
FOG PROTOCOL AND FOGKIT: A JSON-BASED PROTOCOL AND

FRAMEWORK FOR COMMUNICATION BETWEEN BLUETOOTH-ENABLED

WEARABLE INTERNET OF THINGS DEVICES

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Spencer Lewson

June 2015

c� 2015

Spencer Lewson

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Fog Protocol and FogKit: A JSON-Based

Protocol and Framework for Communica-

tion Between Bluetooth-Enabled Wearable

Internet of Things Devices

AUTHOR: Spencer Lewson

DATE SUBMITTED: June 2015

COMMITTEE CHAIR: Professor John Bellardo, Ph.D.

Department of Computer Science

COMMITTEE MEMBER: Professor David Janzen, Ph.D.

Department of Computer Science

COMMITTEE MEMBER: Professor John Clements, Ph.D.

Department of Computer Science

iii

Abstract

Fog Protocol and FogKit: A JSON-Based Protocol and Framework for

Communication Between Bluetooth-Enabled Wearable Internet of Things Devices

Spencer Lewson

Advancements in technology have brought about a wide variety of devices, such as

embedded devices with sensors and actuators, personal computers, smart devices, and

health devices. Many of these devices are categorized as “wearables,” meaning that

they are intended to be carried and used on one’s body. As this category increases in

popularity and functionality, developers will need a convenient way for these devices

to communicate with each other and store information in a standardized and e�cient

manner.

The Fog protocol and FogKit framework developed and demonstrated for this thesis

address these issues by providing a set of powerful features, including data posting,

data querying, event notifications, and network status requests. These features are

defined as convenient JSON formatted messages which can be communicated between

Bluetooth peripherals using an iOS device running FogKit as router and server.

iv

ACKNOWLEDGMENTS

Thanks to:

• Dr. John Bellardo, my thesis advisor who provided guidance and support

throughout the project

• Dr. David Janzen, a member of my committee

• Dr. John Clements, a member of my committee

• Sam, Stephanie, and Michael Lewson, my loving family who o↵ered unending

support

• Neil Daniels, a friend who provided assistance with the implementation of iOS

technologies

• Michael DeWitt, a friend who provided feedback on the design and implemen-

tation of the FogKit and Bluetooth technologies

v

Contents

List of Figures x

1 Introduction 1

2 Background 4

2.1 Overview of the Internet of Things 4

2.1.1 Introduction to the Internet of Things 4

2.1.2 Visions of the Internet of Things 6

2.1.3 Applications of the IoT . 8

2.2 Wearable Technology . 9

2.2.1 Single Purpose Devices . 10

2.2.2 Multifunctional Devices . 11

2.2.3 Body Area Networks . 11

2.3 Overview of Bluetooth . 13

2.3.1 About Bluetooth . 13

2.3.2 Bluetooth Roles . 15

2.3.3 Bluetooth Data Representation 15

2.3.4 Bluetooth Data Transfer . 18

2.4 OSI 7 Layer Network Model . 18

3 Related Technologies 21

3.1 IoT Stack . 21

3.2 Edge Technology Layer . 23

3.3 Access Gateway Layer . 23

3.4 Middleware Layer . 23

3.4.1 Sensor Metadata Annotations 24

vi

3.4.2 Observational Value Annotations 25

3.5 Application Layer . 25

3.6 Protocols . 27

3.6.1 Routing Protocol for Low-Power and Lossy Networks 27

3.6.2 Constrained Application Protocol 29

4 Fog Protocol 35

4.1 Discussion . 35

4.2 Identification Information . 36

4.2.1 ID Attribute . 37

4.2.2 Name Attribute . 37

4.2.3 Type Attribute . 37

4.2.4 Capabilities Attribute . 38

4.3 Notification Information . 38

4.4 Message Header Structure . 38

4.4.1 Source and Destination Attributes 39

4.4.2 Confirmation Attribute . 39

4.4.3 Message ID and Response Message ID Attriutes 40

4.4.4 Version Attribute . 40

4.4.5 Type Attribute . 41

4.5 Event Messages . 41

4.5.1 Event Type Attribute . 42

4.5.2 Context Attributes . 42

4.6 Post Messages . 42

4.6.1 Post Attribute . 43

4.7 Query Messages . 44

4.7.1 Select Attribute . 45

4.7.2 Where Attribute . 45

4.7.3 Query Responses . 47

4.7.4 Deleting . 48

4.7.5 Updating . 48

4.8 ACK and Error Messages . 49

vii

4.8.1 ACK . 49

4.8.2 Error . 50

4.9 Network Status Requests . 50

4.9.1 Network Status Queries . 50

4.9.2 Status Responses . 51

4.10 Comparison to Other Protocols . 52

4.10.1 Message Routing . 53

4.10.2 Message Content Complexity 53

4.10.3 Message Size . 54

5 FogKit 55

5.1 Overview . 55

5.2 Framework Design . 57

5.2.1 Central Framework . 57

5.2.2 Peripheral Framework . 60

5.2.3 Shared Code . 61

5.3 Bluetooth GATT Profile . 62

6 Expected Use Cases 64

6.1 Thought Exercises . 65

6.1.1 Wearable Sensing Devices . 65

6.1.2 Wearable Event Device . 70

6.1.3 Wearable System . 71

6.2 Demonstrations . 76

6.2.1 Post Application Example . 76

6.2.2 Event Applications Example 79

7 Future Enhancements 83

7.1 Fog Protocol . 83

7.1.1 Value Standardization . 83

7.1.2 Protocol Optimizations . 84

7.1.3 Binary Data Transfer . 84

7.2 FogKit . 84

7.2.1 Security . 84

viii

7.2.2 Background Processing . 85

7.2.3 Implementation Testing . 85

8 Conclusion 86

Bibliography 89

Appendix A Fog Protocol Keys 93

1 Identity Messages . 93

2 New Data Notification Message . 93

3 Network Status Messages . 94

4 Network Status Response Messages 94

5 Message Header . 94

6 Event Messages . 95

7 Post Messages . 95

8 Query Messages . 95

9 Query Response Messages . 95

ix

List of Figures

2.1 The Gartner Hype Cycle chart[35]. 5

2.2 Cisco’s prediction for number of connected devices by 2020[18]. . . 6

2.3 The three visions of the Internet of Things[6]. 7

2.4 The merits and demerits of di↵erent BAN technologies.[32] 12

2.5 The characteristics of di↵erent BAN technologies.[32] 12

2.6 The Core Bluetooth Stack[1] . 14

2.7 The Bluetooth Central and Peripheral[1]. 16

2.8 The Bluetooth GATT Profile. 17

2.9 The OSI 7 Layer Model[7]. 18

3.1 An Internet of Things Stack[6]. 22

3.2 A Screenshot of an OpenIoT Visualization. 26

3.3 An example RPL routing tree[36]. 28

3.4 The Layering of CoAP[42]. 31

3.5 Example of reliable transmission[42]. 32

3.6 Example of the requests/response model in CoAP[42]. 33

3.7 The CoAP Message Format. 33

5.1 The FogKit star topology. 56

5.2 The FogKit layers. 57

5.3 UML overview of FogKit Prototype Framework. 58

5.4 The GATT profile for a Fog Bluetooth peripheral. 62

x

Chapter 1

Introduction

The world is currently experiencing an “explosion” of connected devices. Advance-

ments in technology and significant decreases in hardware costs have led to the mass

adoption of electronic devices, collectively known as the “Internet of Things” (IoT).

These IoT devices, which are constantly sensing and generating data, are all inter-

connected, allowing them to communicate with each other and make decisions to help

improve our lives.

There are many visions of the IoT that range from the massive deployment of thou-

sands of sensors and actuators to a few smart objects worn on one’s body that com-

municate with each other. However, in all of these visions, unique sets of challenges

arise that must be overcome. Although the IoT encompasses a wide variety of devices,

from laptops and smart phones to embedded chips with sensors and actuators, the

majority of them fall in the latter category. This category is characterized by devices

that are typically constrained with limited energy and computational power.

One class of device in the IoT is commonly referred to as wearable technology. “Wear-

ables” include devices that are carried on one’s body, such as smart phones, smart

watches, pedometers, and heart rate monitors. These devices often connect to a

smartphone via Bluetooth and gather health information and display data or notifi-

cations to the wearer[17]. As this category becomes more popular and the function-

1

ality of these devices increases in complexity, it is clear that many of these devices

will need an improved protocol to communicate with each other and/or store data

externally.

Current protocols used in the IoT are designed to face a few key challenges in IoT

networks, including e�ciency and interoperability. The Internet Engineering Task

Force defined the layer 3 and 4 protocols[28], RPL and CoAP, to address these chal-

lenges. However, they were designed for massive networks with thousands or millions

of nodes[34][42]. These layers and protocol message formats are di�cult to work with

and have an unnceccessary overhead for small Bluetooth networks used by wearable

technology.

The Fog protocol and FogKit framework developed for this thesis attempt to address

these shortcomings by defining a convenient method of communication that is de-

signed specifically for wearable devices operating on Bluetooth networks. This was

accomplished by reviewing other protocols and technology, learning from their design

decisions, and integrating these lessons into the Fog system. The Fog protocol defines

a simple set of messages that are sent from device to device. These messages can be

of many types, including event messages notifying a device that an event occurred,

post messages that include data for the central device to store, query messages that

request data, and more. For developer convenience, messages are transferred from the

peripheral to the central device in an easy key-value pairing known as the Javascript

Object Notation (JSON) form, and then depending on the destination, routed to the

designated device or consumed by the central device itself.

The Fog protocol was designed alongside its prototype implementation, FogKit. The

purpose of FogKit was to act as a proof-of-concept that guided the direction and

features of the Fog protocol. FogKit creates this functionality between an iOS device

and multiple Bluetooth devices. In the FogKit model, the iOS device acts as a server

that routes communication between the other Bluetooth devices and as an external

database to store data from these devices.

2

The Fog protocol and FogKit framework are named after the fog computing paradigm,

in which the cloud computing and service model is brought to the edge of a network[13].

In other words, Fog computing is similar to cloud computing, but focuses on small

local networks. One way to imagine this is with a “cloud” that is grabbed and pulled

down to surround a person. This “cloud” would then be near the ground, making it

“fog.”

The rest of this thesis is organized as follows: Chapter 2 gives an overview of the

Internet of Things, Bluetooth, and other information that will be helpful in under-

standing the Fog protocol and FogKit. Chapter 3 explains related technologies in the

IoT, including an overview of a general IoT stack and commonly used IoT protocols.

Chapter 4 details the Fog protocol itself and explains its design. Chapter 5 gives an

overview of the implementation of FogKit and the technologies used within it. Chap-

ter 6 focuses on validation of the protocol through theoretical examples. Finally,

chapters 7 and 8 notes what future work should be completed before release and ends

with a conclusion.

3

Chapter 2

Background

2.1 Overview of the Internet of Things

2.1.1 Introduction to the Internet of Things

The Internet of Things (IoT) is an emerging concept that is changing the way we

interact between and the real world and virtual world. The IEEE defines the Internet

of Things as “a system consisting of networks of sensors, actuators, and smart objects

whose purpose is to interconnect ‘all’ things, including everyday and industrial ob-

jects, in such a way as to make them intelligent, programmable, and more capable of

interacting with humans and each other[25].” Essentially, the idea of the Internet of

Things is to connect all “things” to the internet, allowing them to communicate and

make decisions[39] in order to collaborate to perform actions and achieve goals[27].

This concept of interconnected devices can be traced back to work done by Kevin

Ashton in 1999[5]. Ashton reportedly coined the term when presenting his linking

Radio-Frequency Identification (RFID) technology to track items in a supply chain[5].

The term quickly increased in popularity and is well known as the communication

system where the internet is connected to the physical world through ubiquitous

deployment of devices[36].

4

Interest in the Internet of Things is currently exploding as it becomes a topic of re-

search in both academia and industry[36]. Every year, the Gartner company provides

a report on the “hype cycle” for emerging technologies. This report acts as a broad

aggregate of technologies that are the focus of attention and are believed to have

the potential for significant impact. Industry often uses this information to identify

technologies that are emerging and are candidates for future development. In 2014,

Gartner estimated the Internet of Things to be at the peak of its hype[35]. This sug-

gests an upcoming boom in the IoT and its widespread adoption and implementation.

Figure 2.1: The Gartner Hype Cycle chart[35].

This report on hype is supported by predictions from industry. Cisco forecasts that

the economic value created by the Internet of Things will be 19 trillion dollars and

IDC forecasts that the worldwide market for the IoT will be 7.1 trillion dollars by

2020[33]. These impressive numbers are not surprising, considering Cisco predicts

that by that same year, there will be 50 billion connected devices in the world[18].

5

Figure 2.2: Cisco’s prediction for number of connected devices by 2020[18].

2.1.2 Visions of the Internet of Things

While it is widely agreed that the Internet of Things consists of a network of inter-

connected devices, there are many di↵erent visions for exactly what these devices

are and how they will behave. This ambiguity is likely due to the fact that the

phrase “Internet of Things” is syntactically composed of two vague terms, “inter-

net” and “things.[27]” The term “internet” suggests a vision for a large number of

interconnected devices while the term “things” focuses on the idea of integrating

technology into generic objects[27]. For this reason, di↵erences, sometimes substan-

tial, arise when industry and academia begin researching and implementing systems

from an “internet oriented” or “things oriented” perspective for specific interests and

backgrounds[27]. These di↵erent opinions of the IoT are typically placed into three

categories, a “things” oriented vision, an “internet” oriented vision, and a “semantic”

oriented vision[6].

6

Figure 2.3: The three visions of the Internet of Things[6].

“Things Oriented” Vision

The “things oriented” vision of the IoT was originally devised to improve object

traceability by tracking an object’s status and location over time, such as the RFID

tracking system proposed by Ashton in 1999[27][5]. However, many others have vi-

sions that go beyond simple RFID tracking and focus on augmenting the intelligence

of things[27]. These “smart items” may not only be equipped with sensors, wireless

communication, memory, etcetra, but eventually may have the potential to move into

context awareness and collaborative communication[27].

“Internet Oriented” Vision

The “internet oriented” vision of the IoT focuses on the design of protocols for the

addressing and routing of internet enabled objects and their communication[27]. The

IP for Smart Objects Alliance (IPSO) has a protocol that is aligned with this vision.

IPSO is focusing on a protocol that reduces the complexity of the IP architecture for

IoT devices.

7

“Semantic Oriented” Vision

The “semantic oriented” vision of the IoT is focused primarily on the issues related

to data[27]. As shown by Cisco’s predictions, the number of devices involved in the

future internet is predicted to be extremely high[18][27]. This will create issues re-

garding how to represent, store, interconnect, search, and organize the information

generated by the IoT devices[27]. In this situation, semantic technologies could be

used to provide appropriate modeling solutions and descriptions for the large amount

of data[27].

These three visions, which focus on adding technology to things, facilitating com-

munication between things, and processing the data generated by things, are clearly

di↵erent. However, each of them are important to the overall vision of the IoT. Re-

searchers believe that the future of the IoT paradigm lies at the center of the diagram,

where all these visions converge[27].

2.1.3 Applications of the IoT

The potential applications for the Internet of Things are seemingly endless. While

there are currently only a relatively few deployments of IoT technologies, the IoT is

expected to be very important in the transportation, medicine, manufacturing, agri-

culture, and environmental monitoring fields as well as other applications[6]. Listed

below are only a few of the possibilites for the Internet of Things:

Transportation

The IoT could be used to improve the safety and reliability of parts in aircraft or

automobiles[6]. RFID tags embedded in parts and products could help prove the

authenticity of parts and protect against counterfeits[6]. Additionally, sensors and

actuators could be used to monitor and report various parameters such as tire pressure

or object proximity[6]. Other predictions focus on vehicle-to-vehicle communication,

which could be used to increase vehicle safety and improve tra�c management[6].

8

Health Care

In the medical and healthcare industries, the IoT could be used as a platform for

monitoring patient health[6]. Implantable devices could be used to store information

about a patient’s health record that could be used to save his/her life in an emergency

situation, or used to track patient’s vitals and alert users about irregularities using

pattern detection and machine learning[6].

Environmental Monitoring

The IoT is being used to implement “smart cities” where public resources are used

more e�ciently and the quality of service o↵ered to citizens is improved[43]. Dis-

tributed devices are being used to monitor waste management to create more e�-

cient collection routes, air quality to ensure public health, tra�c congestion to better

deploy o�cers, lighting to improve e�ciency, and more[43].

Home Automation

Wireless home automation is essentially the use of embedded sensors and actuators

which are monitored by control applications to increase the homeowner’s comfort and

maximize the e�ciency of energy, water, and other resource usage. Other possible

uses in home automation include light controls which turn on automatically when

people are present or HVAC systems which can control window blinds and make

optimizations for what rooms to heat at what times. There could also be applications

in security with glass-break sensors and more[21].

2.2 Wearable Technology

Wearable technology is a category of devices in the Internet of Things that are carried

on one’s body. These devices are predicted to produce a large amount of innovation

and integration in medical lifestyles, fitness, gaming, entertainment, and other con-

sumer applications[41]. Essentially, these devices consist of embedded computing

9

systems that provide ubiquitous personalized services to the wearer[41]. Wearables

are now regarded as one of top categories in the IoT[41]. Since the late 2000’s, the

wearable category has experienced surprising growth in market adoption[41]. This is

likely due to the decrease in cost of embedded electronics and the advent of the smart-

phone, which provides the necessary data services and user-interaction support[41].

Although the market is relatively new and there is truly a wide spectrum of de-

vices and uses, we believe that the devices emerging can be separated into two main

categories based on their functionality as either a simple data-focused device or fully

featured system:

• single purpose sensors or actuators that track information about the wearer

or perform a simple action

• multifunctional devices capable of interfacing directly with the wearer and

providing sophisticated actions

2.2.1 Single Purpose Devices

The single purpose category consists of sensors or actuators that track information

about the wearer or perform simple actions. Although there is a seemingly inex-

haustable list of items that fall in this category, a few examples include devices such

as heart rate monitors, pedometers, and event triggering devices that track aspects

of the wearer or o↵er him/her a convenience.

Fitness and other health related trackers make up a large portion of this category.

These devices include products such as the FitBit; which is a miniature fitness tracking

device worn on the body[19]. These products, although variable in the exact features

included, essentially track a user’s steps, sleep times, heart rate, and more[19].

Another example of a device that falls in this category is a product in development

by Cal Poly, San Luis Obispo students: the DingBot[16]. The DingBot is a Bluetooth

enabled keychain with a button for triggering actions on a user’s smart phone. The

10

device can be configured to do almost anything on your smartphone, such as launch

apps, control alarms and timers, or through the use of additional services, unlock

doors, turn on lights, and more[16].

2.2.2 Multifunctional Devices

Unlike single purpose devices, multifunctional devices are capable of gathering and

processing a variety of types of data, presenting it to a user and/or transferring it

to other devices, running local applications, and more. Examples of these devices

include smart watches, smart glasses, and more.

Smart watches are becoming increasingly popular as almost every major technol-

ogy company, including Apple, Google, Samsung, Sony, Motorola, and more, have

launched products into the market[38]. These wearable devices o↵er a wide variety of

features to users from providing notifications to running full applications. The Apple

Watch, for example, o↵ers functionality for viewing notifications, taking phone calls,

tracking health and fitness, making digital payments, and much more through the

development of 3rd party applications[3].

Smart glasses, such as the Google Glass, are another form of multifunctional wear-

able technology. Google markets the Glass as a device that is “There when you need

it. Out of the way when you don’t[23].” This pair of “smart glasses” has a small

transparent screen on which an image is projected[23]. Essentially, the device is sim-

ilar in functionality to the smart watches, but takes a di↵erent form factor. It also

allows users to view notifications, search the internet, send messages, and much more

through the development of 3rd party applications.[23].

2.2.3 Body Area Networks

These single purpose and multifunctional wearable devices explained above are con-

nected using a Body Area Network (BAN), or a low power wireless communication

standard[32]. There are many existing technologies, such as Bluetooth, ZigBee, ANT,

11

Sensium, and Zarlink for use for BANs. Each of these technologies have their advan-

tages and disadvantages which are outlined in the figures and sections below.

Figure 2.4: The merits and demerits of di↵erent BAN technologies.[32]

Figure 2.5: The characteristics of di↵erent BAN technologies.[32]

Bluetooth Classic and Bluetooth 4.0 LE

The Bluetooth interface defines a link and application layer to create a short range

wireless communication standard that supports data transfer and voice applications[32].

12

There are two significant versions of Bluetooth: Classic and Low Energy (LE). Blue-

tooth Classic has been succeeded by Bluetooth 4.0 LE, which is power optimized and

o↵ers new features[32]. Further details on Bluetooth can be found in section 2.3.

ZigBee

ZigBee defines a network, security, and application layer protocol to create a flexible

network[32]. ZigBee is optimized for low-duty-cycle devices, or devices that have the

radio powered o↵ most of the time[32]. This di↵ers from Bluetooth, which requires

devices to remain synchronized with each other, resulting in increased radio usage

and higher power consumption[32].

ANT

ANT is a wireless communication technology designed for general-purpose sensor

network applications[32]. ANT features a simple design, low latency, and ability to

trade o↵ data rate for power e�ciency[32].

Sensium and Zarlink

Sensium and Zarlink are proprietary ultra-low-power transceiver platforms for the

healthcare and medical industries[32]. Sensium focuses on creating a simple low-

power network while Zarlink focuses on error detection and reliability[32].

2.3 Overview of Bluetooth

2.3.1 About Bluetooth

Bluetooth is a wireless personal area network technology designed by the Bluetooth

Special Interest Group. The technology is geared towards voice and data applications

and is commonly found in devices such as smart phones, computers, and more. The

13

release of Bluetooth 4.0 Low Energy, marketed as “Bluetooth Smart” by the Blue-

tooth SIG, focuses on reducing power consumption and range and increasing data

rates[9].

Bluetooth LE focuses on enhancing Internet of Things devices, such as watches, toys,

pedometers, and glucose monitors. Simple devices such as pedometers take advantage

of the power e�ciency, while more complex devices, such as smart watches utilize the

improved speed[9].

Bluetooth LE is a complicated technology, so there are many frameworks that ab-

stract away the details and provide a convenient API for developer use. One such

framework is Apple’s Core Bluetooth framework, which allows developers to inter-

face with the Bluetooth technology available on iOS devices. This Core Bluetooth

framework is based on the Bluetooth 4.0 specification, which defines the set of proto-

cols for communication between Bluetooth low energy (Bluetooth LE) devices. The

framework abstracts many of the low-level implementation details, allowing engineers

to more easily develop apps that interact with other devices through Bluetooth[1].

Figure 2.6: The Core Bluetooth Stack[1] .

14

2.3.2 Bluetooth Roles

In Bluetooth LE connections, there are two key roles: the central and the peripheral.

These roles may be likened to that of client and server, where the central acts as

the client and the peripheral acts as the server. The central device typically uses

information gathered from peripheral devices to accomplish a task[1]. For example,

an iPhone central may gather heart rate information from a Bluetooth Pulse Monitor

peripheral. Each of these roles have an assigned set of tasks, which are outlined below:

Centrals: Centrals are responsible for scanning for advertising peripherals and con-

necting to devices in which they are interested. When a central discovers a device,

it can request a connection and begin to explore all of its data and interact with all

of its features. A central is capable of both reading from and writing to a peripheral

device.[1]

Peripherals: Peripherals advertise their presence by broadcasting information in

the form of advertising packets. These packets contain brief descriptive information

on what the device has to o↵er, such as the peripheral’s name and primary function.

Once a central connects to a peripheral, the peripheral may announce secondary data

and functionality. While the devices are connected, the peripheral is responsible for

responding to the central device’s read and write requests[1].

2.3.3 Bluetooth Data Representation

When centrals interface with peripherals, they are using the peripheral’s Bluetooth

4.0 LE Generic Attribute Profile (GATT). Bluetooth 4.0 Low Energy uses a GATT

profile to define how a device works for a specific application[22]. This includes the

establishment of common operations and a framework for data transfer and storage as

defined by the Attribute Protocol (ATT)[37]. In the traditional client/server model,

the GATT server defines the format of the data transported over ATT and accepts

requests, commands, and confirmations from a GATT client[37]. It follows then that

the GATT server sends responses to requests and notifications of specified events to

a GATT client[37].

15

Figure 2.7: The Bluetooth Central and Peripheral[1].

The Attribute Protocol (ATT) defines the capabilities of a Bluetooth 4.0 LE pe-

ripheral, including data values and descriptions[37]. These attributes are defined as

services, characteristics, and descriptors[37].

Service: Services represent a peripheral’s capabilities–that is to say, the associated

behaviors and features that the peripheral o↵ers to centrals. These services can be

denoted as either pimary, which indicates that the service serves as the primary func-

tion of the device, or secondary, which denotes that the service is auxilary and is

referenced from at least one primary service.[37].

Characteristic: Characteristics represent detailed information about a peripheral’s

services. Specifically, a characteristic contains a declaration, property, and single

16

value that can be read from or written to by a central[37]. Additionally, a character-

istic may contain a description known as a descriptor.[1].

Descriptor: Descriptors provide detailed information about a characteristic’s value,

such as the format of the data, whether the value is configured by the central or

peripheral, or whether or not the value has changed. These descriptions are often

presented in human-readable form.[1]

The following figure is an example of a very simple GATT profile for a Bluetooth

Heart Monitor. The device contains a service that indicates it’s capable of sensing a

heartrate and defines a characteristic from which a central may read that value. The

characteristic’s descriptor describes the unit of that value to be in “Beats/Min” or

“beats per minute.”

Figure 2.8: The Bluetooth GATT Profile.

17

2.3.4 Bluetooth Data Transfer

Although Bluetooth 4.0 LE is a newer standard, data transfer is still relatively slow

when compared to other technologies. Bluetooth 4.0 specifies a packet size of only 27

octets which are transferred at a rate of 1 Mbps[10].

Data is transferred through a device’s characteristics. When a device attempts to

transfer data, the device will loop through the data, one packet at a time, and set the

characteristic’s value. The receiving device will then read and bu↵er the data every

time the value changes.

2.4 OSI 7 Layer Network Model

The Open Systems Interconnect (OSI) model defines a network stack composed of

7 layers which build upon each other, abstracting away control and implementation

details[7].

Figure 2.9: The OSI 7 Layer Model[7].

18

1. Physical Layer

The physical layer is the lowest layer of the OSI model. It is responsible for the

transmission and reception of a raw bit stream over a physical medium, such as a

cable or wireless transceiver[28]. Data is transmitted as electrical or optical signals,

as determined by the physical medium used by the device[28].

2. Data Link Layer

The data link layer is responsible for error-free transmission from one network node

to another network node over the network layer[28]. This allows the higher levels

to assume the transmission is error free[28]. This is accomplished by managing the

link establishment and termination, controlling the frame rate, and reporting network

confirmations and errors[28].

3. Network Layer

The network layer decides which physical paths across a network transmitted data

should take based on the network topology and conditions[28]. Essentially, it’s respon-

sible for routing data through the network and managing data transmission speeds

and reliability[28].

4. Transport Layer

The transport layer ensures that messages, or pieces of data, are delivered in the

correct order and without errors across di↵erent networks or end systems[7]. The

transport layer accomplishes this by splitting and reassembling long messages, re-

porting acknowledgements of receipt of data and errors, and controlling the speed at

which data is transmitted[28].

19

5. Session Layer

The session layer manages the establishment of sessions (similar to a “conversation”)

between processes running on di↵erent devices[7]. It is responsible for the establish-

ment, maintenance, and termination of sessions, and performs the functions necessary

to allow processes to communicate over a network[28].

6. Presentation Layer

The presentation layer translates the data from a network format to the application

layer format, or vice-versa, depending on if the device is sending or receiving data[28].

The layer is also responsible for data compression and encryption[28].

7. Application Layer

The application layer is the layer at which the user or process operates[28]. Examples

of the various functions that operate at this layer include e-mail, web browsing, and

remote file access.

20

Chapter 3

Related Technologies

In 2008, the U.S. National Intelligence Council predicted that by 2025, internet nodes

may reside in everyday objects, such as food packages, furniture, documents, and

more.[31]. What “things” are produced in the future cannot truly be predicted, but

we do know that with the price of wireless sensors and other technologies diminish-

ing rapidly, there will be a boom in large autonomous networks of technology[11].

However, there are many challenges faced with these large networks, including the

diversity of data sources and communication protocols[11]. Experts predict that coor-

dinating the communication and maintaining the interoperability of all these devices

is a challenging prospect. This is still an area of significant research today[11].

The following sections discuss some of the technologies and features used in the

Internet of Things that were influential in the design and implementation of this

thesis project. An understanding of these technologies is necessary in order to fully

understand the design choices made in the Fog protocol and FogKit framework.

3.1 IoT Stack

In order to accommodate the massive numbers of heterogeneous devices, the IoT

stack is organized into a set of layers. These layers are described as follows:

21

1. Edge technology layer consisting of all of the deployed sensors, actuators,

and other embedded devices[6]

2. Access gateway layer responsible for abstracting communication and data

handling of the devices[6]

3. Internet layer which facilitates communication between the gateway and other

layers[6]

4. Middleware layer, which acts as an interface for device and data management[6]

5. Application layer, which includes any and all applications that use or manip-

ulate the data[6]

Figure 3.1: An Internet of Things Stack[6].

22

3.2 Edge Technology Layer

The Edge Technology Layer consists of the distributed sensor networks and the

embedded systems, sensors, actuators, and more that make up Internet of Things

networks[6]. As part of the nature of being an embedded system, these devices gener-

ally share common features, such as constrained energy resources, limited processing

capabilities, unreliable connections, and limited direct human contact[6]. For these

reasons, they typically are just capable of reading sensors and reporting values to the

middleware layer via a network connection. However, although these devices share

common features, there is a huge diversity in the implementation of these features,

such as the hardware capabilities, networking protocols, and data representation.

3.3 Access Gateway Layer

In the IoT stack, the access gateway layer is responsible for coordinating access from

the middleware layer to the embedded devices[6]. Essentially, this layer abstracts

the di↵erent communication protocols and allows for a uniform interface to read the

values from the sensors. Additionally, the access gateway layer can cache the data

from the sensors, improving the e�ciency of the overall system.

3.4 Middleware Layer

The middleware layer is one of the most critical layers in the Internet of Things stack

as it acts as the interface between the hardware layers and the application layers[6].

Essentially, the middleware is responsible for device and data management through

the use of the access gateway layer. It abstracts away the distributed aspects of the

IoT, such as data filtering, data aggregation, and device acccess control, and presents

a convenient interface for the application layer[6]. Like the access gateway layer,

there are many technical di�culties presented at the middleware layer. Even when

the challenges of dealing with the diversity in devices and protocols is dealt with,

there is still the issue of a consistent sensor and data representation[11].

23

XGSN is one such solution that addresses these problems by abstracting away the

hardware layers and providing consistent annotations for the descriptions of the de-

vices themselves and the data they produce[11]. This consistency is accomplished

through the use of a standardized vocabulary that ensures interoperabilty between IoT

systems[11]. In XGSN, sensor data and observational data are annotated using the

World Wide Web Consortium (W3C) Semantic Sensor Network (SSN) ontology[11].

This ontology defines standardized representations of data that makes it easier for

other services and applications to share, discover, and integrate sensor information[24].

The two main types of semantic annotation in XGSN are metadata annotations, re-

lated to sensors, and observational annotations, which includes a description of the

observed values.

3.4.1 Sensor Metadata Annotations

Sensor metadata annotations are focused on sensors, sensing devices, and the de-

vice capabilities[11]. This metadata is formated as an XML document that includes

information of interest such as sensor information, location, pull rates, security pa-

rameters, and more[11].

Presented below is an excerpt of an XML virtual sensor configuration in XGSN from

[11] that includes metadata information for a sensor, such as the capabilities it pro-

vides (included in the field name elements) and how to access those properties (in-

cluded in the query elements).

<virtual-sensor name="sens1" priority="10">
<processing-class>

<class-name>org.openiot.gsn.vsensor.LSMExporter</class-name>
...
<output-structure>

<field name="temperature" type="double" />
<field name="humidity" type="double" />

</output-structure>
</processing-class>

24

<streams>
<stream name="input1">

<source alias="source1" sampling-rate="1" storage-size="1">
<address wrapper="csv">
...
</address>
<query>select * from wrapper</query>

</source>
<query>select temp as temperature, humid as humidity, timed

from source1</query>
</stream>

</streams>
</virtual-sensor>

3.4.2 Observational Value Annotations

Observational value annotations are focused on the observations and measurements

produced by the Internet of Things sensors[11]. These annotations could include data

on when the observation happened and the context of the observation, in addition to

the values and units of the measurements[11].

XGSN is capable of handling the data acquisition process for a wide number of devices

and protocols[11]. In XGSN, the server stores information about the connected sen-

sors, including the properties they have and the URL’s from which they can be read.

Essentially, the server stores information about a resource and requests data from the

sensor. The sensor then responds with raw, unformatted data and the XGSN system

uses the annotations to store the received data correctly.

3.5 Application Layer

The application layer gathers information from service layers and uses the data to

generate information. It may be as complex as a system that manages and analyzes

huge amounts of data or it may be simple as a website that displays graphs or other

25

information. One such application layer is OpenIoT, an open source infrastructure for

implementing and integrating Internet of Things devices[30]. Essentially, the platform

allows users to dynamically aggregate and compose IoT services following a cloud or

utility based model, and then use the raw data to generate high level human-readable

information[30].

OpenIoT is capable of collecting and processing data from any type of sensor that

conforms to the XGSN and W3C Semantic Sensor Networks (SSN) specifications[30].

It can dynamically discover and query service layers to obtain data, and then use

the data to visualize information in the form of charts, graphs, maps, and more[30].

Shown below is an example of this data visualization in OpenIoT.

Figure 3.2: A Screenshot of an OpenIoT Visualization.

26

3.6 Protocols

Due to the restrictions imposed by the constrained and unreliable nature of the net-

works used by the Internet of Things, the existing standard client/server protocols

are not always suitable[31]. They are not optimized for low-power communication

due to verbose meta-data and headers and optimization for packet acknowledgement

at higher layers[31]. Additionally, in IoT networks, both devices and the middle-

ware can act as a client and/or server, so the ability to accomodate both roles is

important[31]. There are many exisitng protocols that devices can use to publish

data to the web, however this section will only review the established standards from

the Internet Engineering Task Force.

3.6.1 Routing Protocol for Low-Power and Lossy Networks

The networks on which the edge layer technology operates are often unstable and

unreliable[31]. In response to this, IETF Routing over Lossy and Low-Power Networks

(RoLL) working group was established in 2008 to determine the application scenarios

and routing requirements for IoT devices, evaluate the shortcomings of the current

protocols, and create a new set of IoT optimized protocols[36]. The RoLL working

group eventually published RFC 6550 which defined the IPv6 Routing Protocol for

Low-Power and Lossy Networks (RPL)[34]. This level 3 network layer protocol is able

to accommodate the Low-Power and Lossy Networks (LLN) and the constrained net-

work devices and routers that operate on them[34]. Additionally, in compliance with

the OSI model, RPL is not dependent on any layer 2 link-layer technology, allowing it

to operate over any link layers, including constrained or potentially lossy networks[34].

RPL was designed to support three kinds of tra�c flow:

1. Point-to-point, which is tra�c between devices within the LLN[36]

2. Point-to-multipoint, which is tra�c from a central point to a subset of devices

within the LLN [36]

3. Multipoint-to-point, which is tra�c from devices within the LLN to a central

27

control point[36]

RPL routes information over a dynamically formed network topology[34]. RPL uses

a distance-vector routing protocol, meaning that the nodes determine how to route

their tra�c by generating an acyclic graph[36]. Essentially, each node knows the dis-

tance or cost to every other node to which it is directly connected. This information is

shared with the other nodes and is used to determine the shortest paths through the

network[40]. The route is completed by exchanging distance vectors with a controller

node, which determines the optimum path to route network tra�c[40].

Figure 3.3: An example RPL routing tree[36].

Routing is an extremely important aspect of creating an e�cient end-to-end network-

ing service, especially in IoT networks[36]. RPL aims to support ubiquitous sensing

applications in large scale and low-power, however, this goal has not yet been met[36].

According to the research paper [36], there are a few challenges with RPL that need

to be worked out[36].

1. End-to-end throughput: RPL faces throughput challenges when multiple

applications coexist on the same physical network. A queue-aware back-pressure

28

routing algorithm is suggested to send packets through all possible end-to-end

paths[36].

2. Packet reordering: RPL supports multipath routing solutions, however, the

multi-path routing structure used can result in packets being received in the

incorrect order. This is a problem that should be addressed[36].

3. Dynamic duty cycling: The current RPL design does not accomodate dy-

namic duty cycling, which could improve the performance of the end-to-end

throughput, latency, and more[36].

4. Multi-topology routing vs. tra�c diversity: RPL utilizes a multi-topology

routing approach to create new routes to accomodate each type of tra�c cur-

rently on the network. However, the cost of constructing and maintaining these

routes as the number of applications increases introduces priority and fairness

issues that negatively impact performance[36].

3.6.2 Constrained Application Protocol

The Constrained Application Protocol (CoAP), according to RFC 7252, is “a special-

ized web transfer protocol for use with constrained nodes and constrained (e.g., low-

power, lossy) networks[42].” The Internet Engineering Task Force (IETF) RESTful

Environments workgroup designed the protocol to accodmodate 8-bit microcontrollers

with small amounts of ROM and RAM and to meet the specialized requirements of

multicast support, low overhead, and simplicity for constrained environments[42].

The main features of CoAP include:

1. Constrained web protocol which is optimized for e�cient data transfer and

power usage for machine-to-machine communication[31]

2. Stateless HTTP mapping through the use of proxies and interfaces, which

allows the protocol to easily be used with HTTP applications[31]

3. UDP transport that reliably sends messages to one or more devices through

unicasts and multicasts[31]

29

4. Asynchronous message exchanges, which allow for the request/response

paradigm[31]

5. Low header overhead and parsing complexity, which allow constrained

devices to handle the protocol[31]

6. URI and content-type support, which allow applications to easily address

resources[31]

7. Simple proxy and caching capabilities, which reduce response time and

network usage[31]

8. Optional resource discovery, which provides URIs for o↵ered resources[31]

9. Dual-role endpoints which are capable of acting as both server and client[31]

Interaction Model

The interaction model of CoAP is comparable to the client/server model in HTTP, as

CoAP can easily be translated into the HTTP format for integration with the existing

web[42]. However, CoAP endpoints do not assume such a clear and straightforward

roles as they do in HTTP[31]. The machine-to-machine interactions typically result

in CoAP nodes taking on both server and client roles[42]. In this situation, a CoAP

request is similar to that of an HTTP request: a client requests an action using a

method code on a resource identifier by a URI on the server[42]. The server then

responds with the correct data and response code[42].

However, CoAP di↵ers from HTTP by dealing with these interchanges asynchronously

over a datagram-oriented transport, such as UDP[42]. This is accomplished by using

a messaging layer that supports optional reliability[42]. CoAP defines four main types

of messages, which includes but are not limited to:

1. Confirmable, indicating that a response or ACK is expected[31]

2. Non-confirmable, indicating that a response or ACK is not expected[31]

3. Acknowledgement, indicates that a message has been received[31]

30

4. Reset, indicating that an expected message has not been received[31]

Whether or not the message is a request or response is determined by the method

codes and response codes included in the message[42]. The RFC notes that the basic

exchanges of these message are “somewhat orthogonal” to the request/response inter-

action model. Messages can be sent multicast and can be carried in confirmable, non-

confirmable messages while responses can be carried in confirmable, non-confirmable,

and piggybacked acknowledgement messages[42].

Messaging and Request/Response Models

Logically, CoAP uses a two-layer model to accomodate UDP and the asynchronous

nature of interactions[42]. These two layers include a messaging layer and a re-

quest/response layer[42].

Figure 3.4: The Layering of CoAP[42].

The CoAP messaging model focuses on exchanging messages between endpoints[42].

These messages include a short four byte header which may be followed by options

31

and a payload. Included in this header is a message ID which is used to detect du-

plicates and to increase reliability for confirmable messages[42].

When a message is marked as confirmable it indicates that it should be sent using

reliable transmission[42]. Reliable messages are sent repeatedly (with a back-o↵)

until an acknowledgement message is received for the correct message id[42]. In the

event of an error, a reset message is sent instead of an acknowledgement[42]. On the

other hand, messages that do not require reliable transmission are marked as non-

confirmable messages[42]. Although these messages are not acknowledged, a message

id is still included to detect duplicates and to send reset messages for any errors that

may have occurred[42].

Figure 3.5: Example of reliable transmission[42].

On the other hand, the request/response model builds on the messaging model to o↵er

the ability to send requests and responses for data using method codes and response

codes.[42]. Requests, which can be sent by either confirmable or non-confirmable

messages, can include a Universal Resource Identifier (URI) to specify what informa-

tion is needed[42]. Responses or errors are then sent with the relevant data, and if

necessary, an ACK[42]. This combined response and acknowledgement is known as a

piggybacked response[42].

32

Figure 3.6: Example of the requests/response model in CoAP[42].

Similar to HTTP, CoAP uses GET, PUT, POST, and DELETE methods to indicate

the type of request. These methods, which are responsible for requesting data, up-

dating data, posting data, and deleting data, respectively, are not all the methods

CoAP is capable of specifying[42]. Further information on these other methods can

be found in RFC 7252[42].

Message Format

CoAP messages are encoded in simple binary and follow a specific format, including

a 4 byte header followed by a variable length token value, CoAP options, and the

payload[42]. The fields in the header are further defined below:

Figure 3.7: The CoAP Message Format.

33

1. Version (V): The version field is a 2-bit unsigned integer that indicates the

CoAP version number. This is a required field for every message[42].

2. Type (T): The type field is a 2-bit integer that indicates whether the mes-

sage is confirmable, non-confirmable, acknowledgement, or reset[42]. Further

information on these messages can be found in section 3.6.2.

3. Token Length (TKL): The token length field is a 4-bit unsigned integer that

indicates the length (0-8 bytes) of the token field[42]. Longer lengths (9-15

bytes) are currently reserved and must not be used[42].

4. Code: The code field is an 8-bit unsigned integer that indicates whether the

message is a success response, client error response, or server error response[42].

Further details on these codes can be found in RFC 7252[42].

5. Message ID: The message ID field is a 16-bit unsigned integer that is used

to detect message duplication and is used in acknowledgement/reset messages.

Further information can be found in section 3.6.2.

6. Token: The token field which is 0-8 bytes, depending on the token length

field, correlates request and response message[42]. Essentially, this field allows

requests and responses to be “matched up.”

7. Options: The options field is a variable length field used to indicate the selected

options for a message[42]. Further information on options can be found in RFC

7252[42].

8. Payload: The payload field includes the variable length transmitted data for

the request or response message[42].

34

Chapter 4

Fog Protocol

4.1 Discussion

The Fog protocol defines a set of messages developed for this thesis that can be

used to facilitate communication between a Bluetooth central device and connected

Bluetooth peripheral devices. While other protocols designed for the IoT focus on

e�ciency of communication in a massively distributed network with thousands or

even millions of devices, the Fog protocol was designed to focus on ease of use and

implementation in a very small network with a handful (i.e. 1-8) of devices.

The Fog protocol accomplishes this by condensing the functionality of many proto-

cols into one and formatting the messages in a convenient manner. The OSI network

model specifies 7 layers of technologies that build upon each other to o↵er complete

network functionality[28]. In the Fog protocol, the network layer (layer 3), transport

layer (layer 4), and application layers (layers 5-7) are combined into a single protocol

to reduce the implementation overhead for developers[28].

To further reduce the implementation overhead, the Fog protocol takes a di↵erent

approach to message and payload formatting. Other networking protocols, such as

IP, RPL, HTTP, and CoAP format messages at the byte level. In other words, these

35

protocols define headers and payloads where attributes are formatted into a specific

number of bits or bytes in a certain order. Although this method is very e�cient

and reduces the amount of data being transmitted, these formats are often di�cult

to implement and work with. Instead, the Fog protocol uses the Javascript Object

Notation, commonly known as JSON, which is a format that is easily read/written

by humans and parsed/generated by computers[15]. JSON objects are collections of

key-value pairs that are represented as strings[15].

Although the goals and requirements of the Fog protocol are relatively unique, the

design of the protocol itself still takes many cues from these other protocols and in-

spiration from the features of the systems that use them. For example, the routing

and messaging aspects of the protocol, including where to send and receive requests

and responses are modeled after the RPL and CoAP protocols. On the other hand,

the data and feature representations of each device are inspired by the XGSN system

and the SSN ontology explained in section 3.4.

The following sections will review the functionality of the Fog protocol and explain

the rationale of the design, including information on what protocol or system, if any,

the design was inspired by or evolved from. Due to the length of the message protocol

keys and specifications, a full example and description of each message type’s struc-

ture will not be included in this chapter. Readers are encouraged to review further

Fog Protocol documentation included in the appendix.

4.2 Identification Information

The identification information is a unique message in FogKit that defines the name,

identifier, and capabilities of a Fog peripheral device. This identification format is

inpsired by XGSN’s sensor metadata annotations outlined in section 3.4.1. These

annotations include information about a sensor’s location, type, properties, and

more[11]. However, in order to remain simple and convenient, the Fog protocol only

includes the device’s id, name, type, and capabilities as annotations. An example of

the configuration JSON message is shown below:

36

{
"name":"Fog Pedometer",
"type":"fitness_tracker",
"id":<id>,
"capabilities": [

"step_count",
"walk_distance"

]
}

4.2.1 ID Attribute

The Id attribute is the unique identifier for the device. This attribute must be unique

to the network as it is used for network routing. An example of an ID that could be

used could be a MAC address which is unique identifier assigned by manufacturers

to every electronic device. Devices set their own device id so that devices can still

communicate even after disconnecting and reconnecting to the network.

4.2.2 Name Attribute

The name string attribute specifies the name of a Fog peripheral. This information

should not be used for routing information across the network as it is simply provided

as a human-readable way to describe a device. An example of the name attribute

might be “Spencer’s Fog Peripheral.”

4.2.3 Type Attribute

The type attribute is a string that specifies the type of the Fog peripheral device. This

would be used to identify devices on the network that o↵er some desired capabilities

and functionality. Developers may use types that are included in the Fog protocol

specifications to ensure interoperability of devices, or they may define their custom

types for their own usage. Examples of types might include “heart rate monitor” or

“game controller.”

37

4.2.4 Capabilities Attribute

The capabilities attribute specifies what functionality the device o↵ers. This capa-

bilities attribute is analogous to the sensor metadata annotations used in XGSN,

explained in section 3.4.1[11]. Developers may use capabilities from a list provided

by the Fog protocol to ensure interoperability or define their own for their devices.

The capabilities are represented as an array of strings, and may include descriptions

such as “blood pressure,” “heart rate,” and “temperature.”

4.3 Notification Information

When a Fog peripheral wishes to send data across the network, it updates the Notify

characteristic to indicate to the central that it has a new message. This notification is

represented as a boolean with key “newdata.” When this boolean changes from false

to true, the central will initiate a read request to retrieve the new data. When the

read is complete, the boolean will be set to false. An example notification is shown

below:

{
"newdata":true

}

4.4 Message Header Structure

All Fog messages share a common message header structure as part of their JSON

object. The Fog protocol header includes aspects from both layer 3 and layer 4

technologies in the OSI model. This context information may include the source of the

message, destination of the message, confirmable flag, identifier, response identifer,

version number, and type. Shown below is an example of a Fog message header

without the body of the message:

{
"source":"JF7ES3",

38

"destination":"KF82Y",
"confirmation":true,
"id":123,
"response_id":456,
"version":1,
"type":"type",
. . . .
. BODY .
. . . .

}

4.4.1 Source and Destination Attributes

The source (“source”) and destination (“destination”) attributes of the header are

used to route the messages. A Fog device will set the source attribute to its own

identifier and then the destination attribute to the destination’s identifier or list of

destination identifiers. Additionally, the Fog device can specify “BROADCAST” as

the destination, which will result in the message being received by all connected de-

vices.

When a Fog device sends a message to the Fog central, the central will read the

message’s header. If the message is destined for the central device, the central will

consume, and if necessary, respond to the message. However, if the message is des-

tined for another Fog device, the central will then relay the message to the intended

destination. If the intended destination does not exist or is not connected, the central

will respond with an error message.

4.4.2 Confirmation Attribute

The confirmation attribute (“confirmation”) indicates whether or not the message is

to be sent using reliable transmission. The idea of confirmable messages is borrowed

from CoAP’s interaction model explained in section 3.6.2. CoAP specifies four types

of messages: confirmable, non-confirmable, acknowledgement, and reset[42]. This

allows the system to verify that a message was received correctly or an error occurred.

39

Similarly, a Fog message can be marked as confirmable or non-confirmable. If a Fog

message is marked confirmable, the recipient will send either an acknowledgement or

error back to the sender upon receiving the message.

4.4.3 Message ID and Response Message ID Attriutes

The message identifier (“id”) and response message identifier are used to coordinate

message sending and responding between Fog devices. These attributes are optional,

as these identifiers are added for the benefit of the transmitting device so that it may

identify a response to a message. When a response message is sent, the response mes-

sage identifier will contain the original message’s identifier, allowing the Fog device

to identify the what request the response belongs to.

The message and response ids correspond to the message id and token fields in the

CoAP message format, outlined in section 3.6.2 and is used in a similar manner. An

example of its usage may be a peripheral device that sends a request with a message

id of 807. The recipient of this message may do some processing and then respond

with new data. The response message will have a response message identifier of 807

so that the sender will know that the new incoming data belonged to the request with

id 807. Alternatively, the recipient may respond with an error message, indicating

that there was a problem with the received data.

4.4.4 Version Attribute

Similar to the version attribute (“version”) in an CoAP header, the version attribute

of the Fog message header indicates the version of the protocol being used[4]. Over

time, the structure of the Fog protocol may evolve to accomodate new features and

requirements. It’s possible that these changes may result in a loss of compatibility.

The version attribute can be used to identify the protocol version of the peripheral

device so that a central can communicate with it.

40

4.4.5 Type Attribute

The type attribute (“type”) in the message header identifies what structure and keys

the rest of the message will have. The types of messages include event messages,

post messages, query messages, error messages, and network status messages. This

attribute is unique to the Fog protocol, so a more in-depth review of the structure

and function of these messages is included in the following sections of this chapter.

4.5 Event Messages

Event messages are a paradigm that is unique, or at least unusual, in IoT protocols.

They are used to notify other Fog devices that an event or action occured, similar

to that of events in event-driven programming. An example of an event might in-

clude that a button was pressed or that an operation occured. These event messages

have attributes to identify the event type (“event-type”) and an optional dictionary

attribute (“context”) to provide context for the event. An example of an event for

a new message with the context information of the message text and sender name is

shown below:

{
. . . .
. HEADER .
. . . .

"type":"event",
"event" {

"event-type":"new-message",
"context": {

"text":"I’m on my way!",
"sender":"Bruce Wayne"

}
}

}

41

4.5.1 Event Type Attribute

The event type attribute is a required key that identifies the type of event that

occurred. This key is a user-defined string set by a Fog peripheral device. The

intended recipient of the message will need to be able to interpret the string and act

accordingly. Examples of an event type might include “button pressed,” “operation

occured,” or “settings changed.”

4.5.2 Context Attributes

The content attribute (“context”) is an optional dictionary of context information

for the event that occured. This dictionary may be filled with user-defined content

from the sending device. However, as with the event type attribute, the recipient

must know how to interpret this data. Examples of how this might be used could be

with a “button pressed” event. The content of the event might include the identifier

of the button and how many times it was pressed. Alternatively, the event type

might be “operation occured,” with the content of the event including the name of

the operation, the runtime, and some minimal results data.

4.6 Post Messages

Post messages are used to send large amounts of data to another device. They’re

composed of a collection of objects. The objects do not necessarily have to be of the

same type, though the format and schema of each type must be consistent across the

entire system. An example of a post message with medical data consisting of heart

rate and blood pressure information is shown below:

{
. . . .
. HEADER .
. . . .

"type":"post",
"post": [

{

42

"type":"medical_reading",
"data": {

"reading_id":182
"heart_rate":68,
"blood_pressure": "120/80"

}
},
{

"type":"medical_reading",
"data": {

"reading_id":183
"heart_rate":63,
"blood_pressure": "115/75"

}
}

]
}

4.6.1 Post Attribute

This post attribute is an array of the JSON objects themselves. The objects have the

following structure:

Type Sub-Attribute

The type attribute specifies the type and name of the object in the post. The attribute

must be a string and can be considered like a the class of the object used throughout

the entire network. In the case of the central, this attribute specifies the table from

which to query objects.

Data Sub-Attribute

The data attribute specifies the schema and values of the object represented as JSON

object. The keys in the objects represent the schema of the object. Developers are

free to include as many attributes in the object as necessary, however, the objects are

limited to a depth of one key-value pairing. That is to say, an attribute of a JSON

object must be of type String, Int, Boolean, or Double. Arrays and dictionaries are

43

not supported at this time, however this functionality may be added in the future.

These types must remain consistent across the entire network. The values, of course,

can vary for the specific instances of the objects.

{
. . . .
. HEADER .
. . . .

"type":"post",
"post": [

{
"type":"location",
"data": {

"lat":35.305005,
"long":-120.662494

}
}

]
}

4.7 Query Messages

Query messages are used to send requests for information stored on another device,

such as the central. The query message’s structure is reminiscent to that of a basic

SQL statement, including a SELECT and WHERE attribute. A recipient device will

execute the query and respond with the resulting data.

{
. . . .
. HEADER .
. . . .

"type":"query",
"query": {

"select":"steps",
"where":"(type == ’running’) OR (type == ’stairs’)"

}
}

44

4.7.1 Select Attribute

The select attribute (“select”) corresponds to the SELECT attribute of SQL query.

It identifies the type of object that the query is for. These types correspond to the

types of objects sent in Post messages. At this time, only one object may be specified

with the select statement.

4.7.2 Where Attribute

The where attribute corresponds to the WHERE attribute of an SQL query. It

includes the conditions used to evaluate the query. This property is optional, and if

left out of the message, the recipient should respond with every object of the given

type.

Overview of Syntax

As the WHERE clause of query is more complex than a simple key-value pairing, this

section will discuss the syntax of the where clause. The syntax evolved significantly

over the course of implementation. Originally, the conditions of the clause were rep-

resented in JSON form. Logical operations were represented as arrays of statements

or other logical operations. Statements were dictionaries that included a key, value,

and operation to be performed for that statement.

{
. . . .
. HEADER .
. . . .

"query": {
"select":"workout",
"where": {

"and": [
"or": [

{
"key":"exercise",
"value":"running",
"operation":"=="

},

45

{
"key":"exercise",
"value":"jogging",
"op":"=="

}
],
{

"key":"distance",
"value":1,
"operation":">"

}
]

}
}

}

However, this quickly proved to be impractical to both build up the JSON object on

the sender and to parse out the JSON on the recipient due to excessive nesting of

objects and tedious specification of keys, values, and operations. The syntax then

evolved into a simple string statement that developers could easily enter into a JSON

object.

{
. . . .
. HEADER .
. . . .

"type":"query",
"query": {

"select":"workout",
"where":"(exercise == ’running’ OR exercise == ’jogging’)

AND (distance > 1)"
}

}

Since this framework is written with an iOS central and data storage is built on top

of Apple’s CoreData framework, the syntax for the query is identical to the syntax for

CoreData, so that it may directly map to the syntax of a CoreData NSFetchRequest,

the object used for querying[2]. This allows developers to take advantage of a diverse

and e�cient set of query operations without the implementation overhead.

46

However, there drawbacks to this decision that need to be noted. First, CoreData’s

predicate syntax, although similar to other syntaxes, is unique and would require de-

velopers to spend time learning it. Additionally, the syntax is owned and controlled

by Apple, meaning any changes in syntax could introduce errors in Fog networks.

4.7.3 Query Responses

Query response messages are the responses to a query. These response objects con-

tain an array of objects that result from the query. They have the same dictionary

representation as when they are posted to another device and include the type of

object and the data for that object.

{
. . . .
. HEADER .
. . . .

"type":"query_response",
"query_response": [

{
"type":"workout",
"data": {

"calories":243,
"exercise":"running"

}
},
{

"type":"workout",
"data": {

"calories":132,
"exercise":"jogging"

}
}

]
}

47

4.7.4 Deleting

Deletion of objects shares a similar synatx and structure to the querying of objects.

As opposed to the “select” keyword which specifies which objects the query should

return, the “delete” keyword is used to indicate that the results should be deleted.

Furthermore, developers can include a WHERE clause that specifies which objects to

delete. The example below demonstrates the deletion of all “workout” objects where

the “exercise” attribute equals “walking:”

{
. . . .
. HEADER .
. . . .

"type":"query",
"query": {

"delete":"workout",
"where":"exercise == ’walking’"

}
}

4.7.5 Updating

The format for updating objects also shares a similar syntax and structure to the

querying of objects. Again, rather than using the “select” keyword, the “update”

keyword will be used. All the results of the query will be updated to have the

contents of the dictionary specified by the “data” key. This method of specifying

objects to update can easily update a large number of objects. If the user desires to

update a single object, a primary key such as the “reading-id” identifier can be used

to identify a unique instance of an object. An example of a message that updates the

values of the medical reading object with a reading id of 182 is shown below:

{
. . . .
. HEADER .
. . . .

"type":"query",
"query": {

"update":"medical-reading",

48

"where":"reading-id == 182"
"data": {

"reading-id":182
"heart_rate":68,
"blood_pressure": "120/80"

}
}

}

4.8 ACK and Error Messages

As mentioned in section 4.4.2, the Fog protocol transmits data reliably when the

confirmation flag is set on a message. The behavior of ACK and Error messages takes

a design cue from the CoAP messaging model in section 3.6.2. The Fog protocol ACK

message is sent when a recipient device receives data that was transmitted reliabily.

Similarly, the Fog protocol error messages are sent when a recipient device receives

data that has an error.

4.8.1 ACK

ACK, or acknowledgement messages, are very simple messages that are sent to confirm

that the recipient has received a message. Since they contain a response id, context

information is not necessary. Shown below is an example of an ACK message:

{
. . . .
. HEADER .
. . . .

"response_id":5385,
"type":"ACK"

}

49

4.8.2 Error

Error messages are messages that are sent back to the sender when an error has

occurred. These errors can fall into two categories: errors in transmission and errors

in the data. Errors in transmission can be sent by the central when a peripheral

is unreachable or does not exist. For example, if a peripheral sends a message to

the device with id x, but there are no devices with id x connected to the central,

the central will send the error message. Errors in the data are much more diverse,

but may include cases of invalid structures, missing data, etcetera. For example, a

device may send a query to the central for an object that is not stored on the central.

The central will then send an error message with an appropriate explanation. Shown

below is an example of an error message that indicates a problem with a query:

{
. . . .
. HEADER .
. . . .

"response_id":5385,
"type":"error",
"error": {

"id": 1942,
"message": "Database does not have object ’heart_rate’"

}
}

4.9 Network Status Requests

Network status requests are for obtaining information about the devices currently

connected to the network. Fog peripherals may need to identify other devices on the

network which have desired characteristics.

4.9.1 Network Status Queries

Fog peripheral devices may query the central device for information on devices cur-

rently connected to the network. This information includes a device’s id, name, type,

50

and capabilities. The querying syntax for devices is similar to that of the querying

for objects, but has a few di↵erences. For example, developers may search for devices

by their id, name, and type much like a standard query. Shown below is an example

of a network status query for any device with type “heart rate monitor:”

{
. . . .
. HEADER .
. . . .

"type":"status",
"status": {

"query":"type == ’heart rate monitor’"
}

}

However, if a user wants to query by devices that have a specific capability, the

syntax is slightly di↵erent. This is because the capabilities of a device are stored as

an array, not a simple value. The syntax for searching for a capability on the backend

looks like “ANY capabilities.type == ,” which is specific to the implementation of

the persistent store. To abstract this away, developer can use the keyword “HAS

CAPABILITY” to query for devices with a specific capabiilty. An example of the

usage is shown below:

{
. . . .
. HEADER .
. . . .

"type":"status",
"status": {

"query":"type == ’trigger’ OR HAS CAPABILITY ’steps’"
}

}

4.9.2 Status Responses

The response of these network status requests includes the information from the con-

nected devices that satisfy the query. The response includes an array of dictionaries

51

of device metadata which includes the ID, name, type, and capabilities. The exam-

ple below shows a response that returned the Fog Tracker device, which is has the

capability “steps” and the Fog Button device, which has the type “trigger.”

{
. . . .
. HEADER .
. . . .

"type":"devices"
"devices": [

{
"id":"NCC1701",
"name":"Fog Tracker",
"type":"fitness-tracker",
"capabilities": [

"steps",
"heartrate",
"set-transfer-interval",
"set-post-interval"

]
},
{

"id":"R2D2C3PO",
"name":"Fog Button",
"type":"trigger",
"capabilities": [

"event-trigger",
"set-destination"

]
}

]
}

4.10 Comparison to Other Protocols

Although the Fog protocol takes many design cues from RPL and CoAP, there are

several important di↵erences in usage that should be noted, including how messages

are routed across the network, di↵erences in the complexity of these messages, and

di↵erences in the length of messages.

52

4.10.1 Message Routing

In the Fog protocol, all messages are routed to their destination through a central

control point. This control point (the Bluetooth central) then analyzes the message

and relays it directly to its destination. This is significantly di↵erent from RPL’s

routing methods, which are much more dynamic and direct. In an RPL network, the

nodes construct a destination-oriented acylic graph using an algorithm known as the

distance-vector protocol[36]. In this algorithm, information about each node and its

connected neigbors is used to determine paths throughout the network[36]. Messages

are then sent directly to their destination through the optimum path (as opposed to

through a central point).

The Fog protocol was designed to use a central control point because it is compatible

with the central-peripheral paradigm of Bluetooth. Unlike nodes in an RPL network,

the only Bluetooth devices (“nodes”) that can initiate read or write connections are

centrals. This means that peripherals are not capable of directly connecting to each

other and transferring data, so the data must be transferred through a central which

relays messages.

4.10.2 Message Content Complexity

In the Fog protocol, there are many types of messages, including post, query, event, et

cetera. These message types have di↵erent formats to accomodate the di↵erent types

of data that are sent across the network. However, this variety of messages results in

a higher degree of complexity to comparable protocols. For example, CoAP specifies

only four methods for messages, including GET, PUT, POST, and DELETE which

can be used to send generic payload data[42].

The additional complexity in the Fog protocol messages results from the inclusion of

all the networking and application layers specified in the OSI model. The structure

of the Fog messages helps ensure consistency and interoperabilty of application data

between devices on the Fog network, something that is not ensured in other protocols.

53

4.10.3 Message Size

In the Fog protocol, messages are formatted as JSON objects, which contain string

representations of data. Formatting data as strings is a very ine�cient way to rep-

resent data that results in relatively long message sizes. On the other hand, proto-

cols such as RPL and CoAP format their messages using binary representations of

data[34][42]. These binary representations are often much more e�cient representa-

tions and result in relatively smaller message sizes.

Although Fog messages have relatively ine�cient representations of data, their use of

JSON formatting is significantly more convenient for developers to work with. The

notation is human-readable which allows for easy debugging and supports a key-value

data model which allows for easy data retrieval.

54

Chapter 5

FogKit

5.1 Overview

As explained in previous sections, there are now many Bluetooth peripherals that

connect to smart phones and other devices. Some of these Bluetooth peripherals may

need to communicate with other devices or store significant amounts of data. For

example, a Bluetooth smart watch could display information from a user’s Bluetooth

enabled heart rate monitor, pedometer, or other devices as wearer’s average heart

rate or distance walked over a time period.

Such a watch would need to pair and maintain a connection with each device. It

may also require a significant amount of memory to store the data from the other

peripheral devices. While this is certainly possible to implement, managing a web of

connections between devices is ine�cient and adding significant storage capactities

to embedded devices is costly.

This is where FogKit can help: it provides a framework for Bluetooth communi-

cation and external data storage for connected peripheral devices. FogKit uses the

Fog protocol for communication and external data storage. With this framework, a

set of Bluetooth peripheral devices can connect to an iOS central device. The iOS cen-

55

tral is capable of routing communication between the devices and acting as external

storage for the devices. This reduces the networking complexity for the peripherals

and places the burden on a far more capable iOS device. Additionally, it eliminates

the need for the peripheral devices to have large amounts of storage.

The FogKit and Fog protocol network is organized into a star topology. In this ar-

rangement, many Bluetooth peripherals are connected to a single Bluetooth central,

which acts as a server and router. This design was chosen for two reason:

1. it is consistent with the master-slave paradigm of Bluetooth

2. it allows for a single point of access to the rest of the network, simplifying the

implementation for the peripherals

Figure 5.1: The FogKit star topology.

56

5.2 Framework Design

The FogKit framework provides functionality for the central and peripheral roles.

Although there is some overlap and shared code for these functions, they can be con-

sidered to be separate. For this reason, the design details for each will be considered

as di↵erent sections.

5.2.1 Central Framework

The central framework handles the responsiblities of the Fog Bluetooth central, in-

cluding the routing of communication between peripherals, handling of data posts

and queries, and the interaction between the currently running iOS device.

Although the FogKit framework does not have the same physical separations as the

general IoT stack outlined in section 3.1, it does share the same logical layers: edge

technology, access gateway, middleware, and application.

Figure 5.2: The FogKit layers.

The majority of the central framework is organized into several manager classes,

including the FogConnectionManager, FogCentralManager, and FogQueryManager

classes. Each of these classes plays an important role in managing Bluetooth connec-

tions, handling the central’s data and operations, and executing queries and posts,

57

respectively.

Figure 5.3: UML overview of FogKit Prototype Framework.

FogConnectionManager

The FogConnectionManager class is responsible for managing the Bluetooth 4.0 LE

communication between the connected peripherals and the iOS central itself. This

class will scan for Bluetooth peripheral devices that are currently advertising the Fog

service. Once a device is discovered, the class will integrate it into the Fog network

and allow other devices to communicate with it.

This class is also responsible for routing data between the Fog peripheral devices.

When a peripheral sends data, this class will examine the destination of the message.

If the message is intended for the iOS central, such as an event, post, or query, the Fog-

ConnectionManager will delegate the message to the FogCentralManager. However,

if the message is intended for another Fog peripheral, the FogConnectionManager will

58

forward the message to the correct device.

FogClientManager

The FogClientManager class is responsible for managing the Fog network state in-

formation, including the peripherals currently connected and descriptive information,

such as their names, identifiers, and capabilities. This repository of information al-

lows peripheral devices to query the central for a list of other connected devices to

which they can send or request data.

The class is capable of returning information regarding devices that meet specific

requirements by executing queries. For example, a device may request information

regarding any devices that are capable of sensing temperature. The class will execute

the query and return the information from the devices that meet this requirement.

FogCentralManager

The FogCentralManager class is responsible for managing the responsibilities of the

Fog central role, handling posts and queries to the central’s peripheral store, and

interfacing with the Fog iOS app.

The central is responsible for managing a persistent store of data for the central

and peripheral devices. The central manager will handle queries and posts by man-

aging their logistics, including the pre-processing of queries or posts into the correct

data format, executing the request through the FogQueryManager, processing the re-

turned request data, and sending the response back to the correct peripheral devices.

Finally, the central class is also responsible for interacting with the hosting central

iOS app. Developers may develop their own central iOS application to be included

in the Fog network. This class will delegate to the application events or data that is

intended to be consumed by the central.

59

FogQueryManager

The FogQueryManager is responsible for abstracting away the di↵erent persistent

stores available for use in the FogNetwork. It provides an asynchronous wrapper

around any class that implements the FogDataSource protocol, allowing developers

to easily “swap” the underlying persistent store implementation.

The FogDataSource protocol defines a small set of methods for inserting, deleting,

updating, and querying data from a data source. One implementation of this Fog-

DataSource protocol is the FogObjectGraphDataSource class. This class is a wrapper

around Apple’s persistent storage framework, Core Data[2], which allows developers

to store data persistently on the iOS device. Additionally, the database is dynamic,

with the ability to add new types of data during runtime.

Although Core Data is technically an object-graph, for the purposes of this discussion

Core Data will be compared to a standard SQL relational database[2]. Core Data

storage is defined by a collection of NSEntityDescriptions (similar to a SQL table)

consisting of a set of NSAttributeDescriptions (similar to a column of a table) which

describe the name and type of data[2]. When data is inserted or queried from Core

Data, it is represented as an instance of an NSManagedObject (similar to a row in a

table)[2].

When the FogObjectGraphDataSource class is given a post with a new type of data

as defined in the Fog protocol section 4.6, it will dynamically create a new NSEn-

tityDescription and add the NSAttributeDescriptions with the provided names and

inferred types. After this action is completed, it will create an instance of an NS-

ManagedObject for every object in the post and save them persistently.

5.2.2 Peripheral Framework

The peripheral framework handles the responsiblities of the Fog Bluetooth periph-

eral, including the setup, management of the communication, and interaction with

the peripheral application. The peripheral framework is primarily implemented in

60

the FogPeripheralManager class. However, it does make use of some of the shared

code, explained in the Shared Code section.

The setup of the Fog peripheral includes the advertisement of the Fog services and

characteristics necessary for communication in the Fog network. Using these services

and characteristics, the peripheral can communicate its name, identifier, capabilities,

and more to the central.

The management of communication includes the code that transfers data to and

from the Fog central device. The code is responsible for handling the incoming and

outgoing Bluetooth packets, reassembling them into a single piece of data, and deter-

mining whether to handle it as an event, query, or another type of Fog message.

Finally, the class is responsible for interacting with the client application, including

processing incoming messages into a convenient format, delegating these messages to

a class that implements the FogDataManagerDelegate protcol, and providing methods

that abstract away the details of sending messages to another device.

5.2.3 Shared Code

Unfortunately, the di↵erence in the Bluetooth master-slave roles between the central

and peripheral devices resulted in the majority of networking code being unshareable.

Thus, the code that was shared between the two frameworks consisted only of classes

that abstract away Fog data structures and defined Fog constants.

The Fog data structures defined in the chapter 4, the Fog Protocol, were abstracted

into a set of Fog message objects, including the FogQuery, FogDataObject, and Fo-

gEvent. These classes made working with the Fog protocol easier because they ab-

stracted away the details of parsing JSON and provide convenient getter and setter

methods for the properties of the objects.

There were also many constants defined between the two frameworks, including Blue-

61

tooth constants such as a characteristic’s unique identifier, Fog message constants such

as the keys for the JSON objects, and finally the Fog query constants which included

the keys and constants used in querying.

5.3 Bluetooth GATT Profile

FogKit implements this functionality by creating a set of requirements, known as the

GATT profile, that specify a service and characteristics that are used for communi-

cation through the Fog protocol. The Bluetooth requirements include the use of the

Fog Bluetooth service with four characteristics:

Figure 5.4: The GATT profile for a Fog Bluetooth peripheral.

• Read: A characteristic that acts as a read endpoint for the peripheral. All

output data is transferred through this characteristic.

62

• Write: A characteristic that acts as a write endpoint for the peripheral. All

input data is transferred through this characteristic.

• Notify: A characteristic that a central may subscribe to and monitor for up-

dates. As these characteristics have limited data capacity, this characteristic

simply notifies the central that the peripheral has data to be processed. The

central will then initiate a data transfer using the read characteristic.

• Identity: A characteristic that contains identity information for the peripheral,

including a unique identifier, name, and list of capabilities.

63

Chapter 6

Expected Use Cases

Validation of the Fog protocol will be o↵ered through a set of thought exercises and

example applications that demonstrate the expected use cases rather than through

tests of network performance, data usage, etcetera. Although these metrics are very

important in evaluating the e�ciency and usefulness of the protocol, we have decided

that they are not relevant to this thesis because the intent of the thesis was to focus

on the design rather than the implementation of the protocol. The implementation

of the Fog protocol, FogKit, is a prototype which although demonstrates and proves

the concept, without further work and optimizations would not have metrics repre-

sentative of the final product.

Throughout the research of this project, it became clear that there are three broad

categories of wearables devices:

1. devices that primarily sense data and post that information to a central

2. devices that primarily send events or notifications to a central

3. devices that are fully integrated systems capable of sending and receiving data

and performing a variety of tasks

The following sections will review the categories of devices and demonstrate how the

Fog protocol can be or is used to implement their primary functionality. As the

64

functionality of these devices will have a significant amount of overlap, the amount of

explanation for these repeated functionalities will be reduced by having each section

focus on a di↵erent area of the Fog protocol.

6.1 Thought Exercises

6.1.1 Wearable Sensing Devices

Many of the wearables available today focus on activity and health readings, such

as steps taken or heart rates, such as the FitBit[19]. The core functionality of these

wearables is gathering data and posting it to a central for storage and processing. This

section will propose the Fog protocol implementation of an activity device that tracks

a wearer’s steps and heartrate. The rate at which the proposed devices take readings

and transfer the data will be configurable by another device. Additionally, the device

will be capable of handling basic queries for the current heartrate or number of steps.

Identity Metadata

When a Fog device connects to the network, it must provide metadata information

about itself, including its name, type, id, and list of capabilities. A proposed wearable

activity tracker that implements the Fog protocol could have a name such as “Fog

Tracker,” a type of “fitness-tracker,” a unique id such as “NCC1701,” and a list of

capabilities, including the following:

1. “steps,” indicating that the device is capable of tracking the number of steps

taken

2. “heartrate,” indicating that the device is capable of taking heart rate measure-

ments

3. “set-sense-interval,” indicating that the device has a configurable sensing inter-

val

65

4. “set-post-interval,” indicating that the device has a configurable data transfer

interval

An example message for this device’s metadata is shown below:

{
"name":"Fog Tracker",
"type":"fitness-tracker",
"id":"NCC1701",
"capabilities": [

"steps",
"heartrate",
"set-transfer-interval",
"set-post-interval"

]
}

Configuration

This wearable device will be configurable, allowing users to set the rate at which

the device takes readings and posts the data for storage. This configuration can be

implemented by sending the device an event message that has configuration informa-

tion. This event might have a type of “configuration” with two context parameters,

“transfer-interval” and “read-interval”, which represent a time interval in millisec-

onds. An example where the device is being configured to take a reading once a

minute (60,000 milliseconds) and a post interval of five minutes (300,000 millisec-

onds) is shown below:

{
"source":"CENTRAL",
"destination":"NCC1701",
"confirmation":true,
"id":123,
"version":1,
"type":"event",
"event" {

"event_type":"configuration",
"context": {

"post-interval":300000,

66

"read-interval":60000
}

}
}

Since the sender set the confirmation flag to true in this message, the device will

respond with either an ACK or an error message. If the configuration settings are

valid, the device will respond with an ACK, shown below:

{
"source":"NCC1701",
"destination":"CENTRAL",
"response_id":123,
"version":1,
"type":"ACK"

}

On the other hand, if the configuration settings are incorrect, the peripheral could

respond with an error message that indicates there was a problem. An error message

that indicates that a problem with the configuration settings is shown below:

{
"source":"NCC1701",
"destination":"CENTRAL",
"response_id":123,
"version":1,
"type":"error",
"error": {

"id": 1942,
"message": "Invalid configuration settings"

}
}

Posting Data

As a fitness tracker, the majority of communication done by the device will be posting

the wearer’s readings for heart rate and number of steps to the destination device.

This data will be represented in two objects, a “heartrate-reading” object which

contains a timestamp and heartrate and a “steps-reading” object which contains a

time and step count.

67

{
"source":"NCC1701",
"destination":"CENTRAL",
"confirmation":true,
"id":435,
"version":1,
"type":"post",
"post": [

{
"type":"heartrate-reading",
"data": {

"timestamp":1825432
"heartrate":68,

}
},
{

"type":"steps-reading",
"data": {

"timestamp":1825432
"steps":2421,

}
}

]
}

This proposed device will verify that the data was posted successfully, so it will set

the confirmation flag to true. When it receives an acknowledgement, the device may

do some cleanup, such as deleting old information.

{
"source":"CENTRAL",
"destination":"NCC1701",
"response_id":435,
"version":1,
"type":"ACK"

}

However, if the device does not receive an ACK or receives an error, it will attempt

to resend the information until it is successfully received or it runs out of memory

and is forced to delete the data.

68

Handling Queries

This proposed device will also be capable of handling simple queries from other devices

for the current step count or heart rate. This functionality could be used by devices

that need to display or use the current information, but do not need to change the

read or posting rates. In this situation, the peripheral may receive a query message

like:

{
"source":"RJ2DE",
"destination":"NCC1701",
"id":2341,
"version":1,
"type":"query",
"query": {

"select":"steps-reading"
}

}

Since the device is constrained and only capable of handling queries for the current

step count or heart rate, specifying a “where” clause is unneccesary. This peripheral

would then respond with a query response, which may be formatted as:

{
"source":"NCC1701",
"destination":"RJ2DE",
"response_id":2341,
"version":1,
"type":"query_response",
"query_response": [

{
"type":"steps-reading",
"data": {

"time":1825432
"steps":2421,

}
}

]
}

On the other hand, if there was an error or an unsupported operation in the query

message, the peripheral could respond with an error:

69

{
"source":"NCC1701",
"destination":"RJ2DE",
"response_id":2341,
"version":1,
"type":"error",
"error": {

"id": 246,
"message": "Unsupported query operation"

}
}

6.1.2 Wearable Event Device

Another type of wearable devices are those that primarily send events or notifications.

An example of these devices might be a game controller, which sends events for button

presses, or the aforementioned wearable keychain, DingBot[16]. The DingBot has a

button that when pressed triggers an event which can be executed by a connected

smartphone, such as turning on a light or sending a tweet. A device similar to

the DingBot could potentially implement the Fog protocol. Furthermore, this device,

since it is only a button, will be very constrained, and so this section will demonstrate

how a constrained device may behave.

Identity Metadata

When a Fog device connects to the network, it must provide metadata information

about itself, including its name, type, id, and list of capabilities. A proposed wear-

able activity tracker that implements the Fog protocol could have a name such as

“FogButton”, a type of “trigger”, a unique id of “R2D2C3PO” and one capability:

1. “event-trigger”, indicating that the device can trigger events

An example of this device’s identification message is shown below:

{
"name":"FogButton",

70

"type":"trigger",
"id":"R2D2C3PO",
"capabilities": [

"event-trigger"
]

}

Sending Events

When the button on this device is pressed, the peripheral will send an event to the

specified destination device that includes the relevant context information, such as

the event type and event ID. This message may look like:

{
"source":"R2D2C3PO",
"destination":"CENTRAL",
"confirmation":false,
"id":254,
"version":1,
"type":"event",
"event" {

"event_type":"trigger",
"context": {

"event-id":4921
}

}
}

This proposed device is very constrained and has limited computing power and battery

life. In order to accomodate these limitations and reduce complexity, the device will

not wait for ACK or error messages. However, this simplicity comes with a cost:

without this handshaking, messages may not reach their destination reliably.

6.1.3 Wearable System

The final class of wearable devices are those that are fully integrated systems, such as

a smart watch or smart glasses. As smart watches are becoming increasingly popular,

this section will propose a smart watch that uses the Fog protocol. This device will

71

be fully featured, including a display with touch capability, health sensors such as a

heart rate monitor and pedometer, and the ability to run 3rd party applications. It

will fully implement the Fog protocol and be capable of bothing sending and receiving

posts, queries, events, and more.

Identity Metadata

The proposed smart watch is fully featured and capable of executing 3rd party apps,

so it’s possible it would have an large list of capabilities. Although the proposed smart

watch is capable of a wide variety of features, especially through the implementation

of 3rd party applications, for the sake of this discussion, we will focus on the core

functionality of the device with the following capabilities:

1. “steps”, indicating that the device track the wearer’s steps

2. “heartrate”, indicating that the device can track the wearer’s heartrate

3. “display-notifications”, indicating the device can display notifications

{
"name":"FogWatch",
"type":"system",
"id":"J83ZED",
"capabilities": [

"steps",
"heartrate",
"display-notifications"

]
}

Displaying Notifications

A key aspect of smart watches is the ability to display notifications from the wearer’s

smartphone. This functionality could easily be implemented by sending events to the

device that contain the necessary context information, such as the application and

message to display. For example, a post for a new e-mail notification may be modeled

as follows:

72

{
"source":"CENTRAL",
"destination":"J83ZED",
"confirmation":true,
"id":763,
"version":1,
"type":"event",
"event" {

"event_type":"notification",
"context": {

"notification-type":"email",
"email-id":654
"display-message":"New e-mail from Cal Poly"

}
}

}

The “display-message” attribute would contain the information shown to the wearer

as the notification. This watch could o↵er the ability for the wearer to click the

notification for further information. The “notification-type” attribute tells the smart

watch what application should handle the notification while the rest of the context

may be used for application specific information, such as the ID of the e-mail. This

may be used by the device to fetch the necessary detail information.

Discovering Other Devices

One key aspect of the Fog protocol is the ability for devices to search for other devices

with a desired capability and communicate with them. This proposed smart watch

may implement that functionality to display information from another sensor, such

as a blood pressure monitor. This process begins with the device sending a network

status request to the central for a device with the capability “blood-pressure:”

{
"source":"J83ZED",
"destination":"CENTRAL",
"confirmation":true,
"id":835,
"version":1,
"type":"status",

73

"status": {
"query":"HAS CAPABILITY ’blood-pressure’"

}
}

The central device, which stores information about the connected devices, will then

respond with the network status information. An example response that includes a

medical tracking device with the capability “blood-pressure” is shown below:

{
"source":"CENTRAL",
"destination":"J83ZED",
"confirmation":true,
"response_id":835,
"version":1,
"type":"devices",
"devices": [

{
"id":"S92JDL2",
"name":"Fog Pressure",
"type":"medical-tracker",
"capabilities": [

"blood-pressure",
"blood-oxygen"

]
},

]
}

Using this information, the smart watch can then send a query for blood pressure data

to the medical tracking device. This process would be similar to the query process

outlined in the following section, 6.1.3.

Sending Queries for Information

This proposed device will have the ability to send queries to other devices for infor-

mation to display. For example, this device could have a calendar application that

displays upcoming calendar events. These events are likely stored on the wearer’s

smartphone, so it would be necessary to send a query to the smartphone for this data

that looks like:

74

{
"source":"J83ZED",
"destination":"CENTRAL",
"id":4162,
"version":1,
"type":"query",
"query": {

"select":"events"
"where":"start_date == ’June 13, 2015’"

}
}

The smartphone may then respond with the relevant event information. In this case,

there might be two events on June 13, 2015 including the Cal Poly Commencement

Ceremony and a Graduation Party. The smart watch would then be able to display

this information to the user. An example response could be formatted as:

{
"source":"CENTRAL",
"destination":"J83ZED",
"response_id":4162,
"version":1,
"type":"query_response",
"query_response": [

{
"type":"event",
"data": {

"name":"Cal Poly Commencement Ceremony",
"time":"9:00am - 11:00am",
"date":"June 13, 2015",
"location":"1 Grand Avenue, San Luis Obispo, Ca"
"event-id":4211

},
"type":"event",
"data": {

"name":"Graduation Party",
"time":"7:00pm - 12:00am",
"date":"June 13, 2015",
"location":"555 Ramona Dr, San Luis Obispo, Ca"
"event-id":7293

}
}

]

75

}

6.2 Demonstrations

In addition to the thought exercises, two sets of examples were developed with FogKit

to demonstrate the querying, post, and event functionality of the framework. These

applications were written in Swift and were executed on an iPod touch, iPhone, and

iPad.

6.2.1 Post Application Example

The “number” example demonstrates the functionality of the post messages in the

Fog protocol. This application consists of two components: one component that

generates sets of ten random numbers from 1 to 10,000 and then sends them to the

central to store them and a second component that queries the central and displays

the numbers in a list.

Identity Metadata

Each component only needs one capability in order to be functional. The number gen-

erator has the capability “numbers”, indicating that the device can generate numbers.

The identity metadata for this component is as follows:

{
"name":"Number Generator",
"type":"generator",
"id":"nbrgen",
"capabilities": [

"numbers"
]

}

On the other hand, the number display component has a capability of “display-

numbers”. This component’s metdata is shown below:

76

{
"name":"Number Display",
"type":"display",
"id":"nbrdsp",
"capabilities": [

"display-numbers"
]

}

Posting Numbers to the Central

When a user presses a button on the number generator application, a set of ten

random numbers will be generated and posted to the central device for storage in a

message as follows:

{
"source":"NBRGEN",
"destination":"CENTRAL",
"confirmation":false,
"id":435,
"version":1,
"type":"post",
"post": [

{
"type":"number",
"data": {

"value":12352
}

},
{

"type":"number",
"data": {

"value":32561
}

},
.
. 8 MORE #’S .
.

]
}

77

Querying the Numbers from the Central

On the number display component, the user can decide whether to query for numbers

that are greater than 5,000 or less than 5,000. An example of one of these queries is

shown below:

{
"source":"NBRDSP",
"destination":"CENTRAL",
"id":3213,
"version":1,
"type":"query",
"query": {

"select":"value < 5000"
}

}

The central will then return a query response that includes the data that satisfies the

conditions, as shown below:

{
"source":"CENTRAL",
"destination":"NBRDSP",
"response_id":3213,
"version":1,
"type":"query_response",
"query_response": [

{
"type":"number",
"data": {

"value":"3251"
}

},
{

"type":"number",
"data": {

"value":"2198"
}

},
.
. MORE NUMBERS .
.

78

]
}

6.2.2 Event Applications Example

The “color” application consists of two components that demonstrate the function-

ality of the event messages in the Fog protocol. One component acts as a display,

setting the color of the screen to a specified color and responding to queries. A second

component acts as a remote, sending event messages to update the color on the color

display.

Identity Metadata

As a simple color remote and display, each component only needs one capability in

order to be functional. The color remote has the capability “control-color”, indicating

that the device can set colors. The identity metadata for this component is as follows:

{
"name":"Color Remote",
"type":"remote",
"id":"CLRRMT",
"capabilities": [

"control-color"
]

}

On the other hand, the color display component has a capability of “display-color”.

This component’s metadata is shown below:

{
"name":"Color Display",
"type":"display",
"id":"CLRDSP",
"capabilities": [

"display-color"
]

}

79

Connecting the Remote to the Display

In order to remotely control the display, the remote component has to send a network

status request to retrieve the id of the color display. This network status request is

shown below:

{
"source":"CLRRMT",
"destination":"CENTRAL",
"confirmation":true,
"id":835,
"version":1,
"type":"status",
"status": {

"query":"HAS CAPABILITY ’display-color’"
}

}

The central will process this network status request and return the correct identity

metadata to the remote, which is shown below:

{
"source":"CENTRAL",
"destination":"CLRRMT",
"confirmation":true,
"response_id":835,
"version":1,
"type":"devices",
"devices": [

{
"id":"CLRDSP",
"name":"Color Display",
"type":"display",
"capabilities": [

"display-color"
]

}
]

}

80

Controlling the Display

The remote control allows users to control the display by typing in a color and sending

the color to the display as an event message. The event message is shown below:

{
"source":"CLRRMT",
"destination":"CLRDSP",
"confirmation":true,
"id":254,
"version":1,
"type":"event",
"event" {

"event_type":"set-color",
"context": {

"color":"green"
}

}
}

If the display component supports the color, it will update the screen and return

an ACK to the remote. However, if the display does not support the color, it will

respond with an error message that indicates the problem:

{
"source":"CLRDSP",
"destination":"CLRRMT",
"response_id":2341,
"version":1,
"type":"error",
"error": {

"id": 1,
"message": "Unsupported display color"

}
}

Querying the Display

The remote could also be used to query the display for the color that is currently

shown. When the remote makes this request, it will send the display the following

message:

81

{
"source":"CLRRMT",
"destination":"CLRDSP",
"id":2341,
"version":1,
"type":"query",
"query": {

"select":"color"
}

}

The color display will then respond with the correct color information for the query:

{
"source":"CLRDSP",
"destination":"CLRRMT",
"response_id":2341,
"version":1,
"type":"query_response",
"query_response": [

{
"type":"color",
"data": {

"value":"green"
}

}
]

}

82

Chapter 7

Future Enhancements

Although the Fog protocol has been demonstrated to work using the prototype im-

plementation FogKit, there is still further research and work that needs to be done

before it could be a viable product. As a prototype that was intended to guide the

design of the protocol, certain aspects such as security, privacy, e�ciency, and testing

were set aside for future work. This section will outline the future work that needs

to be done before this protocol can be fully launched.

7.1 Fog Protocol

7.1.1 Value Standardization

The Fog protocol was designed to be flexible and to accomodate any type of data

structures. However, this flexibility introduces interoperability problems if similar

data from di↵erent devices is formatted di↵erently. This issue is caused by the Fog

protocol’s extensive use of keywords used in both the keys and values of the JSON

messages. This issue could be dealt with by creating a standardized and documented

vocabulary of all the keys and common data structures. Developers could then use

this to ensure consistent use of the protocol.

83

7.1.2 Protocol Optimizations

There are many protocol optimizations that could be made to reduce the quantity

and size of messages sent. Some messages, such as the event and query messages,

only send one instance of a query or event per message. The format of these mes-

sages could be restructured to send an array of queries or events, reducing the overall

number of transmissions. Furthermore, the size of the messages themselves can be

reduced by significantly reducing the character count of messages through abbrevi-

ated keys. Alternately, the Fog protocol could define and support a set of verbose

keys for development and debugging and a set of abbreviated keys for production

environments.

7.1.3 Binary Data Transfer

One necessary but unimplemented feature of the Fog protocol is the ability to send

binary data between devices. This would allow peripherals to send data that cannot

be formatted as a string in a JSON message, such as a picture from a camera, audio

from a microphone, or other types of raw sensor data. One possible solution would

be to use a variant of JSON called Binary JSON (BSON) which has extensions to the

notation that allow developers to use binary data types[29].

7.2 FogKit

7.2.1 Security

One significant omission in the FogKit framework is security. As a prototype, the

FogKit framework does not take any security precautions, such as establishing secure

connections by pairing devices. However, the release of Bluetooth 4.2 introduces many

new features that extend security and privacy for Bluetooth devices. Bluetooth 4.2

introduces a new security model, the LE Secure Connection, which specifies a new

key generation and pairing procedure[20]. This new model protects again passive

eavesdropping and man-in-the-middle attacks[20].

84

7.2.2 Background Processing

Currently, the FogKit framework executes as part of an iOS application, which means

that if the application closes the framework process is killed. Further implementation

can be added to make the Fog framework execute in the background of the device

even when the iOS application is not open. Ideally, the FogKit framework could be

integrated as a service on all phones by default, but this would require support at the

operating system level.

7.2.3 Implementation Testing

This thesis provides basic validation of the Fog protocol thorugh some simple real

world examples. In order to thoroughly test all of the FogKit’s potential, further

testing will be required. The testing should consist of measuring performance charac-

teristics such as response times, data transmission rates, message reliability, realtime

detection of devices, etc. Although this testing would be useful to verify the FogKit

functionality, it should be noted that although FogKit currently supports these tests,

it is presently a proof-of-concept prototype and actual speeds and other numerical

characterisitcs may not represent its future or potential characteristics.

85

Chapter 8

Conclusion

The Internet of Things is driving innovation in almost every area of our lives. Ad-

vancements in technology have led to the deployment of an innumerable number of

diverse devices, ranging from simple sensors to fully integrated systems. One of the

most popular classes of these devices is “wearables” that are worn on the body, such

as a pedometer or smart watch.

The Fog protocol and FogKit framework were designed to facilitate communication

between these wearable devices while minimizing implementation time for develop-

ers. This was accomplished through the definition of a protocol that used messages

in the convenient JSON format. Additionally, the protocol was designed for use in

a star network topology, which simplifies the implementation of the Fog protocol on

Bluetooth peripheral devices by providing a single access point to the network.

Through the use of thought experiments with potential implementations and actual

mobile devices with functional FogKit framework implementations, the usefulness of

the protocol was demonstrated. The thought experiments focused on a potential net-

work of devices consisting of a smart watch, fitness tracker, and a remote device. The

actual mobile applications, executing on an assortment of iPhones, iPods, and iPads

demonstrated simple applications involving devices detecting each other, querying

capabilities, and sending data to each other.

86

Although the Fog protocol and FogKit framework are working as functional proto-

types, additional capabilities need to be added before it can be released as a final

product. These additions include new general features, security capabilities, and gen-

eral optimizations. With these improvements, the Fog Protocol will hopefully be

welcomed as a new and easy to use protocol for the Internet of Things.

87

88

Bibliography

[1] Apple. About core bluetooth, 9 2013. [Online; accessed 16-May-2015].

[2] Apple. Core data programming guide, 2014.

[3] Apple. Welcome to apple watch, 2015.

[4] H. Arora. Ip protocol header fundamentals explained with diagrams, 3 2012.

[5] K. Ashton. That ’internet of things’ thing, Jun 2009.

[6] D. Bandyopadhyay and J. Sen. Internet of things: Applications and challenges

in technology and standardization. Wireless Pers Commun Wireless Personal

Communications, 58(1):4969, 2011.

[7] V. Beal. The 7 layers of the osi model, Apr 2015.

[8] Bluetooth. Architecture - overview of operations, 2015.

[9] Bluetooth. Bluetooth smart (low energy) technology, 2015.

[10] Bluetooth. The low energy technology behind bluetooth smart, 2015.

[11] J.-P. Calbimonte, S. Sarni, J. Eberle, and K. Aberer. Xgsn: An open-source

semantic sensing middleware for the web of things.

[12] S. Cirani, M. Picone, and L. Veltri. mjcoap: An open-source lightweight java

coap library for internet of things applications. Interoperability and

Open-Source Solutions for the Internet of Things Lecture Notes in Computer

Science, page 118133, 2015.

89

[13] Cisco. Fog computing, ecosystem, architecture and applications.

[14] Cisco. How many internet connections are in the world? right. now., 2013.

[15] D. Crockford. JSON. RFC 4627, IETF, July 2006.

[16] DingBot. Meet dingbot, 2014.

[17] M. Electronics. Wearable devices and the internet of things, 2014.

[18] D. Evans. How the next evolution of the internet is changing everything.

Technical report, 04 2011.

[19] FitBit. Fitbit store, 2015.

[20] V. Gao. Everything you want to know about bluetooth-4.2 security —

bluetooth technology website, Jan 2015.

[21] C. Gomez and J. Paradells. Wireless home automation networks: A survey of

architectures and technologies. IEEE Communications Magazine IEEE

Commun. Mag., 48(6):92101, 2010.

[22] Google. Bluetooth low energy. [Online; accessed 16-May-2015].

[23] Google. Google glass.

[24] W. S. S. N. I. Group. Semantic sensor network ontology, 11ADAD.

[25] IEEE. Internet of things (iot) ecosystem study, January 2015.

[26] M. A. Khan, A. Khan, M. N. Khan, and S. Anwar. A novel learning method to

classify data streams in the internet of things. 2014 National Software

Engineering Conference, 2014.

[27] G. M. Luigi Atzori, Antonia Iera. The internet of things: A survey, 2010.

[28] Microsoft. The osi model’s seven layers defined and functions explained, Jun

2013.

[29] MongoDB. Bson.

90

[30] OpenIoT. Openiot - the open source internet of things, 11 2014. [Online;

accessed 16-May-2015].

[31] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco,

G. Boggia, and M. Dohler. Standardized protocol stack for the internet of

(important) things. IEEE Commun. Surv. Tutorials IEEE Communications

Surveys and Tutorials, 15(3):13891406, 2013.

[32] M. Patel and J. Wang. Applications, challenges, and prospective in emerging

body area networking technologies. IEEE Wireless Commun. IEEE Wireless

Communications, 17(1):8088, 2010.

[33] G. Press. Internet of things by the numbers: Market estimates and forecasts,

Aug 2014.

[34] Y. Rekhter and T. Li. RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks. RFC 6550, March 2012.

[35] T. Rueters. Gartner hype 2014 cycle for emerging technology, 2014.

[36] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung. A survey on

the ietf protocol suite for the internet of things: standards, challenges, and

opportunities. IEEE Wireless Commun. IEEE Wireless Communications,

20(6):9198, 2013.

[37] B. SIG. Generic attribute profile, 2015.

[38] M. Swider and L. Prasuethsut. Best smartwatch 2015: what’s the best

wearable tech for you?, May 2015.

[39] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. T. Yang. Data mining for internet

of things: A survey. IEEE Commun. Surv. Tutorials IEEE Communications

Surveys and Tutorials, 16(1):7797, 2014.

[40] B. University. Distance-vector routing.

[41] J. Williamson, Q. Liu, F. Lu, W. Mohrman, K. Li, R. Dick, and L. Shang.

Data sensing and analysis: Challenges for wearables. The 20th Asia and South

Pacific Design Automation Conference, 2015.

91

[42] C. B. Z. Shelby, K. Hartke. The Constrained Application Protocol (CoAP).

RFC 7275, IETF, June 2014.

[43] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of

things for smart cities. Internet of Things Journal, IEEE, 1(1):22–32, Feb 2014.

92

Appendix A

Fog Protocol Keys

1 Identity Messages

2 New Data Notification Message

93

3 Network Status Messages

4 Network Status Response Messages

5 Message Header

94

6 Event Messages

7 Post Messages

8 Query Messages

9 Query Response Messages

95

