!! !!!

!!!

!
     (3.18) 

 

After ϕ is generated, the weights of each attribute of a record pair are 

computed based on the values m and u. The score of each record pair is 

obtained by summing up all the weights of each attribute. Attributes that match 

make a positive contribution to the sum and attributes that do not match make a 

negative contribution. If the sum of the weights is greater than the upper 

threshold, Tµμ, then the records are a match. If the sum is less than the lower 

threshold, Tλ, then the records are not a match. If the sum falls between the 

threshold values, then the results are non-conclusive. The upper and lower 

threshold values are defined from the Fellegi-Sunter model [17]. 

 

 

 

 

 

 



 15 

CHAPTER 4 

Additional Components of Record Linkage 

4.1 Comparison Subspaces 

 
In several situations, databases are too large to consider every possible pair. 

Newcombe showed how to reduce the number of pairs considered by only 

considering pairs that agree on a particular characteristic [16, 26]. This is called 

blocking and is used to reduce the number of candidate record comparison pairs. 

The blocking approach attempts to find matching records by first sorting the 

records based on one or more attributes, or a candidate key. Once the records 

are sorted, they are separated into mutually exclusive partitions based on a 

blocking key or the candidate key. Once separated, only records within the same 

block will be considered for comparison. Figure 4.1 shows an example of how 

records are separated into blocks. 
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Figure 4.1 Creation of blocks using the blocking technique. candKey refers to the 
candidate key of a record. Image from [17]. 
 

The Sorted Neighborhood method is another technique used to reduce the 

number of comparisons and increase efficiency. The first step is to sort the 

records with the use of a sorting key, or candidate key. The key for each record 

is usually computed by extracting relevant attributes or portions of the attributes’ 

values [17]. The idea behind the use of candidate keys is that common data will 

have a closely matching key. Once sorted, a fixed size window traverses the list 

of records. Each record will only be compared to other records within the window. 

For example, if the window size is w, each new record that enters the window will 

only be compared to w-‐1 records [10]. This is shown in Figure 4.2. After all 

possible comparisons within the window are complete, the window will slide 
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down by one, removing the first record and adding the next record in the list to 

the window. This continues until the window traverses over the entire dataset. 

 

Figure 4.2 An example of the Sorted Neighborhood method. Image from [17]. 

4.2 String Similarity Metrics 

 
Duplicate records are found by comparing attributes and determining if they are 

similar. This comparison is done through the use of string comparison metrics. 

Due to typographical and data entry errors, it is not feasible to compare attributes 

for equality, but rather to compare them for similarity. The Needleman and 

Wunsch metric is an edit distance metric that measures the amount of 

differences between two data strings [17]. It calculates the number of operations 

needed to transform one string to another and allows for varying costs for 

different edit distance operations. 
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CHAPTER 5 

Cocktail Approach 

 
This thesis is heavily based upon the work of Shirley Ong Ai Pei [17]. Pei 

presented an approach for general record linkage, called the Cocktail Approach. 

This approach combines techniques from a rule-based approach and a 

probabilistic-based approach. Statistics given by a probabilistic-based approach 

can give a good indication about the behavior of the dataset. Once a deep 

understanding of the data is obtained, a ruleset can be created to match records. 

The idea is to use statistics to gain a better understanding of the dataset and 

generate an equational theory ruleset. A training dataset may not mirror the 

behavior of another dataset exactly, but the dataset to be tested does reveal 

information about itself and its behavior. A probabilistic-based approach can also 

reveal which attributes make the most contributions to a mapping and which 

attributes do not [17]. The Cocktail Approach consists of two main phases: the 

probabilistic-based phase, and the rule-based phase. 

In the first phase, the probabilistic-based phase, the first step is to sort the 

records with a candidate key, which is created from a combination of record 

attributes. Once all the records in the dataset are sorted, each record is placed 

into a block by computing a similarity score between the candidate keys of each 

record using the Needleman and Wunsch metric. The use of comparison 

subspaces is a way to reduce the number of candidate record pairs to a feasible 

number whilst maintaining the accuracy of the system [17]. All blocks are non-

overlapping windows. For every block created, each record within the block is 
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compared with every other record in the block. A binary comparison vector, γ, is 

created for each candidate record pair in the block. Each attribute i in a record is 

compared to the equivalent attribute in another record using the Needleman and 

Wunsch metric. 𝛾ji  =  1  if attribute i  agrees for record pair j, and 𝛾ji  =  0 if attribute i  

disagrees for record pair j. All vector patterns 𝛾j are stored with their respective 

frequency counts f(𝛾j). The frequency count f(𝛾j)  represents the number of 

record pairs that generated the vector pattern 𝛾j.  

The comparison vectors are then used by the EM algorithm to estimate 

values of mi. Pei did not utilize the ui    value that was derived by the EM algorithm 

because it is derived from a biased situation. Instead, Pei used an alternative 

method to estimate the value of ui by considering a random sample of record 

pairs in the dataset. ui  is estimated by randomly retrieving N number of records 

from the dataset where N is the number of record pairs used to estimate mi. 

Comparison vectors are computed for N record pairs and is used to estimate the 

value of ui. We can deduce that a low value of mi is due to missing data, frequent 

mistakes of entering data into attribute i, or the information obtained for attribute i 

is simply not correct most of the time. If ui is high, it is probably because the data 

is very common throughout the whole dataset for attribute i  [17]. The values of mi 

and ui  are used to calculate weights for each attribute, which in turn is used to 

determine which attributes are significant and insignificant. The attributes that are 

considered insignificant are not included in generating the equational theory 

ruleset, or the matching ruleset.  
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Leveraging the EM algorithm and making use of the vector pattern 𝛾j  and 

their respective frequency counts f(𝛾j), a new matching ruleset can be generated. 

A vector pattern is considered to be a good matching rule if the frequency count 

of a matching vector pattern is significantly higher than the frequency count of a 

non-matching vector pattern. The ruleset generated by the probabilistic-based 

phase is then used by the second phase, the rule-based phase, to find duplicate 

records [17]. 

Once the ruleset has been generated, the second phase begins by using 

the Sorted Neighborhood method to traverse the sorted dataset for a second 

time. For each pair candidate created, another binary comparison vector is 

generated. This new comparison vector is compared against the matching 

ruleset. If the comparison vector matches a rule, then the records pair is 

classified as a match.  

Pei tested the Cocktail Approach on three different datasets: Cora, 

Restaurant, and DBGen. The Cora dataset is a collection of citations to computer 

science papers. The Restaurant dataset is a collection of restaurant records. 

DBGen is a tool that generates datasets consisting of random US mailing 

addresses. For all three datasets, Pei was able to obtain an average recall score 

of about 96.8%. The recall score shown in (5.1) is the fraction of duplicates 

correctly classified over the total number of duplicates in the dataset [17]. Pei 

obtained an average precision score of about 97.9%. The precision score, shown 

in (5.2), is the fraction of correct duplicates over the total number of records pairs 

classified as duplicates. Finally, Pei obtained an average f-score of about 
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97.34%. The f-score, shown in (5.3) is the harmonic mean of the precision and 

recall values [17]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =    !"#$%&'(!()$'
!"#$%&'(!()$'!!"#$%&%'"()*%$

    (5.1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =    !"#$%&'(!!"#$
!"#$%&'(!()$'!!"#$%&'$()(*%$

    (5.2) 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =    !∗!"#$%&%'(∗!"#$%%
!"#$%&%'(!!"#$%%

     (5.3) 

 

This section gave a high level overview of the Cocktail Approach presented by 

Pei. Refer to [17] for a detailed explanation and implementation details.  
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CHAPTER 6 

Implementation 

My contributions include the adaption and evaluation of the Cocktail Approach in 

the genealogical domain. I chose the Cocktail Approach because it provided a 

way to generate matching rulesets without requiring training data. Record linkage 

in the genealogical domain is similar to record linkage in other domains in the 

sense that attributes or data associated with an entity are compared for 

similarities. However genealogical records behave differently because of 

similarities among different members of a society and family.  

Along with the ideas from Pei, I incorporated the ideas from Wilson [21] 

into my implementation. Specifically, I modified the Cocktail Approach to not only 

analyze the data or attributes for each individual, but also analyze all 

relationships among relatives. There are common naming conventions among 

members of a society or in a family causing different records to be falsely 

classified as a match. Analyzing relationships will increase the confidence of 

matches and eliminate many false positives.  

Finally, I created general domain metarules. The metarules include rules 

to automatically fill in missing data for the birth and death date fields if one was 

given and the other was unknown. If the approximate time period an individual 

has lived is known, then the birth and death date of the individual can estimated. 

By filling in the missing data, the system will be able to differentiate individuals 

from different time periods.  In addition, when comparing two records, if 
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difference in birth and/or death is greater than the average lifespan, then the 

attributes will be considered non-matching.  

Another metarule includes a giving priority to attributes that must never be 

considered to be insignificant by the system. As explained in the previous 

chapter, the EM algorithm computes the values mi and ui. These values are then 

used to determine which attributes are insignificant to the matching process and 

should be ignored. As a result, attributes such as first name, last name, and/or 

gender may be considered insignificant which will cause a problem. To evade 

this possibility, I created a priority list of attributes that must never be considered 

insignificant.  

A detailed explanation of my implementation is given in the following 

sections and Figure 6.1 presents a diagram of the system architecture. Similar to 

the Cocktail Approach, my system is divided into two phases: the probabilistic-

based phase and the rule-based phase. The first phase of my system is the 

probabilistic-based phase. Firstly, the dataset of genealogical records is sorted 

using candidate key, then divided into mutually exclusive blocks. Candidate 

record pairs are extracted from each block. For each candidate record pair, a 

binary comparison vector and frequency count is computed. The frequency count 

represents the number of record pairs that had generated the respective vector 

pattern. The comparison vectors and respective frequency counts are used by 

the EM algorithm to compute the probability of a match, mi, and the probability of 

a non-match, ui. mi and ui  are then used to generate a list of insignificant 

attributes and a equational theory ruleset, also called a matching ruleset.  
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 Once a matching ruleset is generated, the second phase of the system, 

the rule-based phase begins. The Sorted Neighborhood method is used to 

traverse the sorted list of records for a second time and create new candidate 

record pairs. A binary comparison vector is computed for each record pair and 

then compared against the matching ruleset. If the comparison vector matches a 

rule, then the record pair will be sent to the classifier and classified as a match. 

The following sections give a detailed explanation of the implementation of my 

system. 
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Figure 6.1 System Architecture [17]. 
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6.1 Individual.py 

 
The open-source python module used to parse GEDCOM files was created by 

Madeleine Price Ball and based on a parser written by Daniel Zappala at 

Brigham Young University. This parser was used to parse all GEDCOM files to 

extract all records and relationship data. Individual.py contains a class to 

represent a single individual and his/her family members and relatives.  

 

 

Figure 6.2 The representation of attributes for each genealogical record. 

 

Figure 6.2 shows how the attributes of each genealogical record are 

represented. The burial attribute contains information about the burial date and 

place. Four types of family relationships are stored in the family dictionary; 

natural parents, parents, ancestors, and marriage information. Some records 

contain information about birth parents and adoptive parents. If both sets of 

parents are found, then the birth parents are be placed under the Natural Parents 

key in the dictionary and the adopted parents are be placed in the Parents key. If 

only one pair of parents is found, then they are placed under the Parents key. All 

ancestors found in an individual’s family tree are placed under the Ancestors key, 
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and an individual’s marriage information is placed under the Marriage key.  The 

candKey is computed by combining the first three letters of an individual’s first 

name with the first three letters of an individual’s last name.   

In many of the records, the birth date and/or death date fields are 

incomplete. For all records, if one of the dates is given, then the other date will 

automatically be filled in. The artificial_birth() function shown in Figure 6.3 fills in 

missing fields in the birth date attribute of the record if the birth date is unknown 

but the death date is known. The artificial_death() function fills in the missing 

fields in the death date attribute if the death date is unknown but the birth date is 

known. 

 

Figure 6.3 Functions to automatically fill in missing information about an 
individual’s birth or death date. 
 

6.2 needleman_wunsch.py 

The NeedlemanWunsch class represents the string similarity metric used for all 

string similarity calculations. It takes in a pair of strings and returns the distance 

result in the form of a floating point number between 0.0 and 1.0. The methods 
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are based off of the Needleman-Wunsch distance metric in the SimMetrics java 

module, an open source Java library of distance metrics. 

6.3 comparison_space.py 

 
The Compare_space class is responsible for sorting the dataset and creating 

candidate record pairs for comparison. The records are sorted using a candidate 

key (candKey). This class also keeps track of all comparison vector patterns 

created, the ruleset generated, and list of insignificant attributes. Figure 6.4 

shows how each record is classified in a block. Each record in a block will only 

be compared to other records within the same block. For each candidate pair 

created, a binary comparison vector is computed and used in the first phase of 

the Cocktail Approach. Figure 6.5 shows how records are clustered together 

using the Sorted Neighborhood method. Each record is compared to other 

records within the same window and all pairs are used in the second phase of 

the Cocktail Approach. Both functions are based on the implementation by Pei 

[17]. 
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Figure 6.4 Function to divide dataset of records into non-overlapping blocks. 

 

 

Figure 6.5 Function that clusters records together using the Sorted 
Neighborhood method. 



 30 

6.4 cocktail.py 

Similar to the cocktail approach presented by Pei, my core system consists of 

two phases.  

6.4.1 Phase 1 

 
In the first phase, binary comparison vectors for each candidate record pair are 

generated and utilized to estimate values mi and ui. Based on these values, a list 

of insignificant attributes and a matching ruleset are generated. A set of randomly 

selected candidate record pairs is used to estimate an alternative value for ui. 

The number of random candidate pairs is equal to the number of candidate pairs 

used to estimate the value of mi. Figure 6.6 shows how an alternative value for ui 

is computed. 

 



 31 

 

Figure 6.6 Function to compute an alternative value of ui. 

 

The values of mi  and ui  are used to calculate weights of each attribute 

among all comparison vectors. In other words, for each comparison vector, if 

attribute i  matches (i.e. is 1), then the weight is calculated by: 

𝑤! = 𝑙𝑜𝑔!
!!
!!

     (6.1) 

If attribute i does not match (i.e. is 0), then the weight is calculated by: 

𝑤! = 𝑙𝑜𝑔!
!!!!
!!!!

     (6.2) 

The total weights of each attribute are then compared to determine which 

attributes are insignificant to the matching process. An attribute is considered 

insignificant if it has a very low weight score compared to the rest of the attributes 
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[17]. Pei claims that a very low weight score will not give any contributions to the 

matching rules. 

The last step in the first phase is to generate a matching ruleset. This is 

done by observing the vector patterns, 𝛾j, and their respective frequency counts, 

f(𝛾j). Figure 6.7 shows how a ruleset is generated. A vector pattern makes a 

good matching rule if the frequency count for a matching record pair is sufficiently 

higher than the frequency count of a non-matching record pair. This is 

determined by taking the logarithm of the relative frequency over the logarithm of 

the total number of vector patterns. The results are then compared against two 

decision rules: t1 and t2 which are pre-defined. If the vector patterns measure up 

to the relative weight of at least t1 and relative error of at most t2, then it will be 

added to the matching ruleset. 
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Figure 6.7 Generates a matching ruleset using comparison vector pairs and their 
respective frequency counts. 
 

6.4.2 Phase 2 

 
The second phase of my system uses the Sorted Neighborhood method to 

create new candidate record pairs. A binary comparison vector is computed for 

each candidate record pair and compared against the matching ruleset to 

determine whether the pair matches or not. This comparison consists of checking 

if every attribute that is a match in a rule is also a match in the pair’s comparison 

vector. The comparison vector is compared against all rules in the ruleset until a 
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match is found. The idea is that the rules signify the minimum matches that a pair 

should have in order to be classified as a match. Figure 6.8 shows how each 

comparison vector is compared to the matching ruleset. Figure 6.9 shows how 

the check is done. All record pairs that are considered a match are forwarded to 

the classifier, which outputs the records pairs. All record pairs that contain a 

gender mismatch are indicated in the output. 

 

Figure 6.8 Compares a comparison vector representing a record pair against a 
matching ruleset. 
 

 

Figure 6.9 Function to compare a comparison vector against all rules within a 
ruleset. 
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CHAPTER 7 

Testing and Evaluation 

 
The system was tested on multiple artificially created datasets consisting of 

GEDCOM files. I was only able to obtain a single dataset of GEDCOM files 

because genealogical records are not commonly published or shared with the 

public. This dataset of GEDCOM files used to test and evaluate my system was 

provided by Western Michigan Genealogical Society from its collection and made 

available by Roger Moffat of WMGS. Due to privacy concerns, the dataset will 

not be published. The artificial datasets created for testing contains a random 

subset of GEDCOM files from the dataset obtained. More information about each 

dataset is given in the nest section. The recall, precision, and f-score metrics 

defined in [17] and in Chapter 6 are used to evaluate the performance of the 

Cocktail Approach on genealogical records.  

7.1 Datasets 

 
All testing was done using GEDCOM files from a single dataset. The dataset 

contains a total of 255,181 records. All files consist of individuals between the 

1500s and 1990s. This dataset accurately mirrors real-world issues encountered 

in GEDCOM files such as missing fields, typographical errors, or data entry 

errors. Testing my implementation on this dataset will give insight on how well 

the Cocktail Approach performs on genealogical data. Due to performance 

issues all testing was done on a subset of the records. Refer to Section 7.4 for 

more details on performance. Information on each dataset is presented below: 
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● Dataset 1 contains 5 unique GEDCOM files and a total of 10 files. Each 

file has been duplicated and modified to artificially create duplicate records 

that are similar but not identical. A total of 190 records are contained in the 

dataset.  

● Dataset 2 contains 17 unique files and a total of 34 files. Each unique file 

was duplicated to create identical duplicates. A total of 696 records are 

contained in the dataset. 

● Dataset 3 contains 76 unique files and a total of 152 files. Each unique file 

was duplicated to create identical duplicates. A total of 16,816 records are 

contained in the dataset. 

● Dataset 4 contains 18 total files and a total of 945 records. Six files were 

duplicated and modified resulting in 351 duplicate records. 

● Dataset 5 contains 75 total files and a total of 1,625 records. 20 files were 

duplicated and modified resulting in 320 duplicate records. 

● Dataset 6 contains 133 total files and a total of 3,406 records. 45 files 

were duplicated and modified resulting in 1,118 duplicate records. 

● Dataset 7 contains 20 total files and a total of 359 records. Four files were 

duplicated and modified resulting in 76 duplicate records. 

● Dataset 8 contains 63 total files and a total of 7,689 records. Eleven files 

were duplicated and modified resulting in 320 duplicate records. 

● Dataset 9 contains 59 total records and a total of 1,794 records. Seven 

files were duplicated and modified resulting in 186 duplicate records. 
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● Dataset 10 contains 30 duplicate records and a total of 1,108 records. 

One file was duplicated and modified resulting in 222 duplicate records. 

● Dataset 11 contains 12 total files and a total of 594 records. No files were 

duplicated. 

● Dataset 12 contains 55 total files and a total of 1,305 records. No files 

were duplicated. 

● Dataset 13 contains 88 total files and a total of 2,288 records. No files 

were duplicated.  

 

Table 7.1 shows the number of missing attributes in each dataset. For 

example, Dataset 1 contains 190 records and 96 of the records is missing the 

middle name attribute. The number of missing attributes shown in Table 7.1 

are the same for before and after the addition of metarules to to the system. 

Table 7.2 shows the number of missing birth date and death date attributes 

for each dataset for the baseline system. Table 7.3 shows the number of 

missing attributes for each dataset after the addition of metarules. Recall that 

the metarules attempts to fill in the missing information if one of the dates is 

given. By filling in the missing information, more data will be used during the 

comparision, increasing the confidence of matches. 
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Table 7.1 The number of missing attributes in each dataset. The attributes in this 
table are not affected by the addition of the metarules. 
 

 

Table 7.2 The number of missing attributes for each dataset before the addition 
of metarules. The birth and death date attributes are affected by the general 
domain metarules. 
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Table 7.3 The number of missing attributes for each dataset after the addition of 
metarules. Birth and death fields are affected by the metarules. 
 

 As explained in Chapter 1, genealogical records tend to contain several 

inconsistencies among the data such as typographical errors, data entry errors, 

missing data, and/or lexical heterogeneity. For testing purposes, I artificially 

created duplicates within 10 of the datasets and modified the data to mirror these 

inconsistencies. The modifications to the records include deleting fields to 

artificially create missing data, and modifying original data to insert typographical 

and data entry errors. Modifications were made to the data to create duplicate 

records that are similar, but not identical. 

 Typographical and data entry errors were inserted into the data by 

changing one or two letters in the string data for a few attributes in the duplicate 

records. For example, if an individual’s first name is Natalie, the first name 

attribute in the duplicated record was changed to Natlie or Natalia. Data entry 
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errors were inserted by inserting or deleting one or two letters in the string data. 

Typographical errors were inserted by modifying one or two letters. For a random 

subset of duplicated record in each dataset, a few attributes, including the birth 

and death dates, were randomly chosen and modified. 

 Matching duplicated records that are poorly document is a great challenge 

for genealogical record linkage. Many records, especially records of women, are 

poorly documented and have missing information. For a random subset of 

duplicate records, if the records do not already have missing data, one or two 

fields were deleted. These modifications were created to mirror real world issues 

found within genealogical records and evaluate how well the Cocktail Approach 

performs on poorly documented data. 
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7.2 Baseline Results  

 
Table 7.4 Baseline testing results of each dataset. 

 

 
Table 7.5 Baseline recall scores, precision scores, f-scores, and percent of 
duplicates for each dataset. 
 
 
The Cocktail Approach was first tested on each dataset without incorporating any 

modifications. In other words, the system did not compare relationships of any 

individuals or incorporate general domain metarules. The results from the first 
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test run are shown in Table 7.4 and Table 7.5 shows the precision scores, recall 

scores, f-scores, and the percent of duplicates for each dataset. These results 

are the baseline results of the Cocktail Approach in the genealogical domain. 

These baseline results will be used to evaluate the reimplementation and 

adoption of the Cocktail Approach to genealogical records. The average recall 

score obtained by the baseline system is 85.1% and the average precision score 

is 25.3%. The average f-score of the baseline system is 33.4%. The Cocktail 

Approach obtained a high number of false positives resulting in very low 

precision scores. The low precision score is directly related to the percentage of 

true duplicate records within the dataset. A detailed explanation of this 

relationship is given in Section 7.3. The recall scores obtained by the baseline 

system are adequate for majority of the datasets. However, there are a few 

exceptions. Dataset 1 did not classify any record pairs as duplicates and Dataset 

2 only found 75 of the true duplicates in the dataset. 
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7.3 Results 

 
Table 7.6 Testing results of each dataset. 

 

Table 7.7 Recall scores, precision scores, and percent of duplicates for each 
dataset. 
 

Table 7.6 presents testing results of each dataset for my system. Table 

7.7 shows the recall scores, precision scores, f-scores, and the percent of 

duplicates for each dataset. The recall score is the fraction of duplicate records 

correctly classified over the total number of duplicates in the dataset. The 

precision score is the fraction of correct duplicate records over the total number 
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of record pairs classified as a match. The f-score is the harmonic mean of the 

precision and recall scores [17]. My implementation of the Cocktail Approach 

received an average recall score of 94.6%, an average precision score of 46.4%, 

and an average f-score of 53.2%.  

The average precision score is significantly lower than the average recall 

score and is due to the percent of true duplicates within a dataset. The matching 

ruleset is generated using the binary comparison vectors for all candidate record 

pairs in the dataset. A dataset with a low percentage of duplicates will not provide 

a good model for a matching rule. Without a sufficient amount of true duplicate 

records, the system will not be able to compute a comparison vector that 

represents a true duplicate. The majority of comparison vectors computed from a 

dataset with a low percentage of duplicates will only represent record pairs that 

may only have one or a few similar attributes. These vectors were added to the 

ruleset causing the system to classify all record pairs that only have a few similar 

attributes as a match, resulting in a high number of false positives and a low 

precision score.  

The relationship between the precision score and the percent duplicate is 

shown when comparing the results of Dataset 4 and 8. Dataset 4 contains 37% 

of duplicates and received a precision score of 91%. Dataset 8 contains 4% of 

duplicates and received a precision score of 2.5%. Due to the low number of true 

duplicates, the system was not able to generate a good matching rule for Dataset 

8. As a result, 97% of records that were classified as a match for Dataset 8 were 

wrong. The difference in the percentage of duplicate records between Dataset 4 
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and 8 was 33%. However, the matching ruleset generated for Dataset 4 was able 

to model true duplicate records and received a 91% precision score. Figure 7.1 

shows a comparison of the percent of duplicates, precision scores, recall scores, 

and f-scores for each dataset. Datasets 9, 10, 11, 12, and 13 also received 

precision scores significantly lower than recall scores due to not containing 

sufficient data of duplicate records.  

 

Figure 7.1 Comparison of precision scores, recall scores, and f-scores to the 
percent of duplicates for each dataset. 
 

The recall scores for all datasets were relatively high. Datasets 9, 10, 11, 12, and 

13 all received recall scores of 100%. This is because of the matching ruleset 

generated only searched for a few similarities between records. Therefore, all 

true duplicate records were correctly classified as a match. 
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Many of the false positives were records that had many missing attributes. 

Figure 7.2 shows two records that were wrongly classified as a match. These two 

individuals have the same first name but no other similar attributes. The first 

record only has information about the individual’s birth and death date, and the 

second record does not have any other information about the individual. The 

combination of records with missing data and a bad ruleset dramatically 

increases the number of false positives. 

 

 
Figure 7.2 An example of a record pair that was falsely classified as a match. 
 

Another common cause of false positives is due to common names 

among family members. Many families name children after relatives or parents. 

Figure 7.3 shows another record pair that was falsely classified as match. These 

two record pairs are of a parent and child. Majority of the time, a child and parent 

are born in or live in the same place causing those attributes to match. In 

addition, they have the same ancestors therefore the ANCESTOR attribute will 
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be classified as a match. Before searching for duplicate records, the system sorts 

the dataset by the candKey, which is a combination of parts of the first and last 

name for each individual. A majority of family members have the same last 

name, and similar first names causing the records to classified in the same block 

or window. When being compared, the system will find many similarities among 

the data and classify them as a match. Records of family members make up a 

significant number of the false positives found in all datasets. 

 

Figure 7.3 An example of records that are in the same family tree and were 
falsely classified as a match. 
 

Although the average precision score was low, the average recall score is 

satisfactory. For every dataset, majority of the true duplicate records were found. 

Figure 7.4 shows an example of a true positive record pair. Regardless of the 

percent of duplicates in a dataset, the Cocktail Approach was able to find a 

majority of the true duplicate record pairs. 
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Figure 7.4 An example of a true positive record pair. 

 

7.4 Insignificant Attributes 

 

For each dataset, the attributes that were determined to be insignificant by 

the baseline system are shown in Table 7.8. The attributes determined to be 

insignificant by my system are shown in Table 7.9. The index-attribute mapping 

is shown in Figure 7.5. 

 

Figure 7.5 Index-attribute mapping. 
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For all datasets, the NAT_PARENTS (natural parents) attribute was classified as 

insignificant. This is due to a majority of individuals only having one pair of 

parents, which was represented by the PARENT field. Therefore, the 

NAT_PARENTS field was left blank resulting in a very low mi value and a very 

high ui value compared to rest of the attributes. Majority of the datasets found the 

BURIAL attribute as insignificant also due to missing data. The DEATH_DATE 

and MARRIAGE attributes were sometimes also classified as insignificant due to 

missing data.  

 Without a metarule giving priority to certain attributes, the system may 

ignore important attributes during the matching process. The baseline system did 

not use any metarule and as a result, important attributes such as an individual’s 

first name and last name were considered insignificant by the system. In addition, 

several attributes were completely ignored, reducing the amount of data to be 

compared during the matching process. This decreases the accuracy of the 

system and increases the number of false positives. My system used a priority 

list of attributes so important attributes were never considered insignificant. This 

decreased the number of attributes ignored during the matching process and the 

number of false positives. 

 

Table 7.8 Attributes that were considered insignificant for each dataset for the 
baseline system. 
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Table 7.9 Attributes that were considered insignificant for each dataset. 

7.5 Performance 

 
The use of comparison subspaces is used to increase efficiency. Instead of 

comparing every record in the dataset to every other record, each record is only 

compared to a subset of records. Because the candKey of each record is a 

combination of parts of an individual’s first and last name, all individuals with 

similar names will be placed in the same block. In most cases, these are 

individuals within a family tree. Figure 7.6 shows the performance time in 

seconds for each dataset. Dataset 1 contains 190 records and finished running in 

less than three seconds. Dataset 10 contains 1,108 records and finished running 

in about 35 seconds. However, Dataset 3 contains 16,816 records and took 

about 89 minutes to run. Once cause is because of common naming conventions 

among family members causing most records within a single family tree to be 

placed in the same block. The time complexity for comparisons for each block is 

O(n2). Increasing the number of family trees in the dataset increases the 

computation time exponentially. In addition, the Cocktail Approach traverses over 

the dataset creating candidate record pairs twice; once with the blocking 

technique and once with the Sorted Neighborhood method. Running my system 

on the entire dataset of 255,181 records was not feasible; hence I created 13 

artificial datasets, each containing a subset of records from the original dataset to 

test and evaluate my system. 
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Figure 7.6 Performance time for each dataset. 

7.6 Evaluation 

 
The overall goal of this thesis was to find an efficient record linkage algorithm 

that reduces the need of human intervention and has a high accuracy of finding 

duplicate genealogical records within family trees. The baseline system received 

relatively low recall and precision scores. The average baseline recall score is 

85.1%, the average baseline precision score is 25.3%, and the average baseline 

f-score is 33.4%. Although the system found majority of the true duplicate 

records, it still missed many true duplicate records. My implementation of the 

Cocktail Approach is also able to find majority of the duplicate records even with 

the modifications to the duplicate records in each dataset. Incorporating 
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metarules and analyzing relationships improves the performance so the Cocktail 

Approach for genealogical records.  My system received an average recall score 

9.5% higher than the average baseline recall score and an average precision 

score 21.1% higher than the average baseline precision score.  

As mentioned before, general record linkage algorithms are not always 

applicable to different domains than which it was developed for. The Cocktail 

Approach provides a way to analyze the dataset and generate a matching ruleset 

without the need of manual work. However, this approach does not perform well 

in the genealogical domain. My modified version of the Cocktail Approach does 

provide a good way to analyze the dataset and find duplicates without the need 

of training data and account for common issues found within genealogical 

records. Majority of the true duplicate records were found thus significantly 

reducing the amount of manual work required by a genealogist. However, due to 

the high number of false positives, there still exists a need to sort through all 

record pairs that were classified as a match. The time complexity does become 

an issue for large datasets but it is still significantly faster than making n2 

comparisons on the entire dataset. In addition, the Cocktail Approach will only be 

able to perform well if the dataset contains a sufficient amount of true duplicates 

to analyze and model. Overall, the Cocktail Approach can be used for 

genealogical record linkage but it does not completely cut out the need for a 

genealogist to manually sort through the results due to the high number of false 

positives. 
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CHAPTER 8  

Conclusion 

 

There are several different approaches to finding duplicate records within a 

dataset. Genealogical records behave differently from records in other domains. 

Issues such as typographical errors, data entry errors, and missing data are 

common throughout genealogical records. Many current approaches for 

genealogical record linkage require a great deal of manual work or training data. 

The Cocktail Approach has an advantage of not needing any training data and 

reduces the amount of manual work needed. I re-implemented and modified the 

Cocktail Approach and tested it on 13 artificially created datasets containing 

genealogical records. My system obtained an average recall score of 94.6%, an 

average precision score of 46.4%, and an average f-score of 53.2%. These 

scores were significantly higher than the results of the baseline system. Overall, 

the Cocktail Approach has the potential of finding all duplicate records within a 

genealogical dataset. However it also obtains a high number of false positives. In 

addition, the performance of the system increases exponentially with large 

datasets. Nonetheless, the Cocktail Approach does provide a good way to find 

duplicate genealogical records in situations where training data is not available. 
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CHAPTER 9 

Future Work 

 
 There are a number of different ways to improve the Cocktail Approach for 

genealogical record linkage. One way is to create more specific domain 

metarules that reflect common patterns in genealogical data for each region and 

time period. For datasets that were not able to generate a good matching ruleset, 

predefined domain metarules will provide a baseline for finding duplicates, 

significantly reducing the number of false positives. This was not done in this 

thesis because creating domain metarules requires research and a deep 

understand of the domain, which is outside the scope of this thesis project.  

 About half of the records within genealogical trees are made up of leaves. 

In genealogy, the leaf records tend to have more missing information than other 

records. In addition, the records of women tend to be poorly documented due to 

unknown maiden names. These poorly documented records greatly reduce the 

accuracy of the system. A way to increase the accuracy is to take into account 

the position/place of a record within a family tree and include different confidence 

levels for matches. 

 Another way to improve the system is to use different similarity metrics 

and thresholds for different attributes. Numbers and dates behave differently than 

string data such as names. In addition, attributes such as first and last names 

have different properties and behavior than other attributes like address and 

dates. Using different similarity metrics for numerical data and string data can 

help to improve the comparison process of attributes. To increase the accuracy 
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of birth date and death date comparisons, the dates can be simplified to years 

only. In addition, each attribute should be analyzed to create different similarity 

thresholds for each attribute. However, this will require a better understanding of 

each attribute. Statistics obtained from the dataset can be used to generate 

these similarity thresholds for each attribute.  

 Structural heterogeneity was one issue not addressed in this thesis. 

Structural heterogeneity refers to records that have different domain structures. 

Another issue not addressed is different spellings of names. In many cultures, 

there are common names that are spelled differently. For example, my name 

‘Pooja’ is a fairly common Indian name however, another common spelling of the 

name is ‘Puja’. In addition, some names are spelled different across different 

languages. Incorporating solutions to these issues can increase the accuracy of 

the Cocktail Approach. 
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APPENDIX A 

Generated Rulesets 

The generated equational theory ruleset generated for each dataset by my 

system is listed below. For each rule, or vector, if the i-th index is 1, then the 

attributes at that index must match. The index-attribute mapping is presented 

below: 

FIRST_NAME  = 0 
MIDDLE_NAME = 1 
LAST_NAME   = 2 
BIRTH_DATE  = 3 
DEATH_DATE  = 4 
BURIAL      = 5 
GENDER      = 6 
ANCESTOR    = 7 
NAT_PARENTS = 8 
PARENTS     = 9 
MARRIAGE    = 10 

 
 

Dataset 1: 

RULE_SET: [[1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]] 

 

Dataset 2: 

RULE_SET: [[1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0], [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 

0, 0, 0, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0]] 

 

Dataset 3: 

RULE_SET: [[1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1], [1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1], [0, 0, 1, 

0, 0, 0, 0, 1, 0, 1, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0], [1, 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 
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1], [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 1], [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1], [1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1], [0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1], [0, 0, 

0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], 

[1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 1, 0, 1, 

1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 

0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1], [1, 0, 1, 

0, 0, 0, 0, 1, 0, 0, 1], [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 

0, 1, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 

1], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 

0, 1, 0], [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1], [1, 0, 

1, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1], [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1], 

[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1], [1, 0, 1, 0, 1, 0, 1, 0, 0, 

0, 0], [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0]] 

 

Dataset 4: 

RULE_SET: [[1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 

0, 0, 0, 1, 0, 0, 1, 1], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]] 
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Dataset 5: 

RULE_SET: [[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 

0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1], [1, 

0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]] 

 

Dataset 6: 

RULE_SET: [[1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0], [1, 0, 1, 

0, 0, 0, 1, 1, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [1, 

0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 

0, 1, 0], [0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 

1, 0, 0, 1, 1], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]] 

 

Dataset 7: 

RULE_SET: [[1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]] 

 

Dataset 8: 

RULE_SET: [[1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1], [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 1, 

0, 0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1], [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0], [1, 

0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 

1], [1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1], [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 1], [1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1], [0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 



 63 

0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 

0, 0, 0, 0, 1, 1, 0, 1, 0], [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], 

[0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 1, 0, 0, 0, 1, 1, 0, 

0, 0], [1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0], [1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], [1, 0, 1, 0, 0, 0, 0, 

0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 

0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], [0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0], [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1], [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1, 

0, 1, 1], [1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0]] 

 

Dataset 9: 

RULE_SET: [[1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0], [1, 0, 1, 

0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 

0, 1, 0, 0, 0, 0, 0, 0, 0, 1]] 

 

Dataset 10: 

RULE_SET: [[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1], [0, 

0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]] 

 

Dataset 11: 



 64 

RULE_SET: [[1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 

0, 0, 0, 1, 0, 0, 0, 0]] 

 

Dataset 12: 

RULE_SET: [[1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 

0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1], [0, 

0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]] 

 

Dataset 13: 

RULE_SET: [[1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 

0, 0, 0, 1, 1, 0, 1, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 

0, 0, 0, 0, 0, 1, 1, 0, 1, 0], [1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0]] 


